Catherine (Cat) Fuller: An Introduction, June 18, 2019

NOAA Teacher at Sea

Catherine Fuller

(Not Yet) Aboard R/V Sikuliaq

June 28 – July 18, 2019


Mission: Northern Gulf of Alaska Long-Term Ecological Research (NGA-LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: 18 June 2019

Weather Data

(From Honolulu, HI)

Latitude: 21.33 N

Longitude: 157.94 W

Wind Speed and Direction: NE 15 G 23

Wind Swell Height and Direction: NE 3-5 ft

Secondary Swell Height and Direction: SSW 2-4 ft

Humidity: 47%

Barometric Pressure: 1016.1 mb

Heat Index: 93 F (34 C)

Visibility: 10.00 nm

Weather: clear and sunny

(From Seward, AK)

Latitude: 60.12 N

Longitude: 149.45 W

Wind Speed and Direction: S 9

Swell Height: 2 ft

Humidity: 77%

Barometric Pressure: 1016.0 mb

Heat Index: 56 F (13 C)

Visibility: 10.00 nm

Weather: Overcast

Personal Log

Aloha kākou! Greetings everyone! In about a week, I will be exchanging currently very warm and sunny Honolulu for the vastly different climate and ecological zone in Seward and the Northern Gulf of Alaska.  I will be embarking on R/V Sikuliaq there to participate in one part of a long-term study of the variability and resiliency of species in the area, but I will get to that in a bit.

In August, I will begin my seventeenth year as a sixth grade social studies teacher at ‘Iolani School, an independent K-12 school that is academically competitive at a national level.  In sixth grade social studies, our students focus on the development of the modern world from ancient civilizations such as Mesopotamia, Egypt, Greece and Rome.  I enjoy challenging my students to broaden their worldviews, especially about the impacts ancient civilizations have had on today’s world. We cover those for three quarters, and in the fourth quarter we examine the choices these civilizations have made and whether or not they contribute to a sustainable society.  I want my students to understand that sustainability is more than just picking up trash and conserving water, but it is also about choices in government, society, culture, behavior and environment. The content of our fourth quarter is predicated on the reality that we live in Hawai’i, an island group that is roughly 2000 miles from any other major point of land.

Living in Hawai’i can be just as idyllic as advertisements make it seem, with daily rainbows, colorful sunsets and blue ocean waves.  However, it also comes with challenges that we all have to face.  Our cost of living is among the highest in the nation, and we face constant struggles between maintaining culture and environment in a place with limited room for population growth.  We have a high homeless population, yet many of us joke that the (construction) crane is our state bird.  We are also braced to be at the forefront of climate change.  With a rise in sea level of 3 feet, most of Waikiki and much of downtown Honolulu is at risk of inundation.  In addition, changes in sea surface temperature affect our coral reefs and fish populations as well as minimizing or eliminating our trade winds through changes in weather patterns.  For these reasons, I hope to plant the awareness in my students that their generation is poised to make some major decisions about the state of the world.

My passion for sustainability and ocean health stems from the amount of time I spend in and on the water.  I have been a competitive outrigger canoe paddler for the last 30 or so years, and in the summers, I paddle five to six days a week.  I go to six-man team practices as well as taking my one-man canoe out with friends.  I also have coached high school paddling at ‘Iolani School for the last sixteen years. Being on the ocean so much makes me much more aware of the wildlife our waters shelter: monk seals, dolphins, sea turtles and humpback whales.  It also makes me aware of the trash, especially plastics that are more and more present in the ocean.  I’ve picked up slippers, coolers, bottles, bags and even pieces of cargo net out of the water on various excursions.  Being on the water so often also fuels my interest in meteorology; you need to know what weather and ocean conditions to expect when you go to sea.  One major impact that being on the water has is that it allows you to see your island from offshore and realize that it is an ISLAND, and not a very big one at that!

Cat on Canoe
Me on my one-man canoe off He’eia, O’ahu

Some of the biggest lessons about the ocean that I’ve learned have come from my experiences with the Polynesian Voyaging Society, a non-profit organization founded in 1973 to recreate the original settlement of Hawai’i by ocean voyaging canoes, as well as revive the ancient art of non-instrument navigation.  PVS is most well known for the voyaging canoe Hõkūlea, which sailed to Tahiti (and back again) in 1976 to prove the validity of these cultural arts.  I began working with the organization in 1994, helping to build a second voyaging canoe, Hawai’iloa, and have been there ever since.  As a part of this organization, I have sailed throughout the Pacific, to locations such as Tahiti, Tonga, Aotearoa (New Zealand), Mangareva, and the Marquesas.  With Te Mana O Te Moana, another voyaging canoe initiative, I sailed to the Cook Islands, Samoa, Fiji, Vanuatu and the Solomon Islands. I’ve seen many faces of the Pacific Ocean on my travels and I look forward to seeing another. 

Between 2012 and 2017, PVS sent Hõkūle’a on a journey around the world.  The name of the voyage was Mālama Honua (To Protect the Earth) and the goal was to visit with indigenous communities to learn what challenges they face and how they work to preserve their lands and cultures.  One of the founding principles for this voyage is a Hawaiian saying, “he wa’a he moku, he moku he wa’a”, which means “the canoe is an island and the island is a canoe”.  The saying refers to the idea that the choices we make about positive behavior, bringing what we need as opposed to what we want, and what we do with our resources and trash while living in the limited space of a voyaging canoe are a reflection of the choices we need to make living on the islands of Hawai’i as well as living on island Earth.  I strive every day to make my students aware of the consequences of their choices.

voyaging canoe
Hõkūle’a en route to Aotearoa, 2014


Science and Technology Log

I’m pretty excited to go to Alaska, first of all, because I’ve never been there!  Secondly, we have species in Hawai’i (birds and whales) that migrate between our shores and Alaska on an annual basis.  Although the two locations are distant from each other, there are connections to be made, as Hawai’i and Alaska share the same ocean. 

The Long Term Ecological Research (LTER) project is funded by the National Science Foundation (NSF). R/V Sikuliaq is an NSF ship working with the University of Alaska in Fairbanks.  LTER encompasses 28 sites nationwide, of which the Northern Gulf of Alaska (NGA) is one.  In this area, three surveys a year are made to monitor the dynamics of the ecosystem and measure its resilience to environmental factors such as variability in light, temperature, freshwater, wind and nutrients.  The origins of the NGA portion of this project have been in place since 1970 and have grown to include the Seward Line system (s series of points running southeast from Seward).

On our trip, we will be looking at microzooplankton and mesozooplankton as well as phytoplankton, the size and concentration of particles in the water, and the availability of nutrients, among other things.  Information gathered from our study will be added to cumulative data sets that paint a picture of the variability and resiliency of the marine ecosystem. I will be a part of the Particle Flux team for this expedition.  I have a general idea of what that entails and the kind of data we’ll be gathering, but I certainly need to learn more!  If you’re curious, more detailed information about ongoing research can be found at https://nga.lternet.edu/about-us/.

I always ask my students, after they complete preliminary research on any project, what they want to learn.  I want to know more about particle flux (as previously mentioned).  I would like to learn more about seasonal weather patterns and how they influence the NGA ecosystem.  I would like to find out if/how this ecosystem connects to the Hawaiian ecosystem, and I REALLY want to see the kinds of life that inhabit the northern ocean! For my own personal information, I am really curious to see how stars move at 60 degrees north and whether or not they can still be used for navigation. 

Mahalo (Thank you)

I’m spending my last week sorting through my collection of fleece and sailing gear to prepare for three weeks of distinctly cooler temperatures.  I’m going to be doing a lot of layering for sure!  My two cats, Fiona and Pippin are beginning to suspect something, but for now are content to sniff through the growing pile on the couch. While packing, I’m keeping in mind that this is just another type of voyage and to pack only what I need, including chocolate.  As departure gets closer, I’d like to thank Russ Hopcroft, Seth Danielson, and Steffi O’Daly for their information and help in getting to and from Seward.  I’m looking forward to meeting you all soon and learning a lot from each of you!  Thanks also to Lisa Seff for her on board life hacks and detailed information…much appreciated!

Erica Marlaine: Introduction

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 24 -July 15, 2019


Mission: Gulf of Alaska Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: South Bering Sea, Alaska

Date: June 14, 2019

Hello! My name is Erica Marlaine, and in one week I will be flying to Alaska for the first time ever to spend three weeks aboard NOAA Ship Oscar Dyson as a NOAA Teacher at Sea.  I am a Special Education Preschool Teacher at Nevada Avenue Elementary School in West Hills, California.

Erica holding a stuffed lamb
Me at the Noah’s Ark Exhibit at the Skirball Cultural Center in Los Angeles

My students are 3-5 year olds who have a variety of special needs, such as autism, Down syndrome, and speech delays. They are fascinated by science experiments and nature, love to explore their surroundings with binoculars and magnifying glasses, and often notice the details in life that the rest of us walk right by. 

little scientist
One of my little scientists
magnifying glasses
Checking the growth of our tadpoles.

Like most 3-5 years olds, they are obsessed with whales, octopi, and of course, sharks. (If you don’t yet know the baby shark song, ask any preschooler you know to teach it to you.)

When I tell people (with much excitement) that I have been selected to be a NOAA Teacher at Sea, they ask “who will you be teaching?” thinking that there will be students onboard the ship.  I explain that in many ways, I will actually be both a Student at Sea and a Teacher at Sea. I will be learning from the scientists onboard the ship how to use acoustics as well as more traditional, hands-on methods to count Alaskan pollock in the Bering Sea, and exploring the issues oceanographers are most concerned or excited about.  Then, through blogging while onboard, and upon my return to the classroom, I will use this first-hand knowledge to create STEM projects involving oceanography that will help students see their connection to the ocean world, and instill in them a sense of stewardship and responsibility for the world around them. I am hopeful that these experiences will inspire more students at my school to choose a career in science, perhaps even with NOAA.

When I am not teaching, or taking classes for my administrative credential through the University of Southern California, or being involved with education policy through a fellowship with Teach Plus, I enjoy spending time with my husband and daughter, and apparently EATING Alaskan pollock. It turns out that the imitation crabmeat in the California rolls and crab salad that I eat quite often is actually Alaskan pollock.  We will see if catching them, looking them in the eye, and studying them, will make me more or less interested in eating them.


Jill Bartolotta: Sea You Later, June 13, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 14, 2019


Mission
:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 13, 2019

Weather Data:

Latitude: 29°44.7’ N

Longitude: 080°06.7’ W

Wave Height: 2 feet

Wind Speed: 21 knots

Wind Direction: 251

Visibility: 10 nautical miles

Air Temperature: 26.6° C

Barometric Pressure: 1014.4

Sky: broken

As I sit here on the bow, with the wind blowing in my face, as we travel back to land, I think about the past two weeks. I think about all the wonderful people I have met, the friendships I have made, the lessons I have learned, and how I have grown as a person. The sea is a truly magical place and I will miss her dearly. Although I am excited to trade in some tonnage and saltwater for my paddleboard and Lake Erie, I will really miss Okeanos Explorer and everyone aboard.

My time aboard Okeanos Explorer has been wonderful. I learned so much about operating a ship, the animals we have seen, and about ocean exploration. I have stared into the eyes of dolphins as they surf our bow, watched lightening displays every night, seen Jupiter’s moons through binoculars, watched huge storm clouds roll in, seen how sound can produce visual images of the ocean floor, had epic singing and dancing parties as we loaded the XBT launcher, done a lot of yoga, learned a lot about memes, eaten amazing food, taken 3 minute or less showers, smacked my head countless times on the ceiling above my bed, watched the sunrise every night, done laundry several times because I didn’t bring enough socks, looked at the glittering plankton on the bow at night, and laughed a lot.

Words cannot express it all so below are some of my favorite images to show you how awesome this entire experience has been. I will not say goodbye to the sea and all of you but I will say, “Sea You Later. Until we meet again.”

sunrise
Sunrise one morning.
Jill's Birthday Cake
Blowing out the candles on my birthday cake. Still so touched by the kind gesture. Photo Credit: Lieutenant Commander Kelly Fath, PHS
Jahnelle and ROV
Meeting the ROV, Deep Discoverer. Pictured is Explorer in Training, Jahnelle Howe.
Looking at dolphins
Looking at the dolphins on the bow.
Jill looks at dolphins
Watching the dolphins surfing the bow waves. Photo Credit: Kitrea Takata-Glushkoff
dark storm cloud
The calm before the storm.
final sunset
The final sunset with some of the amazing people I met at sea. Pictured from left to right: Jill Bartolotta (Teacher at Sea), Kitrea Takata-Glushkoff (Explorer in Training), and Jahnelle Howe (Explorer in Training). Photo Credit: Lieutenant Commander Faith Knighton

Jill Bartolotta: ROV, CTD, OMG, June 10, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 14, 2019

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 10, 2019

Weather Data:

Latitude: 29°04.9’ N

Longitude: 079°53.2’ W

Wave Height: 1-2 feet

Wind Speed: 11 knots

Wind Direction: 241

Visibility: 10

Air Temperature: 26.7° C

Barometric Pressure: 1017.9

Sky: Clear

Science and Technology Log

As part of this mapping mission we are identifying places that may be of interest for an ROV (remotely operated vehicle) dive. So far a few locations have shown promise. The first is most likely an area with a dense mass of deep sea mound building coral and the other an area where the temperature dropped very quickly over a short period of time. But before I talk about these two areas of interest I would like to introduce you to some more equipment aboard.

CTD

CTD stands for conductivity, temperature, and depth. A CTD is sent down into the water column to collect information on depth, temperature, salinity, turbidity, and dissolved oxygen. Some CTDs have a sediment core on them so you can collect sediment sample. There is also a sonar on the bottom of the CTD on Okeanos Explorer that is used to detect how close the equipment is to the bottom of the ocean. You want to make sure you avoid hitting the bottom and damaging the equipment.

Sidney and CTD
General Vessel Assistant Sidney Dunn assisting with CTD launch. Photo Credit: Charlie Wilkins SST Okeanos Explorer

Yesterday we used a CTD because the XBTs launched overnight showed a water temperature change of about 4°C over a few meters change in depth. This is a HUGE change! So it required further exploration and this is why we sent a CTD down in the same area. The CTD confirmed what the XBTs were showing and also provided interesting data on the dissolved oxygen available in this much colder water. It sounds like this area may be one of the ROV sites on the next leg of the mission.

Deep water canyon-like feature
Deep water canyon-like feature with cold water and high oxygen levels. Photo Credit: NOAA OER

ROV

ROV stands for remotely operated vehicle. Okeanos Explorer has a dual-body system meaning there are two pieces of equipment that rely on each other when they dive. The duo is called Deep Discoverer (D2) and Seirios. They are designed, built, and operated by NOAA Office of Ocean Exploration and Research (OER) and Global Foundation for Ocean Exploration (GFOE). Together they are able to dive to depths of 6,000 meters. D2 and Seirios are connected to the ship and controlled from the Mission Control room aboard the ship. Electricity from the ship is used to power the pair. A typical dive is 8-10 hours with 2 hours of prep time before and after the dive.

Seirios and D2 getting ready for a dive. Photo Credit: Art Howard, GFOE
Seirios and D2 getting ready for a dive. Photo Credit: Art Howard, GFOE

Seirios lights up D2, takes pictures, provides an aerial view of D2, and contains a CTD. D2 weighs 9,000 pounds and is equipped with all types of sampling equipment, including:

  • Lights to illuminate the dark deep
  • High definition cameras that all allow for video or still frame photos
  • An arm with a claw to grab samples, such as rock or coral
  • Suction tube to bring soft specimens to the surface
  • Rock box to hold rock specimens
  • Specimen box to hold living specimens (many organisms do not handle the pressure changes well as they are brought to the surface so this box is sealed so the water temperature stays cold which helps the specimens adjust as they come to the surface)
ROV D2 labeled
D2 with some of her specimen collection parts labeled.

My favorite fact about D2 is how her operators keep her from imploding at deep depths where pressure is very strong and crushes items from the surface. Mineral oil is used to fill air spaces in the tubing and electric panel systems. By removing the air and replacing it with oil, you are reducing the amount of pressure these items feel. Thus, preventing them from getting crushed.

ROV Brain
D2’s “brain” is shown behind the metal bars. The bars are there for extra protection. The panel boxes and tubes are filled with a yellow colored liquid. This liquid is the mineral oil that is used to reduce the pressure the boxes and tubes feel as D2 descends to the ocean floor.

D2 provides amazing imagery of what is happening below the surface. Like I said earlier, one of the areas of interest is mound-building coral. The mapping imagery below shows features that appear to be mound building coral and have shown to be true on previous dives in the area in 2018.

bathymetry features
Multibeam bathymetry collected on this cruise that shows features which are similar to mound building coral that are known to be in the area. Photo Credit: NOAA OER

Mound-Building Coral

Mound-building coral (Lophelia pertusa) are a deep water coral occurring at depths of 200-1000 meters. They form large colonies and serve as habitat for many deep-water fish and other invertebrates. Unlike corals in tropical waters which are near the surface, Lophelia pertusa do not have the symbiotic relationship with algae. Therefore, they must actively feed to gain energy.

mound-building coral (Credit: NOAA OER)
Large amounts of Lophelia pertusa, stony coral, found at the top of the crest of Richardson Ridge during Dive 07 of the Windows to the Deep 2018 expedition. Rubble of this species also appeared to form the mounds found in this region.

Personal Log

We saw whales today!!!! They went right past the ship on our port side and then went on their way. We weren’t able to see them too well, but based on their coloring, low profile in the water, and dorsal fin we think them to be pilot whales, most likely short-finned pilot whales. Pilot whales are highly social and intelligent whales.

Dorsal fin of a pilot whale
Dorsal fin of a pilot whale

There was also the most amazing lightening show last night. The bolts were going vertically and horizontally through the sky. I think what I will miss most about being at sea is being able to see the storms far off in the distance.

Did You Know?

You can build your own ROV, maybe with your high school science or robotics club, and enter it in competitions.

ROV competition
High school ROV competition at The Ohio State University.

References

Mound Building Coral: NOAA, 2010, https://oceanexplorer.noaa.gov/explorations/10lophelia/background/biology/biology.html

Pilot Whales: American Cetacean Society, 2018, https://www.acsonline.org/pilot-whale

Lona Hall: Land and Sea, June 12, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 12, 2019

Time:  1541 hours

Location: Saltery Cove, Kodiak Island

Weather from the Bridge:

Latitude: 57°29.1009’ N

Longitude: 152°44.0031’ W

Wind Speed: 9.0 knots

Wind Direction: N (10 degrees)

Air Temperature: 12.78° Celsius

Water Temperature: 8.89° Celsius

Lona in immersion suit
All dressed up (in an immersion suit) and no place to go

Science and Technology Log

You may be wondering what role technology plays in a hydrographic survey.  I have already written about how modern survey operations rely on the use of multibeam sonar.  What I have not described, and am still coming to understand myself, is how complex the processing of sonar data is, involving different types of hardware and software.  

For example, when the sonar transducer sends out a pulse, most of the sound leaves and eventually comes back to the boat at an angle.  When sound or light waves move at an angle from one substance into another, or through a substance with varying density, they bend. You have probably observed this before and not realized it.  A plastic drinking straw in a glass of water will appear broken through the glass. That is because the light waves traveling from the straw to your eye bend as they travel.

Refraction in a glass of water
Refraction in a glass of water

The bending of a wave is called refraction. Sound waves refract, too, and this refraction can cause some issues with our survey data. Thanks to technology, there are ways to solve this problem. The sonar itself uses the sound velocity profile from our CTD casts in real time to adjust the data as we collect it. Later on during post processing, some of the data may need to be corrected again, using the CTD cast profiles most appropriate for that area at that general time. Corrections that would be difficult and time-consuming if done by hand are simplified with the use of technology.

Another interesting project in which I’ve been privileged to participate this week was setting up a base station at Shark Point in Ugak Bay.  You have most likely heard of the Global Positioning System, and you may know that GPS works by identifying your location on Earth’s surface relative to the known locations of satellites in orbit.  (For a great, kid-friendly explanation of GPS, I encourage students to check out this website.)  But what happens if the satellites aren’t quite where we think they are?  That’s where a base station, or ground station, becomes useful. Base stations, like the temporary one that we installed at Shark Point, are designed to improve the precision of positioning data, including the data used in the ship’s daily survey operations.

power source for the base station
Setting up the power source for the base station

Setting up the Base Station involved several steps.  First, a crew of six people were carried on RA-7, the ship’s small skiff, to the safest sandy area near Shark Point. It was a wet and windy trip over on the boat, but that was only the beginning! Then, we carried the gear we needed, including two tripods, two antennae (one FreeWave antenna to connect with the ship and a Trimble GPS antenna), a few flexible solar panels, two car batteries, a computer, and tools, through the brush and brambles and up as close to the benchmark as we could reasonably get.  A benchmark is a physical marker (in this case, a small bronze disk) installed in a location with a known elevation above mean sea level. For more information about the different kinds of survey markers, click here.

Base station installers
Base station installers: damp, but not discouraged

Next we laid out a tarp, set up the antennae on their tripods, and hooked them up to their temporary power source.  After ensuring that both antennae could communicate, one with the ship and the other with the satellites, we met back up with the boat to return to the ship.  The base station that we set up will be retrieved in about a week, once it has served its purpose.


Career Focus – Commanding Officer (CO), NOAA Corps

CO Ben Evans at dinner
CO Ben Evans enjoying dinner with the other NOAA Corps officers

Meet Ben Evans.  As the Commanding Officer of NOAA Ship Rainier, he is the leader, responsible for everything that takes place on board the ship as well as on the survey launches. Evans’ first responsibility is to the safety of the ship and its crew, ensuring that people are taking the appropriate steps to reduce the risks associated with working at sea.  He also spends a good deal of his time teaching younger members of the crew, strategizing with the other officers the technical details of the mission, and interpreting survey data for presentation to the regional office.

Evans grew up in upstate New York on Lake Ontario.  He knew that he wanted to work with water, but was unsure of what direction that might take him.  At Williams College he majored in Physics and then continued his education at Woods Hole Oceanographic Institution, completing their 3-year Engineering Degree Program.  While at WHOI, he learned about the NOAA Commissioned Officers Corps, and decided to apply.  After four months of training, he received his first assignment as a Junior Officer aboard NOAA Ship Rude surveying the waters of the Northeast and Mid-Atlantic.  Nearly two decades later, he is the Commanding Officer of his own ship in the fleet.

When asked what his favorite part of the job is, Evans smiled to himself and took a moment to reply.  He then described the fulfillment that comes with knowing that he is a small piece of an extensive, ongoing project–a hydrographic tradition that began back in 1807 with the United States Survey of the Coast.  He enjoys working with the young crew members of the ship, sharing in their successes and watching them grow so that together they may carry that tradition on into the future.

Danielle Koushel, NOAA Corps Junior Officer
Danielle Koushel, NOAA Corps Junior Officer, tracks our location on the chart


Personal Log

For my last post, I would like to talk about some of the amazing marine life that I have seen on this trip.  Seals, sea lions, and sea otters have shown themselves, sometimes in surprising places like the shipyard back in Seward.  Humpback whales escorted us almost daily on the way to and from our small boat survey near Ugak Bay. One day, bald eagles held a meeting on the beach of Ugak Island, four of them standing in a circle on the sand, as two others flew overhead, perhaps flying out for coffee.  Even the kelp, as dull as it might seem to some of my readers, undulated mysteriously at the surface of the water, reminding me of alien trees in a science fiction story.

Shark Point
Looking out over Shark Point from the base station

Stepping up onto dry land beneath Shark Point, we were dreading (yet also hoping for) an encounter with the great Kodiak brown bear. Instead of bears, we saw a surprising number of spring flowers, dotting the slopes in clumps of blue, purple, and pink. I am sensitive to the smells of a new place, and the heady aroma of green things mixed with the salty ocean spray made our cold, wet trek a pleasure for me.  


Word of the Day

Davit – a crane-like device used to move boats and other equipment on a ship


Speaking of Refraction…

Rainbow
Rainbows are caused by the refraction of light through the lower atmosphere

Thank you to NOAA Ship Rainier, the Teacher at Sea Program, and all of the other people who made this adventure possible.  This was an experience that I will never forget, and I cannot wait to share it with my students back in Georgia!

Betsy Petrick: Hurry Up and Shape Up to Ship Out, June 13, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 13, 2019

Introduction

In just two weeks I will be shipping out of Gulfport, Mississippi on the University of Southern Mississippi Research Vessel Point Sur.  As a NOAA Teacher at Sea, I will actually be a student again, learning all I can about ocean archaeology and deep-sea microbial biomes. I feel very lucky to have this opportunity to learn what it is like to live and work at sea! In particular, I am looking forward to seeing how archaeologists work at sea.  My undergraduate degree was in archaeology and I worked in the desert of New Mexico and southern Colorado where we mapped with pencil and paper, and took samples with a shovel. Ocean archaeology will require more sophisticated technology and a different approach!  

Let me give you a little background about myself.  My husband and I live in a tiny town called Husum on the White Salmon River in Washington State. My family enjoys outdoor activities including rafting and kayaking. This year my daughter is working as a raft guide on the White Salmon. I know when the commercial raft trips are passing by because I can hear the tourists scream as their boats go over Husum Falls!   My son is studying Engineering in college and is spending this summer in Spain learning Spanish and surfing. Unfortunately for my husband, summer is the busy time for construction. As a general contractor, he will be working hard.

Petrick family rafting
The whole family rafting the Deschutes River in Oregon, hmmm… quite a few years ago, but we still love it!

During the regular school year, I teach fourth grade math and science at the local intermediate school.  One of our biggest science units each year is to raise salmon in the classroom and learn about the salmon life cycle, adaptations and the importance of protecting salmon habitat.  In addition, this year we tackled a big project around plastic pollution in the oceans and how we can make a difference in our own community through education and action. My students are rightfully indignant about the condition of our oceans, and I have also become an ocean advocate since initiating this project.

Student salmon drawings
Kids made scientific drawings of salmon, and then painted and stuffed them. They swam around the classroom ceiling all year!

Scientists on the Point Sur have several goals. First of all, they will map two shipwrecks that have never been explored.  Both are wooden-hulled historic shipwrecks that were identified during geophysical surveys related to oil and gas exploration.  Archaeologists hope to determine how old the ships are, what their purpose was, and their nationality, to determine if they are eligible for listing on the National Register of Historic Places (NRHP).   A third shipwreck we will visit is a steel-hulled, former luxury steam yacht that sank in 1944. It was previously mapped and some experiments were left there in 2014 which we will recover.

In addition to mapping, we will take samples of the sediments around the ships to see how shipwrecks shape the microbial environment.  The Gulf of Mexico is a perfect place for this work because it is rich in shipwrecks. Shipwrecks create unique reef habitats that are attractive to organisms both large and small. I wonder what kinds of sea life we will discover living around the shipwrecks we visit?

The first question my students asked me was if I was going to scuba dive. While that would be exciting, it’s not allowed for Teachers at Sea! To gather information about the shipwrecks, we will deploy a remotely operated vehicle (ROV) called Odysseus (Pelagic Research Services, Inc.) . Odysseus will have a camera, a manipulator arm to gather samples, a tray to carry all the sampling gear and SONAR and lights. I think I will be content to watch its progress on the ship’s video screens.

School is almost out, and my fourth graders are chomping at the bit to get out if the classroom and begin their own summer adventures, but I hope they will follow my blog and keep me company while I am on board ship!    Am I feeling a little intimidated? Absolutely! But also very excited to have the opportunity to participate in what is sure to be a great adventure.

Lona Hall: Rockin’ at the NALL on Ugak, June 10, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 10, 2019

Time:  1932 hours

Location: Saltery Cove, Kodiak Island

Weather from the Bridge:

Latitude: 57°29.1359’ N

Longitude: 152°44.0488’ W

Wind Speed: 17.2 knots

Wind Direction: N (353 degrees)

Air Temperature: 12.13° Celsius

Water Temperature: 9.44° Celsius

Lona on a launch vessel
Sitting in the sun on a launch, Rainier in the background


Science and Technology Log

For my second time out on a launch, I was assigned to a shoreline survey at Narrow Cape and around Ugak Island (see chart here).  Survey Tech Audrey Jerauld explained the logistics of the shoreline survey.  First, they try to confirm the presence of charted features (rocks) along the shore. (As you may remember from my last post, a rock is symbolized by an asterisk on the charts.) Then, they use the small boat’s lidar (LIght Detection And Ranging) to find the height of the rocks. Instead of using sound pulses, as with sonar, lidar uses pulses of laser light.  

Point Cloud
Point Cloud: Each dot represents a lidar “ping”, indicating the presence of features above the waterline

Once a rock was identified, Audrey photographed it and used the laser to find the height of the rock to add to the digital chart.  The launch we used for the shoreline survey was RA-2, a jet boat with a shallow draft that allows better access to the shoreline. We still had to be careful not to get too close to the rocks (or to the breakers crashing into the rocks) at certain points around Ugak Island.  The line parallel to the shore beyond which it is considered unsafe to survey is called the NALL (Navigable Area Limit Line). The NALL is determined by the crew, with many factors taken into account, such as shoreline features, marine organisms, and weather conditions.  An area with many rocks or a dangerously rocky ledge might be designated as “foul” on the charts.

Amanda and Audrey
Amanda and Audrey discussing the locations of rocks along the shoreline

I must pause here to emphasize how seriously everyone’s safety is taken, both on the small boats and the ship itself.  In addition to strict adherence to rules about the use of hard hats and Personal Flotation Devices in and around the launches, I have participated in several drills during my stay on the ship (Man Overboard, Fire and Emergency, and Abandon Ship), during which I was given specific roles and locations.  At the bottom of each printed Plan of the Day there is always a line that states, “NEVER shall the safety of life or property be compromised for data acquisition.” Once more, I appreciate how NOAA prioritizes the wellbeing of the people working here. It reminds me of my school district’s position about ensuring the safety of our students.  No institution can function properly where safety is not a fundamental concern.


Career Focus – Marine Engineer

Johnny Brewer joined the Navy in 1997.  A native of Houston, Texas, many of his family members had served in the military, so it seemed natural for him to choose a similar path after high school.  The Navy trained him as a marine engineer for a boiler ship. Nearly 15 years later he went into the Navy Reserve and transitioned to working for NOAA.

Johnny Brewer, Marine Engineer
Johnny Brewer, Marine Engineer

Working as an engineer requires mental and physical strength.  The Engineering Department is responsible for maintaining and updating all of the many working parts of the ship–not just the engine, as you might think! The engineers are in charge of the complex electrical systems, plumbing, heating and cooling, potable water, sewage, and the launches used for daily survey operations.  They fix everything that needs to be fixed, no matter how large or small the problem may be.

Johnny emphasized how important math is in his job.  Engineers must have a deep understanding of geometry (calculating area, volume, density, etc.) and be able to convert measurements between the metric and American systems, since the ship’s elements are from different parts of the world.  He also described how his job has given him opportunities to visit and even live in new places, such as Hawaii and Japan. Johnny said that when you stay in one place for too long you can become “stuck in a box,” unaware of the world of options waiting for you outside of the box.  As a teacher, I hope that my students take this message to heart.


Personal Log

In my last post I introduced Kimrie Zentmeyer, our Acting Chief Steward. In our conversation, she compared the ship to a house, the walls of which you cannot leave or communicate beyond, except by the ship’s restricted wi-fi, while you are underway.  I would like for my readers (especially my students) to imagine living like this, confined day in and day out to a single space, together with your work colleagues, without family or friends from home.  How would you adjust to this lifestyle? Do you have what it takes to live and work on a ship? Before you answer, consider the views from your back porch!

Ugak Bay
Ugak Bay (Can you spot the whale?)


Word of the Day

bulkhead – a wall dividing the compartments within the hull of a ship

Q & A

Are there other NOAA ships working in Alaska?

Yes!  NOAA Ship Fairweather is Rainier’s sister-ship and is homeported in Ketchikan, Alaska.  Also, the fisheries survey vessel, NOAA Ship Oscar Dyson is homeported in Kodiak, not far from where we are currently located.

What did you eat for dinner?

This evening I had sauteed scallops, steamed broccoli, and vegetable beef stew. And lemon meringue pie. And a cherry turnover. And ice cream.

(: