Jordan Findley: Fishing, June 20, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 20, 2022

Science and Technology Log

Fishing Operations

Alright, it’s time for the good stuff, the moment you’ve been waiting for (whether you knew it or not). It’s fishing time. FPC Paul Felts monitors depth and habitat to determine suitable fishing sites. When the crew hears “I’d like to set up for bandit reels” over the radio, they come running. I mean they come out of the woodworks like the Brady Bunch on Christmas morn. Let me remind you, the days can be real slow out here. Lots of transiting and waiting. Fishing offers just enough excitement to keep us going.

Three bandit reels are deployed once or twice per day. I promptly insert myself into the fishing operation on day one. Thank you, Rafael and Junior. The reels are motorized and mounted to the side of the ship. The line starts with a weight and then ten baited hooks are clipped on. When deployed, it sinks to the bottom. We get five minutes. Five short minutes for the fish to bite. Boy does anticipation build in that five minutes. If you have a good one, you can feel it on the line. “One minute to haul back.” By this time, everyone is leaning over the side (the gunwale if you want to be fancy) staring at the water. “Reels two and three you can haul back.” “Reel one you can haul back.” We start reeling back in, from somewhere between 85-100 meters deep. Click, click, click on the reel as we impatiently wait.

We start to see a glimpse of the bait coming up around 40-60 meters and try to make out what we’ve hooked. RED SNAPPER! 11 red snapper caught between the three reels on the first fish. This is what I’m talkin’ about. I can handle two weeks of this. Everyone rotates between stations to see what we caught and we all celebrate like we just won some sort of tournament. Let’s remember folks, we are doing this for science. All fish captured on the bandit reels are identified, measured, weighed, and have the sex and maturity determined. Select species have otoliths and gonads collected for age and reproductive research. I excitedly follow the science crew into the lab to get the run down.

*Read no further if you are squeamish.*

The work up of the fish start with some measurements and weights. Of course it immediately became a competition. Game on. Now these fish aren’t your regular ol’ fish. These suckers are huge. Next we dissect the fish to extract and weigh the gonads. That’s right, I said gonads. You can learn the age and maturity of a fish by examining a sample of the gonads under a microscope. From that, you can estimate lifespan, spawning patterns, growth rate, and possibly even migration patterns. Knowing the age distribution of a fish population helps to better monitor, assess, and manage stocks for long-term benefits. Fish gonads, that’s a first for me.

Next step is the fun part, extracting the otolith. Otoliths (ear bones) are calcium carbonate structures found enclosed inside the heads of bony fish. This bone tells us how old the fish is. Otoliths are removed from the fish’s head either by entering through the top of the head or by pulling back the gills. At first, I observe. They really get in there. By the third or so time, I am ready to get my hands dirty. Remove the gills and start digging. Once you find the inner ear, you crack it open and inside is the otolith. Some species are much easier than others. It’s no walk in the park folks. One grouper took us two hours. It’s like a real life game of operation. Though intense, it’s a fun challenge.

On this leg of the survey we caught 20 red snappers, 2 silky snappers, 1 queen snapper, 2 scamp, 1 marbled grouper, 1 yellow edge grouper, and 1 red porgy. Sampling these organisms strengthens the data. Employing multiple research methods produces a comprehensive description and interpretation of the data. The workup of the fish was one of my favorite parts of this experience. Not only did I actually get to participate in the research, I learned valuable new skills, most of which I teach about, but have never had the chance to do it. This is the exact reason I applied for the Teacher at Sea Program.

Have I convinced you that science is cool yet?

Meet the Deck Crew

I’d like to give a shout out to my friends on the deck. NOAA Ship Pisces couldn’t do the research they do without the Deck Department – Chief Boatswain James, Lead Fisherman Junior, and ABs Dee and JB. The Deck keep up general maintenance of the boat and on deck, operate equipment and machinery, support scientific operations, and stand watch. These guys might be salty, but they have good spirits and make me smile. I have enjoyed every minute working with them.

Personal Log

Yesterday, we did another fire drill. This time, with the help of firefighter Jordan Findley. LT Duffy set me up to participate in the drill. He shows me the gear and how it works. It’s hot up in there. Two days later when the alarm sounds, I jump to attention. Not really. It took me a minute to remember I was involved. I pop up out of my usual lounging in the lab and swiftly head out to the deck. 0% do I remember where I am supposed to go. Thank god I pass JO ENS Gaughan. She points me in the right direction. By the time I make it to the locker, they’re all dressed out and on their way to “fight the fire.” They’re impressive.

Though late to the game, JB helps me get suited up and I head down to the scene. As you might expect, the “fire” is out by the time I arrive. I provided moral support. Following the drill, we (I trail behind and try not to trip) walk the hose outside to test the pressure. I get to shoot this sucker over the side. I can barely even hold the nozzle in place. LT Duffy comes in for reinforcement on the hose and I go for it. I sprinkle here, I sprinkle there, hose checks out. Good deal. This was a blast. See what I did there?  Later I come to find they had stamped the hose nozzle with my name as a memento. This is such a thoughtful way to remember my time on NOAA Ship Pisces. I shall carry it with me always. Not true, this thing is heavy, but I will certainly cherish it.  I have so much respect for our firefighters and first responders (on board and beyond), and even more so today.

At this point, I have been out at sea for 12 days. That’s a record for me. My previous PR is one night on a lake in Indiana. I really had no idea what to expect on this trip. I was pretty nervous I would be violently ill and concerned I may not sleep and they wouldn’t have enough coffee to sustain me. None of these were issues, actually far from it, and man am I grateful. No seasickness, I’ve slept like a baby, and there is coffee for days. They even have espresso. Winning. They’ve really spoiled me out here. We have had some really tasty meals, including the fish. No fish goes to waste! I am going to miss being out here at sea. I think I might stick around.

Did You Know?

Wearing gloves, Jordan uses tweezers to hold up an extracted otolith at eye level.

So you now know that otoliths are basically ear bones. What is cool about them is that they grow throughout the life of a fish, leaving traces on the ear bone. Seasonal changes in growth are recorded on the bone and appear as alternating opaque and translucent rings. Under a microscope, scientists count the number of paired opaque and translucent rings, or annuli, to estimate the age of a fish. Just like trees!

Callie Harris: Life Above and Below Deck, August 24, 2019

NOAA Teacher at Sea

Callie Harris

Aboard NOAA Ship Oscar Dyson

August 13-26, 2019


Mission: Fisheries-Oceanography Coordinated Investigations

Geographic Area of Cruise: Gulf of Alaska

Date: 8/24/19

Weather Data from the Bridge

Latitude: 57° 01.84 N
Longitude: 151 ° 35.12 W
Wind Speed: 8.45 knots
Wind Direction: 257.79°
Air Temperature: 15.3°C
Sea Temperature: 14.6°C
Barometric Pressure: 1010 mbar

Science and Technology Log

Chief Scientist Matt Wilson showed me how to collect otolith samples from pollock. Otoliths are the inner ear bones of fish that keep a record of a fish’s entire life. Similar to tree rings, scientists count the annual growth rings on the otolith to estimate the age of the fish. The size of the ring can also help scientists determine how well the fish grew within that year. To remove the otolith, a cut is made slightly behind the pollock’s eyes. Using forceps, you then remove the otoliths carefully.

Pollock Otoliths
Pollock Otoliths
extracting otoliths
To extract the otoliths, Callie first makes a cut into the top of the pollock’s head. Photo by Lauren Rogers.
extracting otoliths
Next, Callie uses tweezers to extract the otoliths. Photo by Lauren Rogers.

NOAA Junior Unlicensed Engineer Blair Cahoon gave me a tour of the engine room yesterday. Before venturing below deck, we had to put on ear protection to protect our ears from the loud roars of engine equipment.

JUE Blair Cahoon
JUE Blair Cahoon
Oscar Dyson control panels
Oscar Dyson control panels
Oscar Dyson control panels
Oscar Dyson control panels

The Oscar Dyson has a total of four engines. The two larger engines are 12 cylinders and the two smaller engines are 8 cylinders. These engines are attached to generators. The motion of the engines gives force motion to the generators, which in turn power the entire ship. On a safety note, NOAA Junior Unlicensed Engineer Blair Cahoon also pointed out that the ship has two of every major part just in case a backup is needed.

Oscar Dyson engine
Oscar Dyson engine
Oscar Dyson generator
Oscar Dyson generator

 The engine room also holds the water purification system, which converts seawater into potable water. Each of the two evaporators can distill between 600-900 gallons of water a day. The Oscar Dyson typically uses between 800-1000 gallons of water a day. The engineers shared with me how this system actually works:

1.       Seawater is pumped onto the boat and is boiled using heat from the engine.

2.       Seawater is evaporated and leaves behind brine, which gets pumped off of the ship.

3.       Water vapor moves through cooling lines and condenses into another tank producing fresh water.

4.       This water is then run through a chemical bromide solution to filter out any leftover unwanted particles.

5.       The finely filtered water is stored in potable water holding tanks.

6.       The last step before consumption is for the water to pass through a UV system that kills any remaining bacteria or harmful chemicals in the water.

evaporator
One of two evaporators on board.
down the hatch
Down the ladder we go to the lower engine room

We then got to explore the lower parts of the engine room where I got to see the large rotating shaft which connects directly to the propeller and moves the ship. I have learned from my years of working on boats to be extremely careful in this area near the rotating shaft. You must make sure you do not have any loose clothing, etc. that could get caught or hung up in it.

Rotating shaft
Rotating shaft that connects to propeller.
Rotating shaft
Another view of the rotating shaft


Personal Log

I was unsure of what life would be like for two weeks on a scientific research vessel. We are now steaming towards station number 72 on day twelve at sea. We have done 65 bongo tows and 65 trawls. So yes, there is a lot of repetition day in and day out. However, each day brings its own set of challenges and/or excitement. Weather (wind direction, wave direction, current, etc.) makes each station uniquely challenging for the NOAA Corps Officers on the bridge and the deck crew below. I stand back in awe watching it all come together on our 209 foot ship. I get excited to see what new creature might appear in our latest trawl haul besides the hundreds of kilograms of jellyfish, haha. 


Did You Know?

One of the coolest things I learned on my engine tour is that when large equipment parts need to be replaced (like an engine or generator), engineers actually cut a giant hole in the side of the ship to get the old equipment out and the new parts in rather than take it apart and lug it up through the decks piece by piece. 

 
Animals Seen Today

The overnight science shift found a juvenile Wolf Eel in one of their trawl samples. It is not actually a wolf or an eel. It is in fact, a fish with the face of a ‘wolf’ and the body of an eel. Its appearance has been described as having the eyes of a snake, jaws of a wolf, and the grace of a goldfish. They can grow up to eight feet in length and weigh upwards of ninety pounds. Juveniles have a burnt orange hue and the adults are brown, grey, or green. Check out this website for more info about the super creepy wolf eel: https://www.alaskasealife.org/aslc_resident_species/44

adult wolf eel
Adult wolf eel. Image credit: Monterey Bay Aquarium.


Something to Think About

In one of our trawls, we processed 850 kilograms of jellyfish…. That’s 1,874 pounds of jellyfish!!!

Jessica Cobley: Recalibrating, August 6, 2019

NOAA Teacher at Sea

Jessica Cobley

Aboard NOAA Ship Oscar Dyson

July 19 – August 8, 2019


Mission: Midwater Trawl Acoustic Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Yakutat Bay)

Date: 8/6/2019

Weather Data from the Gulf of Alaska:  Lat: 58º 44.3 N  Long: 145º 23.51 W 

Air Temp:  15.9º C

Personal Log

Currently we are sailing back across the Gulf of Alaska to the boat’s home port, Kodiak. I think the last few days have gone by quickly with the change of daily routine as we start to get all the last minute things finished and gear packed away. 

Since my last post, the definite highlight was sailing up to see the Hubbard Glacier in Disenchantment Bay (near Yakutat). WOW. The glacier is so wide (~6miles) that we couldn’t see the entire face. In addition to watching the glacier calve, we also saw multiple seals sunbathing on icebergs as we sailed up to about a mile from the glacier. 

We spent a few hours with everyone enjoying the sunshine and perfect view of the mountains behind the glacier, which form the border between the U.S. and Canada. We also had a BBQ lunch! Here are a few photos from our afternoon.

Hubbard Glacier
Sailing through little icebergs. The glacier went further than we could see from the boat.
Group photo of the science crew
Group photo of the science crew! Photo by Danielle Power

Another surprise was showing up for dinner the other night to find King Crab on the menu. What a treat! Most people are now trying to get back on a normal sleeping schedule and so mealtimes are busier than usual.

king crab legs
Our Chief Steward, Judie, sure does spoil us!

Lastly, the engineering department was working on a welding project and invited me down to see how it works. On the first day of the trip I had asked if I could learn how to weld and this was my chance! They let me try it out on a scrap piece of metal after walking me through the safety precautions and letting me watch them demonstrate. It works by connecting a circuit of energy created by the generator/welding machine. When the end you hold (the melting rod) touches the surface that the other end of the conductor is connected to (the table) it completes the circuit.

Jessica welding
Wearing a protective jacket, gloves and helmet while welding are a must. The helmet automatically goes dark when sparks are made so your eyes aren’t damaged from the bright light. Photo by Evan Brooks.


Scientific Log

Before making it to Yakutat we fished a few more times and took our last otolith samples and fish measurements. Otoliths are the inner ear bones of fish and have rings on them just like a tree. The number and width of the rings help scientists calculate how old the fish is, as well as how well it grew each year based on the thickness of the rings. In the wet lab, we take samples and put them in little individual vials to be taken back to the Seattle lab for processing. Abigail did a great job teaching where to cut in order to find the otoliths, which can be tough since they are so small.

Jessica and pollock otoliths
Our last time taking otolith samples from pollock. Photo by Troy Buckley

Another important piece of the survey is calibrating all of the equipment they use. Calibration occurs at the start and end of each survey to make sure the acoustic equipment is working consistently throughout the survey. The main piece of equipment being calibrated is the echosounder, which sends out sound waves which reflect off of different densities of objects in the water. In order to test the different frequencies, a tungsten carbide and a copper metal ball are individually hung below the boat and centered underneath the transducer (the part that pings out the sound and then listens for the return sound). Scientists know what the readings should be when the sound/energy bounces off of the metal balls. Therefore, the known results are compared with the actual results collected and any deviation is accounted for in the data accumulated on the survey. 

Calibration
Downriggers are set up in three positions on board to center the ball underneath the boat. They can be adjusted remotely from inside the lab.

After calibration, we cleaned the entire wet lab where all of the fish have been processed on the trip. It is important to do a thorough cleaning because a new survey team comes on board once we leave, and any fish bits left behind will quickly begin to rot and smell terrible. Most of the scales, plastic bins, dissection tools, nets, and computers are packed up and sent back to Seattle.

Gear packed
All packed up and ready to go! The rain gear also gets scrubbed inside and out to combat any lingering fish smell.


Did You Know?

Remember when you were a kid counting the time between a lightning strike and thunder? Well, the ship does something similar to estimate the distance of objects from the ship. If it is foggy, the ship can blow its fog horn and count how many seconds it takes for the sound to be heard again (or come back to the boat). Let’s say they counted 10 seconds. Since sound travels at approximately 5 seconds per mile, they could estimate that the ship was 1 mile away from shore. We were using this method to estimate how close Oscar Dyson was from the glacier yesterday. While watching the glacier calve we counted how many seconds between seeing the ice fall and actually hearing it. We ended up being about 1 mile away. 

Cheers, Jess

David Madden: Otolithia and The Tragedy of the Commons, July 27, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fishery-Independent Survey (SEFIS)

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

On board off the coast of North Carolina – about 45 miles east of Wilmington, NC (34°18’ N, 77°4’ W)

Pisces Route
Pisces Route as of July 27, 2019


Date: July 27, 2019

Weather Data from the Bridge:

Latitude: 34°18’ N
Longitude: 77°4’ W
Wave Height: 3-4 feet
Wind Speed: 6.68 knots
Wind Direction: 42°
Visibility: 10 nm
Air Temperature: 28.0°C 
Barometric Pressure: 1022.4 mb
Sky: Partly cloudy


Science and Technology Log

Today, with the help of friends Zeb and Todd, I’d like to take a deep dive into the mission of this cruise.  Starting with the fish work up process aboard Pisces, first explained in blog #3.  Below is a picture flowchart I drew up to help visualize what’s going on. 

NOAA Fish Protocol (color)
NOAA SEFIS Fish Survey Protocol

This sequential process is rather straight forward following steps 1-8, rinse (the gear) and repeat. It’s the before and after; what comes before step 1 and after step 8, that’s important; How and where is the data used.  If you follow along into steps 9, 10, 11… you start with the laboratory analysis of the biological samples – otoliths and gonads – used to age the fish, and determine reproductive activity and spawning seasons, respectively.  This information is vital to proper management of fisheries.  Here’s why. 

This cruise, and SEFIS in general, originally came into existence because of red snapper.  Scientists determined around 2009 that the red snapper population in the SE Atlantic was at historically low levels.  Strict regulations were put in place to help the species rebound.  This on its own was a good measure, but only one step.  In order to assess the effect of the regulations, scientists would have to monitor the abundance of red snapper in the region.  However, charting changes in abundance would not be enough with this species (or with many others) due to the nature of its life cycle and reproduction.  See, all populations have a natural age structure balance.  This includes species specific traits – like its survivorship curve (how likely it is for an individual to die at different points in their life – for red snapper and many other reef-associated species it’s incredibly high at their larval and juvenile stages).  It also includes pertinent developmental characteristics such as when the species is reproductively mature.  Like many similar fish, older, mature red snapper have greatly increased reproductive potential, also known as fecundity.  So while the population has been bouncing back in terms of numbers, the number of older, mature, more fecund fish is still considerably lower than historical levels; thus the population is still recovering.  *this information is gathered from the data collected by scientist here on our SEFIS mission, and others like them. 

SEFIS survey site locations
SEFIS survey site locations.

The next step is to share this data with other scientists who will then, in conjunction with other information on the species, analyze the data and bring the results and conclusions of their analyses to policy makers (FYI, the government is moving towards making governmentally gathered scientific data available to the public).  Discussion ensues, and climbs the political decision-making-ladder until allowable catch regulations are determined.  Florida fishers, check here for your current snapper regulations or maybe this Fish Rules app will help.  Fish safe, my friends!

Morning Crew
Morning crew: Mike, Dave, Brad, Me, Todd, Oscar the Octopus, Mike, Zeb
gear
Macabre medieval cutlery? Or otolith extraction gear?

Ultimately this is a tricky and tangled issue of sustainability.  Commercial fishermen are understandably upset, as this can threaten their livelihood.  Although real, this concern is inherently short sighted, as their long term earnings depend on healthy and robust populations, and ecosystems.  The difficult part is to gather the necessary scientific data (very challenging, especially for marine organisms) and marry that to the many financial, social, and political concerns.  Comment below with thoughts and suggestions.  And while you’re at it, here’s a lovely and quick (fish-related) tutorial overview of this situation in general – the tragedy of the commons – and the challenges of managing our resources. 

A quick note about otoliths.  Within the fish processing protocol (above) – the most satisfying part is otolith extraction.  On board competitions abound: people vie for first chair (the spot in the lab that’s the coolest and best lit) and for the sharpest knives and scissors.  Much like a wild west showdown, most important is fastest extraction times.  Dave H opts for the classic chisel-through-the-gills technique, while the rest of us opt for the saw-through-the-skull-with-a-knife-and-crack-the-head-open-just-behind-the-eyes technique.  While Brad looks to perform the “double-extraction” – both otoliths removed in the tweezers at the same time, I look to perform the please-don’t-slice-my-hand-open extraction.  The quest for otoliths is usually straight forward.  But sometimes an ill-sliced cut can leave you digging for the tiny ear bones forever. 

This leaves us with: Why otoliths?  These tiny little ear bones help function in the fish’s vestibular system.  That’s a fancy way of saying the balance and orientation system of the fish.  They help vertebrates detect movement and acceleration, and they help with hearing.  These little bones help you determine your head and body orientation – turn your head sideways, it’s your otoliths who will send the message.  All vertebrates, including you, gentle reader, have them.  This makes me wonder if folks with exceptional balance and proprioception and court awareness have bigger otoliths?  Fish requiring more balance, those that sit and wait to hunt vs. those that swim predominantly in straight lines, have bigger otoliths. 

Otoliths are made of layered calcium carbonate (side question – does ocean acidification impact otolith formation?  Like it does with other calcium carbonate structures in the ocean?)  The fish secretes new layers as it ages: thicker layers during good times, thinner layers during lean times – correlated with summer and winter seasonality – just like with tree rings.  Once you dig out the otoliths, they can be analyzed by on-shore scientists who slice ‘em in half and take a really thin slice, deli-meat-style.  Voila! You can then count up the rings to tell how old the fish is. 

Fish Otolith
From Andrews et al 2019, published in the Journal of Marine and Freshwater Research: Illustration of a red snapper (top right), a photo of a red snapper otolith (top left), and an image of a cross-section of that otolith (bottom) http://www.publish.csiro.au/MF/fulltext/MF18265
cod otolith
From Hardie and Hutchings 2011, published in the journal Arctic: A cross-section of the sagittal otolith of an Atlantic cod.

Retrieved from https://www.researchgate.net/publication/255711740_The_Ecology_of_Atlantic_Cod_Gadus_morhua_in_Canadian_Arctic_Lakes

Black sea bass otoliths
Black sea bass otoliths with fingers for size comparison. Photos from Dave Hoke
Fish Count July 25th
Yesterday’s Fish Count.


Personal Log:

I’ve been continuing my work aboard the Pisces.  Lately the focus has been on conversations with scientists and ship personnel.  The source of most of today’s blog came primarily from conversations with Zeb and Todd.  They were both super helpful and patient in communicating the goals and mission of this cruise and SEFIS.  I’m also trying to contribute some things that might be useful to the NOAA scientists after the cruise is completed, and things that will be helpful to my students now and during the school year – like the drawings and diagrams, along with some upcoming videos (topics include: CTD color and pressure, Underwater footage featuring a tiger shark and hammerhead shark, Waves, All Hands on Deck, and a general cruise video). 

The food and mood of the cruise continues to be good.  * note: my salad eating has taken a hit with the expiration of spinach and leafy greens – it’s amazing they lasted as long as they did – the stewards, Rey and Dana, are amazing! 

General Updates:

  1. The other night I had my first bit of troubled sleeping.  The seas were roaring!  Actually, just about 6 feet.  But it was enough to rock the boat and keep me from falling asleep.  It was almost a hypnic jerk every time the ship rolled from one side to the other.  Special sensations for when my head dipped below my feet. 
  2. Two more book recommendations:  a. Newberry Book Award Winner: Call it Courage, by Armstrong Sperry.  I loved this book as a little boy.  I did a book report on it in maybe the 2nd or 3rd grade.  I spent more time drawing the cover of the report than I did writing it.    B.  A few years ago I read The Wave, by Susan Casey.  Great book about the science of waves and also the insane culture of big wave surfers. 
  3. I haven’t seen all that much lately in terms of cool biodiversity.  The traps did catch some cute swimming crabs, a lionfish, and a pufferfish.   * more below.
  4. Zeb won the Golden Sombrero Award the other day.  This is a momentous achievement awarded to a chief scientist after six consecutive empty fish traps!
  5. Lauren crafted us an extra special tie-dye octopus named Oscar.  He’s wearing the Golden Sombrero in the photo above.     
  6. Only 2.5 days till I’m back home.  Can’t wait to see my family. 

 

Neato Facts =

Back to general update #3 and today’s neato fact.  Both lionfish and pufferfish are toxic.  But are they poisonous? Or venomous?  Wait.  What’s the difference?  Both poisons and venoms are characterized as toxins, and often they are used interchangeably.  The distinction lies in the means of entry into your body.  Venoms get into you via something sharp – you’re either bitten with fangs or stung with stingers or spines.  Examples include our friend the lionfish, snakes, and bees.  Poisons, conversely, get into you when you eat it.  Examples include pufferfish, poison dart frogs,

Here’s a simple way to remember: Injection = Venom, Ingestion = Poison.  Click these links for interesting lists of poisonous animals, poisonous plants, and venomous animals

Pufferfish
Pufferfish from today’s fish trap.
Lionfish and Pufferfish
Lionfish (Venomous) and Pufferfish (Poisonous). Injection = Venom, Ingestion = Poison http://www.peakpx.com/487337/lion-fish-and-blue-puffer-fish

Please let me know if you have any questions or comments. 

Ashley Cosme: Otoliths, Ice Cream, and Annabelle – September 9, 2018

Ashley and shark

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 9, 2018

Weather data from the Bridge:

  • Latitude: 28 08.58N
  • Longitude: 92 24.27W
  • Wind speed:  8.66 Knots
  • Wind direction:  143 (from Southeast)
  • Sky cover: Scattered
  • Visibility:  10 miles
  • Barometric pressure:  1011.96 atm
  • Sea wave height: 0-0.5 feet
  • Sea Water Temp:  30.4°C
  • Dry Bulb: 28.7°C
  • Wet Bulb: 25.4°C

Science and Technology Log: 

In addition to collecting data on the many species of sharks in the Gulf of Mexico, this survey also collects data that will go towards assessing the population of red snapper (Lutjanus campechanus).  One piece of evidence that is collected from the red snapper is their two distinct otoliths.  Otoliths are structures that are used for balance and orientation in bony fish.  One fascinating characteristic of the otolith is that they contain natural growth rings that researchers can count in order to determine the age of the fish.  This information is important for stock assessment of the red snapper in the Gulf of Mexico.

Otoliths
Otoliths from a red snapper (Lutjanus campechanus)

 

Personal Log:

I would have to say that the hardest part about being out at sea is not being able to see Coral and Kai.  I miss them so much and think about them nonstop.  Coral is at a very curious stage in her life (I hope the curiosity stays with her forever) and I cannot wait to get home and tell her about all the animals that I have been lucky enough to witness on this adventure.  Kai is just the sweetest little boy and I can only imagine the way he will react when I get home.

Ashley and shark
Bearing Down on the Oregon II

I am very busy on the boat and when there is down time my team and I are getting shark lessons from the incredibly intelligent Chief NOAA Scientist, Kristin Hannan, or we are in the movie room catching up on all the Annabelle movies.  It is almost impossible to get scared while aboard a ship.  It may seem that many things could go wrong, but the lights are always on and someone is always awake.  It is the perfect environment to watch any horror film because this atmosphere makes it much less scary.

Probably the scariest thing that is happening on this boat is the amount of weight I have gained.  All of the meals are delicious and they come with dessert.  It is kind of nice to not have to worry about going to the gym or staying on a normal routine.  Life is always so hectic day to day when I am at home, but being out here on the water gives me time to relax and reflect on the amazing people I have in my life that made this opportunity possible.

I am sad to report that the Chicago Bears lost tonight to Greenbay, but I did show support for my team!  I think the best part of the day was when I was on the bow of the boat and Kristin announced over the radio that the Bears were winning 7 to 0.  It is exciting being out here seeing everyone cheer for their fantasy team, as well as their home town team.

 

Animals seen:

Red Snapper (Lutjanus campechanus)

King Snake Eel (Ophichthus rex)

Bonnethead Shark (Sphyrna tiburo)

Pantropical Spotted Dolphin (Stenella attenuate)

Atlantic Sharpnose Shark (Rhizoprionodon terraenovae)

Blacknose Shark (Carcharhinus acronotus)

Blacktip Shark (Carcharhinus limbatus)

Gulf Smooth-hound Shark (Mustelus sinusmexicanus)

David Knight: Work Out and Work Up: Part I, July 17, 2018

NOAA Teacher at Sea

David Knight

Aboard NOAA Ship Pisces

July 10-23, 2018

 

Mission: Southeast Fishery-Independent Survey

Geographic Area: Southeastern U.S. coast

Date: July 17, 2018

Weather Data from the Bridge:

Latitude: 30° 30.2 N
Longitude:
80° 15.6 W
Sea wave height:
1-2 ft
Wind speed:
15 kts
Wind direction:
187°
Visibility:
10 nm
Air temperature:
30.1 °C
Barometric pressure:
1014.7 mB
Sky:
Broken Clouds

Science and Technology Log

Warning!!! Great Science Ahead…


Part I.

Waiting to see
Waiting to see what the traps have brought up this time… (photo by David Knight)

As fish traps begin to be brought up by the deck crew, scientist wait to see what may be in the trap. I’ve actually found that I am looking over the deck in anticipation of new fish that may have been caught, or to see how many fish will need to be “worked up.” Once the fish have been removed from the trap and emptied into a large bin, they are then sorted by species into 17-gallon bins to determine the total weight of all fish.  Moving 17 gallons worth of fish up to the lab bench to the scale can be quite a “work out.” There have been a couple of hauls that have captured so many fish of a particular species that more than one bin has to be used. After the fish have been weighed, the total length of each fish is determined to get a length frequency of the entire catch.  For species like Tomtate (Haemulon aurolineatum), every fish is measured and then returned to the ocean. For some species, a pre-determined percentage are kept for a more detailed work up that may include the extraction of otoliths, removal of gonads, or a collection of stomach contents. The data collected from each fish will then be used by scientists in a number of different agencies and in different states to better understand the growth and reproduction of the particular species. All of this data is then used to create management plans for economically and ecologically important fish as well as to gain a better understanding of its life history.

Work Up

Length.

Measuring fish
Measuring the length of each, individual fish. (photo taken by Nate Bacheler)

One may assume that a very long fish is also very old, but that is not necessarily the case. The length of a fish is not a good way to determine the age of a fish because factors such as temperature and food availability may alter the growth rate. Many fish grow very rapidly early on, but then slow their growth, so it is possible that a fish that is twelve years old is the same size as a fish that is three years old. Because many fish demonstrate logistic growth rates in terms of length, it is important to use additional pieces of data to determine their age.

Otolith.

In the head of ray-finned fish, one can find small, bone-like structures called otoliths. These structures have a variety of sensory functions that include detection of sound vibrations in water, movement, and its orientation in the water. As fish age, calcium carbonate will be added to the otolith, forming ring-like structures that can be used to determine the age of a fish, much like a tree will add new tissue each season forming tree rings.  Otoliths are the best way to determine the actual age of a fish.

IMG_6677
Otoliths. [left to right: Black Sea Bass, Red Snapper, Jackknife fish] (photo by David Knight
For the fish that we were sampling, we remove the sagittal otoliths which are located beside the brain just about level with the eyes. To extract them, a cut is made on the dorsal side of the fish with a sharp knife to gain access to the skull case.  To extract otoliths from some very “hard-headed” fish, a saw is used, while others take little effort. After a few hours of otolith extraction, I feel as though I am getting the hang of it, although I am nowhere near as fast as the biologist on board! I’ve been collecting otoliths from Black Sea Bass (Centropristis striata) and Vermillion Snapper (Rhomboplites aurorubens) to bring home with me to create a lab for my class and to post on the NOAA Teacher-at-Sea website.

Extracting otolith
Looking for a perfect extraction of otolith from Vermilion Snapper. (photo taken by Nate Bacheler)

Be sure to check back for Part II. Gonads, Diet and DNA


Personal Log

The motion of the ship has not been a problem so far and I stopped taking any motion sickness pills after the first day. As I have been removing otoliths from fish, I cannot help but think about the similarities in how both fish and humans perceive their spatial environment and maintain balance. In our vestibular system, we too have otoliths that help to sense acceleration in a vertical and horizontal direction. Of course my thoughts then go to a dark place…what if someone were removing my otoliths to determine my age?

 

Did You Know?

The longest known life span in vertebrates is found in the Greenland Shark (Somniosus microcephalus). It is estimated that the Greenland shark grows less than 1 cm per year. Since sharks do not have otoliths, scientist have to analyze proteins found in the lens of their eye.  In 2016, scientist from the University of Copenhagen collected a 5 m shark that was estimated to be about 392 years old, but may be anywhere from 272 to 512 years old.

Reference: Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science  12 Aug 2016: Vol. 353, Issue 6300, pp. 702-704

Angela Hung: A Day in the Land Life, A Day at Sea, June 26, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 27-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 26, 2018

 

Weather Data from Biloxi, MS

Conditions at 1356

Latitude: 30.42° N

Longitude: 88.92° W

Temperature: 34° C

Wind Speed: S 10mph

 

Science and Technology Log

Ship repairs are ongoing so I’m reporting from Biloxi, MS. Last week, I got the chance to visit the NOAA Southeast Fisheries Science Center, Pascagoula lab onshore to learn about what the scientists do when they are not at sea.

NOAA Lab in Pascagoula, MS
NOAA Lab in Pascagoula, MS. Image credit: https://www.sefsc.noaa.gov/labs/mississippi/

I got to see the variety of projects described on their website (https://www.sefsc.noaa.gov/labs/mississippi/surveys/index.htm) , from video reef fish surveys (https://www.sefsc.noaa.gov/labs/mississippi/surveys/reeffish.htm#video) to seafood inspection, sharks, and the effects the Gulf oil spill from Deepwater Horizon on plankton in addition to groundfish survey. Chrissy Stepongzi, another fisheries biologist, was willing to take me on an impromptu tour of the warehouses at the pier and then brought me over to the labs.

The Labs

This slideshow requires JavaScript.

Andre and Taniya with the Southern Stingray
Andre and Taniya holding the stingray.

Because we spent so much time at the pier (below) Andre Debose took over the tour. We got a sneak peek at the seafood inspection lab. You need a pretty high clearance to get in, but we ran into a researcher (I didn’t get his name) who was kind enough to take a few minutes to explain what they do:

The U.S. imports a lot of seafood from overseas as well. All ready-to-eat seafood that comes in is inspected by NOAA. A sample from every batch is tested for contaminants and pollutants to ensure it is safe for consumption. We happened to be at the lab that inspects menhaden, a fish typically ground into “fish meal” which is commonly used in pet foods. The lab also checks fish oil, a dietary supplement. Down the hall are labs that inspect Gulf seafood for petroleum oil.  After speaking with him, I felt much more confident in my seafood dinners and my cats’ food.

We went down to the reef unit which Andre has worked on and was introduced to Kevin Rademacher who studies reef fish and was watching video data from their camera array. He showed me a few videos recorded from their past surveys. Today, they use an array of five video cameras to create a single, 360˚ field of view for accurate fish counts. Fisheries use these data to determine the health of a fishery, as in the population and sizes of commercially important fish. This information guides the quotas of how many fish people are allowed to take while maintaining resources for the future.

Up to a few years ago, they used four separate cameras—four different fields of view that had to be watched individually to count fish. The new setup also features two levels to create stereoscopic or 3-D images so scientists can digitally measure the lengths of the fish, which was not possible before. However, species identification is still done using good old-fashioned human eyeballs in an experienced scientist.

Down the hall is Kristin Hannan’s office, my day shift manager aboard Oregon II. She studies sharks, which are caught using longlines (https://www.sefsc.noaa.gov/labs/mississippi/surveys/longline.htm), and she let me examine her collection!

We stopped by the plankton lab. Plankton is a collective term for very small marine organisms—algae and animals that form the foundation of marine food chains. The very small animals are usually the larvae of larger animals, but I didn’t realize how many were vertebrates, i.e. baby fish. I had imagined that plankton were primarily invertebrates such as sea sponge, coral, crustacean and squid larvae.

A sample of fish larva that make up plankton.
A sample of fish larva that make up plankton. Photo credit: https://www.sefsc.noaa.gov/labs/mississippi/surveys/plankton.htm

Finally, Andre showed me his otolith samples. Otoliths are small bony disks in the ears of fish that allow them to sense gravity and speed, which maintains their balance. (Yes, fish have ears and earbones like humans.) A layer of calcium is added every year of a fish’s life so these give us data about the ages of fish.

Overall at NOAA’s Pascagoula labs, researchers are hard at work studying marine life in the Gulf of Mexico to learn where they are and when to find them, at every stage of life, from larval plankton, to juveniles, adults and to food for others such as sharks and dolphins. While “economic” species are the focus of fisheries industries, “ecological” species are deservedly monitored here as well. In such a vast ecosystem, every organism has hundreds or likely thousands of ecological ties to those around it, as predator, prey, competitors or symbiotic partners. Humans aren’t the only ones who enjoy crab legs and fish sticks for dinner. As biologist Alonzo Hamilton puts it, “fish are a product of the environment”, referring to the collective forces that create an ecosystem.

To top off the lab visit, I was presented with a fabulous goody bag! I have some great materials to use in class, and I’m particularly grateful for the coffee mug so I can stop using paper cups in the ship’s galley.

Goody bag from Pascagoula Lab
Goody bag from Pascagoula Lab

The Warehouse

So where does all this equipment for these different projects come from? Sadly, there isn’t a “science store” for weird and wonderful devices that seamlessly combine into “cutting edge technology”. I mentioned in the last post that scientists often have to build what they need.  In fact, part of NOAA’s mission to support sustainable fishery practices is inventing the tools to fish sustainably! They may not have a store to go shopping in, but they have something much better: Captain James Barbour, master welder extraordinaire! (His actual title is something like Engineering Tech/Gear & Equipment Specialist.)

Chrissy took me to visit him in the warehouses and that was a fun place! We walked into his current project—a stainless steel work table for a scientist, but custom built to include clipboard hangers, blood sample holder, holes for hand sanitizer bottles…like a home renovation show but for research vessels.

The camera arrays for reef survey are his handiwork. He’s built traps with camera housing to record what’s going on under water. He has also modified smaller boats to create platforms for scientists to safely wrangle fish, and apparatuses to operate nets and other equipment. He is steeped in the design of TEDs-turtle excluder devices, and bycatch reducers. Bycatch are animal species that are caught with commercial ones, especially by nets. Often, these are not returned alive to the ocean. TEDs are metal, circular grids about three feet across that are attached to the end of fishing nets, forming a cone. When a turtle is caught, it hits the excluder and slides out of an escape chute. Fish pass through the excluder and into the blind end of the net.

If you have ever heard or worried about sea turtles or wasted bycatch getting trapped in nets, rest assured that U.S. fisheries are using these devices to reduce their environmental impact. And chances are Capt. Barbour welded them!

This is just a small sample of what he’s accomplished in his long career at NOAA. He continues his research with other scientists to collect data and improve the design, for example, to screen out smaller turtles without sacrificing the fish catch.

As a scientist observing the decline in science literacy and confidence from the general public, I often come across the Strawman fallacy that “science has no place in politics”. This doesn’t make sense considering the various U.S. agencies that employ scientists to make discoveries about our world and outside of it, because objective knowledge is where sound policies should originate. Science has always has an important role in American politics. Another classic are the cries for “less government regulation and interference” but I’m certain those people have no idea what that means. In U.S. seafood industries, regulations require TEDs and bycatch reducers because ecological species support the health of economic ones. In U.S. markets, regulations require safety testing of seafood imports. In Gulf fisheries, regulations limit how many red snapper one can take and when shrimpers can open season because this ensures consumers can enjoy seafood next year and every year after. They ensure that fisherman have employment next year and every year after. Government, as well as university, scientists are third party to all companies and have no personal financial incentives besides their regular salaries. Scientists are public servants who work for everyone.

Captain Barbour is a modest man, but it’s clear that he takes pride in the devices he builds because he accepts the responsibility of humans to be stewards of this planet and the other creatures we share it with. Thus, he genuinely cares about the well-being of dolphins and turtles. He takes personal action for what he believes by coming to work everyday and engages with optimizing the design of scientific equipment by communicating with collaborators, analyzing data, and building with his own hands. While most of us don’t get to be so directly involved with our contributions to society there are two things to think about:

  1. The NOAA is recruiting (quite a few retirements are coming up). College students can try out through an internship: https://coastalscience.noaa.gov/about/internship/
  2. All of us together through our own strengths can make many small actions great: refuse those single use plastics, recycle always, VOTE (or don’t complain), and practice lifelong learning.

 

Personal Log

At about 1500 on the first day of the survey, I find out that I’m assigned to the day shift that runs from 1200 to 2400. Roommates are assigned with opposite shifts so that each person can have the stateroom while the other works. Typically, you have a backpack to carry anything you might need to avoid entering the room and disturbing a sleeping roommate. The operations of the vessel are 24 hours and other members of the crew work different shifts around the clock: engineers might be scheduled six hours on, six hours off, officers four hours on/off, etc.

“Someone is sleeping all the time on every deck.” –LT Ryan Belcher

So, on day one, my roommate tries to get some sleep and I’m out of the room. For the rest of the day, I experience something called “down time” with nothing really to do. I don’t know when the last time this happened was. Everyone is busy at work or sleeping before their shift and I find myself curiously alone. I find my way back to a higher deck that Chrissy had shown me earlier where a deck chair (no pun intended) has been stashed. The indoor lounge features a large collection of movies on loan from the Navy, including recent releases. After I come in from spending some time relaxing outside, I reenter the lounge to find some of the scientists starting Justice League. When that finishes, we put in Winchester which is inspired by the true story, whatever that means, of the famous haunted house built by Sarah Winchester of the family that developed rifles. Not too bad if you are a fan of ghost stories.

Justice League and Winchester
Justice League. Image from: https://www.warnerbros.com/justice-league; Winchester: The House that Ghosts Built. Image from: http://www.impawards.com/2018/winchester_the_house_that_ghosts_built_ver6.html

 

It’s a long day and I finally get to go to bed.

Did You Know?

From the last blog we learned that NOAA is a Department of Commerce (DOC) agency that collects scientific data for economic purposes. On this cruise, and those of the past 40 years, Texas shrimp fisheries use NOAA data collected by Oregon II to determine when to open shrimping grounds every year to ensure a sustainable supply. NOAA Ship Oregon II also trawls during the summer for red snapper for fisheries around the entire Gulf to determine when fishing can begin.

Amanda Dice: Fish Sticks with a Side of Science, August 29, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

IMG_1553
We have made it to the most northern point on the survey.

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise:
Western Gulf of Alaska

Date: August 29, 2017

Weather Data: 10.2 C, rainy/stormy

Latitude: 59 20.0 N, Longitude: 152 02.5 W

 

 

Science and Technology Log

The main focus of this survey is to gather information about juvenile walleye pollock, Gadus chalcogrammus. Juvenile pollock less than 1 year of age are called young-of-the-year, or age-0 juveniles. Age-0 walleye pollock are ecologically important. Many species of birds, mammals and other fish rely on them as a food source. Adult pollock have a high economic value. Pollock is commercially fished and commonly used in fish sticks and fish and chips. This study is interested in learning more about the size of current juvenile pollock populations, where they occur, and how healthy they are.

IMG_1132
An age 0 juvenile pollock is shown below an adult pollock.

In order to collect a sample, a trawl net is lowered into the water off of the back of the ship. The deck crew and bridge crew work together to release the right amount of wire and to drive the ship at the right speed in order to lower the net to the desired depth. The net is shaped like a sock, with the opening facing into the water current. In order to keep the mouth of the net from closing as it is pulled through the water, each side is connected to a large metal panel called a “door”. As the doors move through the water, they pull on the sides of the trawl net, keeping it open. When the doors are ready to be put in the water, the fishing officer will instruct the winch operator to “shoot the doors”!

IMG_1272
The deck crew bring the trawl net back on deck. One of the metal “doors” can be seen hanging off of the back of the ship.

Sensors help monitor the depth of the upper and lower sides of the net and relay a signal to computers on the bridge, where the data can be monitored.

Screen Shot 2017-08-29 at 7.44.24 PM
Sensors on the trawl net relay data to computers on the bridge which show the position of the net in the water.

Once the net is reeled in with a large winch, the catch is placed on a sorting table, in a room just off of the back deck called the fish lab. Here, the science team works to sort the different species of fish, jellyfish, and other kinds of marine animals that were caught.

IMG_1217
Crew members stand below a winch and empty the catch from the trawl net into a large bin.

IMG_1576
The catch is then sorted on the sorting table in the fish lab.

Juvenile pollock are sorted into their own bin. If it is a small catch, we weigh, count, and measure the length of each one. However, if it is a large catch, we take a smaller sample, called a subsample, from the whole catch. We use the weight, lengths, and count of animals in the subsample to provide an estimate count and average size of the rest of the fish caught at that station, which are only weighed. This information is compiled on a computer system right in the fish lab.

IMG_1097
Here I am measuring some fish.

 

IMG_1117
Data from the catch is collected on computers in the fish lab.

 

The focus of this study is juvenile pollock, but we do catch several other species in the trawl net. The presence of other species can provide information about the habitats where juvenile pollock live. Therefore, data from all species collected are also recorded.

Screen Shot 2017-08-29 at 8.36.24 PM
Here are some other interesting species we caught: 1. jellyfish (with a partially digested pollock inside it!) 2. lumpsucker 3. herring 4. spider crab

A small sample of juvenile pollock are frozen and saved for further study, once back on land. These fish will be analyzed to determine their lipid, or fat, content and calorie content. This data reveals information about how healthy these fish are and if they are getting enough food to survive through the cold Alaskan winters.

Other agencies within NOAA also conduct scientific surveys in this area. These studies might focus on different species or abiotic (non-living) properties of the Gulf of Alaska marine ecosystem. The data collected by each agency is shared across the larger NOAA organization to help scientists get a comprehensive look at how healthy marine ecosystems are in this area.

 

Personal Log

As we move from one station to the next, I have been spending time up on the bridge. This gives me a chance to scan the water for sea birds and marine mammals, or to just take in the scenery. Other members of the crew also like to come up to do this same thing. I have really enjoyed having this time every day to share in this activity (one of my favorite past-times) with other people and to learn from them how to identify different species.

IMG_1192
Here I am outside of the bridge, posing with some glaciers!

 

Did You Know?

You can find the exact age of many fish species by looking at a bone in their ears! Fish have a special ear bone, called an otolith. Every year, a new layer will grow around the outside of this bone. As the fish ages, the otolith gets larger and larger. Scientists can find the exact age of the fish by cutting a cross section of this bone and counting the rings made from new layers being added each year.

IMG_1099
A small otolith of an age 0 juvenile pollock

IMG_1168
Larger otoliths from an adult pollock

Kip Chambers: Parting Shots I of II… July 22, 2017

NOAA Teacher at Sea

Kip Chambers

Aboard NOAA Ship Reuben Lasker

July 17-30, 2017

Mission: West Coast Pelagics Survey  

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: 07/22/2017

 Weather Data from the Bridge: (Pratt, Kansas)

Date: 08/02/2017                                                                    Wind Speed: SE at 5 mph

Time: 18:40                                                                            Latitude: 37.7o N

Temperature: 29o C                                                                Longitude: 98.75o W

Science and Technology Log:

During my last few days aboard the Reuben Lasker before steaming to Bodega Bay for a small boat transfer on July 30th, we were fishing off of the southern Oregon coast. The ship continued to run the longitudinal transect lines using acoustics and collecting data using the continuous underway fish egg sampler (CUFES) during the day and performing targeted trawls for coastal pelagic species (CPS) at night. The weather and the pyrosomes picked up as we moved down the Oregon coast to northern California, but on what would turn out to be the last trawl of my trip in the early morning hours of July 28th, we had our biggest catch of the trip with over 730 kg in the net. Once again we saw 3 of the 4 CPS fish species that are targeted for the survey including the Pacific sardine, Pacific mackerel, and jack mackerel, but no northern anchovies were to be found. The science crew worked efficiently to process the large haul and collect the data that will be used to provide the Southwest Fisheries Science Center (SWFSC) with information that can be used to help understand the dynamics of CPS in the California Current. The data collected from the CPS fish species includes length and weight, otoliths (used to age the fish), gender and reproductive stage, and DNA samples. The information from these different parameters will provide the biologists at SWFSC with information that can be used to understand the nature of the different populations of the CPS fish species that are being studied.

 

 

I am home now in southcentral Kansas, but as I am writing this, I can picture the science team beginning preparations for a night of trawling probably just north of Bodega Bay. By now (22:00) it is likely that a bongo tow and the conductivity, temperature and depth (CTD) probe samples have been collected providing data that will be used to calibrate and maximize the effectiveness of the acoustics for the area. Lanora and the rest of the team will have prepped the lab for a night of sampling, weather data will be recorded, and someone (maybe Nina or Austin) will be on mammal watch on the bridge. It all seems so familiar now; I hope the rest of the survey goes as well as the first half of the second leg. I will be thinking about and wondering how the science team of the Reuben Lasker is doing somewhere off the coast of California as I settle in for the night. One thing I am sure of, after spending two weeks aboard the ship, is that the entire crew on the Reuben Lasker is working together, diligently, as a team, using sound scientific practices to produce the best data possible to guide decisions about the fisheries resources in the California Current.

 

 

 

Video Transcription: (Narration by Kip Chambers)

(0:01) Ok, we’re preparing to remove otoliths from a jack mackerel. It’s for the Coastal Pelagic Species survey on the Reuben Lasker, July 27, 2017.
(0:22) We have Phil, from Washington Fish & Game, who’s going to walk us through the procedure. 
(0:30) The otoliths are essentially the fish’s ear bones. They help with orientation and balance, and also have annual rings that be used to age the fish.
(0:48) And so the initial cut is – looks like it’s just in front of the operculum and about a blade-width deep. 
(1:01) And the secondary cut is from the anterior, just above the eyes and kind of right level with the orbital of the eyes, back to the vertical cut.
(1:22) It’s a fairly large jack mackerel. And, once the skull cap has been removed, you can see the brain case, and you have the front brain and kind of the hind brain where it starts to narrow…
(1:42) … and just posterior to the hind brain, there are two small cavities, and that was the right side of the fish’s otolith, 
(1:55) … and that is the left side. And that is very well done. Thank you Phil.

 

I wanted to use a portion of this section of the blog to share some comments that were expressed to me from the members of the science team as I interviewed them before I left last week. The first “interview” was with Dave Griffith, the chief scientist for the survey. Dave was kind enough to provide me with a written response to my questions; his responses can be found below.

Dave Griffith
Chief Scientist Dave Griffith

Q1: Can you tell me a little bit about your background, including education and work history?

Q1: I was born and raised in a small suburb of Los Angeles county called Temple City. Located in the San Gabriel valley at the base of the San Gabriel mountains, it was the perfect place to exercise the love and curiosity of the animals I could find not only in my backyard but also in the local mountains. It wasn’t until I reached high school that I realized I had a knack for sciences especially biology. This interest and appeal was spurred on by my high school teacher, Al Shuey. With little concept of a career, I continued on to a junior college after high school still not sure of my direction. Here I dabbled in welding, art, music and literature but always rising to the surface was my love of sciences. My fate was sealed.

I entered San Diego State’s science program and was able to earn a bachelor’s degree and a master’s degree of science. For my dissertation I studied the re-colonization capabilities of meiofaunal harpacticoid copepods in response to disturbed or de-faunated sediments within Mission Bay. While studying for my masters, I was hired by Hubbs-Sea World Marine Laboratory as the initial group of researchers to begin the OREHAP project which is still operational today. The OREHAP project’s hypothesis was that releasing hatchery reared fish into the wild, in this case white seabass (Atractocion nobilis), would stimulate the natural population to increase recruitment and enhance the population. At the time the white seabass population numbers were at their all time low. During that time of employment at HSWML, I was also teaching zoology at SDSU as a teaching assistant in the graduate program. I was also the laboratory manager and in charge of field studies at Hubbs. My plate was pretty full at the time.

I heard about the opening at the SWFSC through a colleague of mine that I was working with while helping her conduct field work for her Ph.D. at Scripps. I applied and was hired on as the cruise leader in the Ship Operations/CalCOFI group for all field work conducted within CFRD (now FRD) working under Richard Charter. That was 1989. I have now been the supervisor of the Ship Operations/CalCOFI group since 2005.

My main objective on the Coastal Pelagic Fish survey as the cruise leader is to oversee all of the operations conducted by personnel from FRD during the survey. All scientific changes or decisions are made by the cruise leader using science knowledge, logic, common sense and a healthy input from all scientists aboard. I am the liaison between the scientific contingent and the ship’s workforce as well as the contact for the SWFSC laboratory. The expertise I bring out in the field is specific to fish egg identification, fish biology, field sampling techniques, knowledge of the California Current Large Ecosystem and sampling equipment.

Q2: What have you learned from your time on the Reuben Lasker during the 2nd leg of the Pelagic Species Survey?

Q2: First, that you never have preconceived ideas of what you expect to find. You always come out with knowledge of previous studies and a potential of what you might see, but the ocean always will show you and demonstrate just how little you know. When I was beginning in this career I was able to witness the complete dominance of a northern anchovy centric distribution change to a Pacific sardine centric distribution and now possibly back again. It’s mind boggling. I remember one of my colleagues, one of the pre-eminent fish biologists in the field, Paul Smith say to me during these transitions say, “Well, you take everything you’ve learned over the past 40 years, throw it out the window and start over again.” Yeah, the ocean environment will do that to you.

Q3: What advice would you give to a 1st year college student that was interested in pursuing a career in marine science?

Q3: Keep an open mind. Once you enter a four year university you will see areas of study that you never thought or believed existed. Have a concept of where you want to be but don’t ignore the various nuances that you see along the way. Go for the highest degree you feel capable of achieving and do it now because it becomes so much more difficult as you get older or the further away you get from academics if you begin working in a science position.

And last, and I feel most important. Read. Read everything. Journals, magazines, classics, modern novels, anything and everything and never stop. Communication is such an incredibly important part of science and you need to have a command of the language. Not only is reading enjoyable but it will make you a better writer, a better speaker and a better scientist.

 

Personal Log:

I am back home in Kansas now after wrapping up my assignment on the Reuben Lasker and I have started to contemplate my experiences over the last couple of weeks. There are so many facets related to what I have learned during my time on the ship; the technology and mechanics of such a large research vessel are both fascinating and daunting at the same time. There are so many moving parts that all have to come together and work in a very harsh environment in order for the ship to function; it is a testament to the men and women that operate the boat that things operate so smoothly. As impressive as the technology and research is on the Reuben Lasker, it is the people that have made the biggest impact on me.

You can see from Dave’s response above that there are some incredibly talented, dedicated individuals on the ship. I would like to share with you some of my observations about some of those people that I worked with including Dave Griffith. Dave is not only an outstanding scientist that has spent a lifetime making important contributions to fisheries science, he is also an incredibly well rounded person and an encyclopedia of knowledge. I would like to take this opportunity to personally thank Dave for his patience, and willingness to listen and provide insight and advice to me during my time on the ship. In my upcoming blog, I will provide more information about the other members of the science team that I had the pleasure to work with while on board. Until then please enjoy the pictures and video from my last week on the Reuben Lasker.

Brad Rhew: Getting Fishy With It, July 29, 2017

NOAA Teacher at Sea

Brad Rhew

Aboard NOAA Ship Bell M. Shimada

July 23 – August 7, 2017

 

Mission: Hake Survey

Geographic Area of Cruise: Northwest coast

Date: July 28, 2017

 

Weather Data from the Bridge

Latitude 4359.5N
Longitude 12412.6 W
Temperatue: 54 degrees
Sunny
No precipitation
Winds at 23.5 knots
Waves at 2-4 feet

 

Science and Technology Log

We are officially off! It has already been an amazing experience over the last couple of days.

One of the goals of this project is to collect data that will be used to inform the Pacific hake stock assessment. This falls in line with the Pacific Whiting Treaty that the US-Canadian governments enacted to jointly manage the hake stock. NOAA and Department of Fisheries and Oceans-Canada (DFO) jointly survey and provide the hake biomass to the stock assessment scientists. (Refer to the link in my last blog about additional information on this treaty.) Major goals of the survey are to determine the biomass, distribution, and biological composition of Pacific hake using data from an integrated acoustic and trawl survey. Additionally, we are collecting a suite of ecological and physical oceanographic data in order to better understand the California Current Large Marine Ecosystem (CCLME).

There is a very detailed process the scientists go through to collect samples and data on the hake caught and selected for sampling. They want to learn as much as possible about these fish to help with the ongoing research projects.

Here is a quick guide and understanding of how sampling works and what data is collected:

  1. Determine the length and sex of the fish.
    1. To determine the length, the fish is placed on a magnetic sensor measuring board. The magnet is placed at the fork of the tail fin; the length is recorded into the data table. (See figure A.)

      TAS Rhew Blog 2 photo A
      Figure A. Determining the length of the fish.

       

    2. To determine the sex, the fish is sliced open on the side. Scientist look to see if ovaries (for females) or testes (for males) are present. They also can determine the maturity of the fish by looking at the development of the reproductive organs. (See figure B.)

      TAS Rhew Blog 2 photo B
      Figure B. Determining the sex of the fish.
  2. Determine the mass.
    1. The Hake are placed on a digital scale and then massed. The data also gets entered into the database. (See figure C.)

      TAS Rhew Blog 2 photo C
      Figure C. Massing the fish on a digital scale.
  3. Removing of the otoliths (ear bones).
    1. Hake have two otoliths. How this is done is the scientist first cuts a slight incision on top of the fish’s head. (See figure D.)

      TAS Rhew Blog 2 photo D
      Figure D. Making an incision on the fish’s head to remove otoliths.
    2. The head is then carefully cracked open to expose the bones. (See figure E.)
    3. The bones are removed with forceps and then placed in a vial. The vial is then barcode scanned into the database. The otoliths will then be sent to the lab for testing. Scientists can run test on the otoliths to determine the age of the selected fish. (See figures F and G.)
  4. Removing a fin clip.
    1. Fin clips are removed from the Hake for DNA sampling to be completed back on shore in the lab. This gives researchers even more information about the selected fish.
    2. The fin clip is removed using scissors and forceps. (see figure H.)

      TAS Rhew Blog 2 photo H
      Figure H. Removing a fin clip.
    3. The clip is then placed on a numbered sheet. (see figure I.)

      TAS Rhew Blog 2 photo I
      Figure I. Placing the fin clip on a numbered sheet.
    4. The number is also entered into the database with all the other information collected on that particular fish.
  5. All the information is collected in one database so it can be assessed by scientists for future research. (see figure J.)

    TAS Rhew Blog 2 photo J
    Figure J. All information is stored in a database.

 

Personal Log

Even though this survey is just beginning this has been such an amazing experience already. I have learned a great deal about oceanography and marine research. I cannot wait to use my experiences back in my classroom to expose my students to careers and opportunities they could be a part of in their future.

Another great aspect of being a Teacher at Sea is the relationships I’m building with other scientists and the crew. It is amazing to hear how everyone became a part of this cruise and how passionate they are about their profession and the world around them.

 

Did You Know?

This is Leg 3 of 5 of this Summer Hake Survey. Two more legs will be completed this year to collect even more data on the fish population.

 

Fascinating Catch of the Day!

When we fish for Hake it is very common to collect some other organisms as well. Today’s fun catch was Pyrosomes or Sea Tongues!

These free-floating colonial tunicates are found in the upper part of the open ocean. Pyrosomes rely on the currents to move them around the ocean. They are typically cone shaped and are actually made up of hundreds of organisms known as zooids. The Zooids form a gelatinous tunic that links them together creating the cone shape. They are also bioluminescent and give off a glow in the ocean.

TAS Rhew Blog 2 photo collage
Fun with pyrosomes!

Check it Out!

If you want to learn more about what is happening on the Bell M. Shimada, check out The Main Deck blog for the ship:

https://www.nwfsc.noaa.gov/news/blogs/display_blogentry.cfm?blogid=7

Dawn White: Otoliths & a “Wet” Farewell: July 2, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: July 2, 2017

Weather Data from the Bridge (As in back home in North Branch, MN)

Date: July 2, 2017                                                             Wind Speed: 8 kts

Time: 7:30 p.m.                                                                 Latitude: 45.5102° N

Temperature: 26.7 oC                                                     Longitude:  92.9931° W

Science and Technology Log

It wasn’t until the last day or two of my leg of the research project that we finally started to catch the species the scientists were specifically looking to track and even then there were only a few.

Angela removes an otolith from the sample target species

Here’s Angela dissecting one of our first samples.  If the young captured were either sardines or anchovies, they were massed, length taken, sex determined (including whether or not they were sexually mature, if possible), and their otoliths were removed.

So what the heck are otoliths and why would anyone want to remove them?

Otoliths are small, bony parts of a fish’s earbones.  They help the fish with balance and orientation.  These bones are made of calcium carbonate and similar to the formation of rings on a tree, they grow with a ring-like pattern based on seasonal metabolic rates.  While the fish is growing faster during the warmer summer months, the rings are broader and more translucent.  Then, during the cooler winter months when a fish’s metabolic rate begins to slow down, that part of the ring appears to be more dense or opaque.

Look at the first illustration below that was taken from a 2008 NOAA press release.  On the lower right you see an image of an otolith from a haddock.  Each species has otoliths of a particular size and shape. If you know the region of ocean from which a set of otoliths was obtained, you may be able to determine the species by utilizing one of the many otolith references that can be accessed online, such as found in this memorandum published by NOAA researcher Mark S. Lowry.

 

The enlarged image on the right was taken from the NOAA Images Library.  Here you can see the rings very distinctly.

Extension question for my students:  Using the otolith image on the right, determine how old the fish was at the time of capture.  Not sure how to do this just yet?  Want to test your accuracy?  Read up on what is involved in the study of sclerochronology first. Then test yourself with this otolith aging interactive.  Enjoy!

Once the otoliths have been removed they are wiped clean and placed in a small vial to finish drying out.  The otoliths are cataloged and sent to the lab for evaluation as shown in the photos below.

 

The combination of measurements taken allow those studying the population to look at the demographics of the catch (What % of the population is juvenile?  What % is sexually mature? What is the relationship between % male vs. female?).  This data provides a sampling of the population’s health and viability, which can then be extrapolated to the population as a whole.  This information can then be used to help inform policy with regards to how heavily these populations can be fished without causing damage to the ecosystems of which they are a part.

 

Personal Log – It’s time to go home!

It seemed like we had just gotten started and it was time to go!  Although they had mixed work/sleep schedules, the science team was willing to gather to see me off.

Angela, Dereka, Dawn (TAS), Nick, Amy, Bryan, Sue, Emily

What an amazing learning experience!  My only regret was that we didn’t start to find the species requiring the more intense, time-consuming dissection and data collection until the very end.  I wanted to make sure I was doing my part!  In return, what I get to take home to my students is invaluable. I can’t wait to share all I have learned about life aboard a research vessel, the many ways in which this unique habitat is being studied, and the vast opportunities that await those who are interested in marine ecosystems.

The only travel plan that was not prearranged regarding my TAS adventure was the exact location of my departure from the Reuben Lasker.  What I did know was that it was to be a “wet transfer.”  What I didn’t know was exactly what that meant.  It was so much fun finding out!

The Reuben Lasker has a limited number of ports along the west coast where it is possible for it to dock.  The ship’s size, unique keel, and specialized, below-ship sonar equipment require channels to be much deeper than many smaller ports possess.  Because of this, whenever there is to be an exchange of personnel made before a larger port is reached, an onboard transfer craft brings those getting off to a smaller port along the way.  This allows the main vessel to stay in safer waters much further off shore.  Once the exchange of people and gear is made, the transfer boat returns to the ship and the journey continues.

Unique points to consider on this type of trip, however, are that you need to get the transfer boat launched from the main vessel, the ship lets you off several miles from port, and the boat has no seats – you stand up the whole way!  Who knew that even getting back to the mainland was to be an adventure?!

You can see the transfer boat below (right side in the picture – port side of the ship).  Notice how the Reuben Lasker carries it hoisted up off the floor of the back deck.

View of the transfer boat (at right) stored on Reuben Lasker

The transfer boat gets lowered to deck level so we can all step in.  Our gear is stored in the open bow and we all load in the back.  Behind the center console are poles with handles that give us something stable to hold on to as we will be standing for the duration of the trip.  We all wear life jackets and hard hats as the boat is lowered along-side the main ship.

Here’s Skilled Fisherman Victor Pinones ready at the controls as he lowers us to sea level.

Skilled fisherman Victor Pinones ready at the controls

The two outboard motors are started while we are along-side so we are ready to move away from the Reuben Lasker the minute we hit the water.  And we’re off! To give you some perspective of the size of the Reuben Lasker as it looks from the water, you can see Emily, Angela, and Dereka waving to me from the Level-1 deck.

View of NOAA Ship Reuben Lasker from the transfer boat

It didn’t take long before the ship was but a spot on the horizon….

Here’s a better look at the transfer vessel as crew members prepare to for the return trip.

Bon voyage to all!  Safe travels!

Did You Know?

Fun fact: Baby squid are adorable!  Just had to share one last image from under the microscope – thanks, Nick, for pointing this out!  At this larval stage, the squid are mainly transparent except for their developing eyes and chromatophores (sac-like structures filled with pigments that help the squid undergo color changes).  You can observe this process in action at the Smithsonian’s  Ocean Portal web site.

 

Looking at the enlarged photo at right you can just make out the scale – our little friend was a whole 3 mm in diameter!  Too cute!

Marsha Lenz: And The Hauls Begin, June 14, 2017

NOAA Teacher at Sea

Marsha Lenz

Aboard NOAA Ship Oscar Dyson

June 8–28, 2017

 

Mission:Geographic Area of Cruise: Gulf of Alaska

Date: June 14, 2017

 

Weather Data from the Bridge

Latitude: 53 24.35 N

Longitude: 166 58.2 W

Time: 0700

Visibility: 8 Nautical Miles

Wind Direction: 095

Wind Speed: 25 Knots

Sea Wave Height: 7-9 foot swell

Barometric Pressure: 1003.4 Millibars

Sea Water Temperature: 7.2°C

Science and Technology Log

I know that I have already talked about how much science and technology there is on board, but I am amazed again and again by not only the quantity of it, but also the quality of it. I am also impressed by the specialized education and training that the scientists and rest of the crew have in their designed roles on this ship. They know how to utilize and make sense of it all. I keep trying to understand some of basics,  but often I just find myself standing in the back of the room, taking it all in.

We brought in our first haul on Monday.  I was given an orientation of each station, put on my fish gear, and got to work. I was shown how to identify the males from the females and shown how to find the fork length of the fish. Finally, I also practiced removing the otoliths from the fish. I finally felt like I was being useful.

 

This slideshow requires JavaScript.

I woke up on Tuesday (6/13) to start my 4:00 am shift. After some coffee and a blueberry muffin, I headed down to the “Chem lab.” We had arrived at the Islands of the Four Mountains in the night and were now heading back to start on the transect lines. The scientists had just dropped down the Drop Camera to get an idea of what was happening on the ocean floor. The camera went down to 220 meters to get an idea of what was happening down there. The video images that were being transmitted were mind-blowing. Though it was black and white footage, the resolution had great detail. We were able to see the bottom of the ocean floor and what was hanging out down there. The science crew was able to identity some fish and even some coral. One doesn’t really think of Alaska when one thinks of coral reefs. However, there are more species of coral in the Aleutians than in the Caribbean. That’s a strange thought. According to the World Wildlife Fund, there are 50 species of coral in the Caribbean. Scientists believe that there are up to 100 species of coral in the coral gardens of Alaska that are 300 to 5,000 feet below the surface.

labelled_correct_camdrop
The DropCam took images of life on the ocean floor.

 

 

This slideshow requires JavaScript.

Personal Log

Monday, June 12

We have been making progress in getting to the Island of Four Mountains. We should be arriving around noon. At this point the scientists have still been getting everything ready for the first haul. The crew has been working hard to fine-tune the equipment ready for data gathering. I have been sitting in “The Cave” at various times, while they have been working around the clock, brainstorming, trouble-shooting, and sharing their in-depth knowledge with each other (and at times, even with me).

In the afternoon, I was asked to help a member of the Survey Crew sew a shark sling. I was not sure what that entailed, but was willing to help in any way possible. When I found Meredith, she was in the middle of sewing straps onto the shark sling. Ethan and I stepped in to help and spent the rest of the afternoon sewing the sling. The sling is intended to safely return any sharks that we catch (assuming we catch any) back to the water.

IMG_1534
We spent many hours sewing the straps onto the sling.

IMG_1539
The sling is intended to safely remove any shark we catch from the boat.

Tuesday, June 13

I woke up at 3am, grabbed a coffee and then made my way down to the Chem Lab. After downloading the footage from the DropCam and getting a few still pictures, we started identifying what we saw. Using identification key, we were able to identify the fish and some coral. We saw what we thought was an anemone. We spent about and hour to an hour and a half trying to identify the species. We had no luck. Finally, Abigail, with her scientific wisdom, decided to look into the coral species a bit deeper. And then, AHA!, there it was. It turned out to be a coral, rather than an anemone. It was a great moment to reflect on. It was a reminder that, even in science, there is a bit of trial and error involved.   I have also observed that the science, actually everyone else on the ship, is always prepared to “trouble shoot” situations. In the moments where I have been observing in the back of the room, I have been able to take in many of the subtleties that take place on a research vessel like this. Here are some things that I have noticed.
1) Things will go wrong, 2) They always take longer than expected to fix, 3) Sometimes there are things that we don’t know (and that’s ok!) 4) Patience is important, 5) Tolerance is even more important, and 6) Clear communication is probably the most important of all. These have been good observations and reminders for me to apply in my own life.

Animals (And Other Cool Things) Seen Today

I feel very fortunate that I had a chance to participate in the DropCam process.  We were able to identify:

  • Blackspotted rockfish
  • Feathery plumarella
  • Basketstar
  • Pink seafan
  • Grooved hydrocoral
  • Anthomastus mushroom coral

 

Did You Know?

In the NOAA Corps, an Ensign (ENS) is a junior commissioned officer. Ensigns are also part of the U.S. Navy, Coast Guard, and other maritime services. It is equivalent to a second lieutenant in the U.S. Army, the lowest commissioned officer, and ranking next below a lieutenant, junior grade.

Interview with ENS Caroline Wilkinson

What is your title aboard this ship?

I serve as a Junior Officer aboard the NOAA Ship Oscar Dyson.

How long have you been working with the NOAA Corps?

Since July 2015 when I entered Basic Officer Training Class (BOTC) at the Coast Guard Academy in New London, CT. We train there for 5 months before heading out to our respective ship assignments. I arrived on the Dyson in December of 2015 and have been here ever since.

What sparked your interest in working for them?

I first learned of the NOAA Corps during a career fair my senior year of college at the University of Michigan. I was attracted by all of the traveling, the science mission of the organization, and the ability to serve my country.

What are some of the highlights of your job?

We see some incredible things out here! The Alaskan coastline is stunningly beautiful and there are more whales, sea birds, seals, otters, etc. than we can count. The crew and scientists are incredibly hardworking and supremely intelligent. They are a joy to work with and I love being able to contribute to highly meaningful science.

What are some of challenging parts of your job?

We spend over 200 days at sea each year and operate in remote areas. It is difficult to keep in touch with loved ones and most of us only see family and friends once or twice a year, if we are lucky. That is a huge sacrifice for most people and is absolutely challenging.

How much training did you go through?

The NOAA Corps Officers train for 5 months at the US Coast Guard Academy alongside the Coast Guard Officer Candidates. It is a rigorous training program focusing on discipline, officer bearing, and seamanship. Once deployed to the ship, we serve 6-8 months as a junior officer of the deck (JOOD) alongside a qualified Officer of the Deck (OOD). This allows us to become familiar with the ship, get more practice ship handling, and learn the intricacies of trawling.

What are your main job responsibilities?

Each Junior Office wears many hats. Each day I stand eight hours of bridge watch as OOD driving the ship and often instructing a JOOD. I also serve as the Medical Officer ensuring all crew and scientists are medically fit for duty and responding to any illness, injury, or emergency. I am the Environmental Compliance Officer and ensure the ship meets all environmental standards for operations with regards to things like water use and trash disposal. As the Navigation Officer, I work with the Captain and the Chief Scientist to determine where the ship will go and how we will get there. I then create track lines on nautical charts to ensure we are operating in safe waters. In my spare time I manage some small aspects of the ship’s budget and organize games, contests, outings, etc. as the morale officer.

Is there anything else that you would like to add or share about what you do?

I am really enjoying my time working for NOAA and in the NOAA Corps; I could not have asked for a better career. It is a challenging and exciting experience and I encourage anyone interested to reach out to a recruiting officer at https://www.omao.noaa.gov/learn/noaa-corps/join/applying.

 

Dave Amidon: California – Here I Come! May 25, 2017

NOAA Teacher at Sea
David Amidon
Aboard NOAA Ship Reuben Lasker
June 2 – June 13, 2017

Mission: Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean -Off the California Coast

Date: May 25, 2017

Weather Data from the Bridge

Since I am still in Central New York, that is not an easy answer. This week – 60s and rain. Last week it was 85, hot & muggy; the week before saw a Frost Advisory. CNY meteorologists certainly earn their keep.

I will be traveling off the coast of California, which I have heard is nice. I expect 50’s to 60’s during the day, warming as we move south.

Science and Technology Log

Not much to report yet as I am still landlocked, but I am looking forward to seeing how the scientists work!

For some background, I pulled some information about the Rockfish Survey from the NOAA Fisheries website, and the official NOAA website of the Reuben Lasker (as well as the Facebook and Wikipedia entries for the vessel).

From the NOAA Office of Marine and Aviation Operations:

Built in Wisconsin by Marinette Marine Corporation and commissioned in 2014, the ship is named after Dr. Reuben Lasker (1929-1988), who served as the director of SWFSC’s Coastal Fisheries Division and as adjunct professor at Scripps Institution of Oceanography, U.C. San Diego. Dr. Lasker built a renowned research group that focused on the recruitment of young fish to the adult population — a topic with implications for fisheries management throughout the world. Reuben Lasker is homeported in San Diego, California.

https://www.omao.noaa.gov/learn/marine-operations/ships/reuben-lasker/about 

National Oceanic and Atmospheric Administration

The Juvenile Rockfish Survey dates back to 1983. Since that time, NOAA has expanded the range of coastline studied and added a great deal in terms of information gathered and instruments utilized.  The Reuben Lasker is a very recent addition to the fleet, being commissioned in 2014, and has state of the art instrumentation. Oceanographic data collected includes conductivity, temperature, depth, chlorophyll and light levels as well as turbidity and dissolved oxygen concentration.

I will have to brush up on my rockfish (Sebastes spp.),  as there 16 species that can be caught off the California coast, according to the California Department of Fish and Wildlife. There are many other species that are documented during the survey, including juvenile and adult Pacific whiting (Merluccius productus), juvenile lingcod (Ophiodon elongatus), northern anchovy (Engraulis mordax), Pacific sardine (Sardinops sagax), market squid (Loligo opalescens), Humboldt squid (Dosidicus gigas), krill (Euphausiacea). Data gathered includes the number and size of individuals collected. Rockfish will also have genetic tissue samples and otoliths (used for daily aging) taken. Finally, the crew conducts a seabird and marine mammal count as well.

Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey

 

Personal Log

I would like to start this section by stating how deeply honored I am to be selected for the Teacher @ Sea program and I want to thank NOAA for giving me this chance to further stretch my horizons. I have always seen science as more than just a class trapped in a four wall classroom, and I have been fortunate enough to take advantage of a few very exciting opportunities. Every time, I add to my repertoire, my knowledge base and my network. I can not tell you how excited I am to be able to take advantage of this opportunity from NOAA. Although I have been teaching science for almost 20 years, I have not done much in terms of field work. It is one thing to promote the exciting work being done in the world of STEM, but I feel it is another to actually talk from experience. I aim to bring as much of the field work from the Reuben Lasker to my classes as I can – and I am already thinking about how I might do that.

I am definitely stepping out of my comfort zone on this trip. Not only do I not blog on a regular basis (or ever), but I can not tell you how many times I have been asked “So do you get seasick?” I don’t really know! I have taken a couple cruises and my dad took me fishing on the Great Lakes as a kid, but this voyage will be very different. I’m going with the meds.  I hope people find my writing to be informative and entertaining, and that I can be an asset for the program moving forward.

 

Did You Know?

Otoliths are bony structures behind the brains in fish. They make annual layers and can be counted to determine the age of a fish, like tree rings.

Video excerpt from “Microworlds: How Old is A Fish?” produced by NOAA’s Alaska Fisheries Science Center, available for download here.

Want to try it? Here is an interactive from NOAA’s Alaska Fisheries Science Center:  https://www.afsc.noaa.gov/refm/age/interactive.htm

 

Emily Sprowls: Tag, you’re it! March 26, 2017

NOAA Teacher at Sea

Emily Sprowls

Aboard NOAA Ship Oregon II

March 20 – April 3, 2017

 

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: March 26, 2017

Weather Data from the Bridge

13:00 hours

28°12.1’ N 89°23.8’W

Visibility 6 nm, Haze

Wind 15 kts 170°E

Sea wave height 4-5 ft.

Seawater temp 23.4°C

Science and Technology Log

MeasureShark.jpg
I learn to measure my first (little) shark!

The ship has completed our deep-water sampling and we are now headed to more shallow areas, where there are likely to be more sharks and hopefully even some that have been tagged in the past.  With each shark we catch, we record in a database their measurements and exactly where they were caught.  If things are going well with the shark out of water, we also take a fin clip, a blood sample, and attach a tag.

Tag-and-recapture is one way for wildlife biologists to estimate population size.  You can compare the number of tagged sharks to newly caught sharks, and then extrapolate using that ratio to the total number of sharks in the area.

 

P1050255
Volunteers help enter data into the “Toughbook” computer.

Recapturing a tagged shark also helps scientists determine the age of a shark, as well as its rate of growth.  In bony fish, it is possible to examine the otoliths (bony structures in the ear) to determine the age of a fish.  However, since sharks do not have bones, scientists must use other ways to determine their ages and track their growth.  One of the scientists on board (my roommate) is collecting shark vertebrae so that her lab can use growth rings in the vertebrae to assess their age, sort of like counting the rings on a tree stump.

 

Personal Log

The past few days have put all my seasickness remedies to the test with waves over 6 feet and plenty of rolling on the ship.  The good news is that they have been working pretty well for the most part – I’ve only lost my lunch once so far!  One “cure” for seasickness is to stay busy, which has been difficult to do because the high winds and lightning have made it unsafe to do any sampling.

Fortunately, the crew’s lounge is well-stocked with movies, so I have watched quite a few while we wait for the waves to calm down and the thunderstorm to pass.  The lounge has some cushioned benches long enough to stretch out on, which is key because being horizontal is the best way for me to minimize my seasickness.

 

Kids’ Questions

  • How do you put the tag on?

    P1050392
    Data collection sheet and shark tagging tool.

The tag for smaller sharks is a bit like a plastic earring, but on the shark’s dorsal fin.  First you have to “pierce” the fin with a tool like a paper hole-punch, and then use another tool to snap in the tag  — making sure that the ID numbers are facing out.  If the shark is a species that will outgrow a plastic roto tag, they get a skinny floating tag inserted just under their dorsal fin.

  • How does the tag stay on the shark?

The shark heals the wound made by the tag, and the scar tissue holds the tag in place. Because the tags are made of plastic and stainless steel, they do not rust or deteriorate in the ocean.

P1050391
Tagged dorsal fin of Mustelus sinusmexicanus.

  • How do they make the tags? 

The NOAA fisheries lab orders tags from manufacturing companies, and are similar to tags used on domestic animals like cows.  Each tag includes a phone number and the word “REWARD,” so that if fishermen catch a tagged shark they can report it.

  • What are they doing with the shark tagging data?

Tagging the sharks in the Gulf of Mexico allows us to figure out how fast they are growing and how far they are traveling.  Measuring all the sharks also helps scientists understand how the populations of different species might be changing.  Some clues to changing populations include catching smaller or fewer sharks of one species.

Cathrine Prenot: Sea Speak. July 25, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Sunday, July 24, 2016

Weather Data from the Bridge

Lat: 47º32.20 N
Lon: 125º11.21 W
Speed: 10.4 knots
Windspeed: 19.01 deg/knots
Barometer: 1020.26 mBars
Air Temp: 16.3 degrees Celsius
Water Temp: 17.09 degrees Celsius


Science and Technology Log

Typical evening view from the flying bridge of the Bell M. Shimada
Typical evening view from the flying bridge of the Bell M. Shimada

We have been cruising along watching fish on our transects and trawling 2-4 times a day. Most of the trawls are predominantly hake, but I have gotten to see a few different species of rockfish too—Widow rockfish, Yellowtail rockfish, and Pacific Ocean Perch (everyone calls them P.O.P.)—and took their lengths, weights, sexes, stomachs, ovaries, and otoliths…

…but you probably don’t know what all that means.

The science team sorts all of the catch down to Genus species, and randomly select smaller sub-samples of each type of organism. We weigh the total mass of each species. Sometimes we save whole physical samples—for example, a researcher back on shore wants samples of fish under 30cm, or all squid, or herring, so we bag and freeze whole fish or the squid.

For the “sub samples” (1-350 fish, ish) we do some pretty intense data collection. We determine the sex of the fish by cutting them open and looking for ovaries or testes. We identify and preserve all prey we find in the stomachs of Yellowtail Rockfish, and preserve the ovaries of this species’ females and others as well. We measure fish individual lengths and masses, take photos of lamprey scars, and then collect their otoliths.

Fish Otolith showing concentric growth rings from here.

Otoliths are hard bones in the skull of fish right behind the brain. Fish use them for balance in the water; scientists can use them to determine a fish’s age by counting the number of rings. Otoliths can also be used to identify the species of fish.

Here is how you remove them: it’s a bit gross.

Otolith instructions from here.

Cod, Redfish, and Hake otoliths from here.

 

A bigger fish species does not necessarily mean a larger otolith. From here.

If you want to check out an amazing database of otoliths, or if you decide to collect a few and want to see what species or age of fish you caught, or if you are an anthropologist and want to see what fish people ate a long time ago? Check out the Alaska Fisheries Science Center—they will be a good starting spot.  You can even run a play a little game to age fish bones!

Pacific Ocean Perch, or P.O.P.
Pacific Ocean Perch, or P.O.P.

 

Personal Log

I haven’t had a lot of spare time since we’ve been fishing, but I did manage to finagle my way into the galley (kitchen) to work with Chief Steward Larry and Second Cook Arlene. They graciously let me ask a lot of questions and help make donuts and fish tacos!  No, not donut fish tacos.  Gross.

How to make friends and influence people
How to make friends and influence people

Working in the galley got me thinking of “ship jargon,” and I spent this morning reading all sorts of etymology.  I was interested to learn that the term crow’s nest came from the times of the Vikings when they used crows or raven to aid navigation for land.  Or that in the days of the tall ships, a boat that lost a captain or officer at sea would fly blue flags and paint a blue band on the hull—hence why we say we are “feeling blue.”  There are a lot more, and you can read some interesting ones here.

You can also click on Adventures in a Blue World below (cartoon citations 1 and 2).

TAS Cat Prenot 2016 cartoon4 v2

And here is a nautical primer from Adventures in a Blue World Volume 1:

A Nautical Primer part I from 2011 aboard the Oscar Dyson
A Nautical Primer from 2011 aboard the Oscar Dyson

 

Did You Know?

Working in the wet lab can be, well, wet and gross. We process hundreds of fish for data, and then have hoses from the ceiling to spray off fish parts, and two huge hoses to blast off the conveyor belt and floors when we are done. But… …I kind of love it.

Yay Science!
Yay Science!

Resources

Etymology navy terms: http://www.navy.mil/navydata/traditions/html/navyterm.html

Interestingly enough, the very words “Sea Speak” have a meaning.  When an Officer of the Deck radios other ships in the surrounding water, they typically use a predetermined way of speaking, to avoid confusion.  For example, the number 324 would be said three-two-four.

 

Cristina Veresan, Icthysticks and Otoliths? August 9, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Sunday, August 9, 2015

Data from the Bridge:
Latitude: 59°28.8’ N
Longitude: 145°53.2’ W
Sky: Rain
Visibility: 7 miles
Wind Direction: SSE
Wind speed: 13 knots
Sea Wave Height: 1-2 feet
Swell Wave: 3 feet
Sea Water Temperature:  16.0°C
Dry Temperature:  14.5°C

Science and Technology Log

Our wet lab is outfitted with novel technology that makes processing the catch much more efficient. All of our touchscreen computers in the wet lab are running a program, designed by MACE personnel, called Catch Logger for Acoustic Midwater Survey (CLAMS). Once we enter the haul number and select the species that were caught, most of the data populates automatically from the lab instruments. For example, the digital scale is synced with the computer, so the weights are automatically recorded in CLAMS when a button is pushed. Also, an electronic fish measuring board called the “Icthystick,” designed by MACE IT specialist Rick Towler, is used to measure fish lengths. The fish’s head is placed at one end of the measuring board; when you place a finger stylus (with a magnet mounted inside it) at the end of the tail, the length is automatically recorded in CLAMS. The CLAMS system creates a histogram (type of graph) of all the lengths measured, and scientists archive and review this important data.

CLAMS
The CLAMS program records our catch

IMG_0101
The “Icthystick” AKA “Fish Stick” Photo by Darin Jones

scale
A digital scale connected to the CLAMS system

What can fisheries scientists learn from a pollock’s ear bones? The ear bones, called otoliths, have layers that can be counted and measured to determine the fish’s age and growth over the years of its life. Fish otoliths are glimpses into the past and their layers of proteins and calcium composites can sometimes offer clues about climate and water conditions as well. For our sub-sample of pollock, in addition to length, weight, and sex data, we will remove and archive the otoliths. We have to slice into the head and extract the two bony otoliths with forceps. The otoliths are then placed into a vial of ethanol with a bar code that has been scanned into the CLAMS system and assigned to the individual pollock they came from. Therefore, when all the otoliths are sent back to the lab in Seattle, ages of the fish can be confirmed. We sometimes collect other biological samples as well. In Seattle, there are scientists working on special projects for certain species, so sometimes we take a fin clip or an ovary sample from fish for those colleagues.

IMG_7695
After a slice is made across the head, the otoliths can be removed with forceps

vial
The otoliths in glycerol thymol (the bar code is on the opposite side of the vial)

 

 

Shipmate Spotlight: An interview with Rick Towler 

rick
Rick Towler, IT Specialist Photo by Darin Jones

What is your position on the Oscar Dyson?
I am an IT Specialist at MACE. I spend about 4 weeks total at sea and the rest of my time in our Seattle office. I have been in my position for 11 years.

What training or education do you need for your position?
My background is in wildlife biology, but I have had a lifelong interest in computers and electronics. I was lucky enough to get an internship with a physical oceanographer and started writing data analysis software for him. That got me on my career path, but for the most part, I have taught myself.

What do you enjoy the most about your work?
I love the freedom to creatively solve problems. There’s a lot of room to learn new things in my position. Like when we started on the “Icthystick” I had never done any electronics like that but I was able to innovate and make something that works. The scientists provide the goals and I provide the gear!

Have you had much experience at sea?
No, I get seasick! I am usually the first to go down with it. Before I joined MACE I had no real sea time. When I get sick, I just have to rest and take medication. I am so lucky that this leg of the survey has been very calm.

What are your duties of your position in Seattle and at sea?
In general, I write software and design and develop instruments to help us do our job better. Along with my colleague, Scott Furnish, I am also responsible for installing and maintaining the equipment used during the survey. When at sea, I make sure all the data is being backed up. I respond to any equipment issues and fix things that are not working properly.

When did you know you wanted to pursue a marine career?
I did not necessarily know I wanted a marine career, but I knew I wanted to be involved in science. I love that my job now is a mix of natural science and computer technology. It’s important to me to have a job I think is meaningful.

What are your hobbies?
I enjoy family time: playing with my kids and hiking and biking together. I also love playing with my dog and building things with my kids.

What do you miss most while working at sea?
Pizza! And my family and my dog.

What is your favorite marine creature?
Tufted puffin because they are cute. I’m a bird guy.

Inside the Oscar Dyson: The Bridge

bridge
The main console (left) and the navigation station (right)

The bridge of a ship is an enclosed room or platform from which the ship is commanded. Our bridge is commended by officers of the NOAA Corps, one of the uniformed services of the United States. From the bridge, officers can control the ship’s movements, radar, IT (information technology), communications, trawling and everything else to operate the ship. Full control of the ships generators and engines is from the engine room, although there is a repeater display, so officers can monitor these systems. In our bridgethere is a main console from which the ship is steered. There are also consoles on other sides of the room, so the officers can control the ship when we are pulling up to the dock or when equipment is being deployed off the stern, starboard side, or port side. There is a navigation station where charts are stored and courses are plotted. For our cruise, courses are plotted on paper charts as well as two different digital charts. The bridge is surrounded by windows and the view is incredible!

Personal Log

Each fish we catch has a particular scent, some more “fishy” than others. But when Darin told me to smell a capelin (Mallotus villosus) I discovered something quite surprising. The small, slender fish smells exactly like cucumber. Or should I say that cucumbers smell exactly like capelin? It is amazing!

me
Capelin are in the smelt family: I smelt a smelt!

After all these clear sunny days, we had our first foggy one, a complete white out! It gave me an appreciation for the officers that have to navigate through these conditions using radar alone. I also noticed the fog horn sounded every two minutes; Ensign Ben told me that this is a nautical rule when visibility is less than 2 miles and the ship is underway. In between blasts, I scooted out to the bow to take the photo below.

fog
Thick fog surrounded us

I have seen two different whales on my trip so far. I saw one humpback whale from a distance while it was feeding. It was tough to make out the whale itself, but it was easy to spot the flock of birds that was gathered on the water’s surface. I have also always wanted to see an orca whale, and I finally got my chance. It was a fleeting encounter. I had just stepped out onto the deck and saw an orca surface. I raised my camera as it surfaced again and managed to take a picture of the dorsal fin. Unfortunately, our ship and the whale were cruising pretty fast in opposite directions. But it was still a magical moment to observe this amazing creature in its natural habitat.

whale
A feeding humpback whale

orca
A cruising orca whale

Like I have said before, working on a moving platform has its challenges. Even getting around a ship presents a unique set of peculiarities. First of all, most doorways have 4-inch rails on the floor. When you are stumbling down at 4am to begin your shift or excitedly moving outside to see a whale, you have to keep those in mind! Most interior doors are pretty standard, although some come equipped with hooks at the top in order to secure them open. However, the exterior doors are watertight and must be handled appropriately. To open them from either side, you first have to push the lever up and then open the door by the handle. It is really important to avoid placing your hand in the door frame while the door is open because the thick, heavy door would crush your hand is if it swung shut. For this reason, and to keep the ship secure, you also have to remember to close these doors behind you and pull down the lever on the other side. On account of a nearby storm, we are supposed to get some big seas overnight, so now everything must be secured!

Ah, the joys of shipboard living!

sea
(from left) a raised door frame, a latch on the back of a door, and a watertight exterior door

Andrea Schmuttermair, Pollock Processing Gone Wild, July 12, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 12, 2015

Weather Data from the Bridge:
Latitude: 55 25.5N
Longitude: 155 44.2W
Sea wave height: 2ft
Wind Speed: 17 knots
Wind Direction: 244 degrees
Visibility: 10nm
Air Temperature: 11.4 C
Barometric Pressure: 1002.4 mbar
Sky:  Overcast

Science and Technology Log

I’m sure you’re all wondering what the day-to-day life of a scientist is on this ship. As I said before, there are several projects going on, with the focus being on assessing the walleye pollock population. In my last post I talked about the transducers we have on the ship that help us detect fish and other ocean life beneath the surface of the ocean. So what happens with all these fish we are detecting?

The echogram that shows data from the transducers.
The echogram that shows data from the transducers.

The transducers are running constantly as the ship runs, and the information is received through the software on the computers we see in the acoustics lab. The officers running the ship, who are positioned on the bridge, also have access to this information. The scientists and officers are in constant  communication, as the officers are responsible for driving the ship to specific locations along a pre-determined track. The echograms (type of graph) that are displayed on the computers show scientists where the bottom of the ocean floor is, and also show them where there are various concentrations of fish.

This is a picture of pollock entering the net taken  from the CamTrawl.
This is a picture of pollock entering the net taken from the CamTrawl.

When there is a significant concentration of pollock, or when the data show something unique, scientists might decide to “go fishing”. Here they collect a sample in order to see if what they are seeing on the echogram matches what comes up in the catch. Typically we use the Aleutian wing trawl (AWT) to conduct a mid-water trawl. The AWT is 140 m long and can descend anywhere from 30-1,000 meters into the ocean. A net sounder is mounted at the top of the net opening. It transmits acoustic images of fish inside and outside of the net in real time and is displayed on a bridge computer to aide the fishing operation. At the entrance to the codend (at the end of the net) a CamTrawl takes images of what is entering the net.

This slideshow requires JavaScript.

Once the AWT is deployed to the pre-determined depth, the scientists carefully monitor acoustic images to catch an appropriate sample. Deploying the net is quite a process, and requires careful communication between the bridge officers and the deck crew. It takes about an hour for the net to go from its home on deck to its desired depth, and sometimes longer if it is heading into deeper waters. They aim to collect roughly 500 fish in order to take a subsample of about 300 fish. Sometimes the trawl net will be down for less than 5 minutes, and other times it will be down longer. Scientists are very meticulous about monitoring the amount of fish that goes into the net because they do not want to take a larger sample than needed. Once they have determined they have the appropriate amount, the net is hauled back onto the back deck and lowered to a table that leads into the wet lab for processing.

Here the scientists, LT Rhodes, and ENS Kaiser assess the catch.
Here the scientists, LT Rhodes, and ENS Kaiser assess the catch.

We begin by sorting through the catch and pulling out anything that is not pollock. We don’t typically have too much variety in our catches, as pollock is the main fish that we are after. We have, however, pulled in a few squid, isopods, cod, and several jellies. All of the pollock in the catch gets weighed, and then a sub-sample of the catch is processed further. A subsample of 30 pollock is taken to measure, weigh, collect otoliths from, and occasionally we will also take ovaries from the females. There are some scientists back in the lab in Seattle that are working on special projects related to pollock, and we also help these scientists in the lab collect their data.

The rest of the sub-sample (roughly 300 pollock) is sexed and divided into a male (blokes) and female (sheilas) section of the table. From there, the males and females are measured for their length. The icthystick, the tool we use to measure the length of each fish, is pretty neat because it uses a magnet to send the length of the fish directly to the computer system we use to collect the data, CLAMS. CLAMS stands for Catch Logger for Acoustic Midwater Survey. In the CLAMS system, a histogram is made, and we post the graphs in the acoustics lab for review. The majority of our pollock so far have been year 3. Scientists know this based on the length of pollock in our catch. Once all of the fish have been processed, we have to make sure to clean up the lab too. This is a time I am definitely thankful we have foul weather gear, which consists of rubber boots, pants, jackets and gloves. Fish scales and guts can get everywhere!

This slideshow requires JavaScript.

Personal Log

Here is one of many jellies that we caught. .
Here is one of many jellies that we caught. .

I am finally adjusting to my nighttime shift schedule, which took a few days to get used to. Luckily, we do have a few hours of darkness (from about midnight until 6am), which makes it easier to fall asleep. My shift runs from 4pm-4am, and I usually head to bed not long after my shift is over, and get up around noontime to begin my day. It’s a little strange to be waking up so late in the day, and while it is clearly afternoon time when I emerge from my room, I still greet everyone with a good morning. The eating schedule has taken some getting used to- I find that I still want to have breakfast when I get up. Dinner is served at 5pm, but since I eat breakfast around 1 or 2pm, I typically make myself a plate and set it aside for later in the evening when I’m hungry again. I’ll admit it’s a little strange to be eating dinner at midnight. There is no shortage of food on board, and our stewards make sure there are plenty of snacks available around the clock. Salad and fruit are always options, as well as some less healthy but equally tasty snacks. It’s hard to resist some of the goodies we have!

Luckily, we are equipped with some exercise equipment on board to battle those snacks, which is helpful as you can only walk so far around the ship. I’m a fan of the rowing machine, and you feel like you’re on the water when the boat is rocking heavily. We have some free weights, an exercise bike and even a punching bag. I typically work out during some of my free time, which keeps me from going too crazy when we’re sitting for long periods of time in the lab.

Up on the bridge making the turn for our next transect.
Up on the bridge making the turn for our next transect.

During the rest of my free time, you might find me hanging out in the lounge watching a movie (occasionally), but most of the time you’ll find me up on the bridge watching for whales or other sea life. The bridge is probably one of my favorite places on the ship, as it is equipped with windows all around, and binoculars for checking out the wildlife. When the weather is nice, it is a great place to sit outside and soak in a little vitamin D. I love the fact that even the crew members that have been on this ship for several years love seeing the wildlife, and never tire of looking out for whales. So far, we’ve seen orcas, humpbacks, fin whales, and Dall’s porpoises.

 

 

 

Did you know? Otoliths, which are made of calcium carbonate, are unique to each species of fish.

Where on the ship is Wilson?

Wilson the ring tail camo shark is at it again! He has been exploring the ship even more and made his way here. Can you guess where he is now?

Where's Wilson?
Where’s Wilson?

Where's Wilson?
Where’s Wilson?

Nikki Durkan: Fish Heads and Otoliths, June 21, 2015

NOAA Teacher at Sea
Nikki Durkan
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Midwater Assessment Conservation Survey
Geographical area of cruise: Gulf of Alaska
Date: Sunday, June 21, 2015

Weather Data from the Bridge:
Wind speed (knots):  13.01
Sea Temp (deg C):  10.45
Air Temp (deg C): 9.46

Career Highlight

Meet:  Patrick Ressler PhD, Chief Scientist on board the Oscar Dyson

Employed by: Resource Assessment and Conservation Engineering Division
Alaska Fisheries Science Center, NMFS, NOAA

Hails from: Seattle, Washington

Fun in the fish lab!  Happy Father's Day, Patrick!
Fun in the fish lab! Happy Father’s Day, Patrick!

What are your main responsibilities as Chief Scientist? As chief scientist I’m responsible for the scientific mission and for the scientific party.  In terms of the science, it’s my job to make sure that everything that needs to happen does happen, before as well as during the cruise, and that the scientists have positive and productive interactions with each other and with the ship’s crew.  Some of the decisions that need to be made are scientific or technical, some are logistical, some are managerial.  Though I don’t and can’t do all of the different jobs myself, I need to have some understanding of all the elements of our survey work and research projects, and pay attention to the ‘big picture’ of how it all fits together.   I am also the main line of communication between the scientific party and the ship (principally the captain), and between our scientific party and the lab back onshore.

What do you enjoy about your profession? Science involves a great deal of creativity and collaboration. The creativity comes into play when designing a study and also when problem solving; complications always arise in research, and it is part of Patrick’s job to address the issue or know who to ask to assist in overcoming the obstacle.  He also enjoys doing literature reviews because the process involves more than data collection and meta-analysis; the studies tell stories in a way, scientists leave clues about their interests, bias, and even personalities in their pursuit of research topics.

Do you eat fish? Yes! — Patrick uses the seafood guide when making decisions about purchases and eats salmon often. He smokes his own fish and looks forward to cooking at home with his wife and two children.

Vinny (TAS) and Emily Collins bringing in the catch of the day.
Vinny (my co-TAS) and Emily Collins bringing in the catch of the day.

Otolith extraction - the head incision is made just in front of the operculum (gill covering)…not my favorite part of the day, but as close as I’ll ever get to be a surgeon.
Otolith extraction – the head incision is made just in front of the operculum (gill covering)…not my favorite part of the day, but as close as I’ll ever get to be a surgeon.

 

Science and Technology Log

Fish heads and more fish heads: Once on board, the fish are sorted by species and we then determine length, weight, sex, and gonad development for the Pollock. The next step is to extract the otoliths, a calcium carbonate structure located in the skull that allows the fish to hear and provides orientation information. These small structures provide scientists with data on ages of the Pollock populations and environmental fluctuations. Understanding how Pollock populations respond to stresses such as the pressures of commercial fishing operations or variations in prey availability, help fisheries managers make informed decisions when setting quotas each year.

 

Pollock otolith
Pollock otolith

These structures are analogous to the human ear bones; the otoliths allow the fishes to determine horizontal and vertical acceleration (think of the feeling you experience while moving up and down in an elevator). The otoliths pull on the hair cells, which stimulate an auditory nerve branch and relay back to the brain the position of the head relative to the body. A disturbance in this function is also why we humans experience motion sickness. Many of you may also be familiar with the growth rings of a tree and how scientists can measure the width of the rings to determine age and growth rate; similarly, each year, a fish will accumulate deposits on the otoliths that can be interpreted by scientists back in the lab. NOAA has a neat program you can try: Age Reading Demonstration. My co-Teacher at Sea (Vinny Colombo) and I will be bringing back samples to use in our classrooms!

My cod-face with a Cod that tried to swallow a Pollock. Photo credit:  Patrick Ressler
My cod-face with a Cod that tried to swallow a Pollock. Photo credit: Patrick Ressler

For some species, the information gathered from these otoliths can also be used to infer characteristics about the environment in which the fish travels. Climate scientists use similar data from trees, ice cores, coral reef cores, and sediment deposits to produce geochemical records used in modeling paleoclimates and projecting future changes in climate. Likewise, the otoliths contain a geochemical record because the calcium carbonate and trace metals correlate with water samples from certain areas. Scientists can then ascertain the otolith’s chemical fingerprint using a mass spectrometer and uncover information on the fishes’ spawning grounds and migration routes. In some cases, these data are even used to establish marine protected areas.

Personal Log

I have great appreciation for the hard work the crew puts in on a daily basis and am thankful for the humor they continue to provide! I’ve seen more than a few impressions of overly stuffed Puffins and fish faces, shared laughs while Rico pulls fish scales out of my hair, danced to Persian pop songs, and continued to laugh at the ridiculously overused puns in the Bridge. Humor is vitally important out here! The ship operates 24 hours a day and shifts are long, with spurts of demanding physical labor. A lot of coffee is consumed on board and the Oscar Dyson even has a fancy espresso machine! Sadly, I figured out early on that coffee makes me quite nauseated on board. I am a firm believer in the health benefits of coffee and thanks to John Morse (a fellow teacher at Steamboat Mountain School), I have accumulated many scientific articles to back up my claims; however, in this case I had no choice, and after a few headaches, I am free from the bean addiction…for now!

Trying out the engine room sound powered phone

 

 

Did you know? In the event of a power failure, the Oscar Dyson is equipped with sound powered phones – the sound pressure created when a person speaks into the transmitter creates a voltage over a single wire pair that is then converted into sound at the receiver – no electricity necessary!

DJ Kast, Drifter Buoy! May 29, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise:
George’s Bank
Date: May 29, 2015, Day 11 of Voyage

Drifter Buoy!

My buoy and I- ready to deploy!  Photo by Jerry Prezioso
My buoy and me ready to deploy! Photo by Jerry Prezioso

NOAA has an Adopt a Drifter program! The program is meant to work with K-16 teachers from the United States along with international educators. This program provides teachers with the opportunity to infuse ocean observing system data into their curriculum. This occurs by deploying or having a research vessel deploy a drifter buoy. A drifting buoy (drifter) is a floating ocean buoy equipped with meteorological and/or oceanographic sensing instruments linked to transmitting equipment where the observed data are sent. A drifting buoy floats in the ocean water and is powered by batteries located in the dome. The drifter’s sea surface temperature data are transmitted to a satellite and made available to us in near real-time. The teachers receive the WMO number of their drifting buoy in order to access data online from the school’s adopted drifter. Students have full access to drifting buoy data (e.g., latitude/longitude coordinates, time, date, SST) in real or near real-time for their adopted drifting buoy as well as all drifting buoys deployed as part of the global ocean observing system. They can access, retrieve, and plot as a time series various subsets of data for specified time periods for any drifting buoy (e.g., SST) and track and map their adopted drifting buoy for short and long time periods (e.g., one day, one month, one year).

I am receiving one from the Chief Scientist onboard the NOAA Ship Henry B. Bigelow so the students in all my programs can access it, and this will be helpful to convey modeling of currents, and can help build models of weather, climate, etc .I was so excited when I found out that the chief scientist would be giving me a drifter for me and my students to follow. I decorated the buoy with programs that have inspired me to apply to the Teacher at Sea Programs, the current programs I am working for at USC (JEP & NAI), my family, and my mentors.

Representing the USC Readerplus Program that hosts my Wonderkids Programs.  Photo by Jerry Prezioso.
Representing the USC Readerplus Program that hosts my Wonderkids Programs. Photo by Jerry Prezioso.

Quick change into my NOAA Teacher at Sea Shirt. Thank you so much for all these opportunities.  Photo by Jerry Prezioso.
Quick change into my NOAA Teacher at Sea Shirt. Thank you so much for all these opportunities. Photo by Jerry Prezioso.

Special recognition to JEP, USC Dornsife, and my Young Scientist Program & NOAA TAS! Photo by DJ Kast
Special recognition to JEP, USC Dornsife, and my Young Scientist Program & NOAA TAS! Photo by DJ Kast

USC Wonderkids and USC Seagrant Logos. Photo by DJ Kast
USC Wonderkids and USC Seagrant Logos. Photo by DJ Kast

 

 

Thanks to NMEA and the USC Wrigley Institute, USC Catalina Hyperbaric Chamber for continuously supporting my ocean going adventures. Photo by DJ Kast
Thanks to NMEA (National Marine Educators Association) and the USC Wrigley Institute, USC Catalina Hyperbaric Chamber for continuously supporting my ocean going adventures (Plus my favorite gastropod, Spanish Shawl Nudibranch for color). Photo by DJ Kast

Representing Rossier, USC QuikSCience, and the NOAA Henry B. Bigelow Ship. Photo by DJ Kast
Representing Rossier, USC NAI, USC QuikSCience, and the NOAA Ship Henry B. Bigelow Ship. Photo by DJ Kast

 

 

 

 

 

 

 

 

 

 

 

Important family that have always supported me with my science education career. Photo by DJ Kast
Important family that have always supported me with my science education career. Photo by DJ Kast

 

My list of ocean educators that inspire me to always strive for more. Photo by DJ Kast
My list of ocean educators that inspire me to always strive for more. Plus a shout-out to the Level the Playing Field Institute, and their USC (Summer Math and Science Honors) SMASH program.  Photo by DJ Kast

Special thanks to the schools participating in the USC Young Scientist Program and USC Wonderkids Programs. Photo by DJ Kast
Special thanks to the schools participating in the USC Young Scientist Program and USC Wonderkids Programs. Photo by DJ Kast

 

 

JEP HOUSE and Staff!

JEP House and Dornsife Represent! Photo by DJ Kast
JEP House and Dornsife Represent! Photo by DJ Kast

Important JEP People's.  I forgot to take a final picture of this but this included Brenda, Adrienne, and Mandy. Photo by DJ Kast
Important JEP People’s.
I forgot to take a final picture of this but this included Brenda, Adrienne, and Mandy. Photo by DJ Kast

I am teaching a marine biology class this summer for the USC Neighborhood Academic Initiative program. I am so excited to be following the drifter buoy # 39708. It was launched at 8:53 EDT on May 28th, 2015 and its first official position is: 41 44.8 N 065 27.0 W. I will definitely be adapting a few of the lesson plans on the following site and creating my own to teach my students about weather, climate, and surface currents.

http://www.adp.noaa.gov/lesson_plans.html

Deployment:

To deploy the buoy, you literally have to throw it overboard and make sure it hits nothing on its way down. When it is in the water, the cardboard wraps dissolve away, and the cloth drogue springs open, filling with water and causing the buoy to drift in surface water currents instead of wind currents.  The tether (cable) and drogue (long tail that is 15 meters long) will unwrap and extend below the sea surface where it will allow the drifter to float and move in the ocean currents

Photo of the drogue deployed in the water. From the NOAA Adopt a Drifter Program website.
Photo of the drogue deployed in the water. From the NOAA Adopt a Drifter Program website.

Deploy the Buoy! Photo by Jerry Prezioso
Deploy the Buoy! Photo by Jerry Prezioso

My buoy in the Water! Photo by DJ Kast
My buoy in the Water! The cardboard wraps will dissolve away, and the cloth drogue will spring open and fill with water allowing the buoy to drift in surface water currents instead of wind currents.   Photo by DJ Kast

Since I was now an expert drifter buoy deployer, I was also able to deploy a buoy from the St. Joseph’s school in Fairhaven, Massachusetts. This drifter buoy’s tracking number is: 101638 and launched on May 28th, 2015 at 8:55 EDT and its first official position is: 41 44.9 N 065 27.0 W

Photo of me with the St. Joseph buoy that will also be deployed. Photo by Jerry Prezioso.
Photo of me with the St. Joseph buoy that will also be deployed. Photo by Jerry Prezioso.

Ready to deploy. Photo by: XO LCDR Patrick Murphy
Ready to deploy. Photo by: XO LCDR Patrick Murphy

Tracking the buoy (from Shaun Dolk):

The easiest way to track these buoys in real-time is to use the Argos website https://argos-system.clsamerica.com/cwi/Logon.do.

Guest account:  Username: BigeloTAS and Password: BigeloTAS.

  1. Once logged in, select the “Data access” tab on the top left side of the screen.
  2. Select “Mapping”; a pop-up window will appear.
  3. Ensure “by ID numb. (s)” is selected from within the “Platform:” option (top left).
  4. Enter your desired ID number in the search field at the top of the screen.
  5. Enter the number of days for which you’d like data (20 days is the maximum).
  6. Select “Search” to generate a trajectory plot for the given parameters.

**Please note, because you can only view the 20 most recent days of data, you’ll need to save the data if you wish to view the entire track line!**

To save data into Google Earth format, simply click on the Google Earth image (second tool from the right on the map settings bar, found just below the “Search” tab). You’ll need to save data at least every 20 days to ensure no interruptions in your final track line. Of course, to view the track line in its entirety, open Google Earth and ensure all of the data files are selected. If you desire to look at the data, not the track lines, go to “Data access”, then “Messages”, and enter your desired ID numbers. Again, data is only accessible for the most recent 20 days, so if you’d like to download the data for archival purposes, go to “Data access”, then select  “Message download”. From here, you’ll want to save the data in .csv, .xls, or .kml format.

My buoy 39708 is transmitting properly and providing quality data! Below are some of the maps of its early trajectory and its current movement so far.

Photo sent by Shaun Dolk
Early Trajectory! Photo sent by Shaun Dolk

Map-2015-05-29-15-40-17
Photo sent by Shaun Dolk

PS for Science- Otoliths

While we were deploying the buoys one of the engineers named Rahul Bagchi brought over a strainer that is attached to the water intake pipe. The strainer was covered in Sand Lances.

Sand Lances on the inside of the strainger. Photo by Dj Kast
Sand Lances on the inside of the strainer. Photo by DJ Kast

IMG_7567
Sand Lances on the outside of the strainer. Photo by DJ Kast

 

 

 

 

 

 

 

 

 

Fortunately, there are another two scientists on board that need sand lance samples for their research purposes and they were collected. My research scientist friend Jessica needs the otoliths or fish ear bones for part of her research on cod, since sand lances are eaten cod. Otoliths are hard, calcium carbonate structures located behind the brain of a bony fish. Different fish species have differently shaped otoliths. They are used for balance and sound detection-much like our inner ears. They are not attached to the skull, but “float” beneath the brain inside the soft, transparent inner ear canals. The otoliths are the most commonly used structure to both identify the fish eaten by consumers up the food chain, and to age the fish itself.

Otoliths and time scale. Photo by NOAA NEFSC
Otoliths and time scale. Photo by NOAA NEFSC

Otoliths with the winters pointed out. Photo by: Bedford Institute of Oceanography
Otoliths with the winters pointed out. Photo by: Bedford Institute of Oceanography

The otoliths also have daily growth bands. Alaskan Fishery scientists manipulate the daily growth bands in salmon larvae creating an otolith tag that identifies where the fish came from by controlling the growth rate of their fish populations.

Photo of a tagged otolith from the Sawmill Bay fishery in Alaska. Photo from: Alaskan Fisheries
Photo of a tagged otolith from the Sawmill Bay fishery in Alaska. Photo from: Alaskan Fisheries

New material (protein and calcium carbonate) is added to the exposed surface of the otolith over time, showing a fish life history (otolith start growing at day 1 even in larval stages). The lighter zones have higher calcium deposit which is indicate summers, while darker zones have higher protein levels which indicate winter. One pattern of a light and dark zone indicate a year and is consequently how the fish is aged.

Tiny white speck is the sand lance otolith. Photo by DJ Kast
Tiny white speck is the sand lance otolith. Photo by DJ Kast

The sand lances Jessica and I were dissecting for otoliths. Photo by DJ Kast
The sand lances Jessica and I were dissecting for otoliths. Photo by DJ Kast

She also took a base of the tail for her research as well. Photo by DJ Kast
She also took a white muscle sample from the dorsal surface of the fish for her research as well. Photo by DJ Kast

Jessica Lueders-Dumont is using the otoliths for three main purposes in relation to her Nitrogen Isotope work.

1. She is hoping to see the changes from year 1 to the adult years of the fish to give an accurate fish life history and how they relate to the rest of the Nitrogen isotopes in the area’s food chain.

2. To see how current nitrogen isotopes compare to the archeological otoliths found in middens or sediment sites, since otoliths can be preserved for hundreds of years.

3. She is trying to create a baseline of nitrogen 15 in the Gulf of Maine so that she can see biogeochemical evidence of the N15 she finds in plankton in higher trophic levels like fish.

I will definitely be dissecting some fish heads with students to check for otoliths and using a microscope to age them.

PSS for Science:

The chief scientist and I decided we should put some Styrofoam Cups under pressure. This polystyrene foam is full of air pockets. This is important because the air pockets (volume) shrink with increasing pressure, essentially miniaturizing the cups.

I have done this before using the help of Karl Huggins at the USC Wrigley Institute’s Catalina Hyperbaric Chamber. We had a TA that wanted to teach about SCUBA diving so we had her students decorate Styrofoam cups and a head and placed it in the chamber. Apparently the Styrofoam was too good of a quality because it re-expanded on the way back up. http://www.youtube.com/watch?v=f6DDBFovht0

Also, I also found out you can do this with a pressure cooker- oh the experiments I will do when I get back. 😀

Before photos:

Front view of my NOAA TAS cup. Photo by DJ Kast
Front view of my NOAA TAS cup. Photo by DJ Kast

Back side of the NOAA TAS cup. Photo by DJ Kast
Back side of the NOAA TAS cup. Photo by DJ Kast

Just wanted it to say how amazing it has been on the NOAA Henry B. Bigelow. Photo by DJ Kast
Just wanted it to say how amazing it has been on the NOAA Ship Henry B. Bigelow. Photo by DJ Kast

I made a cup for my programs as well. Photo by DJ Kast
I made a cup for my programs as well. Photo by DJ Kast

USC Wonderkids Program on a Styrofoam cup before shrinkage. Photo by DJ Kast.
USC Wonderkids Program on a Styrofoam cup before shrinkage. Photo by DJ Kast.

Saying hi to all of my students from inside one of the cups. Photo by DJ Kast
Saying hi to all of my students from inside one of the cups. Photo by DJ Kast

In the mesh bag, and attached to the Rosette for shrinkage. Photo by DJ Kast
In the mesh bag, and attached to the Rosette for shrinkage. Photo by DJ Kast

After Photos: the Styrofoam cups went down to 184 m or 603 ft on the Rosette/ CTD in South George’s Basin.

Shrunken Cups in the Mesh bag attached to the Rosette. Photo by DJ Kast
Shrunken Cups in the Mesh bag attached to the Rosette. It went down to 184 m or 603 ft Photo by DJ Kast

Look at these tiny cups! Photo by Jerry Prezioso
Look at these tiny cups! Photo by Jerry Prezioso

Cups compared to the original size (front). Photo by DJ Kast.
Cups compared to the original size (front). Photo by DJ Kast.

Cups compared to the original size (back). Photo by DJ Kast.
Cups compared to the original size (back). Photo by DJ Kast.

Mary Murrian: Working at Sea on the Oscar Dyson! July 11, 2014

NOAA Teacher at Sea

Mary Murrian

Aboard NOAA Ship Oscar Dyson

July 4 – 22, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area of Cruise: Bering Sea North of Dutch Harbor

Date: Friday, July 11, 2014

Weather Data fro the Bridge:

Wind Speed: 17.02 kt

Air Temperature: 8.9 degrees Celsius

Barometric Pressure: 1004.3

Latitude: 5903.6745 N

Longitude: 17220..4880 W

noaa iphone pictures july 5 and 6 2014 1109
I’m sorting the jellyfish (Chrysaora Melanaster) from the pollock.

Science log:

I participated in my first live trawl, catch, sort and data collection survey. In my last blog, I talked about how we located and caught the pollock.  This blog will talk about what happens when the fish are unloaded into the wet lab and processed.  A wet lab is a science lab that is capable of handling excess water and houses the equipment need to to process the catch.

Fresh catch proceeding down the conveyor belt. Time to sort.
Fresh catch proceeding down the conveyor belt. Time to sort.

Once the crew off loads the fish, from the net to the short conveyor belt, into the wet lab or sometimes called the slime lab, (it really lives up to its name), I help the scientists sort the pollock from the other species caught in the net. A small sample of marine life, that is not a pollock, gets sorted, weighed and measured for data collection purposes. They are not the main target of our survey, however, they are interesting to see. Large quantities of jellyfish usually make the mix, but I have seen a variety of other animals, such as crabs, starfishes, clams, salmon, flatfishes, Pacific herring, Atka mackerel, and Yellow Irish Lord. The main character, the pollock, are weighed in batches and then placed on a small table to be sexed. In order to sex the fish, I had to cut across the side of the fish with a small scalpel. Next, I inserted my fingers into their guts and pulled out either the gonads (male) or ovaries (female). The gonads look like stringy romaine noodles and the ovaries look like whitish-pinkish oval sacs. Female pollock are placed in a bin labeled sheila’s and the male pollocks are placed in a bin labeled blokes. Sheila’s and blokes are Australian terms for female and male. Cute.

A female pollock full of eggs
A female pollock full of eggs

Sexing the pollock.  This one is a female.  You can see it oval shaped ovaries.
Sexing the pollock. This one is a female. You can see it oval shaped ovaries.

Once sexed and sorted, the fish are measured for their length. Two very ingenious scientists (one who is working on my trip, Kresimir Williams, and Rick Towler), invented an electronic measuring device. The device allows us to measure quickly and accurately while at the same time automatically recording the measurement on the computer. It looks like a cutting board with a ruler embedded in the center. Of course, all measurements used are metric, the primary form of measurement for scientists across the world.  I to place the fish’s mouth at the beginning of the board and line the back tail of the fish along the ruler. Next, a special tool (a stylus) embedded with a magnet (it’s small, white,and the front looks like a plastic arrowhead) is placed arrow side forward on the end of the tail fin. Once the tool touches the board (it makes a noise which sounds similar to “ta-da” to let you know it captured its measurement), it automatically records the length in the data program, on the computer. I wish I had one for my classroom. Oh, the fun my students could have measuring!  The device streamlines the data collecting process allowing scientists more precise data collection and more time for other research.

I’m measuring the pollock on the electronic scale called the Ichthy Stick

That was a lot to absorb, but there is more. If you tend to get squeamish, you might want to scroll past the next paragraph.

Although, I did not work hands on with the next data collection, I closely observed and took pictures. I will try it before my trip ends. The next step is the aging process. Aging a pollock is a vital part of determining the health and welfare of the species. Aging a pollock is similar to the method of aging a tree.  The Russian scientist, Dr. Mikhail Stepanenko, who has been surveying pollock for over twenty years and is part of the NOAA science team, has it down to a science. First, he cuts the pollock’s head off exposing the ear bones called Otoliths (Oto–means ear; liths–means stone).  He removes the tiny ear bones (about the size and shape of a piece of a navy bean), rinses them, and places them in a small vial labeled with a serial-numbered bar code. The bar code gets scanned and the code is assigned to the specific fish in the computer data base, which also includes their sex, weight and length. Once back at the lab, located in Seattle, Washington, the otoliths can be observed under a microscope and aged based on the number of rings they have: pollock otoliths have one ring for every year of age.  Only twenty fish from each trawl have their otoliths extracted.

Looking inside the pollock.  The little white bones are the ear bones or otoliths.
Looking inside the pollock. The little white bones are the ear bones or otoliths.

Dr. Mikhail Stepanenko placing the otoliths (ear bones) in the vial to be sent to the lab.
Dr. Mikhail Stepanenko placing the otoliths (ear bones) in the vial to be sent to the lab.

Mikhail Stepanenko or we call him Meesha
Mikhail Stepanenko or we call him Meesha

Once all data are collected, there is still more work to be completed. All of the fish that we sampled, were thrown back into the ocean for the sea birds and other carnivores (meat-eaters) to enjoy. Who wouldn’t enjoy a free meal? Then the equipment and work space must be sprayed down to get rid of all the fish particles (slime). It’s important to clean up after yourself to ensure a safe and healthy environment for everyone. Besides, the smell would be horrible.  I also had to spray myself down, it gets very messy.  I had fish guts and jellyfish slime all over my lab gear (orange outer wear provided by NOAA). Unfortunately, the guts occasionally get splattered on my face and hair!  Yuck, talking about fish face.  Thankfully, a bathroom is nearby, where I can get cleaned up.

Starfish that fell from the net when being towed back on board.
Starfish that fell from the net when being towed back on board.

Part of the snail family
Whelks (snails) and anemones

When all is clean, the scientists can upload and analyze the data. They will compare the data to past and current surveys. The data is a vital step to determining the health and abundance of pollock in our ecosystem. I am amazed at all the science, math, engineering, and technology that goes on during a fish survey. It takes many people and numerous skills to make the survey successful.

Brittle Sea Star

This is one of many experiences, I have had trawling and collecting data at sea aboard the Oscar Dyson.  The process will repeat several times over my three week trip.  As part of the science crew, I am responsible to help with all trawls during my shift.  I could have multiple experiences in one day.  I cannot wait!

Personal Log:

What’s it like to be on a NOAA ship out at sea? 

The deck hands, NOAA Corps, and the people I work closest with, the science team, are wonderful and welcoming. I’m super excited and I have to restrain myself from overdoing my questions. They have a job to do!

The weather is not what I expected.  It is usually foggy, overcast, and in the high 40’s and low 50’s.  Once in a while the sun tries to peek out through the clouds. The Bering Sea has been relatively calm. The heaviest article of clothing I wear is a sweatshirt.  It is still early, anything can happen.

On my first day at sea, we had a fire drill and an evacuation drill. Thankfully, I passed.  With help from Carwyn, I practiced donning (putting on) my survival suit.  I displayed a picture of me wearing it in my last blog.  It makes for a hilarious picture!   All kidding aside, NOAA takes safety seriously. The survival suit will keep me alive for several days in case of an evacuation in the middle of sea until someone can rescue me. It will protect me from the elements like water temperature, heat from sun, and it has a flashlight attached. Hopefully, I will not have to go through the experience of needing the suit; but I feel safer knowing it is available.

Carwyn Hammond

Besides the people, the best amenity aboard the Oscar Dyson is the food. Food is available around the clock. That is important because we work 12 hour shifts from 4:00 to 4:00. That means I work the morning 12-hour shift and my roommate, Emily Collins, works the night 12-hour shift. Hungry workers are grumpy workers. For breakfast, you can get your eggs cooked to order and choose from a variety of traditional breakfast food: French toast, grits, cereal, bacon, sausage, fresh fruit, etc…Hot meal options are served for lunch and dinner including a delicious dessert . Of course, ice cream is available always!  I hope I can at least maintain my weight while aboard.

The Galley
The Galley

Food Bar
Food Bar

If I get the urge, there is workout equipment including cardio machines and weights available to use. Other entertainment includes movies and playing games with the other crew members.  The Oscar Dyson also has a store where I can purchase sweatshirts, sweatpants, t-shirts, hats, and other miscellaneous souvenirs advertising the name of the ship. Who would have thought you could shop aboard a NOAA fishing vessel?  I am definitely going shopping.  One of my favorite things to do aboard the ship is to watch for marine life on the bridge, it is peaceful and relaxing.  For anyone that does not know, the bridge is where the Chief Commanding Officer, Chief Executive Officer, and crew navigate the ship.  It is the highest point in which to stand and watch safely out at sea and in my opinion, it has the best view on board.

Did you know?

Did you know when a marine animal such as a seal is close by during a trawl, the trawl process stops and is rerouted?   

The crew is very respectful of sea life and endeavors to complete their mission with the least negative impact on wildlife.  Also, while the ship is on its regular course, the officers on the bridge, sometimes with a deck hand who is available, keep an eye out for seals, sea lions, whales, and sharks, in order to maneuver around them and keep them safe.

NOAA Corps LT Greg Schweitzer, Executive Officer or XO
NOAA Corps LT Greg Schweitzer, Executive Officer or XO

NOAA Corps Ensign Ben VanDine, Safety Officer
NOAA Corps Ensign Ben VanDine, Safety Officer

 

Did you know you can track the Oscar Dyson and its current location?

Check out this link: http://shiptracker.noaa.gov/

Make sure you find the Bering Sea and click on the yellow dot; it will tell you our coordinates!

 

Meet the Scientist:  Emily Collins

Emily holding a Yellow Irish Lord

Title: Fisheries Observer (4 years)

Education:  Bachelor’s Degree in Biology, Marine Science, Boston University

Job Responsibilities: As an observer, Emily works aboard numerous fishing vessels, including the Oscar Dyson.  She collects data to find out what is being caught so that we can send the information to NMFS (National Marine Fisheries Services), a division of NOAA.  They use the data she collects to complete a stock assessment about what type of fish are caught and how much.  She is helping, as part of the science team, survey the pollock for all three legs of the survey.  When I get back to port, she has a couple of days to rest up in Dutch Harbor and then she will complete the last leg of the trip.

Living Quarters:  As a full-time observer, her home is wherever the next assignment is located, mostly on the Bering Sea and the Gulf of Alaska.  She is from Dundee, New York, where her family currently resides.

What is cool about her work?

She loves working at sea  and working with the marine life.  She especially loves it when the nets catch a species of fish she has not seen before.  Getting to know new people and traveling is also a plus.

The weirdest and definitely not her favorite experience, while working on a smaller fisheries boats, was having to use a bucket for the toilet.

Emily had a wonderful opportunity her senior year in high school, the chance to go on a National Geographic Expedition with her mom and then later while in college while taking classes abroad. She went to the Galapagos Islands and Ecuador to study marine biology. These experiences and the fact that her mother is a veterinarian exposed Emily to the love of animals the ocean, and her career choice.

 

Nate is holding a snow crab.

A flat fish
Rock Sole (a type of flatfish)