Patricia Schromen, August 22, 2009


NOAA Teacher at Sea
Patricia Schromen
Onboard NOAA Ship Miller Freeman
August 19-24, 2009 

Mission: Hake Survey
Geographical Area: Northwest Pacific Coast
Date: Thursday, August 22, 2009

Bringing in the nets requires attention, strength and teamwork.

Bringing in the nets requires attention and teamwork.

Weather Data from the Bridge 
SW wind 10 knots
Wind waves 1 or 2 feet
17 degrees Celsius

Science and Technology Log 

In Science we learn that a system consists of many parts working together. This ship is a small integrated system-many teams working together. Each team is accountable for their part of the hake survey. Like any good science investigation there are independent, dependent and controlled variables. There are so many variables involved just to determine where and when to take a fish sample.

Matt directs the crane to move to the right. Looks like some extra squid ink in this haul.

Matt directs the crane to move to the right. Looks like some extra squid ink in this haul.

The acoustic scientists constantly monitor sonar images in the acoustics lab. There are ten screens displaying different information in that one room. The skilled scientists decide when it is time to fish by analyzing the data.  Different species have different acoustical signatures. Some screens show echograms of marine organisms detected in the water column by the echo sounders. With these echograms, the scientists have become very accurate in predicting what will likely be caught in the net. The OOD (Officer of the Deck) is responsible for driving the ship and observes different data from the bridge. Some of the variables they monitor are weather related; for example: wind speed and direction or swell height and period. Other variables are observed on radar like the other ships in the area. The topography of the ocean floor is also critical when nets are lowered to collect bottom fish. There are numerous sophisticated instruments on the bridge collecting information twenty four hours a day. Well trained officers analyze this data constantly to keep the ship on a safe course.

Here come the hake!

Here come the hake!

When the decision to fish has been made more variables are involved. One person must watch for marine mammals for at least 10 minutes prior to fishing. If marine mammals are present in this area then they cannot be disturbed and the scientists will have to delay fishing until the marine mammals leave or find another location to fish. When the nets are deployed the speed of the boat, the tension on the winch, the amount of weight attached will determine how fast the nets reach their target fishing depth.  In the small trawl house facing the stern of the ship where the trawl nets are deployed, a variety of net monitoring instruments and the echo sounder are watched. The ship personnel are communicating with the bridge; the deck crew are controlling the winches and net reels and the acoustic scientist is determining exactly how deep and the duration of the trawl. Data is constantly being recorded. There are many decisions that must be made quickly involving numerous variables.

Working together to sort the squid from the hake.

Working together to sort the squid from the hake.

The Hake Survey began in 1977 collecting every three years and then in 2001 it became a biannual survey. Like all experiments there are protocols that must be followed to ensure data quality. Protocols define survey operations from sunrise to sunset. Survey transect line design is also included in the protocols. The US portion of the Hake survey is from approximately 60 nautical miles south of Monterey, California to the US-Canada Border. The exact location of the fishing samples changes based on fish detected in the echograms although the distance between transects is fished at 10 nautical miles. Covering depths of 50-1500 m throughout the survey. Sampling one species to determine the health of fish populations and ocean trends is very dynamic.

Weighing and measuring the hake is easier with automated scales and length boards.

Weighing and measuring the hake.

Personal Log 

Science requires team work and accountability. Every crew member has an integral part in making this survey accurate.  A willing positive attitude and ability to perform your best is consistently evident on the Miller Freeman. In the past few days, I’ve had the amazing opportunity to assist in collecting the data of most of the parts of this survey, even launching the CTD at night from the “Hero Platform” an extended grate from the quarter deck.

Stomach samples need to be accurately labeled and handled carefully.

Stomach samples need to be accurately labeled and handled carefully.

Before fishing, I’ve been on the bridge looking for marine mammals.  When the fish nets have been recovered and dumped on the sorting table, I’ve sorted, weighed and measured fish. For my first experience in the wet lab, I was pleased to be asked to scan numbers (a relatively clean task) and put otoliths (ear bones) into vials of alcohol. I used forceps instead of a scalpel. Ten stomachs are dissected, placed in cloth bags and preserved in formaldehyde. A label goes into each cloth bag so that the specimen can be cross referenced with the otoliths, weight, length and sex of that hake. With all the high tech equipment it’s surprising that a lowly pencil is the necessary tool but the paper is high tech since it looks regular but is water proof.  It was special to record the 100th catch of the survey.

Removing the otolith (ear bone) with one exact incision. An otolith reminds me of a squash seed or a little silver feather in jewelry.

Removing the otolith (ear bone) with one exact incision. An otolith reminds me of a squash seed or a little silver feather in jewelry.

Each barcoded vial is scanned so the otolith number is linked to the weight, length and sex data of the individual hake.

Each barcoded vial is scanned so the otolith number is linked to the weight, length and sex data of the individual hake.

Questions for the Day 

How is a fish ear bone (otolith) similar to a tree trunk? (They both have rings that can be counted as a way to determine the age of the fish or the tree.)

The CTD (conductivity, temperature and depth) unit drops 60 meters per minute and the ocean is 425 meters deep at this location; how many minutes will it take the CTD to reach the 420 meter depth?

Think About This: The survey team directs the crane operator to stop the CTD drop within 5 meters of the bottom of the ocean.  Can you think of reasons why the delicate machinery is never dropped exactly to the ocean floor?  Some possible reasons are:

  • The swell in the ocean could make the ship higher at that moment;
  • An object that is not detected on the sonar could be on the ocean floor;
  • The rosetta or carousel holding the measurement tools might not be level.

Launching the CTD is a cooperative effort. The boom operator works from the deck above in visual contact. Everyone is in radio contact with the bridge since the ship slows down for this data collection.

Retrieving the CTD

Retrieving the CTD

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s