Kiersten Newtoff: How My College Choice Led Me Here, May 26, 2023

NOAA Teacher at Sea

Kiersten Newtoff

Aboard NOAA Ship Oregon II

June 3 – June 16, 2023

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Departure Port: Pascagoula, MS

Arrival Port: Galveston, TX

Date: May 26, 2023

The inner marine biologist in me is EXCITED. I shouldn’t say inner, as I do have a master’s degree in marine biology! But I definitely feel like a phony as I studied birds… on land… and never once needed to snorkel or SCUBA dive. I am embarrassed to admit it given my educational background and the fact that I grew up in a coastal town, but I cannot even swim. So sure, sign me up to live on a boat for two weeks!


A life-sized dolphin statue, mounted on a black post in a rock bed lining a brick building. The dolphin is painted with images of dolphins and other marine life (fish, seahorses) swimming in a deep blue background.
One of the hundreds of dolphin statues that dot the Virginia Beach, VA landscape. Photo by Mechelle Hankerson.

If I were to trace back the threads to how I ended up in NOAA’s Teacher at Sea program, it would likely have started in 2007, when I was a junior in high school. Like other juniors, we were all feverishly searching College Board on universities to attend, majors to study, and regions to live in. Growing up in a coastal town and like many girls my age, I was obsessed with dolphins. To be fair, we literally have statues of dolphins all over my hometown, so how can you not be intrigued by them?! In Virginia at the time, there was only one university that offered a degree in marine biology: Old Dominion University. Unfortunately, ODU was only 15 minutes from where I grew up and I was ready to spread my wings and fly a little further from the nest. A great school I found for marine biology was the University of North Carolina Wilmington (UNCW), where I applied and was accepted, but the out-of-state tuition was too great for me to financially handle. After conducting more searches on College Board, I applied to Radford University, which is in the mountains of Virginia. Here, I settled into a degree program in Biology, with a concentration of Environmental Biology.

One of the requirements of the Environmental Biology concentration is to take a GIS course. GIS stands for geographic information systems and is a growing technology that has unlimited applications. The intro class I took focused on how to use ArcGIS, the software that is used in the industry. I elected to take an intermediate class where I got to practice my skills more and learn about the applications of the tool. I was the only biology major (and woman!) taking the intermediate course, which is surprising given how much GIS is used in the field now.

As my years at Radford came to an end, I knew that I wanted to teach. I had earned countless opportunities in various teaching or tutoring roles at the college and enjoyed every minute. Well, not every minute. I would get incredibly nervous before each class period and that… processed itself… in different ways… Anyway, if I wanted to pursue a career as a professor, I needed to at least get my master’s degree. With the help of my college professors, they reviewed my materials and shared the expectations of grad school, how to apply, and how to find a research mentor. Since funding was less of an issue as a graduate student, I was not worried about staying within the confines of Virginia. With this boundary lifted, I also set my eyes back on marine biology.

With my environmental background, I was able to shift my mindset away from dolphins to focusing on how humans impact marine organisms. I sent emails to over 50 different professors across 20+ schools and maybe only heard back from about half. I interviewed at 5 different schools, got a verbal offer to study sharks, but was rescinded when their funding fell through. One of the last people I emailed was Dr. Steve Emslie, whose lab at UNCW focused on mercury toxicology in marine birds. I had no interest in birds, and I think they are cheating at being considered a marine animal, but I was starting to realize I needed to expand my scope more because marine biology is a competitive field. And opportunities to study marine organisms larger than an oyster are even more competitive. Steve brought me on to his lab where I shifted my previous dolphin obsession to birds.

I definitely… terned 

Dozens (hundreds?) of two species of terns crowd a beach area. Most are standing, though a few have their wings outstretched. ALl of the terns are white, with black legs, andblack, tufted crowns. The sandwich terns have black bills, while the royal terns have vibrant orange bills.
Colony of Sandwich (foreground) and Royal Terns (background). Photo by Kiersten during graduate school research in the Cape Fear Estuary, North Carolina.
Kiersten, wearing shorts, a t-shirt, a hat, and sunglasses on a sunny day, poses for a photo while gripping a brown pelican carefully with two hands. Her left hand hoists the bird's back, between two semi-outstretched wings, while her left hand holds its bill closed. The pelican braces itself against her middle with its left foot. The right ankle sports a metal band. In the background, we see upland marsh plants, water in the distance, more shoreline beyond the water, and birds flying in the air.
Picture of Kiersten holding a Brown Pelican that she just banded. Taken at Ferry Slip Island in the Cape Fear Estuary, NC.

While I could drone on and on about my research on Brown Pelicans and their mercury loads, we need to focus on the GIS, which is the thread that led me to NOAA. With my fundamental GIS background, I added a spatial variability component to my research to analyze how mercury concentration in Brown Pelican tissues in their breeding colonies varies over space. At UNCW, I took a higher level GIS course entitled Environmental GIS. In this course, I was able to learn about the ecological applications of GIS and about the exciting world of remote sensing. When you think of satellites, you likely think of sensors looking for alien life or GPS or Starlink. And while that is true, NASA has a series of satellites that point back at Earth that remotely sense various parameters, such as particulate matter in our atmosphere, the amount of chlorophyll a on a surface, water temperature, soil moisture, and so much more.

Near the end of the semester, a student in this course shared about an internship she completed and passed out flyers around the room. I took one, but it wasn’t related to teaching so I didn’t immediately jump on it. At this point, I was nearing graduation and was starting my search for a full-time faculty role. Looking back, it was quite ambitious to think I was just going to land a full-time faculty position directly out of my master’s degree. But I did try! I was able to get a couple interviews but was always outcompeted by someone with far more experience than me. Panicking that I need an income after I finished school, I applied for the internship.

a graphic depicting illustrations of satellites on orbits around earth. there are fifteen in this illustration, orbiting earth on three arcs.
Graphic of a subset of NASA’s Earth Observing Satellites. Created by NASA.

In the summer of 2014, I started my internship at NASA Goddard Space Flight Center in the DEVELOP program. This program utilizes Earth remote sensing to answer ecological questions for organizations around the world. The project that I had worked on that summer was using satellite imagery to measure forest fragmentation. We then compared it to bird presence data, which we collected from the Breeding Bird Survey, a yearly bird count through the U.S. Geological Survey. There were 7 other interns working together in a windowless office that was probably 150 sq ft in size. I would not be surprised if this was originally a storage room, given the wires, pipes, and electrical boxes found in the room.  

Let’s do a quick speed run through parts that do not matter too much to this story: I worked at NASA Goddard for about 1.5 years before transitioning to teaching. I had been teaching part-time at a local community college for some of that time and received another part-time role, leading me to leave NASA. I worked at two institutions for a year, before getting the opportunity to move to China to teach the sciences at an international high school. I was there for 6 months before moving back in January 2017 to the United States after landing a full-time professorship at Montgomery College, a community college in Maryland. I have been with MC since then teaching ecology, evolution, and environmental biology.

Flash forward to 2019, and I see a post by one of my friends on social media. This friend was one of the other interns at NASA, whom I literally shared a desk with (it was a very small office space), who went on to work with the U.S. National Weather Service. And, if you did not already know, they are a part of NOAA! Jamie had shared about the Teacher at Sea program on his social media and after I read through the stories of educators on board, I knew I needed to apply. Add in four years while the world sorted itself, and here I am!

screenshot of a Facebook post from October 24, 2019 announcing NOAA's Teacher at Sea Program's application.

I am incredibly excited for this opportunity. The groundfish survey measures population size structures of the species caught and characterizes the water column at the sampling locations. I look forward to creating data driven lessons for my students to use statistics to measure diversity between stations and to compare that diversity with water quality samples. Our world is changing, and if we are to do something about it, we need to understand it.

Laura Guertin: My Journey Begins on NOAA Ship Oscar Dyson, May 31, 2023

NOAA Teacher at Sea

Laura Guertin

Aboard NOAA Ship Oscar Dyson

May 31 – June 22, 2023


Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska

Geographic Area of Cruise: Islands of Four Mountains area, Western Gulf of Alaska
Location (in port): 57o 47.0200′ N, 152o 25.5543′ W

Date: May 31, 2023

Not every educator has the amazing opportunity to volunteer with scientists on a NOAA ship. But in 2014, that opportunity became a reality for me when I joined NOAA Ship Thomas Jefferson for a hydrographic survey in the Atlantic Ocean. Now my journey at sea with NOAA continues in 2023 as I head out on NOAA Ship Oscar Dyson for an acoustic-trawl survey of walleye pollock populations in the Gulf of Alaska.

Ever since I was an undergraduate intern for two summers at NOAA Maine Operations Center – Atlantic in Norfolk, VA, I wanted to sail on a NOAA ship. The NOAA Teacher at Sea (TAS) program opened that door for me and has provided so much, from my own advancement of the science and technology used to map the ocean floor, to content and stories I share with students and at science outreach events for the public. Now as a TAS alumna, I can’t wait to see how much more I can learn, teach, and share from my latest ocean expedition with NOAA.

Photo of Laura Guertin on a boat on the Atlantic ocean
Offshore of Miami, Florida, where I went to graduate school (University of Miami – Rosenstiel School of Marine & Atmospheric Science)

I’m a college professor, teaching introductory-level earth science courses primarily for non-STEM majors at Penn State Brandywine in Media, Pennsylvania. I am dedicated to not only helping my students build their science literacy but also seeing the relevance of why and how science matters in their present and future lives. My research has involved using technology tools to enhance student learning of geoscience content, with my current work focusing on having students produce audio narratives (or “podcasts”).

Photo of Laura Guertin with RDML Gallaudet standing in front of flags in DC office
RDML Gallaudet and I in his office in Washington DC

I also blog for the American Geophysical Union (AGU) about educational technology, pedagogy, and science communication on my blog GeoEd Trek. I’ve dedicated several posts on NOAA and its programs and resources . But it was my blog post A New Year’s resolution: help the public learn about NOAA (December 30, 2017) that caught the attention of RDML Tim Gallaudet, Assistant Secretary of Commerce for Oceans and Atmosphere and Acting Under Secretary of Commerce for Oceans and Atmosphere at that time. He was kind enough to invite me to his office in Washington DC to thank me for the post – and, naturally, I wrote up a blog post about the visit and our conversation! That visit has been “the” highlight of all my NOAA experiences! (*see A conversation about science communication with NOAA’s RDML Tim Gallaudet, Ph.D. (March 13, 2018))

Heading back out to sea with NOAA in 2023 is special for so many reasons. Life for all of us was disrupted in March 2020 – the COVID pandemic has been long and hard. My teaching and research has had so many twists and turns, and I still don’t know how everything will be moving forward. Getting out to sea on my first-ever fisheries expedition is not just exciting for me, but it has been heartwarming to see how many of my students and colleagues are sending me messages and looking forward to frequent updates! In a way, I’m taking so many people out to sea with me, and I’m going to work so hard to make this an informative and thrilling adventure for us all!

Photo of book cover, Endless Novelties of Extraordinary Interest - The Voyage of H.M.S. Challenger and the Birth of Modern Oceanography
Cover photo of Macdougall’s book on the Challenger expedition

Last year (2022) was a notable year for the field of oceanography. It was the 150-year celebration of when the H.M.S. Challenger set sail to collect meteorological and oceanographic data ranging from deep sea soundings and temperatures to biological samples. Although there were several ships that went out on scientific expeditions prior to 1872, the Challenger expedition (from 1872-1876) is the one credited as giving rise to the field of oceanography – and it’s interesting that before 1872, the term “oceanography” didn’t even exist in any dictionaries! I read the book Endless Novelties of Extraordinary Interest: The Voyage of H.M.S. Challenger and the Birth of Modern Oceanography by Doug Macdougall, and I couldn’t help but make connections between the methods of oceanographic research back at the time of Challenger versus today. Keep a look out for many comparisons between the work and logistics of Challenger to my experiences on Oscar Dyson in my upcoming blog posts – no doubt I will be sharing some current items of “extraordinary interest!”

I’m also looking forward to continuing to explore the intersections of science and art (STEAM) can be used to engage audiences and to communicate science data. I like to crochet temperature data and use these temperature records created in yarn for teaching and outreach (it is similar to the amazing work of The Tempestry Project!). While on board Oscar Dyson, I’ll not only be exploring under the sea but looking up towards the sky as my atmospheric observations will inform my Stitch the Sky project! Stay tuned for a future blog post to follow along and/or to create your own data visualization for your location.


*If you are interested in reading about my first TAS experience on NOAA Ship Thomas Jefferson, here are direct links to those blog posts:

Photo of Laura Guertin in front of the hull of the NOAA Ship Thomas Jefferson
NOAA Ship Thomas Jefferson (at Marine Operations Center-Atlantic, 2014)

Julie Hayes: Shipshape and Onward! May 4, 2023

NOAA Teacher at Sea

Julie Hayes

Aboard NOAA Ship Pisces

April 22-May 5, 2023

Mission: SEAMAP Reef Fish Survey

Geographic area of cruise: Gulf of Mexico

Date: May 4, 2023

Weather Data

Clouds: Scattered

Temperature: 74 degrees F

Wind: 4 kt.

Waves: 0 ft.

Science and Technology

Environmental DNA

NOAA fisheries research vessels often work with colleges to help provide experiences for the students by allowing them to come on the ship to collect data for their research. On this leg, Makaila Hernandez was aboard to collect environmental DNA (eDNA) under Dr. Alexis Janosik for the University of West Florida. Water samples are taken from different sampling sights in the Gulf of Mexico. Environmental DNA tells scientists what organisms are in the area of water. DNA can be found in the water when organisms shed materials such as the skin, scales, feces, mucous, and gametes. Once the water is collected, a lab will extract the DNA from the water. The extraction is done in such a way that only the purest form of DNA is obtained. It will then be amplified so that it can go through the DNA sequencing process for organism identification. Collecting DNA for the purpose of knowing what organisms are present is done for several different reasons. It helps check the biodiversity and compare the health of the ecosystem to the previous years.

Makailyn stands at a workbench in the ship's lab. Wearing blue latex gloves, she slides two sample tubes into a plastic bag. On the bench nearby is a squirt bottle with a curved spout. It's labeled, but we can't read the writing. Other cardboard boxes and crates with sampling gear surround the work surface.
Makailyn working on eDNA samples
Julie stands at a workbench in the lab of NOAA Ship Pisces. In front of her is a styrofoam tray for holding sample tubes. The back row is filled with six labeled tubes. All except the foremost tube are capped. Wearing latex gloves, Julie grasps the squeeze bottle with two hands and squeezes its contents into the open sample tube. She does not face the camera, but rather keeps her eyes carefully on her work.
Helping with the eDNA samples

NOAA Ship Pisces

On this mission we have 28 people aboard Pisces. Without the engineers, technicians, deck crew, and the NOAA corps, the scientists wouldn’t be able to do their job. As most of you know, when things go wrong with a vessel out in the ocean, you have to rely on those within. The engineers work hard and I haven’t gotten to talk with them as much as I would have liked, but after all they have been busy down below keeping the ship going. While touring and visiting the bridge, the amount of technology there and knowledge from the officers on maneuvering the vessel is astonishing. I even had a slight go at it, and with the waves and current my travel line was a bit everywhere and not even close to being as straight as theirs. No worries, they were right by my side the whole time.

Drew Barth, Second Assistant Engineer

Drew, facing the camera for the photo, stands at a control panel in the engineering room. We can see screens, buttons of different colors, meters, levers.
Drew Barth, Second Assistant Engineer

Drew grew up in Montana and has been working for NOAA for around 18 years. Drew has worked his way up through the years, and the knowledge he knows about how to keep everything on this ship running is incredible. I had no idea there was so much down below us, and the amount of things that have to be checked and continuously working to keep this working vessel going. Drew tried to summarize all the things he did to me from operating all the equipment (including plumbing, HVAC, engine), maintaining all of the equipment, and every 2 hours all gauges have to be completely checked. At midnight a full report of how much fuel is being consumed as well as other things. Drew said some challenges he has had to deal with are bad weather, flooding, and having to fix multiple things at once. Drew states that working hands-on, growing up with a dad as a mechanic, and taking welding vocational classes really helped him, but training today can be done by attending a maritime school.

view of the bridge: two rows of computer screens facing one another; the captain's chair far toward the back of this view; windows surround three sides of the room
Bridge

NOAA Corps

LCDR Kidd, in NOAA Corps navy shirt and shorts, satnds on deck looking over the rail. We see his face in profile. Other crewmembers, their faces obscured, stand to either side of him and look in the same direction.
LCDR John Kidd, Commanding Officer
LCDR VanDine sits at a table in the mess, turned to face the camera for a photo.
LCDR Ben VanDine, Executive Officer
LT DeProspero, on deck, pauses for a photo. He is wearing a navy blue NOAA Corps t-shirt. His right hand holds a travel mug, and his left is on his hip.
LT Nicolas DeProspero
ENS Macy pauses for a photo in the computer lab. He is wearing a dark-colored sweatshirt with the NOAA logo and the words NOAA Ship Pisces, R-266 at the logo.
ENS Aaron Macy, Junior Officer

Personal Log

Today is our last day at sea. Later this evening we will start working our way towards Pascagoula, MS. We are finishing up our last camera drops and preparing to disembark. I can already tell this morning by looking at the water that we are getting closer to Mississippi. The coloration of the water is more of a brown hue than blue due to the Mississippi River meeting the ocean. Several deck crew are making last minute plans as we prepare to port. I have met so many amazing people from all walks of Earth, and listening to their stories and how they ended up on Pisces is remarkable. There are a lot of hard-working and dedicated people who keep this ship running.

I can’t believe I have been on the ship now for two weeks. I have several more questions from my students back home that I can’t wait to answer when I get back. When I return there are only 10 days of school left, so it will be a whirlwind. I have been blessed to have experienced this, and I have learned so much that I hope to inspire my students to dream big and put themselves out there. I told them before I left how nervous I was and that blogging for the first time ever and doing the unknown was way out of my comfort zone. However, hopefully I have taught them that it is important to take chances and pursue things that they want to do even though they may seem scary. My hopes are to also talk about all the different career paths involved in keeping this mission going aboard NOAA Ship Pisces.

view over the bow of NOAA Ship Pisces from an upper deck. the water is calm and blue; the sky is blue with fluffy white clouds.
Front (Bow) of Pisces
view over the aft deck of NOAA Ship Pisces from an upper deck. We can see an A frame, davit arms, a large spool. the water is calm and blue, and the sky is blue with small white clouds.
View of the back of Pisces
Julie takes a selfie in front of an orange life preserver mounted on an outside wall. The life preserver is stamped NOAA Ship Pisces. Julie's t-shirt has a tiger on it, her school mascot, and the letters MMS for Macon Middle School.
Final Day at Sea!

Julie Hayes: Women at Sea, May 2, 2023

NOAA Teacher at Sea

Julie Hayes

Aboard NOAA Ship Pisces

April 22-May 5, 2023

Mission: SEAMAP Reef Fish

Geographic Area of Cruise: Gulf of Mexico

Date: May 2, 2023

Weather Data

Clouds: Scattered

Temperature: 80 degrees F

Wind: 1 kt.

Waves: 1 ft.

Science and Technology Log

Seafloor Mapping

The survey technician team collects data on the bathymetric seafloor using a precise timing and ranging system. Multibeam echosounders emit different frequencies to capture different particles in the water (fish, plankton, gases like oxygen), as well as the bathymetry of the seafloor (basically, what the bottom of the floor is made up of.) This will then provide a 3-D picture of the seafloor. A larger version of this, called Kongsberg ME70, was used during the Deepwater Horizon Spill tracking the oil and methane gas. Often, sea floor mapping occurs at night in designated locations.

A rendered image of the seafloor bathymetry, color-coded to represent different depths: red is the most shallow, while blue or purple is the deepest. This section is mostly flat, with a round red peak to the left. The bathymetric image is superimposed on a nautical map, at the same scale, to indicate the location of the surveyed area.
Seafloor mapped during this leg

Vocabulary Check

What is Bathymetry?

Bathymetry is the study of underwater depths of lakes, rivers, or oceans.

What is Sonar?

Sonar (SOund NAvigation and Ranging) is used to not only measure the water’s depth but to also detect objects underwater. This is done by emitting sound pulses under water and measuring their return after being reflected.

Sophie Caradine-Taber, Survey Technician

Sophie stands at a computer desk, facing an array of monitors. She controls the computer mouse with her right hand. We cannot see her face.

Sophie got her degree in biology and environmental studies. She got her start at the National Marine Fisheries Service working for NOAA on a hydrographic survey vessel on the Bering Sea in Alaska for four and half years. Her job on Pisces is part of the survey technician team that does seafloor mapping.

Makailyn Hernandez

Makailyn, wearing blue latex gloves, leans over to work on something at the base of water sample bottles attached to the CTD rosette. We can't clearly make out what she is doing with her hands.

Makailyn is on Pisces collecting Environmental DNA (eDNA) for the University of West Florida’s lab under Dr. Alexis Janosik. Makailyn graduated from UWF with a degree in marine biology, and worked as a research technician under Dr. Janosik. She has volunteered for numerous career opportunities, including this trip and sea turtle monitoring. Her goal is to attend graduate school and get a job as a researcher in either lab or field work.

ENS Grace Owen, Junior Officer

Grace stands at an instrument panel on the bridge. She is facing the  rounded bridge windows, but looking off to her left side. She wears a navy blue sweatshirt with the words NOAA CORPS written prominently on the back.

Grace is a Junior Officer for NOAA Corps. She is from North Carolina, and didn’t originally start her path on the ocean, but towards the mountains. She went to college in Colorado and worked as a climbing guide. She felt like she needed to do something more, and began looking at the Coast Guard. This is when she discovered the NOAA Corps and she felt like it aligned more with her values. Grace learned that she didn’t have enough STEM credits to join NOAA, so she moved to Florida to attend the University of Miami and got her graduate degree in exploration science. Training for the NOAA Corps takes around 5 months at the Coast Guard Academy. Once training is completed officers can then go to driving and navigating vessels for NOAA. Grace also has her pilots license and her next goal is to attend NOAA flight school with the future hopes to fly for the NOAA Hurricane Hunters. She even says there is a hurricane name in rotation named “Grace” that has yet to be used, and that would be super neat if she was the one who helped find it.

Heather stands at the controls on the bridge, peering out the window ahead of her. She is wearing the casual blue NOAA Corps uniform.
ENS Heather Gaughan, Junior Officer
Marina poses for a photo in front of a computer desk. Several monitors are visible on the desk or mounted on the wall.
Marina Rowen, Survey Technician

Student Questions of the Day

Jonathan asks: Have you ever found a sunken ship in the ocean?

Sophie works with sea floor mapping, and last year NOAA’s hydrographic ship on Lake Erie found 5 shipwrecks.

Anabelle asks: What is daily life like on the ship?

Sophie calls each ship she is on home, because she spends most of the year on them. She works the 12am-12pm shift 7 days a week. She tries to stay in touch with family, and reads a lot of books on her down time while on the ship. If they port between legs for the weekend she tries to make sure she takes time for herself.

Levi asks: How many years did it take to be able to drive a ship?

Grace states that the NOAA Corps training is 5 months, but once you’re on a ship that is when the real training takes place. Officers will do 2 years on a ship and then usually 3 years off on land assignments.

Ethan asks: What challenges are there when driving the ship?

Grace states that part of the challenges of driving the large ships are learning the physics and maneuvering of the vessel. NOAA is also mostly male dominated, but she feels confident in what she does and it has been an easy fit for her.

Personal Blog

I am enjoying learning all the different backgrounds of everyone on this ship. Even though it is predominately men, I am impressed with the determination that the four women of the crew have. Myself and Makailyn are guests aboard Pisces, but it was nice to see how the women fit in on the ship and are respected. Everyone on board continues asking how I am doing, and making sure I am learning as much as I can. Chief Survey Technician Todd Walsh even spent days building up an extravagant event by having me deploy an Expendable Bathythermograph Sensor (XBT). Todd had convinced me that it was going to be like an “explosion” when it went off, and I was in charge of it. He even gave me a training pamphlet that I studied, and he had me convinced that I must be crazy to agree to do this but I am here for the experience… right? Little did I know that the entire ship was in on the joke. After all the hype of how things could go dangerously wrong, training on how it could backfire, and the special safety attire the day of; the device literally just dropped into the ocean falling out of the holder. Todd… I will get you back!

Several on the ship are looking forward to the end of leg 3 to have a few days off before they are back at it to finish the last leg of this mission. Today I heard the countdown, “2 days and a wake up”. The crew spends so much time out here they look forward to a few days off the ship and a chance to see family. The current scientists will go back to their land jobs after this leg and new scientists will finish the last leg of this mission. Today was by far the prettiest day we have had yet. The ocean has finally calmed down and the Sun is shining bright. This evening it was as if the ocean came alive. We saw whales, dolphins, mahi-mahi, a shark and a trigger fish. I was able to do some laundry on the boat which was great because I tried to pack as light as possible so that I didn’t have to check in luggage at the airport. I am trying to do a little grading when I get a chance. There will only be 10 days left of school when I return. I have missed the students and have really enjoyed reading the letters they wrote me to bring along. Below, you will see a drawing that a student did for me to give to the ship. It is amazing and she is so talented!

Julie readies to deploy the expendable bathythermograph (XBT). She's wearing a life vest and facing away from the camera, across the railing of NOAA Ship Pisces. She stands with her left leg behind her right, for balance, and holds the XBT deployer up with both hands, as if she is about to fire a gun.
Training for deploying the XBT
Julie, wearing a life vest and perhaps unnecessary face mask, holds the now-empty XBT launcher pointed down over the railing of NOAA Ship Pisces. She smiles at the camera. Todd, wearing a life vest and hard hat, stands next to her and points toward the launcher, mid-explanation.
Chief Survey Technician, Todd Walsh and myself after finding out the “joke’s on me.” The XBT just fell in the water with no explosions.

Student Drawing

A beautiful and detailed pencil drawing of NOAA Ship Pisces. It's signed at the bottom: Pandora Hennessy, 4/19/23, NOAA Ship Pisces.
Macon R-1 Middle School student Pandora’s drawing of NOAA Ship Pisces
blacktip shark seen from above, swimming near the surface of the water
Shark on starboard side of ship
Julie leans into view of the camera to point behind her to Joey, who wears a life vest, sunglasses, and hard hat. Joey stands in front of a CTD apparatus on deck.
Finally, I got a picture of Scientist, Joseph “Joey” Salisbury.
Joey tried to avoid the camera most of the mission. He agreed to at least let me tag him in a picture.

Julie Hayes: What’s Below Us? April 29th 2023

NOAA Teacher at Sea

Julie Hayes

Aboard NOAA Ship Pisces

April 22-May 5, 2023

Mission: SEAMAP Reef Fish

Geographic Area of Cruise: Gulf of Mexico

Date: April 29, 2023

Weather Data

Clouds: Broken

Temperature: 66 degrees F

Wind: 25 kt.

Waves: 4-6 ft.

Science and Technology Log

Sphere Cameras:

As we travel along the coastal shelf of Texas to Louisiana, scientists have already mapped out drop sites for the Sphere Cameras. There are five cameras that have a 360 degree view, one camera is stereo paired for measurements, and one is facing straight up. The cameras are attached to a rosette (cage), as well as bait to attract fish. Once the cameras are dropped in their designated location they will record for approximately 30 minutes. It is a process dropping the cameras in and picking them up that both the scientists and deck crew all have to help out with. It is hard to believe that by the end of their mission (Legs 1-4) they will have done this over and over around 500 times. Once all footage is collected from the day and downloaded it is then stitched together. This information allows scientist to see a number of things including biodiversity, distributions, and habitat classifications. This is helpful because it is also a much less invasive way for scientists to collect data.

Deploying Cameras

Camera Recordings

A black and white view, through the bars of the camera array, of a shark swimming underwater above a mostly sandy ocean bottom.
Shark
A black and white view, through the bars of the camera array, of about seven red snapper who appear to be jostling over the bait attached to the array.
Red snappers

Tony VanCampen, Electronics Technician

Tony, wearing khaki pants, a khaki shirt, glasses, and a large white beard, stands at a control panel lined with computer monitors, keyboards, and radios. He holds a telephone up to his right ear and grasps papers in his left hand.
Tony demonstrating the Global
Maritime Distress System

Tony is responsible for anything electronic. This could include things like wind, temperature and pressure sensors, electronic connections for the scientific computer systems, and GPS position for mapping. He states, “Anything that can be recorded for future data collection accuracy is very important.” Tony is also in charge of letting others know if the ship needs help. Tony has been on several ships in his lifetime including spending twenty years in the Navy. When Tony retires he hopes to work at a train museum in New York, due to his fascination with trains. He has been a great person to talk to while on this journey and is always willing to give me any information I ask. He even took time out to give me a tour of the bridge and flying bridge, as well as giving me several lesson ideas of coding for my students.

Chris Rowley, Lead Fisherman

Chris, wearing a hard hat, life vest, and sunglasses, stands on deck near a large camera array. He works to hook a cable to the top of the apparatus.
Chris helping deploy cameras

Chris is the lead fisherman on Pisces. His job is to assist the scientists in deploying cameras and CDT, and anything else needed. NOAA provides great benefits to support his family. Chris also is a coxswain who drives the Fast Rescue Boat (FRB) if needed. He is also part of the fire drill and you can see him in the pictures below during the drill. Chris lives in Louisiana and enjoys spending any off time he has with his twin daughters and wife.

Student Questions of the Day for Tony and Chris

Alivia and Tucker ask: How many different ships have you been on?

Tony was a great one to answer this question. Tony was on two naval ships, and eight different NOAA ships. I would say he has had a lot of experience in maritime.

Aryan and Alivia ask: When did you start working for NOAA?

In 2004 Tony started working for NOAA.

Maverick asks: What do you do in your free time?

Tony enjoys woodworking, religious teaching, and is involved with a food bank rescue ministry when he isn’t out to sea.

Konnor asked: What did you do before this job?

Chris started in High School working in the summers on shrimp boats as a deckhand in Louisiana. Before working for NOAA, he worked several years on offshore supply vessels (OSV).

Holden, Karson, Gary, Macie, Zane, Haylee, and Liam ask: What is the coolest and largest thing you have seen in the ocean?

Chris states that at night, while working on the supply vessels, lights would shine in the dark water and he saw an albino barracuda. The largest marine life he has seen has been a whale shark and he has seen several orcas.

Meela and Parker ask: Do you get lonely and do you get personal time?

Chris works out on the ocean over nine plus months out of the year. He looks forward to vacation where he can spend more time with his family back home. The ship now has internet that helps keep them in touch with family.

Personal Log

Last night we had to start working our way inland about 20 miles offshore, due to a large storm out in the Gulf. Tomorrow we plan to head back out towards our mission locations to continue where we left off. We have been tracking the storm for a few days and knew that we would need to go somewhere due to the heavy winds and waves. Since we can’t deploy cameras at our designated locations, everyone is using this day as a catch up day. We also did fire drills and abandon ship drills today. Safety is a huge priority on the ship, and I am confident that if there were to ever be an emergency situation, that everyone on Pisces would handle it excellently. I am taking advantage and downloading photos and working on the blog today, and checking in with my students work back home. Yesterday was amazing! I love getting my hands dirty and take every chance I can get to help cut bait for the baited cameras. I got to see my first whale at sea, and I have had the opportunity to see dolphins a few times now. I find myself often looking for marine life. There are always amazing sunsets at the ocean.

Fire drills

A view off the fantail of NOAA Ship Pisces of the sun setting over the Gulf of Mexico.
Sunset over the Gulf of Mexico
Three mackerel, used for baiting the camera arrays, lay on a teal plastic cutting board.
Bait fish

Bait fish

Julie, right, and an unnamed science team member, left, pose for a photo on deck. Both wear baseball caps and yellow latex gloves. Julie holds a fistful of squid up for the camera. The other person holds an orange mesh baitbag triumphantly above her head.
Bait (squid)
Julie and another science team member stand at a table out on the deck. They are wearing yellow latex gloves. Julie uses a knife to cut the bait into sections on a cutting board. The other person pulls an orange mesh baitbag (filled with cut bait) closed via drawstring. Five other filled baitbags sit on the table.
Cutting and filling bait bags for the baited cameras

Julie Hayes: Days at Sea! April 26, 2023

NOAA Teacher at Sea

Julie Hayes

Aboard NOAA Ship Pisces

April 22-May 5, 2023

Mission: SEAMAP Reef Fish

Geographic Area of Cruise: Gulf of Mexico

Date: April 26, 2023

Weather Data

Clouds: Scattered

Temperature: 77 degrees F

Wind: 12 kt.

Waves: 2-4 ft.

Science and Technology Log

Each day is started and then ended with a water sample from the ocean. The technology is called a CTD, but the procedure would be called a CTD cast (as if we were casting it in the ocean). CTD stands for conductivity, temperature, and depth. The CTD consists of a collection of electronic instruments that measure the properties of the water, including a laser that checks the clarity of the water. Sampling water bottles are connected to a metal frame called a “rosette”. This information on water characteristics is important to both the scientists and the survey mapping team that use cameras and sonar. This information lets them know how well the clarity of the water is and the speed of sound that helps with the depth finders and sonar.

The apparatus containing the conductivity, temperature, and depth probe sits on the deck of NOAA Ship Pisces, awaiting deployment.
CTD used to check water quality, conductivity, temperature, and depth.

Vocabulary Check

What is Conductivity?

Conductivity is a measure of the ability of water to pass an electrical current.

What is Salinity?

Salinity is the dissolved salt content of a body of water and is a strong conductor of water.

So why is it important for scientist to know what each of these are?

The higher salinity the water is, the higher the conductivity of electrical currents.

Temperature also plays a role in the density. Knowing each of these is important because it lets the scientists know the water quality at different depths so they can make adjustments to their cameras and sonar.

Jack Prior, Chief Scientist

Jack is a pretty “chill” guy, and I have enjoyed watching him in action the past few days. Jack is the field party chief of this mission which involves everything from planning the trip, to deciding the daily sampling locations, deploying cameras, mapping, and figuring out what to do when things go wrong. Jack is in charge of planning and submitting the protocol for the entire mission and also is responsible for the end reports of the mission. You will find Jack on this leg sitting behind multiple computers regulating and keeping a watchful eye on all of the important information regarding this mission. Jack attended the University of West Florida to get his degree in marine biology.

Jack sits at a computer desk with multiple monitors. He smiles at the camera, his right hand giving a thumbs up.
Chief Scientist Jack Prior

Student Question of the Day

Whenever I get a chance, I ask random crew members questions that my students back home were curious about. Here is how Jack answered some of the students’ questions.

Konnor, Nichole, Lillian ask: What degree do you have and what all is needed to do your job?

Jack started his major in biology and had originally planned on going on to be a pharmacist, but then moved to Florida where he ended up getting his degree in marine biology instead. Jack continued to also get his Masters at the University of West Florida, too. Jack changed his career path because he enjoyed marine life. Volunteer work is crucial to get experience, and can benefit you on becoming more diverse when it comes to getting a job in marine biology.

Alyson asks: What would be your dream job?

Someday Jack wants to explore the seafloor in a submarine.

Blake, Sailor, Lilli, Jenna ask: What is your favorite food on the ship?

Taco Tuesdays seem to be a huge hit on the ship, as well as Friday pizza day.

Auburn, Ashton M., Karson, Liam: What would you consider to be the coolest marine life you have seen?

Seeing large diverse reef habitats is what Jack says he finds the most interesting, especially uncommon invertebrates that you’d never see on the beach.

Jaxon and Dwight: Can you be on the ship if you have health issues and what happens if there is a medical emergency?

The ship is a pretty confined space with steep stairs, uneven footing, areas you have to be able to step over, and have the ability to carry heavy weight. If there is ever a medical emergency, the ship works alongside the United States Coast Guard to get them the help they need. However, the ship is great working with all issues and plans accordingly to those who may have special diet restrictions.

Personal Log

Well, I will say that I am getting better at having my sea legs but that is still a work in progress. I have really enjoyed getting to understand the life on this ship, and I am just amazed at how diverse everyone is and yet still make this an amazing environment. It has taken me a few days to get the hang of where things are and to get out of my comfort zone to ask what I feel like has to be a million questions about everything. I have really enjoyed getting to hear and learn about the crew’s background and how they ended up on NOAA Ship Pisces. I greatly appreciate their willingness to answer my questions, even though I am sure I am in their way at moments. Everyone has a job to do and work different hours and shifts. It is great to see how they all respect each other’s space and sleeping hours.

There is so much science around me that I never knew existed, and I am shocked on how much technology is actually being used and heavily relied upon. Today was the first day the waves were calm enough that I was able to go out on the stern (learning names of different areas of the ship) to work on the blog and soak up a little bit of Sun. It was nice to be able to get some fresh air. The food has been amazing on the ship. I love how everyone is so courteous by thanking the cooks, as well as cleaning up after themselves before leaving the mess. The mess is the area in which we eat and the kitchen is called the galley. It has taken me a few days to understand the boat “lingo” but I am starting to catch on. The stairs are pretty steep, and everyone on board says to use 3 points of contact when walking. This is so that if they hit a wave while walking you are more stable. I could definitely see this being an issue going up and down the stairs. The doors are super heavy and I am still learning how to get those twisted and sealed tight the first time I close it (I am getting there).

A view of the mess: that is, the ship's the dining area. At the moment, it is unoccupied. There are five long tables, bolted to the floor, covered in blue vinyl or plastic table clothes. Black chairs surround each one. The chair's legs are all capped in cut-open tennis balls. The tables are supplied with condiments and paper towel holders. A large television screen mounted on the wall shows a football game.
The mess where we eat. It is spotless and a great size to fit everyone on board.

Julie Hayes: And…We Depart! April 23, 2022

NOAA Teacher at Sea

Julie Hayes

Aboard NOAA Ship Pisces

April 22-June 5, 2022

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 23, 2023

Weather Data

Broken Clouds

Temperature: 73 degrees F

Wind: 20 kt.

Waves: 4-5 ft

Science and Technology Log

As I am still figuring my way around the boat, it is very apparent that their need for technology can be found all throughout the ship. There is a remarkable amount of knowledge regarding technology all around me, and I am feeling a bit uneducated compared to the scientists, engineers, officers, and the rest of the crew. As I mentioned in the introduction, we will be using cameras to collect video of fish along the coastal shelf of Texas to Louisiana, on this leg. This is used to categorize habitats. Each spot has been well orchestrated where the cameras will be dropped to collect footage. It takes several different people to make this happen. Environmental DNA (eDNA) is also being collected at various sites. At nighttime, sea mapping is being done as the boat travels by multi-beam sonar.

I am joining this part of the journey, which is leg 3. There is one more leg after this one and in total there are 537 planned Reef Fish Video Survey drops throughout this entire survey (legs 1-4). They are working around the clock to keep this mission going.

A view of several computer monitors at a desk in NOAA Ship Pisces' computer lab.
Technology for sea mapping.
Two camera arrays sit on deck awaiting deployment. They are round metal cages, a few feet in diameter, which house underwater camera equipment. Each is attached to lines and buoys.
Device that holds the cameras for the Reef Fish Video Survey.
A scientist watches camera footage and data feeds on an display of multiple computer monitors above a desk. She's wearing a baseball cap and facing the computer screens, so we can't identify her face.
A few of the many different forms of technology used by the scientist in the lab.

Personal Log

After my flight from St. Louis to Houston, I made my way to Galveston in a shared shuttle service. The shuttle consisted of several people going on different cruise ships the following day. I enjoyed telling them, when they asked, what ship I was going on, that I would be boarding NOAA Ship Pisces. The questions really started rolling in then, and they were fascinated to hear all about it. I was lucky enough to have gotten a hotel that was right across the street from the beach, the famous Pleasure Pier, and a seafood restaurant was just steps away. After check in, I went to the restaurant to enjoy some spicy shrimp tacos, and then headed across the street to the beach where I spent most of the evening just walking up and down the beach. Living in Missouri, you have to take in as much scenery at the beach while you can.

The next morning I was picked up by two officers from NOAA Ship Pisces and taken to the ship. The ship was much larger than I thought! I was shown my room and was told that my roommate would be arriving later that day. I got one of the larger rooms of the ship consisting of 4 beds, and its own bathroom. However, it would just be me and one other person in there so we would have plenty of room. After getting settled into my room, I was able to take part in a tour given by the ship with two professors and some students from Rice University. This allowed me to become more familiar with the vessel, and I learned a lot from listening to their answers that the professors and students asked about life on the ship. I was able to meet my roommate later that evening who is here to collect eDNA samples for the University of West Florida. I think it is so neat that NOAA works with others to enable research to be completed. That night we slept on the ship at that port. The ship is scheduled to leave the port at 10:00 am in the morning. I was still nervous about being on the ship but had already met so many supportive and friendly people, that I knew they would be welcoming for the next few weeks while on the water.

This morning we left the port as scheduled. It didn’t take long to realize the ocean was a little angry today, with what I thought was some pretty big waves. I have a feeling I will be living on Dramamine for the next few days. So needless to say I was pretty worthless the first day out. It is apparent that it is going to take a little bit of time to get my sea legs in the rough water, and I find myself extremely clumsy falling into the walls as if I am walking in one of those funhouses with the sloping floors. I am amazed how well everyone else on the ship can walk. So hopefully there is promise that the longer I am on here, the better I will, too.

We completed safety drills to ensure that everyone on the ship, in case of an emergency, would know what to do. We went over fire safety, and had a fire drill. We then did an abandon ship drill (we didn’t actually abandon ship), where we had to put on an Immersion Suit. That was not as easy as I thought it would be! I am amazed how everything on the ship is ran, planned out, and everyone knows exactly what their job is.

Julie Hayes, wearing shorts and a long-sleeve shirt, stands in front of NOAA Ship Pisces in port. We can see, on the side of the ship, large black letters identifying the ship is NOAA R 226. Julie mostly blocks the view of the adjacent blue and white NOAA logo.
Seeing the ship for the first time!
A view into Julie's stateroom. We can see two sets of bunk beds, with two bunks on each wall. Each bunk has a bright blue curtain that can be drawn across it for privacy. In the middle of the room is a metal storage cabinet.
Where I will be sleeping for the next few weeks.
Two people stand on deck wearing large orange survival suits zipped up to their noses.
Abandon ship drill: Immersion Suit
A close-up view of the letters "MMS" (for Macon Middle School) scrawled in the sand.
Letting my Macon R-1 Middle School Students know I am thinking of them while on the beach at Galveston!

Julie Hayes: Worth the Wait! April 16, 2023

NOAA Teacher at Sea

Julie Hayes

Aboard NOAA Ship Pisces

April 22 – May 5, 2023

Mission: Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 16, 2023

Three Years In the Making

As I am writing this, I find it hard to believe that over three years have passed since I was first selected to start my journey as a Teacher at Sea (TAS) with the National Oceanic and Atmospheric Administration (NOAA). I am so grateful to continue to be a part of this amazing opportunity. In just a few days I will be on my way to join world-renowned scientists and to meet the crew of the ship.

I will be participating, April 22-May 5, 2023, in a Reef Fish Survey on the Gulf of Mexico on NOAA Ship Pisces. Here is the link to learn more about the ship I will call home for 14 days. The goal of this survey is to deploy baited cameras to gain video that allows us to count/measure the fish we see, categorize habitats, and ultimately provide information on overall fish populations. The measurement of water quality will be checked for environmental DNA analysis, which can provide information on what fish have been in the area. Another goal is to do seafloor mapping so that we can find new habitats worth sampling and provide higher quality maps. I will embark at the port in Galveston, Texas and disembarkation will take place in Pascagoula, Mississippi.

I am excited-nervous and the anticipation is at its highest right now. A part of me still has some disbelief that this is FINALLY going to happen. I am beyond ready and can’t wait to share this experience with my family, friends, and students.

NOAA Ship Pisces underway. Image courtesy of NOAA.

Introduction

Welcome to my Teacher at Sea Blog. My name is Julie Hayes and I am from Macon, Missouri. Macon is a small rural farming community in Northeast Missouri. I currently teach life science, ecology, and STEM at Macon R-1 Middle School, but I have taught grades 6-12 covering many science subjects. I would consider myself a life-long learner and am excited to see first- hand the data collection on this mission and how the use of technology has helped the scientists learn more about the ocean and ecosystems themselves.

I have been married for 24 years and have two grown kids. My son graduated last year with a degree in nuclear medicine and married his high school sweetheart. My daughter will soon be finishing up her first year of college. I am excited to share my experiences with my students. I was influenced by my science teacher growing up who allowed us to do hands on learning and this really peaked my interest to persuade young students to love all facets of science, too. I am excited to be taking this journey along with my students.

This is a formal group photo from a wedding. Julie stands all the way to the left, next to her son, his bride, Julie's daughter, and Julie's husband. The bride and the daughter hold bouquets.
Family picture of my son’s wedding this past summer.

Why did I apply to NOAA Teacher at Sea?

Wow! Do I ever get asked this a lot from this midwestern town? Several people I know that have never ventured out further than the neighboring states of Iowa and Illinois, ask me, “why in the world I would want to go out into the ocean with a bunch of strangers and do a bunch of high tech science stuff that none of us have ever heard of?” Even my own children think I am crazy! I tell them it is exactly what I have dreamed of doing my whole life.

Growing up on a farm in a super small town, surrounded by nothing but cornfields and cows, created a sense of wanting to go out and see the world. My family cultivated most of our own vegetables and raised or harvested our own meat. Because of this, I was taught the importance of sustainability. I have always been drawn to nature (probably because it was all around me), but really became fond of all things water. I grew up swimming and observing all of the animals in rivers, creeks, ponds, and lakes. I spent countless hours trying to catch tadpoles, fish, frogs, and turtles just to put them back again. I developed an instant fascination with the ocean at a young age when I came across the scientific expeditions of Jacques Cousteau, that just happen to be on one of the 3 television channels that we could actually get.

I spent many years thinking I was going to go into marine biology, but due to being 1400 miles away from my college of choice for that, my plans took another turn. In fact, if any of my students still to this day ask me if I could be anything other than a teacher what would it be, I have always said a marine biologist. Because of my love for the ocean and the desire to continue to grow and learn more to influence my students, I started researching teacher opportunities over ten years ago.

That is when I found the National Oceanic and Atmospheric Administration’s Teacher at Sea Program. I knew that my plans of applying were several years away, because I wanted to wait until my kids were older. In 2019, I took the leap of faith and filled out the application and got the amazing news that I was chosen for the 2020 season. When the COVID pandemic hit, everything came to a stand still preventing me from going.

Student Impact

I currently teach over 100 middle school students. I want to encourage them and spark an interest to have a passion for science like I do. By having the opportunity to teach in this rural community, I would consider myself extremely lucky. I have many real-world examples students can relate to right at my fingertips. I put an emphasis on my students being able to relate to the environment around them. One way I do this is by using examples they come across in their everyday lives, especially discussing farming sustainability and ecological topics like symbiosis and food webs. Several educational specimens I bring into the classroom come from my own pond or land that I live on. I love encouraging them to just go outside and look around, including those students that tend to stay indoors more.

We are lucky to have a state park in our little town. When we discuss the importance of conservation, they can see first hand the effects of doing so and why it is so important. Since we are landlocked and far from the ocean, I try to bring the ocean to them. I use symbiotic relationships with ocean ecosystems as examples, and you can find many ocean organisms displayed throughout my classroom. Part of the application process to become a NOAA Teacher at Sea, was to include an original lesson plan. I wanted to create a lesson teaching the students that our practices here, whether it be in farming or the burning of fossil fuels, impact the oceans ecosystems. We discuss how our farming practices in the Midwest can filter through the watershed and end up in the Mighty Mississippi River that meets the Gulf of Mexico. Making them aware of the things we do in our own community, can still have an impact on the oceans ecosystems.

My hopes are that from this learning experience myself, I will become more educated on key topics from ocean careers, use of technology, and practices that will influence my students. Students in my class are often problem solving for solutions, collecting data, and then analyzing that data to come up with their answers. This opportunity involves all of these, in which I can’t wait to share with them.

Student Involvement

Students and co-workers are excited to hear about my NOAA Teacher at Sea experience. Students wrote down questions they were curious to ask about the ship, mission, scientist, and crew. They also wrote me personal encouragement letters to take along with me while I am out to sea. I can’t wait to read them while I am away! My hopes are to maintain contact with the students while I am at sea, and plan to spend a few days a week checking in on them. I will miss all of them, but know that this experience will be well worth it.

A headshot photo of Julie dressed as the book character Ms. Frizzle. She wears a toy lizard perched on her shoulder.
Even Ms. Frizzle can’t wait for you to enjoy the blog!

Maronda Hastie: Depart Cape Canaveral & Student Interviews, August 31, 2022

NOAA Teacher at Sea

Maronda Hastie

Aboard NOAA Ship Oregon II

August 28 – September 14, 2022

Date: Wednesday, August 31 – Thursday, September 12, 2022

Mission: Shark/Red Snapper Bottom Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Weather Data:

Lows/Highs = 75 degrees – 90 degrees Fahrenheit
Wave Height = 1’6″ – 1’8″ Northeast
Wind Speed = 6.2 mph
Humidity = 77%
Barometric Pressure = 29.97″ HG
Sky = Partly Cloudy & Scattered Showers

  • A collage of three photos: at left, a close-up of the captured wahoo on deck, its mouth open to reveal tiny, sharp teeth. At right, two photos of fisherman Josh Cooper standing on deck, holding the captured wahoo at different angles. The fish appears to be about 4 feet long.
  • Jade poses for a photo on the deck of the ship wearing an orange survival suit that covers her head to foot. An empty orange storage bag lies unzipped near her feet. In the background, another crewmember bends to remove or return his survival suit to its storage bag.
  • Maronda, wearing a Teacher at Sea hat, pauses halfway through donning an orange survival suit to hold her gloved right hand up for a photo.
  • Maronda, wearing her Teacher at Sea hat and shirt, stands with Jade on the back deck of NOAA Ship Oregon II. It's a bright day with blue skies, white clouds, and fairly calm seas. In the background we can see a longline with gangions (hooks), a bucket, and a Yeti cooler.
  • Maronda, wearing her Teacher at Sea hat and shirt, sits next to biologist Jim Patterson in an interior room of the ship. They both look at something (presumably a computer screen) out of frame. On the wall behind them are framed photos and a plaque about NOAA Ship Oregon II.
  • Maronda, wearing her Teacher at Sea hat and shirt, sits next to researcher Heather Moncrief-Cox in an interior room of the ship. They both look at something (presumably a computer screen) out of frame. Heather, mid-sentence, gestures with her hands near her face. On the wall behind them are framed photos and a plaque about NOAA Ship Oregon II, plus a ship's bell mounted on a wooden background.
  • View of the sunset over the water; the wake of the ship is visible in the foreground
  • Maronda stands with her arms on the taffrail in front of a sunset over the ocean. Backlit from the sunset, we can only just make out her smile. The bright blue and white NOAA Teacher at Sea logo on her navy-colored t-shirt stands out.

Now that we have departed Cape Canaveral, I’m enjoying the Florida coastline! It didn’t take long for Fisherman Josh Cooper to catch a Wahoo. He must have read my mind about plans for dinner.

Science Log

On Wednesday, August 31, 2022, NOAA Ship Oregon II departed Cape Canaveral and started a path along the Florida coastline headed to the Gulf of Mexico. All of us took another Covid-19 test before departure to keep everyone safe. We had to wait for 17,000 gallons of diesel fuel to load the vessel. I was surprised about the amount of fuel needed for our journey! Although my shift begins at 12pm, I have time to get adjusted since we haven’t made it to the 1st location. I included my students in the interviews with several shipmates. Heather Moncrief-Cox, Senior Research Associate, and Jim Patterson, Fisheries Biologist, sat with me while I logged into Google Meet during my 9th grade Algebra Math class. They seemed happy to answer the questions shown below and were patient with the students. Mrs. Ashanti Raymond, teacher at McNair High School, did an excellent job monitoring the students working while they took their turn asking questions in front of the screen.

On Thursday, September 1, 2022, the students from my Coordinate Algebra & Pre-Calculus classes interviewed Chuck Godwin, Lead Fisherman, and Collin Lynch, Chief Electronics Technician. Their careers & lives are quite interesting! We found out more information about the logistics of fisheries surveys, different careers, education & certifications. I appreciate them taking the time to talk to us! This experience helps me and others understand the purpose of research, safety rules, and how everyone’s part is important!

Table titled: Interview Questions for Teacher at Sea Program: Chuck Godwin, Jim Patterson, or Heather Moncrief-Cox. Table includes 18 questions, such as "When did you realize you wanted to pursue a career in science or an ocean career?" and "What are your normal job duties?"
Interview Question suggestions for the students at McNair High School

The carousel of pictures was taken while students logged into Google Meet to interview my shipmates. Many of the students took notes & emailed me their summary.

  • This slide features the photo of Maronda and Jim Patterson during Jim's video interview. A box caption reads: McNair High Students Interview Jim Patterson: NOAA Fisheries Biologist aboard the ship Oregon II. Part of the NOAA logo is visible as the slide's background.
  • Slide titled "McNair High Students Interview Jim Patterson: NOAA Fisheries Biologist." On the left, there's a photo of Jim wearing a hard hat and life vest, weight a (barely visible) shark. On the right, he leans over a captured fish (maybe wahoo) near a measuring board. The slide includes three bubbles of questions and answers from the interview.
  • On this slide, Jim Patterson, wearing a hard hat and gloves, lines gangions up along the side of a barrel to prepare for the next longline sampling. A box caption reads: McNair High Students Interview Jim Patterson: NOAA Fisheries Biologist. Text bubbles include two

McNair High Students Interview Jim Patterson, NOAA Fisheries Biologist aboard NOAA Ship Oregon II:

What was your most memorable moment at sea?

While I was doing my job a sperm whale came up from the water! It rolled over to the point where you could see its eye and we just stared at each other. It was so remarkable to me that I forgot to turn on my camera.

How does being at sea affect your family life?

I don’t have my own family so therefore that’s not a problem for me. I talk to and meet new amazing people all the time.

What advice can you give students?

Do whatever you are interested in and the work you do in the end will all be worth it! You’ll be happy that you did it.

What is rewarding about your job?

There’s so much that I’ve discovered over the years and new things that I’ve learned. The experience also is something that’s worth it, along with the view of the ocean and sights of the creatures.

How are environmental issues related to STEAM (Science, Technology, Engineering, Arts, and Math)?

STEAM applies to just about everything in life.


  • This slide features a photo of three people on deck carrying a large hose; one, wearing a hat, turns to face the camera and flash a peace sign as he hoists the hose on his right shoulder. This slide is titled "McNair High Students of Dekalb County Georgia Interview Chuck Godwin: NOAA Lead Fisherman." It includes two question and answer text boxes. The NOAA logo is partially visible as the slide background.
  • This slide features a photo of Chuck, wearing a life vest, resting his right hand on another crewmembers' shoulder and pointing excitedly with his left to something out of frame.

McNair High Students of Dekalb County, Georgia, interview Chuck Godwin, NOAA Lead Fisherman:

What certificates or degrees do you have?

I have a Wildlife Management Ecology degree and Multi-Management Certification.

How does your job affect your family?

When my kids were younger this would affect them because I would be gone 2 weeks to 2 months. They are grown now so not so much.

What was your most memorable moment at sea?

We caught a 27 foot basking shark.

What are some of the rewards with your job?

I like the long-lasting friendships and my shipmates are like a second family to me.

What are you looking forward to aboard NOAA Ship Oregon II?

I’m hoping to catch a record-winning great white shark.

Why is your research important?

I protect species and keep them going. I make sure they are okay.


  • This slide is titled "McNair High Students of Dekalb County Georgia Interview Heather Moncrief-Cox: NOAA Senior Research Associate." It features a photo of Heather clipping the fin of a sampled grouper. There's a smaller screenshot of three students smiling at the camera during the video chat. There's one question and answer text bubble set.
  • This slide features a photo of Heather and Jade loading sample tissues into envelopes or vials on deck at night. There's also a screenshot of Heather and Maronda looking at the camera during the video chat. There are three more text boxes.

McNair High Students of Dekalb County, Georgia, Interview Heather Moncrief-Cox, NOAA Senior Research Associate:

When did you realize you wanted to pursue a career in science or ocean care?

I’ve always wanted to do this ever since 3rd grade when I dressed up as a Marine Biologist. At 13, I started shark diving.

Why is your research important?

It’s important to do research because it allows you to learn information you might not have known before. You can also gather evidence or proof to contribute to the information you learned.

Heather makes sure data is recorded and tissue samples are stored properly for later research.


On Friday, September 2nd, 2022, the students in my Analytic Geometry class interviewed Fisherman Josh Cooper. He was very helpful with different positions on the deck. He explained his life at sea & talked about some of the fish he recently caught. Later during the week, he prepared ceviche for everyone with the fresh catch of the day.

  • A slide titled "McNair High Students of Dekalb County Georgia Interview Josh Cooper: NOAA Fisherman." It features a photo of Josh showing off his captured wahoo (from earlier slide show) plus a small screenshot of Marond and Josh during the video interview. It has one question/answer box.
  • A slide titled "McNair High Students of Dekalb County Georgia Interview Colin Lynch: NOAA Chief Electronics Technician." It features a small screenshot of Maronda and Colin during the video chat. There's a text box with a question and answer, and another text bubble that reads: the Wi-FI works on your devices because of my job.

McNair High Students of Dekalb County, Georgia, interview Josh Cooper: NOAA Fisherman

What are your normal duties?

I maintain the deck, catch fish, and work where I’m needed.

McNair High Students of Dekalb County, Georgia, interview Colin Lynch: NOAA Chief Electronics Technician

How does your job affect your social life?

You have to know what you are getting into. I’ve been on the vessel for about 2 months. It’s a challenge and it’s all about knowing how to manage your time. NOAA is really good about giving time off.


On Thursday, September 8th, 2022, I interviewed my supervisor Trey Driggers & Fisherman Chris Love. I was able to use a Voice Recorder APP & my phone to capture the moments. Trey was very detailed with explaining the purpose of collecting the data & helped me increase my marine life vocabulary. Chris shared lots of sunrise pictures & we often compared photos between shifts.

  • A slide titled "McNair High Math Teacher of Dekalb County Georgia interviews William Driggers aka "Trey": NOAA Research Fishery Biologist (Field Party Chief.) It features a photo of Trey on deck holding a high flyer buoy over his shoulder.
  • A slide titled "McNair High Math Teacher of Dekalb County Georgia Interviews Chris Love: NOAA Able Bodied Seaman/Fisherman." It features a portait photo of Chris seated at a table, with his hands clasped and elbows resting at the table, arching an eyebrow as he looks toward the camera. There is one question and answer box on this slide, plus the NOAA logo.
  • A slide titled "McNair High Math Teacher of Dekalb County Georgia Interviews Chris Love: NOAA Able Bodied Seaman/Fisherman." It features Chris, wearing gloves and a life vest, standing on deck near the railing perhaps controlling a winch. There is one question/answer box on this slide, and the NOAA logo is partially visible as the slide's background.

McNair High Math Teacher of Dekalb County, Georgia, Interviews Trey Driggers: Supervisor and Chief Scientist:

“We collect otoliths (inner ear bones) from bony fish species that help the fish navigate near reefs. Then we send the samples to the Panama City Lab to determine the age of the fish. They compare the age & length to see how fast they grow.”

How do you keep the bait organized?

You have to go in order so the lines don’t get crossed. We put a total of 50 hooks with bait in each barrel. The last one in is the first one out. Make sure you put the hooks in the Mackerel bait twice to be more secure. Sometimes you’ll get pieces of the bait back or none at all. If we’re lucky, then we’ll catch a few fish. The numbers on the hooks help us stay organized too.

McNair High Math Teacher of Dekalb County, Georgia, Interviews Chris Love: NOAA Able-Bodied Seaman/Fisherman:

What challenges do you face?

Being away from home. Sometimes you miss out on things. If you play around and don’t pay attention, then you can get seriously hurt.

Do you have any memorable moments?

You get to go to different places and experience things away from home. You meet new people on the ships and ports you visit.


On Friday, September 9th, 2022, my students interviewed Lieutenant Commander, Aaron Colohan. He has a lot of responsibilities & made sure we were safe on the ship. He has a large budget of 1.2 million dollars with many factors to consider.

  • A slide titled "McNair High Students of Dekalb County Georgia interview Aaron Colohan, NOAA Lieutenant Commander." It features an image of LCDR Colohan in his blue NOAA Corps uniform, seated, with his arms crossed. His blue baseball cap reads "NOAA Ship Oregon II," though in reverse, suggesting the image has been flipped. This slide includes one question and answer text box and the NOAA logo as the background of the slide.
  • A slide titled "McNair High Students of Dekalb County Georgia interview Aaron Colohan, NOAA Lieutenant Commander." This slide features one question and answer and a small, darkly lit screenshot of LCDR Colohan and Maronda looking at the screen during the video chat.

McNair High Students of Dekalb County, Georgia, interview Aaron Colohan, NOAA Lieutenant Commander:

What are some rewards you get from your job?

I believe in what I’m doing. My reward is doing something for my country, the world, and the planet. This is an opportunity to work outside of the military for public good.

I have to work with 23-30 people a day and make sure they are happy in their environment along with me. I make sure they are well fed and safe with a $1.2 million budget.


On Monday, September 12th, 2022, I interviewed James McDade, Junior Engineer. I had to use ear plugs because the noise level is very loud on the bottom of the ship where the engine & equipment is located. It was very hot & the space was tight.

  • This slide is titled, "McNair High Math Teacher of Dekalb County Georgia Interviews James McDade: NOAA Junior Engineer." It features a photo of James in the engine room wearing large ear muffs for protection. There is also a close-up photo of dozens of wrenches hanging from pegs above a tool bench. There is one question/answer on this slide.
  • This slide is titled, "McNair High Math Teacher of Dekalb County Georgia Interviews James McDade: NOAA Junior Engineer." This slide features another photo of James (wearing ear protection, and smiling) standing in the engine room; there's also another view of equipment (pipes, hoses) in the engine room. There is one question/answer

McNair High Math Teacher of Dekalb County, Georgia, Interviews James McDade: NOAA Junior Engineer:

What made you choose this career?

I got lucky because I was supposed to only work for 60 days, but I was offered a permanent position over 20 years ago. I had no idea. I’ve been able to travel and see beautiful places all around the Hawaiian Islands.

What challenges do you face?

What I do is maintenance. If anything breaks down, I repair it. I check the refrigeration, water leaks, engines, change filters, and pipe system. Before, it was easy to save money while at sea, but now due to online services I spend more.

Can you describe a memorable moment?

When I worked in Hawaii it was fun going to all the different islands and meeting new people. I also visited Taipan China & Guam. I enjoyed having fun in those places. The atmosphere is nice with everyone getting along.

Do you need a degree or certification for your career?

Yes, I went to training at SIU Piney Point Maryland. That’s where I picked up my last endorsement. I need one more license to be an official engineer. I have to study on my own & take the test.

What advice would you give students?

Check out the different careers. Keep a clean record because you are dealing with the government. You want to make sure you can travel, get a passport so you can see the world. I would also say learn how to work with people. You don’t have to like everybody but be respectful & know how to work together.


Personal Log

I am glad we are on our way to the Gulf of Mexico! The shoreline is gorgeous & the skyline is ever changing into patterns of colorful art. Soon I will no longer see land & view the ever-changing skyline. I’m excited that I get to share this experience with my students & colleagues while sailing. My shipmates work well together & are willing to pitch in wherever they are needed.

Maronda Hastie: Time to Meet My Shipmates, August 30, 2022

NOAA Teacher at Sea

Maronda Hastie

Aboard NOAA Ship Oregon II

August 28 – September 14, 2022

Date: Monday August 29, 2022 & Tuesday, August 30, 2022

Mission: Shark/Red Snapper Bottom Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Weather Data:

Lows/Highs = 75 degrees – 88 degrees Fahrenheit
Wave Height = 1’6″ – 1’8″ Northeast
Wind Speed = 3 – 14 mph
Humidity = 71%
Barometric Pressure = 29.97″ HG
Sky = Sunny

Science Log

On Monday, August 30, 2022, I met my shipmates in Cape Canaveral in front of the ship. We all had to take a self-administered Covid-19 test and wait 30 minutes for the results to appear on the sensor. I was so nervous staring at the apparatus every 5 seconds waiting for the light to brighten on a negative result. That was too much stress! What if it said positive? Would I have to head back to Atlanta or wait a few days? Once the ship leaves the dock, then it does not disembark until the end of the research project. That would have been a disaster! Luckily my results were negative! I was able to board the 170 feet ship NOAA Oregon II, locate my room and take a quick tour.

This ship’s homeport is Pascagoula, Mississippi and conducts a variety of research surveys in the Gulf of Mexico, Caribbean Sea, and Atlantic Ocean. The surveys focus on fisheries, marine mammals, and plankton. Commanding Officer Eric Johnson can lead his staff for up to 33 days at a time. The following are the maximum numbers for the staff.

Commissioned Officers/Mates = 5, Licensed Engineers = 3, Unlicensed Engineers = 2, Deck = 6, Stewards = 2, Electronic Technician = 1, Total Crew = 19, Scientists = 12. Up to 12 people can sit in the dining area at one time with 6 people spread amongst 2 tables.

The ship is equipped with a 275 square feet wet lab, 210 square feet hydro lab, 100 square feet bio lab, 75 square feet computer lab, 4 dive team equipment, 2 cranes, a cradle, trawl nets, hydraulics, ropes, long line fishing gear, a medical treatment room, a laundry room, and a rescue boat that can hold 6 people.

We had to wait for 17,000 gallons of diesel fuel to fill the ship, stock the kitchen, and get other necessary supplies. Can you calculate how much this gas costs in your city? There are a lot of factors that affect the outcome of our journey as we crisscross around the Gulf of Mexico. Luckily, we have trained professionals doing their job!

a collage of four photos. Top left: view of the bow of NOAA Ship Oregon II in port. We can see the NOAA logo and the ship's hull number, R 332. Top right: a view of a table surrounded by six chairs attached on swivel posts to the floor. There's a television on the wall at one end of the table and a porthole window. Bottom left: a scientist sits at one of several computers set up on a long wooden desk. additional monitors are mounted on the wall. Bottom right: a view of a desk and computer monitors in front of the row of windows in the ship's bridge.
Top Left: Front of Ship (Bow), Top Right: Dining Area, Bottom Left: Computer Lab, Bottom Right: Bridge, Captain’s Area

Personal Log

I appreciate my Uncle Bill who made sure I arrived in Cape Canaveral safely. It was good to see him with his gracious welcome to Orlando, Florida. Now that I completed the initial paperwork & received a negative Covid result, I am happy to meet my shipmates! My work schedule will be from 12pm to 12am with breaks in between. I’m the only Teacher at Sea on this ship along with 2 college interns and a volunteer. We are all excited about the upcoming experience. There’s a lot of information to learn in a short period of time, but I think I can manage. My state room has a full bathroom, lots of storage space & twin bunkbeds with curtains. I chose the top bunk. I met with Mr. Collin Lynch, Chief Electronics Technician as soon as I got settled into my room. He made sure my computer & cell phone are connected to the Wi-Fi system. I really appreciate him because I still need to connect with my students, plan lessons & make sure they get assistance as needed during my breaks.

While my shipmates & I waited for the supplies to come in, we had dinner at the local restaurants along the waterfront. I learned how to keep score in a darts game and still lost. I had hoped to see a rocket launch, but the mission was cancelled/postponed. The disappointed people were in traffic starting at 3am in the morning to get a good spot. Oh well, maybe next time.

Top left: Maronda poses for a photo with her uncle outside. Top right: Maronda stands next to a dartboard. Bottom left: a man holds a dart up in his right hand, aiming at a dartboard out of frame. Bottom right: Maronda prepares to throw another dart.
Top Left: My Uncle Bill, Top Right: Me with no luck at darts, Bottom Left: Lead Fisherman, Chuck Godwin, Bottom Right: Me still trying to earn points

I enjoyed listening to the stories, having great meals & asking a few questions. I found out that some of them conduct surveys for up to 45 days before they go home. Some are married with kids while others are single, or kids are grown now. Either way, they adjust to life at sea. Check out a few pictures from my flight to time in Cape Canaveral.

  • Maronda poses with her Uncle Bill outside in Orlando.
  • A view of the stern of NOAA Ship Oregon II in port. It's a sunny day with blue skies and white clouds. A bright orange fast rescue boat mounted on a davit on an upper deck catches the eye.
  • A view of toward the bow of NOAA Ship Oregon II in port. It's a sunny day with blue skies and white clouds. We can see the wooden sign board that reads OREGON II. Two people stand on the lower deck and look over the taffrail.
  • A selfie view of Maronda in front of NOAA Ship Oregon II in port. We can see the back half of the ship, the fast rescue boat, and the American flag ensign flying from the fantail.
  • A close-up selfie of Maronda in front of NOAA Ship Oregon II in port. We can see the NOAA logo and read, in reverse, NOAA R 332.
  • A metal plaque that reads: "R.V. OREGON II, designed by R. H. MACY for U.S. DEPARTMENT OF INTERIOR BUREAU OF COMMERCIAL FISHERIES built by THE INGALLS SHIPBUILDING CORP., a division of LITTON INDUSTRIES, Pascagoula, Mississippi, 1967
  • Maronda reclines in a lawn chair on the deck of NOAA Ship Oregon II, beneath the metal ship information plaque.
  • a close-up view of navigational instruments on the bridge
  • a close-up view of a plate of sushi at a restaurant.
  • four people along one side of a table at a restuarant, eating sushi
  • five people along one side of a long table at a restuarant, eating sushi
  • Maronda and four other people at a long table in a restuarant, eating sushi

George Hademenos: Reflections…of an Inspiring Opportunity as a Teacher at Sea, August 27, 2022

NOAA Teacher at Sea

George Hademenos

Aboard R/V Tommy Munro

July 19 – 27, 2022

Mission: Gulf of Mexico Summer Groundfish Survey

Geographic Area of Cruise: Eastern Gulf of Mexico

Date: August 27, 2022

As a teacher, I am constantly involved in professional development activities which could take the form of a presentation, workshop, seminar, book study or immersive educator experiences such as NOAA Teacher at Sea. At the end of each offering, whether I am required to or not, I take it upon myself to consider its impact on me as an educator and reflect upon how the take-home messages will impact my students. Because of the wide-ranging facets and extensive learning opportunities provided by the Teacher at Sea cruise, I took particular interest in drafting my reflections. It was an experience that I spent an inordinate amount of time thinking about and an activity that I looked forward to reflecting upon. However, just to be clear, reflections in my definition is not a concise and cogent summary of the activities that occurred while on cruise. This is what was presented in each prior post of my blog. Rather, my reflection represents a “30,000-foot overview” of my interpretation and evaluation of the experience.

As I prepared the text for the reflections of my Teacher at Sea cruise, I opted to adapt the words to photos of scenic views taken from onboard the R/V Tommy Munro and threaded the images together in a video presentation.

Reflections of my Teacher at Sea Experience

Reflections of a Teacher at Sea
George Hademenos
SEAMAP Groundfish Survey

As I gaze in any direction at the seemingly endless volumes of ocean, I see questions…
questions to be answered and answers to be questioned,
questions to be formed and questions to be researched,
questions that will inspire one to learn beyond imagination…
with answers that will foster an understanding deep within…
of the unexplored frontier of marine life below the water’s surface.
Questions to me present an opportunity…
to celebrate what we know and to stimulate our quest to discover what we don’t.
As a NOAA Teacher at Sea, I will return to the classroom with…
questions waiting to be answered, answers waiting to be investigated,
and hopefully career paths in ocean sciences waiting to be pursued.

I hope you enjoy the video and for my educator colleagues, please consider taking advantage of this “once in a lifetime” opportunity for you and your students.

In wrapping up the final post for this blog, I would like to continue with the final installment of my exercise of the Ocean Literacy Framework and ask you to respond to three questions about the seventh essential principle (The ocean is largely unexplored), presented in a Padlet accessed by the following link:

https://tinyurl.com/yckk8eet

Remember, there are no right or wrong answers – the questions serve not as an opportunity to answer yes or no, or to get answers right or wrong; rather, these questions serve as an opportunity not only to assess what you know or think about the scope of the principle but also to learn, explore, and investigate the demonstrated principle. If you have any questions or would like to discuss further, please indicate so in the blog and I would be glad to answer your questions and initiate a discussion.

Maronda Hastie: Preparing for Teacher at Sea Aboard NOAA Ship Oregon II, August 28, 2022

NOAA Teacher at Sea

Maronda Hastie

Aboard NOAA Ship Oregon II

August 29, 2022 to September 14, 2022

Date: August 28, 2022

Mission: Shark/Red Snapper Bottom Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Introduction

Greetings from Atlanta, Georgia. Join me during my research on the NOAA Ship Oregon II in an expedition studying shark and red snapper. I am excited to board the ship in Cape Canaveral, Florida and head to the Gulf of Mexico for about 14 days. Be a part of my journey and interact through my blog.

I first learned about NOAA’s Teacher at Sea Program while at the Georgia Aquarium for a workshop two years ago. I immediately looked up more information & started the application process. Although I was accepted & thrilled to participate, Covid-19 delayed my departure. Please understand how frustrated I was as the world’s plans changed before my eyes! Normally I delete spam emails, but I did several searches to make sure I didn’t miss out on the email contacting me back to the original plan. I was so excited to finally get the news I’ve been waiting for that I did a happy dance.

In 2017 I was fortunate to participate in the Georgia Aquarium “Rivers to Reefs” program where educators spent one week testing water in the Altamaha River Watershed. We started in Atlanta and worked our way to Gray’s Reef National Marine Sanctuary off the coast of Savannah, Georgia. Our field experiences included a behind the scenes tour of the Georgia Aquarium, testing water in Shoals Creek on Glenwood Avenue, High Falls State Park in Jackson Georgia, canoe the Ocmulgee River where it meets the Oconee River, Sapelo Island Marine Institute, and Skidaway Island Marine Science Center. This experience opened my eyes to more opportunities for my students and enlightened me on how humans effect the environment. I immediately worked on developing student project presentations and fieldtrips the next school year. I love seeing the “Aha” moments and taking my students to Skidaway Island and other places around the world. I get just as excited as them when they figure out things work.

a slide Maronda created about her experience at the Georgia Aquarium's Rivers to Reefs Workshop. Title: Shoals Creek on Glenwood Avenue. "Our 1st data collection stop was Shoals Creek on Glenwood Avenue in Dekalb County. We observed our surroundings, discussed the difference between invasive and nonnative species, described watersheds and environmental concerns, completed projects to share with our students, and collected water samples."
Georgia Aquarium Rivers to Reefs Program in 2017 Shoals Creek
a slide Maronda created about her experience at the Georgia Aquarium's Rivers to Reefs Workshop.
GA Aquarium Rivers to Reefs Program 2017 High Falls Park
a slide Maronda created about her experience at the Georgia Aquarium's Rivers to Reefs Workshop.
Georgia Aquarium Rivers to Reefs Program 2017 Sapelo Island
a slide Maronda created about her experience at the Georgia Aquarium's Rivers to Reefs Workshop.
Georgia Aquarium Rivers to Reefs Program 2017 Gray’s Reef

While studying Math & Computer Science at Savannah State University, I spent a lot of time in the Marine Biology building working on projects, catching small crabs at the school’s dock, walking to the docks at Thunderbolt, and Tybee Island collecting samples. This allowed me to relax, rejuvenate, learn about the environment and be creative. Now I challenge my students and people around me to do the same. Currently I teach Algebra, Geometry & Pre-Calculus and would like to incorporate more cross-curricular projects with my students.

a collage of photos of students visiting the Georga Aquarium.
Field trip with McNair High Students 2022
a student stands at a black table near a sample tray and laminated instruction sheets. She smiles down a small fish she holds in her gloved right hand.
Mariah was all smiles while she examined the fish at Skidaway Island Marine Science Center 2019
a group of students stands around a specimen bin in a lab setting. several of them hold containers of water and reach in to remove specimens.
Students Examine Samples at Skidaway Island Marine Science Center 2019

Upcoming Surveys in the Gulf of Mexico

My work hours will be from 12pm – 12am leaving from Cape Canaveral & headed to the Gulf of Mexico aboard the NOAA Ship Oregon II. I am excited to work with all types of sharks & red snapper along the way. Listen, if I pull a shark from the tail will it try to bite me? How close do I need to be? How long can the fish be out of water while I carefully examine it & put back in the ocean? What will I use all this information for? Are you trying to make me shark meat? Which statistic will I increase? What if a hurricane approaches, do I need to record that too or leave town? Soon I will find out. Let’s get started!

What did the faculty & students have to say before I depart?

Last week students & faculty members had something to say about this exciting journey I will participate in with NOAA. I am honored to carry the torch for the Teacher at Sea Program this year and proudly immerse myself in the entire experience. Check out what a few people had to say.

Student Da’Vaughn T. : “I would like field trips such as helping the marine life and be able to visit underwater animals.”

Math Instructional Coach Eboni Arnold: “Science research can help students at McNair High School by enhancing their critical thinking skills, mathematical competency as well as gain an in-depth knowledge of science based real life practical skills to enhance their learning. ​Environmental issues are related to STEAM because the more students and educators know about the environment, they are able to raise awareness of the importance of being environmentally safe and protecting our society through learned experiences. ​Everyone can benefit from this amazing experience through Ms. Hastie sharing her blogs, notes, her own experiences, and the connections she will make with her students, colleagues, and within McNair High School. ​ Ms. Hastie is an excellent choice for this opportunity because she always connects real-life opportunities to her classroom instruction. She provides opportunities for students to experience life outside the classroom through field trips and project-based learning.”

Principal Dr. Loukisha Walker:

Principal Dr. Loukisha Walker

Hello, my name is Dr. Loukisha Walker and I am a proud principal of Dr. Ronald E. McNair High School in Atlanta, Georgia. I would like to speak on why Ms. Hastie is the perfect choice for the Teacher at Sea Program. 

For Ms. Hastie, this opportunity is simply an extension of prior and current activities that she has used to expose students to opportunities and programs that would otherwise be out of reach for our students. This allows students to broaden their scope of possibilities for careers and even travel. Ms. Hastie, in addition to all of these things, is an avid blogger, project creator, and loves to communicate what she has learned to students to give them wisdom and insight, though they did not experience it first hand. For this reason and others, Ms. Hastie is simply the perfect choice for the Teacher at Sea Program. I know that Ms. Hastie, and her work ethic, and the way she pays attention to detail, she will take all of that information and bring it back to our students and make sure that she relays that information to them. She’s gonna talk about how exciting it is for them. She’s going to even speak on just her experience for being at sea for so many days. So with all of those things in mind, Ms. Hastie is going to not only do an amazing job while she’s at sea for 15 days, but she’s going to record, she’s going to continue to blog while she’s there, she’s gonna take a ton of photos and she’s going to come back and make sure our students experience it as if they were there with her.

This is Ms. Hastie, this is her work ethic, and we’re so proud of her and we know she’s going to do an amazing job with the Teacher at Sea Program. Congratulations once again, Go Mustangs, and we are proud of you.

Assistant Principal of Attendance & Testing, Dr. Barbara Long:

Assistant Principal of Attendance & Testing, Dr. Barbara Long

“Good afternoon, my name is Dr. Barbara Long. I serve as the assistant principal of attendance and testing at the fantastic Dr. Ronald E. McNair High School. We are so proud of Ms. Maronda Hastie and all that she is going to learn, do, and share when she returns from this amazing adventure. Science research can benefit our students at Dr. Ronald E. McNair High School in multiple ways. Number 1, it will surely help to develop our students’ problem solving, analytical, and critical thinking skills. Hopefully students will engage in actionable research projects following this pursuit and partner and collaborate with others to devise solutions to these real life problems and ultimately benefit the communities in which we live. So I’m looking forward to the engagement, activities, and application of the real science for our students. Proud to be a leader here.”

Art Teacher Debra Jeter:

Art Teacher Debra Jeter

“There’s something that’s universal about science research that could not only benefit the students at McNair, but benefit anyone to know what’s going on around us. How else can we, you know, contribute or help or even understand and live in this world if we don’t have some understanding of, you know, what’s going on around us. And the ocean is so important to us. And I think Ms. Hastie is a great choice for this, because not only has she been well traveled, but she has a great interest in science research and the environment.

And not only that, but she does the most, you know? Like, she’ll be in there, following them and asking questions and writing it down and making sure she bring it back and share with McNair. And so many of these environmental issues are related to STEAM, too, which is a big concern for all the teachers at McNair, because environmental issues, as global warming continues, is gonna be vital for us all to understand how we can contribute to making our environment more peaceful. And not so hostile, and, you know, so many species are going extinct, if we just let this continue, we might be extinct too. And I’m sure that she’s gonna benefit… We’ll all benefit from her experience of being out there. I can’t wait to hear her stories and see her photos. I’ve been on journeys with her before she’s a marvelous… She know how to find places and go places and do things, she’s very capable. It’s gonna be fascinating just to hear her second-hand stories of what she found and how we can help make the world a better place.”

Business & Technology Teacher Wanda Charles-Henley

Business & Technology Teacher Wanda Charles-Henley

“Hello, my name is Wanda Charles-Henley and I’m a business teacher here at McNair High School. And I’d like to answer question number two: how and why is Ms. Hastie a good choice for this opportunity? I think Ms. Hastie is a perfect candidate for this opportunity because she’s always willing to go above and beyond for not only the students here at McNair, but also the staff members. She’s always willing to lend a helping hand. As a new teacher here, she was the first one to come and say she would teach me some of the new programs ’cause I’d been out of education for a while. She’s always one of the last teachers to leave the building. So she has a number of programs that she has coordinated for the students, exposing them to a lot of the opportunities outside of school. She also has the Chick-fil-A Leadership Program. She’ll coordinate activities for the students such as skating, coordinate activities such as environmentally cleaning up the Chattahoochee River. She’s always coming up with innovative ways to get the students involved. And I just think she will be an excellent candidate, and she is an outstanding teacher, and I can’t wait to see what she brings back to McNair High School and all the information she’s gonna share with us. Go Ms. Hastie!”

Culinary Arts Teacher Chef Leslie Gordon-Hudson:

Culinary Arts Teacher Chef Leslie Gordon-Hudson

“Okay, my question that I will be answering is how and why is Ms. Hastie a good choice for this opportunity… Ms. Hastie is a good choice for this opportunity, ’cause she is one teacher, I know, that will go out and get the resources and the information and bring it back not just to her math class, but in the entire school and engage the entire school, and whatever the idea is or the project or the learn resource or whatever the systems that she learned, that’s why I think she’s a great choice for this program.”

Student Dieynabou D.:

Student Dieynabou D.

“I believe that everyone can benefit from this great experience because it will provide excellent exposure into many things, including careers into oceanography. As a student leader, and a member of the National Beta Club here at McNair High School, I’m looking forward to creating community service activities that are involved with the environment.”

And here’s what I have to say:

Teacher at Sea Maronda Hastie

Hi, my name is Maronda Hastie. I am a representative of McNair High School in DeKalb County, Georgia. I am so excited to have been selected to be a part of the Teacher at Sea Program. I first heard about it at the Georgia Aquarium, and it is a program from NOAA, the National Oceanic and Atmospheric Administration. So I’m excited that I’m gonna be studying shark and red snapper (hope the shark doesn’t eat me!) but I’m excited about studying the shark, because once I do all of my research for a few weeks, I get to bring it all back and I will share it with my colleagues, I will share it with my students, and I will share it with the community. So I feel like my job is to just spread the information about oceanic opportunities, as well as opportunities for the students to know about more careers, more field trips, more hands-on activities in the classroom. So I’ll develop a few lessons, so although I teach math, we can do interdisciplinary projects, so I’ll be working with, say, the science teacher, I work with the art teacher, I work with any teacher who would like to create lessons with me, so that we can, you know, expose our children. So I’m excited.

George Hademenos: Homeward Bound…from Biloxi, Mississippi, August 26, 2022

NOAA Teacher at Sea

George Hademenos

Aboard R/V Tommy Munro

July 19 – 27, 2022

Mission: Gulf of Mexico Summer Groundfish Survey

Geographic Area of Cruise: Eastern Gulf of Mexico

Date: August 26, 2022

When I received my assigned schedule for my time at sea aboard the R/V Tommy Munro, I was participating in Leg 1 of the Summer SEAMAP Groundfish Survey that departed Biloxi, MS on July 18 and returned to Biloxi, MS on July 27. In a previous post, I highlighted the changes that have occurred since its original planned journey (departing from Galveston, TX instead of Biloxi, MS; change in ships from Oregon II to Tommy Munro; and change in dates from 6/20 – 7/3 to 7/18 – 7/27). With all of these changes, the cruise was delayed by one day because of logistical concerns. Once everyone boarded the vessel on the evening of July 19 and we left dock, it truly felt like this experience was actually happening… and it was. But as they say, especially among scientists, one should always expect the unexpected.

On early Sunday morning while asleep following my shift, I was awoken by one of my bunkmates that we would by stopping the survey and heading to port early because of an emergency issue with a crew member. We were expected to arrive in Biloxi on Monday, July 25 by 6:00 am.

As Sunday evening came around, the estimated time of arrival was moved up to 4:30 am so I simply stayed up so I would be packed and ready to go once we reached port. My immediate worry turned to my flight from Biloxi to Dallas but the NOAA Teacher at Sea staff were on it and I was confronted with a good news/bad news scenario. The good news? I was able to get on a flight for Monday. The bad news? The flight was scheduled for 7:00 pm. So I stayed aboard the ship until 12 Noon and then called for a taxi. I decided to contact the driver who took me from the airport in Biloxi upon arrival. He was honest, friendly and personable so I decided to see if he was available for a ride to the airport. This turned out to be another good news/bad news scenario. The good news? Yes, the taxi cab driver was available to pick me up and take me to the airport. The bad news? He would be able to pick me up until 3:00 pm, leaving me with a 3-hour wait but I felt good knowing I had a ride to the airport.

As luck would have it, the driver showed up about 15 minutes early and I was off to the airport. Following check in at the counter, I went through security and on to my gate to await the flight. There were several changes in the departure time but in the end it turned out to be delayed approximately 30 minutes. The flight was short in duration (about 90 minutes) and smooth. The flight is detailed in the attached figure below.

a map of the flight path from Gulfport airport (GPT) to Dallas-Fort Worth airport (DFW.) additional details show that George landed in Dallas at 9:21 pm CT. the flight arrived 37 minutes late.
Information Regarding my Homeward Bound Flight

After a short wait at baggage claim to retrieve my luggage and a 30-minute taxi ride home, it was the end of a very tiring day, and the beginning of a period of reflection and processing of a very exciting experience. In the next and final blog post, I will share my reflections from my time as a NOAA Teacher at Sea.

In this installment of my exercise of the Ocean Literacy Framework, I would like to ask you

to respond to three questions about the sixth essential principle (The ocean and humans are inextricably interconnected.), presented in a Padlet accessed by the following link:

https://tinyurl.com/yuu7wfre

Remember, there are no right or wrong answers – the questions serve not as an opportunity to answer yes or no, or to get answers right or wrong; rather, these questions serve as an opportunity not only to assess what you know or think about the scope of the principle but also to learn, explore, and investigate the demonstrated principle. If you have any questions or would like to discuss further, please indicate so in the blog and I would be glad to answer your questions and initiate a discussion.

George Hademenos: A Day in the Life…of a Marine Science Researcher, August 25, 2022

NOAA Teacher at Sea

George Hademenos

Aboard R/V Tommy Munro

July 19 – 27, 2022

Mission: Gulf of Mexico Summer Groundfish Survey

Geographic Area of Cruise: Eastern Gulf of Mexico

Date: August 25, 2022

In this post, I would like to walk you through my interactions and observations with the science research being conducted aboard the R/V Tommy Munro, in particular, the steps that were taken during a trawling process. The entire process involved three stages: Preparing for Sampling, Conducting the Sampling, and Analyzing the Sampling with each stage consisting of six distinct steps.

View the following steps in an interactive tour here: Trawl Sampling Process (Genially)

I. Preparing for Sampling

Step 1: The ship travels to designated coordinates for sampling sites as determined for the particular leg of the Survey by SEAMAP (Southeast Area Monitoring and Assessment Program).

screenshot of a computer screen showing the path that R/V Tommy Munro traveled among sampling sites. The ship's path is a bold blue line connecting sample sites marked in yellow. It's superimposed on an electronic nautical chart. This survey occurred southeast of Florida's Apalachicola Bay and St. George Island.
Ship Transport to Sampling Site

Step 2: Once the ship reaches the site, a Secchi disk is attached to a cable and lowered into the water off the side of the ship to determine visibility. When the disk can no longer be seen, the depth is recorded and the disk is raised and secured on ship. 

a scientist wearing a life vest stands on a small grated platform that has folded down off the fantail of R/V Tommy Munro. With his left land, he grasps a cable hanging from an A-Frame that extends out of the photo. The cable is attached to a white disk, about the size of an old record, with a weight underneath.
Deployment of Secchi Disk

Step 3: A CTD (Conductivity, Temperature, and Depth) unit is then prepared for deployment. It is a rectangular chamber with sensors designed to measure physical properties of the water below including dissolved oxygen, conductivity, transmissivity, and depth. 

a conductivity, temperature, and depth probe, mounted inside a rectangular metal cage about 1 foot square and about 3 feet high, sits on deck. a crew member wearing white shrimp boots hooks a cable onto the top of the CTD frame. Another person, mostly out of frame, touches the CTD frame with their right hand, covered in a blue latex glove.
Preparation of CTD Unit

Step 4: The CTD unit is powered on and first is submerged just below the surface of the water and left there for three minutes for sensors to calibrate. It is then lowered to a specified depth which is 2 meters above the floor of the body of water to protect the sensors from damage. 

the CTD unit, attached to a cable, sinks into dark blue water.
Deployment of CTD Unit

Step 5: Once the CTD unit has reached the designated depth, it remains there only for seconds until it is raised up and secured on board the ship.  

a science team member, wearing a blue hat, a blue life vest, and blue latext gloves, stands on the deployment platform out the back of R/V Tommy Munro. He grasps the top of the CTD frame as a cable lifts it back out of the water.
Recovery of CTD Unit

Step 6: The CTD unit is then turned off and the unit is connected through a cable to a computer in the dry lab for data upload. Once the data upload is completed, the CTD unit is flushed with deionized water using a syringe and plastic tubing and then secured on the side of the ship.   

the CTD unit sits on deck, now connected to a computer via a cable to upload the data it collected.
Data Upload from CTD Unit

II. Conducting the Sampling

Step 1: The trawling process now begins with the trawl nets thrown off the back of the ship. The nets are connected to two planks, each weighing about 350 lbs, which not only submerges the nets but also provide an angled resistance which keeps the nets open in the form of a cone – optimal for sampling while the ship is in motion.

a view of the fantail of R/V Tommy Munro, from an upper deck. we are looking through the rigging of the trawl frames. two large planks rest on the lower deck, connected to ropes and lines. the trawl net, connected to the planks, extends out the back of the fantail. It is just visible below the surface, a turquoise-colored cone submerged in a blue sea.
Preparation of the Trawling Process Part 1
another view of the fantail of R/V Tommy Munro from an upper deck, through extensive rigging and frames. the trawl net is further extended; now the large planks are lowering off the back deck as well, suspended by lines connected to a pulley in an A-frame. it is a clear day and the water is very smooth.
Preparation of the Trawling Process Part 2

Step 2: Once the trawl nets have been released into the water from the ship, the ship starts up and continues on its path for 30 minutes as the nets are trapping marine life it encounters.

a view of the fantail of R/V Tommy Munro from an upper deck. the trawl net is fully deployed and no longer visible. a crew member sweeps the deck.
Onset of the Trawling Process

Step 3: After 30 minutes has transpired, a siren sounds and the ship comes to a stop. The two weighted planks are pulled upon the ship followed by the trawl nets.

a view of the A-frame at the fantail R/V Tommy Munro as the trawl net rises from the ocean. The two spreader panels are suspended from separate lines running through the central pulley. behind those, the top of the trawl net is visible above the water. a crew member guides the spreader doors with his left hand, holding the lines with his right hand.
Conclusion of the Trawling Process Part 1
the spreader doors are now resting on the fantail deck again. two crewmembers, wearing life jackets, pull the trawl net back on board.
Conclusion of the Trawling Process Part 2

Step 4: The trawl nets are raised and hoisted above buckets for all specimens to be collected. Then begins the process of separation. In the first separation, the marine life is separated from seaweed, kelp and other debris. The buckets with marine life and debris are then weighed and recorded.

a crewmember (only partially visible) empties the contents of the trawl net into a blue plastic basket. it looks like it's mostly sargassum.
Content Collection from the Trawl Part 1
four plastic baskets on deck hold the sorted contents of the trawl. one has larger fish; another contains only a single fish; a third is a jumble of seaweed and sargassum, and may represent the remainder to sort; the contents of the fourth are not visible. a crewmember wearing a life vest and gloves leans over the baskets. another crewmember, only partially visible, looks on.
Content Collection from the Trawl Part 2

Step 5: The bucket(s) with marine life are emptied upon a large table on the ship’s stern for separation according to species.

a pile of fish on a large metal sorting table. we can see snappers, a trigger fish, and many lionfish. a stack of white sorting baskets rests adjacent to the pile.
Separation Based on Species Part 1
a gloved hand reaches toward the pile of fish on the metal sorting table. (this photo was taken from the same vantage point as the previous one.)
Separation Based on Species Part 2

Step 6: Each species of marine life is placed in their own tray for identification, examination, and measurements inside the wet lab. 

two gloved crewmembers sort fish into smaller white baskets on a large metal sorting table. the table is on the back deck of the ship, and we can see smooth ocean conditions in the background. the crewmember in the foreground considers a small fish he has picked up from the remaining unsorted pile. the other crewmember looks on.
Species Sorted in Trays Part 1
a close-up view of the sorting basket containing only lionfish.
Species Sorted in Trays Part 2

III. Analyzing the Sampling

Step 1: After all species were grouped in their trays, all trays were taken into the wet lab for analysis. Each species was positively identified, counted, and recorded.  

a direct view of three fish of different species, lined up on the metal sorting table. the third is a spotfin butterflyfish.
Tray Transport to Wet Lab

Step 2: Once each species was identified and counted, the total number of species was weighed while in the tray (accounting for the mass of the tray) and recorded on a spreadsheet to a connected computer display system.   

a view of a scale.
Total Weight Measurements

Step 3: For each species, the length of each specimen was recorded using a magnetic wand with a sensor that facilitated the electronic recording of the value into a spreadsheet.   

two hands, wearing latex gloves, measure a small lionfish on the electronic measuring board. the scientist holds the fish against the board with his left hand and with his right hand marks the length with the magnetic stylus.
Individual Length Measurements

Step 4: Weights of the collected species were recorded for the first sample and every fifth one that followed.   

the gloved arm places the small lionfish on the scale behind the fish measuring board.
Individual Weight Measurements

Step 5: If time permitted between samplings, the sex of selected specimens for a species was determined and recorded.   

gloved hands cut into a small lionfish to remove the fish's gonads.
Individual Species Sex Identification

Step 6:Once the entire sampling was analyzed, selected samples of specimens were placed in a baggie and stored in a freezer for further analysis with the remaining specimens returned to a larger bucket and thrown overboard into the waters. The separation table was cleaned with a hose and buckets were piled in preparation for the next sampling. 

view out the fantail of R/V Tommy Munro from the lower deck. the trawl net and spreader doors lay on the deck, not currently in use. the sun shines on calm seas.
Finalize Process and Prepare for Next

In this installment of my exercise of the Ocean Literacy Framework, I would like to ask you

to respond to three questions about the fifth essential principle (The ocean supports a great diversity of life and ecosystems.), presented in a Padlet accessed by the following link:

https://tinyurl.com/427xp9p3

Remember, there are no right or wrong answers – the questions serve not as an opportunity to answer yes or no, or to get answers right or wrong; rather, these questions serve as an opportunity not only to assess what you know or think about the scope of the principle but also to learn, explore, and investigate the demonstrated principle. If you have any questions or would like to discuss further, please indicate so in the blog and I would be glad to answer your questions and initiate a discussion.

George Hademenos: (Working) 9 to 5…and Then Some When at Sea, August 24, 2022

NOAA Teacher at Sea

George Hademenos

Aboard R/V Tommy Munro

July 19 – 27, 2022

Mission: Gulf of Mexico Summer Groundfish Survey

Geographic Area of Cruise: Eastern Gulf of Mexico

Date: August 24, 2022

In the prior blog post, I focused my attention on the ship that I would be sailing on during Leg 1 of the Summer SEAMAP Groundfish Survey and then took you on a virtual tour of the various compartments and areas of the R/V Tommy Munro. The ship is an enclosed, confined space and thus I found myself spending much of my time in most of the compartments and areas of the ship during my time on the cruise. In this post, I would like to describe what life was like on the ship as a member of the science team.  

Work schedule

My primary role as a Teacher at Sea was to participate in the research process for this cruise – Summer Groundfish Survey. The detailed step-by-step description of the preparation, collecting, measuring, and analysis of sampling specimens of marine life will be covered in the following blog post. However, regarding the work conducted on the ship, research is ongoing continuously on a 24-hour schedule. The science research team was grouped into two teams with each team working a 12-hour shift. The two teams worked either the AM shift (12:00 am Midnight – 12:00 pm Noon) or the PM shift (12:00 pm Noon – 12:00 am Midnight), seven days a week. I was assigned the PM shift, which took a little getting used to but after the first full shift, the schedule became a routine schedule.

Small living quarters

One of things I should have packed prior to the cruise was a football helmet. Why you might ask? In the prior post as I took you on a tour of the R/V Tommy Munro, I showed pictures of my living quarters on the ship and my bed which provided limited space. If you will recall, my bed was the bottom bunk to the left in the photo below.

A collage of two images. On the left, a view of a closed door (simple, wooden, with a knob, could be in a house.) Several pieces of laminated paper are taped to the door. One reads: State Quarters 2. The next are the two pages of the Emergency Station Bill (not close enough to read). On the right, a photo looking inside the stateroom, where we can see four bunks.
My living quarters aboard the R/V Tommy Munro.

In fact, as I retired to my bed on the first night, I bumped my head. I then got up to go to the bathroom and I bumped my head. Returning to the bed and positioning myself under the covers, I bumped my head yet again. After bumping my head an additional 1,374 times (not really but it seemed like an accurate enough number), I wish I had thought to pack a football helmet but I was not the only one having trouble moving in my bed without bumping my head. My bunkmates experienced the same thing – apparently a normal occurrence in life at sea.

Meals

            One thing to note that while aboard the ship, I never… and I mean never… found myself hungry. There were all sorts of food to accommodate all tastes for all workers at all hours of the day and night. The cook on board the R/V Tommy Munro, John Z., was an amazing cook and continuously worked his magic in the kitchen to prepare three square meals for the crew and research staff. The three meals were breakfast at 5:30 am, lunch at 11:30 am, and dinner at 5:30 pm. One of my many pleasant memories after working one of my shifts and getting to bed by 1:30 am was being awoken by the smell of bacon wafting through the ship. Although I was going on 4 hours of sleep and was dead tired, the bacon was calling… no, scratch that… screaming my name and I was dressed and had a seat at the dining table within 15 minutes. Because of the long shifts often involving hard, strenuous work, many of the crew would sleep through a meal or two. However, leftovers of the prior meal were always available to those sleeping in to be heated up and enjoyed later. Lunch was the one meal that could be enjoyed by the PM crew before starting their shift and be the AM crew as they completed their shift on their way to bed. Some examples of meals that I enjoyed during my time on the R/V Tommy Munro is shown in the collage below.

A collage of four photos of meals arranged on paper plates: chicken cordon bleu with pasta, burrito and fires, a breakfast of bacon eggs hash browns, and a burger with beans and tater tots. The collage is titled: 
"Sample (and Incredibly Tasty) Meals I Enjoyed Aboard the R/V Tommy Munro"
Meals that I enjoyed during my time aboard the R/V Tommy Munro.

DO NOT Touch that Fish but… Bon Appétit!

As an educator interested in any and all things science, I would always look forward to the end of the sampling process and the emptying of the nets to survey our catch – a grab bag of a variety of different types of marine life and species. I had seen images of several types of marine life contained within the nets and recognized even fewer numbers by their name, but again this was an opportunity to learn and every sampling increased my library of marine science knowledge. During one such sampling (as shown in the photo below), I noted a multitude of one species of fish that were unique in their presence and I quickly understood them to be a species of lionfish.

a pile of fish on deck next to a stack of empty sorting bins. there are at least four, maybe as many as seven, lionfish visible in the pile. They are easily identifiable by their pink, orange, and white stripes and marbling and their frilly fins.
The collection of fish from a sampling.

I was somewhat familiar with lionfish and knew them to be an invasive species, detrimental to marine ecosystems. For those interested in learning more about lionfish, please review the two graphics below:

a poster about invasive and venomous lionfish. "With their distinctive venomous spines and aggressive nature, this invasive species has thrived in U.S. coastal waters because they have no natural predators--until now. Whole Foods stores in Florida are selling the 'white, buttery meat' of the fish, hoping to take a bite out of the non-native species hurting Florida's offshore reefs."
An infographic describing the features and habitat of the lionfish.
Credit: Hiram Henriquez / H2H Graphics & Design Inc.
Office of National Marine Sanctuaries, National Oceanic and Atmospheric Administration. Invasive Lionfish By the Numbers. Biology: 50,000 eggs every 3 days. 1 Year to Maturity. 30 Year Lifespan. 18 venomous spines. Distribution: 17x density in Atlantic vs. native Pacific range. Reach depths of 1,000 feet. 1985: year first found off Miami, FL. 4 U.S. national marine sanctuaries invaded: 1) Monitor, 2) Gray's Reef, 3) Florida Keys, 4) Flower Garden Banks. Map of invaded area (Gulf of Mexico, Caribbean, eastern U.S. coast) and area projected for invasion (Brazilian coast.) Control: 164 restaurants serving lionfish. 51,420 lbs of commercial lionfish caught in U.S. 28,770 lionfish removed during REEF sanctioned lionfish derbies. Impacts: Invasive species threaten coral reefs. Before invasion: (illustration of diverse fish assemblage on reef) after invasion: (mostly lionfish.) Over 100 prey fish species. 1,000 lionfish can consume 5 million prey fish in 1 year. 0 known predators.
An infographic depicting invasive lionfish by the numbers. Download full version here: https://sanctuaries.noaa.gov/lionfish/invasive-lionfish-by-the-numbers.pdf

and access the Invasive Lionfish Web portal at:

http://lionfish.gcfi.org/education-outreach#front_page_accordion-block-5

Lionfish adversely impact coral reefs by feeding on herbivores which in turn feed on and keep a check of algae growth as well as pose a danger to any organism that comes in direct contact with them. They carry venomous spines which contain a deadly poison that can initiate a severe and painful allergic reaction in humans and can be fatal when in contact with other marine species. This is exactly why I was warned several times to avoid touching the lionfish… orders I followed to a T. When the sampling was brought into the wet lab for analysis, I asked Andre D. and my team members Kyle A. and Jacob G. questions about lionfish to find out more information about this interesting species of fish. We were discussing its detrimental impact to marine ecosystems, and the efforts currently underway to curtail the population of lionfish, when the ship’s cook, John Z., mentioned that they are very delicious and often served in seafood dishes like fish tacos. He went on to explain that one strategy to control the population of lionfish was to see if they could be eaten and if people would find it palatable. It turned out that this was the case for lionfish. I did not know that lionfish could be eaten and expressed surprise. He waited until the analysis of the sampling was over and then took two lionfish to the kitchen, cooked them, and brought the prepared fish to us in the wet lab to taste. I did and John Z. was right – it was very delicious!

a collage of two photos titled, "Lionfish Just Caught... and Just Cooked." on the left, a basket of lionfish sorted out from the sample. on the right, a paper plate with cooked lionfish meat.
Lionfish captured…and consumed!

Seasickness

            During the Orientation webinar for all Teacher at Sea educators who would be sailing this season, the topic of seasickness came up and it was strongly suggested to have Dramamine on hand to relieve the unpleasant symptoms of motion sickness. Nawww, I’ll be OK. It would be one less thing to worry about during packing. My wife thought differently and urged me to take some with me…just to have on hand. So, I did pack some Dramamine just in case I need it. Well, on the first night of my cruise, it turned out that I needed it. As much as I thought I would be OK once the ship set sail, my stomach thought otherwise and experienced a mild case of nausea. I did take some Dramamine and allowed me to get some restful sleep and everything was fine. Dramamine did come in handy a couple of other times, particularly when the waters became more choppier than usual, but for the most part, I feel that I adjusted to life at sea quite well. Nevertheless, I was glad I had Dramamine with me.

No Wi-Fi

As a science teacher engaged in a once-in-a-lifetime opportunity like Teacher at Sea, I am particularly excited about sharing my experiences…as they happen in real time. However, updating blog posts, uploading photos to Facebook, or engaging followers through social media can only happen if Wi-Fi is available. The NOAA fleet of research vessels are equipped with Wi-Fi which as I was reminded on frequent occasions can be weak and intermittent. However, the R/V Tommy Munro was not part of NOAA and had no Wi-Fi. It was not possible for me to communicate my observations, my photos, and my narratives as a Teacher at Sea while it was happening. It just meant I would have to wait until the end of the cruise to begin sharing my experience.

On Deck scenic views

Although many might think that the lack of Wi-Fi would be a major inconvenience, I actually found it to be refreshing, offering me opportunities to simply relax. After a long shift and getting some rest, I would often go up to the top deck and just look gaze all around. At what you are probably wondering? Enjoy a sample of the breathtaking views I enjoyed from my perch atop the deck of the R/V Tommy Munro.

a collage of five photos titled, "Breathtaking Views of the Scenery Aboard the R/V Tommy Munro." Clockwise from top left: 1) the sun shines on water out the fantail of the R/V Tommy Munro. 2) sunsets in an  orange sky over the water. 3) the wake of R/V Tommy Munro breaks otherwise smooth waters at daytime. 4) another view over the water at sunset. 5) somewhat choppier conditions and rain visible on the horizon.
Scenic views from aboard the R/V Tommy Munro.

In this installment of my exercise of the Ocean Literacy Framework, I would like to ask you to respond to three questions about the fourth essential principle:

The ocean made Earth habitable.

presented in a Padlet accessed by the following link:

https://tinyurl.com/32kdpx3e

Remember, there are no right or wrong answers – the questions serve not as an opportunity to answer yes or no, or to get answers right or wrong; rather, these questions serve as an opportunity not only to assess what you know or think about the scope of the principle but also to learn, explore, and investigate the demonstrated principle. If you have any questions or would like to discuss further, please indicate so in the blog and I would be glad to answer your questions and initiate a discussion.

Michael Gutiérrez Santiago: Línea Hidrográfica de Newport, 18 de agosto de 2022

Read this post in English: Michael Gutiérrez Santiago: Newport Hydrographic Line, August 18, 2022


NOAA Teacher at Sea

Michael Gutiérrez Santiago

 NOAA Ship Bell M. Shimada

12 de agosto – 25 de agosto de 2022


Misión: Estudio de poblaciones de merluza del Pacífico

Área Geográfica de Crucero: Costa de Washington y Oregón

Fecha: 18 de agosto de 2022


Condiciones atmósfericas desde el puente :

Latitud: 4539.9725N
Longitud: 12422.9606W
Temperatura: 63°F 
Velocidad del viento: 13 mph
Barometero:  1017.2mb

Michael posa para una foto para mostrar su equipo: Grundens naranja (mono de goma) sobre una sudadera negra, un chaleco salvavidas naranja, un casco amarillo y anteojos de sol.
Preparado para recolectar muestras de plancton!

Registro de Ciencia y Tecnología

Línea Hidrográfica de Newport

La línea hidrográfica de newport es un estudio de investigación oceanográfica realizado por científicos del Centro de Ciencias Pesqueras del Noroeste de NOAA y de la Universidad Estatal de Oregón en las aguas costeras de Newport, Oregón .

Los investigadores han recopilado métricas oceanográficas físicas, químicas y biológicas a lo largo de Newport Line cada dos semanas durante más de 20 años. Este conjunto de datos de más de veinte años nos ayuda a comprender las conexiones entre los cambios en el clima oceánico y la estructura y función del ecosistema en la corriente de California1,2,3.

Los datos de Newport Line se destilan en  indicadores de ecosistemas oceánicos , que se utilizan para caracterizar el hábitat y la supervivencia de los salmónidos juveniles, y que también se han mostrado prometedores para otras poblaciones como el bacalao negro, el róbalo y la sardina4. Estos datos también brindan información crítica del ecosistema sobre problemas emergentes, como las olas de calor marinas3, la acidificación de los océanos, la hipoxia6 y la proliferación de algas nocivas7.

un mapa de la costa de Washington y Oregón. la tierra está sombreada en gris, mientras que el agua es blanca con algunas líneas azules que indican la topografía submarina. Aunque no hay líneas de cuadrícula, las etiquetas marcan las líneas de latitud desde 43 grados norte hasta 47 grados norte y las líneas de longitud desde 125 grados oeste hasta 123 grados oeste. A mitad de camino, entre 44 y 45 grados norte, una línea roja corta se extiende horizontalmente desde Newport hasta el meridiano 125. Está etiquetado como "Línea NH".
Newport line

Barómetro de la acidificación e hipoxia de los océanos en un clima cambiante

Los modelos climáticos globales sugieren que los cambios futuros en el afloramiento costero conducirán a una mayor incidencia de hipoxia y exacerbarán aún más los efectos de la acidificación de los océanos. La serie temporal de Newport Line proporciona una línea base de parámetros biogeoquímicos, como el estado de saturación de aragonito, un indicador de condiciones ácidas (Fig. 4). Los investigadores pueden comparar esta línea de base con posibles cambios futuros en la abundancia de organismos (p. ej., pterópodos, copépodos y krill) sensibles a la acidificación del océano y la hipoxia.

Equipo utilizado

  • a net, which includes long mesh tubing extending from a ring, hangs in the air from a point above the photo's frame. a crewmember, wearing hard hat and life jacket, grips the ring with his left hand and reaches toward a rope attached to the net with his right hand. three other crewmembers are visible around the net.
  • a net, which includes long mesh tubing extending from a ring, hangs in the air from a point above the photo's frame. a crewmember, wearing hard hat and life jacket, facing away from the camera, reaches over the rail of the ship to lower the end of the suspended net into the water.
  • an illustration of a research vessel with a vertical net deployed off its side. the net looks like a white cone, pointing downward, ending in a red cannister.

Una red vertical es una red de anillos con un ancho de malla pequeño y una forma de embudo largo. Al final, la red se cierra con un cilindro (copo) que recoge el plancton. Se despliega verticalmente en el agua desde un buque de investigación. Se utiliza principalmente para investigar la estratificación vertical/diagonal del plancton. Esto permite determinar la abundancia y distribución del mesozooplancton.

  • a cable lowers a bongo net onto the ship's deck. the bongo net, name for bongo drums, is actually a pair of nets: two rings side by side hold up the nets made of long mesh tubing that narrow until they end in attached cannisters. a crewmember, wearing a hard hat and a life vest, leans to look at something around the back of the net.
  • a crewmember, wearing a hard hat and life vest, hoses down the mesh tubing of one side of the bongo net. the top of the net hangs from a cable about 12 feet above the deck so the crewmember can rinse the tubing while standing.
  • an illustration of a research vessel with a bongo net deployed off its stern. the net looks like a pair of white cones, pointing horizontally away from the ship, ending in red cannisters.

Una red bongó consta de dos redes de plancton montadas una al lado de la otra. Estas redes de plancton son redes de anillos con un ancho de malla pequeño y una forma de embudo largo. Ambas redes están encerradas por un copo que se utiliza para recolectar plancton. Un barco de investigación tira horizontalmente de la red bongo a través de la columna de agua. Usando una red bongo, un científico puede trabajar con dos anchos de malla diferentes simultáneamente.

  • Michael, at left, holds up the net while Toby, right, uses a hose to spray down the mesh tubing at the end. Both Michael and Toby wear rubber pants, rubber boots, life jackets, and hard hats.
  • three crewmembers, wearing hard hats and life vests, hold different portions of a large fishing net that is attached to cables extending out of frame. One steadies the net spreader, a horizontal metal bar. Another grasps the webbing. We can see a wide piece of metal toward the front that is bent like a wide "V". The belts of the crewmembers' vests are each clipped to brightly covered, stretchy tethers to prevent them from falling overboard.
  • a diagram of the shape and dimensions of the Isaacs-Kidd midwater trawl. labels identify the net spreader (horizontal metal bar), depresser (v-shaped metal plate), and bridle (short cables extending from the edges of the net opening, coming to a point). the net opening is 4 feet 8 inches wide by 5 feet 9 inches tall. the main portion of the trawl net extends 20 feet 6 inches long; it attached to a finer mesh net that is 5 feet 8 inches long.

La red de arrastre de media agua Isaacs-Kidd recolecta especímenes biológicos batipelágicos más grandes que los capturados por las redes de plancton estándar. La red de arrastre consiste en una red específicamente diseñada unida a una amplia paleta de buceo rígida en forma de V. La veleta mantiene abierta la boca de la red y ejerce una fuerza de presión, manteniendo la red de arrastre en profundidad durante períodos prolongados a velocidades de remolque de hasta 5 nudos. La abertura de entrada no está obstruida por el cable de remolque.

Muestras recolectadas

Registro personal

¡ATAQUE DE TIBURÓN!

Así es, nuestro uCTD fue atacado por un tiburón.

una vista a través de un aparejo de metal de una polea con un cable que se extiende hasta la superficie del océano. ya no hay nada conectado al cable.
Q.D.P.

En un día brillante y soleado, el equipo científico decidió lanzar el CTD en curso, ¡pero las cosas no salieron según lo planeado! Al recuperar el uCTD de regreso al barco, vimos una gran aleta dorsal zigzagueando cerca del uCTD, hasta que notamos que el uCTD ya no estaba conectado a la línea, por lo que no tuvimos más remedio que cancelar el uCTD. Deberías haber visto todas nuestras caras; no podíamos creer lo que vimos. Creemos que podría haber sido un:

vista de una mano que sostiene un perfilador submarino de conductividad, temperatura y profundidad (uCTD). en el fondo hay una pintura en la puerta de un gabinete de un barco blanco navegando a través de las olas y criaturas marinas algo fantásticas nadando debajo.
uCTD
(lo que se comió el tiburón)

CTD significa conductividad (salinidad), temperatura y (Depth) profundidad y permite a los investigadores recopilar perfiles de temperatura y salinidad de la parte superior del océano a velocidades en curso, a profundidades de hasta 500 m. Los exploradores oceánicos a menudo usan mediciones CTD para detectar evidencia de volcanes, respiraderos hidrotermales y otras características de aguas profundas que causan cambios en las propiedades físicas y químicas del agua de mar.

Atardecer en el Océano Pacífico, visto desde la cubierta superior del barco NOAA Bell M. Shimada. El marco de la red de arrastre, los pescantes y otros equipos en la cola de popa son visibles en silueta.
Atardecer a bordo

Michael Gutiérrez Santiago: Newport Hydrographic Line, August 18, 2022

Lea esta publicación en español: Michael Gutiérrez Santiago: Línea Hidrográfica de Newport, 18 de agosto de 2022

NOAA Teacher at Sea

Michael Gutiérrez Santiago

 NOAA Ship Bell M. Shimada

August 12 – August 25, 2022


Mission: Pacific Hake Survey

Geographic Area of Cruise: Coasts of Washington and Oregon

Date: August 18, 2022


Weather conditions from the bridge:

Latitude: 4539.9725N
Longitude: 12422.9606W
Temperature: 63°F 
Wind Speed: 13 mph
Barometer:  1017.2mb

Michael poses for a photo to show off his gear: orange Grundens (rubber overalls) over a black sweatshirt, an orange life vest, a yellow hard hat, and sunglasses.