Gregory Cook, The Dance, August 7, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 7, 2014

Science and Technology Log: Abiotic Factors in the Bering Sea

Ecosystems are made up of biotic and abiotic factors. Biotic is just another word for “stuff that is, or was, alive.” In a forest, that would include everything from Owl to Oak Tree, from bear to bacteria, and from fish to fungi. It includes anything alive, or, for that matter, dead. Keep in mind that “dead” is not the same as “non-living.”

Salmon and Black-Legged Kittiwake
The salmon and the black-legged kittiwake are both biotic members of the sub-arctic ecosystem.

“Non-living” describes things that are not, cannot, and never will be “alive.” These things are referred to as “abiotic.” (The prefix a- basically means the same as non-). Rocks, water, wind, sunlight and temperature are all considered abiotic factors. And while the most obvious threat to a salmon swimming up river might be the slash of a bear’s mighty claw, warm water could be even more deadly. Warm water carries less dissolved oxygen for the fish to absorb through their gills. This means that a power plant or factory that releases warm water into a river could actually cause fish to suffocate and, well, drown.

Bering Panorama
A 90 degree panorama of the Bering Sea from atop the Oscar Dyson. I’d show you the other 270°, but it’s pretty much the same. The sea and sky are abiotic parts of the sub-arctic ecosystem.

Fish in the Bering Sea have the same kind of challenges. Like Goldilocks, Pollock are always looking for sea water that is just right. The Oscar Dyson has the tools for testing all sorts of Abiotic factors. This is the Conductivity Temperature Depth sensor (Also known as the CTD).

CTD Deployment
Survey Technicians Allen and Bill teach me how to launch The Conductivity Temperature Depth Probe (or CTD).

The CTD sends signals up to computers in the cave to explain all sorts of abiotic conditions in the water column. It can measure how salty the water is by testing how well the water conducts electricity. It can tell you how cloudy, or turbid, the water is with a turbidity sensor. It can even tell you things like the amount of oxygen dissolved in the ocean.

To see how abiotic factors drive biotic factors, take a look at this.

Thermocline
The graph above is depth-oriented. The further down you go on the graph, the deeper in the water column you are. The blue line represents temperature. Does the temperature stay constant? Where does it change?

I know, you may want to turn the graph above on its side… but don’t. You’ll notice that depth is on the y-axis (left). That means that the further down you are on the graph, the deeper in the sea you are. The blue line represents the water temperature at that depth. Where do you see the temperature drop?


Right… The temperature drops rapidly between about 20 and 35 meters. This part of the water column is called the Thermocline, and you’ll find it in much of the world’s oceans. It’s essentially where the temperature between surface waters (which are heated by the sun) and the deeper waters (typically dark and cold) mix together.

OK, so you’re like “great. So what? Water gets colder. Big deal… let’s throw a parade for science.”

Well, look at the graph to the right. It was made from another kind of data recorded by the CTD.

Fluoresence
Fluoresence: Another depth-oriented graph from the CTD… the green line effectively shows us the amount of phytoplankton in the water column, based on depth.

The green line represents the amount of fluorescence. Fluorescence is a marker of phytoplankton. Phytoplankton are plant-like protists… the great producers of the sea! The more fluorescence, the more phytoplankton you have. Phytoplankton love to live right at the bottom of the thermocline. It gives them the best of both worlds: sunlight from above and nutrients from the bottom of the sea, which so many animals call home.

Now, if you’re a fish… especially a vegetarian fish, you just said: “Dinner? I’m listening…” But there’s an added bonus.

Look at this:

CTD Oxygen
Oxygen data from the CTD! This shows where the most dissolved oxygen is in the water column, based on depth. Notice any connections to the other graphs?

That orange line represents the amount of oxygen dissolved in the water. How does that compare to the other graphs?

Yup! The phytoplankton is hanging down there at the bottom of the thermocline cranking out oxygen! What a fine place to be a fish! Dinner and plenty of fresh air to breathe! So here, the abiotic (the temperature) drives the biotic (phytoplankton) which then drives the abiotic again (oxygen). This dance between biotic and abiotic plays out throughout earth’s ecosystems.

Another major abiotic factor is the depth of the ocean floor. Deep areas, also known as abyss, or abyssal plains, have food sources that are so far below the surface that phytoplankton can’t take advantage of the ground nutrients. Bad for phytoplankton is, of course, bad for fish. Look at this:

The Cliff and the Cod
The blue cloud represents a last grouping of fish as the continental shelf drops into the deep. Dr. Mikhail examines a cod.

That sloping red line is the profile (side view of the shape of the land) of the ocean floor. Those blue dots on the slope are fish. As Dr. Mikhail Stepanenko, a visiting Pollock specialist from Vladivostok, Russia, puts it, “after this… no more Pollock. It’s too deep.”

He goes on to show me how Pollock in the Bering Sea are only found on the continental shelf between the Aleutian Islands and Northeastern Russia. Young Pollock start their lives down near the Aleutians to the southeast, then migrate Northwest towards Russia, where lots of food is waiting for them.

Pollock Distribution
Alaskan Pollock avoid the deep! Purple line represents the ocean floor right before it drops off into the Aleutian Basin… a very deep place!

The purple line drawn in represents the drop-off you saw above… right before the deep zone. Pollock tend to stay in the shallow areas above it… where the eating is good!

Once again, the dance between the abiotic and the biotic create an ecosystem. Over the abyss, Phytoplankton can’t take advantage of nutrients from the deep, and fish can’t take advantage of the phytoplankton. Nonliving aspects have a MASSIVE impact on all the organisms in an ecosystem.

Next time we explore the Biotic side of things… the Sub-arctic food web!

Personal Log: The Order of the Monkey’s Fist.

Sweet William, a retired police officer turned ship’s engineer, tells the story of the order of the monkey’s fist.

William and the Monkey's Fist
Sweet William the Engineer shows off a monkey’s fist

The story goes that some island came up with a clever way to catch monkeys. They’d place a piece of fruit in a jar just barely big enough for the fruit to fit through and then leave the jar out for the monkeys. When a monkey saw it, they’d reach their hand in to grab the fruit, but couldn’t pull it out because their hands were too big now that they had the fruit in it. The monkey, so attached to the idea of an “easy” meal wouldn’t let go, making them easy pickings for the islanders. The Monkey’s Fist became a symbol for how clinging to our desires for some things can, in the end, do more harm than good. That sometimes letting go of something we want so badly is, in the end, what can grant us relief.

Another story of the origin of the monkey’s fist goes like this: A sea captain saw a sailor on the beach sharing his meal with a monkey. Without skipping a beat, the monkey went into the jungle and brought the sailor some of HIS meal… a piece of fruit.

No man is an Island. Mt. Ballyhoo, Unalaska, AK
No man is an Island. Mt. Ballyhoo, Unalaska, AK

Whatever the true origin of the Order is, the message is the same. Generosity beats selfishness at sea. It’s often better to let go of your own interests, sometimes, and think of someone else’s. Onboard the Oscar Dyson, when we see someone committing an act of kindness, we put their name in a box. Every now and then they pull a name from the box, and that person wins something at the ship store… a hat or a t-shirt or what have you. Of course, that’s not the point. The point is that NOAA sailors… scientists, corps, and crew… have each other’s backs. They look out for each other in a place where all they really have IS each other.

And that’s a beautiful thing.

Sherie Gee: Male or Female? June 29, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard the R/V Hugh R. Sharp
June 27 — July 7, 2013

Mission:  Sea Scallop Survey
Geographical Area of Cruise:  Northwest Atlantic Ocean
Date:  June 29, 2013 

Science and Technology Log:

Most of the shifts consisted of sorting out the animals from the dredges and carrying out the process of weighing, measuring and counting.  One other component to the process is that on every dredge, five of the scallops are scrubbed, weighed and dissected.  Once this is done, gender can be determined since this species of sea scallops have separate sexes.  Then each scallop is numbered, labeled, tagged, and bagged.  These five sea scallops will be brought back to the lab on land to be analyzed and aged.  This is done by counting growth rings on the shell.   The part of the scallop that is used as food is not the actual animal but the adductor muscle that is located in the middle of the shell.  This is the muscle that can open and close the scallop’s shell.  This is the only bivalve to be motile.  Often times other organisms find a nice little resting spot inside of the shells of the scallops.  This is a form of commensalism where the organism benefits while not harming the host.  We saw a small red hake living inside the shell of a dissected sea scallop.

The Atlantic Sea Scallop
The Atlantic Sea Scallop

After every other dredge, the crew brings out the CTD which is an apparatus that collects conductivity, temperature, and depth.  This data enters the database and is used in the labs on shore.  We could always tell when they were lowering the CTD because the ship had to come to a complete stop while collecting data.  Then they would bring the CTD back in and the ship would resume forward.

The CTD - Conductivity, Temperature and Depth
The CTD – Conductivity, Temperature and Depth

Did you Know:

The male sea scallop’s gonad is white and the female’s gonad is red.  Gonads are reproductive organs.

Personal Log:

I learned the secret to gearing up efficiently with the boots and foul weather overalls from Larry.  When you are ready to take them off, pull the overall part down toward the boots and leave about an inch of the boots exposed. Then just step out of the boots into regular shoes.  I’m glad I brought some slip-on shoes which made things a lot easier.  Then when it is time to gear up again, all I had to do was slip back into the boots and pull up the pants and suspenders.  We also had to wear rubber work gloves that kept us from cutting ourselves during the dredges.

Boots and Foul Weather Gear
Boots and Foul Weather Gear

I interviewed our steward, Lee, for one of my requirements by NOAA. I found her to be a very interesting and social person.  She is also the cook so she takes on two responsibilities at one time. She has to plan the meals, cook the meals and clean up after the meals. In addition to taking care of all kitchen duties, she also has to clean the heads (bathrooms), vacuum the carpets, clean the staterooms and do the laundry. She had to take some extensive courses on basic safety training for commercial vessels. Her satisfaction to the job is making food that people like and keeping up morale on the ship.  She has a designated drawer which serves as a treasure chest of gold only the gold is actually tons of candy. All kinds of candy.  She also keeps one big freezer full of ice cream and a refrigerator full of most types of can sodas.

Lee's Shrimp Jambalaya
Lee’s Shrimp Jambalaya
The Ship's Treasure
The Ship’s Treasure
Lee- The Ship's Cook and Steward
Lee- The Ship’s Cook and Steward

Steven Wilkie: June 26, 2011

NOAA TEACHER AT SEA
STEVEN WILKIE
ONBOARD NOAA SHIP OREGON II
JUNE 23 — JULY 4, 2011

Mission: Summer Groundfish Survey
Geographic Location: Northern Gulf of Mexico
Date: June 26, 2011

Ship Data:

Latitude 26.56
Longitude -96.41
Speed 10.00 kts
Course 6.00
Wind Speed 4.55 kts
Wind Dir. 150.72 º
Surf. Water Temp. 28.30 ºC
Surf. Water Sal. 24.88 PSU
Air Temperature 29.20 ºC
Relative Humidity 78.00 %
Barometric Pres. 1012.27 mb
Water Depth 115.20 m
Before getting down to work, it is important to learn all precautionary measures. Here I am suited up in a survival suit during an abandon ship drill.

Science and Technology Log

After two days of travel we are on site and beginning to work and I believe the entire crew is eager to get their hands busy, myself included.   As I mentioned in my previous post, it is difficult if not impossible to separate the abiotic factors from the biotic factors, and as a result it is important to monitor the abiotic factors prior to every trawl event.  The main piece of equipment involved in monitoring the water quality (an abiotic factor) is the C-T-D (Conductivity, Temperature and Depth) device.  This device uses sophisticated sensors to determine the conductivity of the water, which in turn, can be used to measure salinity (differing salinities will conduct electricity at different rates).   Salinity influences the density of the water: the saltier the water the more dense the water is.  Density measures the amount of mass in a specific volume, so if you dissolve salt in a glass of water you are adding more mass without much volume.  And since Density=Mass/Volume, the more salt you add, the denser the water will get.   Less dense objects tend to float higher in the water column than more dense objects, so as a result the ocean often has layers of differing salinities (less salty water on top of more salty water).  Often you encounter a boundary between the two layers known as a halocline (see the graph below for evidence of a halocline).

Temperature varies with depth in the ocean, however, because warm water is less dense than cold water. When liquids are cold, more molecules can fit into a space than when they are war; therefore there is more mass in that volume.   The warm water tends to remain towards the surface, while the cooler water remains at depth.  You may have experienced this if you swim in a local lake or river.  You dive down and all of a sudden the water goes from nice and warm to cool. This is known as a thermocline and is the result of the warm, less dense water sitting on top of the cool more dense water.

Here is the fancy piece of technology that makes measuring water quality so easy: the CTD.

Temperature also influences the amount of oxygen that water can hold. The cooler the temperature of the water the more oxygen can dissolve in it.  This is yet another reason why the hypoxic zones discussed in my last blog are more common in summer months than winter months: the warm water simply does not hold as much oxygen as it does in the winter.

The CTD is also capable of measuring chlorophyll.  Chlorophyll is a molecule that photosynthetic organisms use to capture light energy and then use to build complex organic molecules that they can in turn be used as energy to grow, reproduce etc.  The more chlorophyll in the water, the more photosynthetic phytoplankton there is in the water column.  This can be a good thing, since photosynthetic organisms are the foundation of the food chain, but as I mentioned in my earlier blog, too much phytoplankton can also lead to hypoxic zones.

Finally the CTD sensor is capable of measuring the water’s turbidity.  This measures how clear the water is.  Think of water around a coral reef — that water has a very low turbidity, so you can see quite a ways into the water (which is good for coral since they need access to sunlight to survive).  Water in estuaries or near shore is often quite turbid because of all of the run off coming from land.

This is a CTD data sample taken on June 26th at a depth of 94 meters. The pink line represents chlorophyll concentration, the green represents oxygen concentration, the blue is temperature and the red is salinity.

So, that is how we measure the abiotic factors, now let’s concentrate on how we measure the biotic!  After using the CTD (and it takes less time to use it than it does to describe it here) we are ready to pull our trawls.  There are three different trawls that the scientists rely on and they each focus on different “groups” of organisms.

The neuston net captures organisms living just at the water's surface.

The neuston net (named for the neuston zone, which is where the surface of the water interacts with the atmosphere) is pulled along the side of the ship and skims the surface of the water.  At the end of the net is a small “catch bottle” that will capture anything bigger than .947 microns.  The bongo nets are nets that are targeting organisms of a similar size, but instead of remaining at the surface these nets are lowered from the surface to the seafloor and back again, capturing a representative sample of organisms throughout the water column.   The neuston net is towed for approximately ten minutes, while the bongo nets tow times are dependent on depth.   Once the nets are brought in, the scientists, myself included, take the catch and preserve it for the scientists back in the lab to study.

The bongo nets will capture organisms from the surface all the way down to bottom.

The biggest and baddest nets on the boat are the actual trawl nets launched from the stern (back) of the boat.  These are the nets the scientists are relying on to target the bottom fish.  This trawl net is often referred to as an otter trawl because of the giant heavy doors used to pull the mouth of the net open once it reaches the bottom.  As the boat moves forward, a “tickler” chain spooks any of the organisms that might be lounging around on the bottom and the net follows behind to scoop them up.  This net is towed for thirty minutes, and then retrieved and we spend the next hour or so sorting, counting and measuring the catch.

Here you can see the otter trawl net extending off the starboard side of the Oregon II. When lowered into the water the doors will spread the mouth of the net.
Personal Log
I thought that adjusting to a 12 hour work schedule would be tough, but with a 5-month old son at home I feel I am more prepared than most might be for an extended day.  I might go as far as to say that I have more down time now than I did at home!  Although the ship’s crew actually manages the deployment of the majority of the nets and C-T-D, the science team is always involved and keeping busy allows the hours to tick away without much thought.  Before you know it you are on the stern deck of the ship staring at a gorgeous Gulf of Mexico sunset.

As we steam back East, the sun sets in our stern every day, and we have been treated to peaceful ones thus far on this trip.
The sun has long since set.  As I write this it is well after midnight and my bunk is calling.

Christine Hedge, September 15, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 15, 2009

MST2 Tom Kruger and MST3 Marshall Chaidez retrieve a meteorological buoy on September 14.
MST2 Tom Kruger and MST3 Marshall Chaidez retrieve a meteorological buoy on September 14.

Weather Data from the Bridge 
Latitude: 730 22’N
Longitude: 1560 27’W
Temperature: 310F

Science and Technology Log 

The past few days have brought much change.  The depth of the ocean changed dramatically as we got closer to Alaska. The ocean went from depths of over 3500 meters to depths of less than 100 meters.  More birds are showing up and we are getting about 9 hours of darkness each day.  This morning at about 4 AM, the watch observed the Aurora Borealis and stars!!!  I am so jealous.

FOR MY STUDENTS: Why do you think we have more hours of darkness now? 

As we head home to Barrow, the science party is busily completing their “Cruise Reports” and making sure that their data is stored safely for the trip home.  Much has been accomplished on this trip:

  • 132 XBT deployments (measures temperature, depth)
  • 8 CTD deployments (measures conductivity, temperature, depth)
  • 5 Dredge operations and hundreds of pounds of rock samples collected and catalogued
  •  1 Seaglider deployed and retrieved
  • 2 HARP instruments retrieved and 3 deployed
  • 3 Ice buoys deployed
  • 8 Sonobuoys deployed
  • 9585.0 lineal kilometers of sea floor mapped
  • 1 METBUOY retrieved (meteorological buoy)

Coast Guard Marine Science Technicians  

MST3 Marshal Chaidez operates the winch during a dredging operation.
MST3 Marshal Chaidez operates the winch during a dredging operation.

Science parties come and go on the Healy, each doing a different type of research.  A constant for all the scientific cruises is the good work done by the Coast Guard MSTs (Marine Science Technicians). Running the winch, taking daily XBT and weather measurements, working the dredge, and helping to deploy buoys are just some of the many tasks these technicians do. The scientists could not get their experiments done without the assistance of our team of MSTs.

MST3 Daniel Purse, MST2 Daniel Jarrett, MST3 Marshal Chaidez, MST2 Thomas Kruger and Chief Mark Rieg have done a masterful job of helping the science party accomplish their goals. I asked them to tell me a little about their training for this job. Each MST attends a 10-week training school in Yorktown, VA. Most of their training involves how to clean up oil spills and inspect cargo ships which means they are usually stationed at a port. Being assigned to a ship is not the norm for an MST.  But, because the mission of the Healy is specifically science, a team of MSTs is essential.

MST2 Daniel Jarrett rigging the crane.
MST2 Daniel Jarrett rigging the crane.

Personal Log 

My commute to work is different lately. We have about 9 hours of darkness each day. It gets dark around midnight and stays dark until about 8:30 in the morning.  So, walking the deck to the science lab is a bit of a challenge at 7:45. It will be strange to drive to work in a few days! On September 16th, we will depart the Healy via helicopter if all goes according to plan.  It will be strange to be on land again.

We will be back in Barrow, AK on September 16th. I cannot believe that our expedition is almost over.  I have learned so much from the members of the science party and the crew of the Healy. They have been very gracious and patient while I took their pictures and asked questions. Now comes the task of sharing what I have learned with folks back home.  I know one thing for sure; the Arctic is no longer an abstract idea for me. It is a place of beauty and mystery and a place some people call home.  I hope to convey how important it is that we continue to study this place to learn how it came to be and how it is currently changing.

Jon Pazol and I next to the bowhead whale skull in Barrow. When we return to shore the bowhead hunting season will have started.
Jon Pazol and I next to the bowhead whale skull in Barrow. When we return to shore the bowhead hunting season will have started.

Thanks to the folks at NOAA Teacher at Sea, Captain Sommer, and chief scientists Larry Mayer and Andy Armstrong for allowing me to take part in this cruise.  You can be sure that I will be following Arctic research and the adventures of the Healy for many years to come.

Christine Hedge, August 25, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: August 25, 2009

Weather Data from the Bridge 
Temperature: 30.150F
Latitude: 81.310 N
Longitude: 134.280W

Science and Technology Log 

This multibeam image of the new seamount is what I saw in the Science Lab.
This multibeam image of the new seamount is what I saw in the Science Lab.

A Day of Discovery… 

Today, our planned route took us near an unmapped feature on the sea floor.  A 2002 Russian contour map showed a single contour (a bump in the middle of a flat plain) at 3600 meters.  This single contour line also appeared on the IBCAO (International Bathymetric Chart of the Arctic Ocean) map.  We were so close that we decided to take a slight detour and see if there really was a bump on this flat, featureless stretch of sea floor. 

The contour was labeled 3600 meters and the sea floor in the area averaged about 3800 meters so a 200 meter bump was what the map suggested.  As the Healy traveled over the area we found much more than a bump!  The feature slowly unfolded before our eyes on the computer screen.  It got taller and taller and excitement grew as people realized this might be over 1000 meters tall.  If a feature is 1000 meters or more, it is considered a seamount (underwater mountain) and can be named.  Finally, the picture was complete, the data was processed, and a new seamount was discovered. The height is approximately 1,100 meters and the location is 81.31.57N and 134.28.80W.

The colors on this 3-D image of the newly discovered seamount indicate depth.
The colors on this 3-D image of the newly discovered seamount indicate depth.

Why Isn’t the Arctic Mapped? 

Some areas of the sea floor have been mapped and charted over and over again with each improvement in our bathymetric technology.  Areas with lots of ship traffic such as San Francisco Bay or Chesapeake Bay need to have excellent bathymetric charts, which show depth of the water, and any features on the sea floor that might cause damage to a ship.  But in the Arctic Ocean, there isn’t much ship traffic and it is a difficult place to collect bathymetric data because of all the ice. Therefore, in some areas the maps are based on very sparse soundings from lots of different sources. Remember, older maps are often based on data that was collected before multibeam  echosounders and GPS navigation – new technology means more precise data!  

Personal Log 

This is the IBCAO.  (International Bathymetric chart of the Arctic Ocean)  It is a great resource for ships exploring the Arctic Basin.
This is the IBCAO. (International Bathymetric chart of the Arctic Ocean) It is a great resource for ships exploring the Arctic Basin.

It is still very foggy. We are about 625 miles north of Alaska and plowing through ice that is 1-2 meters thick.  This time of year it is the melt season.  Increased evaporation means more water in the atmosphere and more fog.  Even though we are usually in water that is 90% covered by ice (REMEMBER 9/10 ice cover?) we rarely have to back and ram to get through.  It is noisier lately and the chunks of ice that pop up beside the ship are more interesting to look at.  There are blue stripes, brown patches of algae and usually a thin layer of snow on top.

I cannot send a current sound file because of our limited bandwidth on the Healy. When we are this far north it is difficult to get Internet access. But, if you would like to hear what it sounds like when the Healy is breaking ice, click on this link  from a past trip through Arctic sea ice.

Sea Ice at 810N after the Healy has broken through
Sea Ice after the Healy has broken through

Patricia Schromen, August 22, 2009

NOAA Teacher at Sea
Patricia Schromen
Onboard NOAA Ship Miller Freeman
August 19-24, 2009 

Mission: Hake Survey
Geographical Area: Northwest Pacific Coast
Date: Thursday, August 22, 2009

Bringing in the nets requires attention, strength and teamwork.
Bringing in the nets requires attention and teamwork.

Weather Data from the Bridge 
SW wind 10 knots
Wind waves 1 or 2 feet
17 degrees Celsius

Science and Technology Log 

In Science we learn that a system consists of many parts working together. This ship is a small integrated system-many teams working together. Each team is accountable for their part of the hake survey. Like any good science investigation there are independent, dependent and controlled variables. There are so many variables involved just to determine where and when to take a fish sample.

Matt directs the crane to move to the right. Looks like some extra squid ink in this haul.
Matt directs the crane to move to the right. Looks like some extra squid ink in this haul.

The acoustic scientists constantly monitor sonar images in the acoustics lab. There are ten screens displaying different information in that one room. The skilled scientists decide when it is time to fish by analyzing the data.  Different species have different acoustical signatures. Some screens show echograms of marine organisms detected in the water column by the echo sounders. With these echograms, the scientists have become very accurate in predicting what will likely be caught in the net. The OOD (Officer of the Deck) is responsible for driving the ship and observes different data from the bridge. Some of the variables they monitor are weather related; for example: wind speed and direction or swell height and period. Other variables are observed on radar like the other ships in the area. The topography of the ocean floor is also critical when nets are lowered to collect bottom fish. There are numerous sophisticated instruments on the bridge collecting information twenty four hours a day. Well trained officers analyze this data constantly to keep the ship on a safe course.

Here come the hake!
Here come the hake!

When the decision to fish has been made more variables are involved. One person must watch for marine mammals for at least 10 minutes prior to fishing. If marine mammals are present in this area then they cannot be disturbed and the scientists will have to delay fishing until the marine mammals leave or find another location to fish. When the nets are deployed the speed of the boat, the tension on the winch, the amount of weight attached will determine how fast the nets reach their target fishing depth.  In the small trawl house facing the stern of the ship where the trawl nets are deployed, a variety of net monitoring instruments and the echo sounder are watched. The ship personnel are communicating with the bridge; the deck crew are controlling the winches and net reels and the acoustic scientist is determining exactly how deep and the duration of the trawl. Data is constantly being recorded. There are many decisions that must be made quickly involving numerous variables.

Working together to sort the squid from the hake.
Working together to sort the squid from the hake.

The Hake Survey began in 1977 collecting every three years and then in 2001 it became a biannual survey. Like all experiments there are protocols that must be followed to ensure data quality. Protocols define survey operations from sunrise to sunset. Survey transect line design is also included in the protocols. The US portion of the Hake survey is from approximately 60 nautical miles south of Monterey, California to the US-Canada Border. The exact location of the fishing samples changes based on fish detected in the echograms although the distance between transects is fished at 10 nautical miles. Covering depths of 50-1500 m throughout the survey. Sampling one species to determine the health of fish populations and ocean trends is very dynamic.

Weighing and measuring the hake is easier with automated scales and length boards.
Weighing and measuring the hake.

Personal Log 

Science requires team work and accountability. Every crew member has an integral part in making this survey accurate.  A willing positive attitude and ability to perform your best is consistently evident on the Miller Freeman. In the past few days, I’ve had the amazing opportunity to assist in collecting the data of most of the parts of this survey, even launching the CTD at night from the “Hero Platform” an extended grate from the quarter deck.

Stomach samples need to be accurately labeled and handled carefully.
Stomach samples need to be accurately labeled and handled carefully.

Before fishing, I’ve been on the bridge looking for marine mammals.  When the fish nets have been recovered and dumped on the sorting table, I’ve sorted, weighed and measured fish. For my first experience in the wet lab, I was pleased to be asked to scan numbers (a relatively clean task) and put otoliths (ear bones) into vials of alcohol. I used forceps instead of a scalpel. Ten stomachs are dissected, placed in cloth bags and preserved in formaldehyde. A label goes into each cloth bag so that the specimen can be cross referenced with the otoliths, weight, length and sex of that hake. With all the high tech equipment it’s surprising that a lowly pencil is the necessary tool but the paper is high tech since it looks regular but is water proof.  It was special to record the 100th catch of the survey.

Removing the otolith (ear bone) with one exact incision. An otolith reminds me of a squash seed or a little silver feather in jewelry.
Removing the otolith (ear bone) with one exact incision. An otolith reminds me of a squash seed or a little silver feather in jewelry.
Each barcoded vial is scanned so the otolith number is linked to the weight, length and sex data of the individual hake.
Each barcoded vial is scanned so the otolith number is linked to the weight, length and sex data of the individual hake.

Questions for the Day 

How is a fish ear bone (otolith) similar to a tree trunk? (They both have rings that can be counted as a way to determine the age of the fish or the tree.)

The CTD (conductivity, temperature and depth) unit drops 60 meters per minute and the ocean is 425 meters deep at this location; how many minutes will it take the CTD to reach the 420 meter depth?

Think About This: The survey team directs the crane operator to stop the CTD drop within 5 meters of the bottom of the ocean.  Can you think of reasons why the delicate machinery is never dropped exactly to the ocean floor?  Some possible reasons are:

  • The swell in the ocean could make the ship higher at that moment;
  • An object that is not detected on the sonar could be on the ocean floor;
  • The rosetta or carousel holding the measurement tools might not be level.

Launching the CTD is a cooperative effort. The boom operator works from the deck above in visual contact. Everyone is in radio contact with the bridge since the ship slows down for this data collection.

Retrieving the CTD
Retrieving the CTD

Christine Hedge, August 20, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: August 20, 2009

Weather Data from the Bridge  
Lat: 80.570 N
Long: 151.320 W
Air Temp: 29.210 F

Science and Technology Log 

The science computer lab is where the data is observed. Processors clean the data of all the extraneous noise and spikes. Not every beam is returned and some take a bad bounce off a fish, chunk of ice or a bubble.
The science computer lab is where the data is observed. Processors clean the data of all the extraneous noise and spikes. Not every beam is returned and some take a bad bounce off a fish, chunk of ice or a bubble.

The Healy is collecting bathymetric data on this trip.  Bathymetric data will tell us how deep the ocean is and what the terrain of the ocean floor is like.  Less than 6% of the floor of the Arctic Ocean has been mapped.  So, this data will help us to learn about some places for the very first time.  The word bathymetry comes from the Greek – bathy= deep and metry = to measure.

NOTE TO STUDENTS: If you learn Latin/Greek word parts you can understand almost any word! 

How Do We Collect This Data? 

There are two main devices the Healy is using to measure the depth to the seafloor.  One is called the multibeam echosounder. It sends a beam of sound, which reflects off the bottom and sends back up to 121 beams to a receiver. By measuring the time it takes for the sound to return the multibeam can accurately map the surface of the sea floor.  This allows the multibeam to “see” a wide swath of seafloor – kilometers wide.  The other device is bouncing a single beam off the bottom and “seeing” a profile of that spot. This one is called a single beam echosounder or sub-bottom profiler. The single beam actually penetrates the sea floor to show a cross-section of the layers of sediment. Both are mounted on the hull of the ship and send their data and images to computers in the science lab.

What Does Mrs. Hedge Do? 

This screen shows the multibeam bathymetry data.  Depth is measured over a swath about 8 kilometers wide on this particular screen.  Purple is the deepest (3850 m) and orange is the most shallow (3000 m).  You can see that for most of this trip we were on flat abyssal plain and then we hit a little bump on the sea floor about 450 meters tall.
This screen shows the multibeam bathymetry data. Depth is measured over a swath about 8 kilometers wide on this particular screen. Purple is the deepest (3850 m) and orange is the most shallow (3000 m). You can see that for most of this trip we were on flat abyssal plain and then we hit a little bump on the sea floor about 450 meters tall.

The science crew takes turns “standing watch”. We have 3 teams; each watches the computers that display the bathymetry data for an 8-hour shift. My watch is from 8 am until 4 pm.  We need to look at how many beams are being received and sometimes make adjustments.  Traveling through heavy ice makes data collection challenging. We also need to “log” or record anything that might impact the data collection such the ship turning, stopping, heavy ice, or a change in speed. When we are going over an interesting feature on the seafloor, our job is engaging. When the seafloor is flat, the 8-hour shift can seem pretty long!

How Did People Do This Before Computers? 

Until the 1930’s, the depth of the ocean was taken by lowering a lead weight on a heavy rope over the side of a boat and measuring how much rope it took until the weight hit the bottom. This was called a lead line.  Then the boat would move and do this again, over and over.

Another bear was spotted from the Healy. Photo Pat Kelley.
Another bear was spotted from the Healy. Photo Pat Kelley.

This method was very time consuming because it only measured depth at one point in time.    Between soundings, people would just infer what the depth was.  Using sound to measure depth is a huge improvement compared to soundings with a weighted rope.  For example, in 100 meters of water, with a lead line 10 soundings per hour could be obtained.  With multibeam at the same depth, 1,500,000 soundings can be obtained per hour.  Mapping the ocean floor has become much more accurate and precise.

FOR MY STUDENTS: Can you think of other areas of science where improvements in technology lead to huge improvements and new discoveries? 

Personal Log 

When a polar bear is spotted, the deck fills with hopeful observers.
When a polar bear is spotted, the deck fills with hopeful observers.

Last night, there was an announcement right after I went to bed that polar bears had been spotted.  I threw on some clothes and ran outside.  There was a female and cub 2 kilometers away.  With binoculars, I could see them pretty well.  The adult kept turning around and looking at the cub over her shoulder. I suspect, the cub was being told to hurry up!  When a bear is spotted, the deck of the ship fills up with hopeful observers no matter what time of day it is.

FOR MY STUDENTS: I heard that the old polar bear at the Indianapolis Zoo died recently. Will there still be a polar bear exhibit at the zoo?  What are the plans for the future? 

Christine Hedge, August 19, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: August 19, 2009

Weather Data from the Bridge   

Brittle star
Brittle star

LAT: 810 23’N
LONG: 1560 31’W
Air Temp: 28.27 0F

Science and Technology Log 

My fellow teacher at sea, Jon Pazol, and I wonder, “What kind of brittle star is this?”  We think it is a Gorgonocephalus cf arcticus.
My fellow teacher at sea, Jon Pazol, and I wonder, “What kind of brittle star is this?” We think it is a Gorgonocephalus cf arcticus.

There isn’t much biology to be done on this cruise.  Our mapping mission is the main focus.  But, living things find a way of working their way into the picture.  We have a marine mammal and a community observer on board looking for whales, seals, polar bears, sea birds and other Arctic animals. Yesterday, a small Arctic Cod found its way into the seawater pipe in the science lab. And a few days ago, when the HARP instrument was pulled up, there was a brittle star attached to it. Jon Pazol (the ARMADA Teacher at Sea) and I are both biology types and we got excited about the opportunity to identify this creature from the Arctic Ocean.

Personal log 

Yoann, a student from France, enjoys his first corndog
Yoann, a student from France, enjoys his first corndog

I did not grow up in Indiana and have avoided eating a corndog until now.  Yoann Ladroit (from France) and I (from Connecticut) had our very first corndogs for lunch yesterday. We have enjoyed many different types of food on the Healy. Imagine stocking a ship with enough food for 120-130 people for months in the Arctic. When the Healy left Seattle they had a food inventory valued at $300,000. Ideally, this ship leaves port with enough food for a year. This is more than most Coast Guard cutters carry – but the Arctic is a unique place.  In other oceans, cutters can pull in to port and purchase fresh supplies. In the Arctic there are few ports and where there are ports – the food is VERY expensive. The Healy needs to be prepared to feed the crew, just in case they get beset (stuck in ice). So, they have staple foods ready for an emergency situation.

A forklift carries food supplies to the Healy
A forklift carries food supplies to the Healy

In Barrow, the Healy picked up many forklifts full of fresh produce and eggs. This will be the last fresh produce we get until September 16th when we return to shore. The Healy is one of the newest ships in the Coast Guard and has spacious facilities in the galley (kitchen) and the mess decks (dining room).  There are huge refrigerators, storage rooms and freezers for food. The gleaming stainless steel galley has computerized ovens with probes that sense when the food has reached the correct temperature and a huge and speedy dishwasher. As a newcomer to the ship we were warned about the powerful microwave oven, which heats anything in 10 seconds and garbage disposal (affectionately called the Red Goat) which grinds up all food waste instantly.

This area, called the mess, is where we eat our meals.
This area, called the mess, is where we eat our meals.

We eat in the mess decks.  Our mess decks are twice the size of those on other Coast Guard cutters.  Meals are served 4 times each day. Breakfast, lunch, and dinner are served at the regular times.  Since people work 24/7, a fourth meal called Mid-rats (midnight rations) is served each night at 11pm.   One of the interesting features in the mess decks is the operating room set up over one of the tables. Although the Healy has a state of the art sick bay, what if the sick bay was unusable because of a fire or some other crisis? It seems that in a mass casualty situation, the mess decks doubles as a medical space, which would be used to tend to wounded personnel.

Christine Hedge, August 18, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: August 18, 2009

Weather Data from the Bridge   
Lat: 800 32’N
Long: 1540 04’ W
Temp:  28.720 F

Science and Technology Log 

Mrs. Hedge fills the weather balloon
Mrs. Hedge fills the weather balloon

Twice each day, AG1 (Aerographers mate 1st class) Richard Lemkuhl launches a weather balloon. Today, at 6 AM I assisted with the launch. The balloon is filled with helium and attached to a device powered by a 9-volt battery. The weather balloon sends back temperature, pressure, and humidity data along with GPS derived winds to a radio receiver on the bridge of the Healy. This profile of the atmospheric conditions can be injected into global weather models to help predict the weather. On the Healy we use this information for flight operations (the helicopter). Helicopters, ships, and planes all need current weather conditions to navigate safely.  Data from weather balloons can help determine if there might be icing, turbulence, wind driven ice or the possibility of thunderstorms.

FOR MY STUDENTS: All kinds of scientists use models to help explain, predict, and understand the world around them. Can you think of a model you have used in science? 

Radio Receiver on the bridge of the Healy
Radio Receiver on the bridge of the Healy

AG1 Lemkuhl works for the Naval Maritime Forecast Center in Norfolk, Virginia. He is part of a group of U. S. Navy personnel on board the Healy to better understand how to operate Navy vessels in the Arctic. The dynamic weather patterns he experienced as a child in Oklahoma sparked his interest in meteorology.  His very first weather balloon was launched in 8th grade under the watchful eyes of Mrs. Stevens, his science teacher in Clarksville, Tennessee. AG1 enjoyed learning about Earth Science as a middle school student, which lead to studying geography and climatology in college.  The Navy has added to his education and after a year of school he is currently an Assistant Operational Meteorologist.

FOR MY STUDENTS:  What have you studied in school that has sparked your interest? 

Personal Log 

AG1 Lemkuhl holding the weather balloon instrument
AG1 Lemkuhl holding the weather balloon instrument

Yesterday the sun came out and the sky was blue.  What a difference that blue sky made!  There isn’t much color in the Arctic – especially when it is foggy.  The inside of the ship is tan. The ice and sky are white. Blue sky brought more people out on deck just to enjoy the color change.  We also saw more seals out on the ice. Could it be that they like to bask in the sun as well?

Today, as we backed and rammed through 2.5 meters of ice, I saw my first fish!  They were small, about the size of my palm.  Could these be the Arctic Cod I have read about??

FOR MY STUDENTS: Look at my current latitude.  What day will the sun finally set at this latitude???

AG1 Lemkuhl shows Mrs. Hedge how to launch a weather balloon.
AG1 Lemkuhl shows Mrs. Hedge how to launch a weather balloon.
Blue Sky in the Arctic! This is the CCGS Louis S. St. Laurent. The Healy is breaking ice for her.
Blue Sky in the Arctic! This is the CCGS Louis S. St. Laurent. The Healy is breaking ice for her.

Christine Hedge, August 16, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: August 16, 2009

Weather Data from the Bridge 
800 6.28’N 1400 33.69’W
Temp: 32.40F
Conditions: low visibility

Science and Technology Log

Blue sea ice with red reflected from the Healy
Blue sea ice with red reflected from the Healy

FRAZIL, NILAS, GREASE ICE, PANCAKE ICE, BRASH, AND SHUGA – These are just a few of the sea ice vocabulary words I have been learning. Ice observers and ice analysts are important people to have around while operating a ship in the Arctic. Depending on the situation and the ship, observations can be made by looking at the ice from the ship, from satellite imagery, from the air in a helicopter, or from actually walking out onto the ice and measuring the thickness. On the Healy, we are using ship-based and satellite imagery observations.

HOW THICK IS IT? 

The ice we are plowing through today is about 0.7 – 1.2 meters thick. In general, flat first-year ice is between 0.3 – 2.0 m thick, although it can get much thicker with ridging. Flat second-year ice can be up to 2.5 m thick. Multi-year ice is at least 3 m thick but can be more than 15 m thick.

WHY IS SOME OF THE ICE BLUE? 

Seawater is about 3.5% salt, but first-year ice has an average salinity of only about 0.5%.  As the sea ice grows it rejects most of the salt in the seawater from which it forms.  The ice with less salt reflects more light and air bubbles form as the ice ages.  This causes more light to scatter, producing a deeper blue color over time.

HOW IS ICE CLASSIFIED? 

Experienced ice observers look at 3 basic parameters:

1) Concentration – how tightly the ice is packed 

This is reported in tenths. Less than 1/10th ice is basically open water.  The higher the number, the more tightly packed the sea ice.  At 10/10ths the ice is considered “compact”.

2) Form – the horizontal shape and dimension of the pieces of ice 

These have specialized names and ranges of size.  For example, a brash is about the size of a bicycle. Pancake ice is circular pieces of ice, with raised edges that look like giant lily pads or pancakes.

3) Stage of Development – direct observation of the age and structural  characteristics 

The three major classifications are first-year ice, second-year ice, and multi-year ice. Structural characteristics can include things like thickness, color, ponds or melt water on top, ridges or hummocks.

WHY DOES ICE CHANGE AND GROW? 

sea ice with ponding
Sea ice with ponding

Classifying ice by stage of development is really interesting.  What sets the different classifications apart (first-year, second-year, multi-year) is the growth and aging of the sea ice.   Ice grows in the fall and winter during the freezing cycle.  Ice decays during the spring and summer during the thawing cycle. The amount of thawing that happens in the summer determines how much first-year ice survives to become second-year ice and how much second-year ice survives to become multi-year ice.

HOW IS CLIMATE CHANGE IMPACTING SEA ICE? 

Drastic changes in the condition and amount of Arctic sea ice have been observed over the past few decades. The least ice extent ever was observed in 2007.  This can mean more dangerous conditions for ships to sail in a region where variable and hazardous ice conditions still exist year round.

Personal Log 

Bundling up for the Saturday night movie
Bundling up for the Saturday night movie

Different movies play every day in the lounge spaces of the ship.  When the crew and scientists have time off they can kick back and relax with their friends.  On Saturday night, there are two special social events for morale boosters. There is bingo, and a movie on the big screen projected in the helicopter hanger. Everyone dresses in their warmest gear, camp chairs are set up, and popcorn, candy, and soda are provided. It is a kind of Arctic Drive-in experience.  Last night, we watched Star Trek. Of course, when the movie was over we walked out into bright daylight even though it was 10pm.

Christine Hedge, August 14, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: August 14, 2009

Weather Data from the Bridge   
800 3’N 1450 42’W
Temp: 310 F Light, fine snow

Science and Technology Log 

The coastline of Barrow (8/4/09)
The coastline of Barrow (8/4/09)

Some of you have asked what the ice looks like up here. Pull out your maps and I’ll tell you about the changing ice conditions.  When I got to Barrow on 8/4/09 there was no ice visible from shore. But this changes with the winds and currents. Just one day earlier, the coastline was lined with chunks of sea ice but it had blown out to sea by the time I flew in.

As we started sailing north from Barrow into the Chukchi Sea we saw some chunks of ice but mostly dark water. Our track line (the path we follow) took us back and forth, north and south as we tested our equipment and waited to meet up with our partner ship from Canada.  As we went south, there were more patches of open water. Traveling north brought us into more ice.

What looks like dirt is really a layer of algae
What looks like dirt is really a layer of algae

Sometimes there were large patches of open water and sometimes it looked like ice all the way to the horizon. The ice that appears blue has frozen and thawed over a period of time.  When it freezes, the salt is squeezed out leaving behind fresher, bluer water.  The dark lines on the ice are patches of algae that grow at the interface between the ocean water and the sea ice.  The sea ice of the Chukchi and Beaufort Seas has retreated as far north as it will go generally by September.  We are traveling during the best open water time for this part of the world.

The Healy breaking through the ice
The Healy breaking through the ice

Now that we are traveling north, breaking a path for the CCGS Louis S. St. Laurent we are seeing less and less open water. Yesterday, (8/13/09) the view from the deck looked like a white jigsaw puzzle spread out on a black table. Each day there is more and more ice.

Today, (8/14/09) when I look out over the ice it looks like a white landscape with black lakes or rivers meandering through.  We passed 800N today and there are more ridges and large expanses of ice. On board ship there are people who are experts in sea ice. Using direct observation and satellite imagery they help the crew know what the ice conditions are going to be. In fact, there is a whole field of study concerning ice. Who knew!  If you would like to learn more, visit the website of the National Ice Center (http://natice.noaa.gov). I’ll go into this topic in more detail after I learn more.

Personal Log 

More sea ice!
More sea ice!

My goal for next this week is to learn more about how ice is classified.  I found a little book “The Observers Guide to Sea Ice” which will be a good place to start. The many ice experts on board will also be a great resource. We are hearing the sound of ice against the hull of the ship more often now and that is a pretty powerful sound. I can’t imagine what it will be like when we hit thicker ice.

The list of Inupiaq words for snow and ice is long – which makes sense.  To someone from Indiana, (like me) there might appear to be 5 or 6 different consistencies and colors of ice.  There are 76 Inupiaq words to describe ice!  Some refer to its age, composition, position to land and a host of other factors.  For example, the word for thin ice that is too dangerous to walk on is sikuaq.  Slushy ice piled up on the beach is called qaapaaq.

For my students:  Do you have any questions about Ice? 

Justin Czarka, August 12, 2009

NOAA Teacher at Sea
Justin Czarka
Onboard NOAA Ship McArthur II (tracker)
August 10 – 19, 2009 

Mission: Hydrographic and Plankton Survey
Geographical area of cruise: North Pacific Ocean from San Francisco, CA to Seattle, WA
Date: August 12, 2009

Weather Data from the Bridge 

Sunrise: 06:25 a.m.
Sunset: 20:03 (8:03 p.m.)
Weather: isolated showers/patchy coastal fog
Sky: partly cloudy
Wind direction and speed: North 10-15 knots (kt)
Visibility: unrestricted to less than 1 nautical mile (nm) in fog
Waves: northwest 4-6 feet
Air Temperature: 17.3 °C
Water Temperature: 16.6 °C

Science and Technology Log 

Justin Czarka collects water samples to use in nutrient and chlorophyll research.  While on the deck during “ops” (operation) all personnel must wear a life jacket and hardhat.
Justin Czarka collects water samples to use in nutrient and chlorophyll research. While on the deck during “ops” (operation) all personnel must wear a life jacket and hardhat.

This log discusses the purpose behind the scientific cruise aboard the McArthur II. The cruise is titled, “Hydrographic and Plankton Survey.” The cruise is part of a larger study by many scientists to, in the words of chief scientist, Bill Peterson, “understand the effects of climate variability and climate change on biological, chemical and physical parameters that affect plankton, krill, fish, bird and mammal populations in Pacific Northwest waters.”  This specific cruise focuses on hydrology, harmful algal blooms, zooplankton, krill, fish eggs, fish larvae, and bird and mammal observations.

I will provide an overview of these aspects of the cruise. The McArthur II is set up with sensors for salinity, temperature, and fluorescence that provide a continuous monitoring of the ocean (hydrology) throughout the cruise.  In addition at various points along the transect lines (see the dots on the diagram of the cruise route on page 2), the CTD is deployed into the water column at specific depths to determine salinity (via measuring conductivity), water temperature, and depth (via pressure), and collect water samples (which we use to measure chlorophyll and nutrient levels at specific depths). The transects (predetermined latitudes that forms a line of sampling stations) have been selected because they have been consistently monitored over time, some since the late 1980s.  This provides a historical record to monitor changes in the ocean environment over time.

The dots represent planned sampling station. Due to sea conditions, these have been slightly modified.
The dots represent planned sampling station. Due to sea conditions, these have been slightly modified.

One scientist, Morgaine McKibben from Oregon State University, is researching harmful algal blooms (HAB). HABs occur when certain algae (the small plants in the ocean that are the basis of the food web) produce toxins that concentrate in animals feeding on them.  As these toxins move up the food web through different species, they cause harmful effects in those species, including humans.  Bill Peterson (NOAA/ Northwest Fisheries Science Center) and Jay Peterson (OSU/Hatfield Marine Science Center) are studying copepod reproduction. They are collecting data on how many eggs are laid in a 24 hour period, as well as how the copepod eggs survive in hypoxic (low oxygen) conditions.  Mike Force, the bird and marine mammal observer is keeping a log of all species spotted along the cruise route, which is utilized by scientists studying the species.

Personal Log 

Tiny squid collected in a vertical net and viewed under microscope on Crescent City transect line at 41 deg 54 min North.
Tiny squid collected in a vertical net and viewed under microscope on Crescent City transect line at 41 deg 54 min North.

Who said you never find the end of the rainbow? All you have to do is go out to sea (or become a leprechaun!). We have been going through patches of fog today, putting the foghorn into action.  When it clears out above, yet is foggy to the horizon, you get these white rainbows which arc down right to the ship. We have become the pot of gold at the end of the rainbow. Who knew it was the McArthur II! If you follow the entire rainbow, you will notice that it makes a complete 360° circle, half on top the ocean and half in the atmosphere near the horizon.

I enjoyed using the dissecting microscope today.

The water collected from the vertical net is stored in a cooler on the deck to be used in experiments.  I was able to collect a sample of the water, which contained a diverse group of organisms, from tiny squids to copepods to euphausiids.  These tiny organisms from the size of a pinhead to a centimeter long are critical to the diets of large fish populations, such as salmon.  Under magnification, one can see so much spectacular detail.  I have learned how essential it is to have an identification guide in order to identify the names of each copepod and euphausiid.  On the other hand the scientists tend to specialize and become very adept at identifying the different species.

Animals Seen Today 

Arrow worms (long clear, with bristles)
Shrimp Copepods
Tiny rockfish (indigo colored eyes)
Fish larvae

Justin Czarka, August 11, 2009

NOAA Teacher at Sea
Justin Czarka
Onboard NOAA Ship McArthur II (tracker)
August 10 – 19, 2009 

Mission: Hydrographic and Plankton Survey
Geographical area of cruise: North Pacific Ocean from San Francisco, CA to Seattle, WA
Date: August 11, 2009

Weather data from the Bridge

Sunrise: 6:25 a.m.
Sunset: 20:03 (8:03 p.m.)
Weather: partly cloudy
Sky: patchy fog
Wind direction and speed: Northwest 5-10 knots
Visibility: unrestricted to less than 1 nautical mile (nm) due to fog
Waves: 5-7 feet
Air Temperature: 15° Celsius
Water Temperature: 12.92 °Celsius

Science and Technology Log 

The McArthur II took about six hours from leaving port in San Francisco to reach our first station at Bodega Bay. We arrived at Bodega Bay around midnight.  Bodega Bay, along with the next three stations, Point Arenas, Vizcaino Canyon, and Trinidad Head, California, will be sampled at only one station location each as we move up the coast to reach our first transect line of nine stations off Crescent City, California (Latitude: 41 deg 54 min). Due to leaving port later than expected, the science team has dropped some of the sampling sites at the southern end of the cruise. Still we are sampling as we head north in order to get an enhanced survey picture along a north-south line. At the stations, we are dropping the CTD into the water column, using the vertical net, and the bongo net.

Jennifer Menkel and Lacey O’Neal observe the CTD deployment.  The left screen display depth sounds on three different frequencies, the middle screen creates graphs based on the CTD sensors, and the right screen shows live video feed of the CTD deployment on the fantail (back deck) of the McArthur II.
Jennifer Menkel and Lacey O’Neal observe the CTD deployment. The left screen display depth sounds on three different frequencies, the middle screen creates graphs based on the CTD sensors, and the right screen shows live video feed of the CTD deployment on the fantail (back deck) of the McArthur II.

While I did not participate in the first sampling at Bodega Bay, my shift (read more about shifts below) began sampling at Point Arenas and then Vizcaino Canyon. Upon entering the dry lab, Jay Peterson and Jennifer Menkel, both of Oregon State University, Hatfield Marine Science Center (OSU/HMSC) in Newport, Oregon, were observing the data stream for the CTD on the computer monitors with McArthur II senior survey technician Lacey O’Neal.  Communication is essential.  The scientists are looking at the TV monitors for the CTD deployment outside, altimeter (measures the CTD’s height above the seafloor), depth below the surface, and communicating with both the ship’s officers on the bridge, who are navigating the boat, and crew who are working the winches. Everyone has to work together to ensure that the CTD is deployed and retrieved safely. Otherwise, it could potentially hit the ship, causing damage to the ship, crew, and/or CTD sensors.  I am appreciating the emphasis on collaboration that occurs for the benefit and safety of the scientific research occurring on the ship.

I will discuss the sample collection technique for the chlorophyll.  The main purpose for measuring the chlorophyll is to determine the chlorophyll composition and suitability for single celled algae to develop. These single celled organisms are the basis of the food chain.  By determining the amount of chlorophyll, you can look at the probability of organisms to develop at that location, such as plankton. Plankton succeed where there is enough light to allow photosynthesis to occur. Deni Malouf, a marine science technician from the U.S. Coast Guard, and I put on waders, boots, life jackets, gloves and hardhats. We headed out to the CTD to collect water samples from specific depths. After filling up brown bottles (which prevent exposure to sunlight) with water, we transferred the bottles to the wet lab to pour 100 mL through a filter that collects chlorophyll on top while allowing the water to flow through by utilizing a vacuum.  This procedure is done while ensuring that the equipment, filters, and water samples avoid contact with your hands, thus contaminating the sample.  After the water has been filtered the filter is placed in a centrifuge tube (vial) with tweezers, covered to avoid exposure to light, and stored in the freezer for lab analysis at a later date.  The sample is covered to prevent exposure to sunlight.  If not, sunlight could cause more chlorophyll to develop, which would be an inaccurate reading for how much chlorophyll was actually collected at specific depths in the water column at a sampling station.

I am measuring a 100 mL water sample to collect chlorophyll on a filter inside the black cups in the wet lab.  These containers have a filter that at the bottom.  A vacuum draws the water through white tube, leaving the chlorophyll behind on the filter.
I am measuring a 100 mL water sample to collect chlorophyll on a filter inside the black cups in the wet lab. These containers have a filter that at the bottom. A vacuum draws the water through white tube, leaving the chlorophyll behind on the filter.

Personal Log 

The work conducted aboard the McArthur II, as well as other ships in the NOAA fleet, revolves around a schedule of watches (a watch is a shift).  Crewmembers work on the McArthur II in four or eight hour watches. The time of day and length vary for different crewmembers.  As for the science team, Bill Peterson, our chief scientist (cruise leader) from NOAA/ Northwest Fisheries Science Center (NWSC), Newport, Oregon, arranged us into 12-hour watches.  There is a day watch and night watch. I am part of the day watch, which commences at 7:00 a.m. and ends at 7:00 p.m.   You muster (show up) about a half hour before your watch begins so that the previous watch knows you are ready to begin work, and to assist as needed with the end of the previous watch. My watch is comprised of Jay Peterson, Jennifer Mendel, and myself.  There is a lot of teamwork and cooperation within the watches.  Even this morning, Deni Malouf, who had been working the night watch, stayed on for a portion of the day watch to assist me with the protocol for filling up the water samples from the CTD, for preparing chlorophyll samples, and for setting up the Niskin bottles on the CTD to be deployed at the next station.

Vocabulary 

Dry lab- in the back of the O-1 deck (one of the floors on the ship above the waterline) where the computer equipment is situated.   Used to monitor CDT deployment.
Dry lab- in the back of the O-1 deck (one of the floors on the ship above the waterline) where the computer equipment is situated. Used to monitor CDT deployment.
Wet lab-an indoor lab in the back of the O-1 deck connected where water samples are tested.  Contains sinks, freezers, refrigerators, and science equipment.
Wet lab-an indoor lab in the back of the O-1 deck connected where water samples are tested. Contains sinks, freezers, refrigerators, and science equipment.
Vertical net- a net deployed vertically through the water column at one specific location.  Has a weight on the bottom of it to maintain its shape on the way through the water column.
Vertical net- a net deployed vertically through the water column at one specific location. Has a weight on the bottom of it to maintain its shape on the way through the water column.
Bongo net- a net for collecting organisms, that appears to look like a set of bongo drums. Attached to a cable and the J frame, deployed off the side of the boat, and collects samples as the boat trawls at a specific speed to maximize the collection.
Bongo net- a net for collecting organisms, that appears to look like a set of bongo drums. Attached to a cable and the J frame, deployed off the side of the boat, and collects samples as the boat trawls at a specific speed to maximize the collection.

Dan Steelquist, July 16, 2009

NOAA Teacher at Sea
Dan Steelquist
Onboard NOAA Ship Rainier
July 6 – 24, 2009 

Mission: Hydrographic Survey
Geographical Area: Pavlov Islands, Gulf of Alaska
Date: July 16, 2009

Weather Data from the Bridge 

Latitude: 55°13.522’ N Longitude: 161°22.795’ W Visibility: 10 Nautical Miles Wind Direction: 174° true Wind Speed: 15 knots Sea Wave Height: 0-1ft. Swell Waves: N/A Water Temperature: 8.3° C Dry Bulb: 10.6° C Wet Bulb: 10.6° C Sea Level Pressure: 1021.0 mb

Science and Technology Log 

The primary mission of the Rainier is to gather hydrographic sounding data. For this leg of the summer field session, that data collection is done by a number of small launches that go out to work each day from Rainier. On a typical day four twenty-nine foot survey launches are deployed from the ship, each with an assigned area to gather data. Each launch is equipped with a multibeam sonar device that sends sound signals to the bottom and then times how long it takes for the signal to return to the receiver.  Knowing how fast the signal will travel through the water, the length of time the signal takes to leave and return to the sounder determines the depth of the water at that point.

Here I am preparing the CTD to take a cast.
Here I am preparing the CTD to take a cast.

For many years sonar devices have only been able to measure the water depth directly below a survey vessel.  Now, with multibeam sonar, survey vessels can cover a larger swath of seafloor with hundreds of depth measurements being taken at a time. Once the data is processed, a “painted” picture of the bottom surface can be generated. Once a launch is in its assigned work area, the sonar is turned on and the boat goes back and forth in a prescribed pattern to gather data on water depth, essentially providing total coverage of what the seafloor looks like in that area. The coxswain (person driving the launch) has a computer screen with a chart of the coverage area and steers the launch over the planned area. As the launch moves along the path of sonar coverage its path shows up on the screen as a different color, letting the driver know where the boat has been.

In order for data to be interpreted accurately, there are many steps in the process from data acquisition to actual placement on a nautical chart. There is one very important piece of data that needs to be gathered in the field as the launches do there work with the sonar. Sound waves can vary in speed as they travel through water, depending on certain conditions. In order for accurate depth readings to be acquired, those conditions must be known. Therefore throughout the data gathering session, hydrographers must acquire data on the condition of the water. That is where a CTD cast comes in. CTD stands for conductivity, temperature, depth. Every few hours a CTD cast must be done in order to accurately interpret the data gathered by the sonar. The device is lowered over this side of the launch and allowed to sink to the bottom. As it descends, the CTD gathers data at various depths. When recovered the CTD is connected to a computer and its data is integrated with the sonar data to acquire more accurate depth readings.

Personal Log 

I’ve been on the Rainier now for twelve days. While there are certain routines on board the ship, there isn’t much routine about the work these people do. I continue to be impressed with how everyone applies their skills to their work in order for data to be gathered. Much of the area where we are working has never been charted before and much of what has been charted was done before World War II with lead lines (dropping a piece of lead attached to a line, and counting the measured marks on the line until it hits bottom). The details acquired by multibeam sonar are truly amazing. We will be here in the Pavlof Islands for a few more days and then head back to Kodiak, where I will get off the ship. Not long to go, but there is still much for me to learn!

Something to Think About 
How long would it take you to paint an entire house with dots from a very small paintbrush? That would be like using a lead line to gather depth information. How long would it take you to paint an entire house with a very small, narrow paint brush? That would be single beam sonar. How much time could you save by using a wide paintbrush? That would be multibeam sonar.

Lollie Garay, May 12, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 12, 2009

Weather Data from the Bridge  
High pressure ridge building late today until wed
Temperature: 12.22˚ C
True winds: 5KTS Seas: 2-4 ft.

Science and Technology Log 

Wynne readies the CTD.
Wynne readies the CTD.

As soon as our shift began today, the dredge was already on deck so we went straight to work. After several stations I noticed that the scallop and crab count was lower than yesterday. We are working in an area called Elephant Trunk. It is named this because the bathymetry of the sea floor makes it look like one. We have many stations in this Closed area, so we may see an increase in scallop numbers as the shift progresses.

Today I learned about “clappers”. Clappers are scallop shells that have no meat in them. They are sorted out from the rest and counted. I asked Vic Nordahl why they were important and he said that clappers give us an estimation of natural mortality or predation, so they need to keep count of how many are found.

Can you see the Red Hake tucked in the scallop shell?
Can you see the Red Hake tucked in the scallop shell?

Between dredges today, I spoke with Wynne Tucker. Wynne is an oceanographic tech from the University of Delaware and is in her third season on this research vessel. Wynne does a CTD cast every third station. A CTD measures conductivity, temperature, and depth. She takes samples in the water column at depths of 50-70M. Sensors on the CTD send information to a computer where the data is recorded. The CTD also records information about fluorescence, presence of particulates, and oxygen. The data gives us a visual of the water column which is then sent to NOAA (the National Oceanic and Atmospheric Administration) for analysis. When Wynne is not doing CTD casts, she is working at many different jobs Larry Brady and I processed some special samples this evening. We usually measure 5 scallops. Two of the samples had a larval or young Red Hake inside. It lives inside the scallop shell for protection from predators and is tucked on one side of it. This is not a symbiotic relationship, rather more commensalism. I continue to be amazed about the life systems in these waters!

Personal Log 

Elise Olivieri (the teacher from New York) and I have made plans to photograph each other as we work. We work different 12 hour shifts so we do not see each other except during the shift change. And as we have both learned, there is not time for picture taking once the work begins! Unfortunately, our pictures will not be included in our journals at this time, but will be added upon our return!

Look at the teeth in the Goosefish!
Look at the teeth in the Goosefish!

My day ended with two incredible sights. First, as I carried the special samples up to the storage cage, I looked out from the portside at a totally dark scene. You could not make out sky or sea- it all blended into …black! I have never seen anything quite like that before. The second occurred on the starboard side just as I was ending my shift.  Glen Rountree (NOAA Fisheries Service volunteer) told me he had seen a strange red light in the sky and after looking through his binoculars realized it was the Moon. Elise and I grabbed our cameras and went out on deck. It was beautiful! One solitary red light in the middle of black! It was a good way to end the day.

Question of the Day 
What is the difference between symbiosis and commensalism?

Animals Seen Today 
Spider Crab, Sea Squirts, Gulf Stream Flounders, and Bobtail Squid. 

Taylor Parker, April 27, 2009

NOAA Teacher at Sea
Taylor Parker
Onboard NOAA Ship Oscar Elton Sette
April 19-29, 2009 

Mission: Hawaii Bottom fish Survey
Geographical Area: South side of Oahu
Date: April 27, 2009

Weather Data 
Partially cloudy.
Minimal Winds.
Air temp: 75F.

Scientists deploying the CTD
Scientists deploying the CTD

Science and Technology Log 

Similar to the smaller CTD that we dropped from the SAFE boats, there is a much larger one on the Sette that is dropped almost nightly. The large CTD is different in several ways: it drops to a depth of 6800 meters while the smaller one will only go 600 and the larger CTD can measure many more components. It determines conductivity, temperature, salinity, dissolved oxygen, and flourescence. Conductivity is the amount of electrical current allowed within the sample, salinity is then measured by the conductivity and temperature, dissolved oxygen is the amount of oxygen found within between the water molecules and fluorescence is, well, exciting. Flourescence is the measurement of chlorophyll at different depths; to do this a little LED light is shone into the water to see the excitability of the algae. Determining the amount of chlorophyll, and subsequently the amount of algae, helps to, among other things, measure the amount of the oceans ability to absorb greenhouse gases.

Prior to the departure of the cruise, the scientists set up sampling sites along transects on a grid system near shore off the Kona coast. They are compiling data over the years to analyze changes in the physical characteristics of the ocean. This part of the research aboard the Sette is really interesting and the impacts of the data are obvious. However, there wasn’t much for me to do with this other than take photos of the Science Techs do their job and ask them questions. That is quite alright though; I lost a couple hooks while bottom-fishing but I don’t think that I want to be responsible for losing that big piece of equipment.

A Sample of the Marine Debris Encountered
A Sample of the Marine Debris Encountered

Earlier in the day, I was participating in the routine I/K trawl and we came across a slick that had perfect conditions for the billfish we were looking for. We dropped the net and slowly came upon the slick. We set everything in the water and even put the safety line across up. Within ten minutes the entire trawl was filled with marine debris, it was filled with trash. Debris accumulation is apparently normal for slicks; along with being an area where small fish can be found, the same ocean currents bring planktonic debris. And, according to the scientists who study billfish, it is good habitat for fish larvae. Not this time. This time the whole net was filled with trash and very little of anything else. We started going through it and found a crab and a shrimp and pounds of plastic. We collected everything and dropped the net in again hoping to keep it down there longer. While the remaining trawls were less trashy, there were still significant amounts of litter strewn about.

Personal Log 

The large CTD required trained professionals so I sat back and watched the two techs maneuver the large instrument. I spoke with them after to understand what they were doing. What I found most interesting was the use of the fluorometer to help measure the ocean’s ability to absorb greenhouse gases. Considering the challenges facing our planet and oceans, this is incredible data that they are collecting and when the results are analyzed, I can’t wait to see what they read.

Sargassum fish
Sargassum fish

Another challenge is one that we faced when trying to run I/K trawls. The amount of litter in the oceans is staggering. I have worked on many beach cleanups and have run tons of classes, educating hundreds of kids about the importance of watershed responsibility. Seeing the garbage floating freely in the water, clogging the runways of slow currents in the oceans is depressing. Talking with the other scientists they suggested I take a look at NOAA’s Marine Debris Program. This is a very useful and informative website describing the many factors of trash in the ocean: awareness and information about hazards, education, removal projects, etc. This is a very pressing problem considering debris, and specifically small plastics that look like food, is found everywhere where the ocean touches shore.

Animals Seen Today 
Like I said, we were picking up mostly trash in our trawls and the CTD doesn’t pick up many animals. One of the small boats did happen to pick up a kind of Frogfish called a Sargassum fish (Histrio histrio). I was reading about them and apparently they have one of the smallest brains in proportion to their body and they are highly cannibalistic. 

Taylor Parker, April 22, 2009

NOAA Teacher at Sea
Taylor Parker
Onboard NOAA Ship Oscar Elton Sette
April 19-29, 2009 

Mission: Hawaii Bottom fish Survey
Geographical Area: South side of Oahu
Date: April 22, 2009 – Earth Day!

Happy Earth Day!
Happy Earth Day!

Weather Data: 
Winds: 1-3 knots variable.
1-2 ft swells.
Water temp: 24 C.
Air temp: 80 F.
Voggy.

Science and Technology Log

This morning I awoke with a cup of tea and this beautiful sunrise coming over the big island. There is something auspicious about a morning like this and our day turned out truly favorable. At 6am we started our safety meeting with the regular GAR survey. The GAR survey is a standard safety check before deploying small boats. It stands for Green, Amber and Red and those are the colors associated with the number that represents the amount of danger with the operation. Apparently we were green because the crew prepared the boats. The larger boat dropped into the water with Chief Scientist Ryan Nichols leading the bottom-fishing. I jumped in the smaller boat with scientist Don Kobayashi to do CTD surveys. CTD’s stand for Conductivity, Temperature and depth. Depth and temperature are pretty self-explanatory but conductivity is the measurement of electrical current that is found in the water. This conductivity is proportional to the amount of salt in the water and it increases with a rise in temperature. Therefore, you can figure out the salinity by analyzing the temperature and conductivity. Don is working on measuring the unique circumstances that occur when two or more ocean currents come together and create calm waters known as slicks.

Me holding the handheld CTD
Me holding the handheld CTD

Lighter plankton collect within the slicks along with debris. It is curious to note whether the calm waters draw the weaker fish or whether they search the slicks out on their own. Not much is known about these converging points of down-welling and Don is trying to find out what makes them special.The weapon of choice for his study is an instrument that is about 5 pounds and about a foot and a half long. For our original drop we set a buoy down in the middle of the slick with a drogue, a sea anchor that works by means of an underwater parachute. We then dropped the CDT 5 times on each side of the buoy at 10 meter intervals, which expanded outside of the slick. This level of specificity allows for accurate readings of what is occurring just below the surface. The way the slicks start to appear and just as quickly disappear or even elongate is mysterious.  The final page of this log has the results from one of the CTD drops with an explanation.

Larvae found while dip-netting
Larvae found while dip-netting

After measuring the physical characteristics of the slicks we started dip-netting them, chasing the plankton and debris. Don sat on the bow and I leaned over the port side cruising along at about 1-2 knots trying to find bubbles, debris or any sign of life like a glimmer from the side of a fish or a Pilot Whale (I’ll get to those soon). We caught a few things; well, actually Don caught almost everything while the baby fish evaded me diligently. We collected our, or rather, Don’s haul and kept in a bucket for safe keeping. We caught a big red light bulb with Goose-neck barnacles on it, but more importantly, fish hiding underneath it. The light bulb brought in most of our haul but we did find some other larvae hanging out under a bunch of bubbles.

The Drogue
The Drogue

After dip-netting for a while we found the other boat and helped them bottomfish. We grabbed one of their reels and spent the remaining two hours of our trip trying to catch fish. Where I wasn’t successful with the larvae, I made up in catching a Yellowbarbel Goatfish (Parupeneus chyrsonemus). Unfortunately for us, yet fortunately for him, this colourful bearded fish was not a target species. We let him go safe and sound with only an odd abduction story to tell his friends.

Personal Log 

Our haul from the slick. The light bulb has life underneath, I swear.
Our haul from the slick. The light bulb has life underneath, I swear.

Today I learned a lot about slicks, conductivity and goatfish. The amount of stuff that congregates in the slicks is fascinating and it was wonderful being on the hunt with my net for hours. Even better though was being out on the crystal clear, calm waters off of Kona. There was hardly a breeze, the water was nice and warm and all I wanted to do was jump in. Right when I was thinking about ditching my boat and going for a swim, a 4-5 foot Oceanic White-Tip Shark (Carcharhinus longimanus) swam under us. I was told not to pet it. I have never seen a shark with the reputation as ferocious as this one so close. The ends of his dorsal and pectoral fins were shining white in the clear Hawaiian water and he looked formidable yet tranquil.

Goatfish
Goatfish

While we were dropping the CTD, a call came over the radio from the Sette informing us that Pilot whales (Globicephala macrorhynchos) were in the vicinity. We paid it no mind as a sighting like that would most likely pass without our noticing it. Sure enough, within half an hour a pod of about 8 whales were heading directly for us. The whales were cruising around us showing us their giant domed heads and curved dorsal fins. When they got within about 10 yards of the boat they all disappeared and didn’t reappear until they were well beyond our position. But for a while, we were schooling with Pilot whales.

On our way back to the boat we were flagged down by Ensign Norris, Lieutenant Little and CO Lopez from the Fly Bridge. They needed photos of the Sette with the large NOAA logo while underway. Well, here is one of the shots and if you look closely you can see all three up there.

The Whitetip is in the lower left hand corner with a Pilot Whale in the upper right
The Whitetip is in the lower left hand corner with a Pilot Whale in the upper right
Pilot Whale
Pilot Whale
The Oscar Elton Sette with three officers
The Oscar Elton Sette with three officers
Here are some of the data from the handheld CTD dropped in the slicks. As you can see the area surveyed within the slick has higher temperatures deeper and more heterogeneity. This is opposed to just outside the slick where it is colder with little variation.
Here are some of the data from the handheld CTD dropped in the slicks. As you can see the area surveyed within the slick has higher temperatures deeper and more heterogeneity. This is opposed to just outside the slick where it is colder with little variation.