Justin Garritt: Paired Trawling, X-raying, and The Galley Master: September 11, 2018

NOAA Teacher at Sea

Justin Garritt

NOAA Ship Bell M. Shimada

September 1-14, 2018

Mission: Hake Research

Geographical area of cruise: Seattle, Washington to Newport, Oregon

Date: September 9-11, 2018: Day 7-9

Location: West of the Columbia River and Astoria, Oregon

 

Where Are We? After fishing off of the Straits of Juan de Fuca on Friday and Saturday, we headed south.  We ended up west of the Columbia River off the coast of Astoria, Oregon and continued to fish for a few days.

 

The fishing and sampling continues: A typical day consists of the scientists waking up before sunrise to begin scouting for fish. We use the information from the acoustic transducer to find fish.

Chief Scientist Rebecca Thomas
Chief Scientist Rebecca Thomas spots signs of fish on the sonar
sonar from the acoustic transducer
The sonar from the acoustic transducer showing signs of fish

Paired Trawling: Last week I wrote about our goals of the cruise. One of them was to perform paired trawls to determine net size impact to evaluate the differences between the US 32mm net liners and the Canadian 7mm net liners. A paired trawl is when we fish approximately the same location and depth two times using two different size liners. Data is collected on the size, characteristics, and species of fish being caught to eliminate the possibility that there is bias in the data between the two liners. Below are pictures of the nets being sent in and brought back based on information from the sonars. This typically happened 2-4 times per day (1-2 paired trawls).

 

Sorting the Fish Aboard:

rockfish photo shoot
A rockfish photo shoot 🙂

How We Collect Data:

When fish come aboard we follow this flow chart to determine what analysis needs to be done on the catch.

img_11131
Our instructional chart for how we analyze the hake and other species

Hake is the majority of the fish we catch. It is also the main species we are researching this cruise.

A random sample of 250 are set aside and the rest are sent back in to the ocean. Of the approximately 250 random hake, 30 are dissected for enhanced sampling (length, weight, sex, maturity, and other projects).

220 are set aside for sex/length analysis. All other species of fish must be logged into the computer and some are kept for special research projects. See pictures below:

Male vs. female hake distinction:

Determining the length of the hake:

Enhanced sampling (length, weight, sex, maturity, and other projects):

IMG_1251
Dissecting the hake to enhance sample

Special Projects: There are also a number of special projects going on aboard:

Fish X-ray: Scientist Dezhang Chu x-rays samples of fish occasionally. The x-ray is used to determine the volume of the swim bladders in certain species of fish (see picture below). The volume of different species’ swim bladders affects the observed acoustics. I spoke to him about the purpose of this study. He said that the present acoustic transducers are great to capture whether fish are present below the ship’s surface but are still not able to classify the type of species being observed. He is working on a team that is trying to use x-ray’s from multiple species to solve that problem. When asked how long he thought it may take for there to be an acoustic system advanced enough to better predict the species onscreen, he said, “People have and will continue to spend their entire careers on improving the system.” If we have more scientists like Dr. Chu on this project, I predict it will be much sooner than he leads on.

"Super Chu"
“Super Chu” and I with his new apron I made him for x-raying

Filming the Catch: Melanie Johnson leads the science team’s visual analysis. During each trawl a camera is placed securely on the net. The purpose of the net is to analyze approximately which depth and time certain fish enter the net.

fish entering the net
Camera footage of fish entering the net

———————————————————————

Getting to know the crew: As promised in other blog posts, here is another interview from the incredible crew aboard  NOAA Ship Bell M. Shimada who continue to make my journey such a rich experience:

Mr. Arnold Dones, Head Chef

Arnold Dones is our head chef or what I like to call him, “Master Chef.” Since the minute I’ve been aboard I quickly noticed the incredible work ethic and talent of our chef. To be clear, every meal has incredible! When I spoke to my mom a few days into the cruise my exact words were, “The food aboard is better than a buffet on a cruise ship. I expected to come aboard for two weeks and lose a few pounds. Well that’s not going to happen!”

Chef Arnold
Chef Arnold and his incredible food artwork

Arnold was born in the Philippines and his family migrated here when he was twenty. When he first got here he knew very little English and worked hard to learn the language and the American culture. He worked a few odd and end jobs until he joined the United States military as a chef. During his first years in the military, he showed so much promise as a chef that he enrolled in “A School” which allowed him to learn how to be a master chef in the military. He spent more than a decade working on military vessels. His last ship placement was aboard the USS Ronald Reagan where he and his team prepared meals for 6,000 soldiers per meal. Two months ago he joined the NOAA Ship Bell M. Shimada family as head chef.  Arnold has two children and a wife who live back in San Diego.

After a tour of the galley with Arnold, I learned how much work it takes to pull 42 meals in 14 days for over 40 crew members without a supermarket nearby. A few weeks out, Arnold has to create his menu for the next cruise leg (typically two weeks). He then has to order the food required to make the meals and do so by staying under a strict budget. When the ship ends a leg and pulls in to port, a large truck pulls up and unloads all his ordered food in large boxes. He then organizes it in the order he plans to prepare it in his large freezer, refrigerator, and store rooms. The trick is to be sure his menu is organized so nothing spoils before it is used.  Arnold’s day begins at 05:00  (5am) and goes until 19:00 (7pm) with a short break after lunch. The only days off he has is a day or two once every two weeks when the boat is in port.

Here is a sample menu for the day:

Breakfast (7-8am)- Eggs benedict, blueberry pancakes, french toast, hash browns, scrambled eggs, oat meal, cut fresh fruit, and breakfast danish.

Lunch (11-12pm)- Bacon wrapped rockfish, chicken wings, Chinese noodles, brussel sprouts, bread, a large salad bar, homemade salads, avocado, bean salad, homemade cookies, and ice cream.

Dinner (5-6pm)-  Stuffed pork chops with spinach and cheese, fine braised chicken thigh, baked salmon, Spanish rice, oven potatoes, peas, dinner rolls, a large salad bar, homemade salads, homemade apple pie, and ice cream.

Snack (24/7)- Soup, crackers, ice cream, and salad/fruit bar

We dock in Newport, Oregon on Friday, September 14, 2018. My final post will be on Friday. Thank you for continuing to follow along in this journey. I am grateful for your support and for the amazing people I have met aboard.

Justin

 

Christine Webb: September 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 9/19/2017

Latitude: 42.2917° N (Back home again!)

Longitude: 85.5872° W

Wind Speed: 6 mph

Air Temperature: 65 F

Weather Observations: Rainy

Here I am, three weeks deep in a new school year, and it’s hard to believe that less than a month ago I was spotting whales while on marine mammal watch and laughing at dolphins that were jumping in our wake. I feel like telling my students, “I had a really weird dream this summer where I was a marine biologist and did all kinds of crazy science stuff.”

IMG_20170817_103950017_HDR
Me on marine mammal watch

If it was a dream, it certainly was a good one! Well, except for the part when I was seasick. That was a bit more of a nightmare, but let’s not talk about that again. It all turned out okay, right?

I didn’t know what to expect when signing on with the Teacher at Sea program, and I’m amazed at how much I learned in such a short period of time. First of all, I learned a lot about marine science. I learned how to differentiate between different types of jellyfish, I learned what a pyrosome is and why they’re so intriguing, I learned that phytoplankton are way cooler than I thought they were, and I can now spot a hake in any mess of fish (and dissect them faster than almost anyone reading this).

I also learned a lot about ship life. I learned how to ride an exercise bike while also rocking side to side.  I learned that Joao makes the best salsa known to mankind. I learned that everything – everything – needs to be secured or it’s going to roll around at night and annoy you to pieces. I even learned how to walk down a hallway in rocky seas without bumping into walls like a pinball.

Well, okay. I never really mastered that one. But I learned the other things!

Beyond the science and life aboard a ship, I met some of the coolest people. Julia, our chief scientist, was a great example of what good leadership looks like. She challenged us, looked out for each of us, and always cheered us on. I’m excited to take what I learned from her back to the classroom. Tracie, our Harmful Algal Bloom specialist, taught me that even the most “boring” things are fascinating when someone is truly passionate about them (“boring” is in quotes because I can’t call phytoplankton boring anymore. And zooplankton? Whoa. That stuff is crazy).

329 hobbit house 2
Phytoplankton under a microscope

Lance taught me that people are always surprising – his innovative ways for dissecting fish were far from what I expected. Also, Tim owns alpacas. I didn’t see that one coming. It’s the surprising parts of people that make them so fun, and it’s probably why our team worked so well together on this voyage.

I can’t wait to bring all of this back to my classroom, specifically to my math class. My students have already been asking me lots of questions about my life at sea, and I’m excited to take them on my “virtual voyage.” This is going to be a unit in my eighth and ninth grade math classes where I show them different ways math was used aboard the ship. I’ll have pictures and accompanying story problems for the students to figure out. They’ll try to get the same calculations that the professionals did, and then we’ll compare data. For example, did you know that the NOAA Corps officers still use an old-fashioned compass and protractor to track our locations while at sea? They obviously have computerized methods as well, but the paper-and-pencil methods serve as a backup in case one was ever needed. My students will have fun using these on maps of my locations.

They’ll also get a chance to use some of the data the scientists took, and they’ll see if they draw the same conclusions the NOAA scientists did. A few of our team were measuring pyrosomes, so I’ll have my students look at some pyrosome data and see if they get the correct average size of the pyrosome sample we collected. We’ll discuss the implications of what would happen if scientists got their math wrong while processing data.

I am so excited to bring lots of real-life examples to my math classroom. As I always tell my students, “Math and science are married.” I hope that these math units will not only strengthen my students’ math skills, but will spark an interest in science as well.

This was an amazing opportunity that I will remember for the rest of my life. I am so thankful to NOAA and the Teacher at Sea program for providing this for me and for teachers around the country. My students will certainly benefit, and I have already benefited personally in multiple ways. To any teachers reading this who are considering applying for this program – DO IT. You won’t regret it.

CWeb
Me working with hake!

Christine Webb: August 21, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/21/2017

Latitude: 49.48 N

Longitude: 128.07 W

Wind Speed: 10 knots

Weather Observations: Sunny

Science and Technology Log

Today was our first chance to use the Methot net, and it was a lot of fun! The Methot net is smaller than the net that we usually use, and it is used to catch smaller organisms. Today we were targeting euphausiids. We thought we saw a pretty good aggregation of them on the 120 kHz acoustics data, where they appear the strongest of the three frequencies we monitor. We needed to validate that data by trawling the area to find the source of the backscatter and make sure they really were what we thought they were. There are many scientists who use data on euphausiids, so this was a good opportunity to provide them with some additional data. Because we’ve been working mostly on larger organisms, I was excited for the chance to see what a Methot net would pull up.

IMG_20170821_125553193_HDR
The Methot net coming up with its haul

It was very exciting that when the net came up, we had TONS of euphausiids! (“Tons” here is not used in a literal sense…we did not have thousands of pounds of euphausiids. That would have been crazy). Although we did not have thousands of pounds of them, we did have thousands of specimens. I’m sure thankful that we only had to take data on a subsample of thirty! I got to measure the lengths and widths of them, and using the magnifying lenses made me look very scientific.

IMG_20170821_145225093
Measuring euphausiids

Along with euphausiids, we also found other species as well. We found tiny squids, jellies, and even a baby octopus! It was adorable. I’ve never considered that an octopus could be cute, but it was.

IMG_20170821_131649146
Baby octopus

We also measured volumes and weights on samples of the other specimens we found, and I used graduated cylinders for the first time since college. We would put in a few milliliters of water, add our specimens, and then calculate the difference. Voila! Volume. Good thing I remembered to call the measurement at the bottom of the liquid’s meniscus… I could have messed up all the data! Just kidding… I’m sure my measurements weren’t that important. But still – good thing I paid attention in lab skills. It was definitely a successful first day with the Methot net.

Personal Log

The big buzz around the ship today was the solar eclipse! I was even getting excited at breakfast while I ate my pancakes and made them eclipse each other. We got lucky with weather – I was nervous when I heard the foghorn go off early in the morning. Fortunately, the fog lifted and we had a pretty good view. We all sported our cheesy eclipse shades, and the science team wore gray and black to dress in “eclipse theme.” Even though we couldn’t see the totality here, we got to see about 85%. We’re pretty far north, off the coast of Vancouver Island in Canada. The mountains are beautiful! Seeing land is always a special treat.

Here are some eclipse pics:

IMG_20170821_091709694
Rockin’ our cheesy eclipse shades
IMG_20170821_101636324
Some science team members enjoying the eclipse
IMG_20170821_100819772
Eclipse!

The eclipse would have made the day exciting enough, but the excitement didn’t stop there! While the scientists and I were working in the wet lab, we heard that a pod of orcas was swimming within eyesight of the ship. We dropped everything and hurried to take a look. It was so amazing; we could see five or six surface at once. They must have been hunting. We only see orcas when we’re close to land because their prey doesn’t live in deeper waters. Deeper into the ocean we are more likely to see gray or humpback whales.

It’s almost time for dinner…we sure have been spoiled for food! Last night we had pork loin and steak. I’m not sure that our chef will be able to top himself, but I’m excited to find out. I have heard rumors that he is very good at cooking the fish we’ve been catching, and that really makes me wish I liked seafood. Unfortunately, I don’t. At all. Not even enough to try Larry’s fried rockfish. Luckily, he makes lots of other food that I love.

Tonight after dinner I think Hilarie, Olivia, and I are going to watch Pirates of the Caribbean 2. Last night we watched the first movie while sitting on the flying bridge. It was a pretty cool experience to feel the spray of the sea while watching pirates battle!

IMG_20170820_174605473_HDR
Movie time!

That’s all for now; I’ll be back with more scientific fun soon!

Did you know?

Krill (the type of euphausiid we studied) is one of the most populous species on earth. It basically fuels the entire marine ecosystem.

 

Christine Webb: August 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/19/2017

Latitude: 48.59 N

Longitude: 126.59 W

Wind Speed: 15 knots

Barometric Pressure: 1024.05 mBars

Air Temperature: 59 F

Weather Observations: Sunny

Science and Technology Log:

You wouldn’t expect us to find tropical sea creatures up here in Canadian waters, but we are! We have a couple scientists on board who are super interested in a strange phenomenon that’s been observed lately. Pyrosomes (usually found in tropical waters) are showing up in mass quantities in the areas we are studying. No one is positive why pyrosomes are up here or how their presence might eventually affect the marine ecosystems, so scientists are researching them to figure it out. One of the scientists, Olivia Blondheim, explains a bit about this: “Pyrosomes eat phytoplankton, and we’re not sure yet how such a large bloom may impact the ecosystem overall. We’ve already seen that it’s affecting fishing communities because their catches have consisted more of pyrosomes than their target species, such as in the shrimp industry.”

IMG_20170817_100329068
Sorting through a bin of pyrosomes

Pyrosomes are a type of tunicate, which means they’re made up of a bunch of individual organisms. The individual organisms are called zooids. These animals feed on phytoplankton, and it’s very difficult to keep them alive once they’re out of the water. We have one alive in the wet lab right now, though, so these scientists are great at their jobs.

We’ve found lots of pyrosomes in our hake trawls, and two of our scientists have been collecting a lot of data on them. The pyrosomes are pinkish in color and feel bumpy. Honestly, they feel like the consistency of my favorite candy (Sour Patch Kids). Now I won’t be able to eat Sour Patch Kids without thinking about them. Under the right conditions, a pyrosome will bioluminesce. That would be really cool to see, but the conditions have to be perfect. Hilarie (one of the scientists studying them) is trying to get that to work somehow before the trip is over, but so far we haven’t been able to see it. I’ll be sure to include it in the blog if she gets it to work!

One of the things that’s been interesting is that in some trawls we don’t find a single pyrosome, and in other trawls we see hundreds. It really all depends on where we are and what we’re picking up. A lot of research still needs to be done on these organisms and their migration patterns, and it’s exciting to be a small part of that.

Personal Log:

The science crew continues to work well together and have a lot of fun! Last night we had an ice cream sundae party after dinner, and I was very excited about the peanut butter cookie dough ice cream. My friends said I acted more excited about that than I did about seeing whales (which is probably not true. But peanut butter cookie dough ice cream?! That’s genius!). After our ice cream sundaes, we went and watched the sunset up on the flying bridge. It was gorgeous, and we even saw some porpoises jumping in the distance.

It was the end to another exciting day. My favorite part of the day was probably the marine mammal watch where we saw all sorts of things, but I felt bad because I know that our chief scientist was hoping to fish on that spot. Still, it was so exciting to see whales all around our ship, and some sea lions even came and swam right up next to us. It was even more exciting than peanut butter cookie dough ice cream, I promise. Sometimes I use this wheel to help me identify the whales:

IMG_20170818_094058774_HDR
Whale identification wheel

Now we’re gearing up for zooplankton day. We’re working in conjunction with the Nordic Pearl, a Canadian vessel, and they’ll be fishing on the transects for the next couple days. That means we’ll be dropping vertical nets and doing some zooplankton studies. I’m not exactly sure what that will entail, but I’m excited to learn about it! So far the only zooplankton I’ve seen is when I was observing my friend Tracie. She was looking at phytoplankton on some slides and warned me that sometimes zooplankton dart across the phytoplankton. Even though she warned me, it totally startled me to see this giant blob suddenly “run” by all the phytoplankton! Eeeeep! Hopefully I’ll get to learn a lot more about these creatures in the days coming up.

Christine Webb: August 18, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

 

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/18/2017

Latitude: 48.19 N

Longitude: 125.29 W

Wind Speed: 7.9 knots

Barometric Pressure: 1021.70 mBars

Air Temperature: 55.4 F

Weather Observations: Foggy

 

Science and Technology Log:

I am learning an unbelievable amount about marine biology! Today I will focus on hake because that is the main type of fish we are surveying on this voyage. Pacific hake are found in great abundance out here off the west coast of North America and Canada. Let me tell you a little bit about what we do.

The first thing we have to do before trawling for hake is find a good aggregation of them based on our acoustics. There is always a scientist in the acoustics lab watching the monitor outputs. The monitors show the acoustics from different frequencies: 18, 38, and 120 KHz. They can “see” when there are things between us and the ocean floor (see picture below). Based on the response of the acoustics to the objects in the water, the scientists make an educated guess about when we are over a hake aggregation. I’ve been learning a lot about how to read these monitors and how to see if we’re over rockfish, phytoplankton, or hake. I think it would be pretty cool to see something giant like a whale go underneath us, but that hasn’t happened. That’s probably for the best – I can’t imagine it’s super safe to have a whale under your ship.

IMG_20170816_090024430_BURST000_COVER_TOP
Acoustic data from the acoustics lab.

Once the acoustic scientists decide we’re over hake, they radio up to the bridge to tell them it’s time to go fishing. The fishermen start getting the nets ready, and the scientists (that’s me!) go up for marine mammal watch. We have to make sure there aren’t any whales or dolphins nearby that might get caught in our nets. I really like marine mammal watch. I get super excited to see whales and dolphins, even though I guess that’s kind of bad because we might have to postpone our trawl. Seeing mammals when we’re not fishing is the most exciting. Today we saw two orcas by the side of our boat – now THAT is cool!

IMG_20170817_103950017_HDR
Me on marine mammal watch

Once the net is fully deployed and well below the surface, the marine mammal watch ends. Then they fish through the sign they saw on the acoustics and bring the net up when they believe they caught an adequate sample. Then it’s time to process the trawl! What we want to see is a majority of hake, but that doesn’t always happen. We’ve had trawls with hundreds of hake, and we’ve had trawls with only seventeen. We sometimes catch a bunch of other stuff too, and we do different things with those creatures (I’ll save that for a different post).

Processing the trawl is pretty intensive. First we have to weigh all of them to get the mass of the entire trawl. Then we sex them to sort into male and female baskets. It’s tricky to tell the difference between males and females. We have to dissect them and find the gonads to be able to tell. Near as I can tell, the male gonads look like ramen noodles and the females look like peach jello. I think of it as, “I wonder what my husband is eating while I’m gone? Probably ramen noodles. Okay, ramen noodles means male.”

IMG_20170818_153044071
Getting ready to sort hake!

Once we have them all sorted, we take length measurements and start extracting the parts we need. The scientists are collecting and preserving the otoliths, gonads, stomachs, livers, and fin clips. We have a LOT of tubes of fish guts in our lab. I’m not entirely sure what scientists will be doing with all of this data, but perhaps I’ll interview our chief scientist about this and put it in a future post.

Personal Log:

Everyone I’ve met on this ship has been so friendly! One of my favorite things about it is that these people seem so passionate about whatever they’re doing. You should have seen my friend Hilarie’s face today when we pulled up a trawl full of pyrosomes (that’s what she studies). Tracie showed me some of the phytoplankton she’s studying, and it was like she was a little kid at Christmas. Personally I’ve never been super interested in phytoplankton, but now I am. She makes it sound like it’s the most exciting subject on earth, and looking at her slides makes me believe her.

IMG_20170817_081818382
Tracie studying phytoplankton

It’s not only the scientists who are passionate about their work. The chief steward, Larry, was so excited about his cauliflower soup today that he seemed personally offended when I didn’t take any. “Take some soup!” he said. “Seriously – it’s really good soup. You’re going to like it.” I took some just to be nice, but after one bite I said, “Larry, will this be out at dinner? Can this please be out at dinner? I LOVE IT.” It was seriously good. I need to learn how to make that.

Our chief scientist takes her job as chief very seriously too. She’s like the momma duck who takes care of all of us (thanks, Julia!). Also, she plans fun and goofy games every day where we can win prizes out of her “bag of goodies.” I haven’t won yet, but I hope I will before this is over. Today Hilarie won some awesome coral reef socks. I’m not sure how I’ve gotten this far in life without owning marine biology socks! It’s great to have Julia around because she makes time for all of us even though her own research is very absorbing and important. She’s a rock star.

IMG_20170818_181046070_HDR
Hilarie choosing her prize

Stay tuned for more info from Leg 4 – bye for now!

Brad Rhew: The Sounds of the Sea, July 31, 2017

NOAA Teacher at Sea

Brad Rhew

Aboard NOAA Ship Bell M. Shimada

July 23 – August 7, 2017

 

Mission: Hake Fish Survey

Geographic Area of Cruise: Northwest Pacific Ocean, off of the coast of Oregon

Date: July 31, 2017

 

Weather Data from the Bridge

Latitude: 44 49.160 N
Longitude 124 26.512

Temperature: 59oF
Sunny
No precipitation
Winds at 25.45 knots
Waves at 4-5ft

 

Science and Technology Log

TAS Rhew 7-31 acoustics lab2
Inside the acoustics lab

The scientists on the Hake survey project are constantly trying to find new methods to collect data on the fish. One method used is acoustics. Scientists Larry Hufnagle and Dezhang Chu are leading this project on the Shimada. They are using acoustics at a frequency of 38 kHz to detect Pacific Hake. Density differences between air in the swimbladder, fish tissue, and the surrounding water allows scientists to detect fish acoustically.

The purpose of the swim bladder in a fish is to help with the fish’s buoyancy. Fish can regulate the amount of gas in the swim bladder to help them stay at a certain depth in the ocean. This in return decreases the amount of energy they use swimming.

TAS Rhew 7-31 echosounder
The screen shows the data collected by the echosounder at different frequency levels.

Larry and Chu are looking at the acoustic returns (echoes) from 3 frequencies and determining which are Hake. When the echosounder receives echoes from fish, the data is collected and visually displayed. The scientists can see the intensity and patterns of the echosounder return and determine if Hake are present.

The scientists survey from sunrise to sunset looking at the intensity of the return and appearances of schools of fish to make the decisions if this is an area to fish.

TAS Rhew 7-31 scientists Larry and Chu
Scientists Larry Hufnagle (left) and Dezhang Chu (right) monitor the nets and echosounder while fishing for hake.

The ultimate goal is to use this data collected from the echosounder to determine the fish biomass. The biomass determined by the survey is used by stock assessment scientist and managers to manage the fish stock.

Personal Log

Everyday aboard the Shimada is a different experience. It has been amazing to be able to go between the different research labs to learn about how each group of scientists’ projects are contributing to our knowing more about Hake and marine ecosystems. My favorite part so far has been helping with the sampling of Hake. Some people might find dissecting fish after fish to determine length, sex, age, and maturity to be too much. However, this gives me an even better understanding and respect for what scientists do on a daily basis so we can have a better understanding of the world around us. We have also caught other fascinating organisms that has helped me explore other marine species and learn even more about their role in the ocean.

Even though the wind is a little strong and the temperatures are a little chilly for my southern body I wouldn’t trade this experience for anything…especially these amazing sunsets…

TAS Rhew 7-31 sunset
View of sunset over the Pacific Ocean from NOAA Ship Bell M. Shimada

Did You Know?

Before every fishing operation on the boat we must first do a marine mammal watch. Scientists and other crew members go up to the bridge of the boat to see if any mammals (whales, seals, dolphins) are present near the boat. This is to help prevent these animals from being harmed as we collect fish as well as making sure we are not running a risk of these mammals getting caught in the fishing nets.

Fascinating Catch of the Day!

Today’s fun catch in the net was a Brown Catshark! These creatures are normally found in the deeper parts of the Pacific Ocean. They are typically a darker brown color with their eyes on the side of their head. Their skin is very soft and flabby which can easily lead to them being harmed. They have two dorsal fins and their nostrils and mouth on the underside of their body. One of the sharks we caught was just recently pregnant.

 

TAS Rhew 7-31 catshark egg sack string
This catshark was recently pregnant; the yellow stringy substance is from an egg sack.

Notice to yellow curly substance coming out of the shark? That is from the egg sac. Sharks only produce one egg sac at a time. It normally takes up to a full year before a baby shark to form!

Brad Rhew: Getting Fishy With It, July 29, 2017

NOAA Teacher at Sea

Brad Rhew

Aboard NOAA Ship Bell M. Shimada

July 23 – August 7, 2017

 

Mission: Hake Survey

Geographic Area of Cruise: Northwest coast

Date: July 28, 2017

 

Weather Data from the Bridge

Latitude 4359.5N
Longitude 12412.6 W
Temperatue: 54 degrees
Sunny
No precipitation
Winds at 23.5 knots
Waves at 2-4 feet

 

Science and Technology Log

We are officially off! It has already been an amazing experience over the last couple of days.

One of the goals of this project is to collect data that will be used to inform the Pacific hake stock assessment. This falls in line with the Pacific Whiting Treaty that the US-Canadian governments enacted to jointly manage the hake stock. NOAA and Department of Fisheries and Oceans-Canada (DFO) jointly survey and provide the hake biomass to the stock assessment scientists. (Refer to the link in my last blog about additional information on this treaty.) Major goals of the survey are to determine the biomass, distribution, and biological composition of Pacific hake using data from an integrated acoustic and trawl survey. Additionally, we are collecting a suite of ecological and physical oceanographic data in order to better understand the California Current Large Marine Ecosystem (CCLME).

There is a very detailed process the scientists go through to collect samples and data on the hake caught and selected for sampling. They want to learn as much as possible about these fish to help with the ongoing research projects.

Here is a quick guide and understanding of how sampling works and what data is collected:

  1. Determine the length and sex of the fish.
    1. To determine the length, the fish is placed on a magnetic sensor measuring board. The magnet is placed at the fork of the tail fin; the length is recorded into the data table. (See figure A.)
      TAS Rhew Blog 2 photo A
      Figure A. Determining the length of the fish.

       

    2. To determine the sex, the fish is sliced open on the side. Scientist look to see if ovaries (for females) or testes (for males) are present. They also can determine the maturity of the fish by looking at the development of the reproductive organs. (See figure B.)

      TAS Rhew Blog 2 photo B
      Figure B. Determining the sex of the fish.
  2. Determine the mass.
    1. The Hake are placed on a digital scale and then massed. The data also gets entered into the database. (See figure C.)

      TAS Rhew Blog 2 photo C
      Figure C. Massing the fish on a digital scale.
  3. Removing of the otoliths (ear bones).
    1. Hake have two otoliths. How this is done is the scientist first cuts a slight incision on top of the fish’s head. (See figure D.)

      TAS Rhew Blog 2 photo D
      Figure D. Making an incision on the fish’s head to remove otoliths.
    2. The head is then carefully cracked open to expose the bones. (See figure E.)
    3. The bones are removed with forceps and then placed in a vial. The vial is then barcode scanned into the database. The otoliths will then be sent to the lab for testing. Scientists can run test on the otoliths to determine the age of the selected fish. (See figures F and G.)
  4. Removing a fin clip.
    1. Fin clips are removed from the Hake for DNA sampling to be completed back on shore in the lab. This gives researchers even more information about the selected fish.
    2. The fin clip is removed using scissors and forceps. (see figure H.)

      TAS Rhew Blog 2 photo H
      Figure H. Removing a fin clip.
    3. The clip is then placed on a numbered sheet. (see figure I.)

      TAS Rhew Blog 2 photo I
      Figure I. Placing the fin clip on a numbered sheet.
    4. The number is also entered into the database with all the other information collected on that particular fish.
  5. All the information is collected in one database so it can be assessed by scientists for future research. (see figure J.)

    TAS Rhew Blog 2 photo J
    Figure J. All information is stored in a database.

 

Personal Log

Even though this survey is just beginning this has been such an amazing experience already. I have learned a great deal about oceanography and marine research. I cannot wait to use my experiences back in my classroom to expose my students to careers and opportunities they could be a part of in their future.

Another great aspect of being a Teacher at Sea is the relationships I’m building with other scientists and the crew. It is amazing to hear how everyone became a part of this cruise and how passionate they are about their profession and the world around them.

 

Did You Know?

This is Leg 3 of 5 of this Summer Hake Survey. Two more legs will be completed this year to collect even more data on the fish population.

 

Fascinating Catch of the Day!

When we fish for Hake it is very common to collect some other organisms as well. Today’s fun catch was Pyrosomes or Sea Tongues!

These free-floating colonial tunicates are found in the upper part of the open ocean. Pyrosomes rely on the currents to move them around the ocean. They are typically cone shaped and are actually made up of hundreds of organisms known as zooids. The Zooids form a gelatinous tunic that links them together creating the cone shape. They are also bioluminescent and give off a glow in the ocean.

TAS Rhew Blog 2 photo collage
Fun with pyrosomes!

Check it Out!

If you want to learn more about what is happening on the Bell M. Shimada, check out The Main Deck blog for the ship:

https://www.nwfsc.noaa.gov/news/blogs/display_blogentry.cfm?blogid=7

Brad Rhew: “What the Hake?!” July 22, 2017

NOAA Teacher at Sea

Brad Rhew

Aboard NOAA Ship Bell M. Shimada

July 23 – August 7, 2017

 

Mission: Hake Fish Survey and Data Collection

Geographic Area of Cruise: Northwest Pacific Ocean, off of the coast of Oregon

Date: July 22, 2017

 

Weather Data from the Bridge

Summer is in full swing in my home state of North Carolina. We are averaging temperatures in the mid 80’s-90’s. Most days are very hot and humid. Traveling to Oregon and sailing off the coast will be bringing weather I haven’t experienced since early Spring. I am excited about having the chance to “cool off” for a while before returning to the southern summer temps.

Looking ahead at the forecast for Newport, Oregon where we will be sailing out of, temperatures will average in the 70’s during the day to lower 50’s in the evening/night.

Science and Technology Log

Since we have just officially set sail, the science and technology log will come in future post. On the Shimada, many experiments and forms of data collection will occur to learn more about Hake and the ecosystems they live in. I will be learning everything from what the in internal organs of Hake look like, how acoustics/sound waves are used to determine the location of Hake to how certain microbes in the water affect the marine ecosystem. Be prepared for some exciting news and amazing discoveries!

Introduction

TAS Rhew intro photo
TAS Brad Rhew

My name is Brad Rhew and I am currently a Science Lead teacher at Cook Literacy Model School in Winston-Salem, North Carolina.

I graduated with my degree in Middle Grades Science and Social Studies from the University of North Carolina at Greensboro.

Before moving into my current role, I was a middle school science teacher. I absolutely LOVED teaching 8th grade science. It was pure enjoyment watching my kiddos get messy in the lab and find their passion for science and learning.

In my current role as a Science Lead Teacher, I work with K-5 teachers planning and executing their science lessons in their classrooms. I also co-teach science lessons in the lab with teachers to help them gain a better understanding of science instruction. This has been a great experience in this role to watch children in kindergarten fall in love with science and then get to foster that passion all the way until they become fifth graders.

I am so excited about my upcoming adventure on the Bell M. Shimada. I know I will experience so many amazing things that I will get to bring back to my classroom. This experience will not only help me in becoming a better educator but will also help me expose my students to even more real-world science concepts.

Did You Know?

On the survey we will be collecting data about Hake fish. Here’s a little bit of information about the type of fish we will be studying.

TAS Rhew hake
Pacific Hake, also known as Pacific Whiting

Hake, also referred to as Pacific Whiting, is normally found off the Pacific coast of the United States. They are typically grey/silver in color with some black speckling. The underside of Hake is a white-cream color. These fish are normally found near the bottom of the ocean since they feed on smaller, bottom-dwelling fish.

These fish normally grow from one to three feet and weigh an average of five pounds. Hake have swim bladders which help them in the changing pressures of the ocean and to be able to navigate between the water columns. In later posts, I will discuss how research scientists in the acoustics lab on the Bell M. Shimada are using these swim batters to locate the fish in the ocean.

Something to Think About                 

You have probably eaten Hake before and didn’t even realize it. Hake is sometimes referred to as “White Fish” on menus. Because Hake is such a great fish for consumption, overfishing of this species is becoming an issue. Many countries and areas are starting to put regulations in place to help with the decreasing of the Hake population. NOAA has also become involved with this movement.

To learn more about NOAA’s involvement with Hake and more about our Summer Hake Survey visit the following website:

http://www.westcoast.fisheries.noaa.gov/fisheries/management/whiting/pacific_whiting.html

 

 

Cathrine Prenot: Sea Speak. July 25, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Sunday, July 24, 2016

Weather Data from the Bridge

Lat: 47º32.20 N
Lon: 125º11.21 W
Speed: 10.4 knots
Windspeed: 19.01 deg/knots
Barometer: 1020.26 mBars
Air Temp: 16.3 degrees Celsius
Water Temp: 17.09 degrees Celsius


Science and Technology Log

Typical evening view from the flying bridge of the Bell M. Shimada
Typical evening view from the flying bridge of the Bell M. Shimada

We have been cruising along watching fish on our transects and trawling 2-4 times a day. Most of the trawls are predominantly hake, but I have gotten to see a few different species of rockfish too—Widow rockfish, Yellowtail rockfish, and Pacific Ocean Perch (everyone calls them P.O.P.)—and took their lengths, weights, sexes, stomachs, ovaries, and otoliths…

…but you probably don’t know what all that means.

The science team sorts all of the catch down to Genus species, and randomly select smaller sub-samples of each type of organism. We weigh the total mass of each species. Sometimes we save whole physical samples—for example, a researcher back on shore wants samples of fish under 30cm, or all squid, or herring, so we bag and freeze whole fish or the squid.

For the “sub samples” (1-350 fish, ish) we do some pretty intense data collection. We determine the sex of the fish by cutting them open and looking for ovaries or testes. We identify and preserve all prey we find in the stomachs of Yellowtail Rockfish, and preserve the ovaries of this species’ females and others as well. We measure fish individual lengths and masses, take photos of lamprey scars, and then collect their otoliths.

Fish Otolith showing concentric growth rings from here.

Otoliths are hard bones in the skull of fish right behind the brain. Fish use them for balance in the water; scientists can use them to determine a fish’s age by counting the number of rings. Otoliths can also be used to identify the species of fish.

Here is how you remove them: it’s a bit gross.

Otolith instructions from here.
Cod, Redfish, and Hake otoliths from here.

 

A bigger fish species does not necessarily mean a larger otolith. From here.

If you want to check out an amazing database of otoliths, or if you decide to collect a few and want to see what species or age of fish you caught, or if you are an anthropologist and want to see what fish people ate a long time ago? Check out the Alaska Fisheries Science Center—they will be a good starting spot.  You can even run a play a little game to age fish bones!

Pacific Ocean Perch, or P.O.P.
Pacific Ocean Perch, or P.O.P.

 

Personal Log

I haven’t had a lot of spare time since we’ve been fishing, but I did manage to finagle my way into the galley (kitchen) to work with Chief Steward Larry and Second Cook Arlene. They graciously let me ask a lot of questions and help make donuts and fish tacos!  No, not donut fish tacos.  Gross.

How to make friends and influence people
How to make friends and influence people

Working in the galley got me thinking of “ship jargon,” and I spent this morning reading all sorts of etymology.  I was interested to learn that the term crow’s nest came from the times of the Vikings when they used crows or raven to aid navigation for land.  Or that in the days of the tall ships, a boat that lost a captain or officer at sea would fly blue flags and paint a blue band on the hull—hence why we say we are “feeling blue.”  There are a lot more, and you can read some interesting ones here.

You can also click on Adventures in a Blue World below (cartoon citations 1 and 2).

TAS Cat Prenot 2016 cartoon4 v2

And here is a nautical primer from Adventures in a Blue World Volume 1:

A Nautical Primer part I from 2011 aboard the Oscar Dyson
A Nautical Primer from 2011 aboard the Oscar Dyson

 

Did You Know?

Working in the wet lab can be, well, wet and gross. We process hundreds of fish for data, and then have hoses from the ceiling to spray off fish parts, and two huge hoses to blast off the conveyor belt and floors when we are done. But… …I kind of love it.

Yay Science!
Yay Science!

Resources

Etymology navy terms: http://www.navy.mil/navydata/traditions/html/navyterm.html

Interestingly enough, the very words “Sea Speak” have a meaning.  When an Officer of the Deck radios other ships in the surrounding water, they typically use a predetermined way of speaking, to avoid confusion.  For example, the number 324 would be said three-two-four.

 

Patricia Schromen, August 22, 2009

NOAA Teacher at Sea
Patricia Schromen
Onboard NOAA Ship Miller Freeman
August 19-24, 2009 

Mission: Hake Survey
Geographical Area: Northwest Pacific Coast
Date: Thursday, August 22, 2009

Bringing in the nets requires attention, strength and teamwork.
Bringing in the nets requires attention and teamwork.

Weather Data from the Bridge 
SW wind 10 knots
Wind waves 1 or 2 feet
17 degrees Celsius

Science and Technology Log 

In Science we learn that a system consists of many parts working together. This ship is a small integrated system-many teams working together. Each team is accountable for their part of the hake survey. Like any good science investigation there are independent, dependent and controlled variables. There are so many variables involved just to determine where and when to take a fish sample.

Matt directs the crane to move to the right. Looks like some extra squid ink in this haul.
Matt directs the crane to move to the right. Looks like some extra squid ink in this haul.

The acoustic scientists constantly monitor sonar images in the acoustics lab. There are ten screens displaying different information in that one room. The skilled scientists decide when it is time to fish by analyzing the data.  Different species have different acoustical signatures. Some screens show echograms of marine organisms detected in the water column by the echo sounders. With these echograms, the scientists have become very accurate in predicting what will likely be caught in the net. The OOD (Officer of the Deck) is responsible for driving the ship and observes different data from the bridge. Some of the variables they monitor are weather related; for example: wind speed and direction or swell height and period. Other variables are observed on radar like the other ships in the area. The topography of the ocean floor is also critical when nets are lowered to collect bottom fish. There are numerous sophisticated instruments on the bridge collecting information twenty four hours a day. Well trained officers analyze this data constantly to keep the ship on a safe course.

Here come the hake!
Here come the hake!

When the decision to fish has been made more variables are involved. One person must watch for marine mammals for at least 10 minutes prior to fishing. If marine mammals are present in this area then they cannot be disturbed and the scientists will have to delay fishing until the marine mammals leave or find another location to fish. When the nets are deployed the speed of the boat, the tension on the winch, the amount of weight attached will determine how fast the nets reach their target fishing depth.  In the small trawl house facing the stern of the ship where the trawl nets are deployed, a variety of net monitoring instruments and the echo sounder are watched. The ship personnel are communicating with the bridge; the deck crew are controlling the winches and net reels and the acoustic scientist is determining exactly how deep and the duration of the trawl. Data is constantly being recorded. There are many decisions that must be made quickly involving numerous variables.

Working together to sort the squid from the hake.
Working together to sort the squid from the hake.

The Hake Survey began in 1977 collecting every three years and then in 2001 it became a biannual survey. Like all experiments there are protocols that must be followed to ensure data quality. Protocols define survey operations from sunrise to sunset. Survey transect line design is also included in the protocols. The US portion of the Hake survey is from approximately 60 nautical miles south of Monterey, California to the US-Canada Border. The exact location of the fishing samples changes based on fish detected in the echograms although the distance between transects is fished at 10 nautical miles. Covering depths of 50-1500 m throughout the survey. Sampling one species to determine the health of fish populations and ocean trends is very dynamic.

Weighing and measuring the hake is easier with automated scales and length boards.
Weighing and measuring the hake.

Personal Log 

Science requires team work and accountability. Every crew member has an integral part in making this survey accurate.  A willing positive attitude and ability to perform your best is consistently evident on the Miller Freeman. In the past few days, I’ve had the amazing opportunity to assist in collecting the data of most of the parts of this survey, even launching the CTD at night from the “Hero Platform” an extended grate from the quarter deck.

Stomach samples need to be accurately labeled and handled carefully.
Stomach samples need to be accurately labeled and handled carefully.

Before fishing, I’ve been on the bridge looking for marine mammals.  When the fish nets have been recovered and dumped on the sorting table, I’ve sorted, weighed and measured fish. For my first experience in the wet lab, I was pleased to be asked to scan numbers (a relatively clean task) and put otoliths (ear bones) into vials of alcohol. I used forceps instead of a scalpel. Ten stomachs are dissected, placed in cloth bags and preserved in formaldehyde. A label goes into each cloth bag so that the specimen can be cross referenced with the otoliths, weight, length and sex of that hake. With all the high tech equipment it’s surprising that a lowly pencil is the necessary tool but the paper is high tech since it looks regular but is water proof.  It was special to record the 100th catch of the survey.

Removing the otolith (ear bone) with one exact incision. An otolith reminds me of a squash seed or a little silver feather in jewelry.
Removing the otolith (ear bone) with one exact incision. An otolith reminds me of a squash seed or a little silver feather in jewelry.
Each barcoded vial is scanned so the otolith number is linked to the weight, length and sex data of the individual hake.
Each barcoded vial is scanned so the otolith number is linked to the weight, length and sex data of the individual hake.

Questions for the Day 

How is a fish ear bone (otolith) similar to a tree trunk? (They both have rings that can be counted as a way to determine the age of the fish or the tree.)

The CTD (conductivity, temperature and depth) unit drops 60 meters per minute and the ocean is 425 meters deep at this location; how many minutes will it take the CTD to reach the 420 meter depth?

Think About This: The survey team directs the crane operator to stop the CTD drop within 5 meters of the bottom of the ocean.  Can you think of reasons why the delicate machinery is never dropped exactly to the ocean floor?  Some possible reasons are:

  • The swell in the ocean could make the ship higher at that moment;
  • An object that is not detected on the sonar could be on the ocean floor;
  • The rosetta or carousel holding the measurement tools might not be level.

Launching the CTD is a cooperative effort. The boom operator works from the deck above in visual contact. Everyone is in radio contact with the bridge since the ship slows down for this data collection.

Retrieving the CTD
Retrieving the CTD

Patricia Schromen, August 20, 2009

NOAA Teacher at Sea
Patricia Schromen
Onboard NOAA Ship Miller Freeman
August 19-24, 2009 

Mission: Hake Survey
Geographical Area: Northwest Pacific Coast
Date: Thursday, August 20, 2009

Ensign Heather Moe coming aboard the Miller Freeman in Port Angeles, Washington
Ensign Heather Moe coming aboard the Miller Freeman in Port Angeles, Washington

Weather Data from the Bridge 
SW wind 10 knots
Wind waves 1 or 2 feet with swell 6 feet at 10 seconds
17 degrees Celsius
Areas of fog

Science and Technology Log 

The Miller Freeman docked in the Port Angeles harbor two days earlier than scheduled. Repair was needed on the trawling net reel. Then the bow thruster wasn’t cooperating on Tuesday so departure was delayed until Wednesday. Once at sea, the ship must be self reliant 24 hours a day seven days a week.  Everyone and everything work together.  Team work and cooperation are critical. Many different careers are on board.  Smooth operation of the Miller Freeman relies on each department performing specific assignments.  Some of these departments are:

  • NOAA Corps- commissioned officers who pilot the ship
  • Scientists-oceanographers, fisheries biologists and data analysts
  • Deck Dept.-maintain the ship and launch the survey equipment
  • Engineering Dept.-operate all ships mechanical systems
  • Steward Dept.-prepare meals
  • Electronics Technician – manages ship’s computers and network
  • Survey Department – assist the scientists with data collection and equipment

Some people have PhDs while others may have acquired skills from on the job training.  Most people seem to like the challenge of solving problems like how to weld an extra guide stick with the materials on board or how to map the course to the fishing transects. The opportunities seem as endless as the vast waters of the ocean.

Personal Log 

During our safety drill, I grab these essentials from my stateroom and muster, or go to the upper deck.
During our safety drill, I grab these essentials from my stateroom and muster, or go to the upper deck.

Learning my way around the ship is one of my first tasks and everyone has been so very helpful. There are many hatches and steep ladders (stairs) to the different decks. Safety includes knowing how to exit quickly and how to put on a life suit in less than one minute.  Like a fire drill at school we will have a fire or abandon ship drill sometime today. When I hear the ship’s alarm I must go to my stateroom, grab 4 things:  my life preserver, bag with life suit, long sleeve shirt and hat then muster to the lab deck. There I slip off my shoes, shake the suit out of the bag, lay it out, sit in the middle, wiggle my legs in, kneel down, put in my left arm, pull up the hat, put in my right arm, arch my back and zip it up to my nose. With clear “how to” directions and practice given by my chief scientist, Larry Hufnagle, I’m ready for the mandatory drill.

Question of the Day 
Why would you rather load a ship at high tide?

Something to Think About 
When I departed the ship in the evening I had to walk down the gang plank but when I returned the next morning the gang plank was level.  I only had to walk straight across to board the ship.  The ship was at the exact same dock and no one moved the gang plank. What variable made the angle of the gang plank change?

Deck crew preparing to load gang plank Tuesday afternoon, 3:30 pm
Deck crew preparing to load gang plank Tuesday afternoon, 3:30 pm
This life suit looks like a good fit for me.
This life suit looks like a good fit for me.

Jennifer Fry, July 29, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 29, 2009

Weather Data from the Bridge (0800) 
Wind speed: 10 knots
Wind direction: 345° from the north
Visibility: fog
Temperature: 14.1°C (dry bulb); 13.8°C (wet bulb)
Sea water temperature: 10.6°C
Wave height: 1 ft.
Swell direction: 320°
Swell height: 3-5 ft.
Air pressure: 1011.0 mb
Weather note: There are two temperature readings taken on the Miller Freeman. The dry bulb measures the current temperature of the air. The wet bulb measures the absolute humidity of the air; uses a thermometer wrapped in a wet cloth. The dry and wet temperatures together give the dew point and help to determine humidity.

Science and Technology Log 

Those aboard the Miller Freeman: including NOAA Corps, crew, and scientists were randomly selected to answer the following question.

How are science and the environment important to the work you do? 

Here are some of their responses:

Lisa Bonacci, Chief Scientist/Research Fish Biologist, M.S. Marine Biology   “As a Fisheries Biologist at NOAA I work in applied science. Our research provides information that managers and policy makers use to make important decisions at a national level. These decisions help the United States keep our fisheries sustainable and at the same time protect our ocean ecosystems.”
Lisa Bonacci, Chief Scientist/Research Fish Biologist, M.S. Marine Biology
“As a Fisheries Biologist at NOAA I work in applied science. Our research provides information that managers and policy makers use to make important decisions at a national level. These decisions help the United States keep our fisheries sustainable and at the same time protect our ocean ecosystems.”
Pat Maulden, Wiper, Engineering Department   “I like being part of the solution.  If you’re not part of the solution, you are part of the problem.”
Pat Maulden, Wiper, Engineering Department
“I like being part of the solution. If you’re not part of the solution, you are part of the problem.”
John Pohl, NOAA Oceanographer, B.S. Oceanography   “Every action has a consequence.  Science improves our understanding of the world around us and consequences of our actions in the natural world.  We are not separate from the environment in which we live. We can’t hold ourselves out of the natural world, or we will affect the balance.”
John Pohl, NOAA Oceanographer, B.S. Oceanography
“Every action has a consequence. Science improves our understanding of the world around us and consequences of our actions in the natural world. We are not separate from the environment in which we live. We can’t hold ourselves out of the natural world, or we will affect the balance.”
Steve DeBlois, NOAA Research Fish Biologist   “Science is a methodology by which we understand the natural world.”
Steve DeBlois, NOAA Research Fish Biologist
“Science is a methodology by which we understand the natural world.”
Jose Coito, Lead Fisherman   “I try to help the scientific research on the ship whenever I can. I enjoy my job.”
Jose Coito, Lead Fisherman
“I try to help the scientific research on the ship whenever I can. I enjoy my job.”
LTjg Jennifer King, NOAA Corps Officer, B.S. Marine Biology   “Science helps understand natural processes: how things grow, and how nature works. We need to help protect it. Science shows how in an ecosystem, everything depends on one another.”
LTjg Jennifer King, NOAA Corps Officer, B.S. Marine Biology
“Science helps understand natural processes: how things grow, and how nature works. We need to help protect it. Science shows how in an ecosystem, everything depends on one another.”
Steve Pierce, Physical Oceanographer, Oregon State University, Ph.D. Physical Oceanography “None of this research is possible without math.  My study is a cool application of math.”
Steve Pierce, Physical Oceanographer, Oregon State University, Ph.D. Physical Oceanography “None of this research is possible without math. My study is a cool application of math.”
John Adams, Ordinary Fisherman   “Science helps you understand why things go. The environment is really important to protect because it’s the only one we’ve got.”
John Adams, Ordinary Fisherman
“Science helps you understand why things go. The environment is really important to protect because it’s the only one we’ve got.”
LTjg Oliver Brown, NOAA Corps Navigation Officer, B.S. Geology   “Understanding the processes of today to predict and sustain the systems of tomorrow.  Anything you can study: fisheries, atmospheric or any “ology”, the ocean plays a part in it.”
LTjg Oliver Brown, NOAA Corps Navigation Officer, B.S. Geology
“Understanding the processes of today to predict and sustain the systems of tomorrow. Anything you can study: fisheries, atmospheric or any “ology”, the ocean plays a part in it.”
Adam Staiger, Second Cook   “Remember to clean up after yourself.”
Adam Staiger, Second Cook
“Remember to clean up after yourself.”
Francis Loziere, Able Seaman, B.S. Chemistry/Engineering   “Studying science can help foster original thinking.  We need original thinking to save the planet.”
Francis Loziere, Able Seaman, B.S. Chemistry/Engineering
“Studying science can help foster original thinking. We need original thinking to save the planet.”
Julia Clemons, Oceanographer, M.S. Geology   “Science helps us to better understand the world we live in so we are not ignorant and live in a more responsible and aware manner.”
Julia Clemons, Oceanographer, M.S. Geology
“Science helps us to better understand the world we live in so we are not ignorant and live in a more responsible and aware manner.”
Chris Grandin, DFO, Canadian Fisheries, Biologist, M.S. Earth & Ocean Sciences   “We’re here to keep tabs on the fish resources of our planet, to ensure that there will be fish for the future generations, and to sustain our ecology.  We all need to take responsibility.”
Chris Grandin, DFO, Canadian Fisheries, Biologist, M.S. Earth & Ocean Sciences
“We’re here to keep tabs on the fish resources of our planet, to ensure that there will be fish for the future generations, and to sustain our ecology. We all need to take responsibility.”
Dezhang Chu, NOAA fisheries, Physical Scientist, PhD Geophysics   “To study science you need devotion and dedication.  It’s not something you make a lot of money at, but you can contribute good things to human society.”
Dezhang Chu, NOAA fisheries, Physical Scientist, PhD Geophysics
“To study science you need devotion and dedication. It’s not something you make a lot of money at, but you can contribute good things to human society.”
Gary Cooper, Skilled Fisherman,   “I’ve always loved the sea. You get out of a job, what you put into it. Set your goals high and you’ll be successful.”
Gary Cooper, Skilled Fisherman,
“I’ve always loved the sea. You get out of a job, what you put into it. Set your goals high and you’ll be successful.”
Melanie Johnson, NOAA Fishery Biologist   “Taking care of our environment, it’s the right thing to do. We need to live responsibility and sustainably; we can’t over fish or litter our world. If you don’t want it in your backyard, don’t put it in the ocean.”
Melanie Johnson, NOAA Fishery Biologist
“Taking care of our environment, it’s the right thing to do. We need to live responsibility and sustainably; we can’t over fish or litter our world. If you don’t want it in your backyard, don’t put it in the ocean.”
Mark Watson, Wiper, Engineering Department   “Life and science go hand in hand; you can’t have one other the other.”
Mark Watson, Wiper, Engineering Department
“Life and science go hand in hand; you can’t have one other the other.”
Ed Schmidt, First Assistant Engineer, Relief Chief   “In my field of engineering, science and math go hand in hand. You have to have both. n the science side, there are relationships between different fluids, gases, and the theories behind what make the equipment work. You need to use math to find combustion rates, horsepower, electricity produced/consumed, and the list goes on and on. Without math and science I wouldn’t have a job.”
Ed Schmidt, First Assistant Engineer, Relief Chief
“In my field of engineering, science and math go hand in hand. You have to have both. On the science side, there are relationships between different fluids, gases, and the theories behind what make the equipment work. You need to use math to find combustion rates, horsepower, electricity produced/consumed, and the list goes on and on. Without math and science I wouldn’t have a job.”

The engineers aboard the Miller Freeman are a group of hard working people. There are always engineers on duty 24 hours/ day to ensure the ship is running properly. Jake DeMello, 2nd engineer, gave me a tour of the Miller Freeman’s engine room.  Jake attended California Maritime Academy where he received his Bachelor of Science degree in Marine Engineering. He has a 12-4 shift which means that he works from noon to 4:00 p.m. and then again from midnight to 4:00 a.m.

Jake DeMello stands by the desalination machine in the Miller Freeman’s engine room.
Jake DeMello stands by the desalination machine in the Miller Freeman’s engine room.

Before taking the job aboard NOAA’s Miller Freeman, Jake worked on a Mississippi River paddle boat traveling from New Orleans north past St. Louis through the rivers’ many dams and locks.  He reminisced on one memorable moment aboard the paddleboat; the day he saw Jimmy Dean, the famous singer and sausage maker.  Jake and the other engineers do many jobs around the ship including checking the fuel and water levels throughout the day and fixing anything that needs repairing.  The Miller Freeman is equipped with a machine shop, including lathe and welding equipment.

Among the jobs of the engineer is reporting daily fuel levels including:

  • Hydraulic oil used for daily fish trawls, CTD, gantry, and winch operations.
  • Gasoline used for the “Fast Recovery Boat.”
  • Diesel fuel used for the main engine.
  • Lube oil used for main engines and generators.
We say good-bye to the hake both big and small.
We say good-bye to the hake both big and small.

Fresh water production: The ship’s water desalination machine transforms 2,000 gallons of sea water into fresh drinking water daily. The ship’s water tanks hold a total of 7,350 gallons of fresh water. Another job of the engineer is taking soundings throughout the day/night. Taking soundings means measuring the levels of liquid in the tanks.  There are tanks on both the starboard and port sides of the ship. The engineer needs to be sure that fuel levels are evenly distributed so that the ship will be evenly balanced in the ocean.

Vocabulary: Starboard: right side of the ship. Port: left side of the ship.

Personal Log 

I write this off the coast of Oregon in the North Pacific Ocean.  It has been an amazing 17 days aboard the Miller Freeman. I feel honored to have participated in NOAA’s Teacher at Sea program.  It has truly changed the way I look at science in the classroom and has given be a better understanding of how scientists conduct research on a day to day basis in the field. I am excited to have made so many learning connections between the real world of scientific study and the elementary school science classroom.  I thank NOAA, the Teacher at Sea program and the entire crew, NOAA Corps, and scientists aboard the Miller Freeman for this opportunity.

My profound gratitude goes out to the dedicated science team aboard the Miller Freeman for all they have taught me.
My profound gratitude goes out to the dedicated science team aboard the Miller Freeman for all they have taught me.

Jennifer Fry, July 28, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 28, 2009

Map of the world showing longitude and latitude lines
Map of the world showing longitude and latitude lines

Weather Data from the Bridge 
Wind speed:  17 knots
Wind direction: 345° from the north
Visibility: 8 nautical miles /clear
Temperature: 16.8°C (dry bulb); 11.6°C (wet bulb)
Sea water temperature: 15.5°C
Wave height: 3-5 ft.
Air pressure: 1012.9 millibars
Weather note: Millibars is a metric unit used to measure the pressure of the air.

Science and Technology Log 

Weather Instruments and Predicting Weather 

Lt Oliver Brown, surrounded by navigational tools, and Fishery Scientist Steve DeBlois make observations on the bridge of the Miller Freeman.
Lt Oliver Brown, surrounded by navigational tools, and Fishery Scientist Steve DeBlois make observations on the bridge of the Miller Freeman.

Everything that happens out at sea is dependent upon the weather forecasts.  Throughout history man has used a variety of instruments to acquire accurate weather information.  The Miller Freeman is equipped with state of art weather reporting instruments. Every 3 hours weather data is sent to the National Weather Service to help predict the weather at sea.  Once again accuracy in reporting data is paramount.

Global Position: The Miller Freeman has several methods by which to determine longitude and latitude, which is our position in the ocean or on land.  There are 2 G.P.S. systems on the bridge, a magnetic compass, a gyro compass, and radar. These instruments help determine the ship’s position.

True north: The actual location of a point on the earth related to the north pole.

A Gyrocompass with cardinal headings including north, south, east, and west
A Gyrocompass with cardinal headings including north, south, east, and west

Magnetic north: Caused by the magnetic pull on the earth.  Magnetic north heading is different depending on where you are on the earth, for instance, Magnetic north in Oregon has a variation of 16.45°east from true north. Southern California has a variation of 13.3° east from true north.

Temperature: Measured by a thermometer, units used are Celsius. Dry bulb: Measures air temperature.  Wet bulb:  Uses a thermometer wrapped in a wet cloth. The dry and wet temperatures together give the dew point and help to determine humidity.

Wind Speed: Measured in knots using an anemometer, or estimated by using the Beaufort scale. The Beaufort scale uses observations of the sea surface, and the effects of wind on people or objects aboard ship to estimate the wind speed.

Wind Direction: Is measured by what direction in which the wind is coming.

Cloud Height/Type: Is measured visually.

Cloud Type: Is measured visually using a variety of names of clouds depending on their patterning and altitude.

Magnetic compass
Magnetic compass

Visibility: Is measured by estimating how much of the horizon can be seen.

Wave Direction: measured visually from the direction the wave comes.

Wave Height: The vertical distance between trough (bottom of the wave) and crest (top of the wave) and is usually measured in feet.

Swell Direction/ Height: Measured visually usually in feet.

Personal Log 

I have enjoyed my time on the bridge of the Miller Freeman immensely.  I have a better understanding of the weather instruments used onboard and am getting better at spotting whales and identifying birds. I want to thank the entire NOAA Corps Officers who have taught me so much about how navigation and weather work aboard the Miller Freeman.

Crewmember John Adams uses on-board weather instruments to record hourly weather readings that are then sent to National Weather Service.
Crewmember John Adams uses on-board weather instruments
to record hourly weather readings that are then sent to National
Weather Service.
An anemometer, which measures wind speed
An anemometer, which measures wind speed

Jennifer Fry, July 27, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 27, 2009

The CTD, resembling a giant wedding cake constructed of painted steel, measures the composition of the water, salinity, temperature, oxygen levels, and water pressure.
The CTD, resembling a giant wedding cake constructed of painted steel, measures the composition of the water, salinity, temperature, oxygen levels, and water pressure.

Weather Data from the Bridge 
Wind speed: 13 knots
Wind direction: 003°from the north
Visibility: clear
Temperature: 13.6°C (dry bulb); 13.2°C (wet bulb)
Sea water temperature: 15.1°C
Wave height: 1-2 ft.
Swell direction: 325°
Swell height: 4-6 ft.

Science and Technology Log 

Each night beginning at around 9:00 p.m. or 21:00, if you refer to the ship’s clock, Dr. Steve Pierce begins his research of the ocean. He is a Physical Oceanographer and this marks his 11th year of conducting CTD, Conductivity, Temperature, and Density tests.

It takes 24 readings per second as it sinks to the seafloor. The CTD only records data as it sinks, insuring the instruments are recording data in undisturbed waters. For the past 11 years Dr. Pierce and his colleagues have been studying density of water by calculating temperature and salinity in different areas of the ocean. By studying the density of water, it helps to determine ocean currents. His data helps us examine what kind of ocean conditions in which the hake live. Using prior data, current CTD data, and acoustic Doppler current profiler, a type of sonar, Dr. Pierce is trying to find a deep water current flowing from south to north along the west coast.  This current may have an effect on fish, especially a species like hake.

This map illustrates part of the area of the hake survey.
This map illustrates part of the area of the hake survey.

Dr. Steve Pierce reminds us, “None of this research is possible without math. Physical oceanography is a cool application of math.” Another testing instrument housed on the CTD apparatus is the VPR, Visual Plankton Recorder.  It is an automatic camera that records plankton, microscopic organisms, at various depths.  The scientists aboard the Miller Freeman collect data about plankton’s feeding habits, diurnal migration, and their position in the water column.  Diurnal migration is when plankton go up and down the water column to feed at different times of day (see illustration below).  Plankton migration patterns vary depending on the species.The scientists aboard the Miller Freeman followed the east to west transect lines conducting fishing trawls. The first one produced 30 small hake averaging 5 inches in length.  The scientists collected marine samples by weighing and measuring them.

Dr. Steve Pierce  at his work station and standing next to the CTD on a bright sunny day in the Northern Pacific Ocean.
Dr. Steve Pierce at his work station and standing next to the CTD on a bright sunny day in the Northern Pacific Ocean.
This illustration depicts the diurnal migration of plankton.
This illustration depicts the diurnal migration of plankton.

Personal Log 

It was extremely foggy today.  We traversed through the ocean evading many obstacles including crab and fishing buoys and other small boats.  Safety is the number one concern on the Miller Freeman. The NOAA Corps Officers rigorously keep the ship and passengers out of harm’s way.  I am grateful to these dedicated men and women.  LTjg Jennifer King, marine biologist and NOAA Corps officer says, “Science helps understand natural process: how things grow and how nature works. We need to protect it.  Science shows how in an ecosystem, everything depends on one another.”

Jennifer Fry, July 26, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 26, 2009

Weather Data from the Bridge 
Wind speed: 10 knots
Wind direction: 100° [from the east]
Visibility: fog
Temperature: 13.5°C (dry bulb); 13.5°C (wet bulb)
Sea water temperature: 10°C
Wave height: 1ft.
Swell direction: 315° Swell height:  6 ft.

Here I am checking HAB samples.
Here I am checking HAB samples.

Science and Technology Log 

We conducted a number of HAB, Harmful Algal Bloom sample tests. The Harmful Algal Bloom test takes samples at predetermined location in our study area. The water is filtered to identify the presence of toxic plants (algae) and animals (zooplankton). The plankton enter the food chain specifically through clams and mussels and can be a possible threat to human health.

We also conducted XBTs, Expendable Bathythermograph; and one  fishing trawl net. The trawling was successful, catching hake, squid, and Myctophids.  Fishery scientist, Melanie Johnson collected specific data on the myctophids’ swim bladder.  The swimbladder helps fish regulate buoyancy.  It acts like a balloon that inflates and deflates depending on the depth of the fish. Sharks on the other hand have no swim bladder. They need to swim to maintain their level in the water. Marine mammals such as dolphins and whales have lungs instead of a swimbladder.  Most of the sonar signal from the fish comes from their swimbladder.  The study of the swimbladder’s size helps scientists determine how deep the fish are when using the sonar signals and how strong their sonar signal is likely to be.

Commander Mike Hopkins, LTjg Oliver Brown, and crewmember John Adams conduct a marine mammal watch on the bridge before a fishing trawl.
Commander Mike Hopkins, LTjg Oliver Brown, and crewmember John Adams conduct a marine mammal watch on the bridge before a fishing trawl.

The scientists tried to conduct a “swim through” camera tow, but each time it was aborted due to marine mammals in the area of the net. During the “Marine Mammal Watch” held prior to the net going in the water, we spotted humpback whales. They were observed breeching, spouting, and fluking. The humpback then came within 30 feet of the Miller Freeman and swam around as if investigating the ship.

Animals Seen Today 
Fish and animals trawled: Hake, Squid (Cephalopod), and Myctophids.
Marine Mammals: Humpback whale.
Birds: Albatross, Fulmar, and Shearwater.

Jennifer Fry, July 25, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 25, 2009

Black-footed Albatross
Black-footed Albatross

Weather Data from the Bridge 
Wind speed: 10 knots
Wind direction: 355°from the north
Visibility: fog
Temperature: 11°C (dry bulb); 10°C (wet bulb)
Sea water temperature: 9.2°C
Wave height: 2 ft.
Swell direction: 310°
Swell height: 5 ft.

Science/Technology Log 

Three fishing trawls were conducted today. We took biological samples from the hake collected. The following is a list of other fish retrieved:

  • Octopus: 1
  • Squid: 47
  • Glass shrimp: 50
  • Shrimp (another species): 3
  • Bird observations: Many bird species are seen around the boat each time there is a fishing trawl net. They range in size and flying pattern. Here are a few of them.
  • Black-footed Albatross (Phoebastria nigripes): Mostly dark in all plumage, or feathers; White undertail and white may be on belly; Range: Seen around the year off west coast in spring and summer; Winters in Hawaii.

While observing the albatross and fulmar fly, I noticed that they glide gracefully across the waves gently touching the tip of their wing into the water. During take off, the albatross uses his giant webbed feet to push off by “running” on the surface of the water. Similarly during landing; his feet appear to “run” on the water which seems to slow him down.

  • Sooty shearwater
    Sooty Shearwater (Puffinus griseus): Whitish underwing contrasts with overall dark plumage; Range: breeds in southern hemisphere; Abundant off west coast, often seen from shore.
Pink-footed Shearwater (Puffinus creatopus): Blackish-brown above; white wing underparts, a bit mottled; Range: spends summers in northern Pacific; winters in Chile
Pink-footed Shearwater (P. creatopus): Blackish-brown; white wing underparts, a bit mottled; Range: spends summers in northern Pacific; winters in Chile
Northern Fulmar (Fulmarus glacialis): Gull-sized seabird; rapid wingbeats alternating with gliding over waves; color is rather uniform with not strong contrasts; gray overall with whitish undersides; range: Northern Pacific Ocean and Northern Atlantic Ocean; Breeds: Aleutian Islands, Alaska.
Northern Fulmar (Fulmarus glacialis): Gull-sized seabird; rapid wingbeats alternating with gliding over waves; color is rather uniform with not strong contrasts; gray overall with whitish undersides; range: Northern Pacific Ocean and Northern Atlantic Ocean; Breeds: Aleutian Islands, Alaska.

Fun on-line NOAA activities such as Make your own Compass, Tying Knots, Learn about Nautical Charts, Be a Shipwreck detective, and Make a tornado in a bottle.

Commander Mike Hopkins overlooks the North Pacific Ocean just off the Oregon Coast from the bridge. His job is to make sure everything aboard the Miller Freeman is running smoothly.
Commander Mike Hopkins overlooks the North Pacific Ocean just off the Oregon Coast from the bridge. His job is to make sure everything aboard the Miller Freeman is running smoothly.

NOAA Commissioned Corps Officers are a vital part of the National Oceanic and Atmospheric Administration (NOAA). Officers provide support during NOAA missions  ranging from launching a weather balloon at the South Pole, conducting hydrographic or fishery surveys in Alaska, maintaining buoys in the tropical Pacific, flying snow surveys and into hurricanes. NOAA Corps celebrates its 202nd birthday this year.

Animals Seen Today 
Fish and other trawled animals: Hake, Octopi, Squid, and Shrimp.
Birds: Fulmar, Shearwater, Albatross, and Gulls.

Jennifer Fry, July 24, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 24, 2009

Pacific White-Sided Dolphins
Pacific White-Sided Dolphins

Weather Data from the Bridge 
Wind speed: 24 knots
Wind direction: 355° from the north
Visibility: clear
Temperature: 17.3°C (dry bulb); 15.5°C (wet bulb)
Sea water temperature: 9.8°C
Wave height: 3 ft.
Swell direction: 350°
Swell height: 5-6 ft.

Science and Technology Log 

There is an abundance of marine life in the ocean today: sightings include a humpback whale breaching and spy-hopping.  Breaching is when a whale jumps out of the water.  Spy-hopping is when the whale’s head comes out of the water vertically and “takes a peek” at his surroundings. We also sighted the Pacific white-sided dolphins that appeared to be “playing” with the ship.  They would swim perpendicularly to the ship’s hull and at the last minute; veer away at a 90° angle. The dolphins were also swimming alongside the bow and the side of the ship.

Beautiful view
Beautiful view

The sonar signals indicate an abundance of marine life under the sea and the presence of marine mammals helps us draw that conclusion. All that life is probably their prey. We made 2 fishing trawls which included hake and 2 small squid, split nose rockfish, and dark, blotched rockfish. That was the first time I had seen rockfish.   They are primarily a bottom dweller. Scientists don’t want to catch too many rockfish because they tend to be over fished and their numbers need to be protected. Also, we only want to catch the fish species we are surveying, in this case, hake. The scheduled camera tow was cancelled because we did not want to catch marine mammals.  The camera tow is described as a net sent down to depth that is opened on both sides.  It takes video of the fish swimming by.  This helps the scientists determine what species of fish are at each particular depth, during which the fish are not injured for the most part.

Personal Log 

It was very exciting to see the humpback whale and dolphins today.  They appeared to be very interested in the ship and it looked like they were playing with it.  It was a perfect day with the sun shining and calm seas.

Question of the Day 
What are ways scientists determine the health of the ocean?

Did You Know? Breaching is when a whale jumps out of the water.   Spy-hopping is when the whale’s head comes out of the water vertically and “takes a peek” at his surroundings.

Animals Seen Today 
Marine mammals: Pacific white-sided dolphins, California sea lion, and Humpback whale: spy hopping.
Birds: Fulmar, Shearwater, Albatross, and Skua.
Fish: Hake, Split nose rockfish, and Dark Blotched rockfish.

Ode to the Miller Freeman 
As the chalky white ship, the Miller Freeman cuts through the icy blue waters of the North Pacific Ocean,
I stand in wonderment at all I see before me.
A lone Pacific white-sided dolphin suddenly surfaces over the unending mounds of waves.
A skua circles gracefully negotiating up and over each marine blue swell
Off in the distance, the band of fog lurks cautiously, waiting its turn to silently envelop the crystal blue sky.
Watching this beauty around me I have arrived, I am home.

Jennifer Fry, July 23, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 23, 2009

Here I am in the lab helping with the HAB samples.
Here I am in the lab helping with the HAB samples.

Weather Data from the Bridge 
Wind speed: 15 knots
Wind direction: 350°from the north
Visibility: clear
Temperature: 12.0°C (dry bulb); 11.8°C (wet bulb)
Sea water temperature: 9.7°C
Wave height: 2 ft.
Swell direction: 000°
Swell height: 4 ft.

Science/Technology Log 

We began the day conducting 2 HAB (Harmful Algal Bloom) sample tests of the ocean. This tests the amount of plankton in the water.  Scientists test this because some plankton can carry harmful toxins that can get into the fish and sea life we eat, such as clams. Later we sighted numerous marine mammals including: 2 humpback whales (breaching), 12 Pacific white-sided dolphins, and California sea lions.

Acoustic data
Acoustic data

We made two trawls which provided plenty of hake for us to observe, measure, and collect data.  Acoustic Judging:  One important aspect of the acoustic hake survey is what scientists do when not trawling.  There is a process called judging that fishery biologist, Steve De Blois spends most of his day doing. While looking at acoustic data, he draws regions around schools of fish or aggregations of other marine organisms and assigns species identification to these regions based on what he sees on the acoustic display and catch information gathered from trawls.  He uses 4 different frequencies to “read” the fish signals—each shows different fish characteristics. Having started at the Alaska Fishery Science Center in 1991, this is Steve’s 19th year of participating in integrated acoustic and trawl surveys and his eighth acoustic survey studying Pacific hake. He’s learned how to read their signs with the use of sonar frequencies and his database. Steve tells us about the importance of science: “Science is a methodology by which we understand the natural world.” 

Pacific white-sided dolphin
Pacific white-sided dolphin

New Term/Phrase/Word Pelagic: relating to, living, or occurring in the waters of the ocean opposed to near the shore. In terms of fish, this means primarily living in the water column as opposed to spending most of their time on the sea floor. 

Steve De Blois, NOAA Research Fishery Biologist, shares acoustic datawith Julia Clemons, NOAA Oceanographer, aboard the Miller Freeman.
Steve De Blois, NOAA Research Fishery Biologist, shares acoustic data
with Julia Clemons, NOAA Oceanographer, aboard the Miller Freeman.

Did You Know?
Northern fur seals are pelagic for 7-10 months per year. Pelagic Cormorant birds live in the ocean their entire life.

Humpback whales
Humpback whales

Animals Seen Today 
Humpback whales (2), Pacific white-sided dolphin (12), California sea lions (6), and Northern fur seal.

Humpback whale breaching
Humpback whale breaching

In Praise of…Harmful Algal Bloom Samples 
Crystal cold ocean water running through clear plastic pipes
Be patient as containers are carefully rinsed out three times.
The various sized bottles are filled with the elixir of Poseidon
Accurate measuring is essential.
Consistency ensures accurate results.
Once the water is filtered, tweezers gently lift plankton-laden filter papers.
All samples await analysis in the 20°F freezer.
Data from each test is later recorded;
Levels of domoic acid,  Chlorophyll,
And types, populations, and species of phytoplankton and zooplankton.

Jennifer Fry, July 22, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 22, 2009

Weather Data from the Bridge 
Wind speed: 13 knots
Wind direction: 003°from the north
Visibility: clear
Temperature: 13.6°C (dry bulb); 13.2°C (wet bulb)
Sea water temperature: 15.1°C
Wave height: 1-2 ft.
Swell direction: 325°
Swell height: 4-6 ft.

Science/Technology Log 

Today we did a fishing trawl off the coast of Oregon. First, the scientists used multiple acoustic frequencies of sound waves.  After analyzing the sonar data, the scientists felt confident that they would get a good sampling of hake. The chief scientist called the bridge to break our transect line (the planned east/west course) and requested that we trawl for fish.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.
Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

The NOAA Corps officers directed operations from the trawl house while crew members worked to lower the net to the target depth.  The fishing trawl collected specimens for approximately 20 minutes. After that time, the crew members haul in the net. The scientists continue to record data on the trawl house.

The trawl net sits on the deck of the Miller Freeman and is ready to be weighed and measured.
The trawl net sits on the deck of the Miller Freeman and is ready to be weighed and measured.

Today’s total catch fit into 2 baskets, a “basket” is about the size of your laundry basket at home, approximately 25-35 kilos. Included in the sample were some very interesting fish:

  • Viper fish
  • Ctenophores or comb jellies
  • Larval stage Dover sole, lives at the sea bottom
  • Jelly fish, several varieties (*Note: Jelly fish are types of zooplankton, which means they are animals floating in the ocean.)
  • Hake, approx. 30 kilos

The scientists made quick work of weighing and identifying each species of fish and then began working with the hake. Each hake was individually measured for length and weighed.  The hake’s stomach and otolith were removed. These were carefully labeled and data imputed into the computer.  Scientists will later examine the contents of the stomach to determine what the hake are eating. The otolith (ear bone) goes through a process by which the ear bone is broken in half and then “burnt.” The burning procedure allows one to see the “age rings” much like how we age a tree with its rings.

Personal Log 

A view from the trawl house during a fishing trawl.
A view from the trawl house during a fishing trawl.

Everyone works so very hard to make the Hake Survey successful.  All hands on the ship do a specific job, from cook to engineer to captain of the ship.  It is evident that everyone takes their job seriously and is good at what they do. I feel very fortunate to be part of this very important scientific research project.

 

 

A viper fish
A viper fish

Did You Know? 
Bird facts: An albatross’ wing span can be 5 feet, which equals one very large sea bird. A shearwater is slimmer and smaller yet resembles an albatross.

Animals Seen Today 
Ctenophore, Jelly Fish, Dover sole, Hake, Humboldt squid, Fulmar, Albatross, Gull, and Shearwater.

Here is something interesting, a hake with two mouths discovered in the trawl net.
Here is something interesting, a hake with two mouths discovered in the trawl net.
A hake and its stomach contents, including krill, smaller hake and possibly an anchovy
A hake and its stomach contents, including krill, smaller hake and possibly an anchovy
Dover Sole, larval stage
Dover Sole, larval stage†
NOAA Oceanographer John Pohl and NOAA Fish Biologist Melanie Johnson discuss data about the fish collected.
NOAA Oceanographer John Pohl and NOAA Fish Biologist Melanie Johnson discuss data about the fish collected.

Jennifer Fry, July 21, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 21, 2009

Boatswain Matt Faber, and Skilled Fisherman, Gary Cooper, tend to full net of hake from one of the day’s trawl.
Boatswain Matt Faber, and Skilled Fisherman, Gary Cooper, tend to full net of hake from one of the day’s trawl.

Weather Data from the Bridge 
Wind speed: 10 knots
Wind direction: 011°from the north
Visibility: cloudy
Temperature: 16.2°C (dry bulb); 14.9°C (wet bulb)
Weather note: When you speak of wind direction you are talking about the direction in which the wind is coming. 

Science/Technology Log 

You can see by the weather data above that the seas were much calmer today. We were able to conduct 3 fishing trawls amounting to several thousand kilograms of hake. Once the fish were hauled onto the deck, we began measuring, weighing, dissecting, and removing otoliths, ear bones, for age analysis. I removed my first pair of otoliths today.  The best part of the day was the last and final trawl. We collected approximately 3,000 pounds of Humboldt squid which equals 444 squid.  The math problem to calculate is… “How much would one squid weigh in our catch?”

Julia Clemons, NOAA Fisheries and Jennifer Fry, TAS pictured with Humbolt squid. Today’s catch totaled 444 squid.
Julia Clemons, NOAA Fisheries and Jennifer Fry, TAS pictured with Humbolt squid. Today’s catch totaled 444 squid.

Personal Log 

What strikes me today is just how dedicated the scientists and crew are to their jobs.  Everyone has a specific job aboard the Miller Freeman that they take seriously.

Question of the Day 

Can you use squid ink as you do regular ink? Is there a market for squid inked products such as cards?

New Term/Phrase/Word 

Cusk eel

Animals Seen Today 

Fish:  Humbolt squid, Hake, Iridescent Cusk eel (see photo), Myctophid
Birds:  Shearwaters, Albatross, Gulls

The Squid 
The squid come on little tentacled feet
Falling, splatting, rolling, and sliding out of its netted jail.
Free at last
To be weighed and measured
Sitting on a strong mantle in a flowing liquid of ebony and midnight.
Your silent escape goes unnoticed.

The Clouds 
The clouds slither on little squid tentacles
The midnight inky darkness envelopes the sky and warns us of foreboding
It sits looking over ships and sea lions
Its silent mantle quietly slides away.

(Inspired by Carl Sandberg’s “The Fog”)

The squid were examined, weighed, and the data entered into the data base.
The squid were examined, weighed, and the data entered into the data base.
A cusk eel
A cusk eel

Jennifer Fry, July 20, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 20, 2009

Chief scientist, Dezhang Chu, gets to know a hake while chief scientist, Lisa Bonacci looks on.
Chief scientist, Dezhang Chu, gets to know a hake while chief scientist, Lisa Bonacci looks on.

Weather Data from the Bridge 
Reading in the morning:
Wind speed: 40 knots
Wind direction: 000°from the north
Visibility: clear
Temperature: 11.6°C (dry bulb); 10.5°C (wet bulb)

Reading in the afternoon:
Wind speed: 20 knots
Wind direction: 358°from the north
Visibility: foggy
Temperature: 12.2°C (dry bulb); 11.8°C (wet bulb)

Science/Technology Log 

Collecting the hake’s stomach help scientists determine its diet.
Collecting the hake’s stomach help scientists determine its diet.

Fishing trawl #1. We conducted a successful fishing trawl.  Collection of hake totaled 3500 kg. (kilograms.)  Pictured are chief scientists Lisa Bonacci and Dezhang Chu getting to know the hake.  Fishing trawl #2: There was trouble with the sonar equipment so we were unable to conduct a successful fishing trawl.

Personal Log 

Today’s unsuccessful fishing trawl due to a malfunction reminds me that we often learn more from our mistakes that our successes. Scientists are constantly reviewing their scientific process to make sure they align with their hypothesis. After 3 days of gale force winds (34-40 knots) and big waves, today was a welcome change with 20 knot winds and calm seas in the afternoon.  I finally feel like I’ve my “sea legs” about me.

The hake stomach and a pair of otolith, ear bones will help determine what the hake is eating and how old the fish are.
The hake stomach and a pair of otolith, ear bones will help determine what the hake is eating and how old the fish are.

Animals Seen 
Fish:  Hake Myctophidae
Birds:  Fulmar, Albatross, Gulls, and Shearwater

Jennifer Fry, July 19, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 19, 2009

The XBT (Expendable Bathythermograph)
The XBT (Expendable Bathythermograph)

Weather Data from the Bridge 
Wind speed: 42 knots
Wind direction: 350°from the north
Visibility: clear
Temperature: 11.4°C (dry bulb); 10.4°C (wet bulb)

Science and Technology Log 

The seas are still very rough with 40 knot winds. No fishing trawls due to the high waves and heavy seas. However, despite the rough seas, we were able to conduct an XBT, which stands for Expendable Bathythermograph.  An XBT is a measuring apparatus consisting of a large lead weight connected to a very thin copper wire. The function of the XBT is to measure the temperature throughout the water column.  It is launched off the stern (back) of the ship. As it sinks to the sea floor, temperature data is transmitted to an onboard computer.

Biologist Chris Grandin prepares to launch an XBT
Biologist Chris Grandin prepares to launch an XBT

Personal Log 

The Miller Freeman is an NOAA research vessel.   Here’s a bit of information about the Miller Freeman…For more information go here. The Miller Freeman is a 215foot fisheries and oceanographic research vessel and is one of the largest research trawlers in the United States. Its primary mission is to provide a working platform for the study of the ocean’s living resources. The ship is named for Miller Freeman (1875-1955), a publisher who was actively involved in the international management of fish harvests. The ship was launched in 1967, but not fully rigged until 1975. The vessel was again re-rigged in 1982. Its home port is Seattle, Washington.  It is capable of operating in any waters of the world. The ship has 7 NOAA Corps officers, 27 crew members, and maximum of 11 scientists.

Following is a “tour” of the ship.  It has many nice amenities for extended life at sea.

The Laundry Room - Here’s where we do our laundry. The laundry room is located in the bow/front of the ship which bounces up and down a lot, so you can feel pretty sea sick if you’re up there too long.
The Laundry Room – Here’s where we do our laundry. The laundry room is located in the bow/front of the ship which bounces up and down a lot, so you can feel pretty sea sick at times.
The Kitchen - Our 3 amazing cooks, Bill, Larry, and Adam, work hard preparing 3 meals a day for over 30 people. They have quite a difficult and detailed job.
The Kitchen – Our 3 amazing cooks, Bill, Larry, and Adam, work hard preparing 3 meals a day for over 30 people. They have quite a difficult and detailed job.
The Galley - This is where we enjoy deliciously prepared meals.
The Galley – This is where we enjoy deliciously prepared meals.
The Library - Pictured here is the ship’s library where crew members can read and check e-mail.
The Library – Pictured here is the ship’s library where crew members can read and check e-mail.
The Lounge - Here’s the lounge where movies and video games can be watched.
The Lounge – Here’s the lounge where movies and video games can be watched.
The Gym - The gym is located on the lowest level of the ship.  This is where you can work off the great food that you’ve eaten.
The Gym – The gym is located on the lowest level of the ship. This is where you can work off the great food that you’ve eaten.

The Gift of Patience 
Wending our way through the North Pacific Ocean,
The massive waves crash against our hull with Herculean strength
As high as a one story building, their tops are dolloped with luscious whipped cream
They take their turn crashing against the ships sturdy hull, as gale force winds whip wildly past.
We play a waiting game. We practice the ancient art of patience.
When will we have hake, the silvery, slender fish that evades our sonar?

As the winds blow, cold sea spray stings my face.
I watch as the never ending line of waves wait their turn to hit the ship’s hull.
The waves wait patiently as do we.
The sea teaches us serenity.
We must not show greed or impatience.
The sea will provide.
One should lay empty and open waiting for the gifts from the sea.

~Inspired by Anne Morrow Lindberg’s Gifts from the Sea

NOAA Ship Miller Freeman
NOAA Ship Miller Freeman

Jennifer Fry, July 18, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 18, 2009

Weather Data from the Bridge 
Wind speed: 40 knots
Wind direction: 350°from the north
Visibility: foggy Temperature: 12.9°C (dry bulb); 12.0°C (wet bulb)
Wave height: 8-10 feet

Science and Technology Log 

Lisa Bonacci, chief scientist and Melanie Johnson, fishery biologist in the Freeman’s acoustics lab
Lisa Bonacci, chief scientist and Melanie Johnson, fishery biologist in the Freeman’s acoustics lab

Acoustics: Lisa Bonacci, chief scientist, and Melanie Johnson, fishery biologist, are in the acoustics lab onboard the Miller Freeman as it travels along a transect line. NOAA scientists can detect a variety of marine life under the sea. They use sonar—sound waves bouncing off an object—to detect the animals. There is an onboard sonar system that puts out four different frequencies of sound waves.  Each type of fish will give off a different signal depending on its size, shape, and anatomy.  The fish are then identified on the sonar computer readout.  The strength of the sonar signal will determine the number of hake and the way that they are swimming.  As soon as it appears on the sonar as if hake are present, Ms. Bonacci then calls the bridge to request that we trawl for fish.

This is the sonar readout as it’s seen on the computer screen.
This is the sonar readout as it’s seen on the computer screen.

Personal Log 

The boat was rocking in all directions with 40 knot winds and 8-10 foot waves. The fishing trawl brought up scores of fish including a lot of hake. The sonar signals worked really well to locate them. We dissected and measured many fish, but not before we sat in a giant vat of hake (see photo.)  It was a great learning day.

Animals Seen Today 
Hake,spiny dogfish, Humbolt squid, Myctophidae, and Birds.

Here we are in a giant vat of hake!
Here we are in a giant vat of hake!

Discovery from the Briny 
As the trawl net was raised from the depths
The sun broke through the clouds revealing a sparkling azure sky.
Scores of seagulls circled the stern
In the hopes of a bountiful offering
Tasty morsels from the deep
Soon to be thrown overboard.

American fishery biologist, Melanie Johnson, and Canadian fishery biologist, Chris Grandin, take biological samples.
American fishery biologist, Melanie Johnson, and Canadian fishery biologist, Chris Grandin, take biological samples.

Jennifer Fry, July 17, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 17, 2009

Hake are unloaded into holding containers, soon to be weighed and measured
Hake are unloaded into holding containers, soon to be weighed and measured

Weather Data from the Bridge 
Wind speed: 20 knots
Wind direction: 340°from the north- north west
Visibility: foggy
Temperature: 15.2°C (dry bulb); 13.0°C (wet bulb)

Science and Technology Log 

Each day I observe the NOAA scientists using the scientific process.  These are the same process skills we learn in the classroom. The scientists determine what they want to find out and state it in a question form. These are some of the questions/hypotheses that they are trying to answer.

  • What and where are the populations of hake?
  • In what environments do the hake best thrive?
  • When do they migrate?
  • What do they feed on?
  • What feeds on the hake?

Once the hake are observed on the sonar, the trawl net is dropped into the water.  The fish are hauled out onto the deck where they are emptied into huge holding bins.  Scientists want a good sampling of hake for the survey, not too much and not too little.  Getting a good sample is important to the scientists; both for their research and the environment.  The scientists don’t want to take too many hake each time they fish, doing this might diminish the hake population. 

Collecting Data: Observing – Using the senses to collect information.

Classifying – Sorting or ordering objects or ideas into groups or categories based on their properties.

Measuring – Determining dimensions (length/area), volume, mass/weight, or time of objects or events by using instruments that measure these properties.

Otoliths—fish ear bones—are extracted and placed in vials (test tubes) for later study.
Otoliths—fish ear bones—are extracted and placed in vials (test tubes) for later study.

The scientists then collect their data. Fish are separated by species or classified.  All hake collected are then weighed. A certain number of them are measured in length, and their sex is determined.  Scientists observe; dissect a group of hake, and collect the fish’s ear bones, called the otoliths, (2 white oval shapes pictured above). Otoliths are stored in small vials, which are like test tubes, for later study. The test tube has a serial number which is fed into a computer as well. Later, scientists will observe the otoliths under a microscope.  The otolith helps determine the age of the fish. When observed under a microscope, the otolith, or ear bone has rings similar to rings of a tree. The more rings, the older the fish.  The age of the fish or data is then recorded in a computer spreadsheet.

Communicating – Using pictorial, written, or oral language to describe an event, action, or object.

Making Models – Making a pictorial, written or physical representation to explain an idea, event, or object.

Recording Data Writing down the results of an observation of an object or event using pictures, words, or numbers.

As data is collected, it is recorded into a computer database, then scientists create tables and graphs from information in this database.

Inferring  – Making statements about an observation that provide a reasonable explanation.

Predicting – Guessing what the outcome of an event will be based on observations and, usually, prior knowledge of similar events.

Interpreting Data – Creating or using tables, graphs, or diagrams to organize and explain information.

The otoliths look like small oval “winglike” structures.
The otoliths look like small oval “winglike” structures.

Once all the data is in the computer, scientists can analyze or figure out the answers to these questions.

  • What and where are the populations of hake?
  • In what environments do the hake best thrive?
  • When do they migrate?
  • What do they feed on?
  • What feeds on the hake?

Scientists use the data to infer or make a statement about the data that gives a reasonable explanation.  Scientists also make predictions by guessing what the outcome might be based on the data/observations.

Marine Mammal Watch – NOAA Fisheries instructs the scientists to conduct a “marine mammal watch” prior to a fishing trawl. This is to protect the marine mammals, such as dolphins, whales, sea lions, and seals.  When the nets go into the ocean, the curious sea lions want to see what’s going on and play around the nets.  This can prove dangerous for the animals because if they get tangled in the net, they cannot come up for air, and being mammals, they need air.  As it happened, a half a dozen sea lions were spotted around our trawl net. To protect the inquisitive animals we found another spot in which to put our net.

California sea lion
California sea lion

Personal Log 

Everyone aboard the Miller Freeman is a team.  It’s an amazing working environment.  The ship runs like a well oiled machine.  The crew is always so helpful and are dedicated to their work.  The scientists are incredibly dedicated to their specific field and are committed to helping the world and the ocean’s biome. Everyone is so patient with all my questions.  I am so grateful and honored to be part of this hake survey which is so scientifically important in determining the health of our ocean.

Animals Seen Today 
California sea lions
Hake Myctophidae: lantern fish

Jennifer Fry, July 16, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 16, 2009

Here is Dr. Chu using a sonar readout to determine where the hake are located.
Here is Dr. Chu using a sonar readout to determine where the hake are located.

Weather Data from the Bridge 
Wind speed: 20 knots
Wind direction: 358°from the north
Visibility: foggy
Temperature: 15.2°C (dry bulb); 13.4°C (wet bulb)

Science and Technology Log 

We conducted several sea trawls for hake and other various fish species.   First, the scientists conduct an acoustic survey using 4 different frequencies. Then the nets are lowered and drug at depth. The fun begins when we don our rubber overalls, gloves, and galoshes and count, identify and, weigh the fish. The most numerous fish in the trawls were myctophids (see photo), bioluminescent fish with some species having 2 headlights in front of their eyes to help attract prey.

Here we are sorting the catch.
Here we are sorting the catch.

HAB/ Harmful Algal Blooms Test:  Throughout the day we took HAB samples, “harmful algae blooms”, which measures the toxins, domoic acid, and chlorophyll levels in the water (which correspond to the amount of plankton present). The HAB sample entails collecting sea water and putting it through a filtering process. Julia Clemons, a NOAA Oceanographer, and I conducted the HAB survey (pictured below).  Fifty milliliters of sea water is measured into a graduated cylinder then filtered.

This is a type of fish called a myctophid. They are bioluminescent.
This is a type of fish called a myctophid. They are bioluminescent.

Sea water is collected at specific times during each transect or line of study.  The sea water goes through a filtering process testing domoic acid and chlorophyll levels.  These results will be evaluated later in the lab. One thing that strikes me is the importance of careful and accurate measurement in the lab setting. The harmful algal bloom samples are conducted 5-6 times daily and accuracy is essential for precise and definitive results.  Later scientists will review and evaluate the data that was collected in the field.  It is very important that the scientists use the same measurements and tools so that each experiment is done the same way. Making accurate data collection makes for accurate scientific results.

Animals Seen Today 
Numerous albatross circling the stern of the ship, Viper fish, Octopi (approx. 6 inches in length), Squid (approx. 3 inches in length), and Myctophidae (see photo).

Zooplankton
Zooplankton
Here I am observing Julia as she filters a HAB sample.
Here I am observing Julia as she filters a HAB sample.

Jennifer Fry, July 15, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 15, 2009

Weather Data from the Bridge 
Wind Speed: 19 kts.
Wind direction: 355° north
Temperature: 15.4°C (dry bulb); 13.2°C (wet bulb)

Science and Technology Log 

This picture shows the Miller Freeman in Alaskan waters.  On our cruise, it’s working off the coast of California.
This picture shows the Miller Freeman in Alaskan waters. On our cruise, it’s working off the coast of California.

Our cruise was delayed for a day due to poor weather conditions and heavy seas. We began with a meeting of the scientific team which consists of 8 members all with their specific scientific knowledge and expertise. We will be conducting several types of oceanographic sampling during our cruise:  2-3 hake tows per day, weather permitting, an open net tow where fish are viewed through a camera, XBTs: Expendable Bathythermograph, HABS: Harmful Algal Bloom Sampling, and CTD: Conductivity, Temperature, and Density. The ship conducted Man Overboard and Fire drills.

The research vessel Miller Freeman set sail from Eureka, California on Wednesday, July 15th at approximately 12:30. Each person aboard is assigned a specific job and place to report on the Miller Freeman during such an event. Our assignments are posted on our stateroom door. During a Fire/Emergency Drill the signal is a 10 second blast of the general alarm and/or ship’s whistle. I am to report or muster to the Chemical Lab.

In the event of an Abandon Ship Drill, I am assigned to life raft #2 and muster on the O-1 deck, port (left) side. The Abandon Ship signal is more than 6 short blasts followed by one long blast of the general alarm and/or ship’s whistle. If a Man Overboard Drill is called, we will hear 3 prolonged blasts of the general alarm and/or ship’s whistle.  The muster station is the Chemical Lab. If we personally see a person go overboard the ship there are three things to do immediately: Throw a life ring overboard, call the bridge, and keep your eyes on the person. 

These things all need to be done as simultaneously as possible to assure the safety and recovery of the person who is in the sea. It is important to conduct these emergency drills so that everyone is ready and prepared in the case of an emergency event.

Personal Log 

I am sharing a stateroom with Julia Clemons, an oceanographer on board the Miller Freeman. She works for NOAA Fisheries in Newport, Oregon.  Her educational background includes a Bachelors’ degree in Oceanography and a masters’ degree in Geology. The scientists and crew on board are so professional and willing to teach and tell about their job.  They are an amazing group of people.

New Term/Phrase/Word 
Domoic acid

Questions of the Day? 
What does a hake look like in person?

Animals Seen Today 
5 Egrets
1 great blue heron
Numerous gulls

Jennifer Fry, July 14, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 14, 2009

NOAA Ship Miller Freeman
NOAA Ship Miller Freeman

Weather Data from the Bridge 
No data (In port)

 Science Log 

After arriving at the Eureka airport I found my way to the Miller Freeman thanks to many friendly Eurekan locals. What a lovely town with many interesting sights including the dock area, downtown with its renewed turn of the century architecture.   Upon arriving at the Miller Freeman I was greeted by Ensign Heather Moe who graciously gave me a tour of the ship.

There were four decks or levels to the ship which include:

  • Flying Bridge Deck: observations take place as well as storage
  • Bridge Deck: Navigation can take place from the bridge or the trawl house.  The trawl house faces toward the stern of the ship and is used to control the ship during “fishing.”
  • Boat Deck: Officers’ & Chief Scientist’s staterooms.  A stateroom is where you would sleep on a boat or ship. Your bed is called a “rack.”  Most staterooms on the Miller Freeman have bunk beds. The boat deck is where the small launches/rescue boats are stored.
  • There is: a FRB, Fast Rescue Boat, and a small launch.
  • Quarterdeck/ Main Deck:  Ship’s store, survey officers’ staterooms and the back deck, used for fishing. *The term quarterdeck was originally, in the early 17th century, used for a smaller deck, covering about a quarter of the vessel. It is usually reserved for officers, guests, passengers. It is also an entry point for personnel. Lower/ Galley Deck: Crew’s and scientists’ staterooms, library, two lounges, galley, where everyone eats their meals.
  • Hold: Gym for exercising and engineer’s storage area.

Question of the Day 
Where did the word quarterdeck* originate? (see answer above)

Animals Seen Today
Egrets Blue Heron Gulls

Stephen Anderson, June 30, 2009

NOAA Teacher at Sea
Stephen Anderson
Onboard NOAA Ship Miller Freeman
June 28 – July 12, 2007

Mission: Hake Survey
Geographic Region: California
Date: June 30, 2009

We’re on station south of Monterey Bay and starting our pattern of parallel east and west course up the coast of California.  Imagine a block capital “S” , and you get the idea.  Using different frequencies on the sonar, Dr. Chu and his colleagues from NOAA/NMFS/NWFSC can detect various types of marine organisms. Here is a picture of what the screen looks like.

Once they detect what we think are hake, we make ready the net and drop it
Once they detect what we think are hake, we make ready the net and drop it 

Because we didn’t find any hake, we looked at the small fish to see if they had a swim bladder. The swim bladder on a fish is like a balloon that inflates and deflates depending on the depth of the fish.  However, when the sound bounces off these swim bladders it may make the fish appear bigger than it actual size. The dissection of these small fish was no fun.

However, today we didn’t find hake.  Instead, we found a Humboldt squid, several small fish, and some shrimp.
However, today we didn’t find hake. Instead, we found a Humboldt squid, several small fish, and some shrimp.

It’s amazing the number of scientific instruments and studies that are being carried out on this ship.  In the following picture a marine biologist is taking a salt water sample.  He will then filter it to identify the presence of toxic plants (algae) and animals (plankton).  These microorganisms not only affect the food chain, but can also be a threat to humans.

Big squid!
Big squid!
Biologist Anthony Odell conducts a test for toxic plankton
Biologist Anthony Odell conducts a test for toxic plankton

Another instrument they use to monitor the ocean is an XBT.  This lead weight is attached by a very thin copper wire. In the following picture a scientist is attaching this to a cable that goes to a computer.  This is then “launched” or dropped overboard reading temperatures and sending them to the computer as it sinks to the bottom (greater than 760 meters or 2200 feet).

Biologist Chris Grandin prepares to launch an XBT
Biologist Chris Grandin prepares to launch an XBT

Personal Log 

  • The food has been great.  There is only an hour for each meal, and you have to eat fast.  But there is always a great menu.  I’ll have to try to get to the gym or else I’m going to gain weight.
  • Everyone has been very cooperative.  Being on a ship puts you in tight quarters with everyone.  This cooperation and team spirit helps to make everything work very smoothly.
  • There is an emphasis on safety.  You can tell that everyone is highly trained for their job and role. Yesterday we had our fire and abandon ship drills. On the deck we wear life jackets and hard hats.  Everyone watches out for everyone else.  The level of expertise and professionalism is impressive.

Stephen Anderson, June 29, 2009

NOAA Teacher at Sea
Stephen Anderson
Onboard NOAA Ship Miller Freeman
June 28 July 12, 2009

The CTD Instruments
The CTD Instruments

Mission: Hake Survey
Geographic Region: California
Date: June 29, 2009

We anchored in Monterey Bay.  After putting the anchor down there were several tests that had to be made.  The first was to send in SCUBA divers to check our propeller.  The second test was to check on the transducers for our sonar.  The third was to put over the side the CTD (conductivity, temperature, and density instruments).  This instrument is useful not only to tell the composition of the water, but also to determine currents. Included in this set of instruments is an automatic camera that will catch video of the small animals (micro-organisms) at various depths (what the fish eat).  The fourth test was to send three balls of different sizes and materials to hang under the boat using what we in Michigan would call salmon downriggers.  Dr. Chu, our chief scientist, and Stan Tomich, our engineer, can control these miniature cranes to raise and lower these balls.  They can then calibrate (set the readings on the sonar sensors) to make sure they have the correct depth for the fish they will be able to see with the sonar.  The sonar array in this boat is accurate to within one centimeter. Later tonight we will weigh anchor to go further south to begin our chase after hake.

Divers over the side to check the propeller and sonar.
Divers over the side to check the propeller and sonar.

For those of you who don’t know hake.  This is a cod type of fish that is very important to the fish industry on the west coast of the US and Canada.  If you’ve had a fish stick, you’ve probably had hake.

We were visited today by some very interesting animals: several species of jelly fish, several sea lions, a few dolphins, and a mola mola fish which is sometimes called a sun fish.

A Mola Mola, or Sun Fish. This guy was probably 6 feet in length.
A Mola Mola, or Sun Fish. This guy was probably 6 feet in length.

Stephen Anderson, June 28, 2009

NOAA Teacher at Sea
Stephen Anderson
Onboard NOAA Ship Miller Freeman
June 28 – July 12, 2009

The Miller Freeman
The Miller Freeman

Mission: Hake Survey
Geographic Region: California
Date: June 28, 2009

Boarded NOAA ship Miller Freeman, a government research ship of the National Oceanic and Atmospheric Administration, in San Francisco Harbor, Pier 27, at 1600 hours (4 p.m.).  We went through our emergency drills of donning a survival suit and learning how to use an EBD (emergency breathing device).

Beautiful sunny weather.  Wind picked up from the west.

We weighed anchor and went past Alcatraz, under the Golden Gate Bridge, and then out into the Pacific Ocean. Once we got past the outer marker we turned south to Monterey Bay.

We’re off to chase hake!

The survival suit that is suppose to keep you warm in the Pacific if you have to abandon ship.
The survival suit that is suppose to keep you warm in the Pacific if you have to abandon ship.
 Alcatraz with San Francisco in the background
Alcatraz with San Francisco in the background
Under the Golden Gate Bridge and out to sea
Under the Golden Gate Bridge and out to sea