Karah Nazor: Cool Catch Highlights, June 2-7, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: June 2-7, 2019

June 2, 2019 Game Plan and Trawling Line: 5 hauls in the Piedras Blancas Line near San Simeon, CA. Piedras Blancas is known for its Northern elephant seal colony, M. angustirostris. Hauls were conducted outside of the marine reserve and we did not encounter seals.

Catch Highlights: The night started off with excitement when Keith Sakuma brought in an Pacific electric ray, Torpedo californica, and we all got to see it up close before releasing.

Keith S and electric ray
Chief Scientist Keith Sakuma holding a Pacific electric ray, Torpedo californica

In Haul 3 we collected a pelagic octopus, Ocythoe tuberculata, shown below. Chromatophores in cephalapods, including squid, cuttlefish and octopus, are complex organs made up of both muscle and nerve and provide the ability for the animal to rapidly change its skin color in order to blend into the surrounding environment to avoid predation, communicate, or send a warning signal. It was impressive to watch the chromatophores at work as the pelagic octopus attempted to blend into the white background of his tank by turning white (see photos below) We released it back to the sea.

Pelagic octopus
Pelagic octopus (Ocythoe tuberculata) attempting to camouflage with the background and flashing white
Pelagic octopus chromatophores
Pelagic octopus (Ocythoe tuberculata) with chromatophores expressing orange, purples and pinks. The beak is exposed here.

The differences in skin coloration of the five primary squid species we are catching including Boreal Squid, Blacktip Squid, Unknown Squid, Gonadus Squid, and Market Squid (see image below) are noteworthy. While living market squid exhibit brown, pink and purple skin color (see image below) the Chiroteuthis squid tentacle displays orange and red chromatophores (see image below).

Common squids
Common squids in our catches. From top to bottom, Boreal Squid, Blacktip Squid, unknown species, Gonadus Squid, and Market Squid.
market squid
Living market squid exhibiting brown, pink and purple chromatophores.
chromatophores
Pink and purple chromatophores on the mantle of a market squid.
chromatophores
Orange and red chromatophores on a tentacle of the Chriroteuthis squid.

In Haul 4 we collected a Cranchia scabra, which Chief Scientist Keith Sakuma calls the “baseball squid” or glass squid whose body is covered with tubercles (brown spots on mantle in photo below). This animal attempted to hide from us by turning white, retracting its tentacles and inflating himself into a ball, somewhat resembling a baseball. After a few pictures, we released it back to the sea.

Cranchia scabra or "baseball squid"
Cranchia scabra or “baseball squid”

Another exciting deep-sea creature, the Pacific hatchet fish, Argyropelecus affinis, was collected in a bongo net deployed prior to CTD, for Dr. Kelly Goodwin’s eDNA research.  The fish we collected below still has intact blue scales due to being well preserved in the bongo. The hatchet fish lives in mesopelagic zone down to 2000 m depths where the CTD sensors recorded a temperature of four degrees Celsius! Hatchet fish have upward facing eyes and mouths and swim up to the the epi-pelagic zone at night to feed on salps and krill.

Pacific hatchet fish, Argyropelecus affinis
Pacific hatchet fish, Argyropelecus affinis

Kelly conducted a quick surface bucket dip prior to CTD deployment in which we found a small (~2 inch) siphonophore, which I was very excited about since this was my first one to ever see in person! Siphonophores are colonial Cnidarians composed of individual animals called zooids. Moss Landing Graduate Student Kristin Saksa and I were able to confirm the identification of this beautiful creature as a siphonophore using an invertebrate field guide that Keith Sakuma brought on board. Perhaps due to the temperature change from being in the sea to being observed in a cell culture dish under the microscope, the siphonophore broke apart into its individual zooids right in front of my eyes.  See before and after photos below.   

Intact Siphonophore colony
Intact Siphonophore colony from bucket dip, note tip or “hat” at the bottom on the animal.
individual siphonophore zooids
Siphonophore individual zooids appear as semi circles consisting of small brown semi-circles.

Tonight I was also able to observe living salps that were pulled up in the bongo net and take a video.  It was neat to see the salps pulsing.

Haul 5 was a massive haul full of pyrosomes, Pyrosoma atlanticum.  Kristin Saksa volunteered to stir the bucket of pyrosomes (using her arms) so that we could obtain an accurate distribution of organisms for the initial volume count and analysis.  As I video of this event (see stills from the video below), we were all laughing and realized that Kristin may be the only human on Earth who has ever stirred pyrosomes.

Kristin stirring pyrosomes
Kristin Saksa stirring a bucket full of Pyrosoma atlanticum
Kristin stirring pyrosomes
Kristin Saksa stirring a bucket full of Pyrosoma atlanticum

In haul 5 we were surprised to find a Giant 7-armed Atlantic octopus, or blob octopus. Keith Sakuma explained that the males have 7 arms as the fifth is a sex appendage whereas the female has 8 arms. After photographing this beautiful deep-sea octopus, we released him back to the sea.

blobtopus
Giant Seven-Armed Atlantic Octopus or “blob octopus”


June 3, 2019 Game Plan and Trawling Line: 5 hauls Outside Monterey Bay

Catch Highlights: Two of the hauls produced a lot of krill. The hauls had a high species density with a lot of myctophids, salps and blue lanternfish. Such hauls are time consuming to sort so as not to overlook something new and small. In one of the hauls we found a new-to-me myctophid called Nanobrachium. I dissected some of the fish and found that CA lanternfish and Northern anchovies were full of eggs, and their age/reproductive status was previously unknown.

A catch with a high krill count
A catch with a high krill count

We caught 2 young ocean sunfish, Mola mola.  Both were immediately returned to the sea.

Kaila with young Mola mola
Scripps Graduate Student Kaila Pearson with a young ocean sunfish, Mola mola.
Keith and mola mola
LTJG Keith Hanson with a young ocean sunfish, Mola mola.

We found several species of deep sea dragonfish which we arrayed below on a ruler. Most of these fish are less than 6 inches long, no bigger than a pencil, but they are equipped with sharp fangs and are apex predators in their realm! Dragonfish have large bioluminescent photophore organs underneath their eyes (and sometimes lining their bodies) which produce light and are used to attract or deter prey and attract mates.

dragonfish
All of the dragonfish caught on June 3, 2019 on the NOAA Ship Reuben Lasker.
more dragonfishes
Longfin dragonfish, Tactostoma macropus, on left and a Pacific black dragon, Idiacanthus antrostomus, on right. Also in the photo are a krill (on the left of the dragonfish) and a Gonatus Squid (top left corner of photo).
Longfin dragonfish, Tactostoma macropus, with large photo organ underneath the eye

We collected a stoplight loosejaw, Malacosteus niger, which can unhinge its jaw in order to consume large prey.

Stoplight loosejaw
Stoplight loosejaw, Malacosteus niger.
Face of stoplight loosejaw
Face of stoplight loosejaw, Malacosteus niger.


June 4th: Davenport Line

The highlight of today was at 5:45 P.M.  when team red hats went to the flying bridge for our workout and to hang out with Ornithologist Brian Hoover.  There was a lot of Humpback whale activity. I counted around 20 spouts. We observed one whale that flapped its tail against the sea surface around 45 times in a row, perhaps communicating to nearby whales by generating pulses in the water or creating a visual cue.  We saw several full breaches. We finished up the Davenport Line at 6:00 AM as the sea became rough. Thanks goodness for handrails in the shower.

The sorting team
The sorting team, aka Team Red Hats. From left: Kristin Saksa, Flora Cordoleani, Karah Nazor, Ily Iglesias, and Kaila Pearson.


June 5th: Outside of Tomales Bay

I woke up at 4PM and headed to the galley for dinner at 5PM.  The boat was rocking so much that I became dizzy and knew that I would become sick if I tried to eat dinner, so I headed straight back to bed. Around 9PM the sea seemed to have calmed a bit, but I soon learned that it only felt calmer because the ship was traveling in the same direction as the swell at the moment but that we were about to turn around.  Due to the rough conditions, the first haul inshore at Tomales Bay was delayed until midnight so the fish sorting team decided to watch “Mary Poppins Returns” in the galley. The talented chefs of the Reuben Lasker made the most amazing almond cookies today and, thankfully, temped me to eat again.  

Catch Highlights: Haul 1 at station 165 was one of the easiest and most exciting catches of the survey so far because we collected a lot of jellyfish – my favorite! We counted 66 West Coast sea nettles, Chrysora fuscescens, seven Northern anchovies (7) and 24 market squid. I actually have a tattoo of West Coast sea nettle on my ankle. We placed the jellyfish flat on the lab bench and quickly measured their bell diameter before returning them to the sea. They did not sting us as most of the nematocysts were likely triggered during haul in.  I removed a rhopalia, a sensory structure that lines the margin of the bell of Syphozoans (the “true” jellyfish). West Coast sea nettles have eight rhopalium which house the the ocelli (light sensing organ) and statolith (gravity sensing organ). A photomicrograph I took of the rhopalia under the dissecting microscope is below.

Karah measures sea nettle
Teacher at Sea Karah Nazor measuring a West Coast sea nettle Chrysora fuscescens.
Karah examines sea nettle
Karah Nazor examining a West Coast sea nettle, Chrysora fuscescens.
Kaila holds up sea nettle
Scripps graduate student Kaila Pearson examining a West Coast sea nettle, Chrysora fuscescens.
Kristin holds up a sea nettle
Moss Landing graduate student Kristin Saksa examining a West Coast sea nettle, Chrysora fuscescens.
light sensing organ
Photomicrograph of the ocelli or light sensing organ in the rhopalia of a West Coast sea nettle, Chrysora fuscescens.

Haul 2 mostly consisted of Northern anchovies, 1 krill, a few moon jellyfish, Aurelia aurita, a few squid, which made for another very short and easy sort (see photo below). I study moon jellyfish in my lab back at McCallie High School, so I was curious to look inside of the stomach and reproductive organs of these wild jellyfish. Under the dissecting microscope, eggs were present and were purple in color (see photomicrograph below).

jellyfish eggs
Photomicrograph of purple eggs and clear gastric filaments of the moon jellyfish, Aurelia aurita
sorting Haul 2
Kaila Pearson (left) and Karah Nazor and Keith Hanson sorting Haul 2.

Haul 3 had a lot of krill, young of year (YOY) Pacific hake, Merluccius productus, one large hake, and a few market squid. This sort was also super easy except for separating the small YOY Pacific hake from the krill.

Sorting of haul 3 which had a lot of krill and young of year (YOY) Pacific hake, Merluccius productus.


June 6th: Outside Farallones. On our final night, we conducted three hauls with very small harvests consisting of few organisms and low species density.  One new to me fish in the final catch was a top smelt fish (see image below). These were the three easiest sorts of the survey. It was suggested by Keith Sakuma that the catches were small due to the stormy conditions.

catch from the last night
A small catch from the last night June 6, 2019, with one West Coast Sea Nettle, a Gonatus squid, and two topsmelt silversides, Atherinops affinis.
Kristin with a topsmelt
Moss Landing graduate student Kristin Saksa with a topsmelt silverside, Atherinops affinis, from the final haul of the survey.


June 7, 2019: Return to San Francisco

Group photo at Golden Gate Bridge
In front of the Golden Gate Bridge at the conclusion of the cruise. From left: Brian Hoover, Kelly Goodwin, Ily Iglesias, Karah Nazor, Flora Cordoleani, Kristin Saksa, Lauren Valentino, and Jarrod Santora.
group photo at Marin Headlands
In front of the Marin Headlands at the conclusion of the cruise. From left: Ily Iglesias, Kristin Saksa, Flora Cordoleani, Kaila Pearson, Lauren Valentino, and Karah Nazor.

Kimberly Godfrey: Trawl Away! June 6, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

June 6, 2018

 

Mission: Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean along the California Coast

Date: June 6, 2018

Data from the Bridge

Latitude: 36° 59.462 N

Longitude: 122° 31.056 W

Wind Speed: 12.77 knots

Wind Direction: Northwest winds

Wave height: 2 to 3 feet with 4-6 foot swells

Air temperature: 12.76° C

Science and Technology Log

Our first official night on the Job was Sunday, June 4th. My shift is technically 6:00 pm to 6:00 am, but we could not begin trawling until the evening when skies were dark. If fish can see the net, they can avoid it. The method we use to catch fish is a midwater trawl, also known as a pelagic trawl, because the net fishes in the water column. It’s called a modified Cobb midwater trawl net. It has a cod end, the narrow end of a tapered trawl net where the catch is collected during the trawl.

Trawl Net

Diagram of a Trawl net used on NOAA Ships

Before we lower the net, the water around the ship must be clear of marine mammals. Thirty minutes prior to each trawl, someone stands the marine mammal watch on the bridge. Once the net is deployed, someone must be watching for marine mammals outside the entire time. If any marine mammals are spotted (this includes dolphins, porpoises, seals, and sea lions), we report it to the officer on the bridge. The rule is that if we spot a marine mammal, the net must be hauled back in and we sail a mile away from the sighting. Marine mammals are protected and we do not want any caught in the net.

When the net is in the water, we trawl for 15 minutes at 30 m deep. Optimal speed is about 2 knots, but that is weather dependent. During this time, our deck crew, and Survey Technician monitor each step of the haul, reporting back to the officer on the bridge. As they haul the net in, the deck hands and Survey Technician work together to make sure the catch goes into the bins for sorting.

Winch

The winch used to deploy and haul in the trawl net on the Reuben Lasker

Trawl net with Cod end

Survey Technician Jaclyn Mazzella, Deck Hands Ethan Skelton and Raymond Castillo, and NOAA Fisheries Intern Thomas Adams dropping the cod end of the net into a bin to collect our catch.

Pyrosomes and salps

First catch of the first trawl. Some fish and squid are present, but this catch was dominated by salps and pyrosomes.

I didn’t know what to expect from our first catch. Maybe we would have some fish, crabs, squid…However the first catch brought something I never saw before. Lots of Thetys!

Thetys

Thetys

Thetys are a type of salp. Salps are planktonic, colonial tunicates from the phylum Chordata. We also had pyrosomes, another type of colonial tunicate. They are efficient feeders, filtering particles of plankton from the water. It is expected that in areas where salps are prevalent, one can expect to find less of other species from the same trophic level.  For this catch, that happened to be the case.

Pyrosomes

Pyrosomes, another type of planktonic, colonial tunicate.

As of today, I officially completed 3 shifts on the job, which included 12 trawls in total. It seems that each catch was dominated by 1 or 2 species. There were other species present, but we had to sort through the catch to find them.

We had a catch that was loaded with anchovies, another with krill, and one full of pelagic red crabs. I find this to be one of the most interesting parts of the work, anticipating what we will find. There are many variables that can impact the productivity of an ecosystem, and therefore can determine what we find. Things like salinity, sea surface temperatures, upwelling, proximity to land or open ocean, and human impact, can all influence an ecosystem.

Anchovies

This is me with Fisheries Intern Thomas Adams, stunned by the amount of anchovies we had in this catch. Photo by Keith Sakuma

Krill

This catch consisted predominantly of krill species. Some catches will have 3 to 4 different species of krill

So, what do we do with our catches once we have them? We count them, and there is a method to the count. Depending on the size of the catch, we may measure out 1,000 ml, 2,000 ml, or 5,000 ml. We start with that first bucket and count every individual (species like krill or salps are measured by volume). The numbers are reported to Keith Sakuma, our chief scientist, and recorded in a handwritten data sheet, then transferred to an excel document. After the first bucket, we may focus on sorting for all other species except the predominant species. For example, for our large anchovy catch, we sorted through approximately 60 liters of fish. We didn’t count every single anchovy, but based on our primary count, we can use the total volume to estimate. However, we sort through looking for all other species and record the findings.

Sorting and Counting

Here we are counting the first 5,000 ml bucket of anchovies. Here you can see we separated out the other species and count them as well.

Leg 2 Team Rockfish Recruitment and Assessment Survey

Here is the team starting clockwise from the left: Melissa Monk, Stephanie Oakes, Thomas Adams, Becky Miller, and Kimberly Godfrey. Photo taken by Keith Sakuma

We will record each species we find, and then we have a list of specified species that need to be measured.  We take the first twenty specimens of each so we have a record of the average size fish caught in that specific location and time. We focus on measuring the species of fish that have the most ecological and economic importance. These are the prey and those that are consumed by us. Therefore, they are also likely to suffer from human impact. Learning about these species are important to the understanding of what makes them successful, and how to mitigate the things that negatively impact their productivity.

Measuring specimens

This is me, measuring species of focus for this survey. Afterward, we bag and freeze those needed for further analysis back on land, and the rest get washed back to sea.

Caliper

Electronic caliper used to measure the specimens. It has a USB cable that connects to the computer and immediately records data into a spreadsheet.

Data Sheet

This data sheet is a record of all the measured species from our catches.

So far this is our routine. Tonight, we had a break from trawling as we transit up to Davenport, just North of Santa Cruz.  The current conditions are not favorable for trawling, so we will get back to work tomorrow evening. While we take it easy, our NOAA officers navigate the ship up the coast. I had the opportunity to speak to our Executive Officer (XO), Lieutenant Commander Emily Rose.

How did you come to work for NOAA?

I went to the University of Hawaii and got my degree in Meteorology. From there, my friend referred me to someone who currently worked in the NOAA Corps. The things she told me about the job piqued my interests, so I applied. I was selected in 2008. There was a 5-month training period, and then I was stationed in Hawaii on the Ka’imimoana, a ship that has since been decommissioned. I was sent to Santa Rosa, CA to work for National Marine Fisheries Service (NMFS) during my first land assignment, then I became the Operations Officer aboard the Okeanos Explorer. Before I joined the Reuben Lasker, I was stationed at the National Centers for Environmental Information (NCEI) in Boulder, CO for 2 years.

Since you have a degree in Meteorology, do you get to use what you’ve learned for your current position?

Every time I’ve been on a ship, I’ve been the defacto weather officer. On the Reuben Lasker, I haven’t had to do too much with weather so far, but on other assignments I’ve done weather presentations and helped others like the CO (commanding officer) interpret weather patterns, and just to provide information to those who are interested in learning. It’s is not a career in Meteorology, but having a degree in a science that relates to what NOAA is beneficial. You use critical thinking skills throughout the job. If there is a challenge, you can come up with a solution. You also have math and physics, and a basic understanding of how things work. All these things help make operations successful.

What is the most important part of your job now?

The most important part of my job is to manage the ship’s crew. I make sure they are put first. I manage their time and attendance, their pay, their leave time, any personnel issues, etc. Anything they need, I am there for them. They are the reason we (the ship) are successful.

What is your favorite part of your job?

All of it! The variety. My job changes from day to day; there are new challenges each day. The variety makes it interesting.

What tool is the most important for you to do your job?

For me I would not be able to do a good job if I did not have a positive attitude. Sometimes we are faced with challenges that are not easy to fix without support and understanding. Having a positive attitude helps me get through it and helps others around me.

I also think it is important to be open-minded and be willing to try new things. There is a lot that we deal with that some have never dealt with before. Having an inquisitive mind and ability to be ready for anything are important.

When you applied for NOAA, did you know this is what you wanted to do?

Yes. Once I applied, I thought it would be pretty cool. I was also thinking about being a math teacher, or to pursue weather in the air force. I’m glad I didn’t because I get to do a whole lot more here than I would if I were in an air force weather center. Once the application process got rolling, and then I got an interview, I thought “Yeah, this is what I want to do.”

Was there something you found surprising about your job when you started?

There were a lot of surprises! You always have an idea of what you expect, but once we all got together for training, we learned something new every day. Some of us had never been on a ship before, some have never driven a small boat, some have never done any charting. And I still feel like I learn something new each day. Everybody that I’m around has a different background and experience, so it’s fun to learn from them.

If you weren’t working for NOAA, what would you be doing now?

I don’t think I would be doing something else. I don’t feel like I’ve missed out on something. In fact, I tell people all the time about what they are missing! I’ve got to do more in this job than I ever thought I would. I’ve been all over the world, included places like Western Samoa, The French Marquesas, and the Marshall Islands.

If you were give advice to a young person considering a NOAA career, what would you recommend?

Anyone who is interested in going into NOAA as a scientist, crew member, or Corps Officer, one important piece would be to study hard and work hard, but keep in mind, grades are not the end-all be-all. Try hard and learn the material, and learn how to problem solve. Don’t be afraid of a challenge, and be ready to give 110% because that will help get you to the next level. For NOAA Corps specifically, having some experience working on a ship and understanding of nautical operations is beneficial. And don’t be afraid to reach out to someone from the NOAA Corps because they are willing to offer guidance.

What are your hobbies?

Sports! I play any sport that you ask me to, but I play on teams for soccer, softball, ice hockey, tennis, and a basketball league not too long ago. When I’m on land, I join as many teams as I can. I love riding my bike. On my last land assignment I went two years riding my bike to work and didn’t drive at all. My husband even bought me snow tires. You name it I’m game!

Did You Know…

  • Before you can set out, you must have multiple permits. Depending on where trawling occurs, one may need a permit for state waters and federal waters. Those conducting research may receive permits to trawl in both state and federal protected areas.
  • We keep some of the specimens for further analysis in the lab (back on land). There are various reasons scientists want to study further, including learning about their genetics, development, and reproduction. One group includes all the juvenile rockfish we find. Please stay tuned for the next blog to learn more about this part of the research.

Amanda Dice: Using Light for Survival, September 13, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: September 13, 2017

Weather Data: Rainy, 76 F

Baltimore, MD

Science and Technology Log

Now that I am back home, I have some time to think about the variety of animals I saw on the cruise and do a little more research about them. Many of the animals we caught in our net have the ability to light up. This adaptation is known as bioluminescence. Different species use bioluminescence in different ways to help them survive.

 

Myctophids are a type of fish also known as a lantern fish. These small fish can occupy the same habitat as juvenile pollock, and we caught several of them at our sampling stations. I got a chance to look at them closely and I could see small spots, called photophores, along the sides of their bodies. In dark waters, these spots have bioluminescent properties. Lantern fish can control when to light them up and how bright the spots will glow.

 

There are many different species of lantern fish. Scientists have learned that each species has a unique pattern of bioluminescent photophores along the sides of their bodies. For this reason, it is believed that lantern fish use their bioluminescent properties to help them find a mate.

myctophid

The photophores can be seen as white spots on this lantern fish. Image courtesy of NOAA.

Lantern fish also have bioluminescent areas on the underside of their bodies. This adaptation helps them achieve what is known as counter-illumination. In the ocean, a predator can be lurking in the dark waters below its prey. Since many things feed on lantern fish, it is important for them to have a way to camouflage into the environment. When a predator looks up, during the day, a fish that is lit up on the bottom will blend in with the lighter waters above it, making it hard to see.

counterillumination 2

The camouflaging effect of counter-illumination can be seen when this bioluminescent fish lights up its underside. Image courtesy of the Smithsonian.

Lots of animals use this technique to help them hide from predators, including squid. We pulled in many small squid in with our samples that had patterns of photophores on them. Depending on the species, squid also use bioluminescence to attract mates and to confuse predators.

squid NOAA 2

The pattern of lighted photophores can be seen on this squid. Image courtesy of NOAA.

In addition to fish and crustaceans, we also pulled in a variety of jellyfish. Jellyfish also have bioluminescence characteristics. Many jellyfish use light as a way to protect themselves from predators. When a jellyfish is threatened by a predator, it flashes in a rapid pattern. This signals other fish nearby that it is being hunted. This can alert larger predators, who may be hunting the predator of the jellyfish. The larger predator will then swoop in after the jellyfish’s predator, allowing the jellyfish to escape!

Jellyfish NOAA

Many jellyfish use bioluminescence to protect themselves from predators. Image courtesy of NOAA.

Personal log

I have been home for over a week and I think I finally have my land legs back again. Looking back on the experience, there were so many little surprises that came with living onboard a ship. One thing I noticed is that I got much better at walking around the longer I was there. I learned to always have one hand available to grab a railing or brace myself during any sudden movements. However, I never quite mastered getting a decent workout in on the treadmill! Another surprise is how relaxing the rocking of the ship could be when I laid down. I thought the movement would be distracting, but it actually helped me drift off to sleep!

Did you know?

There are many superstitions surrounding life on a ship. It is considered bad luck to have bananas on board and whistling is discouraged. Whistling onboard a ship is thought to bring on wind and storms!

 

Cecelia Carroll: Visit with the NOAA Corps Officers, May 10, 2017                   

NOAA Teacher at Sea

Cecelia Carroll

Aboard NOAA Ship Henry B. Bigelow

May 2 – 13, 2017 

Mission: Spring Bottom Trawl

Geographic Area: Northeastern Atlantic

Date: May 10, 2017

Latitude: 42 54.920N
Longitude:  069 42.690
Heading:  295.1 degrees
Speed:  12.2 KT
Conditions: Clear

Science and Technology

I am on the day schedule which is from noon to midnight.  Between stations tonight is a long steam so I took the opportunity with this down time to visit the bridge where the ship is commanded.  The NOAA Corps officers supplied a brief history of the corp and showed me several of the instrument panels which showed the mapping of the ocean floor.

“The National Oceanic and Atmospheric Administration Commissioned Officer Corps, known informally as the NOAA Corps, is one of seven federal uniformed services of the United States, and operates under the National Oceanic  and Atmospheric Administration, a scientific agency within the Office of Commerce.

“The NOAA Corps is part of NOAA’s Office of Marine and Aviation Operations (OMAO) and traces its roots to the former U.S. Coast and Geodetic Survey, which dates back to 1807 and President Thomas Jefferson.”(1)

During the Civil War, many surveyors of the US Coast and Geodetic Survey stayed on as surveyors to either join with the Union Army where they were enlisted into the Army, or with the Union Navy, where they remained as civilians, in which case they could be executed as spies if captured. With the approach of World War I, President Woodrow Wilson, to avoid the situation where surveyors working with the armed forces might be captured as spies, established the U.S. Coast and Geodetic Survey Corps.

During WWI and World War II, the Corps abandoned their peacetime activities to support the war effort with their technical skills.  In 1965 the Survey Corps was transferred to the United States Environmental Science Services Administration and in 1979, (ESSA) and in 1970 the ESSA was redesignated as the National Oceanic and Atmospheric Administration and so became the NOAA Corps.

“Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA.” (1)

“The combination of commissioned service with scientific and operational expertise allows the NOAA Corps to provide a unique and indispensable service to the nation. NOAA Corps officers enable NOAA to fulfill mission requirements, meet changing environmental concerns, take advantage of emerging technologies, and serve as environmental first responders.” (1)

There are presently 321 officers, 16 ships, and 10 aircraft.


We are steaming on a course that has been previously mapped which should allow us to drop the net in a safe area when we reach the next station.

The ship’s sonar is “painting” the ocean floor’s depth.  The dark blue is the deepest depth.


The path of the ship is highlighted.  The circles are the stations to drop the nets for a sample of the fish at that location.


This monitor shows the depth mapped against time.


This monitor also showing the depth.


A view inside the bridge at dusk.


The full moon rising behind the ship ( and a bit of cloud )


What can you do ?

  • When I asked “What can I tell my students who have an interest in NOAA ?”

If you have an interest in climate, weather, oceans, and coasts you might begin with investigating a Cooperative Observer Program, NOAA’s National Weather Service.

“More than 8,700 volunteers take observations on farms, in urban and suburban areas, National Parks, seashores, and mountaintops. The data are truly representative of where people live, work and play”.(2)

Did you know:

The NOAA Corps celebrates it 100 Year Anniversary this May 22, 2017!

Cute catch:

  1. Bobtail Squid

This bobtail squid displays beautiful colors!  (3 cm)


View from the flying bridge.


On the flying deck!



Bibliography

1. https://www.omao.noaa.gov/learn/noaa-corps/about

2. http://www.nws.noaa.gov/os/coop/what-is-coop.html

3.   http://www.history.noaa.gov/legacy/corps_roots.html

Amy Orchard: Day 4, 5 & 6 – Tagging, Gumby suit, Lion Fish Dish and Fort Jefferson, September 19, 2014

NOAA Teacher At Sea
Amy Orchard
Aboard NOAA Ship Nancy Foster
September 14 – 27, 2014

Mission: Fish Tagging
Geographical area of cruise: Tortugas Ecological Reserve North & South sections: Tortugas Bank
Date: September 17, 18, 19, 2014

Weather, September 19, 2014 20:00 hours
Latitude 24° 35’ 07’’N Longitude 83° 01’ 09’’W
Broken clouds, clear.
Humidity 10%.
Wind speed 7 knots.
Air Temperature: 29° Celsius (84° Fahrenheit)
Sea Water Temperature: 30.2° Celsius (86.7°Fahrenheit)

CLICKING ON THE SMALL PHOTOS WILL ENLARGE THEM & REVEAL HIDDEN TEXT.

WEDNESDAY:

Resetting Traps

We did not have great success with the shrimp bait.  Guess these fish prefer their shrimp au naturel where as we gave them cooked, peeled and deveined shrimp.  This morning we set out again in the small boats so the divers could re-bait the traps with squid instead.

Ariel the Scientist

Finally Ariel looks much more like a scientist now that she has a pen in her pocket!

Safety on the ship

Safety always comes first on the Nancy Foster.  We have had briefings on safety, we wear hard hats while the cranes are moving, we wear closed toe shoes (except when in the shower) and we have had fire drills & first aid emergency drills.  Today we had an abandon ship drill.  First we each arrived at our muster stations (our assigned place to meet), then we climbed into our Survival Suits (nicknamed the Gumby suit.)  This is made of very thick neoprene, probably 7-9 millimeters thick, and covers you from head to toe to fingertips.  It is meant to keep you safe from hypothermia if you were overboard for a long period of time.

After wriggling back out, we went to find our assigned life raft.  There are 6 rafts which each hold 25 people.  There is enough bunk space on the ship for 37 people, so there are plenty of life rafts for all.  Three rafts sit on each side of the ship so even if the ship was under water listing to one side, we could still access enough rafts for all.

In addition to the Survival Suit, Nick thought he would be safer being more visible so he wore a few extra items to ensure his safety!

Nick fuzzy hat w/ bow & cool googles

Nick has a horde of awesome hats. Keep your eyes peeled for more.

Dancing with the Remotely Operated Vehicle

Part of each day has been spent looking underwater with the Remotely Operated Vehicle piloted by Lance Horn and Jason White from the University of North Carolina at Wilmington (yet another partner in this 14-day collaboration)

ROV pilots

Lance Horn and Jason White are geniuses with the Remotely Operated Vehicle. There are lots of very highly technical parts to this equipment and they do it all – and they do it well.

I will be sharing lots more information about the ROV in an upcoming post.  Today I wanted you to see who else besides scientists are curious about the ROV (the large instrument with the yellow top you see in the video here)

THURSDAY:

Fish Surgery

We checked traps again this morning and had success with the squid.  The dive teams will perform surgery today!  The surgery only takes about 10 minutes, which may seem quick, but since they are underwater at a depth of about 100 feet, they must work quickly so as to not run out of their air supply.  One scientist (usually Paul Barbera, FWC Associate Scientist – who they call the Fish Whisperer) will hold the fish steady while another will make the incision, insert the acoustic transmitter and then stitch up the incision. The stitches will dissolve in about a week or two.  The acoustic transmitter (fish tag) will last 2-5 years.  Life span of the tag is determined by it’s battery life.  The smaller tags (for smaller fish) can last 2 years and the larger tags (for larger fish) will work for about 5 years.  This allows the scientists to gather information on the same fish for multiple years, giving them a really good idea of their seasonality – or the fish’s movements between different areas, both protected an unprotected.

fish tags

Acoustic Transmitters – Fish Tags which will be surgically placed in the fish at a depth of about 100 feet. Here you can see the smaller ones are about 4 cm and the larger 6.5 cm

This footage was not shot during our cruise, but Ben Binder, FWC Biological Scientist, shared this video with me describing the surgery process.  Here you will see two scientists who are aboard the Nancy Foster with me.  Paul is securing the fish and Mike McCallister, FWC Biological Scientist, is performing the surgery.  They are working with a Lion Fish here.

Placing the fish tag is just one part of the process of collecting the data the scientists are hoping to gather.  The second part is to place an instrument which can read the acoustic transmitter as it swims past (within the fish of course!)  Danielle Morley, FWC Assistant Research Scientist, and I worked to prepare some previously used acoustic receivers.  Each of the 90 receivers the FWC have placed in the waters off the Florida Keys costs about $2500.  Therefore, used receivers are reprogrammed, repainted with anti-fouling paint and used again.  Anti-fouling paint makes it very difficult for animals like barnacles to build their calcium carbonate skeletons on the receiver’s exposed top.  The receivers are made up of a hydrophone, a circuit board and a battery.  I replaced the batteries and cleaned up the O rings.  The O rings are extremely important as they ensure the capsule is completely water-proof and can be submerged in ocean water for a year at a time.

After a year, the batteries need replaced and the data needs retrieved.  Today, the divers will retrieve 6 acoustic receivers on Riley’s Hump and replace them with those we reprogrammed.  This is footage of our divers (Jeff, Sean and Colin) making the swap.  Thanks to Cammy Clark, the Miami Herald reporter, who dived down about 100 feet to capture the action.

FRIDAY:

Trap Retrieval

Over the last 5 days, there have been 65 dives and 3 surgeries performed.  The scientists deem this as very successful trip.  Additionally, all divers returned safely to the ship after each dive!  This morning the divers are retrieving the traps, which like the receiver stands are allowed by a special permit from the FKNMS.  Even if conditions did not allow us to get the traps and they needed to stay at the bottom, no fish would be caught for very long.  Each trap is closed with a zinc clip that will dissolve after a week or two.

Zinc Clips

Zinc clips keep the traps closed, but only temporarily. They dissolve after a week or two allowing any fish to escape if a trap has to be abandoned due to weather or other conditions.

The large fish we are trapping can easily stay down in a trap that long.  But today, the weather allowed us to retrieve the traps.

Along with the traps, Ben and Ariel brought five Lion Fish Pterois volitans back up.

 

Lion Fish are not naturally found here.  They are native to the Indo-Pacific.  It has not been determined exactly how they got to the area but they are very popular for home aquariums.  However, since they are voracious predators, after eating all their other aquarium fish, people have been dumping them in the Atlantic Ocean for decades.  It was decided that efforts to eradicate the species would be futile since they are prolific breeders, have no natural predators and have been found in extremely deep waters where it would be unfeasible to reach them.  Instead, there are large efforts to manage their populations in certain areas.

One does need to be extremely careful as they have venomous spines – 13 along the top (dorsal spines) and 3 along the bottom (anal spines)  The pain they inflict & the reaction people can have when stung sounds very similar to the bark scorpion.

 

I found out they are SUPER tasty!  Especially since Bob Burroughs, 2nd Cook and Lito LLena, Chief Steward prepared them as ceviche – my favorite.

 

Fort Jefferson

In the afternoon we got a special treat.  We left the waters of the Florida Keys National Marine Sanctuary and ferried over to Fort Jefferson at the Dry Tortugas National Park for a tour and some snorkeling.  One can only reach the fort by boat or sea plane.  It was built between the years 1846 and 1875 as a way to claim the main shipping channel between the Gulf of Mexico, the western Caribbean and the Atlantic Ocean.  It never saw battle, mostly because it’s fire power was so massive that no one wanted to go up against it!

 

Even though I have been able to travel out into the open ocean on the small boats each day, it was SO GOOD to actually get into the water and snorkel around.  So many amazing things to see and take photos of.

 

There were many jelly fish (mostly Moon Jellies) and we all got stung a lot, but the underwater scenery was well worth it.

 

Bonus Points – make a COMMENT and tell me how the LION FISH and the GILA MONSTER are similar!

Answer to my last post:  It was a DOLPHIN.  The Common Bottlenose Tursiops truncatus

http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/bottlenosedolphin.htm

Also, the definition of RECIPROCITY is the practice of exchanging things with others for mutual benefit.

I have been so impressed with the seamless collaboration between the crew & science team as well as the different agencies within the science team.  Everyone gives of themselves so freely for the main goal of the scientific mission.

Sue Zupko, Sing it, Willie–On the Road Again, September 10, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographical Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 10, 2014

Weather Data from the Bridge
Lat 37°38’N
Lon 075°15.8W
Present Weather CL
Visibility 10 +nm
Wind 025° 10kts

Sea Level Pressure 1016.2
Sea Wave Height 3-4 ft
Temperature: Sea Water 26.6°C
Air 24.8° C

Science and Technology Log

 

We are now “on the road again” trawling. The nets were lowered at about 7:30 am. I was surprised by how small our catch has been. The scientists are not at all surprised. They said because of the time of year, many fish are in the estuaries spawning (reproducing). Today we have been on the edge of the continental shelf off the coast of Delaware and Virginia. When we get in closer, the scientists say we will have a lot more fish in our net.

It is fascinating how they are selecting sites for sampling.The sea floor needs to be fairly flat to pull a net across. We learn what the bottom is like using sonar. A multi-beam sonar on the bottom of the hull is in the center of the ship. There is also a single-beam sonar there. They serve two different purposes. The single-beam looks straight down the water column. It is like a really bright penlight. This shows what is in the water column such as fish and plankton. It also can reach greater depths since its light is stronger. The multi-beam is more like a floodlight. It spreads out over the bottom revealing all the different levels of the ground. These sonar beams bounce off the bottom and send the ship information. The crew  watches the sonar information and scouts for a good area to drop our nets. Of course, there are certain areas where samples need to be taken. They are trying to repeat a tow at the same time every year within a strata area. “So what is a strata?” I asked.

Geoff Shook, our survey technician, reads the information on the display

Geoff Shook, our survey technician, reads the information on the display

Strata lines are like lines on a topographic map on land. It is called a bathymetric map underwater. The lines on a bathymetric map are called strata lines. These are based on the different depths. The net needs to be pulled within the same strata at the same time each year. As long as a tow is within the strata the habitat is about the same. In order to get accurate population information, they must make at least two tows within a strata. Some of the strata are hundreds of square miles. Strata are the same depth range and habitat. Closer to the continental shelf, the strata are much narrower. Closer to shore, they are much wider. For example, strata 70 is 281 square nautical miles (nm). It is 55-110 m deep and is next to the shelf. However, strata 73 is closer to shore, is 2145 sq. nm, and is 27-55 m deep. Their habitats are different so random samples need to be taken within each.

So, I think of it like a chess board within a strata. If we want a random sample, we could drop a piece of soft clay from about a 1/2 m above the board. Where it hits is where we tow in that strata. Our first tow is at D5. The second piece of clay could fall on H2. So, there is where we would sample.

Then, when the ship is over top of the strata we will sample, it must find a safe area to tow which won’t tangle or break the net. You can’t get a sample with a broken net.

Notice the wires on the spools which haul the nets. On the first one the wire is tightly wrapped. On the second one the wire has a gap. This could lead it to break or more easily tangle. We are doing a deep tow tonight outside of the “normal” range of 366 m deep. However, it will not only give us new information, but will, hopefully, help rewrap the wire on the second spool so it will be tight. Have you ever tangled a loose fishing line on your reel? It is somewhat similar to that so we are trying to prevent this from happening later.

So, what have I been doing while waiting for a tow to complete? It depends. One time I told jokes with the scientists. Another I had a snack. Once I ate dinner. Right now, I’m working on my blog. Nap is not an option. I’ll explain that later.

It was a Win-Win Wednesday. We got some great fish by going deep, we explored some very deep water, the wire was rewound properly onto the spool, and we will have a shrimp fest tomorrow.

Meet the Crew

Luke Staiger, 2nd Cook

Luke Staiger, 2nd Cook

The old adage “an army runs on its stomach” holds true for a research vessel. Meet Luke Staiger, our 2nd cook. Luke is with the Bigelow on temporary assignment from the Reuben Lasker  in San Diego. NOAA members get moved around short term as needed. Luke has been with NOAA for 12 years. He has been cooking since he was a kid. His most important tool is an 8″ all purpose knife. It must be sharp and long-handled. If he could invent the perfect tool for the job, what do you suppose it would be? That’s right, a knife that is comfortable to hold all day.

Luke worked in a buffet restaurant so this is the perfect situation for him since it’s all buffet. He worked his way up to cook after doing other jobs at the restaurant. I’m looking forward to a breakfast that he prepares since cooking breakfast is his favorite.

Luke recognizes how important the work is that NOAA does. We need to preserve our resources, such as water, he says. NOAA keeps an eye on things so we don’t lose sight of what matters. When not on a boat, Luke enjoys fixing up cars, especially adding stereo systems. Luke has an easy going personality and a ready smile, making it pleasant to work with him.

How did he find NOAA? Similar to others that I have interviewed, he looked online. NOAA has good benefits, you get to travel, and the experience is good. His advice to my students is to gain lots of experience in your field, even if it’s just volunteering. You will find work if you do a good job and have a lot of experience.

Personal Log

Remember I said I won’t get a nap during my 20 minutes between tows? It is interesting how our stateroom (cabin/bedroom) works. There are four of us in our stateroom. When I leave to go to work, I cannot go back until the end of my watch. I carry everything with me so it is like the private room for two other women. Then I only have one room mate. We get the room for 12 hours. There are curtains around our beds and we wear earplugs. I hardly know that the other scientist on my watch, Lacey, is even there. All I do is check to see if her curtain is closed. That means, “I’m asleep.”

Did You Know?

Did you know that there is an anchor-cleaning device onboard the ship? It sprays salt water at 150 psi (pounds per square inch). The anchor gets pretty dirty sitting on the ocean floor when we are at anchor. They don’t want all that dirt on the ship in the anchor locker, so it gets cleaned. A clean ship is a happy ship.

Question of the Day

Why would different depths affect which fish live there?

Vocabulary Word

Sonoluminescence. This is short bursts of light from imploding bubbles in water (or in a liquid) when excited (moved around) by sound. A mantis shrimp is capable of sonoluminescence because the high speed of its front legs is capable of creating and rapidly shrinking air bubbles. The bubble looks like a spark underwater with no fire.

Something to Think About

If we don’t preserve our fisheries, which is what NOAA is researching, soon there won’t be any fish.

Challenge Yourself

We used a deep-water protocol, which is between 183 and 366 m. If you are fishing in a strata that is 200 feet deep, would you fall in the deep-water protocol?

Animals Seen Today

Here are pictures of what we saw today in our really deep water trawl.

 

 

Amie Ell: Fireworks, Fish, and Flukes, July 6, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
June 30 – July 21, 2013

Mission: Alaska Walleye Pollock Survey
Geographical Area: Gulf of Alaska
Date: July 6th, 2013

Location Data from the Bridge:
Latitude: 55.29.300 N
Longitude: 156.25.200 W
Ship speed:   10.7 kn

Weather Data from the Bridge:
Air temperature: 8.6 degrees Centigrade
Surface water temperature: 8.6 degrees Centigrade
Wind speed:  14 kn
Wind direction: 210 degrees
Barometric pressure: 1008.5 mb

Science and Technology Log:

The Oscar Dyson is equipped with several labs to accommodate the researchers on board.  In this blog post I will describe to you what is happening in the wet/fish lab.  This is where I have experienced quite a bit of hands-on data collection.

Pollock being separated on the conveyor belt.

Pollock being separated on the conveyor belt.

Basket full of pollock.

Basket full of pollock.

After a trawl, the crew dumps the load of  fish into a bin.  Inside the lab we can raise or lower this bin to control the amount of fish coming onto a conveyor belt.  Once the fish are on the belt the scientists decide how they will be separated.   We separate the pollock according to age into baskets.  They are categorized by size; under 20 cm (age 1), under 30 cm (age 2), and any larger than 30 cm

OLYMPUS DIGITAL CAMERA

A lumpsucker

A basket full of small squid

A basket full of small squid

At this time we also pull out any other sea creatures that are not pollock.  So far we have pulled up quite a few jelly fish, la lumpsucker, shrimp, squid, eulachon, and capelin.  These are also weighed, measured, and in some cases frozen per request of scientists not currently on board.

Larger squid.

Larger squid.

After organizing the pollock into appropriate age groups, we then measure and record their weight in bulk.  Scientists are using a scale attached to a touch screen computer with a program called CLAMS to record this information.  The pollock are then dumped into a stainless steel bin where their sex will be determined.  In order to do this the fish must be cut open to look for “boy parts, or girl parts”.   After the pollock are separated into female and male bins we begin to measure their length.

This is the tool used for measuring length of the fish.

This is the tool used for measuring length of the fish.

The tool used to measure length is called the Ichthystick.  This tool is connected to the CLAMS computer system.  The fish is placed on the Ichthystick and a pointer with a magnet in it is placed at the tail end of the fish.  There are three different types of length measurement that can be done: fork length, standard length, and total length.  When the magnetic pointer touches the Ichthystick it senses that length and sends the information to the CLAMS computer system.

OLYMPUS DIGITAL CAMERA

Northern shrimp

One of these bins of fish is placed aside for individual weighing, length measurements, and removal of otoliths.  You may recall that I mentioned otoliths in the last blog post.  These ear bones are sent to a lab and analyzed to determine the age of each of these individually measured fish.  The Alaska Fisheries Science Center has created a demonstration program where you can try to determine the age of different types of fish by looking at their otoliths. Click here to try it yourself! (I will add hyperlink to: http://www.afsc.noaa.gov/refm/age/interactive.htm)

Personal Log:

Ben and Brian in fire gear  with flares.

Ben and Brian in fire gear with flares.

One afternoon while waiting for the fishermen to bring up the trawl net, I watched a group of porpoises swimming behind the ship.  Another day I was able to see whales from up on the bridge.  These were pretty far out and required binoculars to see any detail.  I observed many spouts, saw one breach, and some flukes as well.

There is quite a bit of downtime for me on the ship while I am waiting in between trawls.  I get to read a lot and watch movies in my free time.  I have had the opportunity to talk with different members of the crew and learn about their roles a bit.  The chief engineer gave me a tour of the engine rooms (more about this with pictures in a future post.)

The 4th of July fireworks show on the Oscar Dyson was like no others I have ever experienced.  Two of our crew, Ben & Brian, dressed in official fire gear shot expired flares off the ship into the sea.  America themed music was played over the PA system.  I have attached a video of our fireworks display.  Happy Independence Day everyone!