Jenny Gapp: “Lhuk xaa-ghii-la” (I found a fish), August 1, 2023

NOAA Teacher at Sea

Jenny Gapp (she/her)

Aboard NOAA Ship Bell M. Shimada

July 23, 2023 – August 5, 2023

Mission: Pacific hake (Merluccius productus) Survey (Leg 3 of 5)
Geographic Area of Cruise: Pacific Ocean off the Northern California Coast working north back toward coastal waters off Oregon.
Date: Tuesday, August 1, 2023

Weather Data from the Bridge
Sunrise 0613 | Sunset 2034
Current Time:  0900 (9:00 am Pacific Daylight Time)
Lat  42 32.8 N, Lon 125 00.9 W
Visibility: <1 nm (nautical miles)
Sky condition: Overcast
Present weather: Fog
Wind Speed:  15 knots
Wind Direction: 350°
Barometer: 1017.9 mb
Sea Wave height: 2 ft | Swell: 340°, 3 ft
Sea temp: 16.6°C | Air Temp: 16°C
Course Over Ground (COG): 090.2°
Speed Over Ground (SOG): 9.9 knots

Science and Technology Log

Second Engineer Justin Halle provided a tour yesterday of the engine room and associated machinery kept running smoothly by the Engineering Department. Four Caterpillar brand diesel engines use about 1,800 gallons of fuel per day, although that number fluctuates depending on operations and weather. There are multiple fuel tanks in reserve that hold 5 – 15,000 gallons. A fuel manifold regulates fluid intake and a camera is fixed on fuel levels so the engineers can monitor them. Two valves per tank allow for filling or suction. Water evaporators separate sludge and water to keep fuel clean and bacteria free. We also looked up the exhaust shaft which vents out the top of the ship above the level of the flying bridge. 

We viewed the propellor shaft that drives the main propulsion of the ship. A secondary means of propulsion is the bow thruster, but it is primarily used in close quarters situations such as docking and undocking. We did not view the bow thruster on our tour. 

There’s a whole water treatment system. The sewage part has a macerator that blends up, er, things just like the Ninja blender in your kitchen. Treated wastewater is vented to the ocean every few days, but cannot be pumped within three miles offshore or within marine sanctuaries. We consume approximately 1,400 gallons of water per day, and the ship can make potable water from seawater through reverse osmosis, evaporators, and water brought aboard from port. Water is treated with bromine, which is often used as an alternative to chlorine in swimming pools.

Workbenches and tools are kept tidy, with some tools and parts kept in a veritable library of large metal cabinets. An impressive control panel allows the engineers to look at the status of various systems at a glance. Performance logic controllers enable engineers to turn things on or off in the engine room from the control panel. Additional screens show a camera feed of potable water levels, the propulsion system, and the fire pump (only accessible down a hatch in the bow thruster space), which are all prone to flooding. 
Additional specifications for NOAA Ship Bell M. Shimada can be viewed here

Career feature

Matt, wearing sunglasses and an orange apron, stands at a cutting board mounted on deck near a railing; we can see whitecap waves just beyond the cutting board. He wears a glove on his left hand and holds a fish steady, cutting with his right to fillet the fish. To his right is a pile of filets. He appears engrossed in his work.
Matt fillets rockfish caught in the bycatch for a special lunchtime treat.

Matt McFarland, Chief Bosun

Give us a brief job description of what you do on NOAA Ship Bell M. Shimada.

We do a lot of fishing operations and I run all the gear. I run the nets and the winches. I put the nets out wherever the scientists are seeing the fish and we’ll go down to that depth. I’m responsible for the efficiency of the operation and safety of the six deck hands I have underneath me.

Note: Matt is also a “plank owner” meaning he was a member of the ship’s crew prior to the vessel being placed in commission. So, he has been with the Shimada before it was owned by NOAA and still belonged to the shipyard. The ship was built in Moss Point, Mississippi and Matt was a part of the crew when it was taken through the Panama Canal to serve in research operations on the West Coast.

What’s your educational background?

I grew up commercial fishing.  After high school I went to a technical college for marine technology. So I can work at marinas, on boats and motors and this and that. After school I went back to commercial fishing for a while along with carpentry to supplement. Then about 2008 I decided I wanted to be a professional mariner and get my U.S. Coast Guard license. From there I found out about NOAA, joined in 2009 and have been here ever since. The Coast Guard license is about a three-week course; they teach you basic seamanship.  In order to be in my position out on the ocean you need an AB, meaning able bodied seaman. The Ordinary Seaman (OS) is entry-level and I worked my way up over the years. So on the fishing boats we have different levels: general vessel assistant (OS), fisherman (the equivalent of an AB), the next step is skilled fisherman, then lead fisherman, then Chief Bosun is the leader of the Deck Department.

What do you enjoy most about your work?

I enjoy the ocean. I love being out here. Growing up in commercial fishing, you work really hard and there’s no guarantee you’re going to get paid: if you don’t catch fish you don’t get a paycheck. So being here with NOAA means I get to continue to do what I love and if we don’t catch fish I still get paid. It’s a secure job. I have a passion for getting the science right and making sure things are getting done the way they should be done. We’re making regulations for the commercial industry and if our science is faulty, if we aren’t being efficient, then that’s not fair to them. I have family in commercial fishing, so it’s important to me. A lot of these guys are new to sailing and have never fished, so I’m passing on that knowledge. This isn’t as grueling as commercial fishing. It’s important to me to keep the industry going and get the science right. 

What advice do you have for a young person interested in ocean-related careers?

Start with small trips. Make sure you like it. It’s not always beautiful out here. Some days there are rough seas, some people get sick, and for some people it’s just not for them. I would encourage youth to pursue it though. It’s a good way to get away from the news–you’re in your own little world out here. It’s a nice alternative lifestyle. 

Do you have a favorite book?

I’d say Captains Courageous, by Rudyard Kipling. The 1937 film version was actually done in my hometown of Gloucester, Massachusetts. Gloucester is the oldest commercial fishing seaport in the United States. (The link will take you to some oral histories of Gloucester residents.)

Laura, wearing a navy blue NOAA Corps uniform, stands at a map table on the bridge. She holds a protractor in her right hand and looks down at a nautical chart spread out across the table.
XO Gibson considers a route using the nautical charts.

Laura Gibson, XO

Give us a brief job description of what you do on NOAA Ship Bell M. Shimada.

My job is the administrative side of the ship which includes staffing, budget, and spending a lot of time at my desk.

What’s your educational background?

I went to college in Myrtle Beach, South Carolina. I have a Bachelor’s in Science with a Geology focus.

What do you enjoy most about your work?

I enjoy the camaraderie of the crew. Sometimes we’ll play games. I have a good time and feel like I’m doing a fine job when they are having a good time. 

What advice do you have for a young person interested in ocean-related careers?

If you’re not opposed to sailing, check it out; there’s a high demand. It’s not the easiest lifestyle for everyone. You could be very successful at a young age in a maritime career. There’s a clear path forward. I was a merchant mariner before sailing with NOAA. They call it coming up the hawse pipe when you learn on deck how a ship works. I didn’t go to an academy but learned on the job. I accepted a commission with NOAA as a junior officer and started on NOAA Ship Pisces in Mississippi 14 years ago. While on the Pisces I helped with the cleanup of the Deepwater Horizon oil rig disaster. I was proud to be a part of the fleet of vessels that supported the aftermath of that event.  

Do you have a favorite book?

The Gunslinger or Misery, by Steven King. I’m a King fan. 

Taxonomy of Sights

Apparently there are more marine mammal sightings in Southern California and fewer as you head north. However, there have been whale spouts sighted every day. Our Chief Scientist says the humpback sightings pick up near Vancouver Island and waters north–although Leg 3 doesn’t extend that far..

Day 8. Bycatch highlights: splitnose rockfish, a 43-lb squid, the egg case of a skate, and a single lamprey. In the evening: whale spouts from the flying deck, and an aerial show from a brown booby (a seabird not normally seen this far north; it may have been a sub-species called Brewster’s brown booby) attempting to land on the jack staff and then on the bow–with limited success in a 24 knot wind
Day 9. Saw Humpback flukes as they dove.
Day 10. Beautiful shades of ocean blue…

a brown bird in flight over the water; it has a white face and a narrow bill
Brewster’s brown booby
photo taken by Nick, OSU Marine Mammal & Bird Observer

You Might Be Wondering…

How’s the food?

I am told our Chief Steward, Ronnie Pimentel, is one of the best in the NOAA fleet.
Ronnie and Rich Lynch (Second Cook) tirelessly serve up breakfast, lunch and dinner every day. Creamy breakfast grits, blueberry pancakes, pulled pork sandwiches, soups, peanut butter cookies, lamb chops, taco Tuesdays, pizza night, yuuuum. Ronnie has been with NOAA for a year, and prior to that served the Navy 21 years as a Steward. Ronnie spends about $15,000 a month on food, which varies depending on the length of the voyage. Food is stored in two freezers (one large, one small) and two chill boxes (one large, one small). He typically uses about 300lbs of frozen vegetables, and has about one case of each type of food, like one of apples, one of bananas, etc. Depending on the size and tastes of the crew he’ll pack 60lbs of bacon, and various cakes for tempting treats.  

plated meal of some sort of meat, fish topped with lemon slices, oyster, rice
tasty dinner
plated meal of scrambled eggs with ham, cut fruit, and probably French toast
tasty breakfast

Floating Facts

NOAA Corps is the eighth uniformed service in the United States, although it is not an armed force—Army, Navy, Air Force, Marines, Coast Guard, Space Force—and falls under the Department of Commerce, not the Department of Defense (DOD). Interestingly, the U.S. Coast Guard is not under the DOD either, but acts as a military branch and federal law enforcement agency within the Department of Homeland Security. The Public Health Service is the other unarmed, but uniformed service. 

NOAA Corps has the same benefits and rank system as the military. Currently NOAA Corps has three admirals. Read more about one of the admirals here. Officers are “active duty” meaning they have full-time employment and may be directed to go where they are needed. The term “billet” refers to the current job in which an officer is placed. Members of the Corps do a rotation of two years at sea and three years on land. 

Personal Log

I have clean clothes! While using the washer and dryer machines on Sunday I saw why cleaning the lint traps is taken so seriously.

A photo of a laminated image of a container ship on fire, with this message printed on top of the image: July 27, 1996 - Fire aboard cruise ship Universe Explorer, Pacific Ocean off Alaska. Estimated damage to vessel: $1.5 million, serious/minor injuries: 56, deaths: 5. Location of Fire: Main Laundry Room. July 20, 1998 - Fire aboard M/S Ecstasy off Miami, Florida. Onboard: 2516 passengers and 916 crew. Estimated damage: $17 million. Location of fire: Laundry room. Feb 26, 2008 - Fire aboard F/V Pacific Glacier of Glacier Fish Company, Bering Sea. Firefighters: 16. Lifeboats deployed: all of them. Fire burn time: 6:30 pm to 11:30 pm local time (that's FIVE hours of fighting a fire!). Location of Fire: Forward Laundry Room. The leading cause of fire on a boat is dirty lint traps in dryers. Don't be the chump who gets caught with clothes in the dryer when the lint trap catches on fire. Clean out the lint trap BEFORE AND AFTER you use the dryer. Clean the lint trap, save lives. Go on, be a hero.
Clean the lint trap, save lives
three columns of dryers stacked on washing machines in the laundry room
Washing machines and dryers

Humor is the best medicine, and a great way to reckon with being cooped up on a ship for two weeks with 33 people. While reading through some posted protocols in the acoustics lab I came across this gem in the last row of “Shimada Sonar Frequencies.”

A printed table of sonar frequency protocols, affixed to a metal surface (perhaps a cabinet) by a magnet that reads: Do Not Disturb, Already disturbed. The table has columns labeled: Sounder, Freq, Purpose, Mounting Location, Beam Angle (Degrees), Power (Watts.) Most of the entries read something like: Sounder - EX-60, Freq - 18 khz, Purpose - Quantitative Biomass Survey, Mounting Location - Center Board, Beam Angle - 11 degrees, Power - 2000 watts. The last entry reads: Sounder - ST Screaming, Freq - 30-21000 Hz, Purpose - Catharsis, Mounting Location - Entire Ship, Beam Angle - 180 degrees, Power - situation dependent.
Shimada Sonar Frequencies

Another bit of humor comes from the bridge, where there used to be eight camera buttons. For the record, there are NO torpedo tubes aboard NOAA Ship Bell M. Shimada.

photo of a computer monitor on the bridge. above the screen is a row of eight square buttons, numbered 1-8. above those buttons is a label, from a label maker, reading FIRE TORPEDO
Repurposed camera buttons

I am attempting to collect permissible items from the catch, such as hake young-of-the-year, to take back to my classroom and incorporate in lessons for students. In doing so, I’m getting a crash course in properly preparing wet specimens. My first lesson was that freezing is the best route until items can be processed. This site was helpful to me in figuring out what additional tools I needed to do it properly. While I brought several glass vials for collecting, I did not bring formalin, isopropyl alcohol, or needles. So, for the duration of the research cruise my specimens are in the freezer. I live close to my port of return and so have a personal vehicle to transport items home. For future Teachers at Sea: If you are flying, there are limits in checked baggage. There are also strict rules for shipping. Start your research about shipping hazardous fluids here with FedEx, or here in a publication from Oregon State University.

Librarian at Sea

Librarians specialize in acquiring, organizing, and disseminating information for their target populations. The NOAA Central Library provides access to seminars, journals, NOAA publications, and daily weather maps to name a few. Then there’s NOAA’s Photo Library, which has over 80,000 searchable images in its online database. If you type in “hake” there are 114 results. I anticipate incorporating both databases into future lessons for my students. 

Jenny, in full wet gear - overalls, boots, jacket, gloves - lies on her back on the floor of the wet lab next to a squid longer than she is. The squid is definitely not contemplating life.
A squid and I contemplate life in the Wet Lab.
view of the front half of a lamprey on a metal surface.
Lamprey
a shark swimming in calm waters. only its dorsal fin just barely breaks the surface and leaves a small wave.  we can see the outline the shark's body underwater.
Porbeagle shark photo taken by Nick, OSU Marine Mammal & Bird Observer

Hook, Line and Thinker

The title of today’s post comes from Siletz Nee-Di, an endangered language spoken by some of Oregon’s First People. In 1977, The Confederated Tribes of Siletz were second in the nation and first in Oregon to regain federal recognition. What is now Newport, Oregon was originally home to villages and family groups of the confederation—whose descendants still live in the area.

NOAA Fisheries includes tribal, indigenous, and underserved communities in their strategic priorities for 2023. (See strategy 1.5 in the document available here.) Oregon’s Senate Bill 13 (Tribal History/Shared History) directs educators to include curriculum about contemporary indigenous communities. I am interested in knowing more how NOAA Fisheries partners with local stakeholders in Oregon. 

If access to your family’s traditional fishing grounds—a primary source of food and revenue—were suddenly cut off, what would you do to regain entry to those waters?

Read about a Washington state tribal leader who fought for fishing rights and will soon have a U.S. Navy ship named after him. 

quote superimposed on a photo of Pyramid Lake: "What's good for the fish is what's good for the people." Attributed to Norm Harry, Former Chairman of the Pyramid Lake Paiute Tribe.
“What’s good for the fish is what’s good for the people.”
Map of the Confederated Tribes of Siletz Indians Ancestral Tribes and Homelands, extending from the Pacific Ocean to the Cascade Mountains, and from the Columbia River south a bit past the Oregon/California border
Map of Ancestral Tribal Homelands along the Oregon Coast
flag of the confederated tribes of Siletz Indians: mostly white, with a circle in the center that contains images of a mountain, a stream, a salmon
Flag of the Confederated Tribes of Siletz Indians

A Bobbing Bibliography
Favorite books among the science crew:

Nick – The Earthsea Saga, by Ursula K. LeGuin
Ethan – The Snowball: Warren Buffett and the Business of Life, by Alice Schroeder
Liz – A Sand County Almanac, by Aldo Leopold
Jake – In the Name of the Wind, by Patrick Rothfuss
Sam – Where the Crawdads Sing, by Delia Owens

sunset over the ocean: a narrow band of red sky between glassy gray ocean and billowing gray clouds
Sunset meditation.

Lisa Carlson: One Fish, Two Fish, Rockfish, Hake fish! July 10, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 10, 2023

– – ⚓ – –

Weather Data from the bridge:

July 7 (1200 PT, 1500 EST)
Location: 36° 00.4’ N, 122° 05.9’ W
16nm (21mi) West of Big Sur, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 20 knots from NW 330°
Barometer: 1013.1 mbar
Sea wave height: 3-4 feet
Swell: 6-7 ft from NW 320°
Sea temperature: 14.0°C (57.2°F)
Air temperature: 14.4°C (57.9°F)
Course Over Ground: (COG): 323°
Speed Over Ground (SOG): 10 knots

July 8 (1200 PT, 1500 EST)
Location: 36° 34.5’ N, 122° 05.3’ W
17nm (20mi) Southwest of Monterey, CA

Visibility: 10 nautical miles
Sky condition: Few clouds
Wind: 19 knots from NW 330°
Barometer: 1013.8 mbar
Sea wave height: 5-6 feet
Swell: 6-7 ft from NW 330°
Sea temperature: 14.0°C (57.2°F) 13.7
Air temperature: 14.4°C (57.9°F) 14.3
Course Over Ground: (COG): 089°
Speed Over Ground (SOG): 10 knots

July 9 (1200 PT, 1500 EST)
Location: 37° 06.8’ N, 123° 00.5’ W
30nm (35mi) West of Pigeon Point Light Station, Pescadero, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 13 knots from NW 332°
Barometer: 1016.0 mbar
Sea wave height: 2-3 feet
Swell: 4-5 ft from NW 310° 4-5
Sea temperature: 14.3°C (57.7°F)
Air temperature: 15.2°C (59.4°F)
Course Over Ground: (COG): 093°
Speed Over Ground (SOG): 10 knots

July 10 (1200 PT, 1500 EST)
Location: 37° 26.7’ N, 123° 06.4’ W
32nm (37mi) West of Pescadero, CA

Visibility: 8 nautical miles
Sky condition: Overcast, fog in vicinity
Wind: 20 knots from NW 330°
Barometer: 1015.9 mbar
Sea wave height: 2-3 feet
Swell: 3-4 ft from NW 320°
Sea temperature: 14.5°C (58.1°F)
Air temperature: 13.6°C (56.5°F)
Course Over Ground: (COG): 314°
Speed Over Ground (SOG): 3 knots

– – ⚓ – –

Science and Technology Log

Lisa poses for a photo in the wet lab with a hake fish. She's wearing heavy-duty orange overalls and large orange gloves. With her right hand, she grasps the fish by its open mouth, and her left hand holds on to the tail. We can see metal tables and equipment in the background.
Me holding a Hake before sorting. After observation, we determined this was a developmentally mature female, measuring 50cm (20in) long!

In my July 6 blog post, I explained how NOAA Ship Bell M. Shimada is equipped to collect acoustic data in the form of echo grams. The acoustics team uses the data to determine if there are enough return signals to suggest fish are present and attempt a trawl. In this blog post, I will explain how we get the fish onboard, and what we do with the sample of marine life once it is collected from the net.

One question I had after learning about the acoustics and environmental DNA (eDNA) pieces of the survey mission was, “How does physically collecting and researching Hake samples fit into the puzzle of understanding their ecosystem and supporting sustainable fisheries?” (NOAA Fisheries quick facts and video here)

“While echosounders are useful, they do not provide certain quantitative data that researchers need to understand the ecology of these organisms and the midwater zone. To collect quantitative data, such as biomass, length and weight, and age class distributions, researchers must gather representational samples and take direct measurements of them. The best way to do this is by employing trawls.”

NOAA Ocean Exploration: “Trawls

So, although acoustics and eDNA research is important to the overall survey, they are only pieces of the puzzle, and the puzzle is not complete without conducting trawls and physically researching samples. NOAA Ship Bell M. Shimada uses a midwater trawl net that is deployed from the stern over the transom, and towed behind the vessel. As the name suggests, midwater trawls occur in the middle section of the water column, versus surface and bottom trawls. The net is conical in shape and uses two metal Fishbuster Trawl Doors, and two sets of heavy chain links called Tom weights, in order to keep the trawl in the middle of the water column.

a simple and stylized monochrome illustration of a fishing vessel towing a midwater trawl behind it. The net in tow is conical, attached at four points to two bars that hold the opening apart, and these bars are attached to lines (ropes) extending back from the vessel. This net is capturing two fish and missing a third.
NOAA Fisheries: “Fishing Gear: Midwater Trawls

“The midwater region is especially important because the creatures that inhabit it constitute the majority of the world’s seafood. Understanding the ecology of midwater organisms and their vast environment can provide us with better information to manage these important natural resources and prevent their overexploitation.”

NOAA Ocean Exploration: “Trawls

Deck department assisting in recovering the trawl net after a successful deployment.

Two deck crewmembers work with an orange and white fishing net on the aft deck of NOAA Ship Bell M. Shimada. They are wearing foul weather gear, life vests, and hard hats. At right, one leans over the net, searching for remaining captured fish. The other approaches from the left, looking down at the net, to assist. We can see a cloud-capped mountain range in the distance beyond the water.

Once the net is onboard, the net is emptied one of two ways depending on the size of the sample. For large samples, marine life is deposited into a hopper and subsequent conveyor belt. For smaller samples, the Hake will be put into a large basket then divided into smaller baskets of approximately 100 Hake each. Any other marine life like Salps, Myctophids, Pyrosomes, Rockfish, King of the Salmon, and small bony fish, etc. are recorded in the database and returned to the ocean.

“The ship’s wet lab allows scientists to sort, weigh, measure and examine fish. The data is entered directly into the ship’s scientific computer network.”

NOAA Office of Marine and Aviation Operations (OMAO): “Bell M. Shimada
a large black plastic bin filled with fish - mostly hake, but a few splitnose rockfish (eyes bulging from the pressure change) stand out for their red color. An orange-gloved hand reaches toward the basket from the upper left corner of the image.

Large basket containing a sample of Hake with a few (red) Splitnose Rockfish.

With our boots and bright orange rubber pants and gloves on, our first task is to distribute the sample of Hake into baskets of about 100 each. Based on how many baskets we fill, a random selection of baskets will be kept, and the others will be returned to the ocean. With the remaining groups of Hake, we determine their sex and length.

In order to do this, we use a scalpel to make an incision on the underside/belly of the Hake. Once open, we are able to examine their organs, including the gonads to determine if the fish is male or female, and if they are developmentally immature or mature. Young Hake are difficult to sex, and it takes practice to get over any initial fears of cutting into an animal; let alone being able to locate and identify the gonads. Hake usually spawn in early winter, so many of the smaller Hake we sample from during the summer are age one or younger.

Our largest Hake thus far was a developmentally mature female, measuring 50cm (20in). In order to accurately and consistently measure the length of the sample, we use a waterproof, magnetic plastic board with metric (centimeter and millimeter) markings called an Ichthystick (think: high-tech meter stick). The fish is placed on the board with its mouth touching the black board at 0cm, then a magnetic stylus is placed at the fork of the fish’s tail. Once the magnetic stylus is placed on the board, the length to the nearest millimeter is displayed on the LCD screen and automatically entered into the database program. The length data is grouped with the date, time, and identified sex for later observation and comparison.

Additional information, abstracts and outline about Ichthystick here

Ichthystick’s LCD display, motherboard, magnetic board, and magnetic stylus. Digital scale in background.

Ichthystick’s LCD display, motherboard, magnetic board, and magnetic stylus. Digital scale in background.

An even smaller subgroup is then selected and examined to record weights of individual Hake, collect ear bones called Otoliths for aging, stomach samples for diet, liver for RNA, and ovaries for maturity development. Otolith bones help determine the age of the Hake because they grow a new “layer” of bone each year, similar to coral structures and annual tree rings. Organs and bones removed from the Hake are sent to NOAA Fisheries centers for analysis and included in databases with the date, identified sex, length, weight, and location in which they were collected.

This data is used to build more of the puzzle, along with acoustical information, water samples, and eDNA data in order to further understand the ecosystem, biomass, diet, and

“support sustainable populations of Pacific hake on the West Coast.” (…)
“It provides vital data to help manage the migratory coastal stock of Pacific hake. The hake survey, officially called the Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey, occurs every odd-numbered year.”

NOAA Fisheries: “Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey

– – ⚓ – –

Personal Log

Although this subtopic of explaining the Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey is a bit easier to understand than my July 6 Acoustics Lab post, it certainly does not mean it’s an easy task!

When I had a tour on July 4, I remarked how clean and
organized the Wet Lab is. I hadn’t see it in action yet, but noticed how everything had its place and use. On July 6 we conducted our first trawl and collected a sample of 11 baskets of Hake (approximately 1,100 Hake since we group about 100 Hake together in each basket.) From that sample, we kept four baskets and counted, sexed, and measured 541 Hake.

Five of us were working together in the Wet Lab for that haul. I’ll admit I probably
didn’t sex 100+ Hake. It took a few minutes of watching the others carefully and swiftly cut into the underside of a fish, open the two sides, and know what to look for to determine the sex of very young Hake. Eventually I found the courage to slice in and take a look. By the fourth or fifth Hake, the uneasiness had subsided and I found the process very interesting and educational. Although young samples are hard to sex as they are often undeveloped, the others encouraged me and answered my questions and guesses with enthusiasm and support.

While working on measuring the lengths of our samples, one Science Team member paused and remarked how beautiful he found the fish. Although they do not have vibrant, bold colors, shimmering scales, or anything else particularly remarkable, he found the beauty in them. He digressed into a conversation of their role in the ecosystem, how they are living and breathing creatures, and how they probably all have their own personalities and slight physical differences. I noticed some of their eyes were shiny and sparkling, and how their faces and expressions were
noticeably unique the more you looked. That “down to earth”, heartfelt discussion was very special and demonstrated how the crew respects the process of catching and sampling Hake, while keeping each other and marine mammals safe.

From the NOAA Corps Officers, to the deck department, to the engineers,
electronics, science team, survey team, galley crew, volunteers, and everyone in between; the crew on NOAA Ship Bell M. Shimada is special. They take pride in their vessel and job, and always seem to have a smile and kind greeting. Being away from land and loved ones for weeks and months at a time will certainly take a toll on the body and mind, but this team is there for each other. To all of the crew, thank you for making me feel so welcomed and appreciated. We’re almost halfway through the mission, and as tired as I may get after (sometimes) 12+ hour days, I sleep well knowing the crew trusts their vessel and each other; and look forward to learning and becoming more and more acquainted each day with the people that make this mission possible. Thank you!

– – ⚓ – –

Did You Know? (FAQs)

1. Are you finding schools of them?

We’ve had seven successful trawls out of nine attempts for Pacific Hake fish. They often come with pyrosomes (Sea Pickle) myctophids (Lanternfish), and salps in the net too. Some trawl attempts are successful without a hitch, but more often than not we have to restart our Marine Mammal watches a few times before deploying in order to keep our ocean life safe and not get tangled in the net. Two trawl attempts have been abandoned because of the amount of persistent marine mammal life and playfulness near the ship. (I think they know we’re watching and show off for our cameras.)

2. What’s your average depth?

The transects (Set and numbered longitudinal east-west lines NOAA Ship Bell M. Shimada navigates on while collecting acoustic data) usually range from 50m – 1,500m (164ft – 4,921ft) in depth.

  • However, right now one of the displays in the Acoustics Lab, the depth reading is 3,240m which is about 10,630ft or just over two miles deep! 
  • This depth is only 1,870ft shallower than the wreck of the RMS Titanic! 
  • (We were on a long transect, we do not often see depths this great.)

3. Have you gotten seasick? Seasickness should subside after about 3 days.

I’ve never gotten seasick thankfully! Knock on wood and all the other premonitions, please.

4. What is the Hake role in the ecosystem?

More info on this coming in later posts after explaining our Chemistry lab and technology aboard! 

  • However, as predators, they can be cannibalistic towards their own kind. 
  • As far as their role in human consumption: They are often used as a substitute for Cod and Haddock, and in fish sticks and imitation crab meat.

– – ⚓ – –

Animals seen July 5-July 10:

Mammals: Sea Lions, Harbor Seals, Dall’s Porpoise, Risso’s Dolphins, Pacific White-Sided Dolphins, Northern Right Whale Dolphins, Humpback Whales

Birds: Gulls, Black-Footed Albatross

Bony Fish: Hake, Lanternfish (Myctophid), Flatfish, King of the Salmon, Split Nose Rockfish, Chili Pepper Rockfish

Other Marine Life: Giant or Humboldt Squid (15 foot tentacles in trawl), Spiny Dogfish Shark, Shrimp, Plankton, Krill, Sea Pickle (Pyrosome), Salp, Eel Larva

Karah Nazor: Cool Catch Highlights, June 2-7, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: June 2-7, 2019

June 2, 2019 Game Plan and Trawling Line: 5 hauls in the Piedras Blancas Line near San Simeon, CA. Piedras Blancas is known for its Northern elephant seal colony, M. angustirostris. Hauls were conducted outside of the marine reserve and we did not encounter seals.

Catch Highlights: The night started off with excitement when Keith Sakuma brought in an Pacific electric ray, Torpedo californica, and we all got to see it up close before releasing.

Keith S and electric ray
Chief Scientist Keith Sakuma holding a Pacific electric ray, Torpedo californica

In Haul 3 we collected a pelagic octopus, Ocythoe tuberculata, shown below. Chromatophores in cephalapods, including squid, cuttlefish and octopus, are complex organs made up of both muscle and nerve and provide the ability for the animal to rapidly change its skin color in order to blend into the surrounding environment to avoid predation, communicate, or send a warning signal. It was impressive to watch the chromatophores at work as the pelagic octopus attempted to blend into the white background of his tank by turning white (see photos below) We released it back to the sea.

Pelagic octopus
Pelagic octopus (Ocythoe tuberculata) attempting to camouflage with the background and flashing white
Pelagic octopus chromatophores
Pelagic octopus (Ocythoe tuberculata) with chromatophores expressing orange, purples and pinks. The beak is exposed here.

The differences in skin coloration of the five primary squid species we are catching including Boreal Squid, Blacktip Squid, Unknown Squid, Gonadus Squid, and Market Squid (see image below) are noteworthy. While living market squid exhibit brown, pink and purple skin color (see image below) the Chiroteuthis squid tentacle displays orange and red chromatophores (see image below).

Common squids
Common squids in our catches. From top to bottom, Boreal Squid, Blacktip Squid, unknown species, Gonadus Squid, and Market Squid.
market squid
Living market squid exhibiting brown, pink and purple chromatophores.
chromatophores
Pink and purple chromatophores on the mantle of a market squid.
chromatophores
Orange and red chromatophores on a tentacle of the Chriroteuthis squid.

In Haul 4 we collected a Cranchia scabra, which Chief Scientist Keith Sakuma calls the “baseball squid” or glass squid whose body is covered with tubercles (brown spots on mantle in photo below). This animal attempted to hide from us by turning white, retracting its tentacles and inflating himself into a ball, somewhat resembling a baseball. After a few pictures, we released it back to the sea.

Cranchia scabra or "baseball squid"
Cranchia scabra or “baseball squid”

Another exciting deep-sea creature, the Pacific hatchet fish, Argyropelecus affinis, was collected in a bongo net deployed prior to CTD, for Dr. Kelly Goodwin’s eDNA research.  The fish we collected below still has intact blue scales due to being well preserved in the bongo. The hatchet fish lives in mesopelagic zone down to 2000 m depths where the CTD sensors recorded a temperature of four degrees Celsius! Hatchet fish have upward facing eyes and mouths and swim up to the the epi-pelagic zone at night to feed on salps and krill.

Pacific hatchet fish, Argyropelecus affinis
Pacific hatchet fish, Argyropelecus affinis

Kelly conducted a quick surface bucket dip prior to CTD deployment in which we found a small (~2 inch) siphonophore, which I was very excited about since this was my first one to ever see in person! Siphonophores are colonial Cnidarians composed of individual animals called zooids. Moss Landing Graduate Student Kristin Saksa and I were able to confirm the identification of this beautiful creature as a siphonophore using an invertebrate field guide that Keith Sakuma brought on board. Perhaps due to the temperature change from being in the sea to being observed in a cell culture dish under the microscope, the siphonophore broke apart into its individual zooids right in front of my eyes.  See before and after photos below.   

Intact Siphonophore colony
Intact Siphonophore colony from bucket dip, note tip or “hat” at the bottom on the animal.
individual siphonophore zooids
Siphonophore individual zooids appear as semi circles consisting of small brown semi-circles.

Tonight I was also able to observe living salps that were pulled up in the bongo net and take a video.  It was neat to see the salps pulsing.

Haul 5 was a massive haul full of pyrosomes, Pyrosoma atlanticum.  Kristin Saksa volunteered to stir the bucket of pyrosomes (using her arms) so that we could obtain an accurate distribution of organisms for the initial volume count and analysis.  As I video of this event (see stills from the video below), we were all laughing and realized that Kristin may be the only human on Earth who has ever stirred pyrosomes.

Kristin stirring pyrosomes
Kristin Saksa stirring a bucket full of Pyrosoma atlanticum
Kristin stirring pyrosomes
Kristin Saksa stirring a bucket full of Pyrosoma atlanticum

In haul 5 we were surprised to find a Giant 7-armed Atlantic octopus, or blob octopus. Keith Sakuma explained that the males have 7 arms as the fifth is a sex appendage whereas the female has 8 arms. After photographing this beautiful deep-sea octopus, we released him back to the sea.

blobtopus
Giant Seven-Armed Atlantic Octopus or “blob octopus”


June 3, 2019 Game Plan and Trawling Line: 5 hauls Outside Monterey Bay

Catch Highlights: Two of the hauls produced a lot of krill. The hauls had a high species density with a lot of myctophids, salps and blue lanternfish. Such hauls are time consuming to sort so as not to overlook something new and small. In one of the hauls we found a new-to-me myctophid called Nanobrachium. I dissected some of the fish and found that CA lanternfish and Northern anchovies were full of eggs, and their age/reproductive status was previously unknown.

A catch with a high krill count
A catch with a high krill count

We caught 2 young ocean sunfish, Mola mola.  Both were immediately returned to the sea.

Kaila with young Mola mola
Scripps Graduate Student Kaila Pearson with a young ocean sunfish, Mola mola.
Keith and mola mola
LTJG Keith Hanson with a young ocean sunfish, Mola mola.

We found several species of deep sea dragonfish which we arrayed below on a ruler. Most of these fish are less than 6 inches long, no bigger than a pencil, but they are equipped with sharp fangs and are apex predators in their realm! Dragonfish have large bioluminescent photophore organs underneath their eyes (and sometimes lining their bodies) which produce light and are used to attract or deter prey and attract mates.

dragonfish
All of the dragonfish caught on June 3, 2019 on the NOAA Ship Reuben Lasker.
more dragonfishes
Longfin dragonfish, Tactostoma macropus, on left and a Pacific black dragon, Idiacanthus antrostomus, on right. Also in the photo are a krill (on the left of the dragonfish) and a Gonatus Squid (top left corner of photo).
Longfin dragonfish, Tactostoma macropus, with large photo organ underneath the eye

We collected a stoplight loosejaw, Malacosteus niger, which can unhinge its jaw in order to consume large prey.

Stoplight loosejaw
Stoplight loosejaw, Malacosteus niger.
Face of stoplight loosejaw
Face of stoplight loosejaw, Malacosteus niger.


June 4th: Davenport Line

The highlight of today was at 5:45 P.M.  when team red hats went to the flying bridge for our workout and to hang out with Ornithologist Brian Hoover.  There was a lot of Humpback whale activity. I counted around 20 spouts. We observed one whale that flapped its tail against the sea surface around 45 times in a row, perhaps communicating to nearby whales by generating pulses in the water or creating a visual cue.  We saw several full breaches. We finished up the Davenport Line at 6:00 AM as the sea became rough. Thanks goodness for handrails in the shower.

The sorting team
The sorting team, aka Team Red Hats. From left: Kristin Saksa, Flora Cordoleani, Karah Nazor, Ily Iglesias, and Kaila Pearson.


June 5th: Outside of Tomales Bay

I woke up at 4PM and headed to the galley for dinner at 5PM.  The boat was rocking so much that I became dizzy and knew that I would become sick if I tried to eat dinner, so I headed straight back to bed. Around 9PM the sea seemed to have calmed a bit, but I soon learned that it only felt calmer because the ship was traveling in the same direction as the swell at the moment but that we were about to turn around.  Due to the rough conditions, the first haul inshore at Tomales Bay was delayed until midnight so the fish sorting team decided to watch “Mary Poppins Returns” in the galley. The talented chefs of the Reuben Lasker made the most amazing almond cookies today and, thankfully, temped me to eat again.  

Catch Highlights: Haul 1 at station 165 was one of the easiest and most exciting catches of the survey so far because we collected a lot of jellyfish – my favorite! We counted 66 West Coast sea nettles, Chrysora fuscescens, seven Northern anchovies (7) and 24 market squid. I actually have a tattoo of West Coast sea nettle on my ankle. We placed the jellyfish flat on the lab bench and quickly measured their bell diameter before returning them to the sea. They did not sting us as most of the nematocysts were likely triggered during haul in.  I removed a rhopalia, a sensory structure that lines the margin of the bell of Syphozoans (the “true” jellyfish). West Coast sea nettles have eight rhopalium which house the the ocelli (light sensing organ) and statolith (gravity sensing organ). A photomicrograph I took of the rhopalia under the dissecting microscope is below.

Karah measures sea nettle
Teacher at Sea Karah Nazor measuring a West Coast sea nettle Chrysora fuscescens.
Karah examines sea nettle
Karah Nazor examining a West Coast sea nettle, Chrysora fuscescens.
Kaila holds up sea nettle
Scripps graduate student Kaila Pearson examining a West Coast sea nettle, Chrysora fuscescens.
Kristin holds up a sea nettle
Moss Landing graduate student Kristin Saksa examining a West Coast sea nettle, Chrysora fuscescens.
light sensing organ
Photomicrograph of the ocelli or light sensing organ in the rhopalia of a West Coast sea nettle, Chrysora fuscescens.

Haul 2 mostly consisted of Northern anchovies, 1 krill, a few moon jellyfish, Aurelia aurita, a few squid, which made for another very short and easy sort (see photo below). I study moon jellyfish in my lab back at McCallie High School, so I was curious to look inside of the stomach and reproductive organs of these wild jellyfish. Under the dissecting microscope, eggs were present and were purple in color (see photomicrograph below).

jellyfish eggs
Photomicrograph of purple eggs and clear gastric filaments of the moon jellyfish, Aurelia aurita
sorting Haul 2
Kaila Pearson (left) and Karah Nazor and Keith Hanson sorting Haul 2.

Haul 3 had a lot of krill, young of year (YOY) Pacific hake, Merluccius productus, one large hake, and a few market squid. This sort was also super easy except for separating the small YOY Pacific hake from the krill.

Sorting of haul 3 which had a lot of krill and young of year (YOY) Pacific hake, Merluccius productus.


June 6th: Outside Farallones. On our final night, we conducted three hauls with very small harvests consisting of few organisms and low species density.  One new to me fish in the final catch was a top smelt fish (see image below). These were the three easiest sorts of the survey. It was suggested by Keith Sakuma that the catches were small due to the stormy conditions.

catch from the last night
A small catch from the last night June 6, 2019, with one West Coast Sea Nettle, a Gonatus squid, and two topsmelt silversides, Atherinops affinis.
Kristin with a topsmelt
Moss Landing graduate student Kristin Saksa with a topsmelt silverside, Atherinops affinis, from the final haul of the survey.


June 7, 2019: Return to San Francisco

Group photo at Golden Gate Bridge
In front of the Golden Gate Bridge at the conclusion of the cruise. From left: Brian Hoover, Kelly Goodwin, Ily Iglesias, Karah Nazor, Flora Cordoleani, Kristin Saksa, Lauren Valentino, and Jarrod Santora.
group photo at Marin Headlands
In front of the Marin Headlands at the conclusion of the cruise. From left: Ily Iglesias, Kristin Saksa, Flora Cordoleani, Kaila Pearson, Lauren Valentino, and Karah Nazor.

Kimberly Godfrey: Trawl Away! June 6, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

June 6, 2018

 

Mission: Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean along the California Coast

Date: June 6, 2018

Data from the Bridge

Latitude: 36° 59.462 N

Longitude: 122° 31.056 W

Wind Speed: 12.77 knots

Wind Direction: Northwest winds

Wave height: 2 to 3 feet with 4-6 foot swells

Air temperature: 12.76° C

Science and Technology Log

Our first official night on the Job was Sunday, June 4th. My shift is technically 6:00 pm to 6:00 am, but we could not begin trawling until the evening when skies were dark. If fish can see the net, they can avoid it. The method we use to catch fish is a midwater trawl, also known as a pelagic trawl, because the net fishes in the water column. It’s called a modified Cobb midwater trawl net. It has a cod end, the narrow end of a tapered trawl net where the catch is collected during the trawl.

Trawl Net
Diagram of a Trawl net used on NOAA Ships

Before we lower the net, the water around the ship must be clear of marine mammals. Thirty minutes prior to each trawl, someone stands the marine mammal watch on the bridge. Once the net is deployed, someone must be watching for marine mammals outside the entire time. If any marine mammals are spotted (this includes dolphins, porpoises, seals, and sea lions), we report it to the officer on the bridge. The rule is that if we spot a marine mammal, the net must be hauled back in and we sail a mile away from the sighting. Marine mammals are protected and we do not want any caught in the net.

When the net is in the water, we trawl for 15 minutes at 30 m deep. Optimal speed is about 2 knots, but that is weather dependent. During this time, our deck crew, and Survey Technician monitor each step of the haul, reporting back to the officer on the bridge. As they haul the net in, the deck hands and Survey Technician work together to make sure the catch goes into the bins for sorting.

Winch
The winch used to deploy and haul in the trawl net on the Reuben Lasker

Trawl net with Cod end
Survey Technician Jaclyn Mazzella, Deck Hands Ethan Skelton and Raymond Castillo, and NOAA Fisheries Intern Thomas Adams dropping the cod end of the net into a bin to collect our catch.

Pyrosomes and salps
First catch of the first trawl. Some fish and squid are present, but this catch was dominated by salps and pyrosomes.

I didn’t know what to expect from our first catch. Maybe we would have some fish, crabs, squid…However the first catch brought something I never saw before. Lots of Thetys!

Thetys
Thetys

Thetys are a type of salp. Salps are planktonic, colonial tunicates from the phylum Chordata. We also had pyrosomes, another type of colonial tunicate. They are efficient feeders, filtering particles of plankton from the water. It is expected that in areas where salps are prevalent, one can expect to find less of other species from the same trophic level.  For this catch, that happened to be the case.

Pyrosomes
Pyrosomes, another type of planktonic, colonial tunicate.

As of today, I officially completed 3 shifts on the job, which included 12 trawls in total. It seems that each catch was dominated by 1 or 2 species. There were other species present, but we had to sort through the catch to find them.

We had a catch that was loaded with anchovies, another with krill, and one full of pelagic red crabs. I find this to be one of the most interesting parts of the work, anticipating what we will find. There are many variables that can impact the productivity of an ecosystem, and therefore can determine what we find. Things like salinity, sea surface temperatures, upwelling, proximity to land or open ocean, and human impact, can all influence an ecosystem.

Anchovies
This is me with Fisheries Intern Thomas Adams, stunned by the amount of anchovies we had in this catch. Photo by Keith Sakuma

Krill
This catch consisted predominantly of krill species. Some catches will have 3 to 4 different species of krill

So, what do we do with our catches once we have them? We count them, and there is a method to the count. Depending on the size of the catch, we may measure out 1,000 ml, 2,000 ml, or 5,000 ml. We start with that first bucket and count every individual (species like krill or salps are measured by volume). The numbers are reported to Keith Sakuma, our chief scientist, and recorded in a handwritten data sheet, then transferred to an excel document. After the first bucket, we may focus on sorting for all other species except the predominant species. For example, for our large anchovy catch, we sorted through approximately 60 liters of fish. We didn’t count every single anchovy, but based on our primary count, we can use the total volume to estimate. However, we sort through looking for all other species and record the findings.

Sorting and Counting
Here we are counting the first 5,000 ml bucket of anchovies. Here you can see we separated out the other species and count them as well.

Leg 2 Team Rockfish Recruitment and Assessment Survey
Here is the team starting clockwise from the left: Melissa Monk, Stephanie Oakes, Thomas Adams, Becky Miller, and Kimberly Godfrey. Photo taken by Keith Sakuma

We will record each species we find, and then we have a list of specified species that need to be measured.  We take the first twenty specimens of each so we have a record of the average size fish caught in that specific location and time. We focus on measuring the species of fish that have the most ecological and economic importance. These are the prey and those that are consumed by us. Therefore, they are also likely to suffer from human impact. Learning about these species are important to the understanding of what makes them successful, and how to mitigate the things that negatively impact their productivity.

Measuring specimens
This is me, measuring species of focus for this survey. Afterward, we bag and freeze those needed for further analysis back on land, and the rest get washed back to sea.

Caliper
Electronic caliper used to measure the specimens. It has a USB cable that connects to the computer and immediately records data into a spreadsheet.

Data Sheet
This data sheet is a record of all the measured species from our catches.

So far this is our routine. Tonight, we had a break from trawling as we transit up to Davenport, just North of Santa Cruz.  The current conditions are not favorable for trawling, so we will get back to work tomorrow evening. While we take it easy, our NOAA officers navigate the ship up the coast. I had the opportunity to speak to our Executive Officer (XO), Lieutenant Commander Emily Rose.

How did you come to work for NOAA?

I went to the University of Hawaii and got my degree in Meteorology. From there, my friend referred me to someone who currently worked in the NOAA Corps. The things she told me about the job piqued my interests, so I applied. I was selected in 2008. There was a 5-month training period, and then I was stationed in Hawaii on the Ka’imimoana, a ship that has since been decommissioned. I was sent to Santa Rosa, CA to work for National Marine Fisheries Service (NMFS) during my first land assignment, then I became the Operations Officer aboard the Okeanos Explorer. Before I joined the Reuben Lasker, I was stationed at the National Centers for Environmental Information (NCEI) in Boulder, CO for 2 years.

Since you have a degree in Meteorology, do you get to use what you’ve learned for your current position?

Every time I’ve been on a ship, I’ve been the defacto weather officer. On the Reuben Lasker, I haven’t had to do too much with weather so far, but on other assignments I’ve done weather presentations and helped others like the CO (commanding officer) interpret weather patterns, and just to provide information to those who are interested in learning. It’s is not a career in Meteorology, but having a degree in a science that relates to what NOAA is beneficial. You use critical thinking skills throughout the job. If there is a challenge, you can come up with a solution. You also have math and physics, and a basic understanding of how things work. All these things help make operations successful.

What is the most important part of your job now?

The most important part of my job is to manage the ship’s crew. I make sure they are put first. I manage their time and attendance, their pay, their leave time, any personnel issues, etc. Anything they need, I am there for them. They are the reason we (the ship) are successful.

What is your favorite part of your job?

All of it! The variety. My job changes from day to day; there are new challenges each day. The variety makes it interesting.

What tool is the most important for you to do your job?

For me I would not be able to do a good job if I did not have a positive attitude. Sometimes we are faced with challenges that are not easy to fix without support and understanding. Having a positive attitude helps me get through it and helps others around me.

I also think it is important to be open-minded and be willing to try new things. There is a lot that we deal with that some have never dealt with before. Having an inquisitive mind and ability to be ready for anything are important.

When you applied for NOAA, did you know this is what you wanted to do?

Yes. Once I applied, I thought it would be pretty cool. I was also thinking about being a math teacher, or to pursue weather in the air force. I’m glad I didn’t because I get to do a whole lot more here than I would if I were in an air force weather center. Once the application process got rolling, and then I got an interview, I thought “Yeah, this is what I want to do.”

Was there something you found surprising about your job when you started?

There were a lot of surprises! You always have an idea of what you expect, but once we all got together for training, we learned something new every day. Some of us had never been on a ship before, some have never driven a small boat, some have never done any charting. And I still feel like I learn something new each day. Everybody that I’m around has a different background and experience, so it’s fun to learn from them.

If you weren’t working for NOAA, what would you be doing now?

I don’t think I would be doing something else. I don’t feel like I’ve missed out on something. In fact, I tell people all the time about what they are missing! I’ve got to do more in this job than I ever thought I would. I’ve been all over the world, included places like Western Samoa, The French Marquesas, and the Marshall Islands.

If you were give advice to a young person considering a NOAA career, what would you recommend?

Anyone who is interested in going into NOAA as a scientist, crew member, or Corps Officer, one important piece would be to study hard and work hard, but keep in mind, grades are not the end-all be-all. Try hard and learn the material, and learn how to problem solve. Don’t be afraid of a challenge, and be ready to give 110% because that will help get you to the next level. For NOAA Corps specifically, having some experience working on a ship and understanding of nautical operations is beneficial. And don’t be afraid to reach out to someone from the NOAA Corps because they are willing to offer guidance.

What are your hobbies?

Sports! I play any sport that you ask me to, but I play on teams for soccer, softball, ice hockey, tennis, and a basketball league not too long ago. When I’m on land, I join as many teams as I can. I love riding my bike. On my last land assignment I went two years riding my bike to work and didn’t drive at all. My husband even bought me snow tires. You name it I’m game!

Did You Know…

  • Before you can set out, you must have multiple permits. Depending on where trawling occurs, one may need a permit for state waters and federal waters. Those conducting research may receive permits to trawl in both state and federal protected areas.
  • We keep some of the specimens for further analysis in the lab (back on land). There are various reasons scientists want to study further, including learning about their genetics, development, and reproduction. One group includes all the juvenile rockfish we find. Please stay tuned for the next blog to learn more about this part of the research.

Amanda Dice: Using Light for Survival, September 13, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: September 13, 2017

Weather Data: Rainy, 76 F

Baltimore, MD

Science and Technology Log

Now that I am back home, I have some time to think about the variety of animals I saw on the cruise and do a little more research about them. Many of the animals we caught in our net have the ability to light up. This adaptation is known as bioluminescence. Different species use bioluminescence in different ways to help them survive.

 

Myctophids are a type of fish also known as a lantern fish. These small fish can occupy the same habitat as juvenile pollock, and we caught several of them at our sampling stations. I got a chance to look at them closely and I could see small spots, called photophores, along the sides of their bodies. In dark waters, these spots have bioluminescent properties. Lantern fish can control when to light them up and how bright the spots will glow.

 

There are many different species of lantern fish. Scientists have learned that each species has a unique pattern of bioluminescent photophores along the sides of their bodies. For this reason, it is believed that lantern fish use their bioluminescent properties to help them find a mate.

myctophid
The photophores can be seen as white spots on this lantern fish. Image courtesy of NOAA.

Lantern fish also have bioluminescent areas on the underside of their bodies. This adaptation helps them achieve what is known as counter-illumination. In the ocean, a predator can be lurking in the dark waters below its prey. Since many things feed on lantern fish, it is important for them to have a way to camouflage into the environment. When a predator looks up, during the day, a fish that is lit up on the bottom will blend in with the lighter waters above it, making it hard to see.

counterillumination 2
The camouflaging effect of counter-illumination can be seen when this bioluminescent fish lights up its underside. Image courtesy of the Smithsonian.

Lots of animals use this technique to help them hide from predators, including squid. We pulled in many small squid in with our samples that had patterns of photophores on them. Depending on the species, squid also use bioluminescence to attract mates and to confuse predators.

squid NOAA 2
The pattern of lighted photophores can be seen on this squid. Image courtesy of NOAA.

In addition to fish and crustaceans, we also pulled in a variety of jellyfish. Jellyfish also have bioluminescence characteristics. Many jellyfish use light as a way to protect themselves from predators. When a jellyfish is threatened by a predator, it flashes in a rapid pattern. This signals other fish nearby that it is being hunted. This can alert larger predators, who may be hunting the predator of the jellyfish. The larger predator will then swoop in after the jellyfish’s predator, allowing the jellyfish to escape!

Jellyfish NOAA
Many jellyfish use bioluminescence to protect themselves from predators. Image courtesy of NOAA.

Personal log

I have been home for over a week and I think I finally have my land legs back again. Looking back on the experience, there were so many little surprises that came with living onboard a ship. One thing I noticed is that I got much better at walking around the longer I was there. I learned to always have one hand available to grab a railing or brace myself during any sudden movements. However, I never quite mastered getting a decent workout in on the treadmill! Another surprise is how relaxing the rocking of the ship could be when I laid down. I thought the movement would be distracting, but it actually helped me drift off to sleep!

Did you know?

There are many superstitions surrounding life on a ship. It is considered bad luck to have bananas on board and whistling is discouraged. Whistling onboard a ship is thought to bring on wind and storms!

 

Cecelia Carroll: Visit with the NOAA Corps Officers, May 10, 2017                   

NOAA Teacher at Sea

Cecelia Carroll

Aboard NOAA Ship Henry B. Bigelow

May 2 – 13, 2017 

Mission: Spring Bottom Trawl

Geographic Area: Northeastern Atlantic

Date: May 10, 2017

Latitude: 42 54.920N
Longitude:  069 42.690
Heading:  295.1 degrees
Speed:  12.2 KT
Conditions: Clear

Science and Technology

I am on the day schedule which is from noon to midnight.  Between stations tonight is a long steam so I took the opportunity with this down time to visit the bridge where the ship is commanded.  The NOAA Corps officers supplied a brief history of the corp and showed me several of the instrument panels which showed the mapping of the ocean floor.

“The National Oceanic and Atmospheric Administration Commissioned Officer Corps, known informally as the NOAA Corps, is one of seven federal uniformed services of the United States, and operates under the National Oceanic  and Atmospheric Administration, a scientific agency within the Office of Commerce.

“The NOAA Corps is part of NOAA’s Office of Marine and Aviation Operations (OMAO) and traces its roots to the former U.S. Coast and Geodetic Survey, which dates back to 1807 and President Thomas Jefferson.”(1)

During the Civil War, many surveyors of the US Coast and Geodetic Survey stayed on as surveyors to either join with the Union Army where they were enlisted into the Army, or with the Union Navy, where they remained as civilians, in which case they could be executed as spies if captured. With the approach of World War I, President Woodrow Wilson, to avoid the situation where surveyors working with the armed forces might be captured as spies, established the U.S. Coast and Geodetic Survey Corps.

During WWI and World War II, the Corps abandoned their peacetime activities to support the war effort with their technical skills.  In 1965 the Survey Corps was transferred to the United States Environmental Science Services Administration and in 1979, (ESSA) and in 1970 the ESSA was redesignated as the National Oceanic and Atmospheric Administration and so became the NOAA Corps.

“Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA.” (1)

“The combination of commissioned service with scientific and operational expertise allows the NOAA Corps to provide a unique and indispensable service to the nation. NOAA Corps officers enable NOAA to fulfill mission requirements, meet changing environmental concerns, take advantage of emerging technologies, and serve as environmental first responders.” (1)

There are presently 321 officers, 16 ships, and 10 aircraft.


We are steaming on a course that has been previously mapped which should allow us to drop the net in a safe area when we reach the next station.

The ship’s sonar is “painting” the ocean floor’s depth.  The dark blue is the deepest depth.

The path of the ship is highlighted.  The circles are the stations to drop the nets for a sample of the fish at that location.

This monitor shows the depth mapped against time.

This monitor also showing the depth.

A view inside the bridge at dusk.

The full moon rising behind the ship ( and a bit of cloud )

What can you do ?

  • When I asked “What can I tell my students who have an interest in NOAA ?”

If you have an interest in climate, weather, oceans, and coasts you might begin with investigating a Cooperative Observer Program, NOAA’s National Weather Service.

“More than 8,700 volunteers take observations on farms, in urban and suburban areas, National Parks, seashores, and mountaintops. The data are truly representative of where people live, work and play”.(2)

Did you know:

The NOAA Corps celebrates it 100 Year Anniversary this May 22, 2017!

Cute catch:

  1. Bobtail Squid

This bobtail squid displays beautiful colors!  (3 cm)

View from the flying bridge.

On the flying deck!


Bibliography

1. https://www.omao.noaa.gov/learn/noaa-corps/about

2. http://www.nws.noaa.gov/os/coop/what-is-coop.html

3.   http://www.history.noaa.gov/legacy/corps_roots.html

Amy Orchard: Day 4, 5 & 6 – Tagging, Gumby suit, Lion Fish Dish and Fort Jefferson, September 19, 2014

NOAA Teacher At Sea
Amy Orchard
Aboard NOAA Ship Nancy Foster
September 14 – 27, 2014

Mission: Fish Tagging
Geographical area of cruise: Tortugas Ecological Reserve North & South sections: Tortugas Bank
Date: September 17, 18, 19, 2014

Weather, September 19, 2014 20:00 hours
Latitude 24° 35’ 07’’N Longitude 83° 01’ 09’’W
Broken clouds, clear.
Humidity 10%.
Wind speed 7 knots.
Air Temperature: 29° Celsius (84° Fahrenheit)
Sea Water Temperature: 30.2° Celsius (86.7°Fahrenheit)

CLICKING ON THE SMALL PHOTOS WILL ENLARGE THEM & REVEAL HIDDEN TEXT.

WEDNESDAY:

Resetting Traps

We did not have great success with the shrimp bait.  Guess these fish prefer their shrimp au naturel where as we gave them cooked, peeled and deveined shrimp.  This morning we set out again in the small boats so the divers could re-bait the traps with squid instead.

Ariel the Scientist
Finally Ariel looks much more like a scientist now that she has a pen in her pocket!

Safety on the ship

Safety always comes first on the Nancy Foster.  We have had briefings on safety, we wear hard hats while the cranes are moving, we wear closed toe shoes (except when in the shower) and we have had fire drills & first aid emergency drills.  Today we had an abandon ship drill.  First we each arrived at our muster stations (our assigned place to meet), then we climbed into our Survival Suits (nicknamed the Gumby suit.)  This is made of very thick neoprene, probably 7-9 millimeters thick, and covers you from head to toe to fingertips.  It is meant to keep you safe from hypothermia if you were overboard for a long period of time.

After wriggling back out, we went to find our assigned life raft.  There are 6 rafts which each hold 25 people.  There is enough bunk space on the ship for 37 people, so there are plenty of life rafts for all.  Three rafts sit on each side of the ship so even if the ship was under water listing to one side, we could still access enough rafts for all.

In addition to the Survival Suit, Nick thought he would be safer being more visible so he wore a few extra items to ensure his safety!

Nick fuzzy hat w/ bow & cool googles
Nick has a horde of awesome hats. Keep your eyes peeled for more.

Dancing with the Remotely Operated Vehicle

Part of each day has been spent looking underwater with the Remotely Operated Vehicle piloted by Lance Horn and Jason White from the University of North Carolina at Wilmington (yet another partner in this 14-day collaboration)

ROV pilots
Lance Horn and Jason White are geniuses with the Remotely Operated Vehicle. There are lots of very highly technical parts to this equipment and they do it all – and they do it well.

I will be sharing lots more information about the ROV in an upcoming post.  Today I wanted you to see who else besides scientists are curious about the ROV (the large instrument with the yellow top you see in the video here)

THURSDAY:

Fish Surgery

We checked traps again this morning and had success with the squid.  The dive teams will perform surgery today!  The surgery only takes about 10 minutes, which may seem quick, but since they are underwater at a depth of about 100 feet, they must work quickly so as to not run out of their air supply.  One scientist (usually Paul Barbera, FWC Associate Scientist – who they call the Fish Whisperer) will hold the fish steady while another will make the incision, insert the acoustic transmitter and then stitch up the incision. The stitches will dissolve in about a week or two.  The acoustic transmitter (fish tag) will last 2-5 years.  Life span of the tag is determined by it’s battery life.  The smaller tags (for smaller fish) can last 2 years and the larger tags (for larger fish) will work for about 5 years.  This allows the scientists to gather information on the same fish for multiple years, giving them a really good idea of their seasonality – or the fish’s movements between different areas, both protected an unprotected.

fish tags
Acoustic Transmitters – Fish Tags which will be surgically placed in the fish at a depth of about 100 feet. Here you can see the smaller ones are about 4 cm and the larger 6.5 cm

This footage was not shot during our cruise, but Ben Binder, FWC Biological Scientist, shared this video with me describing the surgery process.  Here you will see two scientists who are aboard the Nancy Foster with me.  Paul is securing the fish and Mike McCallister, FWC Biological Scientist, is performing the surgery.  They are working with a Lion Fish here.

Placing the fish tag is just one part of the process of collecting the data the scientists are hoping to gather.  The second part is to place an instrument which can read the acoustic transmitter as it swims past (within the fish of course!)  Danielle Morley, FWC Assistant Research Scientist, and I worked to prepare some previously used acoustic receivers.  Each of the 90 receivers the FWC have placed in the waters off the Florida Keys costs about $2500.  Therefore, used receivers are reprogrammed, repainted with anti-fouling paint and used again.  Anti-fouling paint makes it very difficult for animals like barnacles to build their calcium carbonate skeletons on the receiver’s exposed top.  The receivers are made up of a hydrophone, a circuit board and a battery.  I replaced the batteries and cleaned up the O rings.  The O rings are extremely important as they ensure the capsule is completely water-proof and can be submerged in ocean water for a year at a time.

After a year, the batteries need replaced and the data needs retrieved.  Today, the divers will retrieve 6 acoustic receivers on Riley’s Hump and replace them with those we reprogrammed.  This is footage of our divers (Jeff, Sean and Colin) making the swap.  Thanks to Cammy Clark, the Miami Herald reporter, who dived down about 100 feet to capture the action.

FRIDAY:

Trap Retrieval

Over the last 5 days, there have been 65 dives and 3 surgeries performed.  The scientists deem this as very successful trip.  Additionally, all divers returned safely to the ship after each dive!  This morning the divers are retrieving the traps, which like the receiver stands are allowed by a special permit from the FKNMS.  Even if conditions did not allow us to get the traps and they needed to stay at the bottom, no fish would be caught for very long.  Each trap is closed with a zinc clip that will dissolve after a week or two.

Zinc Clips
Zinc clips keep the traps closed, but only temporarily. They dissolve after a week or two allowing any fish to escape if a trap has to be abandoned due to weather or other conditions.

The large fish we are trapping can easily stay down in a trap that long.  But today, the weather allowed us to retrieve the traps.

Along with the traps, Ben and Ariel brought five Lion Fish Pterois volitans back up.

 

Lion Fish are not naturally found here.  They are native to the Indo-Pacific.  It has not been determined exactly how they got to the area but they are very popular for home aquariums.  However, since they are voracious predators, after eating all their other aquarium fish, people have been dumping them in the Atlantic Ocean for decades.  It was decided that efforts to eradicate the species would be futile since they are prolific breeders, have no natural predators and have been found in extremely deep waters where it would be unfeasible to reach them.  Instead, there are large efforts to manage their populations in certain areas.

One does need to be extremely careful as they have venomous spines – 13 along the top (dorsal spines) and 3 along the bottom (anal spines)  The pain they inflict & the reaction people can have when stung sounds very similar to the bark scorpion.

 

I found out they are SUPER tasty!  Especially since Bob Burroughs, 2nd Cook and Lito LLena, Chief Steward prepared them as ceviche – my favorite.

 

Fort Jefferson

In the afternoon we got a special treat.  We left the waters of the Florida Keys National Marine Sanctuary and ferried over to Fort Jefferson at the Dry Tortugas National Park for a tour and some snorkeling.  One can only reach the fort by boat or sea plane.  It was built between the years 1846 and 1875 as a way to claim the main shipping channel between the Gulf of Mexico, the western Caribbean and the Atlantic Ocean.  It never saw battle, mostly because it’s fire power was so massive that no one wanted to go up against it!

 

Even though I have been able to travel out into the open ocean on the small boats each day, it was SO GOOD to actually get into the water and snorkel around.  So many amazing things to see and take photos of.

 

There were many jelly fish (mostly Moon Jellies) and we all got stung a lot, but the underwater scenery was well worth it.

 

Bonus Points – make a COMMENT and tell me how the LION FISH and the GILA MONSTER are similar!

Answer to my last post:  It was a DOLPHIN.  The Common Bottlenose Tursiops truncatus

http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/bottlenosedolphin.htm

Also, the definition of RECIPROCITY is the practice of exchanging things with others for mutual benefit.

I have been so impressed with the seamless collaboration between the crew & science team as well as the different agencies within the science team.  Everyone gives of themselves so freely for the main goal of the scientific mission.

Sue Zupko, Sing it, Willie–On the Road Again, September 10, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographical Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 10, 2014

Weather Data from the Bridge
Lat 37°38’N
Lon 075°15.8W
Present Weather CL
Visibility 10 +nm
Wind 025° 10kts

Sea Level Pressure 1016.2
Sea Wave Height 3-4 ft
Temperature: Sea Water 26.6°C
Air 24.8° C

Science and Technology Log

 

We are now “on the road again” trawling. The nets were lowered at about 7:30 am. I was surprised by how small our catch has been. The scientists are not at all surprised. They said because of the time of year, many fish are in the estuaries spawning (reproducing). Today we have been on the edge of the continental shelf off the coast of Delaware and Virginia. When we get in closer, the scientists say we will have a lot more fish in our net.

It is fascinating how they are selecting sites for sampling.The sea floor needs to be fairly flat to pull a net across. We learn what the bottom is like using sonar. A multi-beam sonar on the bottom of the hull is in the center of the ship. There is also a single-beam sonar there. They serve two different purposes. The single-beam looks straight down the water column. It is like a really bright penlight. This shows what is in the water column such as fish and plankton. It also can reach greater depths since its light is stronger. The multi-beam is more like a floodlight. It spreads out over the bottom revealing all the different levels of the ground. These sonar beams bounce off the bottom and send the ship information. The crew  watches the sonar information and scouts for a good area to drop our nets. Of course, there are certain areas where samples need to be taken. They are trying to repeat a tow at the same time every year within a strata area. “So what is a strata?” I asked.

Geoff Shook, our survey technician, reads the information on the display
Geoff Shook, our survey technician, reads the information on the display

Strata lines are like lines on a topographic map on land. It is called a bathymetric map underwater. The lines on a bathymetric map are called strata lines. These are based on the different depths. The net needs to be pulled within the same strata at the same time each year. As long as a tow is within the strata the habitat is about the same. In order to get accurate population information, they must make at least two tows within a strata. Some of the strata are hundreds of square miles. Strata are the same depth range and habitat. Closer to the continental shelf, the strata are much narrower. Closer to shore, they are much wider. For example, strata 70 is 281 square nautical miles (nm). It is 55-110 m deep and is next to the shelf. However, strata 73 is closer to shore, is 2145 sq. nm, and is 27-55 m deep. Their habitats are different so random samples need to be taken within each.

So, I think of it like a chess board within a strata. If we want a random sample, we could drop a piece of soft clay from about a 1/2 m above the board. Where it hits is where we tow in that strata. Our first tow is at D5. The second piece of clay could fall on H2. So, there is where we would sample.

Then, when the ship is over top of the strata we will sample, it must find a safe area to tow which won’t tangle or break the net. You can’t get a sample with a broken net.

Notice the wires on the spools which haul the nets. On the first one the wire is tightly wrapped. On the second one the wire has a gap. This could lead it to break or more easily tangle. We are doing a deep tow tonight outside of the “normal” range of 366 m deep. However, it will not only give us new information, but will, hopefully, help rewrap the wire on the second spool so it will be tight. Have you ever tangled a loose fishing line on your reel? It is somewhat similar to that so we are trying to prevent this from happening later.

So, what have I been doing while waiting for a tow to complete? It depends. One time I told jokes with the scientists. Another I had a snack. Once I ate dinner. Right now, I’m working on my blog. Nap is not an option. I’ll explain that later.

It was a Win-Win Wednesday. We got some great fish by going deep, we explored some very deep water, the wire was rewound properly onto the spool, and we will have a shrimp fest tomorrow.

Meet the Crew

Luke Staiger, 2nd Cook
Luke Staiger, 2nd Cook

The old adage “an army runs on its stomach” holds true for a research vessel. Meet Luke Staiger, our 2nd cook. Luke is with the Bigelow on temporary assignment from the Reuben Lasker  in San Diego. NOAA members get moved around short term as needed. Luke has been with NOAA for 12 years. He has been cooking since he was a kid. His most important tool is an 8″ all purpose knife. It must be sharp and long-handled. If he could invent the perfect tool for the job, what do you suppose it would be? That’s right, a knife that is comfortable to hold all day.

Luke worked in a buffet restaurant so this is the perfect situation for him since it’s all buffet. He worked his way up to cook after doing other jobs at the restaurant. I’m looking forward to a breakfast that he prepares since cooking breakfast is his favorite.

Luke recognizes how important the work is that NOAA does. We need to preserve our resources, such as water, he says. NOAA keeps an eye on things so we don’t lose sight of what matters. When not on a boat, Luke enjoys fixing up cars, especially adding stereo systems. Luke has an easy going personality and a ready smile, making it pleasant to work with him.

How did he find NOAA? Similar to others that I have interviewed, he looked online. NOAA has good benefits, you get to travel, and the experience is good. His advice to my students is to gain lots of experience in your field, even if it’s just volunteering. You will find work if you do a good job and have a lot of experience.

Personal Log

Remember I said I won’t get a nap during my 20 minutes between tows? It is interesting how our stateroom (cabin/bedroom) works. There are four of us in our stateroom. When I leave to go to work, I cannot go back until the end of my watch. I carry everything with me so it is like the private room for two other women. Then I only have one room mate. We get the room for 12 hours. There are curtains around our beds and we wear earplugs. I hardly know that the other scientist on my watch, Lacey, is even there. All I do is check to see if her curtain is closed. That means, “I’m asleep.”

Did You Know?

Did you know that there is an anchor-cleaning device onboard the ship? It sprays salt water at 150 psi (pounds per square inch). The anchor gets pretty dirty sitting on the ocean floor when we are at anchor. They don’t want all that dirt on the ship in the anchor locker, so it gets cleaned. A clean ship is a happy ship.

Question of the Day

Why would different depths affect which fish live there?

Vocabulary Word

Sonoluminescence. This is short bursts of light from imploding bubbles in water (or in a liquid) when excited (moved around) by sound. A mantis shrimp is capable of sonoluminescence because the high speed of its front legs is capable of creating and rapidly shrinking air bubbles. The bubble looks like a spark underwater with no fire.

Something to Think About

If we don’t preserve our fisheries, which is what NOAA is researching, soon there won’t be any fish.

Challenge Yourself

We used a deep-water protocol, which is between 183 and 366 m. If you are fishing in a strata that is 200 feet deep, would you fall in the deep-water protocol?

Animals Seen Today

Here are pictures of what we saw today in our really deep water trawl.

 

 

Amie Ell: Fireworks, Fish, and Flukes, July 6, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
June 30 – July 21, 2013

Mission: Alaska Walleye Pollock Survey
Geographical Area: Gulf of Alaska
Date: July 6th, 2013

Location Data from the Bridge:
Latitude: 55.29.300 N
Longitude: 156.25.200 W
Ship speed:   10.7 kn

Weather Data from the Bridge:
Air temperature: 8.6 degrees Centigrade
Surface water temperature: 8.6 degrees Centigrade
Wind speed:  14 kn
Wind direction: 210 degrees
Barometric pressure: 1008.5 mb

Science and Technology Log:

The Oscar Dyson is equipped with several labs to accommodate the researchers on board.  In this blog post I will describe to you what is happening in the wet/fish lab.  This is where I have experienced quite a bit of hands-on data collection.

Pollock being separated on the conveyor belt.
Pollock being separated on the conveyor belt.

Basket full of pollock.
Basket full of pollock.

After a trawl, the crew dumps the load of  fish into a bin.  Inside the lab we can raise or lower this bin to control the amount of fish coming onto a conveyor belt.  Once the fish are on the belt the scientists decide how they will be separated.   We separate the pollock according to age into baskets.  They are categorized by size; under 20 cm (age 1), under 30 cm (age 2), and any larger than 30 cm

OLYMPUS DIGITAL CAMERA
A lumpsucker

A basket full of small squid
A basket full of small squid

At this time we also pull out any other sea creatures that are not pollock.  So far we have pulled up quite a few jelly fish, la lumpsucker, shrimp, squid, eulachon, and capelin.  These are also weighed, measured, and in some cases frozen per request of scientists not currently on board.

Larger squid.
Larger squid.

After organizing the pollock into appropriate age groups, we then measure and record their weight in bulk.  Scientists are using a scale attached to a touch screen computer with a program called CLAMS to record this information.  The pollock are then dumped into a stainless steel bin where their sex will be determined.  In order to do this the fish must be cut open to look for “boy parts, or girl parts”.   After the pollock are separated into female and male bins we begin to measure their length.

This is the tool used for measuring length of the fish.
This is the tool used for measuring length of the fish.

The tool used to measure length is called the Ichthystick.  This tool is connected to the CLAMS computer system.  The fish is placed on the Ichthystick and a pointer with a magnet in it is placed at the tail end of the fish.  There are three different types of length measurement that can be done: fork length, standard length, and total length.  When the magnetic pointer touches the Ichthystick it senses that length and sends the information to the CLAMS computer system.

OLYMPUS DIGITAL CAMERA
Northern shrimp

One of these bins of fish is placed aside for individual weighing, length measurements, and removal of otoliths.  You may recall that I mentioned otoliths in the last blog post.  These ear bones are sent to a lab and analyzed to determine the age of each of these individually measured fish.  The Alaska Fisheries Science Center has created a demonstration program where you can try to determine the age of different types of fish by looking at their otoliths. Click here to try it yourself! (I will add hyperlink to: http://www.afsc.noaa.gov/refm/age/interactive.htm)

Personal Log:

Ben and Brian in fire gear  with flares.
Ben and Brian in fire gear with flares.

One afternoon while waiting for the fishermen to bring up the trawl net, I watched a group of porpoises swimming behind the ship.  Another day I was able to see whales from up on the bridge.  These were pretty far out and required binoculars to see any detail.  I observed many spouts, saw one breach, and some flukes as well.

There is quite a bit of downtime for me on the ship while I am waiting in between trawls.  I get to read a lot and watch movies in my free time.  I have had the opportunity to talk with different members of the crew and learn about their roles a bit.  The chief engineer gave me a tour of the engine rooms (more about this with pictures in a future post.)

The 4th of July fireworks show on the Oscar Dyson was like no others I have ever experienced.  Two of our crew, Ben & Brian, dressed in official fire gear shot expired flares off the ship into the sea.  America themed music was played over the PA system.  I have attached a video of our fireworks display.  Happy Independence Day everyone!

Andrea Schmuttermair: Out to Sea, June 24, 2012

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3

Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico
Date: June 24, 2012

Ship Data from the Bridge
Latitude: 2858 N
Longitude: 9310.96 W
Speed:  10 mph
Wind Speed: 6.77
Wind Direction: N/NE
Surface Water Salinity: 30.9
Air Temperature: 28.5 C
Relative Humidity: 79%
Barometric Pressure: 1009.84 mb
Water Depth:  24.3 meters

 Personal Log

About ready to set sail!
About ready to set sail!

And the journey has begun! I arrived in Houston on Thursday afternoon, only to be whisked away by Chief Scientist Andre DeBose to meet a few of the other scientists and crew for dinner. I had a great time getting to know a few of the people I will be working with over the next couple of weeks. We arrived to the port at Galveston about 10pm, where I got a quick tour of the Oregon II, my home for the next 2 weeks. Exhausted from traveling, I made myself at home in my stateroom before turning in for the evening.

Because we weren’t scheduled to set sail until 1400, I had a bit of time in the morning to explore Galveston. Being the adventurous type , I took this time to explore the land I would soon be leaving. The Oregon II is docked at Pier 21, located on “The Strand”, a strip filled with historic buildings and tourist shops.  I spent most of my morning snapping photos, checking out the shops, and tracking down a good breakfast burrito at one
of the many Mexican food places that don the strip.

The pier in Galveston
The pier in Galveston

Once back at the ship, we were briefed on the “Do’s and Don’ts” while on board, and what our shifts would look like. I am on the night watch, which means I will be working from midnight until noon each day. This will be a tough schedule to get used to, but I’m hoping we’ll see some neat things at night, and that it will be a little cooler out. I knew I should get to sleep as soon as we set sail, however I couldn’t help hanging out on deck for a little while as we left the port. I was rewarded for this opportunity by watching the pelicans and dolphins seeing our ship out of the port. I snapped a few more photos, enjoyed the cool breeze, and then headed down for bed.

I had quite a blast on my first night shift. I think keeping busy was a good thing, even though it was exhausting. I enjoyed getting to know my team a little better, and of course, checking out all the critters! Some of my favorites were the squid, sharp-nose and dogfish sharks, lizardfish, and my all-time favorite so far – the bashful crab.

Why do you think he is called the "bashful crab"?
Why do you think he is called the “bashful crab”?

Science and Technology Log

I am always under the mindset that if you want to learn something, you need to throw yourself in head first. Well, that’s exactly what I did on my very first shift on the Oregon II. We are split up into 2 shifts — midnight to noon or noon to midnight. On my watch, I am working with our watch leader, Alonzo, 2 scientists, Lindsey and Alex, and a volunteer, Renee. Our Field Party Chief Scientist (FPC), Andre, had to leave unexpectedly. Our new FPC, Brittany, was with us a bit of this first watch to make sure we understood our tasks, as I had lots of questions! Not only did I get the privilege to work the nightshift (I know you’re probably wondering why I said privilege  — I’ll explain soon), but we also had one of the busiest shifts we’re anticipated to have for the length of this cruise. Just after midnight on Saturday morning, we pulled up our first trawl and conducted our first CTD.

The CTD warming up just below the water's surface
The CTD warming up just below the water’s surface

Rinsing out the CTD with freshwater
Rinsing out the CTD with freshwater

A CTD, if you remember from my first blog, stands for Conductivity, Temperature, and Depth. We put the device overboard in the front of the ship (the bow), and let it sit just below the surface for about 3 minutes so the sensors can warm up before we drop it to its scheduled depth. Then we lower it so it is as close to the ocean floor as possible. We do this at every station to collect important information about the oxygen level in the water in these areas. This information is important because we want to find out what the optimal conditions (temperature, salinity and oxygen levels) are for the specimens we collect. Knowing what environmental conditions suit each species allows us to see how shifts in the environment can impact populations. The data from the CTD is displayed on the computer in our dry lab, where the data points are plotted on a graph.

The dry lab is where we process a lot of our data both from the CTD and the sampling. We can monitor our CTD casts and find the weather information here. It is also the area where scientists go when there is a bit of downtime to relax before the next catch is brought in.

Bringing up the trawl- this was a big catch!
Bringing up the trawl — this was a big catch!

Working in the dry lab

Over in the back of the ship, also known as the stern, the trawl picks up all sorts of critters from the ocean bottom. When we’re ready, the deck crew helps us bring up the trawl and dump our catch into large buckets on deck.  We had so much on the first catch that they dumped it out on the floor and we shoveled it into buckets like we were shoveling snow. We then weighed our catch before bringing it in and sorting it. Our first few catches were quite large — we had 6 or 7 baskets full of critters! Each basket can hold roughly 25kg. So, mathematicians, about how many kilograms were our first couple of catches? The nighttime brings on some interesting animals, and there is a certain excitement to staring out at the pitch black ocean.

Our troughs full of the catch, waiting to be sorted
Our troughs full of the catch, waiting to be sorted

With these large catches, jumping in head first was exactly what I had to do. I got a quick crash course in how to identify and sort the fish. I had no idea there would be so many different types! From the entire catch, we were to pull out red snapper, shrimp (pink, white and brown only), blue crabs, and anything unusual. We did this by dumping all the fish in a large trough, which we would then dig through to find our samples and place them in separate baskets.

We are pulling out samples primarily of shrimp because that is one of the main focuses of our survey this summer. The estimated abundance of shrimp, calculated from the trawl catches, is used to set limits for the commercial fishermen.

In addition to sorting out these important critters, we would also take what we call a subsample, the size of which is determined by the size of our total catch. Of this subsample, we sorted out everything in this section of the catch. We often had over 20 different types fish or crustaceans! Once the subsample was sorted, Alonzo would then weigh the total weight of a certain species and enter the data into our computer system. From here the fun part really began.

Lindsey is measuring, weighing and sexing the catch while I enter the data into the computer.
Lindsey is measuring, weighing and sexing the catch while I enter the data into the computer.

Weighing the lizardfish
Weighing the lizardfish

We would measure the length of each critter on our measuring board, which uses a magnetic wand to capture the data and send it directly to the computer database. For most of the species, we would also take the weight of the first fish and every fifth fish thereafter, and, if possible, also determine its sex and stage of maturity. All this information was entered in the database. We typically worked in teams of 2 with one person measuring and weighing the fish and the other entering information into the computer. We were a bit slow to start, but after the first catch we had a system down. Once we had all of our data, we bagged up some of the fish that people have requested for samples while the rest headed back to the ocean. Fish from our survey will go to scientists in lab across the country to study further.

Because all the stations were about 2-5 miles apart on our first watch, we were working nonstop from midnight until about 11am. We pulled up about 7 catches, and almost always had a catch waiting to be sorted on deck.

Hard at work measuring my lizardfish
Hard at work measuring my lizardfish

Got Questions?

Don’t forget, you can leave your questions in the “Comments” section below, and I’ll do my best to answer them!

Critter Query:

Students: Don’t forget to put your name in your response.  Remember, the first one to respond correctly will receive a prize in the fall!

Critter Query #1: What’s the biggest commercial shrimp found in the Gulf of Mexico and what is its scientific name?

Critter Query #2: Name 3 types of shark found in the Gulf of Mexico.  (more than one correct response — all correct responses will receive a prize providing there are no repeats)

Lesley Urasky: Smile and say, “Squid!”, June 20, 2012

 NOAA Teacher at Sea
Lesley Urasky
Aboard the NOAA ship Pisces
June 16 – June 29, 2012

 Mission:  SEAMAP Caribbean Reef Fish Survey
Geographical area of cruise: St. Croix, U.S. Virgin Islands
Date: June 20, 2012

Location:
Latitude: 18.1937
Longitude: -64.7737

Weather Data from the Bridge:

Air Temperature: 28°C (83°F)
Wind Speed:  19 knots (22 mph), Beaufort scale: 5
Wind Direction: from N
Relative Humidity: 80%
Barometric Pressure: 1,014.90  mb
Surface Water Temperature: 28°C (83°F)

Science and Technology Log

The cameras are a very important aspect of the abundance survey the cruise is conducting.  Since catching fish is an iffy prospect (you may catch some, you may not) the cameras are extremely important in determining the abundance and variety of reef fish.  At every site sampled during daylight hours, we deploy the camera array.  The cameras can only be utilized during the daytime because there are no lights – video relies on the ambient light filtering down from the surface.

Camera array – the lens of one of the cameras is facing forward.

Deployment of the array at a site begins once the Bridge verifies we are over the sampling site. The camera array is turned on and is raised over the rail of the ship and lowered to the water’s surface on a line from a winch that has a ‘quick release’ attached to the array.  Once over the surface, a deck hand pulls on the line to the quick release allowing the array to free fall to the bottom of the ocean. Attached to the array is enough line with buoys attached. The buoys mark the array at the surface and give the deck hands something to aim for with the grappling hook when it is time for the array to be retrieved.  Once the buoys are on deck, a hydraulic pot hauler is used to raise the array from the sea floor to the side of the ship.  From there,  another winch is used to bring the array on board.

Vic, Jordan, Joey, and Joe deploying the camera array.

When the array is deployed, a scientist starts a computer program that collects the time, position and depth the array was dropped at. The array is allowed to “soak” on the bottom for about 38 minutes. The initial 3-5 minutes are for the cameras to power up and allow any sediment or debris on the bottom to settle after the array displaces it. The cameras are only actually recording for 25 of those minutes. The final 3-5 minutes are when the computers are powering down.  At one point in time, the cameras on the array were actual video cameras sealed in waterproof, seawater-rated cases. With this system, after each deployment, every individual case had to be physically removed from the array, opened up, and the DV tape switched out.  With the new system, there are a series of four digital cameras that communicate wirelessly with the computers inside the dry lab.

We did have a short-lived problem with one of the digital cameras — it quit working and the electronics technician that takes care of the cameras, Kenny Wilkinson, took a couple of nights to trouble shoot and repair it.  During this time period, we reverted back to the original standard video camera.  Throughout the cruise, Kenny uploads the videos taken during the day and repairs the cameras at night so they will be ready for the next day’s deployments.

Squid (before being cut into pieces) used for bait on the camera array

Besides the structure of the camera array which is designed to attract reef fish, the array is baited with squid.  A bag of frozen, cut squid hangs down near the middle.  The squid is replaced at every site.

Adding bait to the camera array.

In addition to the bait bag, a Temperature Depth  Recorder (TDR) is attached near the center, hanging downward near the bottom third of the array. The purpose of the TDR is to measure the temperature of the water at various depths.  It is also used to verify that the depth where the camera comes to rest on the ocean bottom and is roughly equivalent to what the acoustic sounding reports at the site.  This is important because the camera generally doesn’t settle directly beneath the ship.  Its location is ultimately determined by the drift as it falls through the water column and current.  The actual TDR instrument is very small and is attached to the array near the bait bag.  After retrieving the array at each site, the TDR is removed from the array and brought inside to download the information.  To download, there is a small magnet that is used to tap the instrument (once) and then a stylus attached to the computer is used to read a flash of light emitted by an LED.  The magnet is then tapped four times on the instrument to clear the previous run’s data.  The data actually records the pressure exerted by the overlying water column in pounds per square inch (psi) which is then converted to a depth.

TDR instrument

Computer screen showing the data downloaded from the TDR.

The video from each day is uploaded to the computer system during the night shift.  The following day, Kevin Rademacher (chief scientist), views the videos and quickly annotates the “highlights”.  The following things are noted:  visual clarity (turbidity [cloudiness due to suspended materials], what the lighting is like [backlit], and possible focusing issues), substrate (what the bottom is made of), commercially viable fish, fish with specific management plans, presence of lionfish (an invasive species), and fish behavior.  Of the four cameras, the one with the best available image is noted for later viewing.

Computer data entry form for camera array image logs

Once back at the lab, the videos are more completely analyzed.  A typical 20-minute video will take anywhere from 30 minutes to three days to complete. This is highly dependent upon density and diversity of fish species seen; the greater the density and diversity, the longer or more viewing events it will take.  The experience of the reader is also an important factor. Depending upon the level of expertise, a review system is in place to “back read” or verify species identification. The resulting data is entered into a database which is then used to assign yearly data points for trend analysis. The final database is submitted to the various management councils.  From there, management or fisheries rebuilding plans are developed and hopefully, implemented.

Spotted moray eel viewed from the camera array.  He’s well camouflaged; can you find him?

Coney with a parasitic isopod attached below its eye.

Two Lionfish – an invasive species

Personal Log

Today, we are off the coast of St. Thomas and St. John in the U.S. Virgin Islands.  We traveled from the southern coast of  St. Croix, went around the western tip of the island and across the straight.  When I woke up I could see not only St. Thomas and St. John, but a host of smaller islands located off their coastline.

Map of the Virgin Islands. St. Croix and St. Thomas are separated by 35 miles of ocean. It took us about 3 hours to cross to our next set of sampling sites.

Around dinner time last night we had an interesting event happen on board.  They announced over the radio system that there was a leak in the water line and asked  us not to use the heads (toilets).  A while later, they announced no unnecessary use of water (showers, etc.); following that they shut off all water.  It didn’t take long for the repairs to occur, and soon the water was returned.  However, when I went to dinner, I discovered that the stateroom I’m sharing with Kelly Schill, the Ops Officer, had flooded.  Fortunately, the effects of the flooding were not nearly as bad as I had feared.  Only a small portion of the room had been affected.  The crew did a great job of rapidly assessing the problem and fixing it in a timely manner.  After this, I have absolutely no fear about any problems on board because I know the crew will react swiftly, maintain safety, and be professional all the while.

Last night was the first sunset I’ve seen since I’ve been on board.  Up until this point, it has been too hazy and cloudy.  The current haze is caused by dust/sand storms in the Sahara Desert blowing minute particles across the Atlantic Ocean.

St. Thomas sunset

Today has been a slow day with almost nary a fish caught.  We did catch one fish, but by default.  It was near the surface and hooked onto our bait.  We immediately reeled in the line and extracted it.  It was necessary to remove it because it would have skewed our data since it was caught at the surface and not near the reef.  This fish was a really exciting one for me to see, because it was a Shark Sucker (Echeneis naucrates).  These are the fish you may have seen that hang on to sharks waiting for tasty tidbits to float by.  They are always on the lookout for a free meal.

Shark sucker on measuring board

One of the most interesting aspects of the shark sucker is that they have a suction device called laminae on top of their heads that looks a little like a grooved Venetian blind system.  In order to attach to the shark (or other organism), they “open the blinds” and then close them creating a suction-like connection.

The “sucker” structure on the Shark Sucker. Don’t they look like Venetian blinds?

I got to not only see and feel this structure on the fish, but also let it attach itself to my arm!  It was the neatest feeling ever! The laminae are actually a modified dorsal spines; these spines are needed because of the roughness of shark’s skin. When the shark sucker detached itself from me, it left a red, slightly irritated mark on my arm that disappeared after a couple of hours.

Look, Ma, No Hands! Shark sucker attached to my arm.

Tomorrow we’ll be helping place a buoy in between St. Croix and St. Thomas.  It will be interesting to see the process and how the anchor is attached.

With all the weird and wonderful animals we’re retrieving, I can’t wait to see what another day of fishing brings.

Scott Davenport: Heading to Sea, May 21, 2012

NOAA Teacher at Sea
Scott Davenport
Aboard NOAA Ship Bell M. Shimida
May 21-May 27, 2012

Mission: Rockfish Survey
Geographical area of cruise: Eastern Pacific, off the California coast and next to the Mexican Border
Date: May 21, 2012

Personal Log

Hi, my name is Scott Davenport and I am excited to be a part of NOAA’s Teacher at Sea Program.  It is going to be great. I teach at Paul T. Albert Memorial School located in scenic Tununak, Alaska.  It is a Yup’ik village on the Bering Sea. Most families practice subsistence living. My subject is junior high generalist, meaning I teach everything. Last year, I had a great group of seventh and eighth graders. It was my first year in Alaska and as a full-time teacher. Everyone learned a lot.

Tununak Seventh and Eighth Graders. Can you tell it is the last day of school?

Teacher at Sea intrigued me because it opens wide array of possibilities. A consistent issue at our school is what comes next? Graduation is a celebration, but it also brings apprehension and uneasiness. There are not a wide range of jobs in the village. It is normally limited to fishing, teaching, being a cashier, store stocker, or bush pilot. A NOAA boat offers a wider range of careers.  My experience on the ship will help my students make connections to new possibilities. The long cruises followed by long breaks  fit with subsistence living. They can have the time to go on a two week moose hunt and not miss work. Being located on the sea, most of my students  are acclimated to spending time on the water. My experience will  open eyes.

While on board the Bell M. Shimada, we have seven objectives. Objective #1: Sample the epi-pelagic micronekton. That means–thanks to Cynthia explaining it to me–we are going to see what is living in the upper water column. The specific fish we are looking for are the  juvenile rockfish. We will also survey Pacific whiting, juvenile lingcod, northern anchovy, Pacific sardine, market squid and krill. Objective #2: Characterize prevailing ocean conditions and examine prominent hydrographic features. Objective #3: Map the distribution and abundance of krill. Objective #4: Observe seabird and marine mammal distribution and abundance. Objective #5: Collect Humboldt squid. Objective #6: Conduct deep midwater trawls to examine mesopelagic specimen. Finally Objective #7: Examine feeding habits of jellyfish. My personal objective is to not vomit at sea.

The three things I am looking forward to most are meeting new people, witnessing scientific research, and learning new, unexpected items. My three biggest concerns are falling overboard at night into a never-ending dark abyss, the food, and making sure I contribute to the work/use my time wisely.  I am also excited to have a break from snow.

In the fall, the stairs went down.

Jennifer Fry: March 14, 2012, “Pi Day” 3.14, Oscar Elton Sette

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship, Oscar Elton Sette
March 12 – March 26, 2012

Mission: Fisheries Study
Geographical area of cruise: American Samoa
Date: March 14, 2012

At Sea: Pago Pago, American Samoa

Science and Technology Log:

My current assignment aboard ship is helping the scientists with the “Nighttime Cobb Trawling”  We conduct two trawls in the night, the first one beginning around 9:00 p.m. and the second one at 1:30 a.m..  After each trawl which lasts 2 hours, the nets are brought up and we sort the catch.  The scientists are looking for migration patterns and types of sea life in this region.  Not much data has been collected  in American Samoa.

There are 3 other  scientists working on this project.

John Denton, is from the Natural History Museum in New York.

Aimee Hoover works for University of Hawaii.

Sione “Juice” Lam Yuen and Faleselau “House” or “Fale” Tuilagi are from the Fisheries Dept .in American Samoa.

The two trawls exaimine five species of fish:

  1. Myctophid fish
  2.  non-myctophid fish
  3.  crustaceans
  4.  gelatinous zooplankton
  5.  cephalopods

During one of the trawls the other night, they think they found a new species of myctophid fish. These fish have photophores which make them glow in the dark.  They are anywhere from 4-5 inches to very tiny, 1 inch.

Myctophids are among the most numerous fish in the sea. They have specific light producing organs called photophores.

After 4 days on the  night shift, I’m getting into the groove.  Going to sleep at 6 a.m. and waking up at 1:00 p.m.

It’s crazy.  Last night we did 2 trawls for fish.  We caught a huge fish, approx 4 feet in diameter, called a Sharptail mola, Masturus lanceolatus or Sunfish.  The scientists and crew were able to  free him and let him go back into the ocean. Click here to see the exciting video of the release of the Mola: Releasing the  Sharptail mola, Masturus lanceolatus/ Sun-fish

During tonight's Cobb trawl a sharp-tailed mola was caught in the net. The crew and scientists aided in freeing the fish allowing him to swim away. Mola can reach 100 years old.

When conducting a scientific experiment it is very important to maintain the same procedure or protocol.  This allows the scientist to measure only that which he/she is interested in, keeping all constants the same.

Here is the procedure or protocol for each Midwater Cobb Trawl:

1. Secure the TDR and Netminds tracking devices to  the trawl net Let out the trawl net, timing for 30 minutes at 350 meters of “wire out.”

2.  Ask the bridge and trawl net operator to raise the net line to 100 meters “wire out.”

3.  Time the trawling for additional 30 minutes.

4.  Once the trawl net has been hauled in:

5. Cut away the TDR and Netminds tracking devices: Their data is read on the computer.   Helping scientists determine temperature, depth   for each trawl.

6. Working together, scientist and crew members collect the specimens caught is the Cobb net.

7. The fish collected are taken to the wet lab and strained into a net that is in turn poured into examining trays.

8. Scientists then collect data including: weight (volume & mass), length (centimeters) ,  and count the number of each species recording the

minimum and maximum lengths.

9.   The scientists preserve each group of fish in ethanol/ ethyl alcohol  which eases transportation and preserves the fish for further study back in the lab.

Personal Log:

I’ve switched to working the night shift, tonight being the third night.  It’s getting a little easier, although we all still get punchy around 3-4 a.m.  I am scheduled to work nights until next Monday.  We will continue counting the fish, setting the trawl nets out, imputing the data, preserving the fish.  All very interesting work.

Animals Seen:

Sharptail mola, Masturus lanceolatus fish

Moorish Idol fish

Two Moorish Idol fish were caught in the Cobb Trawl net. Their colors were brilliant including their unique dorsal filament.

Lindsay Knippenberg: Oceanography Day! September 11, 2011

NOAA Teacher at Sea
Lindsay Knippenberg
Aboard NOAA Ship Oscar Dyson
September 4 – 16, 2011

Mission: Bering-Aleutian Salmon International Survey (BASIS)
Geographical Area: Bering Sea
Date: September 11, 2011

Weather Data from the Bridge
Latitude: 58.00 N
Longitude: -166.91 W
Wind Speed: 23.91 kts with gusts over 30 kts
Wave Height: 10 – 13ft with some bigger swells rolling through
Surface Water Temperature: 6.3 C
Air Temperature: 8.0 C

Science and Technology Log

On a calm day letting out the CTD is easy.
On a calm day letting out the CTD is easy.

Today Jeanette and Florence took me under their wing to teach me about the oceanographic research they are conducting onboard the Dyson. At every station there is a specific order to how we sample. First the transducer, then the CTD, then numerous types of plankton nets, and then we end with the fishing trawl. The majority of the oceanographic data that they collect comes from the CTD (Conductivity, Temperature, Depth). The CTD is lowered over the side of the ship and as it slowly descends to about 100 meters it takes conductivity, temperature, and depth readings. Those readings go to a computer inside the dry lab where Jeanette is watching to record where the pycnocline is located.

The results from the CTD. Can you spot where the pycnocline is?
The results from the CTD. Can you spot where the pycnocline is?

The pycnocline is a sharp boundary layer where the density of the water rapidly changes. The density changes because cold water is more dense than warm water and water with a higher salinity is more dense than water that is lower in salinity. So as the CTD travels down towards the bottom it  measures warmer, less salty water near the surface, a dramatic change of temperature and salinity at the pycnocline, and then colder, saltier water below the pycnocline. Once Jeanette knows where the pycnocline is, she tells the CTD to collect water at depths below, above, and at the pycnocline boundary. The water is collected in niskin bottles and when the CTD is back on deck Florence and Jeanette take samples of the water to examine in the wet lab.

Filtering out the chlorophyll from the CTD water samples.
Filtering out the chlorophyll from the CTD water samples.

Back in the lab, Jeanette and Florence run several tests on the water that they collected. The first test that I watched them do was for chlorophyll. They used a vacuum to draw the water through two filters that filtered out the chlorophyll from the water. As the water from the CTD passed through the filters, the different sizes of chlorophyll would get stuck on the filter paper. Jeanette and Florence then collected the filter paper, placed them in labeled tubes, and stored them in a cold, dark freezer where the chlorophyll would not degrade. In the next couple of days the chlorophyll samples that they collected will be ran through a fluorometer which will quantify how much chlorophyll is actually in their samples.

Jeanette collecting water from the CTD.
Jeanette collecting water from the CTD.

Besides chlorophyll, Jeanette and Florence also tested the water for dissolved oxygen and nutrients like nitrates and phosphates. All of these tests will give the scientists a snapshot of the physical and biological characteristics of the Eastern Bering Sea at this time of year. This is very important to the fisheries research because it can help to determine the health of the ecosystem and return of the fish in the following year.

Personal Log

One of the high points for me so far on the cruise has been seeing and learning about all the new fish that we catch in the net. We have caught lots of salmon, pollock, and capelin. The capelin are funny because they smell exactly like cucumbers. When we get a big catch of capelin the entire fish lab smells like cucumbers…it’s so weird. We have also caught wolffish, yellow fin sole, herring, and a lot of different types of jellyfish. The jellies are fun because they come in all different shapes and sizes. We had a catch today that had some hug ones and everyone was taking their pictures with them.

Now that is a big jelly fish.
Now that is a big jelly fish.

Today we also caught three large Chinook or king salmon. Ellen taught me how to fillet a fish and I practiced on a smaller fish and then filleted the salmon for the cook. What is even cooler was that at dinner we had salmon and it was the fish that we had caught and I had filleted. Fresh salmon is so good and I think the crew was happy to get to enjoy our catch.

The catch of the day was a 8.5 kg Chinook salmon.
The catch of the day was a 8.5 kg Chinook salmon.

Salmon for dinner, filleted by Lindsay.
Salmon for dinner, filleted by Lindsay.


What else did we catch?

Walleye Pollock
Walleye Pollock

A juvenile Wolffish
A juvenile Wolffish

Yellow Fin Sole
Yellowfin Sole

 A squid
A squid

Herring
Herring

Lots of little Capelin
Lots of little Capelin

Jason Moeller: June 17-18, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 17-18, 2011

Ship Data
Latitude: 52.34 N
Longitude: -167.51 W
Wind Speed: 7.25 knots
Surface Water Temperature: 6.6 Degrees C
Air Temperature: 7.1 Degrees C
Relative Humidity: 101%
Depth:  63.53 meters

All of the above information was found on http://shiptracker.noaa.gov. Readers can use this site to track exactly where I am at all times!

Personal Log

Welcome back, explorers!

It has been a very eventful 24 hours! We have started fishing, but have done so little that I will wait to talk about that in the next log. Tammy, the other Teacher at Sea, has not begun fishing yet, and as we will be writing the science and technology log together, I will save the fishing stories until she has had a chance to fish.

After turning in last night’s log, we managed to spot eight or nine humpback whales on our starboard side that appeared to be feeding at the surface. They were too far away to get any decent photos, but it was a lot of fun to watch the spouts from their blowholes tower up into the air.

Whale Spouts
Ten whale spouts rise in the distance.

This afternoon started off by dropping an expendable bathythermograph (from here on out this will be referred to as an XBT). The XBT measures the temperature and depth of the water column where it is dropped (there will be more on this in the Science and Technology section). I was told that I would be dropping the XBT this time, and was led off by Sarah and Abby (two of the scientists on board) to get ready.

Ready to launch!
The first thing I had to do was to get dressed. I was told the XBT would feel and sound like firing a shotgun, so I had to put on eye, ear and head protection. I was also put in a fireman suit to protect my body from the kickback, since I am so small. The XBT launcher is the tube in my hands.

Pranked!
This is me launching the XBT. Why no smoke? All we actually needed to do was drop the device over the side. The whole shotgun experience was a prank pulled off by the scientists on all of the new guys. Their acting was great! When I turned towards Sarah at one point with the launcher, she ducked out of the way as if afraid I would accidentally fire it. I fell for it hook, line, and sinker.

However, the prank backfired somewhat. As the scientists were all laughing, a huge wave came up over the side of the ship and drenched us. I got nailed, but since I was in all of the gear, I stayed dry with the hem of my jeans being the only casualty. Sarah didn’t get so lucky. Fun times!

Sarah
Sarah looking a bit wet.

Science and Technology Log
Today, we will be looking at the XBT (the expendable bathythermograph). Bathy refers to the depth, and thermo refers to the temperature. This probe measures the depth and temperature of the water column when it is dropped over the starboard side of the ship.
“Dropping” isn’t exactly the right phrase to use. We use a launcher that resembles a gun. See the photo below to get an idea of what the launcher looks like.

XBT Launcher
This is the XBT Launcher.

Pin
The silver loop is the pin for the launcher. To launch the probe, we pulled the pin and flung out our arm. The momentum pushed the probe out of the tube and into the water below.

The probe
The probe.

The probe is connected to a length of copper wire, which runs continuously as the probe sinks through the water column. It is important to launch the probe as far away from the ship as possible, as the copper wire should never touch the ship. If the wire were to touch the ship, the data feed back to the ship would be disrupted and we would have to launch another probe, which is a waste of money and equipment. The survey technician decides to cut the wire when he/she has determined that sufficient data has been acquired. This normally occurs when the probe hits the ocean floor.

This is a quick and convenient way to collect data on the depth and temperature of the water column. While the ship has other methods of collecting this data (such as a Conductivity, Temperature, and Depth (CTD) probe), the XBT is a simpler system that does not need to be recovered (as opposed to the CTD).

CTD
A CTD

Data collected from the most recent XBT.
Latitude: 53.20 degrees N
Longitude: 167.46 degrees W
Temperature at surface: 6.7 degrees C
Temperature at bottom: 5.1 degrees C
Thermocline: 0 meters to 25 meters.
The thermocline is the area where the most rapid temperature change occurs. Beneath the thermocline, the temperature remains relatively constant.

Thermocline
This is a graph showing a thermocline in a body of water. Source: http://www.windows2universe.org

Species Seen

Humpback Whales

Northern Fulmar

Albatross

Northern Smoothtongue

Walleye Pollock

Mackerel

Lumpsucker

Squid

Pacific Sleeper Shark

Reader Question(s) of the Day!

Today’s reader questions come from James and David Segrest, who are two of my students in Knoxville Zoo’s homeschool Tuesday classes!

1. Did pirates ever travel the path you are on now? Are there any out there now?

A. As far as I know, there are no pirates currently operating in Alaska, and according to the scientists, there were not any on the specific route that we are now traveling. However, Alaska does have a history of piracy! In 1910, a man named James Robert Heckem invented a floating fish trap that was designed to catch salmon. The trap was able to divert migrating salmon away from their normal route and into a funnel, which dumped the fish off into a circular wire net. There, the fish would swim around until they were taken from the trap.

Salmon and trap
Workers remove salmon from a fish trap in 1938. Historic Photo Courtesy of the U.S. Fish & Wildlife - Fisheries Collection - Photographer: Archival photograph by Mr. Sean Linehan, NOS, NGS.

For people who liked eating fish, this was a great thing! The salmon could be caught quickly with less work, and it was fresh, as the salmon would still be alive when taken from the trap. For the traditional fisherman, however, this was terrible news. The fishermen could not compete with the traps and found that they could not make a living. The result was that the fishermen began raiding the floating traps, using any means possible.

Salmon barge
A barge of salmon going to a cannery. Fishermen could not compete with traps that could catch more fish. Historic Photo Courtesy of the U.S. Fish & Wildlife - Fisheries Collection -Photographer: Archival photograph by Mr. Sean Linehan, NOS, NGS

The most common method used was bribery. The canneries that operated the traps would hire individuals to watch the traps. Fishermen would bribe the watchers, steal the fish, and then leave the area. The practice became so common that the canneries began to hire people to watch the trap-watchers.

2. Have you seen any sharks? Are there any sharks that roam the waters where you are traveling?

shark
Hi James and David! Here is your shark! It's a Pacific Sleeper Shark.

shark in net
The shark in the net

Shark
Another image of the shark on the conveyor belt.

This is a Pacific Sleeper Shark. It is called a sleeper shark as it does not appear to move a great deal, choosing instead to glide with very little movement of its fins. As a result, it does not make any noise underwater, making it the owl of the shark world. It hunts much faster fish (pollock, flounders, rockfish) by being stealthy. They are also known to eat crabs, octopus, and even snails! It is one of two animals known to eat giant squid, with the other one being sperm whales, although it is believed that these sharks probably scavenge the bodies of the much larger squid.

The other shark commonly seen is the salmon shark. Hopefully, we will catch one of these and I will have photos later in the trip.

Story Miller, August 1, 2010

NOAA Teacher at Sea: Story Miller
NOAA Ship: Oscar Dyson

Mission: Summer Pollock III
Geographical Area: Bering Sea
Date: August 1, 2010

Launching the XBT

Time: 1233 ADT
Latitude: 60°51N
Longitude:179°11W
Wind: 17 knots (approx. 19.6 mph or 31.5 km/h)
Direction: 171° (S)
Sea Temperature: 9.9°C (approx. 49.8°F)
Air Temperature: 12.8°C (approx. 55.0°F)
Barometric Pressure (mb): 1009
Wave Height 2-3 feet
Swell Height 4-6 feet

Scientific Log:
Think about your morning routine from the moment you wake up to just after eating breakfast. Now imagine spending that morning on a boat in the middle of the Bering Sea. Perhaps you take a shower or wash your face and hopefully brush your teeth. Where does the water come from? Where does the waste water go? I bet at some point you will use the bathroom (Hey, it’s a fact of life and everybody does it!). Where does that waste go? How is it processed? I also bet that at some point you turned on the light. How does a boat get its electricity?

The Oscar Dyson has a truly remarkable system that allows a crew of up to 39 live on the ship for as long as we have food and fuel! The fuel used is diesel and the diesel is converted into electricity through the engine, which turns the generator and the generator makes AC power. A rectifier ridge turns the AC power into DC power and the DC power runs to the shaft which is able to turn the propeller. However not all the power goes to DC power. The rest is turned into AC power so that we can use lights, heaters, fans, and the ovens in the galley.

Below the deck of the ship is where the engineers maintain all the components that make the ship function.

The Machines:

The main shaft (what turns the propeller on the ship)

Because we would not be able to go anywhere without fuel, let’s start with it. The fuel goes from the fuel tank to a primary filter and then through a secondary filter to clean the fuel. The fuel then travels to the fuel pump which transfers it to the injector and the injector sends it to the engine.

The centrifuges that clean the fuel.

Whatever fuel is not used is returned to a storage tank where it will wait until we need it again. Because fuel can become dirty when it sits, and dirty fuel is not good for engines,  the old fuel is run through a centrifuge (a device that spins and uses centrifugal force to separate mixtures) to become purified. As you can see in the picture, there are two centrifuges because it is important to have a backup in case of a breakdown. One is currently running for the month of July and the other will run for the month of August. We have this alternating pattern because we want to make sure there is even wear on each.

Access hatch to the waste oil storage.
Entering confined spaces are dangerous
as noted by the bolted entry. Special protective materials, a work plan, and
an initial safety test must be in place prior to entry

Periodically, the ship requires an oil change and the waste oil from machines such as the crank case, winches, and hydraulics are placed in a storage tank. Because it costs a considerable amount of money to haul waste fuel, the ship has a method for disposing it. From this waste oil storage tank, it is pumped up to the incinerator where it is burned.
The ship will also obtain oily water from locations such as the bilges and that water is recycled by going through the Oily Water System (OWS) and currently it is able to clean the water to 15ppm (parts per million) of oil to water. After the purification it is released into the ocean. We are currently in the process of installing another filtration system that will run the 15ppm concentration and reduce the contaminants to 5ppm and possibly even 3ppm. The oil that is extracted from the water is put into the waste oil storage tank for future incineration.

Engineering Control Room

As stated earlier, all the machinery, including the coffee maker, is maintained by the engineers. In the control room the engineers are able to monitor all functions of the ship. If needed, they could even take away the power from the bridge (where the NOAA Corps officers control the ship) and drive the ship from underneath! So, if you really want to be in control…

Sanitation: 
Some may wonder what we do with all of the garbage we collect on the ship. For example, where does all the uneaten food go? What about all the paper waste from used cups, napkins, and wrappers? In the mess hall, there are two garbage bins, one to scrape uneaten food and the other for paper. Because food is biodegradable, that bin is tossed overboard. The paper waste is sent to the incinerator to be burned. I am told that the incinerator gets hot enough that if a soup can was placed inside and incinerated, it would appear to look normal after the incineration, except once you touch it, it crumbles into dust!To get clean drinking water, we pump the salt water from the ocean into a desalination unit (a distiller). The distilled water is then sent to a 10,000 gallon holding tank. When water is needed, it is pressurized which, like in your house, sends it to the faucets, drinking fountains, and shower. Perhaps you have heard of the pens using UV light to purify water when you are camping. Well, right after the water is pressurized the boat has a large UV Pen to kill any additional microbes that might be inhabiting the water.

Marine Sanitation Device

From the toilet, the waste material is pulled down by a vacuum and travels through a pipe to the Marine Sanitation Device (MSD) tank. All the waste, including what we call “gray water” which basically is waste water from the shower and the sink, is agitated with an aroator. Solid waste will sink to the bottom of the tank where it is ground to fine particles. Oddly enough the grinder is also responsible for the vacuum in the sewage line via the eductor. The dirty water mixture is then sent through the chlorinator and is stored in the chlorination tank. When the water rises to a certain point, a sensor signals the pump to send the chlorinated water over the side of the boat.Cool fact! On other ships in the past, the catch water in the toilets was salt water (the Oscar Dyson uses fresh water). Because the water in the toilets did not need to be distilled, little bioluminescent organisms would sit inside. The thrilling activity is that when a person would flush the toilet in the dark, the organisms would become agitated and glow. Therefore, in your toilet, you could have your own light show with each flush!

Personal Log: 

Squid

Today we processed one batch of fish. The odd part to this scenario was that we caught a group of Pacific Herring. We measured, weighed, and extracted stomach samples as it is equally important to gather data about other fish we catch. The internal body structure of a Pacific Herring is very different from that of a Walleye Pollock and so I had the opportunity to dissect and study a different kind of fish. Leftover critters from the trawl that occurred last night while I was sleeping also appeared in the catch – tiny jellyfish, squid, and shrimp – and I spent some time sorting them out. Tonight, our chef is cooking up a few of the herring so we can see what they taste like. Another highlight to working with the herring is that I was challenged to locate and extract the otoliths. The otoliths of Pacific Herring are much smaller than those of the Walleye Pollock. To provide an idea, imagine clipping your pinky toenail. The clipping would be just a little larger than the otolith! Otoliths of pollock are a little less than one centimeter long and 1/2 of one centimeter wide.

Jellyfish

Today we crossed the 180° line of Longitude and entered the future, putting me a day ahead of the United States. Currently our transect has placed us near Cape Nevarin, Russia and unfortunately it is too foggy outside to see land. Because I have crossed the  dateline, I will receive the Order of the Golden Dragon, a certificate proving my adventure across the line!I am exceptionally excited for dinner tonight as we are having King Crab legs, prime rib, mashed potatoes and gravy, and of course, some herring! With Ray as our chef, it is evident that nobody goes hungry! Today he constructed a shortcake in the shape of the Oscar Dyson, decorated it, and set aside a bowl of strawberry sauce. I would have taken a picture but by the time I finished processing the herring, the cake ships were in fatal condition for sailing but I feel the crew are quite satisfied!

Animals Spotted Today:

Immature Gull

Humpback whales
Walleye Pollock
Pacific Herring
Shrimp
Squid
Jellyfish
Northern Fulmars
Black-legged Kittiwakes
Slaty-backed Gulls

Something to Ponder:
I decided that it was important to inquire what it took to be an engineer on the boat. After talking with a few members of the crew who had been doing this line of work for a long time, I was loaded with valuable insight to pass along to my readers.
According to the engineers, the best way to guarantee a well-paying job on a boat and allow one to have more options available would be to attend a maritime school because graduates will walk onboard with an officers ticket. While college is expensive, consider this: If you attend the US Merchant Marine Academy (USMMA), your college is paid for as it is one of the five US service academies. www.usmma.edu

However, because admission is difficult, if you were to attend a maritime academy, you could potentially have a situation similar to one of our engineers on board. He attended Maine Maritime Academy for four years and earned a Bachelors of Science in Engineering. Additionally, within six months of working onboard a ship with his credentials, he had ALL of his student loans paid for! Most college students in the US spend approximately five years paying off their student loans!

While a maritime academy would be ideal, I asked the engineers of other ways one could obtain an engineering/mechanic job on a ship. They shared that there were 2-year schools available but the largest drawback to that path is that upon graduation, you would have some skills but would not be fully licensed. One rule of thumb that I have learned over the years, and the engineers echoed this, is the key to having choices in your job is to become as versatile as possible.I then asked the engineers if there were any other ways to get a job on a boat and they mentioned that one could attend a union school and learn a trade such as in refrigeration or mechanics. Keep in mind though, that person would be unlicensed and not have as many choices available to them.

I also asked the engineers what subjects in school they thought were the most important to learn. The first subject mentioned was mathematics but they brought up a very important concept: “It’s not necessarily how much math you take, but how well you understand the math.” Think of a student who aces the test and then forgets everything afterward. In other words, it would be great if a student made it to Calculus in high school but if he or she doesn’t fully understand the processes behind the algebra, that student will have difficulty in his or her engineering occupation. The engineers also shared that trigonometry was essential.
Regarding the sciences, for engineering, it was highly recommended that students wanting to get off on the right foot should take chemistry, physics, and biology.

However, one of the most important subjects they mentioned that may surprise some readers is English Composition because “You must have the ability to express yourself effectively and communicate with the people you work with everyday.” The engineers shared that, for example, they often would have to write reports and if they needed a part, the engineers would need to write to a supervisor and provide reasons to prove why they would need a part. “The better you are at communicating, the farther you will be able to go with your job and get what you want.”

So, in closing, the next time you think, “Geeze, why do I need to learn this equation and how to use it in this silly word problem?” or, “Why do I need to write this paper about persuading my English teacher that peanut butter and jelly sandwiches are the best?” remember this: Your teachers really are not torturing you and really, are simply training you to develop the skills you will need to utilize in your job and in adulthood. The more advantage you take of this training, the more versatile and successful you will become. Ultimately though, it’s up to you to make that move!For more information a valuable website is:http://www.omao.noaa.gov/about.html

Mechelle Shoemake, June 27, 2010

NOAA Teacher at Sea
Mechelle Shoemake
Onboard NOAA Ship Oregon II
June 19 – 30, 2010

Mission:  SEAMAP Groundfish Survey
Geographical Area of Cruise:  Northwestern Gulf of Mexico
Date:  Sunday, June 27, 2010

Weather Data from the Bridge
Time: 0700 hours (07:00am)
Position: Latitude = 28.80.02 N; Longitude = 090.20.40 W
Present Weather: partly cloudy
Visibility: 8 nautical miles
Wind Speed: 8 knots
Wave Height:  3 foot swells
Sea Water Temp:  29.8 degrees Celsius
Air Temperature: Dry bulb = 27.9 degrees Celsius; Wet bulb = 25.5 degrees Celsius

Here I am measuring and weighing the fish.

Science and Technology Log
We are on twelve hour shifts while on the Oregon II. That means that we have two crews of scientists that work around the clock taking fish, plankton, and water samples.  My shift begins at 12:00 noon and ends at midnight.  Our first shift began on Sunday. We had finally reached our first station for study, so we took over for the first set of scientists.  They had just finished a trawl and had separated the fish.

Here I am measuring and weighing the fish

We finished weighing and measuring the fish. Next on the agenda was a fire and abandon ship drill.  We had to “muster” to our stations for a head count  during the fire drill.  Next, the alarm sounded for the abandon ship drill.  We all had to get our survival suits and meet on the top deck.

As soon as the drill was over, we were able to get back to work. we first did a CTD test, which stands for conductivity, temperature, and density. This fancy machine tests these variables of ocean water at different depths. We took water samples from the bottom of the ocean, in the middle, and on the surface of the water column.  This is a very important sampling because it will help to determine if the shrimping and fishing waters can be opened back up since the Deepwater Horizon/BP oil spill.

During the safety drill, I donned my survival aute, also called a Gumby suit!

I’m assisting in getting the CTD ready for deployment

We then had to take a plankton samples. This is done buy using a plankton net called a Neuston net. it is very fine woven net that catches all of the small fish and other animals that we label as plankton. This was amazing to see. The net caught “floating nursery,” a plant called  sargassum. Many fish lay their eggs in this floating grass. Sea turtles also use it as a resting ground. We gathered all the plankton and preserved it for further testing. Sad to say, we also picked up some tarballs in our plankton net. This is not a good sign.

We soon did a trawl with the shrimping nets. This was very interesting to see what we caught. You never know what you might catch when you drag the ocean floor with a net. I never realized how many different species of fish there are. We caught some very nice sized brown shrimp. We had to count, weigh, and preserve all the fish and other critters.

This is a close up of the Neuston net.

I’m helping sort the catch. Those are squid I’m holding up.

Personal Log

I really admire the NOAA employees. They all work very hard for us. Our ship is performing a very important job by determining whether areas of the Gulf will be safe for fishing again. These men and women are gone from their families for extended periods of time and stay at sea for long voyages. I am enjoying my stay on the Oregon II, but I have to admit that I am still trying to grow my “sea legs”.

Patricia Schromen, August 22, 2009

NOAA Teacher at Sea
Patricia Schromen
Onboard NOAA Ship Miller Freeman
August 19-24, 2009 

Mission: Hake Survey
Geographical Area: Northwest Pacific Coast
Date: Thursday, August 22, 2009

Bringing in the nets requires attention, strength and teamwork.
Bringing in the nets requires attention and teamwork.

Weather Data from the Bridge 
SW wind 10 knots
Wind waves 1 or 2 feet
17 degrees Celsius

Science and Technology Log 

In Science we learn that a system consists of many parts working together. This ship is a small integrated system-many teams working together. Each team is accountable for their part of the hake survey. Like any good science investigation there are independent, dependent and controlled variables. There are so many variables involved just to determine where and when to take a fish sample.

Matt directs the crane to move to the right. Looks like some extra squid ink in this haul.
Matt directs the crane to move to the right. Looks like some extra squid ink in this haul.

The acoustic scientists constantly monitor sonar images in the acoustics lab. There are ten screens displaying different information in that one room. The skilled scientists decide when it is time to fish by analyzing the data.  Different species have different acoustical signatures. Some screens show echograms of marine organisms detected in the water column by the echo sounders. With these echograms, the scientists have become very accurate in predicting what will likely be caught in the net. The OOD (Officer of the Deck) is responsible for driving the ship and observes different data from the bridge. Some of the variables they monitor are weather related; for example: wind speed and direction or swell height and period. Other variables are observed on radar like the other ships in the area. The topography of the ocean floor is also critical when nets are lowered to collect bottom fish. There are numerous sophisticated instruments on the bridge collecting information twenty four hours a day. Well trained officers analyze this data constantly to keep the ship on a safe course.

Here come the hake!
Here come the hake!

When the decision to fish has been made more variables are involved. One person must watch for marine mammals for at least 10 minutes prior to fishing. If marine mammals are present in this area then they cannot be disturbed and the scientists will have to delay fishing until the marine mammals leave or find another location to fish. When the nets are deployed the speed of the boat, the tension on the winch, the amount of weight attached will determine how fast the nets reach their target fishing depth.  In the small trawl house facing the stern of the ship where the trawl nets are deployed, a variety of net monitoring instruments and the echo sounder are watched. The ship personnel are communicating with the bridge; the deck crew are controlling the winches and net reels and the acoustic scientist is determining exactly how deep and the duration of the trawl. Data is constantly being recorded. There are many decisions that must be made quickly involving numerous variables.

Working together to sort the squid from the hake.
Working together to sort the squid from the hake.

The Hake Survey began in 1977 collecting every three years and then in 2001 it became a biannual survey. Like all experiments there are protocols that must be followed to ensure data quality. Protocols define survey operations from sunrise to sunset. Survey transect line design is also included in the protocols. The US portion of the Hake survey is from approximately 60 nautical miles south of Monterey, California to the US-Canada Border. The exact location of the fishing samples changes based on fish detected in the echograms although the distance between transects is fished at 10 nautical miles. Covering depths of 50-1500 m throughout the survey. Sampling one species to determine the health of fish populations and ocean trends is very dynamic.

Weighing and measuring the hake is easier with automated scales and length boards.
Weighing and measuring the hake.

Personal Log 

Science requires team work and accountability. Every crew member has an integral part in making this survey accurate.  A willing positive attitude and ability to perform your best is consistently evident on the Miller Freeman. In the past few days, I’ve had the amazing opportunity to assist in collecting the data of most of the parts of this survey, even launching the CTD at night from the “Hero Platform” an extended grate from the quarter deck.

Stomach samples need to be accurately labeled and handled carefully.
Stomach samples need to be accurately labeled and handled carefully.

Before fishing, I’ve been on the bridge looking for marine mammals.  When the fish nets have been recovered and dumped on the sorting table, I’ve sorted, weighed and measured fish. For my first experience in the wet lab, I was pleased to be asked to scan numbers (a relatively clean task) and put otoliths (ear bones) into vials of alcohol. I used forceps instead of a scalpel. Ten stomachs are dissected, placed in cloth bags and preserved in formaldehyde. A label goes into each cloth bag so that the specimen can be cross referenced with the otoliths, weight, length and sex of that hake. With all the high tech equipment it’s surprising that a lowly pencil is the necessary tool but the paper is high tech since it looks regular but is water proof.  It was special to record the 100th catch of the survey.

Removing the otolith (ear bone) with one exact incision. An otolith reminds me of a squash seed or a little silver feather in jewelry.
Removing the otolith (ear bone) with one exact incision. An otolith reminds me of a squash seed or a little silver feather in jewelry.

Each barcoded vial is scanned so the otolith number is linked to the weight, length and sex data of the individual hake.
Each barcoded vial is scanned so the otolith number is linked to the weight, length and sex data of the individual hake.

Questions for the Day 

How is a fish ear bone (otolith) similar to a tree trunk? (They both have rings that can be counted as a way to determine the age of the fish or the tree.)

The CTD (conductivity, temperature and depth) unit drops 60 meters per minute and the ocean is 425 meters deep at this location; how many minutes will it take the CTD to reach the 420 meter depth?

Think About This: The survey team directs the crane operator to stop the CTD drop within 5 meters of the bottom of the ocean.  Can you think of reasons why the delicate machinery is never dropped exactly to the ocean floor?  Some possible reasons are:

  • The swell in the ocean could make the ship higher at that moment;
  • An object that is not detected on the sonar could be on the ocean floor;
  • The rosetta or carousel holding the measurement tools might not be level.

Launching the CTD is a cooperative effort. The boom operator works from the deck above in visual contact. Everyone is in radio contact with the bridge since the ship slows down for this data collection.

Retrieving the CTD
Retrieving the CTD

Bryan Hirschman, August 13, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 13, 2009

Weather Data from Bridge (0800) 
Visibility: 10 nautical miles
Wind: 6 knots
Wave Height: 1 ft
Wave Swell:  1-2 ft
Ocean temperature: 15.20C
Air Temperature: 14.20C

Science and Technology Log 

This is the net reel. The unit attaches with four bolts in each corner
This is the net reel. The unit attaches with four bolts in each corner

Life at sea can be very unpredictable. One minute everything is working great, and the next minute problems occur. Last evening a problem occurred with the net reel. The net reel is a large bull wheel that the nets roll into and out of when lowered in the water. The reel is spun by a huge engine that pulls the nets in when they are loaded with fish. This net reel is anchored to the boat with 16 huge bolts and nuts. Four of the bolts were found last night to be weakened during one of the daily inspections of ship’s mechanical instruments. The crew is constantly inspecting each piece of equipment to ensure the safest working conditions. Once this problem was seen all fish tows were canceled. We will be heading into port four days early to fix the problem.

An incorrect assembly of the bolts on the net reel
An incorrect assembly of the bolts on the net reel

A correct assembly of the bolts on the net reel
A correct assembly of the bolts on the net reel

Once in port the entire net reel will have to be lifted by crane and all the bolts will be replaced. The reel will then be lowered back in place and locked in place with nuts. Even though we are not fishing, other work on the ship is still occurring. The XBT (Expendable Bathythermograph) is deployed at regular intervals. This device sends depth and temperature data to a science laboratory to be recorded and used later (discussed in more detail in log 2).

Toxin-producing  phytoplankton pseudo-nitzschia.
Toxin-producing phytoplankton pseudo-nitzschia.

The HABS (Harmful Algal Bloom Sampling) research is also still being completed by Nick Adams, an oceanographer with NOAA. He takes water samples approximately every 10 nautical miles (1 nautical mile = 1.15 miles). After collecting the samples, he filters them for toxin and chlorophyll analysis. He also collects seawater for phytoplankton numeration and identification. His main focus is on toxin-producing genera, such as Pseudo-nitzschia and Alexandrium which are responsible for Amnesic Shellfish Poisoning and Paralytic Shellfish Poisoning, respectively.  At the end of the cruise, Nick will be able to create a map of the concentrations and locations of toxin- producing phytoplankton. This will then be compared with data from years past to determine patterns and trends.

Toxin-producing  phytoplankton Alexandrium
Toxin-producing phytoplankton Alexandrium

The phytoplankton themselves are not harmful to humans, but as they accumulate in the food chain there can be human-related sickness. If we eat the organisms that are eating the plankton that produce toxins, we can become ill. Not much is known about the cause of the toxin producers, but with more research like Nick’s, scientists continually increase their understanding and ultimately hope to prevent human sickness from these phytoplankton.

Personal Log 

I am saddened to be cutting my journey earlier then expected, but I will leave the ship with fond memories of Pacific Hake, Humboldt Squid, and all the wonderful people who work on the ship. I am particularly grateful to the seven scientists who have gone out of their way to make me feel at home on the ship and have answered all of my questions. They are: the acoustic scientists: Dr. Dezhang Chu, Larry Hufnagle, and Steve de Blois; the fish biologists: Melanie Johnson and John Pohl; the oceanographers: Steve Pierce and Nick Adams. They are each extremely dedicated and passionate about their research and equally passionate about protecting our oceans and the organisms living there.

Scientists Steve de Blois, Larry Hufnagle, Dr. Dezhang Chu, and John Pohl
Scientists Steve de Blois, Larry Hufnagle, Dr. Dezhang Chu, and John Pohl

Challenge Yourself 
Volunteers play an integral role in supporting the environmental stewardship conducted every day by the National Oceanic and Atmospheric Administration. Across the United States and its coastal waters, opportunities exist for volunteers to take part in research, observation and educational roles that benefit science, our citizens and our planet.

Visit this website to see where you can help

hirschman_log4g

Justin Czarka, August 12, 2009

NOAA Teacher at Sea
Justin Czarka
Onboard NOAA Ship McArthur II (tracker)
August 10 – 19, 2009 

Mission: Hydrographic and Plankton Survey
Geographical area of cruise: North Pacific Ocean from San Francisco, CA to Seattle, WA
Date: August 12, 2009

Weather Data from the Bridge 

Sunrise: 06:25 a.m.
Sunset: 20:03 (8:03 p.m.)
Weather: isolated showers/patchy coastal fog
Sky: partly cloudy
Wind direction and speed: North 10-15 knots (kt)
Visibility: unrestricted to less than 1 nautical mile (nm) in fog
Waves: northwest 4-6 feet
Air Temperature: 17.3 °C
Water Temperature: 16.6 °C

Science and Technology Log 

Justin Czarka collects water samples to use in nutrient and chlorophyll research.  While on the deck during “ops” (operation) all personnel must wear a life jacket and hardhat.
Justin Czarka collects water samples to use in nutrient and chlorophyll research. While on the deck during “ops” (operation) all personnel must wear a life jacket and hardhat.

This log discusses the purpose behind the scientific cruise aboard the McArthur II. The cruise is titled, “Hydrographic and Plankton Survey.” The cruise is part of a larger study by many scientists to, in the words of chief scientist, Bill Peterson, “understand the effects of climate variability and climate change on biological, chemical and physical parameters that affect plankton, krill, fish, bird and mammal populations in Pacific Northwest waters.”  This specific cruise focuses on hydrology, harmful algal blooms, zooplankton, krill, fish eggs, fish larvae, and bird and mammal observations.

I will provide an overview of these aspects of the cruise. The McArthur II is set up with sensors for salinity, temperature, and fluorescence that provide a continuous monitoring of the ocean (hydrology) throughout the cruise.  In addition at various points along the transect lines (see the dots on the diagram of the cruise route on page 2), the CTD is deployed into the water column at specific depths to determine salinity (via measuring conductivity), water temperature, and depth (via pressure), and collect water samples (which we use to measure chlorophyll and nutrient levels at specific depths). The transects (predetermined latitudes that forms a line of sampling stations) have been selected because they have been consistently monitored over time, some since the late 1980s.  This provides a historical record to monitor changes in the ocean environment over time.

The dots represent planned sampling station. Due to sea conditions, these have been slightly modified.
The dots represent planned sampling station. Due to sea conditions, these have been slightly modified.

One scientist, Morgaine McKibben from Oregon State University, is researching harmful algal blooms (HAB). HABs occur when certain algae (the small plants in the ocean that are the basis of the food web) produce toxins that concentrate in animals feeding on them.  As these toxins move up the food web through different species, they cause harmful effects in those species, including humans.  Bill Peterson (NOAA/ Northwest Fisheries Science Center) and Jay Peterson (OSU/Hatfield Marine Science Center) are studying copepod reproduction. They are collecting data on how many eggs are laid in a 24 hour period, as well as how the copepod eggs survive in hypoxic (low oxygen) conditions.  Mike Force, the bird and marine mammal observer is keeping a log of all species spotted along the cruise route, which is utilized by scientists studying the species.

Personal Log 

Tiny squid collected in a vertical net and viewed under microscope on Crescent City transect line at 41 deg 54 min North.
Tiny squid collected in a vertical net and viewed under microscope on Crescent City transect line at 41 deg 54 min North.

Who said you never find the end of the rainbow? All you have to do is go out to sea (or become a leprechaun!). We have been going through patches of fog today, putting the foghorn into action.  When it clears out above, yet is foggy to the horizon, you get these white rainbows which arc down right to the ship. We have become the pot of gold at the end of the rainbow. Who knew it was the McArthur II! If you follow the entire rainbow, you will notice that it makes a complete 360° circle, half on top the ocean and half in the atmosphere near the horizon.

I enjoyed using the dissecting microscope today.

The water collected from the vertical net is stored in a cooler on the deck to be used in experiments.  I was able to collect a sample of the water, which contained a diverse group of organisms, from tiny squids to copepods to euphausiids.  These tiny organisms from the size of a pinhead to a centimeter long are critical to the diets of large fish populations, such as salmon.  Under magnification, one can see so much spectacular detail.  I have learned how essential it is to have an identification guide in order to identify the names of each copepod and euphausiid.  On the other hand the scientists tend to specialize and become very adept at identifying the different species.

Animals Seen Today 

Arrow worms (long clear, with bristles)
Shrimp Copepods
Tiny rockfish (indigo colored eyes)
Fish larvae

Bryan Hirschman, August 10, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 10, 2009

Weather Data from the Bridge (0800) 
Visibility: 4 nautical miles
Wind: 14 knots
Wave Height: 2 ft
Wave Swell:  5-6 ft
Ocean temperature: 14.40C
Air Temperature: 16.00C

Science and Technology Log 

Image of plankton taken with VPR
Image of plankton taken with VPR

Today, John Pohl, one of the fish biologists showed me the VPR (video plankton recorder). The camera is attached to the CTD (Conductivity, Temperature, and Depth), which is operated by Steve Pierce, a physical oceanographer, and Phil White, chief survey technician, who work the night shift. The CTD is a large apparatus which has room for many additional sensors and attachments. The CTD onboard the Miller Freeman has a dissolved oxygen sensor in addition to the VPR.

Image of plankton taken with VPR
Image of plankton taken with VPR

Each night Steve sends the CTD down to the seafloor (about 7 times) to collect data. He is most interested in determining the differing densities of water at different depths (depth is based on pressure, which the CTD measures). He then calculates the densities using conductivity and temperature. By measuring conductivity (how easily electric currents pass through the water sample being tested), Steve can get a measurement of that water sample’s salinity.  Density of water is then calculated from measurements of salinity, and temperature. An equation is used which relates the measurements so that density can be found if these other two values are known. Steve records all the data each night, and will use this information to study currents and their movements.

The VPR is a camera which records video as well as still pictures as it descends to the sea floor. The data are recorded, then uploaded to an external hard drive. The file is very large, as it takes about ten minutes to transfer all the data. The pictures and video will be used by biologists (not on board presently) to identify and determine the percentage of plankton (plankton consist of any drifting organisms) floating throughout the water column. Each time before we set out the fish nets, two people go to the bridge to look for marine mammals. If any are present the nets won’t be put into the water. A few tows have been cancelled due to the presence of marine mammals. This is a great step in keeping them safe. It is always special when I see dolphins or whales.

Here I am holding a sleeper shark.
Here I am holding a sleeper shark.

The only fish tow of the day (no marine mammals present) consisted of mainly Humboldt Squid and some Pacific Hake. Today we used a load cell to get a total mass; this is a device which hooks up to the net and crane. The load cell gives a mass of the entire haul. The majority of the load was released back into the water while a smaller sample was retained. The weights of the Hake and squid were then determined using bins and a balance. The scientists can use the subsample data to determine the data for the entire load.  Bycatch, defined as living creatures that are caught unintentionally by fishing gear, are occasionally found in the net. Today a rougheye rockfish was caught, and yesterday a sleeper shark were accidently caught. The scientists do a very good job of limiting bycatch using their acoustic data.

Personal Log 

A rougheye rockfish – what a pretty fish
A rougheye rockfish – what a pretty fish

I am enjoying the long hours of work, and have gotten into quite a rhythm. I also enjoy spending time with the hardworking and intelligent staff here on board. We work together as a team, and everyone enjoys their jobs. NOAA has chosen a great group of officers who set a very positive tone and make the ship a great workplace. I would love to take a sabbatical from teaching and work on a NOAA ship. I’m having a lot of fun and learning a bunch. I will take back a lot of positive experience to share with my students, family, and friends.

I have also learned to appreciate the smells of a load of fish. As we move the fish from the holding cell, to small baskets for weighing we are constantly splashed in the arms, face, mouth, eyes, etc. I find it pretty amusing every time I get splashed, or even better, when I splash John, Melanie, or Jake. It never grows old. The hardest portion of my day is determining what movie to watch while running on the treadmill (I finally mastered the art of the treadmill on a rocking boat and can leave the elliptical trainer alone). The boat has close to 800 movies to choose from.

Animals Seen Today 
Pacific White-Sided Dolphins, Rougheye rockfish, Humboldt Squid, Pacific Hake, Albatross, Sheerwaters, and Murres.

Poem of the Day 
Squid ink, squid ink!
O! How you make me stink!
You stain my face, you stain my clothes;
I must wash you off with a fire hose!

You make me scratch, you make me itch,
You even turn Melanie into a wicked witch!
(which is a horribly difficult thing to do—
She’s as gentle as a lamb in a petting zoo!)

Why not John, allergic to your ink!
Torment HIM with your venomous stink!
But no–not ME! All I want are Hake.
So torment instead “almost” graduate Jake!

But once again, though our dinner hour,
Because of you I must shower!

So I beg you, O squid, to hear my plea:
In the future, stay away from me!
Does that sound good?
Do we have a deal?
If not, well then—you’re my next meal.

Answers to Last Question 
Ribbon Barracudina, Pacific Hatchetfish, Baby Humboldt Squid

Bryan Hirschman, August 6, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 6, 2009

Weather Data from Bridge (0800) 
Visibility: 6 nautical miles
Wind: light
Wave Height: <1
Wave Swell: 2-3 ft
Ocean temperature: 15.90C
Air Temperature: 15.50C

Science and Technology Log 

John and Melanie sexing and measuring the fish
Melanie sexing and measuring the fish

Today the day started with a fish tow at 8:00 am. The acoustic scientists, Steve, Larry, and Chu, predicted the fish would be mostly myctophids, and wanted to be certain. The fisherman sent the net out and about an hour later the net was brought back. As predicted the net was filled with mostly myctophids. This is an important step in being able to determine the fish type and numbers using acoustic data only. Scientists will then be able to acoustically count fish populations for most schooling fish (Pollock, Pacific Hake, anchovies, and mackerel to name a few), with out using nets. After the nets are brought in the fish biologists (and me) get to work. We separate all the organisms into their own piles. We then count and weigh them, and log this into a computer using their scientific names. It’s amazing how Melanie and John (the fish biologists) can identify and recall the Latin names of these organisms.

Question: Do we just fish in random locations?

Answer: No, the acoustic scientists choose to fish in locations that appear to be different from previous fishing locations. The parameters which make them different are depth, color intensity, or pattern of the markings on their computer screens. The scientists get real-time acoustic pictures as the boat travels along on a pre-determined path (called a transect).  The more they can relate the graphs on the computer screens to the actual catch in the nets the less fishing which needs to be done.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.
Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

Here is the second tow consisting of Pacific Hake and Humboldt Squid.
Here is the second tow consisting of Pacific Hake and Humboldt Squid.

The second fish tow of the day produced Pacific Hake and Humboldt Squid. We weighed all the squid first (then quickly returned to the ocean), and 10 were randomly selected for a stomach dissection. The stomachs contained pieces of squid, Pacific Hake, and other unidentifiable fish. Another purpose of this cruise is to determine the effects of the squid on the Hake, and by looking at the stomachs the scientists will be able to determine the relationship between the squid and hake.  The third tow of the day involved an open net with a camera. The camera could record for an hour. The scientists then view the footage to estimate the size and quantity of the hake passing through the net. This is another method the scientists are using to verify their acoustic data.

Here I am holding the delightful meal of tuna.
Here I am holding the delightful meal of tuna.

I also had the chance to launch an XBT (Expendable Bathythermograph). This device is launched at the back of the boat. The sensor is released into the water and is attached by a tiny copper wire. As the sensor travels down the water column it sends the depth and temperature data to the bridge. This data is saved and used by physical oceanographers to better understand temperature profiles found in the ocean.

Personal Log 

Today was a great day. The seas were calm, I slept well last night, and the food was great. I even got to exercise for 1.5 hours. The exercise room has a television hooked up to watch movies, and it made using the elliptical trainer and stationary bike much more enjoyable. I also had a great time working with the fish biologists. We were throwing and catching squid like the professionals who work at Pike Place Market in Seattle.  Best of all was dinner, freshly caught tuna, which I got to filet.

Animals Seen Today 
Dolphin, Mola-mola, Albatross, Sheerwaters, Slender Barracudia, Ribbon Barracudina, Blackbelly Dragonfish, Pacific Hake, Lanternfish (myctophids), Salps, Sunrise Jellyfish, Purple Cone Jellyfish, Wheel Jellyfish, Humboldt Squid, Black-eyed Squid, Pacific Hatchetfish, and Spiny Dogfish shark.

Question of the Day : Can you identify the animals in the photo?
Question of the Day : Can you identify the animals in the photo?

Answer to the last question: Lancetfish

Bryan Hirschman, August 4, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 4, 2009

hirschman_log1Weather Data from the Bridge (0800) 
Visibility: 10 miles
Wind: 2 knots
Wave Height: <1 ft
Wave Swell: 3 ft
Ocean temperature: 15.50C
Air Temperature: 15.50C

Science and Technology Log 

Here I am holding a Pacific Hake.
Here I am holding a Pacific Hake.

We will be conducting several types of oceanographic sampling during our cruise: 2-3 Pacific hake tows per day (weather permitting), an open net tow where fish are viewed through a camera, XBTs: Expendable Bathythermograph (take temperatures at various depths), HABS: Harmful Algal Bloom Sampling, CTD: Conductivity, Temperature, and Density (also at various depths), and a Multiple Opening Plankton Net (collects living organisms at various depths). We will also release a Surface Drifter: floats with currents and sends information about currents via satellite.

The tows, XBTs and HABS are done from 7:00 am to 9:00 pm, while the CTD and plankton net are used during nighttime hours. By working in daytime and nighttime shifts the scientists are maximizing the boat’s usage. I was fortunate enough to help with the plankton net last night. Five samples were collected while I observed. Each sample was labeled and preserved for later use in a laboratory. Observed were amphipods, copepods, shrimp, and crab larvae.

Can you identify the animal I’m holding?
Can you identify the animal I’m holding?

Our first Pacific hake tow came at approximately 8:00 am. The acoustic scientists use four transducers that are attached to the bottom of the boat.  Each transducer sends out pulses of sound at a different frequency toward the bottom of the sea floor. The sound pulse then travels back to the boat and is recorded onto graphs. Fish and other biological organisms also reflect sound pulses. Each type of fish gives off a different signal depending on its size, shape, and orientation. The fish are then identified on a computer using acoustic analysis software. The strength of the sonar signal helps determine the biomass and number of fish. When the chief scientist see an interesting aggregation of fish to tow on, he calls the bridge (the brains of the boat–this is where the boat is controlled) and reports the latitude and longitude of where he wishes to fish. The ship then turns about and the deck hands work to lower the tow net and prepare to collect fish at the depth the scientists observed the fish.

Here, I’ve got a Humboldt Squid.
Here, I’ve got a Humboldt Squid.

After the fish are collected, the Pacific hake are weighed and counted.  A sub-sample of about 300 Pacific hake is sexed and lengthed. Another sub-sample of about 50 Pacific hake is weighed, sexed, and lengthed; sexual maturity is determined by observation of the gonads, and ear bones are removed – this will enable scientists to determine the age of the fish.  About 10 Pacific hake have their stomach contents sampled as well. All this information is collected and used by Fishery Biologists to determine the population dynamics of the overall Pacific hake stock. The acoustic scientists also save all their data in an acoustic library. This will help scientists to analyze the Pacific hake biomass (population) while minimizing how many live specimens they need to collect. In total we completed three tows today. That’s a lot of Pacific hake to measure, weigh, and sex.

Personal Log 

The ship is loud. Sleep was hard to come by last night. Living in quiet Vermont has made me a light sleeper. I need to work on adjusting to the constant noise. The food and staff are great. Everyone takes pride in their ship and the work which is done on the ship.

Question of the Day 
Can you identify the beast in the picture to the picture?

Animals Seen Today 
Pacific Hake, Humboldt Squid, Myctophids, Breaching Whale (too far away to identify; most likely a Humpback)

Kathryn Lanouette, August 1, 2009

NOAA Teacher at Sea
Kathryn Lanouette
Onboard NOAA Ship Oscar Dyson
July 21-August 7, 2009 

Mission: Summer Pollock Survey
Geographical area of cruise: Bering Sea, Alaska
Date: August 1, 2009

This sonar-generated image shows walleye pollock close to the sea floor. The red line at the bottom of the image is the sea floor. The blue specks at the top of the image are jellyfish floating close to the water’s surface.
This sonar-generated image shows walleye pollock close to the sea floor. The red line at the bottom of the image is the sea floor. The blue specks at the top of the image are jellyfish floating close to the water’s surface.

Weather Data from the Ship’s Bridge 
Visibility: 10+ nautical miles
Wind direction: variable
Wind speed:  less than 5 knots, light
Sea wave height: 0 feet
Air temperature: 7.9˚C
Seawater temperature: 8.6˚C
Sea level pressure: 30.1 inches Hg
Cloud cover: 7/8, stratus

Science and Technology Log 

In addition to the Aleutian wing trawl (which I explained in Day 5 NOAA ship log) and Methot (which I explained in Day 8 NOAA ship log), scientists also use a net called an 83-112 for bottom trawls. The 83-112 net is strong enough to drag along the sea floor, enabling it to catch a lot of the animals that live in, on, or near the sea floor. This afternoon, we conducted the first bottom trawl of our cruise. Bottom trawls are usually conducted in two situations: if the walleye pollock are too close to the sea floor to use an Aleutian wing trawl or if the scientists want to sample a small amount of fish (because the 83-112’s net opening is smaller than the Aleutian wing trawl’s net). From the looks of the sonar-generated images, it appeared that most of the walleye pollock were swimming very close to the bottom so the scientists decided it would be best to use the 83-112 net.

Here I am holding one of the skates that was caught in the bottom trawl
Here I am holding one of the skates that was caught in the bottom trawl

Once the fish were spotted, we changed our course to get ready to trawl. Usually the trawl is made into the wind for stability and net control. Once the ship reached trawling speed, the lead fisherman was given the “OK” to shoot the doors. Slowly, the net was lowered to 186 meters below the surface, the sea depth where we happened to be. The water temperature down there was about 1˚C (compared to 7˚C on the sea’s surface).  I had heard from a previous Teacher At Sea that bottom trawls brought up a wide variety of animal species (compared to the relatively homogenous catches in mid-water trawls). And sure enough, when the net was brought up, I couldn’t believe my eyes!

All told, we sorted through over 7,000 animals, a total of 36 different species represented in the total catch. It took 4 of us over 4 hours to sort, measure, and weigh all these animals. There were over 350 walleye pollock in this catch as well as skates, octopi, crabs, snails, arrowtooth flounder, sea anemones, star fish, and dozens of other animals. Some of them were even walking themselves down the table.

During this catch, I also learned how to take the ear bones, or otoliths, out of a walleye pollock. Why ear bones you might ask? Using the ear bones from a walleye pollock, scientists are able to determine the exact age of the fish. Misha Stepanenko, one of the two Russian scientists on board the Oscar Dyson, showed me how to cut partially through the fish’s skull and take out two large ear bones. Once they were taken out, I put them in a solution to preserve them. Back in NOAA’s Seattle lab, the ear bones are stained, enabling scientists to count the different layers in each ear bone. For every year that the fish lives, a new layer of bone grows, similar to how trees add a layer for each year that they live. By learning the exact age of a fish, scientists are able to track age groups (called “cohorts”), allowing more precise modeling of the walleye pollock population life cycle.

A diagram of an otolith, or ear bone, of a fish.  You can see that it’s a lot like looking at tree rings!
A diagram of an otolith, or ear bone, of a fish. You can see that it’s a lot like looking at tree rings!

Personal Log 

So far this trip, we have sailed within 15 miles of Cape Navarin (Russia) on at least two different occasions but fog and clouds prevented any glimpse of land both times. It was a frustrating feeling knowing that land was so close, yet impossible to see. After 12 days of looking at nothing but water and sky, seeing land would have been a welcome treat.

Despite not seeing land, I still felt like I was in Russia just from listening to different fishing vessels communicate with one another. On our first night in Russian waters, we sailed through a heavy fog, with 7 or 8 different boats fishing nearby. I was impressed with how Ensign Faith Opatrny, the Officer on Deck at the time, communicated with various vessels, using collision regulations (“the rules of the road”) to navigate safely. On a culinary note, I got my first chance to eat some of a catch. After most trawls, we discard remaining inedible specimens overboard. After our bottom trawl however, one of the scientists filleted some of the cod. The next day, the stewards cooked it up for lunch. It tasted great and it felt good to be eating some of the fish that we sampled.

A graph showing the adult walleye pollock biomass estimates from 1965 to 2008.
A graph showing the adult walleye pollock biomass estimates from 1965 to 2008.

As the cruise starts to wind down, I also want to express my gratitude to all the NOAA scientists and Oscar Dyson crew. Everyone in the science group took time to explain their research, teach me scientific techniques, and answer my many questions. On numerous occasions, the deck crew explained the mechanics of fishing nets as well as the fishing process. The engineering crew gave me a tour of the engine rooms, describing how four diesel engines power the entire boat. The survey techs explained how different equipment is operated as well as the information it relays back to the scientists. The NOAA Corps officers showed me how to read weather maps, take coordinates, and explained ship navigation. The ship’s stewards described the art and science behind feeding 33 people at sea. And the USFWS bird observers patiently showed me how to identify numerous bird species. From each of them, I learned a tremendous amount about fisheries science, fishing, boats, sailing, birding, and life in the Bering Sea. Thank you!

Answer to July 28 (Tuesday) Log: How has the walleye pollock biomass changed over time? 
In the past few years, the walleye pollock biomass has decreased (according to the acoustic-trawl survey, the survey that I joined.) It should be noted that there is a second complementary walleye pollock survey, the eastern Bering Sea bottom trawl survey. This survey studies walleye pollock living close to the sea floor. As walleye pollock age, they tend to live closer to the sea floor, thus the bottom trawl survey sometimes shows different biomass trends than the acoustic-trawl survey. Both surveys are used together to manage the walleye pollock stock.

An up-close look at one of the squid’s tentacles
An up-close look at one of the squid’s tentacles

Animals Seen 
Auklet, Arrowtooth flounder, Basket star, Bering skate, Cod, Hermit crab, Fin whale, Fur seal, Octopus, Sculpin, Sea mouse, Sea slug, Shortfin eelpout, Snow crab, Squid, and Tanner crab.

New Vocabulary: Bottom trawl – fishing conducted on and near the bottom of the sea floor. Catch – fish brought up in a net. Shoot the doors – a fishing expression that means to lower the 2 metal panels that hold open the fishing nets in the water. Stewards – the name for cooks on a ship. Table – nickname for the conveyor belt where the fish are sorted for sampling. Vessels – another word for ships. 

Jennifer Fry, July 22, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 22, 2009

Weather Data from the Bridge 
Wind speed: 13 knots
Wind direction: 003°from the north
Visibility: clear
Temperature: 13.6°C (dry bulb); 13.2°C (wet bulb)
Sea water temperature: 15.1°C
Wave height: 1-2 ft.
Swell direction: 325°
Swell height: 4-6 ft.

Science/Technology Log 

Today we did a fishing trawl off the coast of Oregon. First, the scientists used multiple acoustic frequencies of sound waves.  After analyzing the sonar data, the scientists felt confident that they would get a good sampling of hake. The chief scientist called the bridge to break our transect line (the planned east/west course) and requested that we trawl for fish.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.
Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

The NOAA Corps officers directed operations from the trawl house while crew members worked to lower the net to the target depth.  The fishing trawl collected specimens for approximately 20 minutes. After that time, the crew members haul in the net. The scientists continue to record data on the trawl house.

The trawl net sits on the deck of the Miller Freeman and is ready to be weighed and measured.
The trawl net sits on the deck of the Miller Freeman and is ready to be weighed and measured.

Today’s total catch fit into 2 baskets, a “basket” is about the size of your laundry basket at home, approximately 25-35 kilos. Included in the sample were some very interesting fish:

  • Viper fish
  • Ctenophores or comb jellies
  • Larval stage Dover sole, lives at the sea bottom
  • Jelly fish, several varieties (*Note: Jelly fish are types of zooplankton, which means they are animals floating in the ocean.)
  • Hake, approx. 30 kilos

The scientists made quick work of weighing and identifying each species of fish and then began working with the hake. Each hake was individually measured for length and weighed.  The hake’s stomach and otolith were removed. These were carefully labeled and data imputed into the computer.  Scientists will later examine the contents of the stomach to determine what the hake are eating. The otolith (ear bone) goes through a process by which the ear bone is broken in half and then “burnt.” The burning procedure allows one to see the “age rings” much like how we age a tree with its rings.

Personal Log 

A view from the trawl house during a fishing trawl.
A view from the trawl house during a fishing trawl.

Everyone works so very hard to make the Hake Survey successful.  All hands on the ship do a specific job, from cook to engineer to captain of the ship.  It is evident that everyone takes their job seriously and is good at what they do. I feel very fortunate to be part of this very important scientific research project.

 

 

A viper fish
A viper fish

Did You Know? 
Bird facts: An albatross’ wing span can be 5 feet, which equals one very large sea bird. A shearwater is slimmer and smaller yet resembles an albatross.

Animals Seen Today 
Ctenophore, Jelly Fish, Dover sole, Hake, Humboldt squid, Fulmar, Albatross, Gull, and Shearwater.

Here is something interesting, a hake with two mouths discovered in the trawl net.
Here is something interesting, a hake with two mouths discovered in the trawl net.

A hake and its stomach contents, including krill, smaller hake and possibly an anchovy
A hake and its stomach contents, including krill, smaller hake and possibly an anchovy

Dover Sole, larval stage
Dover Sole, larval stage†

NOAA Oceanographer John Pohl and NOAA Fish Biologist Melanie Johnson discuss data about the fish collected.
NOAA Oceanographer John Pohl and NOAA Fish Biologist Melanie Johnson discuss data about the fish collected.

Jennifer Fry, July 21, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 21, 2009

Boatswain Matt Faber, and Skilled Fisherman, Gary Cooper, tend to full net of hake from one of the day’s trawl.
Boatswain Matt Faber, and Skilled Fisherman, Gary Cooper, tend to full net of hake from one of the day’s trawl.

Weather Data from the Bridge 
Wind speed: 10 knots
Wind direction: 011°from the north
Visibility: cloudy
Temperature: 16.2°C (dry bulb); 14.9°C (wet bulb)
Weather note: When you speak of wind direction you are talking about the direction in which the wind is coming. 

Science/Technology Log 

You can see by the weather data above that the seas were much calmer today. We were able to conduct 3 fishing trawls amounting to several thousand kilograms of hake. Once the fish were hauled onto the deck, we began measuring, weighing, dissecting, and removing otoliths, ear bones, for age analysis. I removed my first pair of otoliths today.  The best part of the day was the last and final trawl. We collected approximately 3,000 pounds of Humboldt squid which equals 444 squid.  The math problem to calculate is… “How much would one squid weigh in our catch?”

Julia Clemons, NOAA Fisheries and Jennifer Fry, TAS pictured with Humbolt squid. Today’s catch totaled 444 squid.
Julia Clemons, NOAA Fisheries and Jennifer Fry, TAS pictured with Humbolt squid. Today’s catch totaled 444 squid.

Personal Log 

What strikes me today is just how dedicated the scientists and crew are to their jobs.  Everyone has a specific job aboard the Miller Freeman that they take seriously.

Question of the Day 

Can you use squid ink as you do regular ink? Is there a market for squid inked products such as cards?

New Term/Phrase/Word 

Cusk eel

Animals Seen Today 

Fish:  Humbolt squid, Hake, Iridescent Cusk eel (see photo), Myctophid
Birds:  Shearwaters, Albatross, Gulls

The Squid 
The squid come on little tentacled feet
Falling, splatting, rolling, and sliding out of its netted jail.
Free at last
To be weighed and measured
Sitting on a strong mantle in a flowing liquid of ebony and midnight.
Your silent escape goes unnoticed.

The Clouds 
The clouds slither on little squid tentacles
The midnight inky darkness envelopes the sky and warns us of foreboding
It sits looking over ships and sea lions
Its silent mantle quietly slides away.

(Inspired by Carl Sandberg’s “The Fog”)

The squid were examined, weighed, and the data entered into the data base.
The squid were examined, weighed, and the data entered into the data base.

A cusk eel
A cusk eel

Jennifer Fry, July 18, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 18, 2009

Weather Data from the Bridge 
Wind speed: 40 knots
Wind direction: 350°from the north
Visibility: foggy Temperature: 12.9°C (dry bulb); 12.0°C (wet bulb)
Wave height: 8-10 feet

Science and Technology Log 

Lisa Bonacci, chief scientist and Melanie Johnson, fishery biologist in the Freeman’s acoustics lab
Lisa Bonacci, chief scientist and Melanie Johnson, fishery biologist in the Freeman’s acoustics lab

Acoustics: Lisa Bonacci, chief scientist, and Melanie Johnson, fishery biologist, are in the acoustics lab onboard the Miller Freeman as it travels along a transect line. NOAA scientists can detect a variety of marine life under the sea. They use sonar—sound waves bouncing off an object—to detect the animals. There is an onboard sonar system that puts out four different frequencies of sound waves.  Each type of fish will give off a different signal depending on its size, shape, and anatomy.  The fish are then identified on the sonar computer readout.  The strength of the sonar signal will determine the number of hake and the way that they are swimming.  As soon as it appears on the sonar as if hake are present, Ms. Bonacci then calls the bridge to request that we trawl for fish.

This is the sonar readout as it’s seen on the computer screen.
This is the sonar readout as it’s seen on the computer screen.

Personal Log 

The boat was rocking in all directions with 40 knot winds and 8-10 foot waves. The fishing trawl brought up scores of fish including a lot of hake. The sonar signals worked really well to locate them. We dissected and measured many fish, but not before we sat in a giant vat of hake (see photo.)  It was a great learning day.

Animals Seen Today 
Hake,spiny dogfish, Humbolt squid, Myctophidae, and Birds.

Here we are in a giant vat of hake!
Here we are in a giant vat of hake!

Discovery from the Briny 
As the trawl net was raised from the depths
The sun broke through the clouds revealing a sparkling azure sky.
Scores of seagulls circled the stern
In the hopes of a bountiful offering
Tasty morsels from the deep
Soon to be thrown overboard.

American fishery biologist, Melanie Johnson, and Canadian fishery biologist, Chris Grandin, take biological samples.
American fishery biologist, Melanie Johnson, and Canadian fishery biologist, Chris Grandin, take biological samples.

Jennifer Fry, July 16, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 16, 2009

Here is Dr. Chu using a sonar readout to determine where the hake are located.
Here is Dr. Chu using a sonar readout to determine where the hake are located.

Weather Data from the Bridge 
Wind speed: 20 knots
Wind direction: 358°from the north
Visibility: foggy
Temperature: 15.2°C (dry bulb); 13.4°C (wet bulb)

Science and Technology Log 

We conducted several sea trawls for hake and other various fish species.   First, the scientists conduct an acoustic survey using 4 different frequencies. Then the nets are lowered and drug at depth. The fun begins when we don our rubber overalls, gloves, and galoshes and count, identify and, weigh the fish. The most numerous fish in the trawls were myctophids (see photo), bioluminescent fish with some species having 2 headlights in front of their eyes to help attract prey.

Here we are sorting the catch.
Here we are sorting the catch.

HAB/ Harmful Algal Blooms Test:  Throughout the day we took HAB samples, “harmful algae blooms”, which measures the toxins, domoic acid, and chlorophyll levels in the water (which correspond to the amount of plankton present). The HAB sample entails collecting sea water and putting it through a filtering process. Julia Clemons, a NOAA Oceanographer, and I conducted the HAB survey (pictured below).  Fifty milliliters of sea water is measured into a graduated cylinder then filtered.

This is a type of fish called a myctophid. They are bioluminescent.
This is a type of fish called a myctophid. They are bioluminescent.

Sea water is collected at specific times during each transect or line of study.  The sea water goes through a filtering process testing domoic acid and chlorophyll levels.  These results will be evaluated later in the lab. One thing that strikes me is the importance of careful and accurate measurement in the lab setting. The harmful algal bloom samples are conducted 5-6 times daily and accuracy is essential for precise and definitive results.  Later scientists will review and evaluate the data that was collected in the field.  It is very important that the scientists use the same measurements and tools so that each experiment is done the same way. Making accurate data collection makes for accurate scientific results.

Animals Seen Today 
Numerous albatross circling the stern of the ship, Viper fish, Octopi (approx. 6 inches in length), Squid (approx. 3 inches in length), and Myctophidae (see photo).

Zooplankton
Zooplankton

Here I am observing Julia as she filters a HAB sample.
Here I am observing Julia as she filters a HAB sample.

Ruth Meadows, July 3, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 3, 2009

Weather Data from the Bridge 
Temperature: 6.2oC
Humidity: 81%
Wind: 16.47 kts

This is one of the glass floats encased in plastic that can withstand the pressure of the deep waters.
This is one of the glass floats encased in plastic that can withstand the pressure of the deep waters.

Science and Technology Log 

High winds and high waves put a temporary stop to our fishing with the nets.  When the waves are too high, the safety of the crew comes first and we wait for the weather to clear before we can start using the trawl again. The waves finally calmed down enough for the net to be used today.  We are using a different type of net to fish the deep bottom (benthic trawling) than was used to fish the mid-water (pelagic trawling). This net is much simpler in design. It is a very large net lowered to the bottom of the ocean and then pulled behind the ship. The top part of the net is held open by floats. These floats were bought specifically for this cruise.  The pressure on the bottom of the ocean is so great that normal floats would collapse.  The new floats are made of glass spheres with a hard plastic covering. Only glass can withstand the amount of pressure that is found at these depths.

This is the net used for deep bottom trawling that has the yellow floats attached to it.
This is the net used for deep bottom trawling that has the yellow floats attached to it.

There are rubber tire-like rollers that move along the bottom to help prevent snags and also to stir up the sea floor and cause the fish and other organisms to move into the net where they are then funneled back into the narrow end of the net (cod-end). There are weights on the bottom section of the net to keep it on the ground.  Of course, there are always obstacles on the bottom of the ocean floor and occasionally the net will get caught on one of these. This is a particular problem here because of the mountainous terrain.  When the net gets hung up the crew works very carefully to release it from the obstacle.  Sometimes the ship moves backwards as the winches try to pull on the net to release it.  Sometimes the ship moves in a circle to try and pull the net clear.    

The full net after it’s been retrieved on deck.
The full net after it’s been retrieved on deck.

So far the benthic net has gotten caught twice but the crew successfully retrieved the net without damage. Once the net is on deck, the cod-end is opened and everybody comes out of the lab with foul weather gear (waterproof boots, overalls, jackets, life preserver and hardhats) on to collect the catch. We use lots of baskets to do a quick rough sort of the organisms caught.  If the net is full, it takes a while to complete the first sort.  Some of the fishes are large and some of the organisms have been torn. The organisms found on the floor of the deep floor are very different from the ones found in the mid-waters. They are much larger in size and very different in coloration.

Personal Log 

A bucket with squid and other fishes.
A bucket with squid and other fishes.

The scientific crew is divided into three groups.  We have a “day” shift, called a watch, that works from 12 noon to 12 midnight, and a “night” watch that works from 12 midnight to 12 noon, and then one group that works whenever a net comes up.  I am on the day watch and we have all gotten into a pattern of who does what in the lab.  My watch chief scientist is Dr. Shannon Devaney from Los Angeles.  She works at the Natural History Museum there.  Dr. Amy Heger from Luxembourg, Tom Letessier from Norway, CJ Sweetman from Connecticut and Randy Singer from Georgia rounds out our crew.  CJ takes DNA samples, Tom takes care of the crustaceans, Randy removes the ototliths (this helps the scientist figure out the age) from the fishes, and Amy and I use the computer to enter the data.  With some species we remove the stomach, liver and gonads from the fishes.   These body parts are then measured and either frozen or preserved for scientists that are not on the trip.  It has been fun relearning how to do some of the procedures.

The first sort of the catch.
The first sort of the catch.

Mark McKay, June 22, 2009

NOAA Teacher at Sea
Mark McKay
Onboard Research Vessel Knorr
June 10 – July 1, 2005

Mission: Ecosystem Survey
Geographical Area: Bering Sea, Alaska
Date: June 22, 2009

Plankton soup
Plankton soup

Science Log

We spent the day cruising in one of the shallowest regions of the entire expedition. The depth below us is only about 40 meters. We are also getting close to what ice is still present this time of the year.  I checked with the National Snow and Ice Data Center to see what the status of the sea ice in the arctic currently is. So far I haven’t seen any ice but I am keeping a look out for it. Of course we cant see anything, we are cruising through a thick fog right now. I am also doing some of my own research on phytoplankton while up here and the edge of the sea ice plays an important part in how productive the phytoplankton actually is.  They reported that after a slow start to the melt season, the ice extent declined quickly in May. Scientists are monitoring the ice pack for signs of what will come this summer. The thinness of the ice pack makes it likely that the minimum ice extent will again fall below normal, but how far below normal will depend on atmospheric conditions through the summer.

Worms and Sea Stars from sediment cores
Worms and Sea Stars from sediment cores

According to the National Snow and Ice Data Center, the sea ice extent over the month of May 2009 averaged 13.39 million square kilometers (5.17 million square miles). This was 81,000 square kilometers (31,000 square miles) above the record low for that month, which occurred in May 2004, and 21,000 square kilometers (8,100 square miles) below the 1979 to 2000 average. So its clear that something unusual is happening up here. At pretty much every station the zooplankton guys set out their nets to see what’s living in the area. Watching them work I can see changes in the zooplankton populations from one location to another. They are finding larval fish, copepods, euphusisds (krill), isopods, amphipods, jellyfish, and the occasional juvenile squid.  Some critters are coming out of the sediment cores currently. Maggie Esch, a graduate student from Western Washington University is studying bioturbidation in the sediment. She is looking at how nutrients move through marine sediments as a response to what is burrowing through the ocean bottom. Her last core had some cool worms and young Sea Stars.

I’m hoping to see more marine animals, especially mammals and birds as we approach the Pribilofs, which are the only island on the eastern Bering Sea that are in the proximity of the shelf break. The current sampling line we are on will bring use right between St. Paul and St. George islands. Owing to their position near the shelf break, these islands are home to large populations of marine mammals, seabirds, and fish. The Pribilofs are a famous destination for birdwatchers. There are a reported 240 different species of birds present in the Pribilofs, and “Birders” come from all over the world to see them in the wild. The islands were also once know as the Fur Seal Islands because of the Fur Seal (Callorhinus ursinus) rookeries located there. Today, the fur seals are only subsistence hunted by the Aleuts, and Inuit who live on the islands.

Fog on the Bering Sea
Fog on the Bering Sea

Ruth Meadows, June 19, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: June 19, 2009

Weather Data from the Bridge 
Temperature: 9oC
Humidity: 95%
Wind: 4.36 kts

Scientific and Technology Log 

We are currently working in the pelagic zone of the ocean.  Pelagic refers to the open ocean away from the bottom. The word pelagic comes from a Greek word that means “open ocean”.  The pelagic area is divided by depth into subzones.  .

  • The epipelagic , or sunlit zone, is the top layer where there is enough sunlight for photosynthesis to occur. From 0 – about 200 meters (656 feet)deep
  • The mesopelagic, or twilight zone, receives some light but not enough for plants to grow.  From 200 – 1000 meters (3281 feet)
  • The bathypelagic, or midnight zone, is the deep ocean where no sunlight penetrates. From 1000 – 4000 meters(13,124 feet)
  • The abyssal zone is pitch black, extremely cold and has very high pressure.  From 4000 – 6000 meters.(19,686feet)
  • Hadalpelagic zone is the deepest part of the ocean. These zones are located at trenches where one tectonic plate is being subducted under another plate. 6,000 meters to over 10,000 meters. (35, 797 feet)

Setting up the net that will collect organisms
Setting up the net that will collect organisms

Today we are using a special trawling net to capture organisms that live in the mid-water area around 3000 meters deep. The closed net is lowered slowly from the rear of the ship until it arrives at the correct depth. The length of the wire released is measured by the winches as they unwind. A timer is used to open the cod-ends (containers at the end of the net).  It is then pulled underwater very slowly. The five cod-ends are set to open and close at different times so there will be samples of organisms from different depths.  After a specific amount of time the net is slowly reeled in. It takes about 8 hours to fully deploy and retrieve the trawl.  Each cod-end should have samples from different depths. Once the net is back on board the ship, it is very important that the material collected from each cod-end be kept separate and labeled correctly.

All the blue buckets contain various organisms
All the blue buckets contain various organisms

The second trawl came in around 4:30 in the afternoon. We were really excited to see the organisms that were collected in each of the cod-ends. Each container was emptied into a large bucket and a picture was taken to record the catch. One set of material was left out to begin sorting and the other containers were put into the freezer to remain cold.  David Shale, the professional photographer for the cruise, selected the best samples to use for his photographs. Then the actual sorting began. Several of us would do a rough sort, all the crustaceans (different types of shrimp-like animals) in one container, fishes in another, and jellyfishes in another. After the rough sort then the final sort is started (dividing all the organisms into groups by specie or family). 

Certain types of organisms were abundant – hundreds of them, others were rarer – only one or two of each species. As soon as we are finished with one species, information about them is entered into the computer (number, length, mass) and then the organism is saved for later investigations by either freezing or placing in a preservative.  A printed label is included in all samples so they can be identified by name, depth and location of trawl.

Personal Log 

A viperfish
A viperfish

Everyone on board the ship is always interested in any sightings of marine mammals.  The officer on the bridge will often announce to the lounge area if he spots any type of animal, “Whales off the bow.”  As soon as the announcement comes on, we bolt out of the lounge to the outside as fast as we can.  Sometimes you are fast enough and sometimes you aren’t. The dolphins usually are the easiest to spot as they swim in groups and surface frequently as they are swimming.  The whales, however, are a little more difficult to see.  They are usually far off so the distance makes them difficult to spot.  When they surface, the spray from the blowhole is usually your first indication of where they are.  After that, most of them dive again and you may not get a second chance to see them.  So far the type of whales spotted have been pilot whales, sei whales and a sperm whale.  They knew it was a sperm whale because the spray from the blowhole was at an angle. It is much more difficult to see these animals than I thought it would be. It is like trying to find a needle in a haystack – a very big haystack…

 Mastigoteuthis agassizii Squid
Mastigoteuthis agassizii Squid

Did You Know? 

The Mola mola is the heaviest known bony fish in the world.  It eats primarily jellyfish which doesn’t have a lot of nutrition in is so they have to eat LOTS of them.  It looks like a fish with only a head and a tail, no middle part.

Dr. Mike Vecchione took this picture of a Mola mola, a very large ocean sunfish, at the beginning of the cruise off the coast of Rhode Island.
Dr. Mike Vecchione took this picture of a Mola mola, a very large ocean sunfish, at the beginning of the cruise off the coast of Rhode Island.

Mary Anne Pella-Donnelly, September 17, 2008

NOAA Teacher at Sea
Mary Anne Pella-Donnelly
Onboard NOAA Ship David Jordan Starr
September 8-22, 2008

Mission: Leatherback Use of Temperate Habitats (LUTH) Survey
Geographical Area: Pacific Ocean –San Francisco to San Diego
Date: September 17, 2008

Weather Data from the Bridge 
Latitude: 3614.8661 W Longitude: 12402.7415 N
Wind Direction: 190 (compass reading) SW
Wind Speed: 2.1 knots
Surface Temperature: 15.230

Science and Technology Log 

Above is a spreadsheet of some of the Chrysaora fuscescens data that was collected on September 15.  The first trawl was at 4:48 pm, the second at 6:39 pm and the third at 8:20 pm.  A fourth trawl was deployed at 10:49 pm. A total of 204 jellies were sorted and measured.  Of these, the first 7jellies measured from trawl numbers’ 46, 47 and 48 are recorded above. All of the species in this data set are Chrysaora fuscescens. Using the spreadsheet, create a graph that compares mass to length for these 21 animals.  When you believe you have completed this, answer the questions listed below.

Screen shot 2013-04-20 at 1.48.14 AM

Questions:

  1. Is your graph complete?
  2. Check to see if you have included; all units-mass in kilograms, length in millimeters; a legend that includes the code of the points; title for each axis(length of jelly in millimeters, mass of jelly in kilograms); title for graph.
  3. Did you make a scatter plot, bar graph or line graph? The best choice would be a scatter plot, this may give an indication of patterns in the relationship between length and mass.
  4. Can you see any pattern?  Is there a relationship between mass and length? This would be indicated by a linear pattern in the points?
  5. Do there appear to be any points that do not fit a general pattern?  What might cause these points that do not fit the norm to exist?
  6. Compare your graph with the one shown below, generated by the computer.

Screen shot 2013-04-20 at 1.48.32 AM

These Chrysaora fuscescens were caught in “jelly lane”, in the waters near Pacifica, CA that are known to have large jelly populations.  It is also an area known for leatherback sightings because of this food source. A great deal of information is known about the oceanographic conditions in this near-shore habitat. The reason the LUTH survey is crisscrossing off the continental shelf, is that much less is known about deeper offshore waters as a potential food source for migrating leatherbacks.  The routes they travel on must have some food available, so we are working to find out where that is, and gain information about relationships to oceanographic variables so that researchers will be able to eventually estimate where that food is using satellite images that will be translated into jellyfish habitat.

Chico Gomez and Scott Benson sorting jellies.
Chico Gomez and Scott Benson sorting jellies.

Personal Log 

There was quite a bit of excitement today up on the flying bridge. Although we were traveling out beyond the continental shelf, we moved over a front of water that had an abundance of moon jellies.  It was unexpected and the scientific team became very excited. New plans were made based on this observation and a decision was made to cross back across the front and collect temperature data within the water column every 10 minutes.  Quantitative observations were made of all jellies seen port and starboard and a net trawl was deployed at one point along the zone of interest.  It was quite a day. We also spotted blue sharks, ocean sunfish, and a swordfish jumping.  It was a good day.

Animals Seen Today 

Extracting stomach contents from large C. fuscescens
Extracting stomach contents from large C. fuscescens

  • Sooty shearwater Puffinus griseus 
  • Sea nettle jellies Chrysaora fuscescens 
  • Moon jellies Aurelia aurita 
  • Northern Fur seal Callorhinus ursinus 
  • Elephant seal Mirounga angustirostris 
  • Swordfish Xiphias gladius 
  • Blue shark Prionace glauca 
  • Buller’s shearwater Puffinus bulleri 
  • Ocean sunfish Mola mola 
  • Rhinoceros auklet Cererhinca monocerata 
  • Black-footed Albatross
  • Phoebastria nigripes 

Questions of the Day 

  1. What might be possible reasons the scientific team was excited at finding jellyfish out beyond the continental shelf?
  2. The weather has been very calm and mostly overcast.  One of the officers told me he would much rather have those conditions, than windy and sunny.  What effect might wind have on a sturdy, ocean-going ship?

Ocean sunfish seen from flying bridge.
Ocean sunfish seen from flying bridge.

Sunset seen from flying bridge, the first sunset we’ve seen on this leg.
Sunset seen from flying bridge, the first sunset we’ve seen on this leg.