Marsha Lenz: We’re Going Fishing!, June 25, 2017

NOAA Teacher at Sea

Marsha Lenz

Aboard Oscar Dyson

June 8-28, 2017

 

IMG_2596

The Observer, the Teacher At Sea, and the Senior Survey Tech take a moment to enjoy the view.

Mission: MACE Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 25, 2017

 

Weather from the Bridge

Screen Shot 2017-06-25 at 4.32.05 AM

The Shumagin Islands are a popular fishing spot for commercial fishing. (photo credit: vacationstogo.com)

Latitude: 55 15.7 N

Longitude: 159 05.0 W

Time: 0700

Visibility: 10 Nautical Miles

Wind Direction: 180

Wind Speed: 17 Knots

Sea Wave Height: 2 feet

Sea Water Temperature: 9.9°C

Air Temperature: 9.2°C

Science and Technology Log

IMG_2541

Controlling the DropCam requires concentration.

We have been in the Shumigan Islands, which are a group of 20 islands in the Aleutians East Borough south of the mainland.  It has been beautiful.  In between doing DropCams ( I even got to take over the controls once!) and fishing, we have been able to enjoy a few moments  outside taking in some of the amazing views. And then, it’s back to fishing!

The Fish Lab team (Ethan, Abigail, Katy or Meredith,  and I) are becoming very efficient in our roles in the lab.  I am getting much quicker at identifying the sex of fish and measuring their  lengths. It is really nice to have an efficient routine dialed in.

I had mentioned before that I wanted to go into detail about how the actual “fishing” works.  First, and foremost,  I am impressed with the amount of  teamwork that is required to do this.  There are about 12 people needed at various positions to make a fishing operation happen.  There are people in the Acoustics Lab, the Bridge, on the deck, and of course, in the Fish lab itself. I am reminded again about how important clear and concise communication is. Everyone talks to each other with radios and ensures that all steps of the process has been heard.

 

 

Making the Decision to Fish

The scientists spend a  lot of time in the  Acoustics lab (or The Cave). This is where they receive the feedback from the echo sounders in the water.  The monitors show images of backscatter that give the scientists a “picture” of what is going on in the water.  When they see something that they would like to fish, they call up to the Bridge and let them know that, “We’re going fishing!”.

 

This slideshow requires JavaScript.

Deploying the Net

There are  many steps involved in getting the net into the water.  A survey technician will operate the winch. There are usually two deck hands to ensure that everything is deployed properly.  They always make sure that the pocket net, which catches smaller marine life, is secure and closed.  The CamTrawl, FS70 (or “turtle”),  SBE39, and ITI must also be attached to the net.  The CamTrawl takes pictures of everything coming into the net and the “turtle” takes a sound picture of the area in and around the net opening.

 

This slideshow requires JavaScript.

Haul Back

Once the science team decides that they have what they would like in the net, they announce that its time to, “Haul back!” in the radio.  At this point, the winch operators and Deck hands start bringing in the net. The contents of the pocket net are given to the scientists for identification. The scientific equipment are also removed and downloaded. The fish that are in the net are  brought over to a bin next to the Fish lab with a crane. The nets are then carefully maneuvered back onto the net reel.

 

This slideshow requires JavaScript.

Getting Ready

Once Abigail, Ethan, and I see that they are “hauling back”, we start getting ready for the Fish Lab.  We get dressed, put on music, and get out the necessary equipment.  The Fish lab is definitely wet, so we want to make sure that we have proper coverage!  If there is some extra time, we will see how long we can hold a plank for.  We are up to 2 minutes!

 

This slideshow requires JavaScript.

Fish on the Table

Once the fish are placed in the bin by the crane outside of the Fish lab, we can control how fast it is brought onto the belt by the door. First, we separate anything that is not pollock from the catch.  We identify and record this data. Then,  we weigh the pollock. We separate the males and females.  The males go into the “bloke” bin and the females go into “sheilas” bin.  From there, each fish is measured.  The goal is to get a total of about 250 fish lengths.  Sometimes, there are more females than males, and sometimes there are more males than females. The length of each fish is recorded with an Ichthystick. This is a fish length board designed to electronically measure and record the length of each fish.  The Ichthystick was designed by the personnel at NOAA.   After the lengths are taken, we take anywhere from 15-50 pairs of otoliths from the pollock. The otoliths are preserved and used to determine the age of the fish.  Finally, when all the fish have been lengthed and otoliths taken, we clean up.  This does take some time, as no one wants a lingering fish smell around. There are numerous sprayers around  that are used to clean every nook and cranny of the lab.  Then, we clean ourselves up and wait for the next haul!

 

This slideshow requires JavaScript.

Personal Log

Though we have been working 12 hours shifts, we do still manage to enjoy some of the spectacular views. I am amazed over and over again at how stunning and diverse the landscape is here. Sometimes the hills are covered in lush green, and sometimes there are snow covered mountains. When we can find a moment, we will just stand out on deck and take it all in. It truly is breathtaking.

This slideshow requires JavaScript.

Interview with Abigail McCarthy

Scientist

 What role do you play on this survey? 

img_2643.jpg

Abigail waits for the fish to come.

I’m the “fish lab lead” scientist, which means that I manage all the wet data collection. I make sure all the fish we catch in our different types of nets are sampled the right way, that we’re processing our catch and recording samples properly and that everyone in the fish lab is having fun! I also do a lot of support work for the chief scientist in the acoustic lab, judging our acoustic data from the fancy scientific fish-finders, analyzing those data and making sure they link up right with all the information from the wet lab. I make sure we’re putting the right scientific equipment on the net every time we fish, do the camera drops, make maps with the information we’re collecting and write code for our analysis and data collection software too.

What inspired you to pursue this as a career?

I sort of slid into this sideways. I majored in biology in college and wanted to be a doctor, then I got interested in plant biology midway through my undergraduate degree. After I graduated from college I did a couple of internship/ technician jobs at research stations where I studied rare plants, bird/ plant interactions, and a few other things. I branched out and worked on a couple of bird projects (Hawaii for rare forest birds and avian malaria, and Puerto Rico for parrots and hawks), and then I got a job working on coastal plant ecology at the Bodega Marine Lab. All my friends there were doing marine science and they were having so much fun and doing such cool projects, and I got even more curious about marine science. Then I saw an opening for a sea turtle job in Costa Rica.  I speak Spanish well, and I had field experience, so I got hired there and worked on sea turtle nesting for almost a year, followed up by another sea turtle job with the Nature Conservancy in the Caribbean. All that nesting beach work made me wonder what was happening with turtles when they weren’t on the nesting beach, where did they go and what did they do in the open ocean?? So I applied to grad schools to study that question, and one of the best sea turtle biologists in the world is at Oregon State, where I went for my masters’ degree. If you find a cool project and a graduate professor who is good at getting funding, you can get paid to go to graduate school for marine biology. In grad school I spent a lot of time at the Hatfield Marine Science Center in Newport, OR, where I helped teach fisheries biology classes as part of my grad work. That got me interested in fish, fisheries data, and the way that science is used to inform the decisions that are made about commercial fisheries catch. So I applied to jobs at NOAA fisheries and got this one!

How long have you been working in this field?

I’ve been working at NOAA for 10 years, started grad school in 2003.

Are fisheries something that more people need to know about? Why?

Yes! Fish are the last truly wild source of food in the world. People can hunt to feed their families, but fisheries are the last place that huge quantities of protein come from a wild source without being farmed. If we don’t pay close attention to how many fish we catch, we run the risk of really screwing that up.

Do you think what do you is important? 

I do. I think it’s important because we need to know not just what’s going on with fisheries, but also we have to do our best to understand the ocean and how the ocean is changing as there are more and more people on our planet. The ocean covers over 70% of the surface of the earth, at it’s deepest it’s more than 36,000 feet deep (you’d have to run 6.8 miles straight down from the surface at the deepest place in the ocean before you’d hit the bottom). There are whole ecosystems that we barely understand because it’s a lot harder to study things when you can’t see them or measure them directly. Think about how easy it is to look at other people,pets, trees, or buildings. It’s not hard to tell how many people there are in the classroom with you or how big the school is, but imagine trying to do that 1500 feet below the surface of the ocean! We get to figure out ways to study fish and fisheries without being able to walk right up to a fish and measure it’s length or ask it how old it is, and we use that information to understand how the fish populations change, which adds to the information we know about the ocean as a whole.

How much of the year do you spend at sea?

Between two and three months, depends on the year. Usually one or two cruises in the winter time and one or two in the summer, each about 3 weeks long.

What interests you most about the data collected on this survey?

I like to think about how it fits into the big picture; both how it compares to all the data we’ve collected in this area in the past, and how it compares to what the commercial fishermen see here. I like to make maps of the data we collect too. I think it’s a great way to visualize information. I’m also really interested in the data we’re collecting with our drop cameras- fish pictures are always cool.

What is the most challenging part of your job?  The most rewarding?

There are a lot of rewarding parts of my job! One of the most rewarding is probably presenting the results of a completed survey- one where I sailed on the research cruise, was the lead analyst, and wrote the report (with lots of help from my colleagues, of course)- to the Plan Team. The Plan Team are the people who make the decisions about how many fish the commercial fishermen are allowed to catch each year, and I always enjoy telling them about our work, because we do excellent science and I’m proud of it.

Fisheries science, especially in Alaska, tends to be pretty male dominated. While I work with lots of remarkable people of both sexes with whom I enjoy spending time and from whom I have learned a lot, I wish I had more female colleagues. I also sometimes wish there were more women in leadership roles here.

What words of advice to you have for my students if they want to pursue a career in biology or the sciences?

Don’t let anyone tell you “No”. Take the math classes, take the biology and chemistry and physics when they’re offered, and if you don’t understand something, ask for help from anyone you can find. If you’re having trouble with math problems, find a teacher or a tutor to help you see it clearly. We always need more scientists- especially girls!

Screen Shot 2017-06-23 at 3.42.08 PM

The Bluefin tuna can migrate across oceans and can dive more than 4,000 feet. (photo credit: NOAA)

Melissa Barker: Waiting out the Storm, June 22, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA ship Oregon II

June 22-July 6

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 22, 2017

Weather Data from the Bridge: In port at Pier 21, Galveston, TX waiting out Tropical Storm Cindy.

Latitude: 29 18.61 N

Longitude: 94 47.56 W

Air temp: 28.8 C

Wind: gusty

Sky: overcast

Science and Technology Log

There is not a lot of science happening yet on the Oregon II. We are waiting out Tropical Storm Cindy that has made landfall on the gulf coast, so the science team has not yet arrived. The ship is pretty quiet with a few folks taking care of odds and ends. LT Reni Rydlewicz and ENS Chelsea Parrish welcomed me and showed me around the ship. Both officers took me to the bridge, the command center for the ship, to look at charts of where we will be sailing once underway.

IMG_3112 2

The bridge on the Oregon II

I learned that we will be sampling at a set of randomly predetermined sampling stations in depths of 5-60 fathoms (fm). One fathom is equal to six feet, so we will be sampling at depths of 30-360 feet. We will use a 40-foot trawl and sample within 2.5 mile radius of the station locations. We will use paper and electronic charts to navigate our way from station to station. I’m looking forward to getting underway, hopefully on Friday evening.

Our sampling stations are highlighted in yellow on the electronic chart. All the dots are oil and gas locations. On the paper chart, the lines that look like roads are called fairways and are safe areas of navigation. The numbers are depths in feet. The Oregon II has a 15 foot draw, so we typically try to stay in water at least 35 feet deep. NOAA creates these charts and give frequent updates to the officers.

Personal Log

I’m making the most out of my time in Galveston and at port on the Oregon II. I spent some time learning my way around the ship. Take a tour of the Oregon II by watching my short video below. The video can also be accesses here.

While exploring around the downtown area, I realized that I am definitely not use to the 100% humidity that we are experiencing. It really makes me appreciate the dry heat at home, but I am glad that it stopped raining making my exploring slightly drier.

IMG_3131

Ocean Star Offshore Drilling Museum

I visited the Ocean Star Offshore Drilling Rig Museum.  The Ocean Star is an old jack-up rig that was decommissioned in 1984 and now serves as a museum to educate the public about exploring, drilling and producing offshore energy resources.

I had no idea how many rigs there are in the gulf and that much of the oil is transported back to the mainland via pipelines. As of 2008, there was over 27,000 miles of active oil and gas pipe in the gulf transporting nearly 200 million barrels of oil and 1 trillion cubic feet of gas. According to the U.S. Energy Information Administration, “the Gulf of Mexico federal offshore oil production accounts for 17% of total U.S. crude oil production.” And as of 2013, the oil production in the gulf exceeds 686 million barrels per year.

img_3137.jpg

Offshore wells in the Gulf of Mexico

IMG_3138

Map of pipelines in the Gulf of Mexico

 

IMG_3147

Replica of an underwater oil field

When rigs are decommissioned they can sometimes be converted into artificial reefs. According to the Bureau of Safety and Environmental Enforcement, as of July 2015, 470 platforms have been converted into permeant artificial reefs in the Gulf of Mexico. You can learn more about this program here and see a short video of how rigs are turned into reefs here.

 

Did You Know?

As we collect data, we will be transmitting realtime shrimp biological data to the Gulf States Marine Fisheries Commission (GSMFC) in Ocean Springs, MS. Often times it can take weeks, months and even years to process data from large scale scientific projects. The realtime data transmission allows the GSMFC to use the most current data to manage the fisheries effectively.

Dawson Sixth Grade Queries

What does your room look like? Where do you sleep? (Emma, Mia)

IMG_3111 2

My room or berth

You can check out my video above to see my berth or stateroom as well as the rest of the Oregon II. My room is compact and uses space efficiently like everything on the ship. If I stand in the middle of the room and stretch my arms out I can touch the wall and cabinets at the same time. The other dimension (bed to far wall) is longer, roughly 8 feet with a little entry for the door. There is about enough room to do downward dog or warrior one, but not much else. With our 12 hour shifts, there is little time for hanging out, so sleeping is the main concern when in our staterooms and the bed is very comfortable.

 

 

How many people are on the boat? (Sylvia, Maylei)

IMG_3104Right now there are not many people on the ship, but when we hopefully set off on Friday evening we should have about 28 people total, including 10 in the science party and 18 officers, crew, engineers, fishermen, and stewards. Look for more information about the folks who live and work on the Oregon II in future posts.

Marsha Lenz: Celebrating Science and the Solstice, June 21, 2017

NOAA Teacher at Sea

Marsha Lenz

Aboard Oscar Dyson

June 8-28, 2017

Mission: MACE Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 21, 2017

thumb_IMG_2352_1024.jpg

Though modern technology is used daily, one can still find traditional charting tools on the Bridge.

Weather Data from the Bridge

Latitude: 55 15.0 N

Longitude: 160 06.7 W

Time: 1300

Visibility: 10 Nautical Miles

Wind Direction: VAR

Wind Speed: LT

Sea Wave Height: <1 foot

Barometric Pressure: 1003.4 Millibars

Sea Water Temperature: 9.8°C

Air Temperature: 7.0°C

Science and Technology Log

            We have been surveying transect lines (sometimes we fish, sometimes we don’t). During the times that we aren’t fishing, I find myself looking out at the ocean A LOT! During these quiet times on the ship, I am reminded of how large the oceans are. I found a quiet window to sit by in the Chem Lab and enjoy watching as the waves dance off of the side of the ship.

IMG_1975

Abigail enjoys singing to the fish.

During some of these times when we are not collecting data from fish, identifying species from the DropCam, or preparing for the next haul, I find myself reading, which is a luxury all in itself. A friend of mine lent me to book to read and as I was reading the other day, the author quoted Jules Verne, author of 20,000 Leagues Under the Sea. Verne said, “Science, my lad, is made up of mistakes, but they are mistakes which it is useful to make, because they lead little by little to the truth.” I found this to be fitting for what I am doing on this survey, for the three weeks that I am a Teacher At Sea.   Though I am surrounded by trained and educated professionals, I have realized that mistakes still happen and are something to be expected.   They happen regularly. Often, actually. And, it’s a good thing that they do. They are important for learning. When humans make mistakes, hopefully, we can adjust our actions/behaviors to reduce the chances of that same “mistake” from happening again. When applied to science, the same idea is also true. When  we can collect data from something that we are studying, we learn about the ways that it interacts with its surroundings. Through these findings, we not only learn more about what we are studying, but then take measures to protect its survival.

We had a real experience like this happen just the other day. For days, the “backscatter” was picking up images of fish that the scientists didn’t think were pollock on the bottom of the ocean. Backscatter is what the scientists use to “see” different groups of fish and quantify how many are in the water. The ship uses various echosounders.  Several times, the science team decided to collect fish samples from these areas.  Every time that they decided to “go fishing”, we pulled up pollock. The team was baffled. They had a hypothesis as to why they were not catching what they thought they saw on the backscatter. They thought that it was rockfish that were hanging around rocks, but the pollock were being caught as the net went down and came back up.  Finally, after several attempts of not catching anything but pollock, they decided to put down the DropCam and actually try to see what was going on down there.

At that point, the Chem lab was filled with scientists. Everyone wanted to see what was going to show up on the monitor. The NOAA Corps Commanding Officer even came to see what was going to show up on the monitor.  The room will filled with excitement.

 

Abigail steers the DropCam and watches the monitor simultaneously.

We see rockfish!

          It was just as they predicted!  The rockfish were hanging out in the rocks.  It was a moment of great satisfaction for the scientists. They were able to identify some of the fish on the backscatter that was causing them so much confusion! Yay, science!

19433465_10211635923631739_1269694918_n

This is a pollock!

Later in the day, we went fishing and collected the usual data (sex, length, weight, etc.) from the pollock.  There are usually 4 of us at a time in the Fish lab.  We are getting into a routine in the lab and I am getting more familiar with my responsibilities and duties. I start by controlling the door release, which controls the amount of fish released onto the conveyor belt. After all of the fish have been weighed, I separate the females and males.  Once that has been done, I take the lengths of a sample of the fish that we caught. When I finish, I assist Ethan and Abigail in removing and  collecting the otoliths from a selected fish sample.  Then, its clean-up time.  Though we all have appropriate gear on, I somehow still end up having fish scales all over me.  Imagine that!

Every time that we “go fishing”, a “pocket net” is also deployed.  This is a net that has finer mesh and is designed to catch much smaller marine life.  On this haul, we caught squid, age “zero” pollock, and isopods.

In the evening, we headed towards Morzhovoi Bay.  There, we were greeted by a pod of Pacific white-sided dolphins.  They spent some time swimming next to us.  When they discovered that we were not that interesting, they swam off.  They did leave us though with a great sense of awe and appreciation (and a few great pictures!).

This slideshow requires JavaScript.

Personal Log

Happy Summer Solstice!  Today is the longest day of the year!  We have had some spectacular days. We were all excited as we got up this morning to welcome the rising of the sun. We woke up and were holding position in front of Mt. Pavlof.  We saw the sunrise and went up to the  Flying Bridge to do some morning yoga.  After a wonderful breakfast of a bagel with cream cheese, salmon, Larrupin sauce, and Slug Slime, I went back up to the Bridge to get a full 360 degree view of the bay.  There I saw a humpback whale swimming around.  This will definitely be a summer solstice to remember!

This slideshow requires JavaScript.

Did You Know?

A humpback whale is about the size of a school bus and weighs about 40 tons! They also communicate with each other with songs under the water.

sidenote: I know I wrote in my last blog that I was going to discuss the fishing process today, but there were so many other amazing things that happened that it is going to have to wait until next time. Sorry!

 

Helen Haskell: Bottom Sampling! June 17, 2017

NOAA Teacher at Sea

Helen Haskell

Aboard NOAA Ship Fairweather

June 5 – 26, 2017

 

Mission: Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska – West Prince of Wales Island

Date: June 17, 2017

Weather Data (on day of bottom sampling –June 14th)

Wind:  27 knots from the west (110° true)

Visibility: 10 nautical miles

Barometer:  1005.3 hPa

Air temperature: 9.4°C

Cloud: 100% cover, 1000’

Location

54°54.4’N  132°52.3’W

 

Science and Technology Log 

IMG_2004

Hollings Scholar Carly LaRoche, TAS Helen Haskell, and LT Damian Manda with a bottom sample.

If you have ever taken a look at a nautical map, other than just depths listed on it, there will be symbols and definitions that provide information to help with safety and knowledge of the area.  For example, asterix-like symbols represent rocks, and a branch-like symbol represents kelp. Also written on the maps is information about the seafloor and what it is composed of, such as gravel, sand, or bedrock.  Here in southeast Alaska, off the coast of Prince of Wales Island, much of the data that is currently on the charts was collected over 100 years ago.  Fairweather’s mission is to collect new information to allow these charts to be updated, and this includes information on the seafloor too.

The other day I was tasked with joining a survey crew to conduct bottom sampling.  The assigned bottom sample locations are provided by the Operations branch at headquarters. The sheet managers adapt the locations if they think there are better locations that will provide information for anchoring or to help characterize different regions in the area.  With less than glassy water conditions on a windy and rainy day, the boats were launched and we moved to our first sample area.

IMG_0252

A bottom sampler

The technology behind sampling is a little more antiquated than other parts of the research I’ve seen. It involves hooking up a self-closing scoop like device to a rope, and lowering it in to the water until it hits the seafloor.  Ideally, the trigger is released when it hits the seafloor and it closes. With closed scoops, the bottom sampler is winched up, ideally full of whatever material is located on the seafloor in that immediate location.  There were three different styles of these bottom samplers and we quickly had a firm favorite that seemed to work the best.  Easing the boat in the swell to the location, the coxswains, Dennis and Denek, would keep the boat in position so we did not tangle the rope in the motor.  We could tell from the rope going slack when the bottom sampler had hit the sea floor, and a mechanical winch made the return journey easy.

 

Dumping the contents in to a bucket we were able to see the diversity of the seafloor in just a few samples.  Occasionally rocks or shells would get stuck in the mechanism and we’d have to repeat the procedure, but overall we had tremendous success.

IMG_1863

Carly, Denek, the coxswain and me getting some respite from the rain

There are international protocols to follow in collecting bottom samples. These allow for communication and consistency of data on navigational charts.  In general, the main medium of the sample is described, such as sand, mud or pebbles, and an adjective used to describe it, such as broken, sticky or soft. Color is also assigned to the sample as well as appropriate size of the grains (fine, medium or coarse).  Symbols are used for all this data: For example, ‘the sample is mostly fine brown sand with mud and a little bit of broken shell’ would be written fne br S M brk Sh.  Protocols indicate that if sampling is attempted three times in one location and it doesn’t work then ‘unknown’ is documented in that location.

IMG_1926

Success in our sampling

At each of the sampling locations, we marked the spot on the chart and took latitude and longitude coordinates. We also documented additional observations we had about the sample, including findings that were not included as data choices. For example, in our second sampling site we found what we thought initially were mammal hairs.   Several sites later we struck ‘gold’ again, finding what appeared to be more hairs in a mud matrix. Upon reflection and discussion, it’s possible they are more likely decomposing kelp fibers.  It would be interesting to have the samples analyzed to identify what these fibers/hairs come from.   We also found whole clamshells as well as having a sample that only contained water. Our thoughts with the water only samples were that perhaps we were hitting bedrock rather than failing on obtaining any kind of sediments.  We also observed that in the more sheltered bays, the samples were very odiferous dark mud. In both of these occasions, the landscape surrounding the bay was heavily logged, and it would be interesting to see if there were correlations between the logging and the dark sediments, perhaps containing higher levels of carbon material washed in from terrestrial sources. In one of these areas, documentation from 100 years ago suggested that at that time, the seafloor was gravel.

 

Personal Log

The bottom-sampling day was challenging day weather wise, both for the coxswains and the science crew, but very rewarding.  Due to the rough seas it wasn’t a good day to collect sonar data, and on days like this, other parts of the total data collection are put in to place.  Part of our work that day was to also do crosslines (sonar data verification) but the water conditions were too hazardous in certain directions of travel, and so it was decided that we should focus on bottom samples.   To be frank, this was my favorite day as a Teacher At Sea so far. Truth be told, I was reminded that I quite enjoy sticking my hand in a bucket of mystery ‘goop’ and trying to figure out what it is composed of.  The diversity of samples was completely surprising and finding hair samples, twice, completely intriguing.  It was great also to observe upcoming OPS officer, LT Damian Manda at work logging the data, and realize again, the role technological knowledge plays a role in the success of this research.

 

IMG_2047

Me and Carly at the end of the day

 

Word of the day:

Hollings Scholarship Program: this NOAA program provides undergraduate students with a ten week internship at a NOAA facility and academic assistance, as well as an orientation and symposium. For more information: http://www.noaa.gov/office-education/hollings-scholarship

Fact of the day:

Backscatter is the intensity of acoustic energy received by the sonar after interacting with the seafloor. Backscatter data can be used to help determine the surface of the seafloor.  In softer areas, perhaps a surface of mud, returns a weaker signal, but a harder surface, such as bedrock returns a stronger signal.  Hollings scholar Carly LaRoche from American University is on the boat for several legs this summer and is collecting and analyzing backscatter data in the area. Bottom sampling of the area is allowing Carly to compare the backscatter data with the sediments collected to see if there are correlations.

What is this?

IMG_0270

(Answer from previous blog: part of the vertical struts of an old pier at a former salmon canning factory.)

Acronym of the day: Used in bottom sampling

NATSUR:  Nature of surface  -example: mud, gravel, coral

NATQUA: Qualifying terms for NATSUR -example: sticky, soft, calcareous

Marsha Lenz: The Octopus and the CTD, June 21, 2017

 

NOAA Teacher at Sea

Marsha Lenz

Aboard Oscar Dyson

June 8-28, 2017

 

Mission: MACE Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 21, 2017

 

Weather Data from the Bridge

Latitude: 54 38.9 N

Longitude: 161 39.2 W

Time: 0800

Visibility: 10 Nautical Miles

Wind Direction: 185

Wind Speed: 9 Knots

Sea Wave Height: 3-4 foot swell

Barometric Pressure: 1003.4 Millibars

Sea Water Temperature: 7.4°C

Air Temperature: 7.0°C

Science and Technology Log

Every morning when I come to start my shift, the scientists on the previous shift are in the middle of doing “DropCam’s.”   The DropCam is a camera that drops down to the ocean floor and takes pictures of what is going on down there. We have been getting some amazing pictures from the DropCam. The camera goes down about 150 meters (depending on the depth of the ocean floor). Sometimes, the ocean is very sandy and has very little (that we can see) activity going on. Other times, the video feed is full of fish and other marine life. We have seen so much diversity on the ocean floor.

This slideshow requires JavaScript.

Since being on the Oscar Dyson, we now have seen two octopuses on the boat (well, one was on the DropCam); one was in the juvenile stage and one in the adult stage of life. I’d like to take a moment to talk about how amazing an octopus is. First of all, let’s talk about how they can change color to match their surroundings. They use special pigment cells in their skin to change colors. They have the ability to even blend into patterned rocks and corrals. When we caught the baby octopus, we saw it change its color to white to blend into the white cup we were holding it in.

Screen Shot 2017-06-21 at 2.48.10 PM

An octopus can fit through spaces as small as the size of its beak (photo credit: factsandideas.com).

They are considered to be very intelligent animals. They have been known to be able to open jars, escape from enclosures, solve mazes, and squirt water at targets. They have the ability to squeeze through things that are as small as the size of their beaks. In aquariums, they have also been known to mimic (and actually learn from) other octopuses.

Even though they can get up to be 16 feet long and weigh up to 110 pounds, they only live to be about 4 years old. That is a very short lifespan. After the females lay their eggs (they lay about 100,00 eggs), they brood over them for many months. During this time, they often do not eat. She protects her eggs for 6-7 months, and then she dies shortly after they are born.

When they are looking over their eggs they do eat, they primarily eat shrimp, fish, clams, and lobsters. They have a beak-like mouth that they can use to puncture and tear fish. They have also been known to eat sharks and birds. During the first 3 months of their lives, they eat plankton. Plankton are small and microscopic organisms that drift or float in the sea. They consist of diatoms, protozoans, small crustaceans, and the eggs and larval stages of larger animals.

The CTD

After the last DropCam is retrieved, a CTD (Conductivity-Temperature-Depth) is usually deployed, which collects data from various depths of the oceans. The primary function of the CTD is to measure the conductivity and temperature of the water column at various depths. Conductivity is related to the salinity, or saltiness, of the water. Studying the salinity of the water is a very critical part of studying the ocean, which is made up of salt water. The conductivity, along the temperature and depth, provide scientists with profiles of various parts of the ocean.

This slideshow requires JavaScript.

The CTD is attached to a larger frame called a rosette.   This holds various water-sampling bottles and other sensors that measure the physical and chemical properties of the water at various depths. With this information, scientists can make inferences about changes that they may be seeing in the data and this can give them a better understanding about the oceans.  The data collected daily from the CTD is analyzed by Pacific Marine Environmental Laboratory at the end of the survey.

Personal Log

Things on the boat are definitely becoming more routine. We continue to work in 12-hour shifts (mine starting at 4 am). The days consist of getting up, having coffee and a bagel, coming down to the Chem Lab to relieve the night shift, where we take over doing DropCams.  After our DropCams, we get to watch the sunrise or other spectacular views.

This slideshow requires JavaScript.

We then will go up for breakfast at 7. I have really been enjoying having someone else (Lenette and Kimrie) not only make meals for me every day, but also do my dishes. What a luxury! After breakfast, we’ll “go fishing” and suit up to analyze the catch. (I’ll go into details about in the next blog) and then we’ll go have lunch. After lunch, we brainstorm the plans for the afternoon and take care of small projects. Before we know it, 4 pm rolls around and the next crew starts their shift.

IMG_2373

Chief Scientist, Darin Jones, shows me how to conduct a trawl.

I make it to dinner at 5, and then I slowly make my way back to the stateroom.  If it is  nice out, I will go up to the bridge to look for marine animals or walk around looking at the amazing landscape.  I find myself extremely tired around 7 and get ready for bed.  I am usually asleep by 8. It’s “good night” and sweet dreams for me!

2017-06-20-PHOTO-00000007

Despite the occasional wind, the views are breathtaking.

Did You Know?

 The oldest octopus fossil is from an animal that lived 296 million years ago — millions of years before the dinosaurs lived.

Question for my class:

 What is the name of this weather instrument?

19251093_10211620451204938_1276981242_n

This year we learned about various tools to help measure weather. I saw this on the bridge of the ship. It measures the speed and direction of the wind. Do you remember what it is called?

 answer:  A  ___ ___  M  ___ ___  E  ___ ___  R                                                                                      

Interview with Darin Jones

IMG_2395

Darin analyzes backscatter from a recent transect.

What role do you play on this survey?

I am the Field Party Chief which means that I am the member of the science party that is responsible for making sure as much of our original objective gets completed as possible and I also serve as the main contact between the officers that operate the ship and the science party when important decisions or changes in the plan occur.

What inspired you to pursue this as a career?

I was a contract observer for the National Marine Fisheries Service following college and dreamed about one day working directly for them.  I thought that would be an awesome career and I feel lucky to have had my dreams realized.

How long have you been working in this field?

I have been in my current position for 10 years but have been in the marine biology field for the last 25 years.

What sort of training/education did you receive?

I got my Undergraduate degree in Marine Biology and a Masters of Science in Fisheries Resources.  I was also an observer aboard commercial fishing vessels for 5 years which provided invaluable sea going experience and knowledge.

Are fisheries something that more people need to know about? Why?

I think fisheries and the health of the oceans is something that people should know more about because they are vital to life on land and important indicators of the status and health of our climate and planet. The oceans are the heart of the earth and drive many other processes.

 

What interests you most about the data collected on this survey?

The data that we collect is directly used to sustainably manage the pollock fishery so I am proud to contribute to that.  It’s neat to be able to track a fish population as it grows through the years and watch how many survive from one year to the next. We are also collecting interesting data on the percentage of certain rockfish species in different types of habitat that can be used to help determine the abundance of those species.

What is the most challenging part of your job?  The most rewarding?

The most challenging part of my job is being away from my family for long periods of time. Another challenging aspect is the time management of planning and executing the survey objectives in a finite amount of time. Plans have to be constantly monitored and adjusted depending on weather, equipment malfunction, and other unexpected circumstances. The most rewarding part of my job is knowing that I am contributing to the scientific knowledge that is helping to sustainably manage fisheries.

What words of advice do you have for my students if they want to pursue a career is biology or the sciences?

Math skills are a very important part of biology and the sciences so learn as much as you can.  Also getting experiences in fields that you are interested in is very important so volunteer with organizations that interest you and unexpected opportunities will open up.

 

 What is your favorite marine animal?

I think my favorite marine animal is the Pacific viperfish.  It is a creature from the deep and has very long teeth and looks very ferocious, however they only grow to a maximum of about a foot long, but I’ve only seen specimens that were about 2 inches long. It amazes me how creatures can survive in the dark depths and immense pressures of the deep ocean.

Screen Shot 2017-06-22 at 6.16.33 AM

The Pacific viperfish can be found 200-5,000 feet below the ocean surface. (photo credit: Earthguide & Scripps Institution of Oceanography)

Do you have anything else that you would like to add or share?

Do your homework and get all the extra credit that you can, kid!

 

 

Helen Haskell: From Raw Data to Processed Data, June 16, 2017

NOAA Teacher at Sea

Helen Haskell

Aboard NOAA Ship Fairweather

June 5 – 26, 2017

 

Mission: Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska – West Prince of Wales Island

Date: June 16, 2017

Weather Data

Wind:  3 knots from the east (272° true)

Visibility: 6 nautical miles

Barometer:  997.6 hPa

Air temperature: 9 °C

Cloud: 100% cover, 1000’

Location

54°54.4’N  132°52.3’W

Science and Technology Log

It would be easy to assume that once the small boat surveys are conducted and data from the larger sonar equipment on Fairweather is also acquired, that the hydrographers’ work is done and the data can be used to create navigational charts. As I have learned, pretty quickly, there are many parameters that affect the raw data, and many checks and balances that need to be conducted before the data can be used to create a chart. There are also a significant amount of hurdles that the crew of Fairweather deals with in order to get to their end goal of having valid, accurate data.  Some of the parameters that affect the data include tides, salinity of the water, temperature of the water, and the density of the data.

Tides:

Tides play a huge role in data accuracy.  But how do tides work and how do they influence navigational chart making? Tides on our planet are the effect on water due to forces exerted by the moon and the sun.  The mass and the distance from the Earth to these celestial bodies play significant roles in tidal forces. While the sun has a much greater mass than the moon, the moon is much closer to the Earth and it is distance that plays a more critical role.  Gravity is the major force responsible for creating tides. The gravitational pull of the moon moves the water towards the moon and creates a ‘bulge’. There is a corresponding bulge on the other side of the Earth at the same time from inertia, the counterbalance to gravity.  The moon travels in an elliptical orbit around the planet and the Earth travels in an elliptical orbit around the sun. As a result, the positions of the moon to the Earth and the Earth to the sun change and as a result, tide height changes.   The tides also work on a lunar day, the time it takes the moon to orbit the Earth, which is 24 hours and 50 minutes. So high tide is not at the same time in one area each solar day (Earth’s 24 hour day). There are three basic tidal patterns on our planet.  Here is southeast Alaska, the tides generally are what is called ‘semi-diurnal’, meaning that there are two high tides a day and two low tides a day of about the same height. Other areas of the world may have ‘mixed semi-diurnal’ tides, where there are differences in height between the two high and two low tides, or ‘diurnal’ tides, meaning there is only one high and one low tide in a lunar day.   The shape of shorelines, local wind and weather patterns and the distance of an area from the equator also affect the tide levels.  How does this affect the hydrographers’ data? If data is being collected about water depth, obviously tide levels need to be factored in.  Hydrographers factor this in when collecting the raw data, using predicted tide tables.  However, later on they receive verified tide tables from NOAA and the new tables will be applied to the data.

IMG_0211

The tide times of the day

Sound Speed Profiles:

Traveling down through the water column from the surface to the seafloor, several factors can change, sometimes significantly.  These factors include temperature, pressure and salinity.  These variables affect the accuracy of the sonar readings of the MBES (Multibeam Echo Sounders), so have to be factored in to account with the raw data analysis.  What complicates matters further is that these factors can vary from location to location, and so one set of readings of salinity, for example, is not be valid for the whole dataset.  Many fresh water streams end up in the waters off the islands of southeast Alaska.  While this introduction of freshwater has effects on the community of organisms that live there, it also has impacts on the hydrographers’ data.  To support accurate data collection the hydrographers conduct sound speed casts in each polygon they visit before they use the MBES.  The data is downloaded on to computers on the boat and factored in to the data acquisition.  The casts are also re-applied in post processing, typically on a nearest distance basis so that multiple casts in an area can be used.  In the picture below, the CTD cast is the device that measures conductivity (for salinity), temperature and depth.  It is suspended in the water for several minutes to calibrate and then lowered down through the water column to collect data. It is then retrieved and the data is downloaded in to the computers on board.

 

 

Data Density:

Hydrographers also need to make sure that they are collecting enough sonar data, something referred to as data density.  There are minimum amounts of data that need to be collected per square meter, dependent on the depth of the sea floor in any given area.  Having a minimum requirement of sonar data allows any submerged features to be identified and not missed. For example, at 0-20 meters, there need to be a minimum of five ‘pings’ per square meter.  The deeper the sea floor, the more the beam will scatter and the ‘pings’ will be further apart, so the minimum of five pings occupy a greater surface area.  Hydrographers need to make sure that the majority of their data meets the data density requirements.

Crossline Acquisition:

After much of the initial raw data has been collected, and many of the polygons ‘filled in’, the hydrographers will also conduct crossline surveys. In these surveys they will drive the small boat at an angle across the tracklines of the original polygon surveys. The goal here is basically quality control. The new crossline data will be checked against the original MBES data to make sure that consistent results are be acquired. CTD casts have to be re-done for the crossline surveys and different boats may be used so that a different MBES is used, to again, assure quality control.  At least 4% of the original data needs to be covered by these crossline surveys.

Shoreline verification:

Low tides are taken advantage of by the hydrographers. If the research is being conducted in an area where the low tide times correlate with the small boat survey times, then a vessel mounted LIDAR system will be used to acquire measurements of the shoreline.  Accurate height readings can be extracted from this data of different rocks that could prove hazardous to navigation.  Notes are made about particular hazards and photos are taken of them.  Data on man-made objects are also often acquired. Below are pictures produced by the laser technology, and the object in real life. (for more on LIDAT: http://oceanservice.noaa.gov/facts/lidar.html)

 

 

 

 

 

 

Night Processing:

Each evening once the launches (the small boats) return, the data from that day has to be ‘cleaned’. This involves a hydrographer taking an initial look at the raw data and seeing if there were any places in the data acquisition that are erroneous.  None of the data collected is deleted but places where the sonar did not register properly will become more apparent.  This process is called night processing as it happens after the survey day. After night processing, the sheet managers will take a look at remaining areas that need to be surveyed and make a plan for the following day.  By 6 a.m. the next day, the Chief Scientist will review the priorities made by the managers and let the HIC (Hydrographer In Charge) know what the plan in for their survey boat that day.

IMG_0281

Night Processing

Personal Log 

Throughout the Science and Technology log in this blog post, I keep referring to technology and computer programs.  What stands out to me more and more each day is the role that technology plays in acquiring accurate data.  It is an essential component of this project in so many ways, and is a constant challenge for all of the crew of Fairweather.  Daily on Fairweather, at mealtimes, in the post survey meetings, or on the survey boats themselves, there is discussion about the technology.  Many different programs are required to collect and verify the data and ‘hiccups’ (or headaches) with making this technology work seamlessly in this aquatic environment are a regular occurrence. I am in awe of the hydrographers’ abilities, not only in knowing how to use all the different programs, but also to problem solve significant issues that come up, seemingly on a regular basis.  Staff turnover and annual updates in software and new equipment on the ship also factor significantly in to technology being constantly in the foreground.  It often eats in to a large amount of an individual’s day as they figure out how to make programs work in less than forgiving circumstances.  Tied to all of this is the fact that there is a colossal amount of data being collected, stored and analyzed each field season.  This data needs to be ‘filed’ in ways that allow it to be found, and so the tremendous ‘filing system’ also needs to be learned and used by everyone.

 

 

Word of the day:   Fathom

Fathom is a nautical unit of measurement, and is the equivalent of 6 feet.  It is used in measuring depth.

Fact of the day:

Prince of Wales Island, west of which this research leg is being conducted is the fourth largest island in the United States. 4,000 people live on the island, that is 2,577sq mi.

What is this? 

fullsizeoutput_178

(Previous post: a zoomed in photo of ‘otter trash’ (Clam shell)

Acronym of the day:  

LIDAR: Light Detecting and Ranging

 

Terry Maxwell: Making Models and Memories, June 20, 2017

NOAA Teacher at Sea

Terry Maxwell

Aboard R/V Hugh R. Sharp

June 6 – 21, 2017

Mission: Sea Scallop Survey
Geographic Area of Cruise: Northeast Atlantic Ocean
Date: June 20, 2017

Weather Data from the Bridge
Latitude: 41 18.06 N
Longitude: 68 42.35
Wind Speed: 20.3 knots
Air Temperature: 15.3 C

Science and Technology Log

I’ve had a lot of people ask “So what is the purpose of this trip?”  I thought it would be fitting to answer that question in this last blog from sea.  I’ve explained the process of collecting the data out here at sea.  I’ve explained the technology and methods we’ve used to collect it.  But the logical question now is, what happens once this data has been collected?

I’ve had the pleasure serving on the second half of this trip with NOAA Mathematical Biologist, Dvora Hart.  Dvora is the lead scientist for the scallop fishery.  She is well known in the New England area for her work with scallop fisheries.  To many of you in the Midwest, scallops may not seem like a big deal, but did you know that scallops are the second largest commercial fishery market in America?  In 2016 scallops were a 485 million dollar industry.  They are second only to the lobster market in terms of commercial fisheries value.

NOAA has been completing scallop surveys with lined dredges since 1978.  The methods have changed over the years as the technology and research methods have advanced, and these methods have yielded success.  However the scallop fisheries have not always been as plentiful as they are now.  In 1994 several measures were put in place to help a struggling scallop fishery.  The changes were larger dredge rings so smaller scallops would pass through, less crew members on board a vessel, and sections of one of the most productive fisheries in the Atlantic, Georges Bank, would be closed for portions of time to scallop fishermen.

These kind of changes come from a Regional Fisheries Management Council.  This council has appointed members from the governors of the New England states involved, head of NOAA Greater Atlantic Fisheries gets a seat, and then 3 more members from each state are nominated.  The end result is 19 members who make up this council to decide how to best run a variety of commercial marine organisms in the Northeast Atlantic.  There is also a technical committee, which advises this council.   This is where Dvora Hart and the data from the scallop survey come in.

habcam survey charts

Data from the HabCam surveys are very effective at adding a layer of depth to the knowledge of the population of scallops in the Northeast Atlantic Ocean.

The scallop survey, which started May 16th, has been meticulously planned out by NOAA Fisheries.  The area where the scallop survey has been preformed has been broken up into regions called strata.  These strata areas are determined by their depth and their general geographical area.  Once scallops are collected in a strata, a weighted mean, a size frequency, shell heights, and a mean number of scallops of each size category are taken.  From the meat weights that were collected, a total biomass of scallops for the area is taken.  There is a relationship between the meat weight and the shell height which gives researches an idea of the total biomass of scallops in the area.  At any given depth there is a conversion of shell height to meat weight.  These numbers can be plugged into software which can model the biomass for an area.

biomass

Scallop biomass modeling from the 2016 survey.

All of the data collected during the NOAA scallop survey is combined with the Virginia Institute of Marine Science (VIMS) scallop survey.  Dvora and the NOAA scientists created forecasting models for 19 different areas in the Northeast Atlantic.  Forecasts are made using the predicted biomass for the strata areas, by aging the samples of scallop shells collected, fishing mortality (amount of caught by fishermen), and natural mortality rates.  Models are then created to forecast 15 years out to predict the consequences of fishing an area heavy.  Dvora is part of a technical team that advises the Regional Fisheries Management Council using the data collected in this survey and the models her and her team have created.  Scallop fisheries are very healthy currently due to the data collected, data interpreted, and models created by NOAA scientists, commercial fishermen, and Regional Fisheries Management Council.

Personal Log
These 16 days have been quite an experience.  I’d like to share just 5 of the more memorable moments from this trip.

5. Amazing sites of nature.  What a unique experience to be out only surrounded by the vast Atlantic Ocean for over two weeks.  I’ve seen so many awe inspiring moments.  Sun rises, sun sets, full moons over the ocean in a clear sky, rainbows that span the horizon, thousands of stars in the sky, and thick ominous fog which lasts for 24 hours.  Truly once in a life time sights.

 

 

4. The 12 hour shifts.  Whether it was running the Habcam and joking around with the crew while we watched computer screens for 12 hours or working the dredge station in all kinds of conditions, the work was fun.  Being out on the deck working the dredge was my favorite type of work.  To be out in the open air was awesome regardless of how hard the work was.  The last day the waters were crazy as we worked on the deck.

 

 

3. The awesome animals that came up in the dredge.  Too many pictures to post here, but my favorite animal was the goosefish.  That fish looked like it wanted to take a bite out of your arm even if it was out of water.  Such an awesome animal.

IMG_0407

Seeing these goosefish come out of the dredge never got old.  Such an amazing fish.

2. The awesome animals that would come near the boat.  Crew members saw whales, dolphins, sharks, sunfish, and mola mola.  Though my favorite was my first day out when the humpback whales surrounded the boat, the dolphins riding by the boat is was a close second.

IMG_0518

One of our last days a group of about 4 dolphins followed the ship for about 10 minutes.

1. General life about the Hugh R. Sharp.  What a great group of people to be with for 16 days.  I felt accepted and looked out for the whole time I was here.  Mike Saminsky dropping what he was doing the first day I got to the ship to show me around and grab some dinner, TR sharing his hidden stash of snacks with me, a variety of crew members trying to help me through my sea sickness, and every body on the cruise allowing me to ask questions and interview them.  Just the general down time and laughs had will be very memorable.

IMG_0360

General life aboard the Hugh R. Sharp will be a lasting memory for me.

Thank you to the people of NOAA, the Hugh R. Sharp, my wife and kids (Hannah you are amazing for shouldering the extra load at home!), and family, friends, and students that followed the blog at home.  This has been an experience of a lifetime, and I’m grateful to all of you who made it possible.  Specific thanks to my work crew chief Nicole Charriere who was an awesome leader during this cruise.  I learned a lot about how to lead a group watching her.  Thank you to Larry Brady and Jonathan Duquette the Chief scientists for this cruise.  Their organization and decision making made this a smooth experience for me.  Thank you to Katie Sowers, Emily Susko, Jennifer Hammond, and Huthaifah Khatatbeh for help with the trip arrangements and all of my blog questions, you all made this experience much easier.

Did You Know?

I will travel over 1,000 miles to go home today.  Yes that’s crazy to me.  But I have traveled over 1,000 nautical miles on the Hugh R. Sharp since this cruise has began.