Oktay Ince: Driving the NOAA Ship Thomas Jefferson and Seasickness!, June 26, 2022

NOAA Teacher At Sea

Oktay Ince

Aboard NOAA Ship Thomas Jefferson

June 20- July 1, 2022

Mission: Hydrographic Survey

Geographic Area of Cruise: Lake Erie

Date: Sunday, June 26, 2022

Latitude: 41° 31.9′ N
Longitude: 81° 57.3′ 00 W
Altitude: 138 m

Weather Data from Bridge

Wind Speed: 8 kts
Surface Water Temperature: 23 °C
Air Temperature (Dry Bulb Temperature): 25 °C
Wet Bulb Temperature: 21 °C
Relative Humidity: 78 %
Barometric Pressure: 1014 mb

Science and Technology Log

Today, I am going to talk about anchoring the ship in Lake Erie, and some multibeam and side-scan images that NOAA Ship Thomas Jefferson obtained a while ago from different assignments. 

The ship is mostly done scanning offshore portions of Lake Erie (2-7 nautical miles) from Lorain to Cleveland, OH, except near the shoreline. Waters near the shore are harder to scan for a ship like Thomas Jefferson because the water is shallower towards the coastline. Therefore, the ship decided to anchor closer inshore and launch its two boats to scan those areas. As I said before, the same multibeam and side-scan sonar beam technology is also in these boats. For the next couple of days while the ship is anchored, the boats will collect nearshore bathymetric data outside of Cleveland, OH. 

The anchor is made of metal and is attached to the ship by a metal chain. First, it is important to decide where to anchor by looking at the chart. It’s usually preferred to anchor in sandy locations for stronger holding of the ship. However, most of the area we are surveying has a mud bottom, which is also okay for holding the anchor. The weight of the anchor is 3,500 lbs.!  Once the ship was anchored, it swung around the chain due to the wind. The engine was off and we stayed there for about 4 days. Even though the engine was off, the generators were on. I will talk more about engines and generators in my next post. 

Okay, let’s go back to multibeam and side-scan sonar. When the multibeam sonar scans to evaluate the depth of the water, the results can be shown in color schemes based on depth ranges.  For example, during data acquisition we determined that 0-3.5 meters is black, 3.5- 5 meters is red, 5-10 is green and so on and so forth. This color coding is arbitrary as long as we have a legend at the bottom of the image that shows the depth of each color. 

a computer screen displays depth data
Scanning the water (color-coded legend on the left). The depth of water is not less than 5m.

There was one interesting thing I learned today. Side-scan sonar can also show the presence of fish. During our data collection, we found schools of fish that are both small and big. How do we know the object we found is a school of fish? Well, often the shadow of an object in a sonar image can tell more information than the image of the object itself. If the object’s image has a shadow that is not attached to the object then it may be fish. Since the fish is swimming in the water, its shadow would look unattached in the image. We not only found a school of smaller fish, but also found a school of bigger fish. How do we know that they are big?  The shadow can tell you!  When looking at the image, we can identify individual fish as a dot, and the shadow can be measured to determine the size. 

photo of a computer screen showing side scan sonar image when no objects are detected; the lake bottom looks grainy orange
Scan scan sonar image- There is no object detected. Use this image as a reference to interpret the following side scan images.
a side scan sonar image with specks of light and specks of shadow, offset to the right. theses objects and their shadows are highlighted in a blue rectangle. an additional caption reads: "Larger fish - can see individual bright spots and individual shadows"
Side scan sonar image shows larger fish presence in Lake Erie (Credit: NOAA Ship Thomas Jefferson).
a side scan sonar image with two objects that look like balls of light, and their offset shadows. caption reads: "Schools of small bait fish"
Side scan sonar image shows schools of small bait fish presence in Lake Erie. (Credit: NOAA Ship Thomas Jefferson)
side scan sonar image of shipwreck, multibeam bathymetry model of shipwreck
Both side scan and multibeam sonar imagery of a ship wreck from PREVIOUS mission of NOAA ship Thomas Jefferson. (Credit: NOAA Ship Thomas Jefferson)
comparison of sidescan and multibeam sonar imaging of lake bottom
Both side scan and multibeam sonar imagery of bottom near Rocky River, Ohio during our this leg of acquisition. (Credit: NOAA Ship Thomas Jefferson)

Personal Log

I am almost halfway through my expedition in Lake Erie. When I say I am learning, I do not mean that I am listening and observing what others say, and jotting down what I heard. I mean that I am hands on, doing what others do on the ship. My title on the small boat is “Crew-IT,” meaning crew in-training, and they teach me everything that I need to know. I was even on the deck (ship control center) navigating the ship for about 10 minutes. It wasn’t that complicated to navigate a 208 ft long NOAA ship after all! 

Oktay stands at the helm of NOAA Ship Thomas Jefferson; three other crewmembers on bridge
Driving NOAA Ship Thomas Jefferson
Oktay stands at a navigation table on the bridge, looking over a clipboard; water visible out the bridge windows
Checking ship’s daily logs

I am not the only one who is training. There are many others, too: NOAA Corps officers, technicians, visitors, etc. The ship is not only completing its mission, but is constantly a training ground for others. 

Okay, let me talk about my first time being sea sick. Except, I didn’t know what it was until somebody told me so the next day. So, I woke up earlier than usual that morning around 6 am. Because I had a full day boat assignment, I had to be fully ready. I packed a book to read, my camera, selfie stick and my notebook. I put on my sunscreen, and of course, my long pants. After eating my scrambled eggs with light roasted coffee, I quickly went down to my state room to brush my teeth to make sure I was on time for the 8 am safety briefing in the survey room. A safety briefing happens every day the small boats go out. We go over what work needs to be done for the day (general overview), what the weather will be like, and what the following days will look like. It takes about 15 minutes. At 8:15 am, we put on our safety gear (always confused whether to wear a crash helmet or hard hat), and lined up to be boarded. In about 10 minutes, we were on the boat, did routine safety checks, and started to survey. The weather was so hot and the bugs were of course in full bloom. Besides the hot “bug-gy” weather, the Lake was churning so bad that I couldn’t stand still. I had to either sit or stand while holding onto something. On that day, we were out until 7 pm. When we got back on the ship, I was so hungry but also so tired that I could not eat much. When people are late for the dinner which is eaten between 4:30pm to 5:30 pm, you make your orders before you leave for the boat, and they prepare your plate and put it in the fridge. I couldn’t eat anything that I ordered. Instead I ate an apple and went straight to bed. 

I started to have a headache that I knew would eventually turn into a migraine. It was 10 pm, and my headache turned into a migraine. My migraine was so bad that my lids became so heavy that I could not open it. I was constantly turning in the bed, thinking that it would eventually go away once I slept. Nope! Nothing worked. I woke around 2 in the morning, took a shower and decided to take some ibuprofen. The medicine kicked in quickly and the next thing I remember was waking up at 7:30 am. I talked to my friend Justin that morning about what happened to me last night. He said that some people experience sea sickness in the form of a headache and suggested that I take the seasick medicine and eat a good, solid breakfast next time. I guess this is what I am going to do from now on when I have a boat assignment! 

Did you know?

  • NOAA Ship Thomas Jefferson is holding about 130,000 gallons of fuel which could last about 45 days. The ship has 33 tanks across the ship that includes fuel, drinking water, sewage, dirty water, etc. 
  • There is a “speed limit” on waterways? For example; Canada allows speed limit of 10 knots (11.5 miles/18.5 kilometers) in areas where the North Atlantic right whale have been reported in Gulf of Saint Lawrence which connects the Great Lakes to the Atlantic Ocean. The North Atlantic right whale, which is much larger than a humpback or a gray whale, is one of the most endangered whale species. More information about the species can be found here. Lake Erie doesn’t have speed regulation on open water unless there is a violation of marine laws or criminal activity.
illustration of a North Atlantic right whale
The North Atlantic right whale (Credit: NOAA fisheries)

Oktay Ince: How Much You can Get From Bottom Sampling in Water Surfaces, June 24, 2022

NOAA Teacher At Sea

Oktay Ince

Aboard NOAA Ship Thomas Jefferson

June 20- July 1, 2022

Mission: Hydrographic Survey

Geographic Area of Cruise: Lake Erie

Date: Friday, June 24, 2022

Latitude: 41° 31′ 52 N

Longitude: 82° 12′ 00 W

Altitude: 138 m

Weather Data from Bridge

Wind Speed: 6 kts

Surface Water Temperature: 23.9 °C

Air Temperature (Dry Bulb Temperature): 22.4 °C

Wet Bulb Temperature: 16.9 °C

Relative Humidity: 62 %

Barometric Pressure: 1018 mb

Science and Technology Log

I believe you have a pretty good idea what we are doing on the ship. We are mapping Lake Erie. We are all familiar with general maps, right? The ones we see in schools, maybe having a nice globe on our writing desk, or even every day on TV when meteorologists forecast what the weather looks like. Maps are everywhere.  Those maps are simple visual representations of any information we are interested in, such as cities, countries, mountains, rivers, oceans, roads etc. 

Similarly, we also have a map for oceans, seas and lakes so that whoever wants to use Lake Erie “road” will use this map to navigate themselves safely. In the science of hydrography, these maps are called nautical charts. During my past two blogs, I have kind of explained how scientists map the waters. They use multibeam sonar to get the depth of the water and side scan sonar to take images of the bottom. I also described the condition of water such as salinity and temperature.

Lowering Down CTD instrument manually

Now, you may wonder what other data hydrographers collect that goes on the chart. The field units collect data on what material is at the bottom. The easiest way to do it is bottom sampling. They simply send a clamp-like instrument with a rope attached over the side of the boat, and when it hits the bottom it automatically closes itself and catches whatever it is at the bottom. And then, you pull up the rope and examine what type of materials are at the bottom.  This information is so crucial for many reasons. For example, ships need to know where to anchor near the shore. Thomas Jefferson prefers sandy places so that the sand holds the anchor very strong. They stay away from rocky, boulder places to prevent the anchor from getting snagged. So, when a ship comes closer to Cleveland, not only do they know how to navigate the ship safely but also where to anchor. If it can’t anchor it poses a great risk not only for the ship but also for the public at the coastal region. You get the idea! The bottom sampling information is important. It seems simple to do, correct? Yes it is! But the information it provides is extremely important for government and public stakeholders. 

Bottom sampling can be used for other purposes such as what kind of organisms live there, what is the chemical and mineral composition, or even to know what life was like in the past. You can time travel by just looking at the sediment sampling of the sea/lake floor. However, the mission of NOAA Ship Thomas Jefferson is to find what material is at the bottom and navigationally significant, and ships use this information to use where to anchor. 

Let’s go back and discuss more about the importance of studying seafloor composition. The more I research this topic the more I find it fascinating to get how much information we can obtain. I came across an article titled “ THE FUTURE BURIED in the DEEP ” by Jeremy Schwab, and it has very interesting information about why bottom sampling information is used. It is even used by NASA scientists who are studying conditions on other planets and moons that might support life. What mind-blowing research to do. I guess now I am interested in studying bottom sampling!

Personal Log

Speaking of bottom sampling, yah yah yah! You are tired of me repeating that. You may say “We got it Oktay, it is important. Tell me something else.” Well, I am going to share how one experience I had in the past came in handy, and how it led to something I never thought of.

When you do bottom sampling, sometimes you get mud, but if you are lucky you also get benthic organisms which live at the bottom of the lake/sea. In the case of Lake Erie, all we got is mud. Nothing else. Of course, it raises the question, why? I will leave you with that. 

You may argue that even though there is no visible biology, there are tons of microorganisms potentially living in that mud. Yes, you are right. However, since we are not doing microbiological studies, and I don’t have my microscopes to see what is in there, I can’t see those microorganisms. So it looked boring to me, and I went straight back inside of the ship. Plus, I was tired of bugs that were eating me all over. I swear I think they were “Superbugs”, resistant to bug spray. I put bug spray all over me including my clothes, and they still bit me! Who knows, they might be mutated by all the industrial chemicals around Lake Erie, and compared to the chemical composition of bug spray, they were like “Is that all you got, Oktay!” 

a white wall of the ship covered in small dark specks (bugs)
Swarm of bugs all over the ship

Sitting at a desk in the survey room, there was a call asking “Is the Teacher at Sea around? Could you please tell him to come down to the deck? We found an interesting bottom sample we think he should see ”. The officer responded, “Yes he is here and coming over”. I rushed to the deck and checked out what it was. The sample they took consists completely of mussels. Immediately, I took several pictures of them and wondered about what kinds of species they were. Then, it clicked! I can use my “Seek app” to identify them and put them into the “iNatural” database. Now, here is the good part. I learned about these two apps from naturalists and scientists who studied biodiversity in Acadia National Park, Maine last summer when I was an Earthwatch teacher fellow. You may know that the Gulf of Maine is one of the fastest warming bodies of water in the world and scientists are studying the effects of climate change in this place.  I guess there is homework for you in there. Read about how climate change affects biodiversity in Acadia National Park and the Gulf of Maine, and what it means to the rest of the U.S. and the world. 

Anyway, I took my phone and identified the species by using the Seek app. They were all zebra mussels. Then, I added my observation into the iNatural database. Since there were millions of bugs there, I decided why not identify these creatures as well!  I found out that almost all of them are Giant Mayflies. Quite a few of them belong to the Genus called Chironomus, but the Seek app could not identify its species name. Of course, I put those observations into the iNaturalist database, too. At the end, I had a sense of relief because at least I knew what they were. By the way, zebra mussels are an invasive species and based on my research it was first seen back in the 90s in Lake Erie. Zebra mussels are filtering Lake Erie for sure, which is a good thing, but I wonder what environmental changes it created here since they are an invasive species.

Shortly after I logged my observations in iNaturalist, there was an email starting with a title  “A new update in the last 24 hours from iNaturalist”. Usually I receive any emails relating to activity in my iNaturalist – whether somebody comments on what I posted or giving species identification, etc. I opened up my email and it said that “Lower Lake Erie Region CSI” curators added some of your observations.” That means, the observations I made ended up in their project as well. The aim of the Lower Lake Erie Region Citizen Science Initiative is to identify the various species living (biodiversity) in the southern Lake Erie region. Having a feeling of contributing something to science made me feel accomplished against these voracious bugs! At least for now. 

Why am I talking about all of this! I wanted to make sure you know that if I hadn’t participated in the study back in Maine, I wouldn’t have known about these apps, and I wouldn’t have made my observations while doing something else on the ship that could help some other scientists! 

I guess this experience also made me realize how important it is to have been exposed to different environments and learning different things as a human being. You never know when, where, and how you will use what you know. I strongly believe that the more you know and experience different things, the more you make informed decisions. In other words, when you are at a point where you need to make a choice (life is all about choices), your decision would be closer to the truth than someone who has not experienced what you experienced. 

Hahaha! Sorry for my philosophical thoughts. These are the emotions I have while typing this blog post, while comfortably sitting on my table in my “office” (remember it is located in the mess deck where food is eaten), with a cup of hot bergamot oil flavored early gray black tea on my right side. 

You may ask the same question as some of my colleagues ask me. What on earth are you doing on a research vessel for twelve days, learning all these sciences, technologies, skills, and tools that you may never use in your classroom or teaching career? Or I was once asked, why are you spending your summer with these programs? Why don’t you enjoy your much needed summer break? They may even say, why are you thinking about school work? I am not sure what they mean about “school work”? Clearly, there is a different interpretation of school work among educators. 

My answer is always this – “I love to learn, and I love to experience new things.” For me, learning is everywhere at any time. Whether it is in school, home, holidays, summer breaks… it doesn’t matter. If a learning opportunity comes up, I get excited and try to experience it – that’s it. When you have that mindset, it doesn’t matter whether you are teaching in school, playing at home with your kids, or sailing on a ship exploring the water!

As a concluding remark, I suggest you do the same thing. No matter what profession you have, always be curious, be a life-long learner, and be out of your comfort zone. 

Hope to see you in my next post. 

Did you know?

  • Lake Erie is the warmest of all of the Great Lakes (southernmost positioned of all the other lakes), but it also freezes over more than other lakes (because it is the shallowest of all). 
  • The water in Lake Erie was so polluted that it created “dead zones” due to algae blooms by the 1960s, and in 1969, the Cuyahoga River, which flows through Cleveland, Ohio, caught fire.

Jordan Findley: One and a Wake Up, June 20, 2022

NOAA Teacher at Sea

Jordan Findley

Aboard NOAA Ship Pisces

June 9-22, 2022

Mission: SEAMAP Reef Fish

Geographic Area of Cruise: Gulf of Mexico

Date: June 20, 2022

Science and Technology Log

Allow me to provide a summary of the survey and what was accomplished on this leg. June 9, we departed from Galveston and made our way out to sea. The survey started the next day. We traveled 1,866.6 nautical miles (or 2,148.04 miles) along the continental shelf. That’s like driving from Florida to California! On this leg of the survey we (they) deployed 169 cameras, 22 CTDs, 13 bandit reels, and 12 XBTs (still don’t know what that is). We collected 15 eDNA samples (go Caroline!) and mapped 732 nautical miles. This year’s survey started in April, and this was the last leg. We’re making our way back to Pascagoula (yes, I can pronounce it now), a near 28 hour transit. We will be docking and unloading at the Gulf Marine Support Facility. The next survey on the Pisces starts next week, deploying Remote Operated Vehicles (ROVs). The science never stops, folks.

The SEAMAP Reef Fish Survey began as a fish trap survey in 1980’s and transitioned to a video survey in 1991, and the technology continues to evolve year after year. This over thirty years of data provides abundance and distribution information on Gulf of Mexico reef fish. Reef fish abundance and size data are generated directly from the videos. So though the work feels slow, it is essential. An index of abundance for each species is determined as the maximum number of a fish in the field of view in a single video frame. Here are some snippets of the footage recording during our trip.

A school of amber jacks recorded on the camera array.

*NOTE: The tiger shark shot was not from our leg of the survey, but too cool not to include.

This survey combined with all research approaches (i.e. traps, bandit reels, eDNA) allows for a comprehensive stock assessment of the fish populations in the Gulf of Mexico. Stock assessments collect, analyze, and report demographic information to estimate abundance of fish, monitor responses to fishing, and predict future trends. This significant data is used in managing fish populations and preserving our oceans resources.

Mapping Operations

One of the scientific operations I have not yet mentioned is bathymetric mapping. Senior Survey Technician Todd Walsh works the night shift running the mapping show – multibeam echo-sounder hydrographic survey to be precise. An echo-sounder determines the depth of the seafloor by measuring the time taken for sound echoes to return. The technology is impressive. Todd is straight up 3D mapping the bottom of the ocean. He watches it come to life, line by line. That’s freaking cool. I see you, Todd.

Though mapping occurred overnight, Todd was sure to point out any interesting finds in the morning. The Pisces mapped an area south of the Flower Garden Banks National Marine Sanctuary and found an impressive geological feature hosting two mud volcanoes. A mud volcano is a landform created by the eruption of mud or slurries, water and gases. Man, the ocean floor is like a whole other world. It was so interesting to watch the mapping unfold right before your eyes. Maybe the seafloor will be my next destination.

Personal Log

The long days take their toll. This crew has worked so hard and is ready to decompress. Some have been out here for months and are counting down the days. You really can’t blame them. You ask anyone out here, “how many days?” and you will hear “three days and a wake up.” “Two days and a wake up.” “One day and a wake up.” They have all earned some serious rest and recovery, and long awaited time with their families and friends. I mean, I’d like to call them friends, but I get it, you can have lots of friends.

I cannot believe it is already my last day out here. Though each day felt like 100 hours, somehow it still flew by. The last CTD hauled out of the water last night marked the end of the SEAMAP survey. I cheer and shout in solitude and run round giving high fives. Good work, everyone! They are all exhausted, but certainly excited and proud of the work they have accomplished. Listen guys, if you aren’t proud, let me remind you that you most certainly should be.

The last day is the first sunrise I didn’t catch – sleeping in was just too tempting. Friends at home have to literally drag me out of bed to catch a sunrise, but out here, it just feels right. We ease into our day and clean and prepare the working spaces and equipment for arrival. I mop. That’s about all I am good for. TAS card. I spend the day roaming as usual, this time reflecting on my arrival and experience at sea. Time slows down even more (if you can believe that) when it’s your last day. I do my best to take in every last moment. I balance the day with some relaxation, a nice game of “bugs” with my pals, a good deal of snacking, revisiting the views, and saying my goodbyes.

Though thrilled to be heading back, most everyone finds their way outside for the last sunset. I soak up every colorful ripple. Mother Nature does not disappoint in those last hours. Dolphins put on a show jumping out of the water at a distance. The stars start to appear, not a cloud in the sky. I stargaze for what felt like hours. We’re greeted by multiple shooting stars. These are the moments I live for – when I feel most at rest. I am overcome with humility and gratitude.

I consider myself lucky to have met and worked with the Pisces crew. Every person on this trip has left an impression on me. From day one, the crew has been so welcoming and willing to let me participate, committed to providing me an exceptional experience. For that, I am grateful. I had so much fun learning from each department and goofing off with the best of them. The work that goes in to the research is remarkable, from navigation, the science, to vessel operations. I learned much more than expected. It’s hard to summarize my experience, but here are some valuable takeaways, in no particular order.

  • NOAA research is vital in protecting our most precious natural resource.
  • Ocean conservation is the responsibility of every one of us.
  • Remember why you do the job you do and the impact you have.
  • Never pass up an opportunity to learn or do something new.
  • Everyone should have the opportunity to connect to our natural world.
  • You can never see too many sunsets.
  • Expose your toes to the great outdoors.

I can’t express enough how grateful I am to have been selected for the NOAA Teacher at Sea Program and be a part of its mission. The experience was so much more than I could have even imagined. Participating in the research was so rewarding, and offered valuable insight into fisheries research and scientific operations. The questions never stopped coming. The novelty of the work kept me hooked. If there is one thing above all that I took away from this trip is – never stop learning. Continuous learning is what enhances our understanding of the world around us, in so many ways, and why I love what I do.

I look forward to sharing my experience with the many students I have the opportunity to work with, and hopefully inspiring them to continue to learn and grow, building a better understanding and appreciation for our planet. NOAA, your investment in me will not go unnoticed. The biggest THANK YOU to all involved in making this experience a reality.

We ride together, we die together. Pisces for life. – Junior

Lightning storm from afar.
Three dolphins surface for air.

Oktay Ince: Happy Summer Solstice Day and World Hydrography Day! June 21, 2022

NOAA Teacher At Sea

Oktay Ince

Aboard NOAA Ship Thomas Jefferson

June 20- July 1, 2022

Mission: Hydrographic Survey

Geographic Area of Cruise: Lake Erie

Date: Tuesday, June 21, 2022

Latitude: 41° 31′ 52 N

Longitude: 82° 12′ 00 W

Altitude: 138 m

Weather Data from Bridge

Wind Speed: 21 kts

Surface Water Temperature: 22 °C

Air Temperature (Dry Bulb Temperature): 23.5 °C

Wet Bulb Temperature: 22.9 °C

Relative Humidity: 55 %

Barometric Pressure: 25.5 in

Science and Technology Log

Learning is in full swing on NOAA Ship Thomas Jefferson. Previously, I talked about the multibeam sonar that the ship uses to map the bottom of Lake Erie. I also talked about how this technology related to other real-world applications. I hope I inspired you there. 

Now, I am going to talk about another technology that Thomas Jefferson uses- side scan sonar. The technology basically detects and creates images of objects on the lake/ocean floor. The ship concurrently uses both technologies. Side scan sonar technology takes images of the bottom of Lake Erie and multibeam sonar records the depth;  the seafloor/lakebed data is also known as bathymetry. For instance, if there is a big obstacle or a shipwreck in Lake Erie, side scan sonar would show an image.  Then, multibeam sonar  would be used to get the  depth of the obstacle. 

How does side scan sonar work differently than multibeam sonar?

If you remember from my previous post, multibeam sonar sends sound waves down towards the lake bottom. Side scan sonar also sends out sound waves, but from both sides of its transducer, sweeping the seafloor like a fan-shaped beam of a flashlight. So, the data needs to be composed of both the image and depth which allows a more comprehensive map of the seafloor. 

A third technology used with the multibeam and side scan sonars is called “moving vessel profiler (MVP)”. The MVP is similar to a conductivity, temperature, depth (CTD) cast as it collects electrical conductivity, temperature, and pressure (to get depth) of water. The benefit of the MVP is that the ship can continue moving and receive sound speed information, rather than coming to a complete stop to deploy a CTD. This improves efficiency, allowing the ship to collect more data. 

The MVP is a metal structure that looks like a big fish- also known as a towfish-  located at the tail of the ship. As the ship moves, the instrument trails behind it, about a meter below the water’s surface. Sensors to collect sound speed information are located inside the towfish. When the MVP is deployed, the towfish free falls to the lake/sea bottom, before being automatically brought to the surface by the ship’s winch.  Then, the ship receives a profile of the water column’s salinity and temperature, and can apply the sound speed measurements to the multibeam data. This information is critical for ensuring acquired depth measurements are in the proper location on the lakebed/seafloor. For the sake of Thomas Jefferson’s mission, CTD data is enough to process multibeam. However, other research vessels could have additional sensors within the MVP including some that measure chemical and biological parameters such as dissolved oxygen and chlorophyll fluorescence, etc. 

The MVP Training; Deployment of Towfish

  • Oktay, in a hard hat and life vest and Teacher at Sea shirt, poses for a photo on deck as other crewmembers stand around in the background
  • Oktay and other crewmembers stand around on deck
  • Oktay, wearing hard hat and life vest, stands at a control panel; other crewmembers look on
  • Oktay, wearing hard hat and life vest, operates a lever on a control panel on the back deck of NOAA Ship Thomas Jefferson
  • Oktay, wearing hard hat and life vest, speaks into a radio

Let’s elaborate a few science concepts here. Conductivity is a measure of water’s capability to pass electrical flow. It does that based on how many ions are in the water. Therefore, the more ions present, the higher the conductivity of water. Ions are mainly coming from dissolved salts and inorganic materials such as alkalis, chlorides, sulfides, and carbonate compounds. These ions (positive/negative charges) in the water create electric current, so it conducts electricity. 

Using the concept of electrical properties of dissolved salts, scientists measure the electrical conductivity of water so that they know the amount of salt present in the water (salinity). As you would expect, Lake Erie is freshwater so salinity is essentially zero. 

Conductivity is one of the most useful and commonly measured water quality parameters. Knowing changes of dissolved solids in the water is an indicator of change in a water system. Different life forms adapted to different salt concentrations in the water. Even a slight change to this parameter could have a disastrous effect on life forms in water which creates a cascade of effects in other systems. 

Personal Log

It was my second day on ship, and also the summer solstice. Today, sunrise was at 5:55 am and sunset was at 9:07 pm. It was the longest day for Lake Erie, indeed! It was also World Hydrography Day, yay! I am honored and humbled to be a part of Thomas Jefferson’s crew and to be the first Teacher at Sea on Great Lakes, especially on the longest day of the year and on World Hydrography Day in Lake Erie!

After eating my breakfast, I headed to MVP training. It sounded complicated but once I was on it, it was easy to navigate the instrument at sea. Then, I was called for my first boat ride. The ship has several “small” boats to assist in data collection, and they are beneficial for transiting and collecting bathymetry in more shallow places on the water. We had three people on the boat, doing side scan data collection closer to the shorelines. We also did several CTD casts, for nearshore sound speed profiles! On the ship the MVP can collect CTD data more frequently, whereas on the boat, we had to manually put it in the water every 4 hours. The boat was amazing, and I felt like I was on a private vacation boat! However, in this case, I was not only having fun, but also doing citizen science. I learned so much about the side scan, why it is used, and how the data helps the overall mission of Thomas Jefferson

Deployment of our launch vessel
Recovery of our launch vessel

In this personal blog, instead of just including all the cool things I have done on the ship, I want to share some of my opinions about what I feel about my experience so far. 

I would say about one-third of the crew on the ship are women  in their twenties and thirties. Many of them are NOAA Corps officers and survey technicians/scientists. What an inspiring environment for women in STEM! They are involved in everything from navigating the ship to collecting data, from driving the boat to doing hands-on activities. I strongly believe that our female crew members are such an inspiration for future generations who will make things better!

Another feeling I have is how people are passionate about what they do. For example, I never thought a Commanding Officer (CO) and Executive Officer (XO) would be so friendly and approachable . I’m glad Thomas Jefferson has a great executive team. I’ve been having great conversations during lunch or any place I go on the ship. In one of our lovely conversations, both CO and XO strongly encouraged me to bring my students to visit the ship to give a tour. I said “This is exactly what I am here for!” I want to bring back my experiences to my school and community, and I can’t wait to bring them to the ship! They will absolutely love it. 

In my last note, I should say that people who choose their careers based on their passion, are the ones who are successful, and also constantly inspire others to follow their footsteps. I have seen this in many professions across different fields. It is especially obvious when you have a public service job like educators, officers, doctors… You always have to do more than what your job asks you to do. If this is not something you are passionate about then the job becomes torture rather than enjoying. 

Here, on Thomas Jefferson, seeing these men and women on a research vessel, working tirelessly around the clock, collecting data, once again proved to me that you have to be passionate about what you do. 

Anyway, I think it is enough for me to stop talking about what I feel. But, you should know this – always follow your passion. That’s when you will find your real purpose in life. 

Do you know?

  • The National Oceanic and Atmospheric Administration Commissioned Officer Corps, known as the NOAA Corps, is one of the eight federal uniformed services of the United States. Those officers are made up of scientifically and technically trained officers. It is one of two U.S. uniformed services (the other being the U.S. Public Health Service Commissioned Corps) that consists only of commissioned officers, with no enlisted or warrant officer ranks. 
  • To become a NOAA Corps officer, applicants must hold a baccalaureate degree, preferably in a major course of study related to NOAA’s scientific or technical activities. When selected for appointment, officer candidates must satisfactorily pass a mental and physical examination. For more information check out NOAA Corps eligibility requirements here.

Oktay Ince: Learning of a Lifetime Begins! June 21, 2022

NOAA Teacher At Sea

Oktay Ince

Aboard NOAA Ship Thomas Jefferson

June 20- July 1, 2022

Mission: Hydrographic Survey

Geographic Area of Cruise: Lake Erie

Date: Monday, June 20, 2022

Latitude: 41° 31′ 52 N

Longitude: 82° 12′ 00 W

Altitude: 138 m

Weather Data from Bridge

Wind Speed: 25 kts

Surface Water Temperature: 19.88 °C

Air Temperature (Dry Bulb Temperature): 25 °C

Wet Bulb Temperature: 18 °C

Relative Humidity: 88.93

Barometric Pressure: 28.57 in

Science and Technology Log

I have been immersed in many science concepts in my very first day on the ship. Science is everywhere from how the engine works to navigating the ship to mapping the lake/ocean floor. I guess first I’ll start with explaining the science behind the research that the NOAA Ship Thomas Jefferson does in Lake Erie. 

NOAA’s Ship Thomas Jefferson uses technology called multibeam sonar to map the seafloor and detect objects in the water column or along the seafloor. It is mounted on the bottom of the ship, also known as the ship’s hull. A multibeam sonar sends out multiple, simultaneous sonar beams (or sound beams) in a fan-shaped pattern which allows it to cover the space both directly under the ship and out to each side and then listen for reflections (echo). 

An illustration of how a ship like Thomas Jefferson collects multibeam data. A cutaway view of the ocean depicts the multibeam sonar as a swath along the topography of the ocean floor.
An illustration of how a ship like Thomas Jefferson collects multibeam data (Credit: NOAA)

Why are sound waves used in water but not radar or light waves? 

Because sound waves travel farther in the water than radar and light waves, and sound waves are  created by vibrations. That means that sound waves travel faster in denser substances because the molecules are densely packed together.  When one molecule vibrates the amount of time to vibrate neighboring molecules is shorter, meaning sound  travels faster. What a great way to talk about different waves here but I am going to leave it here for curious readers like yourself to explore!

So, sound waves. If you were to compare one bottle of water with one bottle of air, the one bottle of water would have 800 times more particles than the bottle it has air (According to Scientific American). 

Here it comes to the question. Do sound waves travel differently in saltwater than freshwater? The answer is yes! Because seawater has more particles due to salt (salinity) than freshwater. Remember, the more particles there are in a substance, the faster the sound can travel through it. The comparison can be extended among sea, ocean and freshwater systems. 

Many sea mammals use sonar to communicate with each other. Take the humpback whales, for example. Researchers believe that humpback whales’ low frequency sounds can travel more than 10,000 miles in the ocean. Imagine you are a whale singing, how far can you reach out? Mind blowing!

This also reminds me of the science behind human hearing. Our ear detects the sound vibrations that travel from the air through the ear canal and strike the eardrum and vibrate. These vibrations are then passed to three tiny bones in the middle ear. Those tiny bones then amplify the sound by sending out sound waves to the FLUID-FILLED hearing organ called the cochlea. Meaning, we as humans, eventually use water to amplify what we heard outside in the air. 

What a great way to learn the physics of sound within real-world applications. I challenge you to find out more real-world applications of sound. 

Personal Log

While I have so many  science concepts to talk about, I also have so many other things to talk about. 

Let me start off by saying what I did when I got on the ship prior to our departure the next day. First, I received Covid-19 testing prior to boarding and thankfully after getting a negative result, I was allowed on the ship. The OOD (Officer of the Deck) showed me my stateroom (where I sleep). It is like a bunkhouse with two people and I chose to sleep on the top. Between two staterooms, there is one common bathroom with showers. Every room has safety equipment, refrigerators, lockers etc. It was really way better than I expected. 

Anyway, soon after one of the ship’s deck officers told us that we were  meeting at a restaurant for dinner at 7pm. While I was enjoying my hot fried coconut jumbo shrimp ( it was so hot that it didn’t cool even 15 minutes later!), one of the crew members asked my name. I responded to him in a way that could be pronounced in English. After waiting a couple of seconds, he responded “ Benim adim Justin, sen Türkçe biliyor musun?” With the shock that Justin gave me, I couldn’t say a single word. Justin said – “My name is Justin, and do you speak Turkish?” He knew that I am of Turkish origin and wanted to make sure I could speak. If the time of this conversation is around 8 pm then we had so much deep conversation that we couldn’t keep track of time and realized it was around midnight when we got back to the ship. His wife is Turkish and he knows how to speak Turkish very well. Imagine how odd it is to meet a person on a ship who happens to know how to speak Turkish in a place far from Turkey. Justin is an electronics  technician (ET) for the ship. Ohh I forgot to tell you, we also went bowling after the restaurant.

When I got to my stateroom, it was well past midnight. Even though I drove 4 hours on the road and was worn out from the day, spending more than 9 hours with this incredible team recharged me. I couldn’t be more excited about what my days will look like onward. 

I put my head down and could hear the loud generator noise. I was so tired that I could not get up to put my ear plugs on. I slept like a torn out elephant until the next morning! 

I ate my veggie burger with scrambled eggs in the mess deck (crew eating area) for breakfast, spinach ravioli for lunch, and baked salmon with alfredo sauce macaroni and potatoes for dinner. Believe it or not, their mess deck is sooo awesome that I picked one convenient spot as my “office” desk. You can find every type of snack (that includes ice cream), tea, coffee… in this small place. There are coffee makers, water fill stations, soda machines just to name a few. NOAA is clearly taking care of their crew very well. Keep up the good work NOAA!

We departed around 2:30 pm from Cleveland and headed out to the Lake where we started to survey. About an hour and a half later, the ship started sending out multibeam sound waves and our official work started. Again, there is more talk about the crew, the work they do, and how I feel. I think I will intentionally make you curious more about my adventures and stop here. 

view of water in Lake Erie
It was heartbreaking to see so many dead fish flooding on Cleveland shores.

Did you know?

First Fact: The last time a NOAA ship visited the Great Lakes was in the early 1990s which means updated nautical charts of the Great Lakes are long overdue. Ohio’s primary economic force comes from manufacturing, and many factories rely on water systems in Ohio such as the Ohio River and Great Lakes. Updating nautical charts for the Great Lakes is significant, not only for Ohioans, but also the entire nation. 

Second Fact: Water in the Great Lakes (consists of five lakes: Superior, Huron, Michigan, Erie and Ontario) comes from thousands of streams and rivers and the flow of water continues to move eastward. Lake Superior drains into Lake Michigan/Huron via the St. Mary’s River. Lake Huron drains into Lake Erie via the St. Clair and Detroit Rivers. Lake Erie drains into Lake Ontario via the Niagara River. The entire system eventually flows to the Atlantic Ocean via the St. Lawrence River. Four of the five lakes are shared by two nations, the U.S. and Canada; only Lake Michigan is entirely within the U.S.

Jordan Findley: Fishing, June 20, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 20, 2022

Science and Technology Log

Fishing Operations

Alright, it’s time for the good stuff, the moment you’ve been waiting for (whether you knew it or not). It’s fishing time. FPC Paul Felts monitors depth and habitat to determine suitable fishing sites. When the crew hears “I’d like to set up for bandit reels” over the radio, they come running. I mean they come out of the woodworks like the Brady Bunch on Christmas morn. Let me remind you, the days can be real slow out here. Lots of transiting and waiting. Fishing offers just enough excitement to keep us going.

Three bandit reels are deployed once or twice per day. I promptly insert myself into the fishing operation on day one. Thank you, Rafael and Junior. The reels are motorized and mounted to the side of the ship. The line starts with a weight and then ten baited hooks are clipped on. When deployed, it sinks to the bottom. We get five minutes. Five short minutes for the fish to bite. Boy does anticipation build in that five minutes. If you have a good one, you can feel it on the line. “One minute to haul back.” By this time, everyone is leaning over the side (the gunwale if you want to be fancy) staring at the water. “Reels two and three you can haul back.” “Reel one you can haul back.” We start reeling back in, from somewhere between 85-100 meters deep. Click, click, click on the reel as we impatiently wait.

We start to see a glimpse of the bait coming up around 40-60 meters and try to make out what we’ve hooked. RED SNAPPER! 11 red snapper caught between the three reels on the first fish. This is what I’m talkin’ about. I can handle two weeks of this. Everyone rotates between stations to see what we caught and we all celebrate like we just won some sort of tournament. Let’s remember folks, we are doing this for science. All fish captured on the bandit reels are identified, measured, weighed, and have the sex and maturity determined. Select species have otoliths and gonads collected for age and reproductive research. I excitedly follow the science crew into the lab to get the run down.

*Read no further if you are squeamish.*

The work up of the fish start with some measurements and weights. Of course it immediately became a competition. Game on. Now these fish aren’t your regular ol’ fish. These suckers are huge. Next we dissect the fish to extract and weigh the gonads. That’s right, I said gonads. You can learn the age and maturity of a fish by examining a sample of the gonads under a microscope. From that, you can estimate lifespan, spawning patterns, growth rate, and possibly even migration patterns. Knowing the age distribution of a fish population helps to better monitor, assess, and manage stocks for long-term benefits. Fish gonads, that’s a first for me.

Next step is the fun part, extracting the otolith. Otoliths (ear bones) are calcium carbonate structures found enclosed inside the heads of bony fish. This bone tells us how old the fish is. Otoliths are removed from the fish’s head either by entering through the top of the head or by pulling back the gills. At first, I observe. They really get in there. By the third or so time, I am ready to get my hands dirty. Remove the gills and start digging. Once you find the inner ear, you crack it open and inside is the otolith. Some species are much easier than others. It’s no walk in the park folks. One grouper took us two hours. It’s like a real life game of operation. Though intense, it’s a fun challenge.

On this leg of the survey we caught 20 red snappers, 2 silky snappers, 1 queen snapper, 2 scamp, 1 marbled grouper, 1 yellow edge grouper, and 1 red porgy. Sampling these organisms strengthens the data. Employing multiple research methods produces a comprehensive description and interpretation of the data. The workup of the fish was one of my favorite parts of this experience. Not only did I actually get to participate in the research, I learned valuable new skills, most of which I teach about, but have never had the chance to do it. This is the exact reason I applied for the Teacher at Sea Program.

Have I convinced you that science is cool yet?

Meet the Deck Crew

I’d like to give a shout out to my friends on the deck. NOAA Ship Pisces couldn’t do the research they do without the Deck Department – Chief Boatswain James, Lead Fisherman Junior, and ABs Dee and JB. The Deck keep up general maintenance of the boat and on deck, operate equipment and machinery, support scientific operations, and stand watch. These guys might be salty, but they have good spirits and make me smile. I have enjoyed every minute working with them.

Personal Log

Yesterday, we did another fire drill. This time, with the help of firefighter Jordan Findley. LT Duffy set me up to participate in the drill. He shows me the gear and how it works. It’s hot up in there. Two days later when the alarm sounds, I jump to attention. Not really. It took me a minute to remember I was involved. I pop up out of my usual lounging in the lab and swiftly head out to the deck. 0% do I remember where I am supposed to go. Thank god I pass JO ENS Gaughan. She points me in the right direction. By the time I make it to the locker, they’re all dressed out and on their way to “fight the fire.” They’re impressive.

Though late to the game, JB helps me get suited up and I head down to the scene. As you might expect, the “fire” is out by the time I arrive. I provided moral support. Following the drill, we (I trail behind and try not to trip) walk the hose outside to test the pressure. I get to shoot this sucker over the side. I can barely even hold the nozzle in place. LT Duffy comes in for reinforcement on the hose and I go for it. I sprinkle here, I sprinkle there, hose checks out. Good deal. This was a blast. See what I did there?  Later I come to find they had stamped the hose nozzle with my name as a memento. This is such a thoughtful way to remember my time on NOAA Ship Pisces. I shall carry it with me always. Not true, this thing is heavy, but I will certainly cherish it.  I have so much respect for our firefighters and first responders (on board and beyond), and even more so today.

At this point, I have been out at sea for 12 days. That’s a record for me. My previous PR is one night on a lake in Indiana. I really had no idea what to expect on this trip. I was pretty nervous I would be violently ill and concerned I may not sleep and they wouldn’t have enough coffee to sustain me. None of these were issues, actually far from it, and man am I grateful. No seasickness, I’ve slept like a baby, and there is coffee for days. They even have espresso. Winning. They’ve really spoiled me out here. We have had some really tasty meals, including the fish. No fish goes to waste! I am going to miss being out here at sea. I think I might stick around.

Did You Know?

Wearing gloves, Jordan uses tweezers to hold up an extracted otolith at eye level.

So you now know that otoliths are basically ear bones. What is cool about them is that they grow throughout the life of a fish, leaving traces on the ear bone. Seasonal changes in growth are recorded on the bone and appear as alternating opaque and translucent rings. Under a microscope, scientists count the number of paired opaque and translucent rings, or annuli, to estimate the age of a fish. Just like trees!

Laura Grimm: Happy World Hydrography Day! June 21, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: June 21, 2022

Current Location: Dalton, Ohio

Latitude: 40ᵒ 47’57” N
Longitude: 81ᵒ 41’49”” W
Elevation: 1102 ft.

Weather in Dalton, Ohio – Finally Summer!  Hot, humid, and a chance of afternoon thundershowers.

Personal Log

Did you know that every year on June 21 people across the world celebrate World Hydrography Day?  So just what is hydrography and why am I excited about it?

Greetings from Dalton, Ohio!  My name is Laura Grimm, and I am the STEAM (Science, Technology, Engineering, Arts and Math) teacher for all the wonderful, enthusiastic students in kindergarten through 8th grade at Dalton Local Elementary and Middle School. Dalton is a rural village in Wayne County in Northeast Ohio.  Our school district is small (less than 900 students), yet mighty!  We serve the Dalton and Kidron communities and are fiercely proud of our students. Bulldog Pride district wide! 

I have always “yearned to learn”. So, in the fall 2019, I applied to be a Teacher at Sea (TAS) with the National Oceanic and Atmospheric Administration (NOAA). NOAA has been sending teachers to sea for 30 years! 

Why does NOAA send teachers to sea?

I was accepted to be a TAS and was assigned to a fisheries expedition in the Gulf of Maine in April 2020.  Do we all remember what happened in the spring of 2020?  Yes, COVID caused this plan to be postponed . . . twice.  I was very disappointed, yet I remained optimistic for the future.

In late April this year, I got the news that I would be sailing on NOAA Ship Thomas Jefferson to help scientists do a hydrographic survey of Lake Erie! 

NOAA Ship Thomas Jefferson with the Statue of Liberty in the background
NOAA Ship Thomas Jefferson

Go to this link if you would like to learn more about NOAA Ship Thomas Jefferson.

I will be helping scientists (hydrographers) map the floor of Lake Erie in the vicinity of Cleveland, South Bass Island and Presque Isle, PA.  The survey will identify hazards and changes to the lake floor and provide data for updating NOAA’s nautical charts to make it safe for maritime travel.  

Watch this video to learn more about the science of hydrography.

I grew up only 20 miles from the Port of Cleveland.  As a child, my family spent a week each summer on Middle Bass Island where I learned to swim and fish for walleye and perch.  My daughter and I vacationed on Kelleys Island for many summers.  I even took an oceanography class on Gibraltar Island.  These islands are in Lake Erie and are close to South Bass Island which will be included in this summer’s hydrographic survey.  I am very excited to learn more about the Lake of my childhood. 

While I am “at sea” – actually, on the lake – I will post 2 to 4 blogs per week.  My blogs will include information about the science and technology I am learning and what it is like to live on a NOAA research vessel.  I will pose questions, define new terms, and give you things to think about.  I encourage you to communicate with me via email (lgrimm@daltonlocal.org).  I will be very busy on the ship and the internet may be spotty, so be patient with me; I will try my best to post answers to your questions on my next blog.

I couldn’t be more excited!  I have so much to learn.  It looks like I will be more of a student this summer than a teacher! Connecting children with nature, promoting STEAM education, and being a lifelong learner are three of my life goals.  This research opportunity will check all three boxes.  I am more than ready to board NOAA Ship Thomas Jefferson!  May the learning begin!

P.S. Happy World Hydrography Day!

Jordan Findley: Doin’ Science, June 17, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 17, 2022

Weather Data

Location: 28°05.1 N, 091°53.3 W
Sky: Clear
Temperature: 85 °F
Wind: north, 5 kts.
Waves:

Track NOAA Ship Pisces

Science and Technology Log

We are continuing our path due east. We (they) have surveyed 14 different banks and dropped 102 cameras.

*NERD ALERT*

Along the way we have been collecting water samples that contain environmental DNA (eDNA), and mapping at night. Caroline Hornfeck, graduate student at the University of West Florida, is collecting water samples once daily and at additional fixed sites. She is working under Dr. Alexis Janosik, participating in a multiyear study of reef fish in the Gulf of Mexico with the Florida Fish and Wildlife Conservation Commission (FWC) and NOAA. The project’s goal is to characterize reef fish diversity in the northwest Gulf of Mexico using molecular tools and techniques.   

Environmental DNA is a molecular tool used in aquatic ecosystems. eDNA contains DNA from all organisms in the water column. This DNA can be in the form of gametes (reproductive cells), fish scales, waste, etc. This approach is noninvasive and cost-effective, and does not require contact with the organism. Caroline collects test tubes of water, adds some magical juice that causes a chemical reaction, and the DNA begins to solidify in the test tube. You with me? THIS is real science.

Later in the lab, the eDNA is extracted and the samples are run through polymerase chain reaction (PCR). PCR amplifies (multiplies) genes and the sample is sent to a lab for additional science. Fancy technology makes millions of copies of the DNA. You piece it all together and use the data to assess reef fish diversity. Essentially, eDNA is like taking attendance in the reef community. Roll call.

I will leave it at that, though it’s much more complex. I am starting to remember why I avoided molecular biology.  Caroline, I’m impressed.

Meet the Science Crew

Paul Felts
Field Party Chief, Fisheries Biologist

Field Party Chief Paul Felts holds up two fish sampled during the reef fish survey

What do you enjoy most about your job? “It’s the field work that I enjoy most. I love being out on the water (in moderation), participating in the various surveys. I have been a part of so many fun surveys – reef fish, snapper longlines, trawls, plankton, and mammals. I appreciate getting a break from the desk, reviewing footage, and annotating the research. I also enjoy working with the crew and building team camaraderie.”

What is the coolest animal you have seen or worked with? “It’s tough to decide. I have seen all sorts of cool stuff. One mammal survey we were out on the smaller boat and a sperm whale breached about 100-200 yards from the boat. Later those whales were lying on their sides at the surface with full bellies, seemingly just resting after a meal. The giant stingray and thresher shark are up there on my favorites as well.”

Paul is the Field Party Chief. He’s been with NOAA for 21 years. As a Fisheries Biologist at the Southeast Fisheries Science Center, Paul studies fish populations and their impacts. He knows every fish in the sea (or at least close). Out here, Paul coordinates scientific operations. He has to be on every minute of every day, and deal with the crews’ shenanigans, yet still shows up each morning with a smile on his face, ready to take on the day.

Amanda Ravas
Fisheries Biologist

Fisheries Biologist Amanda Ravas, wearing a hard hat and a life vest, grips the side of a camera array resting on deck

What do you enjoy most about your job? “My favorite part about my job is being out in the field… as long as I’m not seasick. Because I’m still so new, I love learning all the ins and outs of the projects, seeing the species I’ve been watching on our videos in person, and hearing stories from other scientists about all the cool projects they’ve been a part of.”

What is the coolest animal you have seen or worked with? “The coolest animal I’ve seen while out in the field is a manta ray which followed our boat for a few minutes as we were making our transit back ashore. And I always get super excited seeing any shark species while out at sea.”

Amanda is a Fisheries Biologist at the Panama City Laboratory. She’s been with NOAA for two years. She studies fish populations and their impacts. She may be tiny, but she’s mighty. Don’t underestimate her. She knows her stuff, and knows it well, and can keep up with the best of them.

Rafael Ortiz
Program Support Specialist

Program specialist Rafael Ortiz, wearing a hard hat, life vest and gloves, holds a hook over a plastic bucket

What do you enjoy most about your job? “I enjoy being part of the NOAA Fisheries Mission at the MSLABS level. Being an administrator I find myself lucky to participate on various surveys with the scientist. I get to build a great working relationship and many friendships with them. I learn so much from them. Everything from science related topics to personnel life topics. I also feel that they have a higher respect for me than just some admin person.”

What is the coolest animal you have seen or worked with?  “Oh so many to list. I’ve seen so much diversity on these surveys that it’s hard to list. I’m always amazed at what comes out of the ocean and the thought of things I’ve not seen or will never see. I’m fascinated by the smallest to the biggest ocean animals.”

Rafael is a Program Support Specialist. He has been with NOAA for seven years. He provides oversight, technical expertise, and support to personnel and field biologists. But don’t let him fool you; he’s a biologist at heart. These scientists are lucky to have him out here at sea. He works hard, and best of all, keeps everyone in good spirits.

Kenneth Wilkinson
Electronics Technician

Electronics technician Kenneth Wilkinson, wewaring a hard hat and life vest, stands by a bandit fishing reel

What do you enjoy most about your job? “All of it. I have done just about every survey – plankton, sharks, small pelagic, reef fish, Caribbean reef fish, and more. I have worked closely with NOAA enforcement, installing vessel monitoring systems and reporting illegal fishing. Surveillance in the Keys was a lot of fun. I enjoyed being down there. Most recently, I operate NOAA drones.”

What is the coolest animal you have seen or worked with?  “The first to come to mind is the 12 ft. tiger shark during a longline survey. I also enjoyed building satellite tags and tagging sea turtles.”

Kenny is an Electronics Technician at the Southeast Fisheries Science Center. He has been with NOAA for 32 YEARS. He handles all the equipment from scientific to shipboard navigation and communication. What would we do without Kenny? This survey, as well as most, relies entirely on the technology. Kenny keeps us in check. I mean he’s the only one that knows what a transmissometer is.

Caroline Hornfeck
Graduate Student, University of West Florida

Graduate student Caroline Hornfreck, wearing a hard hat, life vest, and gloves, sits at a desk in the wet lab aligning sample tubes in a styrofoam holder

What do you enjoy most about your job? “What I enjoy most about being a student in this field, is always adapting and learning new skills that can help me grow as a scientist. Whether that’s in the classroom, research lab at the University of West Florida, or aboard NOAA research vessels.”

What is the coolest animal you have seen or worked with? “One of the coolest animals I have seen is a spotted eagle ray. I hope further down in my research career I can work with elasmobranchs (sharks, skates, and rays) and implement better conservation management for keystone species.”

Caroline earned her B.S. in Marine Biology at the University of West Florida. She is pursuing her Master’s at UWF. She is doing real science out here. Are you even a scientist if you don’t collect DNA? This girl is going places for real.

Personal Log

When 2 or 3 o’clock rolls around, I have to shake things up a bit. I’ve started making rounds just to say hello and see what people are up to. I remind folks that what they do is really cool. I make my way to the bridge usually once or twice to bother them a bit. This is where the ship is commanded. It looks like some sort of spaceship up here. I roam around and try to make sense of the many gadgets and screens. Take a peek out the windows. The sun reflects intensely on the water. It’s hella bright out here.

Operations Officer, LT Christopher Duffy, asks “Do you want to drive?” I look over my left shoulder, I look over my right. Oh, he’s talking to me. “Uh, yeah I do.” I have absolutely no clue what I just signed up for. He seems to think I can handle it. I get the run down. The helm is the steering wheel – check. The main engine controls the propulsion – check. Then there are the bow thrusters. From what I understand, they are basically propellers on the side of the boat. I’m not really sure. I just know they improve maneuverability.

Navigation is an art and science. They transit to specific destinations and position and maneuver the ship and make it look easy. Navigators measure the distance on the globe in degrees. If you have forgotten, like I seemed to have, like a circle, the Earth has 360°. Compasses have four cardinal points (directions), right? – North (N), East (E), South (S), and West (W). Well, turns out when you’re real official, you use degrees instead of directions. As if directions weren’t confusing enough. LT Duffy, “When I say 10° right, you do just that and confirm when you’re there.” I can handle that. “Ten right.” I work with LT Duffy to retrieve our next buoy. Huddleston keeps a careful eye. This is fuuunnnnn. “You ready for a hard right?” “Like all the way?” Seems questionable. Oh he’s serious. “Hard right rudder.” SKKKIIIIRRRRRTTTTTTT. Man this thing can move. We Tokyo drift right into position. Nailed it. LT Duffy takes control to finish positioning (I made it easy for him). I’m grinning ear to ear.

“Are you comfortable giving commands?” “Yep.” The overconfidence kicks in. First things first, CONN candy. What’s that you ask? The officers up here have a secret drawer of tasty treats that they’ve been hiding from us this whole time. Gotta have some before taking command. Wait, what am I doing? LT Duffy explains, “You’ll be giving commands to LTJG, Ariane Huddleston, while she steers.” Uhhhhhhh. I see the fear in her eyes. “Just repeat after me.” Huddleston takes the wheel and I “give commands.” It clicks. This is my time to shine. I “very well’d” the heck out of those commands. So much fun, thank you crew!

Did You Know?

You know all those horrid COVID tests you had to take? You were doin’ science right there. The polymerase chain reaction (PCR) tests genetic material (fluid from the nasal swab). The test detects the virus that causes COVID-19. Scientists use the PCR technology to amplify small amounts of RNA from specimens into DNA, which is replicated until SARS-CoV-2 is detectable if present. It’s cool stuff guys.

Oktay Ince: An Introduction, June 16, 2022

NOAA Teacher At Sea

Oktay Ince

Anticipating Departure on NOAA Ship Thomas Jefferson

June 20- July 1, 2022

Mission: Hydrographic Survey

Geographic Area of Cruise: Lake Erie/Lake Michigan

Date: June 16, 2022

Introduction

Greetings from Beavercreek, Ohio. My name is Oktay Ince, and I will be posting here over the next couple of weeks about my experiences from NOAA’s research vessel, Thomas Jefferson, as an educator conducting a hydrographic survey of Lake Erie/Lake Michigan! I’ll drive up to Cleveland on June 19, which will take about 3.5 hours from where I live now. My official work will start on June 20th, though. I can’t wait to have this once in a lifetime opportunity and share them all with you! Stay tuned …

Long Awaited Journey!

Back on January 27, 2020, I received a congratulations email from the NOAA Teacher at Sea Program.  “ Dear Applicant, On behalf of the National Oceanic and Atmospheric Administration’s (NOAA) Teacher at Sea Selection Committee, we are pleased to inform you that you were selected to be a finalist for the 2020 season”. At first, I was confused about what it means to be a finalist in this incredible program. Was I selected? Was I on the waiting list or did I have to meet certain criteria to be fully eligible to participate? The answer came later in the letter. I have to be medically cleared in order to sail. That includes a Tuberculosis (TB) test prior to sail. 

After completing all the necessary documents, I received an email on February 20 stating that I was medically cleared to sail and able to participate in the 2020 NOAA Teacher at Sea Program! Yay!!! We then had our first informational meeting on March 3.

A week after that, on March 10, a disappointing email came in! Due to the nationwide spread of Covid-19, our sailing season was canceled! However, there was a positive note at the end, “ We are planning to keep each of you in finalist status for our 2021 season.” I thought, well at least we are sailing the following year in 2021, not thinking that the pandemic would stay with us for two LONG years. 

By December 14, 2021, there was a hope to sail in the 2022 season. After confirming my interest in sailing and TB test (yes, again!), I received another congratulatory email on March 11, 2022 stating that I would be one of the teachers who will sail in the 2022 season! On April 28, I learned that I’ll be sailing NOAA Ship Thomas Jefferson on June 20- July 1, 2022 on the Great Lakes conducting a hydrographic survey of Lake Erie!

And here was the most exciting part: I will be the FIRST NOAA Teacher at Sea on the Great Lakes!

About Me

Destiny favors prepared minds” 

– once said Louis Pastor, a famous 18th century French microbiologist who invented the process of pasteurization and pioneered many scientific discoveries that we use today. 

Whether Pastor said or not, this quote well defines my philosophy in life. As a little boy from the hills of central Anatolia, I dreamed of going places I’d never been before and learning as much as I could to help to make the world a better place. I always seek to learn, meet new people, and have new experiences. 

Studying Biodiversity at Acadia National Park, Maine 2021

Here I am, about to explore the largest group of freshwater lakes on Earth, Great Lakes, by total area and second-largest by total volume.

I am entering my 8th year in the field of education with my new position as an assistant principal of academics at the Horizon Science Academy High School in Columbus, Ohio. I taught various science subjects including biology, chemistry, and genetics; and health science pathway courses including health science and technology, medical terminology, patient care and pharmacy technician in the career technical education program in our school. 

What am I going to do on NOAA Ship Thomas Jefferson?

NOAA Ship Thomas Jefferson is a hydrographic survey ship, meaning it collects bathymetric data (i.e. map the seafloor) to support nautical charting, modeling, and research, but also collect other environmental data to support a variety of ecosystem sciences. In this research assignment, Thomas Jefferson will collect data from the Cleveland, Ohio area as well as the vicinity of South Bass Island and Presque Isle. At the end of the project, the data will allow us to identify hazards and changes to the seafloor, provide critical data for updating NOAA’s nautical charting products, and improve maritime safety. 

I am anticipating assisting with the acquisition of survey data on survey launches, scanning data to assist with the final processing of data, and riding on small support boats to help with the installation of shore positioning stations and tide gauges. 

My Goals while in the  NOAA Ship Thomas Jefferson

Through this program, I hope to accomplish the following objectives: 

  1. Learn how NOAA’s scientists map ocean/lake floor and how they communicate their data with related stakeholders. The process of collecting ocean/lake data, analyzing and communicating this vital information with the public is something I am interested in to bring back to my school. 
  2. Explore ocean related careers and interview with those who are interested in sharing their experiences within their career journey. Presenting those careers to our students through PBL projects, or career exploration days will increase ocean-related careers within our school building. 
  3. Increase my knowledge on the Great Lakes and its significance locally and globally. This is significant because Ohio’s streams flow into either the Ohio River or Lake Erie, and eventually both release their water into the Atlantic Ocean. I want to make sure our students know their local water systems well and how they connect globally. 

About NOAA

The National Oceanic and Atmospheric Administration (NOAA) is a scientific and regulatory agency within the Department of Commerce. Its mission is “to understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources”. 

NOAA’s products and services support economic vitality and affect more than one-third of America’s gross domestic products. Source: NOAA’s Official Website

About NOAA’s Teacher At Sea Program

The NOAA’s Teacher at Sea (TAS) Program provides once-in-a-life time opportunity for educators by sending teachers to sea aboard NOAA research and survey ships to work under the world renowned NOAA’s scientists, officers and crew. Teachers will then share what they learn with their students, districts and communities. For more information, check out their official website

About NOAA Ship Thomas Jefferson
NOAA Ship Thomas Jefferson is hydrographic survey vessel that maps the ocean to aid maritime commerce, improve coastal resilience, and understand the maritime environment. The ship officially entered the NOAA fleet in 2003 (formerly the U.S. Naval Ship Littlehales) and was renamed for President Thomas Jefferson. You may find more information about NOAA Ship Thomas Jefferson here.

Jordan Findley: Ready for the Drop, June 13, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 13, 2022

Weather Data

Location: 27°52.1 N, 93°16.5 W
Sky: Scattered clouds, hazy
Temperature: 85 °F
Wind: south, 13 kts.
Waves: 1-2 ft.

Track NOAA Ship Pisces

Safety Onboard

Obviously, safety is of the utmost importance out here at sea. Respect. When working on deck, crew must wear life vests, hard hats, sometimes safety belts, and closed-toe shoes. I don’t know how these people wear closed-toe shoes all day long. I hate it. My piggies are suffocating. 

The plan of the day for Friday (6/10) included safety drills at noon. Noon rolls around and I am not really sure what to do. No surprise there. Confirm with Paul what to do and where to be. Oh, okay. Amanda, Caroline, and I go grab our safety getup and start to head to our assigned life raft muster stations (where we gather). On the way down, Commanding Officer LCDR Jeffery Pereira, passes by. “Wow, you ladies are ready.” …… something tells me it’s not quite time. We promptly return to our stateroom. I casually go check our muster stations. Yep, there’s no one. Turns out drills commence with a signal. I’m on to you CO, you just getting a kick out of us roaming around like fools with our safety gear. It’s okay, I have accepted my role onboard.

We run through fire and abandon ship drills. At sea, everyone aboard ship, be they crew, scientist, or passenger, is a member of the fire department. When the alarm sounds, everyone jumps to respond. My response, go to the back deck and wait. Meanwhile, the crew is hard at work donning firefighting PPE and preparing fire stations. Great work, team!

Then we move on to the abandon ship drill. Abandoning ship in the open sea is an action of last resort. Only when there is no reasonable chance of saving the ship will the order ever be given to abandon it. When signaled, everyone reports to their assigned life raft muster station with their protective survival gear. We throw on our survival suits, or immersion suits, and in the actual event, would launch the life rafts. This immersion suit is intended to protect your body while out in the open ocean. Now, I know safety is serious business, but these suits are ridiculous looking. We somehow make them look good. I’ve said it before; I’ll say it again – safety is sexy.

Science and Technology Log

We spent our first day at a reef known as Claypile Bank, approximately 80 miles offshore. The second day we headed to East Flower Garden Banks, 125 miles offshore. Flower Garden Banks National Marine Sanctuary was expanded from 56 mi² to 160 mi² to protect critical habitat in the Gulf of Mexico in 2021 and is now made up of 17 different reefs and banks. Cameras were dropped at around 48 meters (or 157 ft) the first go around and 116 meters (380 ft) the second. Since the start, we have sampled Rankin Bank, Bright Bank, and started on Geyer Bank, with a total of 62 cameras deployed. That’s a lot of cruisin’ and droppin’.

Camera Operations

Let’s talk about these cameras. Deploying and retrieving cameras occurs ALL DAY LONG. Man, the days are long. Here is a quick summary of the work…

Dropping the camera

There are two camera arrays, one 48” tall and the other 36” tall. These things are beastly. Each Spherical/Satellite camera array has six video cameras and a satellite camera, battery, CTD, tensiomet… tramsmiss…  transmit…. What it is Ken? … TRANSMISSOMETER (measures visibility/turbidity), sonar transmitter, trawl net ball, and bait bag. The first camera goes out at 7 AM and the last by 6:15 PM. Predetermined sampling sites are selected along the U.S. continental shelf using random stratified selection (dividing the area into subgroups).

When at the site, cameras are lifted by the A-frame, dropped with the yank of a chain, and boom, they sink to the bottom. They sit on the seafloor and soak (record footage) for 30 minutes. First camera goes in, we head to the next site, second camera goes in, we retrieve the first, we retrieve the second, and repeat.

Though the deployment itself only takes like two minutes, there is a lot of coordination involved. It’s amazing how the Bridge (NOAA Corps), Deck, and Lab crews work together to effectively deploy and retrieve the cameras. The communication is nonstop. Field Party Chief (FPC if you know him), Paul Felts, is the brains of this operation. Paul keeps scientific operations running smoothly, providing coordinates to selected sites, monitoring conditions, keeping time, processing data, and I am sure so much more. This guy doesn’t stop. The Bridge are they eyes and ears – they are on watch, navigating to sites, and maneuvering and position the ship all while working against the elements. You guys deserve more credit than that, I know. The Deck are the hands (this is a terrible analogy, but I am committed at this point) – they are operating the deck equipment, raising and lowering cameras, and working the lines and buoys. I, Teacher at Sea Jordan Findley, am the appendix. I have potential, but am mostly useless, and can be a real nuisance from time to time.

Personal Log

We are almost one week in and I am still just as excited as day one. Have I encountered challenges, yes, but being out here in the middle of the Gulf is something special. I am greeted every day with a beautiful sunrise and evening sunset. It is spectacular. The water is so beautiful. One of the things I really hadn’t considered to impact my experience at sea is how amazing the people would be. You all inspire me. Every single person on this ship has been so kind and accommodating, allowing me to participate and taking the time to teach me, despite how long they’ve been out at sea or how long their day has been. It’s like one big (mostly) happy family out here. They have me cracking up all the time. Now, they could just be on their best behavior for the ol’ teach (that’s me), but I am convinced they’re just good people. I mean, I even like most of them before my morning coffee. That’s something right there.

I think I am getting my groove. On a typical day on the ship, we wake up at 6 AM (oof), breakfast, then to the lab. I like to take a minute on the back deck to drink my coffee and look out over the water. First deployment (CTD and camera) is at 7 AM. They do some science, and then continue to deploy and retrieve cameras about every 10-30 minutes until sunset. I pop in and out of the lab all day to observe, but try to keep myself busy. When I am not “helping out,” you will find me in my office. Some call it the mess. I don’t mind. It’s also conveniently where all the food is prepared and served, and where the coffee and snacks are located.

We all refuel on coffee during lunch. Shout out to Paul for making that coffee a real punch in the face. Fishing occurs in the afternoon, almost daily. More to come on this, but man it is fun. The rest of the day is a waiting game (at least for me). Living on a ship is weird; there is only so much you can do. Honestly, the first couple of days, I had some concern I might die of boredom, but as things progressed, I got more involved in every aspect of the operation – even driving this beast! Also, been trying to sneak in a workout. Don’t forget to hydrate. That breaks up the day a bit. Dinner rolls around at 5 PM. All I do is eat. I have been eating like a grown man. The crew starts to wrap things up, reset for the next day, and then transition to mapping operations. The day isn’t complete without watching the sunset. Then we just hunker in until bedtime. The ship “rock-a-bye babies” everyone to sleep.

Generally speaking, I have improved immensely on my ability to open doors – solid 8/10. Those heavy brown doors though, they still kick me in the butt on my way through. I am learning my way around the ship for the most part. Mmmm, kind of. There is a door like every five feet. What I have not improved on is my ability to walk. I am walking all sorts of ways but straight. Everyone stands clear when I walk by. They say you’ll get your sea legs, but I am not sure I am convinced.

Did You Know?

A continental shelf is the edge of a continent that lies under the ocean. Though underwater, continental shelves are still considered part of the continent. The boundary of a continent is not the coastline, but the edge of the shelf. The shelf extends to a drop-off point called the shelf break. From the break, the shelf descends deep to the ocean floor. Depths of the shelf where we sample range from 45-165 meters, mostly because it gets to be too dark much past that. The depth of the Gulf of Mexico can be more than 5,000 meters deep! Sorry friends, I am done converting units – we’re doing science out here. Just know that it’s deep.

Jordan Findley: Underway, June 10, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 10, 2022

Weather Data

Partly cloudy
Temperature: 82 °F
Wind: northeast, 10 kt.
Waves: 2 ft.

Track NOAA Ship Pisces

Science and Technology Log

NOAA Ship Pisces will conduct a survey of reef fish located on the U.S. continental shelf and shelf-edge of the Gulf of Mexico (GOM) from April 19 through June 22, 2022 (we are doing the last leg of the survey). 536 sites have been selected to be sampled with Spherical/Satellite array, bandit reels, and CTD during daylight hours and mapping at night.

CTD Operations

CTD casts will be conducted twice a day. CTD stands for conductivity (ability to pass an electrical current), temperature, and depth and it is an instrument that measures just that. The CTD is the key to understanding the physics, chemistry, and biology of the water column. The CTD will also collect water for eDNA (Environmental DNA) sampling. Organisms leave traces of their DNA in their environment (e.g. hair, skin, feces) and from that, scientists can run genetic tests to determine what species are present in a given area.

Camera Operations

Camera operations will utilize three Spherical/Satellite camera arrays. The cameras are baited and sit on the seafloor for 30 minutes. During the soak, the cameras capture footage of the biodiversity. Scientists use the footage to complete a stock assessment analysis. That data combined with other research helps scientists estimate the abundance of fish populations.

Fishing Operations

Bandit reels (basically industrial fishing poles) are deployed after cameras are retrieved. The bandit reels are set up like longlines. The line sits vertically in the water column. When the weighed end of the line reaches the bottom, a surface float is attached to the line. Ten baited hooks are evenly spaced on the bottom 20-30 ft. of the line. All fish captured on the bandit reels are identified, measured, weighed, and have the sex and maturity determined. Select species will have otoliths (ear bones) and gonads collected for age and reproductive research.

Mapping Operations

Bathymetric mapping (basically 3D mapping of the seafloor) will be conducted in and around selected sites at night with the EM 2040 sonar. Sonar emits sound pulses and detects their return after being reflected. Science is cool. A CTD cast will be conducted to obtain speed-of-sound for proper processing of data.

a bathymetric chart of Southeastern U.S. waters, from Texas to around the east coast of Florida. inshore is shallow, colored in reds and oranges, marking the continental shelf. The deepest portions of the Gulf of Mexico are still much shallower than the Atlantic waters east of Florida.
Bathymetry of the Northern Gulf of Mexico and the Atlantic Ocean East of Florida. Photo courtesy of NOAA Geophysical Data Center.

Personal Log

I was dropped off at my hotel at around 8 PM on Tuesday and could see the ship from the road. It sinks in. (NOT THE SHIP! – This had me laughing out loud.) This is actually happening. Suddenly there’s no time for checking in; I headed straight to the wharf, luggage in tow. Completely awestruck, like a giddy school girl, I proceed to walk up and down the length of the boat numerous times taking an embarrassing number of photos. The crew is just staring at me, I’m sure getting a kick out of this crazy tourist. A lovely gentleman (also geeked about the boat) leaned in, “cool boat, huh?”… I’M GOING ON THAT BOAT THURSDAY. Good lord, Jordan, be cool. I basically screamed in his face. He was the sweetest, and a teacher himself. “I know the trip is going to be everything you wanted.” I melt. Gee thanks, Pat.

Our departure was delayed a few hours, which gave me some time settle in and awkwardly roam the ship. This thing is massive (compared to what I know).  I believe it has seven levels. My attempts to open and close doors quickly became a comedy act for any spectators. I was introduced to my roommates at 6 AM. Ain’t nobody trying to chit-chat at 6 AM. I share a stateroom with Amanda Ravas, NOAA Fisheries Biologist, and Caroline Hornfeck, graduate student at the University of West Florida. Caroline is collecting water for eDNA sampling. They are around my age (or at least I’d like to think so), and have been so kind and helpful. It is their first time on Pisces as well, but each are experienced and very knowledgeable. They’ve made me feel right at home, and I feel are going to be a major part of my experience out at sea.  Women in science – go team!  

Operations Officer (NOAA Corps), LT Christopher Duffy, was so kind as to take me under his wing and invite me to the bridge (control room) to observe departure. This was so cool. Navigation is quite the operation. I guess now that I’ve seen it, duh, this boat is massive and the port was so busy with vessels of all sizes. Seven NOAA officers worked together to get us underway safely. Lots of standing on watch and communication involved. They were constantly shouting commands and numbers, and repeating. All confirmed communication was acknowledged with a “very well.” I found this amusing. One of my favorite lines heard while observing was, “There’s a pleasure boat on the port quarter.” “Very well.”

I will now start saying “very well” in my everyday life.

Last mention for now – I haven’t been seasick (so far)! Those that know me well know that is a major accomplishment for me. (As if I had say in the matter).

I am so happy to be here and to have the opportunity to learn from all of the crew (in every department). I am already so impressed by each of them.

Did You Know?

Well most of us do know that water and electricity make a dangerous pair; but, did you know that it’s not water itself that conducts the electricity? It’s the minerals and such dissolved in it. The saltier the water, the more electricity it conducts. Pure water is actually an excellent insulator and does not conduct electricity, but you will never find pure water in nature. Whoa. I went down a rabbit hole with conductivity.

Also random, but kind of fun, the NOAA Teacher at Sea Program started in 1990, the year I was born. NOAA Ship Pisces was commissioned in 2009, the year I graduated high school.

Jordan Findley: Another Teacher at Sea (Finally), June 5, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 5, 2022

Series of Events

In October of 2019, I learned of the NOAA Teacher at Sea Program. Without hesitation – yep, sign me up, and applied in November. In January of 2020, I received the following message: 

Dear Applicant,

On behalf of the National Oceanic and Atmospheric Administration’s (NOAA) Teacher at Sea Selection Committee, we are pleased to inform you that you were selected to be a finalist for the 2020 season! Now onto the next steps…

Stoked. Couldn’t be more thrilled. February 2020, medically cleared and ready for the more information call. 

(Insert Record Scratch Sound Effect)

January 2020, the U.S. Center for Disease Control and Prevention confirms the first U.S. laboratory-confirmed case of COVID-19, and by March of 2020 the United States declares a nationwide emergency. On March 9, 2020, I was notified of the cancellation of the 2020 NOAA Teacher at Sea season in response to the pandemic. 

As for all of us, COVID put a screaming halt to my travel plans, but more importantly the world around us. As the pandemic progressed, the 2021 Teacher at Sea season was also canceled. No, this is not a blog about COVID, and I am in no way downplaying the impact of the pandemic, but it is a part of my story. I, much like all of us, have gained a great deal of perspective, patience, and gratitude (and maybe a few gray hairs) during the last two years, and the anticipation of this trip has made me that much more grateful and excited for the opportunity to participate this season.

Okay, back to the good stuff. March 2022, we are back in action and in April, I received the official cruise offer. NOW I can get excited. In just a few days, June 9-22, 2022, I will be participating in a Gulf SEAMAP Reef Fish Survey on NOAA Ship Pisces. The Pisces will conduct a survey of reef fish on the U.S. continental shelf of the Gulf of Mexico using a custom built spherical stereo/video stationary camera systems and bandit reels. The ship’s EM 2040 multibeam system will be used to map predetermined targeted areas on a nightly basis to improve or increase the reef fish sample universe. A patch test of the EM 2040 multibeam echosounder….

You lost yet? Yea, me too. Looking forward to learning what this actually entails. I shall follow up in layman’s terms.

NOAA Ship Pisces at sea, viewed from above.
NOAA Ship Pisces (R-226). Photo courtesy of NOAA.

Introduction

Oh, ahem. Let me introduce myself. Hi, I’m Jordan Findley.

My resume reads, “I am an environmental professional dedicated to demonstrating environmental advocacy and sustainability, while fostering a generation of future environmental stewards.” Professional is relative here. My professional background is in husbandry and environmental education. On a personal level, those who know me well might describe me as an educator, traveler, and outdoor enthusiast. My interests have always aligned with nature, wildlife, and the outdoors and I am continually astonished by our planet and passionate about protecting it.

I grew up in rural Indiana and spent all of my time outside. At an early age, I gained an appreciation for a simple life, a grand adventure, and the beauty of the natural world around me; and that is the essence of my being. I would simply describe myself as a bit of a wanderer with a thirst for life and motivation to inspire others. I’ve spent my entire existence chasing the next big opportunity, and because of that, life has afforded me some amazing opportunities. I often hear, “I live vicariously through you,” but that really isn’t my hope. My hope is that I inspire and empower others to have their own amazing experiences in life, do what they love, and be the best version of themselves.

“Professional” Profile

To be honest, my background is all over the place and true to myself. I hold a B.A. in Zoology and M.A. in Biology from Miami University (that’s Ohio). My education provided fundamental knowledge of animal, environmental, and social sciences and science education. I traveled to Mexico, Australia, and Kenya during graduate school to study human impact on the environment and community-based approaches to conservation. These experiences abroad vastly broadened my view of the world and the environmental challenges it faces.

I worked seasonally until hired as an educator at Tampa Bay Watch (TBW) in 2016. I will spare you all the details of me bouncing from job to job, but I will say it was then that I had some of the most unique experiences and learned of my passion for education. As much as I thought otherwise, I am an educator at heart, but I knew the classroom was never for me. And though I have mad, mad respect for formal educators (you are all saints), I knew that any facilitation I would be doing had to take place outside. Experiential education became my niche and has been such a rewarding job. I get to teach about what I love, be immersed in nature, and be a part of creating meaningful experiences.

As the Education Program Coordinator at Tampa Bay Watch, I coordinate and facilitate field trips and camps for students K-12 known as Estuary EDventures. Our programs hosted at the Auer Marine Education Center in Tierra Verde, FL focus on estuary ecology and conservation. Students are exposed to the wonders of our natural world through hands-on, marine science labs and immersive field experiences. Our most popular programs are otter trawling and seining. Why wouldn’t they be? We have so much fun collecting animals of the bay, learning about their unique adaptations, and connecting to the marine environment.

A typical trawl at Tampa Bay Watch finds crabs, seahorses, pufferfish, and other organisms [no sound].

Another view of organisms sampled in a trawl [no sound].

Ready for Sea

I cannot even describe how excited I am to be out at sea working with scientists, and learning something new. Let’s be real, I am not sure I really know what to expect, but I’m here for it.

My time at sea will be spent in my home waters of the Gulf of Mexico. I have so much to learn from this trip and such a great platform to share that knowledge thereafter. I am inspired by the students I see every day, some of whom experience a sea star or puffer fish for the first time. The spark in their eyes I will carry with me on this trip. I have been teaching marine science informally for nearly six years and it never ceases to amaze me. I mean, it’s pretty amazing, right? Our oceans are essential for life and home to millions of species, and its conservation is one of the greatest challenges our scientists face. 

I am so incredibly grateful to have been selected to participate in the NOAA Teacher at Sea Program. The allure to this program was the opportunity to be immersed in the research, the hands-on, real-world experience at sea. The goal is to provide my students first-hand exposure to the exciting NOAA research projects at sea. Making their learning relevant through my experience will hopefully ignite a curiosity and excitement for science and build a better understanding and appreciation for our planet.

Let the fun begin!

George Hademenos: I am (George Hademenos, NOAA Teacher at Sea), I Said, May 13, 2022

NOAA Teacher at Sea

George Hademenos

Aboard NOAA Ship Oregon II

June 20 – July 3, 2022

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 13, 2022

Welcome to my blog!

Welcome to the inaugural post of my blog, describing my observations and reflections as a NOAA Teacher at Sea on my upcoming expedition in June 2022. My name is George Hademenos and I am excited to invite you along on this field trip of a lifetime to learn about marine science and the research that will be conducted during the research cruise. This is a particularly momentous occasion as this experience has been two years in the making (Dang that COVID!) – more on the application process, the NOAA Teacher at Sea program, and the instructional possibilities that this program presents will follow in upcoming posts.

Before I go any further, I want to take this opportunity to address the 800-lb sea lion in the room. The “sea lion” I am referring to is the title of the blog. “I am (George Hademenos, NOAA Teacher at Sea), I Said.” is a rather peculiar title for a blog entry and I did want to take this opportunity to explain the rationale for this title and set the stage for the blog entries to follow.

I have always loved music not only for the melodies but also for the lyrics that draw the listener into a story. Music has played an important part of my life not only as a hobby but also as a job. Beginning in high school and continuing through college, I was an announcer at radio stations in my hometown of San Angelo, Texas, the West Texas city that I grew up in. My love of music combined with my love of talking (which greatly prepared me for the classroom) made this an ideal job for me. Below is a picture of me at one of these radio stations that I worked at, KGKL.

A close-up view of high-school-aged George sitting at a microphone, wearing headphones
My job through high school and college was a radio announcer.

In any event, returning to the blog title discussion, I decided to incorporate this time in my life into my current experience by titling this blog entry (as well as every other blog title that follows) with the exact title (or a modified title) of a recorded song. What better way to begin a blog than with Neil Diamond!

Introducing…me!

With that explanation out of the way, I would like to use this first blog entry to introduce myself, explain why a high school physics teacher in Texas is interested in marine science and, most importantly, provide details about my cruise assignment as well as ways you can learn more about my expedition and marine science, in general. I am currently in my 21st year of teaching physics at Richardson High School in Richardson, Texas, a suburb north of Dallas.

A screenshot of the homepage of Richardson High School's website
Welcome to Richardson High School, my classroom home for 21 years!

I know that physics often gets a bad reputation among high school students as being hard, involving math, and quite frankly a class that they are forced to take. And these students would be correct on all counts. However, I often tell my classes at the beginning of each school year, “the reason I love teaching physics is that each of you experience physics on a daily basis and I do not have to think long and hard to come up with examples and applications of every topic and concept covered in class that directly impact your life.” I know that if I am successful in this regard, then perhaps my students might actually grow to tolerate and some maybe to even enjoy physics.

How did I end up in the classroom?

When I graduated from high school, I didn’t know what I wanted to be but I knew what I didn’t want to be… a teacher. I did not want or even entertain the notion of a career as a teacher. What makes this even more astounding is that everyone in my family were teachers, except me. My dad was the Education Department chair at the university I attended but I still was not interested. I wanted to pursue a career in medical research. Following my pursuit of advanced degrees in physics, two postdoctoral fellowships (one in nuclear medicine and another in neuroradiology), and a career as a staff scientist for stroke at the American Heart Association, I lived my dream but realized it was impacting my reality. My wife, Kelly, and I have a daughter, Alexandra, who always loved school and invested her time in any and all extracurricular activities she could possibly handle. My time was invested in activities that required my direct attention such as meetings, conferences, grants and drafting manuscripts for publication and not activities that I wanted to focus on such as attending recitals, performances, parent-teacher conferences and help with homework.

I understand that there are priorities in life and for me, they finally came into focus. I decided to change careers – change into the one career I thought I would never pursue – teaching. Twenty years later, I still have not regretted the move. So, what am I like in the classroom? The video below gives you a snapshot of what it is like to have me as a teacher.

A video summary of me as a classroom teacher.

Why marine science?

One thing you will come to learn about me through my blog postings is that I am a teacher who not only loves to teach but also, first and foremost, loves to learn. I am always looking for novel, innovative, and creative approaches to instructional activities, experiences, and projects that I can engage my students with, as well as share these approaches with other teachers. When a program such as NOAA Teacher at Sea comes about with opportunities for teachers to learn about marine science and “walk a mile in the shoes” of researchers, teachers like me jump at the chance to apply and hopefully are selected for such an honor.

I will be a participant on NOAAS Oregon II for Leg 2 of the SEAMAP Summer Groundfish Survey where I will be working with and learning from Andre J. Debose, Chief Scientist with NOAA Fisheries Service and his research team based in Pascagoula, MS. I am beyond ready for my Teacher at Sea cruise where I plan to pursue the following two objectives: (1) to share my knowledge and experiences of this journey with you through a blog and a Google Site and (2) initiate and contribute to a dialogue about the importance of planning, collecting, and evaluating surveys of shrimp, groundfish, plankton, and reef fish, conducted in the Gulf of Mexico, that you in turn can share with your students and colleagues.

More information regarding the cruise will follow in subsequent blog posts prior to and during the cruise (if the internet is behaving). I hope that you will not only read the blog posts but ask questions ranging from the Teacher at Sea program to the cruise details to the ship NOAAS Oregon II to the research conducted aboard the vessel to ways you can learn more marine science (or if you are a teacher, to design instructional activities to engage your students in marine science). I may not know the answers to all of your questions but rest assured that, if I do not know how to respond to a particular question, I will let you know and take steps to find a prompt and factual response. I would like to make this journey a positive learning experience for everyone!

Looking Back On 30 Years of Teachers at Sea

This week, we celebrate the 30th anniversary of NOAA’s Teacher at Sea program. Join us as we look back at the history and accomplishments of this groundbreaking program.

Since 1990, more than 850 teachers have sailed aboard NOAA research ships. They serve as valued crew members, conducting hands-on research and learning more about the science that informs our conservation and management efforts.

This unique professional enhancement opportunity is made possible by the NOAA Teacher at Sea program. For three decades, the Teacher at Sea program has helped teachers participate in annual NOAA research surveys conducted by our scientists. Teachers from around the country embark on a two to three week expedition at sea. They gain invaluable on-the-job experience and communicate their journey through a series of blogs and lesson plans.

After their research cruise, teachers take their newfound knowledge back to their classrooms and hometowns. Teacher at Sea alumni have worked with more than 500,000 students and 3 million other people at conferences and other outreach events. The Teacher at Sea Alumni Association was created in 2011 to provide a way for teachers to continue learning and network with others who’ve had the same experience.  

Teacher at Sea Program Manager Jennifer Hammond said, “Teachers at Sea are great ambassadors for NOAA science. We accept Pre-K through college-level teachers in all subject areas who demonstrate they can communicate the science back to their classrooms, whether they’ve taught for one year or 20 years. The original goal of the program was for teachers to get an opportunity to see how we conduct at-sea research and introduce them to NOAA careers, specifically NOAA Corps and at-sea science.”

History of the Program

The program started in NOAA’s Office of Marine Aviation Operations in 1990. NOAA Corps Officer Lt. Ilene Byron placed the first Teacher at Sea, Debora Mosher (pictured right), on the NOAA Ship Oregon II to help conduct an Atlantic scallop survey. 

Mosher said the experience allowed her to see “…the reality of scientific research—the expertise, the planning, the time, the effort, the dangers, the data, the equipment, the cataloging and computing of numbers, the frustrations. But most importantly, I saw the information and careful analysis would help us understand the natural world.”

Experiencing Real-World Science at Sea

By doing the science, the teachers gain a greater connection to the science. They see firsthand how our surveys translate to the real-world and they learn how to communicate the experience to their students. They also become an integral part of the research team. “The teachers learn that problem-solving and team-building are a much bigger component of science than they thought. You have to rely on each other and the equipment you have at-hand,” Hammond said.

Some of these teachers have never had a real-world research experience before. Their first trip out to sea can be intimidating regardless of background and skill level. The Teacher at Sea program puts teachers squarely in the shoes of their students, who encounter new and complex lessons every day at school. For many teachers, their experience at sea reminded them what it felt like to be a student. It allowed them to change their teaching habits to more effectively reach students who feel overwhelmed by new class material.

Program Benefits Teachers—and Scientists

It’s not just the teachers and students that benefit from the program. NOAA scientists are eager to work with Teachers at Sea. “Teachers are suited for sea,” Hammond said. “They stand up all day long, they get no lunch break, rare bathroom breaks, they’re constantly adapting to their class and lesson plans. They’re prepared for rapid change, they work long days, and they tend to be a group that doesn’t sleep much. Scientists find them hard working, energetic, motivated, and appreciative of the experience. They’re such a wonderful contribution to the research team. This is why more than 70 NOAA scientists request Teachers at Sea to join their surveys each year.”

Although we could not send teachers to sea this year, the program continues to support the educational community through the Teacher at Sea Alumni Association.

Kathy Schroeder: My Journey Ends, but will Never Be Forgotten, November 2, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15 – October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 11/2/19

Weather Data from Naples, FL

Latitude: 26.17
Longitude: 81.34
Temperature: 89° F
Wind Speeds: ESE 11 mph

Personal Log

Our last day on Oregon II together was filled with lots of hugs and new Facebook friends.  I left Pascagoula, MS and arrived back in Naples, FL around midnight.  It was nice to be back in my big bed but I really missed the rocking of the ship to put me to sleep. 

The next morning I was greeted at my classroom door at 7 am by my students who had a lot of questions.  They all had been following along on my blog and have seen a few pictures that were posted.  I made a PowerPoint of pictures from the ship so they could see what my living and working arrangements were like.  The funniest part was when I showed them my sleeping arrangements.  They thought it was great that I was on the top bunk, but surprised at how small the room was and how I didn’t have a TV.  (I think some thought it was more like a hotel room – boy were they wrong.)  The part they were shocked the most was the size of the shower and the toilet area.  I was able to organize my pictures into folders of the same species.  I was then able to show them all of the wonderful pictures that the crew, scientists, volunteers and I had taken during our excursion. 

The following week a reporter from the Naples Daily News and her photographer came to my classroom to interview me about my trip as well as what the students were learning in AICE Marine.  

I was able to bring back with me the one of the 12 foot monofilament line and hook that is attached to the longline.  I was able to explain to them how the lines are attached and the process for leaving the longline in the water for exactly an hour.  We also started a lesson on random sampling.  I discussed how the location for the longline deployment is chosen and why scientist make sure they are randomly chosen. 

My biggest surprise was a package I received from my Uncle Tom a few days after I returned home.  He is a fantastic artist that paints his own Christmas cards every year.  In the package I received he painted the sunset picture I had taken of Oregon II when we were docked in Galveston.  It is now hanging in my classroom.

NOAA Ship Oregon II
NOAA Ship Oregon II, September 16, 2019. Photo by Kathy Schroeder.
Kathy's uncle's painting
Painting by my Uncle Tom Eckert from the picture I took

In December I will be presenting about my experiences with NOAA.  Students, their families, and people from the Naples community will all be welcome to attend.  I will be working with fellow colleagues from other high schools in Naples that also teach marine to spread the word to their students.  My goal is to get as many students who are interested in a marine career to attend the presentation so that going forward I will be able to work with them in a small group setting to help with college preferences and contacts for marine careers. 

I can’t thank NOAA enough for choosing me to participate as the NOAA Teacher at Sea Alumnus.  The experiences I have received and the information I will be able to pass along to my students is priceless!


Science and Technology Log

My students have been able to see and touch some of the items I was able to bring home from Oregon II that I discussed.  I was able to answer so many questions and show them a lot of the pictures I took. We are anxiously awaiting the arrival of a sharp-nosed shark that is being sent to us from the lab in Pascagoula, MS.  For students that are interested I will be conducting a dissection after school to show the anatomy of the shark as well as let them touch and feel the shark. (An additional blog will be posted once the dissection is competed)

Linda Kurtz: Reflections from Fairweather, September 7, 2019

NOAA Teacher at Sea

Linda Kurtz

Aboard NOAA Ship Fairweather

August 12-23, 2019


Mission: Cascadia Mapping Project

Geographic Area of Cruise: Pacific Northwest (Off the coast of California)

Date: 9/7/2019

Weather Data from Marietta, GA:

Latitude: 33.963900
Longitude:  -84.492260
Sky Conditions:  Clear
Present Weather:  Hot
Visibility: 9 miles
Windspeed: Less than 1 knot
Temperature:  Record high 97 degrees Fahrenheit

It’s been weeks since I disembarked in Newport, Oregon and left Fairweather behind. I still feel like I’m a part of the crew since I was welcomed so seamlessly into any job I tried to learn while Teacher at Sea. However, the crew is still working away as I continue to share my experiences with my students in Marietta, Georgia.

As I have been working on lessons for my classroom, I keep finding fun facts and information about ship life that I didn’t share in my previous posts. So, here is my final post and some of my most frequent questions by students answered:

Question 1: Where did you sleep?

I slept in a berth, I had a comfortable bed, drawers, a locker, and a sink. There was a TV too, which I never watched since a) I like to read more than watch TV and b) the ship would rock me to sleep so fast I could never stay up too long at bedtime!


Question 2: What was the weather like when you were at sea?

Some days (and nights) so foggy that they had to use the fog horn for safety!


Question 3: What animals did you see?

I highlighted animals in all of my posts and linked sites to learn more, go check it out! There is one animal I didn’t include in my posts that I would like to share with you! The first is the California Sea Lion found in the Newport harbor. You could hear them from across the harbor so I had to go check them out!

See the video below:

California Sea Lions


Question 4: What happens next with the hydrographic survey work?

This is one of my favorite questions from students! It shows how much you have learned about this very important scientific work and are thinking about what is next. The hydrographic survey maps are now in post processing, where the survey technicians, Sam, Bekah, Joe, and Michelle are working hard to make sure the data is correct. I shared in a previous hydrographic survey blog an example of Fairweather’s hydrographic survey maps, I also checked in with the USGS scientists James Conrad and Peter Dartnell to see what they were doing with their research and they shared some information that will help answer this question.

From Peter Dartnell, USGS research scientist: “Here are a few maps of the bathymetry data we just collected including the area off Coos Bay, off Eureka, and a close-up view of the mud volcano. The map off Eureka includes data we collected last year. I thought it would be best to show the entire Trinidad Canyon.”