Lisa Carlson: “No life is too short, no career too brief, no contribution too small,” July 16, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 16, 2023

– – ⚓ – –

Weather Data from the Bridge

July 14 (1200 PT, 1500 EST)
Location: 38° 34.9’ N, 123° 42.7’ W
15nm (17mi) West of Stewarts Point, CA

Visibility: <1 nautical miles
Sky condition: Overcast, fog
Wind: 19 knots from NW 330°
Barometer: 1014.6 mbar
Sea wave height: 3-4 feet
Swell: 5-6 ft from NW 300°
Sea temperature: 11.0°C (51.8°F)
Air temperature: 13.1°C (55.6°F)
Course Over Ground: (COG): 330°
Speed Over Ground (SOG): 10 knots

July 15 (1200 PT, 1500 EST)
Location: 38° 56.3’ N, 124° 02.1’ W
13nm (15mi) West of Point Arena Lighthouse, Point Arena, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 20 knots from NW 340°
Barometer: 1013.1 mbar
Sea wave height: 3-4 feet 3-4
Swell: 7-8 ft from NW 320°
Sea temperature: 10.8°C (51.4°F)
Air temperature: 13.3°C (55.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 9 knots

July 16 (1200 PT, 1500 EST)
Location: 39° 36.2’ N, 124° 01.6’ W
14nm (16mi) Northwest of Fort Bragg, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 29 knots from NW 320°
Barometer: 1011.4 mbar
Sea wave height: 3-4 feet
Swell: 5-6 ft from NW 320°
Sea temperature: 11.3°C (52.3°F)
Air temperature: 13.9°C (57.0°F)
Course Over Ground: (COG): 280°
Speed Over Ground (SOG): 7 knots

– – ⚓ – –

Science and Technology Log

Without a vessel and without a crew, none of this mission would be possible. As I’ve said before, this crew is special. Like any job, employees are required, but that does not mean that you will work well cohesively and passionately towards a goal. The two weeks I’ve been spending with this crew who is so wholeheartedly excited about their job and role, while being on the ocean, has been so rewarding and inspiring. More later, this is starting to remind me of crying along with my sobbing fourth graders on the last day of school.

While I’ve discussed a lot of the daily operations of the crew and ship, and what I’ve been learning and working on myself, however, I have not discussed the vessel and agency that has made all of this possible. Many people question, “What is NOAA?” when I explain this opportunity.

About NOAA

NOAA logo: a circle bisected by the outline of a seagull, dark blue above the seagull's wings and lighter blue below. Around the circle read the words: National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

“The National Oceanic and Atmospheric Administration (NOAA) is a U.S. government agency that was formed in 1970 as a combination of several different organizations. The purpose of NOAA is to study and report on the ocean, atmosphere, and coastal regions of Earth.”

National Geographic Education: “National Oceanic and Atmospheric Administration (NOAA)

“Our mission: To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and managecoastal and marine ecosystems and resources.”
NOAA: “About Our Agency”

NOAA: “About Our Agency”

NOAA Ship Bell M. Shimada can carry a total crew of 24, which include NOAA Corps officers, engineers, other crew members, and scientists.

“The NOAA Commissioned Officer Corps (NOAA Corps) is one of the nation’s eight uniformed services. NOAA Corps officers are an integral part of the National Oceanic and Atmospheric Administration (NOAA), an agency of the U.S. Department of Commerce, and serve with the special trust and confidence of the President.”

NOAA OMO: “NOAA Commissioned Officer Corps

The Vessel

NOAA Ship Bell M. Shimada, commissioned in 2010, is a fisheries survey vessel designed to produce a low acoustic signature, built to collect data on fish populations, conduct marine mammal and seabird surveys, and study marine ecosystems. The quiet operation provides scientists the ability to study fish and marine mammals without significantly altering their behavior.

Stats and Specs (Link for more information)
Length: 208.60 ft
Beam (width): 49.2 ft
Draft (bottom of the lowered centerboard to waterline): 29.7 ft
Displacement (full load): 2,479 tons (4,958,000 lbs)
Speed: 11.00 knots
Endurance: 40 days
Range: 12,000 nautical miles
Home port: Newport, Oregon
Crew:
– 24 (5 NOAA Corps officers, 4 licensed engineers, and 15 other crew members)
– Plus up to 15 scientists

Namesake

“[Dr.] Bell M. Shimada (1922-1958), served with the United States Fish and Wildlife Service and the Inter-American Tropical Tuna Commission, and was known for his studies of tropical Pacific tuna stocks.”

Wikipedia: “NOAAS Bell M. Shimada

The ship’s namesake was known for his contributions to the study of Tropical Pacific tuna stocks, which were important to the development of West Coast commercial fisheries following World War II. Dr. Bell Shimada and colleagues at Pacific Oceanic Fisheries Investigations (POFI) Honolulu Laboratory were among the first to study the population dynamics of tunas and the oceanography affecting their abundance and distribution.

a man (Dr. Shimada) wearing a white t-shirt, shorts, and red baseball cap stands holding a penguin. He grasps the penguin securely beneath its wings, which are spread out to each side. The man, and the penguin, look at the camera. He appears to be on a vessel - we can see some ocean water in the background - and we can tell that two other people are behind him, mostly obscured.

Dr. Bell M. Shimada, circa 1957.
Wikipedia: “Bell M. Shimada

“In her remarks at the christening and launch, [Dr. Shimada’s daughter] Julie Shimada offered the following, “I hope the Bell M. Shimada is a lasting testament that no life is too short, no career too brief, no contribution too small, to make a difference.”

NVC Foundation: “NOAA Honors Nisei With Launch of Fisheries Vessel “Bell M. Shimada””

– – ⚓ – –

Interviews with the Crew
(Part 1 of 2)

(Take note of the similarities and differences between how these crew members chose an ocean-related career and got to be assigned to NOAA Ship Bell M. Shimada)


A photo of a photo in a wooden frame with a name plaque reading CDR Laura Gibson. The photo is a portait of a woman posing in a survival suit, hands in the air. She's wearing a navy blue hat that says Bell M Shimada R-227.

Executive Officer
Commander Laura Gibson

What is your role aboard NOAA Ship Bell M. Shimada?
CDR Gibson’s role includes a lot of administrative work, handling the budget, standing bridge watches as the Officer on Duty (OOD), along with other executive duties.

What do you enjoy the most about your role?
The mission and camaraderie of the crew, as well as getting to know the ship and happy, successful operations.

When did you know you wanted to pursue an ocean-related career?
CDR Gibson enjoys Scuba diving and grew up on lakes. She worked on a research ship in college and continued working on the water which led her to NOAA. She mentions her Dad as a large motivator and inspiration of wanting to pursue an ocean-related career.

What do you think you would be doing if you were not working for NOAA?
Working a boring 9-5 desk job!

Favorite animal
Rhinoceros

Fun Fact: she brings a stuffed animal dog with her from her son, named Barfolomew.

His nickname is Barf!

a stuffed animal (a brown dog with long black ears) photographed against a carpet

A photo of a photo in a wooden frame with a name plaque reading LT Nicole Chappelle. The photo is a portait of a woman wearing a blue jacket.

Operations Officer
Lieutenant Nicole Chappelle

What is your role aboard NOAA Ship Bell M. Shimada?
Coordinate with scientists to make the plan of the day, assist in navigation and operation of the vessel.

What do you enjoy the most about your role?
Nicole enjoys seeing all of the sea life and creatures, and hearing and learning what the scientists are doing and why.

When did you know you wanted to pursue an ocean-related career?
She originally wanted to work with animals, which she did as a member of a rehabilitation team at Sea World. She then wanted to join uniformed service. Nicole chose NOAA’s uniformed service (NOAA Corps) because their science missions aligned with her interests.

What do you think you would be doing if you were not working for NOAA?
Working with animals and marine life or being a scuba instructor.

Do you have an outside hobby?
Horseback riding, Scuba diving, jogging, kayaking, hiking.

What’s something you were surprised to see or learn about living and working onboard when you first started?
Nicole remarked on the times she’s been out in the ocean, hundreds of miles away from shore, and how few other vessels you see there. She says it gave her a much greater appreciation for just how big the ocean is.

Favorite animal
Horses


A photo of a photo in a wooden frame with a name plaque reading Deb Rose. This is a photo of woman wearing a green NOAA t-shirt, a purple bandana, and sunglasses.

Junior Engineer
Deb Rose

What is your role aboard NOAA Ship Bell M. Shimada?
Junior Engineer Deb Rose (in her words) handles the “hotel services” of the vessel. Her role includes plumbing, electrical work, repairs, and many other behind the scene tasks to keep the vessel running safely.

What do you enjoy the most about your role?
I get to fix stuff! Troubleshooting, figuring out what’s wrong, and fixing the problem were among steps that she described as part of her work onboard.

When did you know you wanted to pursue an ocean-related career?
While working at Firestone, Deb met and befriended Jason who became a wiper on NOAA Ship Oscar Elton Sette. She saw pictures and heard his stories of how he is now a licensed engineer, and decided to follow in his footsteps! She mentions Jason as a motivator that inspired her to pursue an ocean-related career.

What do you think you would be doing if you were not working for NOAA?
Continue to work on the Alaska Marine Highway ferries. (These ferries cover 3,500 miles of Alaska’s coastline.)

Outside hobbies: Video games, Scuba diving, swimming, fishing

What’s something you were surprised to see or learn about living and working onboard when you first started?
How few women there still are in the industry. Deb has often been the only or one of the only female crew members both on land and at sea. She hopes that this trend will keep changing and that women will be in more engineering industries.

Favorite animal
Her favorite animals are the Jackson Chameleon and dogs.

Fun Fact: Humans are more related to salps than any other creatures we catch. She can also identify 12 Rockfish species!


A photo of a photo in a wooden frame with a name plaque reading Connor Rauch. The photo is a portrait of a man with glasses standing against a wall.

Deck Department
Connor Rauch

What is your role aboard NOAA Ship Bell M. Shimada?
Connor is a General Vessel Assistant as part of the Deck Department. He helps deploy and recover the trawl net and CTD rosette, stands watch as a lookout, helps keep the ship clean, and much more! He took classes at Seattle Maritime Academy for one year and is now applying his education on his first NOAA vessel!

What do you enjoy the most about your role?
He is enjoying his first assignment on a NOAA vessel and traveling up and down the Pacific coast. He says he is also enjoying being on the water, applying new knowledge to tasks, and training to a real ship. He also enjoys learning about trawling and commented on how nice the people onboard are.

When did you know you wanted to pursue an ocean-related career?
He wanted to try something new after working for a non-profit group during the Covid-19 pandemic assisting those in need. He decided to work on the water since he grew up sailing and kayaking. He thought of working on local ferries, but after taking classes at Seattle Maritime Academy, he had the confidence to apply for NOAA.

Do you have an outside hobby?
Reading, kayaking, camping, and hiking.

What’s something you were surprised to see or learn about living and working onboard when you first started?
Connor said he was pleasantly surprised at how tight the crew is, how easy it is to sleep, how comfortable the ship is, and the good food!

Favorite animal
Beavers and dog

– – ⚓ – –

Personal Log

As this experience comes to the end, I reflect on all parts of this mission. The crew, vessel, marine life, food, sleep, friendships, and more. I’m so thankful I was able to have this experience and share NOAA’s Teacher at Sea program more with coworkers, family, friends, and my students. Meeting and talking with the crew resulted in long conversations and plenty of laughs and connections amongst each other that they previously had not known.

Winds and swells picked up over the weekend and on Sunday July 16 we only caught six Hake. After that trawl and an increase in marine mammals being sighted when we were trying to trawl, fishing was called off for the rest of the Leg. At 1020 Monday July 17, we completed our last transect for Leg 2 of the Survey and headed due North for the long trek to Newport, Oregon. We still found ways to entertain ourselves, nap, snack, share stories and riddles, take photos of sunsets and marine mammals, watch shooting stars and have a movie night. Below are photos of our art craft: fish prints of two Chilipepper Rockfish!

– – ⚓ – –

Did You Know?

NOAA Ship Bell M. Shimada has an endurance, the amount of time the vessel can be at sea in a row, of forty days. This is not because the ship can’t make its own fresh water through reverse osmosis from sea water, or a lack of fuel, oil, extra parts, or a way to exhume waste and trash in an environmentally friendly way…

but because of food!

Our galley crew is amazingly talented and spoils us with a huge all you can eat buffet, desserts, and drinks every day! But, as per various laws and for the safety of the crew, they are lawfully entitled to fresh fruit, vegetables, meat, etc. within set guidelines and window of time.


– – ⚓ – –

Animals Seen Today

Pacific White-Sided Dolphins! Although these energetic friends caused us to abandon a trawl attempt after multiple marine mammal watches ended early because of their presence, they were so much fun to watch! I brought my DSLR camera up to the bridge deck and eventually sat down on the deck watching them jump and race through the ocean waters next to the hull. Below are some of my favorite photos I took of the pod.

Lisa Carlson: Where Did You Come From, Where Did You Go? July 13, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 13, 2023

– – ⚓ – –

Weather Data from the bridge:

July 11 (1200 PT, 1500 EST)
Location: 37° 46.7’ N, 123° 26.6’ W
43nm (50mi) West of San Francisco, CA

Visibility: 2 nautical miles
Sky condition: Overcast, fog
Wind: 20 knots from N 250°
Barometer: 1015.2 mbar
Sea wave height: 2-3 feet
Swell: 6-7 ft from NW 320°
Sea temperature: 12.2°C (57.2°F)
Air temperature: 12.7°C (57.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 10 knots

July 12 (1200 PT, 1500 EST)
Location: 38° 06.8’ N, 123° 01.6’ W
7nm (8mi) North of Point Reyes Lighthouse, Inverness, CA

Visibility: 2 nautical miles
Sky condition: Overcast, fog
Wind: 12 knots from N 350°
Barometer: 1016.0 mbar
Sea wave height: 1-2 feet
Swell: 3-4 ft from W 280°
Sea temperature: 11.0°C (57.2°F)
Air temperature: 11.5°C (57.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 10 knots

July 13 (1200 PT, 1500 EST)
Location: 38° 17.3’ N, 123° 06.1’ W
2.5nm (4mi) Southwest of Bodega Bay, CA

Visibility: 3 nautical miles
Sky condition: Few clouds, fog
Wind: 13 knots from NW 300°
Barometer: 1015.9 mbar
Sea wave height: 1-2 feet 1-2
Swell: 3-4 ft from NW 300°
Sea temperature: 10.7°C (51.3°F)
Air temperature: 13.7°C (56.6°F)
Course Over Ground: (COG): 340°
Speed Over Ground (SOG): 10 knots

– – ⚓ – –

In my July 6 post, I explained how NOAA Ship Bell M. Shimada is equipped to collect acoustic data in the form of echo grams and therefore find fish to trawl for. In my July 10 post, I explained how we get the fish onboard, and what we do with the sample once it is collected from the net. These entries described what work is done in the Acoustics Lab and the Wet Lab, but there is one more Lab onboard to explore and explain: the Chemistry Lab.

view down the starboard side of NOAA Ship Bell M Shimada shows a wooden nameplate (reading Bell M Shimada) on a railing, the fast rescue boat mounted aftward, and the Golden Gate Bridge in the background.
NOAA Ship Bell M. Shimada leaving Pier 30/32 in San Francisco, CA on July 5, 2023. (Just a nice photo taken by me that I wanted to include)

Science and Technology Log

Each morning after breakfast, we usually gather in the Acoustics Lab, determine what transect we are on, if we are inshore or offshore, and in some ways: hurry up and wait. Once certain patterns and blips show up on the echo grams, the Acoustics team talks with the bridge and may request to turn around and attempt a trawl. After all marine mammal observations are completed, the net is retrieved, and the samples are brought to the Wet Lab, we sort and collect data on the samples. These operations usually take place between 0800 and 2000. (8am to 8pm)

So what happens at night? In the Chemistry Lab, scientists work with the Deck and Surveys Departments to deploy a collection of electronic instruments and 12 Niskin bottles (open bottles used to collect and hold water samples, about one meter long) secured to a cylindrical frame called a rosette. It is deployed from the side sampling station instead of the stern. Scientists onboard NOAA Ship Bell M. Shimada use the instruments and collection of water samples in two ways: measuring Conductivity, Temperature, and Depth (CTD) within a water column to study oceanography, and collecting environmental DNA (eDNA).

photo of a large piece of sampling equipment on deck. a large white metal cylindrical frame houses a ring of perhaps ten tall gray canisters - the Niskin bottles. The bottles circle the conductivity, temperature, and depth probe, which is barely visible. Behind the frame, past the ship's rail, we see vivid blue water with a few white caps and a coastal mountain range beyond.

CTD Niskin bottles arranged on a circular rosette frame.

“Nighttime operations primarily consists of deploying the Conductivity-Temperature [-Depth] (CTD) rosette which gathers oceanographic data such as conductivity, temperature, dissolved oxygen, and chlorophyll fluorescence. The CTD can also be triggered to collect water at specific depths.”

NOAA Fisheries: “eDNA Part 2: There’s a Lot of Water in the Sea – and the Chemistry Lab
NOAA Ocean Exploration: “What does “CTD” stand for?

Conductivity, Temperature and Depth: CTD

CTD stands for conductivity (ability to pass an electrical current), temperature, and depth. Scientists use the rosette frame, which is attached to the ship by cables, and has the CTD and 12 Niskin bottles attached, to collect electronic data and multiple water samples.

“A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity and it is directly related to salinity. By measuring the conductivity of seawater, the salinity can be derived from the temperature and pressure of the same water. The depth is then derived from the pressure measurement by calculating the density of water from the temperature and the salinity.”

NOAA Ocean Exploration: “What does “CTD” stand for?
Elysha, wearing an orange life vest and white NOAA logo hard hat, sits at a metal desk with two computer monitors and a keyboard. The monitors display data from the CTD. Elysha has her right hand on a computer mouse while her left grips a pen over a yellow legal pad. She is turning to smile at the camera.
Senior Survey Technician Elysha Agne gives commands to the Deck Department running the winch and cable to the rosette, and ensures quality data is being collected at each sampling depth.

“For more detailed analyses back in the lab, each of the large gray bottles captures a water sample at a different depth. The data provide scientists important information about the local aquatic environment.”

NOAA: “Photo story: Virtually cruise aboard a NOAA ship for a fish trawl survey

Depending on the depth at which the vessel is currently operating, the rosette will descend to one to five predetermined depths (50m-500m) for sampling. For example, if the vessel depth reads 400m, water samples will occur at 50m, 150m, 200m, and 300m (more information in Table 1 below). A water sample is also taken just below the ocean surface using a through hull fitting, which allows seawater to be collected via a hole in the hull that feeds directly to the Chem Lab.

Table 1. Sample depths for eDNA. Two independent samples should be taken at each depth. The total ocean depth of location for the CTD cast determines the depths at which water samples will be collected. The rows of the table are labeled Sampling Depth (m) and the columns are labeled Topography depth of CTD cast.
Table 1 in Protocol manual, written by Chem Lab member and eDNA scientist Abi Wells.

While the rosette descends, data is recorded from multiple sensors and are later used by scientists to compare with Acoustic and Wet Lab data and compile and categorize new information from the survey. Pressure, depth, temperature, conductivity, salinity, oxygen, fluorescence, and turbidity were all being recorded during this leg of the survey mission.

photo of a computer screen displaying data. two graphs depict depth (m) on the y-axis and salinity or dissolved oxygen on the x-axes.
Program displaying data collected from the CTD rosette in real time.

Environmental DNA: eDNA

During the day, Hake stay in deeper waters, averaging around 200-350m, but at night the nocturnal feeders start their daily migration through the water column to shallower depths. They feed primarily on zooplankton, shrimp, myctophids (Lanternfish), and even young Hake at this depth. As Hake move throughout the water column, they leave behind DNA in the water that can be collected later as sort of a signature of their presence in that location. The collection, filtering, and preservation of sampled water in the ocean environment is categorized as collecting eDNA. This environmental DNA can be in the form of gametes (reproductive cells), fish scales, feces, etc.

Collecting water samples at different depths in the same vertical column can show what marine life was present at that location, and what depth they were at. I relate it to reviewing school security cameras or talking to other teachers at the end of the school day, to determine where a student was at a certain time and why.

The apparatus housing the CTD probe and Niskin rosette sits on deck. Abi, wearing a yellow hard hat, orange life vest, blue gloves and brown rubber boots, stands between the equipment and the rail of the ship to empty water from a Niskin bottle into a plastic bag. The profile of her face is mostly obscured by her long yellow ponytail.
Chem Lab member and eDNA scientist Abi Wells collecting a 2.5L water sample from a Niskin bottle after a successful CTD deployment.

When the rosette is back on deck, scientists use gloves and new collection bags called Whirlpacks, to collect approximately 2.5L of water from each 10L Niskin bottle. This process is conducted with a great emphasis on sterility, including wiping the bottle spigot with DNAway to remove any contaminants, using new materials, and not allowing fingers or the spigot to touch the collection bag.

Once the collection bags are filled and brought to the Chem Lab, filtration occurs using 1.0 micron filters. Although this size of filter, compared to smaller filters, allows some cells to pass through and not be collected, it is faster and results in less breakage of cells and loss of DNA. After 2.5L of the water sample is poured through individual filters for each depth sample, they are placed in pre-labeled (location and depth information) tubes with 2mL of preservative buffer. The tubes are stored at room temperature and away from UV light until NOAA Ship Bell M. Shimada is back in port and the samples can be further researched in on-land laboratories. Results from additional studies help to compile lists of marine life that was present in the water column and can be compared to acoustic data and species caught and logged in the Wet Lab.

– – ⚓ – –

Personal Log

So, there you have it. Three Labs onboard that conduct very different research, but fit together in the puzzle of Hake development, migration, diet, niches, ecosystem, biomass, and supporting sustainable commercial fisheries. Each additional piece of data; whether it be echo sounds, physical samples, eDNA, or CTD information, strengthens the others and helps to create a cohesive summary of the data. 

This was a lot to learn in the first few days, but as I’ve said before, all of the crew has been welcoming, supportive, and educational. Having a strong team that works together is priceless, and thoroughly noticed and appreciated. 

A few days into the mission my Mom asked me what the best part of my day was. I had three answers and haven’t had a day yet with only one answer. I replied that it was the great salmon dinner, clean clothes, and seeing Risso’s Dolphins for the first time.

Video taken by me of Risso’s Dolphins surfacing for air. (Plays on loop)

We are now a little more than halfway through the mission and it has truly flown by. We’ve shared riddles and daily Final Jeopardy questions. We’ve laughed over daily experiences and the faces Hake fish make. We’ve played music and watched baseball during dinner. We enjoy watching marine life and breathe in the salt air while strengthening our sea legs. Sometimes we just drink coffee and snack and enjoy this opportunity with each other, and that makes every part of the day the best part.

– – ⚓ – –

Did You Know?

Although Hake are occasionally cannibalistic, they are not at the top of their food chain. Humboldt Squid (Remember those 15 foot long tentacles in my Wet Lab post?), Dogfish Sharks, and marine mammals are all predators, as well as commercial fishing.
Today well over 100 Spiny Dogfish Sharks were inadvertently caught in the trawl, in the same location as the baskets of Hake we sampled from.
Maybe there were baby Hake fish in the sharks’ stomachs… we didn’t attempt to find out.

– – ⚓ – –

New Terms/Phrases

Although I had learned the terms a few days earlier, I got to help Wet Lab Lead Ethan Beyer collect otolith and stomach samples for the first time from a sub-sample of Hake the other day.

I watched and learned, then helped scan barcodes of otolith sample bottles, add 95% ethanol that is diluted 50/50 with water, and delicately pick up the ear bones with tweezers and place them in the bottle.

Additionally, each Hake in the sub-sample has its weight recorded, along with length, sex, and developmental stage. From that sub-sample, five stomachs are removed for later analysis, and five have their stomachs opened and their diet is recorded. We often find Lanternfish (Myctophids), Krill (Euphausiidae) and small Hake.

Lisa Carlson: One Fish, Two Fish, Rockfish, Hake fish! July 10, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 10, 2023

– – ⚓ – –

Weather Data from the bridge:

July 7 (1200 PT, 1500 EST)
Location: 36° 00.4’ N, 122° 05.9’ W
16nm (21mi) West of Big Sur, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 20 knots from NW 330°
Barometer: 1013.1 mbar
Sea wave height: 3-4 feet
Swell: 6-7 ft from NW 320°
Sea temperature: 14.0°C (57.2°F)
Air temperature: 14.4°C (57.9°F)
Course Over Ground: (COG): 323°
Speed Over Ground (SOG): 10 knots

July 8 (1200 PT, 1500 EST)
Location: 36° 34.5’ N, 122° 05.3’ W
17nm (20mi) Southwest of Monterey, CA

Visibility: 10 nautical miles
Sky condition: Few clouds
Wind: 19 knots from NW 330°
Barometer: 1013.8 mbar
Sea wave height: 5-6 feet
Swell: 6-7 ft from NW 330°
Sea temperature: 14.0°C (57.2°F) 13.7
Air temperature: 14.4°C (57.9°F) 14.3
Course Over Ground: (COG): 089°
Speed Over Ground (SOG): 10 knots

July 9 (1200 PT, 1500 EST)
Location: 37° 06.8’ N, 123° 00.5’ W
30nm (35mi) West of Pigeon Point Light Station, Pescadero, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 13 knots from NW 332°
Barometer: 1016.0 mbar
Sea wave height: 2-3 feet
Swell: 4-5 ft from NW 310° 4-5
Sea temperature: 14.3°C (57.7°F)
Air temperature: 15.2°C (59.4°F)
Course Over Ground: (COG): 093°
Speed Over Ground (SOG): 10 knots

July 10 (1200 PT, 1500 EST)
Location: 37° 26.7’ N, 123° 06.4’ W
32nm (37mi) West of Pescadero, CA

Visibility: 8 nautical miles
Sky condition: Overcast, fog in vicinity
Wind: 20 knots from NW 330°
Barometer: 1015.9 mbar
Sea wave height: 2-3 feet
Swell: 3-4 ft from NW 320°
Sea temperature: 14.5°C (58.1°F)
Air temperature: 13.6°C (56.5°F)
Course Over Ground: (COG): 314°
Speed Over Ground (SOG): 3 knots

– – ⚓ – –

Science and Technology Log

Lisa poses for a photo in the wet lab with a hake fish. She's wearing heavy-duty orange overalls and large orange gloves. With her right hand, she grasps the fish by its open mouth, and her left hand holds on to the tail. We can see metal tables and equipment in the background.
Me holding a Hake before sorting. After observation, we determined this was a developmentally mature female, measuring 50cm (20in) long!

In my July 6 blog post, I explained how NOAA Ship Bell M. Shimada is equipped to collect acoustic data in the form of echo grams. The acoustics team uses the data to determine if there are enough return signals to suggest fish are present and attempt a trawl. In this blog post, I will explain how we get the fish onboard, and what we do with the sample of marine life once it is collected from the net.

One question I had after learning about the acoustics and environmental DNA (eDNA) pieces of the survey mission was, “How does physically collecting and researching Hake samples fit into the puzzle of understanding their ecosystem and supporting sustainable fisheries?” (NOAA Fisheries quick facts and video here)

“While echosounders are useful, they do not provide certain quantitative data that researchers need to understand the ecology of these organisms and the midwater zone. To collect quantitative data, such as biomass, length and weight, and age class distributions, researchers must gather representational samples and take direct measurements of them. The best way to do this is by employing trawls.”

NOAA Ocean Exploration: “Trawls

So, although acoustics and eDNA research is important to the overall survey, they are only pieces of the puzzle, and the puzzle is not complete without conducting trawls and physically researching samples. NOAA Ship Bell M. Shimada uses a midwater trawl net that is deployed from the stern over the transom, and towed behind the vessel. As the name suggests, midwater trawls occur in the middle section of the water column, versus surface and bottom trawls. The net is conical in shape and uses two metal Fishbuster Trawl Doors, and two sets of heavy chain links called Tom weights, in order to keep the trawl in the middle of the water column.

a simple and stylized monochrome illustration of a fishing vessel towing a midwater trawl behind it. The net in tow is conical, attached at four points to two bars that hold the opening apart, and these bars are attached to lines (ropes) extending back from the vessel. This net is capturing two fish and missing a third.
NOAA Fisheries: “Fishing Gear: Midwater Trawls

“The midwater region is especially important because the creatures that inhabit it constitute the majority of the world’s seafood. Understanding the ecology of midwater organisms and their vast environment can provide us with better information to manage these important natural resources and prevent their overexploitation.”

NOAA Ocean Exploration: “Trawls

Deck department assisting in recovering the trawl net after a successful deployment.

Two deck crewmembers work with an orange and white fishing net on the aft deck of NOAA Ship Bell M. Shimada. They are wearing foul weather gear, life vests, and hard hats. At right, one leans over the net, searching for remaining captured fish. The other approaches from the left, looking down at the net, to assist. We can see a cloud-capped mountain range in the distance beyond the water.

Once the net is onboard, the net is emptied one of two ways depending on the size of the sample. For large samples, marine life is deposited into a hopper and subsequent conveyor belt. For smaller samples, the Hake will be put into a large basket then divided into smaller baskets of approximately 100 Hake each. Any other marine life like Salps, Myctophids, Pyrosomes, Rockfish, King of the Salmon, and small bony fish, etc. are recorded in the database and returned to the ocean.

“The ship’s wet lab allows scientists to sort, weigh, measure and examine fish. The data is entered directly into the ship’s scientific computer network.”

NOAA Office of Marine and Aviation Operations (OMAO): “Bell M. Shimada
a large black plastic bin filled with fish - mostly hake, but a few splitnose rockfish (eyes bulging from the pressure change) stand out for their red color. An orange-gloved hand reaches toward the basket from the upper left corner of the image.

Large basket containing a sample of Hake with a few (red) Splitnose Rockfish.

With our boots and bright orange rubber pants and gloves on, our first task is to distribute the sample of Hake into baskets of about 100 each. Based on how many baskets we fill, a random selection of baskets will be kept, and the others will be returned to the ocean. With the remaining groups of Hake, we determine their sex and length.

In order to do this, we use a scalpel to make an incision on the underside/belly of the Hake. Once open, we are able to examine their organs, including the gonads to determine if the fish is male or female, and if they are developmentally immature or mature. Young Hake are difficult to sex, and it takes practice to get over any initial fears of cutting into an animal; let alone being able to locate and identify the gonads. Hake usually spawn in early winter, so many of the smaller Hake we sample from during the summer are age one or younger.

Our largest Hake thus far was a developmentally mature female, measuring 50cm (20in). In order to accurately and consistently measure the length of the sample, we use a waterproof, magnetic plastic board with metric (centimeter and millimeter) markings called an Ichthystick (think: high-tech meter stick). The fish is placed on the board with its mouth touching the black board at 0cm, then a magnetic stylus is placed at the fork of the fish’s tail. Once the magnetic stylus is placed on the board, the length to the nearest millimeter is displayed on the LCD screen and automatically entered into the database program. The length data is grouped with the date, time, and identified sex for later observation and comparison.

Additional information, abstracts and outline about Ichthystick here

Ichthystick’s LCD display, motherboard, magnetic board, and magnetic stylus. Digital scale in background.

Ichthystick’s LCD display, motherboard, magnetic board, and magnetic stylus. Digital scale in background.

An even smaller subgroup is then selected and examined to record weights of individual Hake, collect ear bones called Otoliths for aging, stomach samples for diet, liver for RNA, and ovaries for maturity development. Otolith bones help determine the age of the Hake because they grow a new “layer” of bone each year, similar to coral structures and annual tree rings. Organs and bones removed from the Hake are sent to NOAA Fisheries centers for analysis and included in databases with the date, identified sex, length, weight, and location in which they were collected.

This data is used to build more of the puzzle, along with acoustical information, water samples, and eDNA data in order to further understand the ecosystem, biomass, diet, and

“support sustainable populations of Pacific hake on the West Coast.” (…)
“It provides vital data to help manage the migratory coastal stock of Pacific hake. The hake survey, officially called the Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey, occurs every odd-numbered year.”

NOAA Fisheries: “Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey

– – ⚓ – –

Personal Log

Although this subtopic of explaining the Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey is a bit easier to understand than my July 6 Acoustics Lab post, it certainly does not mean it’s an easy task!

When I had a tour on July 4, I remarked how clean and
organized the Wet Lab is. I hadn’t see it in action yet, but noticed how everything had its place and use. On July 6 we conducted our first trawl and collected a sample of 11 baskets of Hake (approximately 1,100 Hake since we group about 100 Hake together in each basket.) From that sample, we kept four baskets and counted, sexed, and measured 541 Hake.

Five of us were working together in the Wet Lab for that haul. I’ll admit I probably
didn’t sex 100+ Hake. It took a few minutes of watching the others carefully and swiftly cut into the underside of a fish, open the two sides, and know what to look for to determine the sex of very young Hake. Eventually I found the courage to slice in and take a look. By the fourth or fifth Hake, the uneasiness had subsided and I found the process very interesting and educational. Although young samples are hard to sex as they are often undeveloped, the others encouraged me and answered my questions and guesses with enthusiasm and support.

While working on measuring the lengths of our samples, one Science Team member paused and remarked how beautiful he found the fish. Although they do not have vibrant, bold colors, shimmering scales, or anything else particularly remarkable, he found the beauty in them. He digressed into a conversation of their role in the ecosystem, how they are living and breathing creatures, and how they probably all have their own personalities and slight physical differences. I noticed some of their eyes were shiny and sparkling, and how their faces and expressions were
noticeably unique the more you looked. That “down to earth”, heartfelt discussion was very special and demonstrated how the crew respects the process of catching and sampling Hake, while keeping each other and marine mammals safe.

From the NOAA Corps Officers, to the deck department, to the engineers,
electronics, science team, survey team, galley crew, volunteers, and everyone in between; the crew on NOAA Ship Bell M. Shimada is special. They take pride in their vessel and job, and always seem to have a smile and kind greeting. Being away from land and loved ones for weeks and months at a time will certainly take a toll on the body and mind, but this team is there for each other. To all of the crew, thank you for making me feel so welcomed and appreciated. We’re almost halfway through the mission, and as tired as I may get after (sometimes) 12+ hour days, I sleep well knowing the crew trusts their vessel and each other; and look forward to learning and becoming more and more acquainted each day with the people that make this mission possible. Thank you!

– – ⚓ – –

Did You Know? (FAQs)

1. Are you finding schools of them?

We’ve had seven successful trawls out of nine attempts for Pacific Hake fish. They often come with pyrosomes (Sea Pickle) myctophids (Lanternfish), and salps in the net too. Some trawl attempts are successful without a hitch, but more often than not we have to restart our Marine Mammal watches a few times before deploying in order to keep our ocean life safe and not get tangled in the net. Two trawl attempts have been abandoned because of the amount of persistent marine mammal life and playfulness near the ship. (I think they know we’re watching and show off for our cameras.)

2. What’s your average depth?

The transects (Set and numbered longitudinal east-west lines NOAA Ship Bell M. Shimada navigates on while collecting acoustic data) usually range from 50m – 1,500m (164ft – 4,921ft) in depth.

  • However, right now one of the displays in the Acoustics Lab, the depth reading is 3,240m which is about 10,630ft or just over two miles deep! 
  • This depth is only 1,870ft shallower than the wreck of the RMS Titanic! 
  • (We were on a long transect, we do not often see depths this great.)

3. Have you gotten seasick? Seasickness should subside after about 3 days.

I’ve never gotten seasick thankfully! Knock on wood and all the other premonitions, please.

4. What is the Hake role in the ecosystem?

More info on this coming in later posts after explaining our Chemistry lab and technology aboard! 

  • However, as predators, they can be cannibalistic towards their own kind. 
  • As far as their role in human consumption: They are often used as a substitute for Cod and Haddock, and in fish sticks and imitation crab meat.

– – ⚓ – –

Animals seen July 5-July 10:

Mammals: Sea Lions, Harbor Seals, Dall’s Porpoise, Risso’s Dolphins, Pacific White-Sided Dolphins, Northern Right Whale Dolphins, Humpback Whales

Birds: Gulls, Black-Footed Albatross

Bony Fish: Hake, Lanternfish (Myctophid), Flatfish, King of the Salmon, Split Nose Rockfish, Chili Pepper Rockfish

Other Marine Life: Giant or Humboldt Squid (15 foot tentacles in trawl), Spiny Dogfish Shark, Shrimp, Plankton, Krill, Sea Pickle (Pyrosome), Salp, Eel Larva

Lisa Carlson: Come Out, Come Out, Wherever You Are, Hake! July 6, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 6, 2023

Weather Data from the Bridge:

— July 5 Departure
(1800 PT, 2100 EST)

Location: 37° 44.9’N, 122° 39.2’W
Docked at Pier 30/32
San Francisco, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 17 knots from NW 300°
Barometer: 1012.8 mbar
Sea wave height: 1-2 feet
Swell: 2-4 ft from W 270°
Sea temperature: 14.2°C (57.6°F)
Air temperature: 14.7°C (58.5°F)
Course Over Ground: (COG): N/A
Speed Over Ground (SOG): N/A

— July 6 (1200 PT, 1500 EST)
Location: 35° 38.2’ N, 121° 18.9’ W
16nm (18mi) West of San Simeon, CA

Visibility: 10nm
Wind: 6 knots from 330°
Barometer: 1013.9
Sea wave height: 1-2ft
Swell: 2-4ft from 280°
Sea wave temperature: 14.4°C (57.9°F)
Air temperature: 14.9°C (58.8°F)
Course Over Ground: (COG): W 270°
Speed Over Ground (SOG): 10 knots

– – ⚓ – –

Science and Technology Log

On July 6, our first full day at sea, we gathered in the acoustics lab to observe and keep watch on data from various screens. Data includes our current course plotted on a digital chart, a camera showing current sea state, measurements of the wind speed and direction, and displays of the multiple frequencies at which the Simrad EK80 transmitter emits sound. The EK80 is used while traveling on numbered longitudinal east-west lines called transects. NOAA Ship Bell M. Shimada navigates on these lines while collecting acoustic data along the west coast of the U.S. and into Canada, in hopes of finding schools of Hake to collect for surveying.

A topographic map of a portion of the coast of California. The topographies of the both the land (beige and green scales) and water (blue scale) are depicted. Black dots mark the locations of three coastal cities: Crescent City, near the top of the map; San Francisco, a little more than halfway down; and Morro Bay, toward the bottom of the map. Black horizontal lines mark transects extending west from the coast line. The black lines are marked with red or black x's (showing previous sampling locations, perhaps) and a couple have green triangles.
Map showing transects 1-45 off the coast of California. Transect 1 is south of Morro Bay, CA and transect 45 is near Crescent City, CA.
(We hope to survey transects 8-35 by Cape Mendocino, CA before traveling north to dock in Newport, OR.)

“For acoustic surveys, the ship uses a multibeam echo sounder (MBES) that projects a fan-shaped beam of sound that bounces back to the ship. The ship’s MBES—one of only three systems of its type worldwide—acquires data from both the water column and the sea floor.”

NOAA Office of Marine and Aviation Operations (OMAO): “Bell M. Shimada

The Simrad EK80 emits sound waves from the hull of the vessel down to the sea floor. The process is very similar to a dolphin or bat using echolocation to find prey. Any object the signal hits that has a different density and reflectivity than the surrounding water will cause the waves to bounce back to the ship. An image, called an echo gram, is pieced together each time this occurs and the acoustics team is able to use this information to determine if there are enough return signals that suggest fish are present to attempt a trawl.

Fish that have swim bladders, like bony fish, reflect or echo the sound wave back to the vessel very strongly. Other marine life such as myctophids and zooplankton also have a different density than the sea water, and reflect sound, although not as strongly as fish with air-filled swim bladders. The sea floor itself also reflects sound very strongly, because of the density difference between water and rocks, sand, and mud.

Marine life that have swim bladders (represented in blue) reflect or echo the sound wave back to the vessel. Examples of such marine life include bony fish, myctophids, and zooplankton, as well as the sea floor itself, which has a different density than the sea water.

Image: Cross section example of a Black Sea Bass to show a swim bladder.

an illustrated diagram of the internal anatomy of a bony fish (perhaps a black sea bass). Labels mark the locations of the gills, kidney, swim bladder, urine bladder, gonad, intestine, spleen, stomach, liver, and heart.

If the acoustics team determines there is enough marine life (that they are interested in surveying) to attempt a haul, they will notify the bridge deck and officers that they would like to have the fishing net deployed.

Before an attempted haul, the science team conducts a marine mammal watch for ten minutes. In this time window, several pairs of eyes are observing from the bridge deck and stern for any signs of dolphins, whales, sea lions, seals, and any other marine mammals that are within 500 meters of the vessel. If any marine mammals are spotted within the ten minute observation, we will stand down and wait ten minutes before restarting the marine mammal watch. Net deployment cannot occur until the full observation window has completed.

First haul July 6:
1422-1432 Mammal watch, no marine mammals spotted.
The net deployment started, at which time the vessel continues forward at two knots. Vessel speed increases to three knots when the net is fully deployed with doors and weights in the water, which assist in opening the conical shaped net outwards linearly and laterally. During this time the science team watches displays of the EK80 frequencies and observe the linear width and depth of the net. Scientists can compare these displays to determine if the net is in the correct position to have the best chance of collecting fish.

Hauling back the net occurs after several minutes, at which time the vessel returns to a speed of two knots, and we estimate how many fish were collected. The amount of time in which the net is submerged depends on the depth of the water and acoustic information about the size of the school of fish the net is (hopefully) sampling. After recovery, the haul is deposited into a hopper which feeds onto a conveyor belt in the wet lab, then into large baskets and the wet lab team takes over.

During the first attempt, two sea lions were spotted which required the haul attempt to be paused. We restarted the ten minute marine mammal watch from 1500-1510, the deck department retrieved and reset the net, and the vessel was turned around to return to the start of the noted longitudinal transect. With no marine mammals spotted during the observation period, the second attempt was successful and resulted in:

– 1604-1634: 30 minute haul at 350m depth.

– 11 baskets of Hake collected.

– 4 sample baskets kept at random.

– 541 Hake counted and studied in the wet lab.

Photo: Two deck department members about to open the net to allow the sample to drop into a large collection basket.

Two crewmembers, dressed in orange paints and black and neon yellow coats, face away from the camera, toward a large orange net suspended from above. They may be working to empty the net.

– – ⚓ – –

Personal Log

On July 4 I arrived to pier 30/32 in San Francisco, CA to board NOAA Ship Bell M. Shimada. Although I grew up volunteering on the 441’ WWII Liberty Ship SS John W. Brown in Baltimore, MD, seeing a new ship still resulted in a mix of emotions, nervousness, adrenaline, excitement, and everything in between. After five and a half years, finally seeing the 208’ vessel that would become my home for the next two weeks was a core memory and feeling I will always remember.

NOAA Ship Bell M Shimada in port, as seen from a point on the dock beyond the bow. We can see the NOAA logo and read: NOAA R 227. The water is calm and turqoise; the sky is blue with clouds. A portion of what may be the Golden Gate Bridge is visible in the background.
NOAA Ship Bell M. Shimada docked at Pier 30/32 in San Francisco, CA on July 4

Once onboard, I met Chief Scientist Steve de Blois and Wet Lab Lead Ethan Beyer. I was given a tour of the acoustic, chem, and wet labs and shown to my cabin. After dinner ashore, I joined some of the crew on the flying bridge to watch the July 4th fireworks. I met additional science team members and enjoyed a long night’s rest.

In the morning on July 5, we had a welcome aboard meeting, various trainings, a safety meeting and orientation, fire and abandon ship drills, and a science team meeting. We introduced ourselves, took an official team photo, and soon departed pier 30/32 for our 14 day mission. After passing under the Golden Gate Bridge and heading to the Pacific Ocean, our cold hands were warmed by a wonderful hot dinner of chicken, steak, fresh veggies, salad, and desserts from our galley crew. After dinner, we settled in for our first night at sea, waiting with anticipation for our first trawl on July 6.

– – ⚓ – –

Did You Know?

an orange-gloved hand holds a hake (fish) up so that it faces the camera. We can see the another smaller hake hanging limply across its open mouth

– Hake can be cannibalistic!
– Some larger Hake we have collected have had a smaller Hake in their mouth, throat, or stomach!
– Their very sharp teeth often stick to our thick rubber gloves.

– – ⚓ – –

New Terms/Phrases:

“Salp: Barrel-shaped, planktonic tunicate in the family Salpidae. It moves by contracting, thereby pumping water through its gelatinous body.”

Wikipedia: “Salp

“Myctophid: Lanternfish (or myctophids, from the Greek μυκτήρ myktḗr, “nose” and ophis, “serpent”) are small mesopelagic fish (…) Lanternfishes are aptly named after their conspicuous use of bioluminescence.”

Wikipedia: “Myctophid

Simrad EK80: Multibeam Echo Sounder (MBES) transducer that emits sound waves from the hull of the vessel down to the sea floor. It allows scientists to observe and study returned sound wave signals that may suggest marine life is present.

Transect: Set and numbered longitudinal east-west lines NOAA Ship Bell M. Shimada navigates on while collecting acoustic data.

Lisa Carlson: Anticipation… Does everything happen for a reason? July 3, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 3, 2023

Introduction and Background

Hello! My name is Lisa Carlson and I am an elementary school teacher in Virginia Beach, Virginia. I have taught third, fourth, and fifth grade general education with Special Education and English as a Second Language (ESL) inclusion. This coming fall I will be a second grade teacher, continuing with ESL inclusion! Although I was surprised to move down from fourth grade, I try to maintain the belief that everything happens for a reason, and the only constant in life is change.

Lisa Carlson on a boat, presumably a sailboat. We can see lines, some navigation equipment, portions of the railing, and water in the background. She's wearing a hat, sunglasses, and a blue life vest.

For example, if I not missed out on previous opportunities to join NOAA as a Teacher at Sea due to the pandemic, a short career change, and other extenuating circumstances; I wouldn’t be writing this blog from a hotel room in San Francisco, California, anticipating boarding and seeing July 4th fireworks from the deck tomorrow.

– – ⚓ – –

My introduction to NOAA’s Teacher at Sea program began in the fall of 2017. After student teaching in the fall/winter of 2016 in a third grade class, and permanent subbing in a fifth grade in the winter/spring of 2017, I accepted a position for my own third grade classroom.

My classroom came together with a nautical theme, shades of blues and calm colors, nautical paintings by my Mom, lots of cleaning and moving by my Dad, sailboat name tags on the door, and our own 3D sailboat in my class library. It soon got around that my room was one to go see!

A closed classroom door papered in shiny blue-green wrap on the top half (representing ocean) and brown on the bottom half (representing sand). Paper sailboats of different colors are taped onto the "ocean;" each has a student's name (not legible). Four yellow flip flops, with more labels, are taped to the "sand." At the top of the door, blue letters on a black paper background say: WELCOME ABOARD.

Door decorations for my first third grade classroom!

Classroom decor: life ring painting, handmade pilings,
fish and life ring pillows, sea creature lights, and 3D sailboat

A corner of a classroom, with shelves, plastic organizer boxes, a small carpet, a nest chair, in nautical theme.

Our Technology Integration Specialist, a NOAA Teacher at Sea Alumnus, visited my room and explained the program to me. The application was due on my birthday, less than a month from when I learned about the opportunity.

– – ⚓ – –

So, I applied in November 2017, 2018, and 2019. One year I just wasn’t selected, one year administrative input was not turned in on time, and other hiccups along the way. Then, my 2019 application was accepted, and I was over the moon in January 2020 to learn that I was a finalist. Of course, we all know what happened that March; and the 2020 and subsequent 2021 sailing seasons were canceled. Slowly, a few teachers were able to sail in the summer of 2022, and I was able to read their blogs from afar with the belief of everything happening for a reason.

My 2023 NOAA Teacher at Sea Assignment!

Now, it’s my turn! I will be sailing off the coast of California for two weeks on NOAA Ship Bell M. Shimada with members of the science team as part of the Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey.

“For three decades, the Teacher at Sea program has helped teachers participate in annual NOAA research surveys conducted by our scientists. Teachers from around the country embark on a two to three week expedition at sea. They gain invaluable on-the-job experience and communicate their journey through a series of blogs and lesson plans.”

NOAA Teacher at Sea Blog: “Looking Back on 30 Years of Teachers at Sea

I am so excited for this opportunity and experience after five and a half years of anticipation. So follow along, wish us fair winds and following seas, and as many schools of Pacific Hake as possible to sample from and research!

– From my king sized bed hotel room, and last night ashore:

Temporarily reassigned teacher, and sailor at heart.

Lisa stands at the door of a streetcar, left hand hanging onto a pole. A San Francisco streetscape extends into the distance to the left side of the photo.

Michael Gutiérrez Santiago: Welcome Aboard! August 16, 2022

Lea esta publicación en español: Michael Gutiérrez Santiago: ¡Bienvenidos a Bordo! 16 de agosto de 2022

NOAA Teacher at Sea

Michael Gutiérrez Santiago

Boarding NOAA Ship Bell M. Shimada

August 12 – August 25, 2022

Mission: Pacific Hake Survey

Geographic Area of Cruise: Coastal Washington

Date: August 16, 2022

Weather conditions from the bridge:

Latitude:  4539.9729N
Longitude:  12422.9606W
Temperature: 67.64°
Wind Speed: 12.62 mph
Barometer: 1017.2 mb

 

Michael stands in front of NOAA Ship Bell M. Shimada in port, around sunset. The angle is wide enough to see the entire vessel.
NOAA Ship Bell M. Shimada

Science and Technology Log

NOAA Ship Bell M. Shimada was built by VT Halter Marine, Inc. in Moss Point, Mississippi. The ship was commissioned on August 25, 2010 and is currently homeported at NOAA’s Marine Operations Center—Pacific in Newport, Oregon. The ship primarily studies a wide range of marine life and ocean conditions along the US West Coast, from Washington state to southern California.

The ship’s design allows for quieter operation and movement through the water, giving scientists the ability to study fish and marine mammals without significantly altering their behavior.

Bell M. Shimada conducts acoustic and trawl surveys. For acoustic studies, the ship uses a multibeam echo sounder (MBES) that projects a fan-shaped beam of sound that bounces back towards the ship. The ship’s MBES, one of only three such systems in the world, acquires data from both the water column and the seafloor. Scientists can detect fish when the boat passes over them, measuring the signal reflected by the fish to estimate their size and number. The system can also create a map and characterize the sea floor.

  • a graphic depicting a ship underway, on top, and then a cutaway illustration of the topography underneath the ocean's surface. the illustration depicts a swath of light emanating from the hull of the ship and coloring a section of the underwater topography.
  • three scientists sit at laptops around a table in a room filled with additional computers and monitors.
  • scientists look up at a large computer monitor depicting acoustic readings.

The ship conducts trawl sampling with a standardized, three-flange, four-seam bottom survey net equipped with a skipping rock sweep: sweeps with large rubber discs that allow the nets to be towed over rocky and uneven seabeds. Trawls sample fish biomass in a given study area. This helps scientists learn what species are in observed schools of fish and collect other biological data.

a view from the fantail of two large, orange trawl nets spooled up on deck
Trawl system

The ship’s wet lab allows scientists to sort, weigh, measure and examine fish. Data is entered directly into the ship’s scientific computer network. The Bell M. Shimada Bird and Marine Mammal Observation Stations are equipped with sensors to help researchers identify and track protected species.

  • a view of the wet lab, not yet in use: metal countertops, hoses, scales, measuring boards.

Bell M. Shimada was named by a team of students from Marina High School in Monterey, California, who won a regional NOAA contest to name the ship. The ship’s namesake served in the Bureau of Fisheries and the Inter-American Tropical Tuna Commission. He was known for his contributions to the study of tropical Pacific tuna populations, which were important to the development of West Coast commercial fisheries after World War II. Bell M. Shimada’s son, Allen, is a fisheries scientist with NOAA Fisheries.

Personal Log

This has been an experience that I never imagined, on Thursday, August 11, when I entered the port and saw the ship in the distance, I felt a lump in my throat, it is much larger and more imposing than I imagined. The scientist in charge of the expedition, Beth Philips, welcomed me to the ship. She was extremely jovial and pleasant and gave me a tour of the ship, which let me tell you, this is a labyrinth. The crew has been excellent, all with a kind and respectful treatment towards me. On the other hand, I hope I can loosen up a bit more with everyone on the ship since I’m a bit in my head because of my English speaking.

I want to introduce you to the excellent team of scientists

  • group photo in front of a railing on the deck of NOAA Ship Bell M. Shimada, with the city of Seattle visible in the distance. it's a clear, calm day. Michael is wearing his Teacher at Sea hat and t-shirt.
  • Beth cuts into a birthday cake decorated with pink and white frosting.

In just a few days of meeting them, they have taught me a lot. They have all been patient and have explained and answered questions regarding the work they do on the high seas. Their knowledge and experiences have led me to create great admiration for them. In the next blogs you will learn more about each of them and you will see them in action!

Not Just One, But Two Puerto Ricans on the High Sea!

LT Erick Estela poses for a photo on the fantail of NOAA Ship Bell M. Shimada. He is wearing his blue NOAA Corps uniform and holding a small Puerto Rican flag.
LT Erick Estela

That’s right I’m not the only Puerto Rican on NOAA Bell M. Shimada, this is LT Erick Estela from Ciales, Puerto Rico. Erick is one of the NOAA Corps officers serving at sea, on land and in the air to support NOAA’s environmental science and management mission. Erick have been serving with NOAA Corps nine and a half years. We met in the middle of a drill and it was very exciting to know that there’s another Puerto Rican on board. Puerto Rico is proud to have Erick in such an important role within NOAA!

  • LT Erick Estela stands at the helm of NOAA Ship Bell M. Shimada and looks right at the camera.
  • A view of the bridge from the back, looking across the control panels and out the windows. LT Erick Estela is driving the vessel, with his right hand near the helm, leaning over to look at or adjust something on a control panel to his left.
  • a view of the bridge's control panels, with no one standing at them. helm, levers, buttons, monitors, phones.
  • close-up view of one monitor showing a navigation screen. the computer displays an electronic nautical chart and the positions of nearby vessels
  • radar screen with dots marking other vessels within a certain radius of the ship

Before I go, I want to share some photos taken by Teacher at Sea Alumni Association Manager Britta Culbertson, who met us at Whidbey Island to wave goodbye from shore. Thank you for the beautiful photos and for all your support. Thanks also to TAS Alumni Denise Harrington for your messages of support, much appreciated!

See you in my next blogs where I will be talking about our study of hake populations and the data received from the echo sounder. I’m gone fishing, see you next time!

Michael, wearing a Teacher at Sea hat, shows off the albacore tuna he caught. He holds it up by the fishing line.
Albacore Tuna!

Allison Irwin: Trawling for Fish, July 13, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7-25, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 13, 2019

Weather at 1600 Pacific Standard Time on Thursday 11 July 2019

Happy to report we’re back to a much calmer sea state! I finally made it up to the flying bridge again since it isn’t raining or choppy anymore. It’s the first time in two days I’ve needed to wear sunglasses. The ocean looks almost level with scattered patches of wavelets which indicates about a 5 knot wind speed. It reminds me of the surface of my palms after I’ve been in the water too long – mostly smooth but with lots of tiny wrinkles. Check out this awesome weather website to look at what the wind is doing in your area!

weather conditions
A weather map from Windy.com


PERSONAL LOG


Stretch everyday. I should stretch everyday. I do not. On the ship it’s even more of a necessity. One of the scientists calls it “Boaga” – like mixing “boat” with “yoga.” Try doing yoga on the ship and the rocking might cause you to tumble, but I enjoy a good challenge. Fitness requires strength and flexibility, so if I do some yoga and have to work harder to stay balanced since the ship is rocking, all the better.

A combination of the good food, constant access to homemade snacks, and lack of natural ways to burn calories on the ship, I need to turn to deliberate exercise. I just haven’t started that routine yet. The ship does have a nice, albeit small, gym on the same floor as my stateroom. It includes free weights, kettlebells, a treadmill, and a few other pieces of equipment. Now that our first week is coming to a close, my goal for today – and everyday forward – is to develop a routine for stretching and cardio. Sigh. Otherwise the five pounds I’ve already gained will turn into fifteen. And I have no desire to work off fifteen pounds of belly fat when I get home.


THE SCIENCE


“Trawl” has its origins in Latin. The original word meant “to drag” and it still carries a similar denotation. Fishermen use trawl as a noun, verb, and adjective. On NOAA Ship Reuben Lasker we use a Nordic 264 Surface Trawl to conduct the Coastal Pelagic Species Survey each night. The trawl is spooled onto a giant iron net reel which connects to the deck with sixteen 2.5 inch bolts and is securely welded.  We try to get three trawls in per night, but sometimes we don’t quite make it. Poor weather, issues with the net, or sighting a marine mammal can all put a quick end to a trawl.

Now let’s use it as a verb. The origin “to drag” deals more with how you operate the net than the construction of the net itself. To trawl for fish like we do each night means to slowly unravel 185 meters in length of heavy ropes, chains, and nylon cord mesh into the water off the stern with an average of 15,000 pounds of tension while the ship steams at a steady rate of about 3 knots. Getting the net into the water takes about 15 minutes.

Scott Jones, Chief Bosun, took me on a tour of the equipment. Two reels below deck spooled with cable the diameter of my forearm, one even larger reel on the fantail to house the net and ropes, a winch to lift the weight of the trawl as it transitions from deck to water, plus two work stations for the Chief Bosun to manually monitor and control all those moving pieces. There are three additional nets on board in case they need to replace the one we’ve been using all week, but the deck crew are pretty adept at sewing and mending the nets as needed.

As I stand on the bridge watching the net snake its way into the water behind the ship, everything pauses for a brief moment so the deck crew can use daisy knots to sew floatable devices into the kites. Later, they attach two more of these floats to the headrope (top line). The floats keep the mouth of the net open vertically.   A couple minutes later they stop to attach 250lb Tom weights to the footrope (bottom line) of the trawl opening. When fully deployed, this roughly 25 meter vertical opening is as tall as an 8-story building!

It’s like watching choreography – every detail must be done at exactly the right moment, in the right order, or it won’t work. The Chief Bosun is the conductor, the deck crew the artists. Hollow metal doors filled with buoyant wood core – together weighing more than a ton on land – are the last to enter the water. Each hangs on large gallows on the starboard and port side of the ship, just off stage, until they’re cued to perform. These doors are configured with heavy boots and angled in the water to act as a spreading mechanism to keep the net from collapsing in on itself.

largemouth bass

If unspooled properly, the net ends up looking like an enormous largemouth bass lurking just under the surface.

photo from http://www.pixabay.com

Commercial fishermen use all kinds of nets, long lines, and pots depending on the type of catch they’re targeting, fishing regulations, and cultural traditions. But if we use “trawl” as an adjective, it describes a specific kind of net that is usually very large and designed to catch a lot of fish all at one time. It looks like a cone with a smaller, more narrow section at the very end to collect the fish.

I imagine something like a cake decorating bag that’s being used to fill a mini eclair. Except, instead of squeezing delicious icing into the pastry, we’re funneling a bunch of fish into what fishermen call a “codend.” This codend (pronounced cod-end, like the fish) houses the prize at the end of the trawl! When they haul everything back in – taking a little longer, about 45 minutes to complete the haul back – they end up with (hopefully) a codend full of fish to study.

mini eclairs
Two Mini Eclairs Filled with Pastry Cream

A trawl net can either be used like we are to collect fish close to the surface or it can be weighted and dropped to the sea floor in search of groundfish. We’re searching for pelagic fishes that come up to the surface to feed at night, so it makes sense for us to trawl at the surface. Think of pelagic fish as the fishes in the water. Sounds funny to say, but these fishes don’t like to be near the seabed or too close to the land by the coast. They like to stay solidly in the water. Think of where anchovies, mackerel, tuna, and sharks like to hang out.

To catch groundfish on the other hand, we’d need to trawl the bottom of the ocean since they prefer to stay close to the ocean floor. Trawling the seabed in the Northeast Pacific Ocean would bring in flavorful rockfish and flounder, but we’re not looking for groundfish during this survey. One very lucrative and maybe less known groundfish in this area is the sablefish. In commercial fishing, they use bigger nets, and a trawl can bring in tens of thousands of pounds in just one tow. When I spoke to someone on board who used to work on a commercial trawl boat, he said catching sablefish are a pain!  They live in very deep waters. Plus, the trawl must hit the seabed hard and drag along the bottom in order to catch them. This causes huge tears, many feet wide, in the mesh. He said they used to keep giant patches of mesh on the boat deck so they could patch up the holes in between trawls. When I get home, I’m definitely going to purchase sablefish and try it for dinner.

  • Trawl Net Spooled
  • Chief Bosun Scott Jones
  • Trawl Entering the Water
  • Codend Floating in the Water
  • Trawl Net Snaking off the Stern
  • Floats Sewn into the Kites
  • Floats
  • Daisy Knot
  • Getting Ready to Add Tom Weights
  • Hauling the Net back on Deck
  • Prepping the Codend
  • Emptying the Catch


TEACHING CONNECTIONS


I’ve never once wondered how the fish I buy at the grocery store ends up on my plate. Now I can’t seem to stop asking the scientists and deck crew questions. There are all these regulations to follow, methods to learn based on what type of fish you’re targeting, and so much that someone would need to understand about traveling in the ocean before even attempting to fish commercially. I’ve been immersed in a world I don’t recognize, and yet the fishing industry impacts my life on a daily basis. We are so far removed from what we eat.

The other aspect to the trawling topic that interests me is just how effortless it looks. The deck crew make such an intricate task look, truly, easy. An article on BBC News called Can 10,000 Hours of Practice Make You an Expert? does a nice job of summarizing how this might be possible. Of course, it doesn’t hurt that I’m currently reading Grit: The Power of Passion and Perseverance by Angela Duckworth, that I’ve already read Outliers: The Story of Success by Malcolm Gladwell and Mindset: The New Psychology of Success by Carol Dweck, and that as a teacher I’m familiar with Ericsson’s work on deliberate practice. I know how many years and cumulative hours they each must have put in to make it appear seamless.

Like most teachers, I want my students to find a career that they love enough to practice with such diligence. I want them to find a vocation instead of just work to pay the bills. I feel very much led to making sure my students have access to as much information as possible about post-secondary career and training options. For that reason, I’m glad to have met these folks and learn from them so I can share their practice with the hundreds, possibly thousands of teenagers I’ll teach over the course of my career.

It’s easy for me to do this as a reading specialist since I can read career profiles with students, let them annotate the text, and then engage them in a discussion on a regular basis. Reading, analyzing, and discussing text are kind of my bread and butter. For other disciplines, it might take a bit of a re-work to fit this in, but certainly not impossible. A science, math, art, STEM, you-name-it teacher could post a career profile specific to their discipline to their digital classroom space each week for students to read at their leisure. Or you could bring discipline specific literacy skills into your classroom by incorporating short texts into your lessons a few times each quarter.

I’m planning now to read a career profile with my students one time per week. I’ll keep the texts short so that reading, annotating, and discussing the text will stay under 15 minutes.  Some careers from the ship they might find interesting are the Chief Bosun position or a NOAA Corps Officer, but I’ll share a wide variety of career profiles from many disciplines based on the students’ interests once I meet them this year.


TEACHING RESOURCES

Karah Nazor: Departure from the San Francisco Bay and First Night of Fishing, May 29, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: May 28-29, 2019


I departed Chattanooga, TN, for San Francisco, CA, on May 28th to participate as a NOAA Teacher at Sea on Leg 2 of NOAA’s Juvenile Rockfish Recruitment and Ecosystem Assessment Survey.  My job as a Teacher at Sea will be to share my experience and knowledge acquired over the next 10 days working alongside NOAA scientists with MY AUDIENCE. Who is my audience? You! I hope that you all can be my students!  You, my McCallie students and colleagues, my friends, my swimming community and my family members. My intention here is to explain in layman’s terms what I learned, and especially, what I thought was cool.

After tapas in North Beach with my San Francisco friends Cathy Delneo and Evan Morrison, they dropped me off at Pier 15 to sleep in my stateroom on the NOAA Ship Reuben Lasker. I felt rocking even while docked in the San Francisco Bay, but I slept great and am happy to report that my CVS brand “less drowsy” Dramamine tablets seem to be working as I am prone to motion sickness. This morning Evan and I got to explore the ship and take a bunch of photos of The City from the top deck of the ship, called the Flying Bridge. I imagine I will be spending many hours up here over the next 10 days!

Karah and Evan on the Flying Bridge
Karah and Evan on the Flying Bridge the morning of departure.


Meeting the Science Team

The first science team member I met was Kelly Goodwin, Ph.D., an environmental molecular biologist from NOAA National Marine Fisheries Service (NMFS), Southwest Fisheries Science Center (SWFSC) La Jolla, and NOAA Atlantic Oceanographic and Meteorological Laboratory.  Kelly is here along with Associate Researcher Lauren Valentino to collect environmental DNA (eDNA) from water collected at three depths (5 meters, the chlorophyll maximum, and 100 meters) during deployment of the Conductivity, Temperature and Depth (CTD) Rosette.  There will be more about these marine scientists and the cool biotechnology they will be employing to come in a future post!

Next, I met my stateroom bunkmate Flora Cordoleani, Ph.D., of NOAA NMFS, SWFSC,Fisheries Ecology Division (FED).   Her research lab at the University of California Davis focuses on the management of the endangered king salmon in the Central California Valley.  I will definitely interview her for a future blog!

Meet the rest of the team: Doctoral student Ilysa (Ily) Iglesias, NMFS SWFSC FED/ University of California Santa Cruz (UCSC), works in John Field’s Lab.  Ily will be analyzing the myctophids (one of the most abundant mesopelagic fish groups) collected on this survey and elucidating their role in the trophic cascade.  She was on the cruise last year as well and I can already tell is psyched about this opportunity and wants to teach everyone. 

John Field, Ph.D., was on the previous leg of the cruise and is the Principal Investigator for this project while Keith Sakuma, of NMFS SWFSC FED, is the Chief Scientist and has been working on this survey for 30 years as of this cruise!     

Kristin Saksa of NMFS SWFSC FED/ Moss Landing Marine Lab (MLML) and Kaila Pearson, NMFS SWFSC FED, of Scripps, who are both working on master’s degrees in marine science.  

Jarrod Santora, Ph.D., an ecologist from NMFS SWFSC FED/UCSC, will be on the day shift.  Brian Hoover, Ph.D., an ornithologist who works for the Farallon Institute for Advanced Ecosystem Research (FIAER), will be observing birds and marine mammals on the day shift. 

Keith Hanson is a NOAA Corps Officer representing NMFS SWFSC FED and is also a valuable member of the science team.

Night shift fish sorting crew
Night shift fish sorting crew. From left: Karah Nazor, Ph.D., Flora Cordoleani, Ph.D., Kristin Saksa, Keith Sakuma, Keith Hanson, Kaila Pearson, and Ilysa Iglesias.

After a welcome aboard orientation and safety briefing given by NOAA Corps Officer David Wang, we enjoyed a delicious reuben sandwich in the galley (cafeteria) of the Reuben Lasker.  Meals are served at 7 AM, 11 AM and 5 PM. Since I will be on night shift I can request to have meals put aside for me to eat whenever I want. Below is a typical menu.  The food is superb! See a menu from one of our last days below.

Menu for my last day.
Menu for my last day.

After a noon departure the engineers spent a couple of hours testing the dynamic positioning system just north of the Bay Bridge.  This system takes inputs from ocean conditions such as the tide, wind, waves and swell and uses the propulsion and thrusting instruments on board to maintain a fixed position on the global positioning system (GPS).   Most of the night shift science crew used this opportunity to nap since we had to stay up all night!

Kaila Pearson woke me up just in time as we exited San Francisco Bay to take in the spectacular view of passing under the Golden Gate Bridge.  It was a gorgeous sunny day in San Francisco and I felt super grateful to be a part of this research team, excited to get to know the team of amazing (mostly) female scientists I had just met, and ready to start fishing! It was fun to get to serve as a impromptu San Francisco tour guide as we departed the Bay, since I am quite familiar with this landscape. This body of water was my first open water swimming playground when I used to live in San Francisco during my postdoc at UCSF and was a member of the South End Rowing Club.  

Departing San Francisco Bay
Our departure from the San Francisco Bay. Photo taken on the flying bridge. From Left: Kaila Pearson, Flora Cordoleani, Ph.D., Lauren Valentino, and Ilysa Iglesia with Teacher at Sea Karah Nazor, Ph.D., in front.


Night 1 of Cobb Trawl and Fish Sorting

We arrived at our first trawl line, Monterey Bay, around 11:00 P.M.  My job as part of the night crew is to participate in marine mammal watches before and during fishing, and then to sort, count and measure the different species of animals collected, as well as bag and freeze specimens for various research organizations.  The fishing method used on this survey is a modified Cobb midwater trawl.  The net is deployed to fish at 30 meters depth and has a 9.5 mm codend liner (mesh at the end of the net where the fish gather).  Trawl operations commence just after dusk and conclude just before dawn, with the goal of conducting up to 5 trawls per night. The duration of fishing at target depth before “haul back” of the net can be either 5 minutes or 15 minutes.  Five minute trawls are used in areas of high abundance of gelatinous organisms such as jellyfish in order to reduce the size of the catch (e.g., fishing the additional 10 minutes would result in catches large enough to damage the net). 

catch from the first Cobb trawl
From left, Keith Hanson, NOAA Operations Officer, and Chief Scientist Keith Sakuma, help release the catch from the first haul of the survey.
first haul's catch
At first glance, it appeared the catch consisted mostly of Northern anchovies.
Graduate student Ilysa Iglesias
UCSC graduate student Ilysa Iglesias examines the first sort of the first haul, with the organisms arranged by species.

There are two marine mammal watches per trawl: the inside watch and the outside watch.  The inside watch goes to starboard side of the bridge 30 minutes prior to reaching the planned trawl station.  If any marine mammals such as sea lions, seals, dolphins or whales are spotted within one nautical mile of the planned trawl station, then the ship must move.  This protocol is employed for mitigating interaction with protected marine species.

If the inside watch does not see any marine mammals, then trawl operations can begin.  This is when the outside mammal watch takes over and looks for marine mammals during net deployment, trawling, and haul in.  The outside watch is conducted one floor above the fishing deck, and the person must wear foul weather gear, a life vest, and a helmet. This is summer, but it is the Pacific, and it is COLD out there.  If a marine mammal is spotted by the outside watch then the trawl net must immediately be reeled in.

I spotted a school of dolphins in Monterey Bay during haul back and reported the sighting via radio to the bridge officers and recorded my observations in the lab on the provided data sheet in the lab.

The duration of the entire fishing operation from net deployment, dropping the two “doors” (large metal plates weighing 900 pounds each) used to spread the net mouth open, fishing, haul in, properly wrapping the net on the winch, and finally, dispensing the harvested fish into the collection buckets, takes between 45 minutes to an hour and a half, depending on conditions.  

Our first catch consisted primarily of Northern anchovies (Engraulis mordax) and California market squid, Doryteuthis (Loligo) opalescens. Ily was excited by the presence of a few plainfin midshipman, Porichthys notatus, and showed us their beautiful pattern of large photophores located on their ventral surface.  These fish are quite hardy and survive the trawling procedure, so as soon as we saw one in the bucket, we placed it in a bowl of sea water for release after obtaining its length. Photophores are glandular organs that appear on deep sea or mesopelagic fish and are used for attracting prey or for confusing and distracting predators.  

Northern anchovies
Northern anchovies, Engraulis mordax,, are one of the most abundant species we catch.
Photophores
Photophores on ventral surface of Plainfin midshipman, Porichthys notatus.

Mesopelagic depths start around 200 meters, a depth at where 99% of the sunlight can no longer penetrate, and extend down to 1000 meters below the ocean surface.  Above the mesopelagic zone is the epipelagic zone where sunlight reaches from the ocean surface down to 200 meters and, in California, corresponds to the ocean above the continental shelf.  

In this survey, we will conduct trawls at 30 meters, which is technically the epipelagic zone, so why do we catch deep sea creatures?   Many deep sea creatures participate in a daily vertical migration where they swim up into the upper layer of the ocean at night as that area is relatively rich in phytoplanktonic organisms.  Phytoplankton are the sun-powered primary producers of the food chain, single-celled photosynthetic organisms, which also provide the majority of the oxygen we breath.

After the first night of work I feel confident that I can identify around 10 species of mesopelagic fish and forage organisms, the California Headlight Fish (more to come on these amazing myctophids from my interview with Ily), a juvenile East Pacific red octopus, Octopus rubescens, (alive), and ctenophores!  Thanks to the Tennessee Aquarium’s Sharyl Crossly and Thom Demas, I get to culture ctenophores in my classroom.

Californian Headlightfish
Two large photophores in between the eyes of a Californian Headlightfish, Diaphus theta
Small octopus
Small octopus – Octopus rubescens.
Karah holding ctenophores
Karah Nazor with a handful of ctenophores! These are Hormiphora – Undescribed Species.


Scientist Spotlight: Ornithologist Brian Hoover

Brian Hoover, Ph.D., an ornithologist who works for the Farallon Institute for Advanced Ecosystem Research (FIAER) in Petaluma, CA, observes birds and marine mammals on the day shift of this NOAA research cruise.  

Brian Hoover
Brian Hoover, Ph.D., at his office in the San Francisco Bay
Brain and Jarred watching for birds
Brian Hoover, Ph.D., and Jarred Santora, Ph.D., watching for birds and marine mammals as we went underneath the Golden Gate Bridge.

Brian is from Colorado and earned his doctorate at UC Davis in 2018.  On this cruise we will be traversing through biological hotspots that occur near islands, underwater canyons, and where there is strong upwelling of the cold and nutrient rich deeper waters of the California Current.  Small fish feed on these nutrient rich waters, and birds feed on these fish. Hotspots on this cruise included the Gulf of the Farallons (just south of the Point Reyes upwelling plume) , the Channel Islands, and Monterey Bay with its submarine canyon. Brian’s hours on the ship are from 7am to 7pm.

Brian can be found perched on the flying bridge during the day shirt with a pair of binoculars in his hand and his laptop off to his right on a table.  Every time a bird or marine mammal is spotted within 300 yards of the ship to the right of the mid centerline of the bow, Brian records the species and numbers of animals observed in his database on his laptop. The objective of Brian’s work aboard the ship is to study how what is present underwater correlates with birds observed above the water.  In other words, he aims to find correlations between the distribution and abundance of seabirds and marine mammals to the species and abundance of prey we collect during our night trawls and data collected from the ship’s acoustic krill surveys which collect data during the day. Brian explains that such information teaches us about what is going on with the bird’s prey base and how well the ecosystem is functioning as a whole. His observations allow him to observe shifts in the system over time and how this affects tertiary and apex predators.  To find trends in these datasets, he used R software, Python, and ArcGIS mapping software to run spatial statistics and linear models.

Since 2010 Brian has been on 12 to 13 cruises and this is his third on the Reuben Lasker.  Brian is excited to perhaps spot the Cooks Petrel, Pterodroma cookii, or the Short-tailed albatross, Phoebastria albatrus, which only lives in a volcano in japan.  His favorite birds are the storm petrels because these birds are small and live in open ocean, only coming onshore to breed once a year.  His dissertation focus was on the reproduction and behavior of the leeches storm petrol. He explains that seabirds have an incredible sense of smell which they utilize to find a mate and food. Brian was able to collect blood samples from burrowing birds for genotyping. He found that the major histocompatibility complex (MHC) molecules located on antigen-presenting cells may play a role in odor detection and mate selection in these birds.  He found that males chose and avoided particular genotypes combinations and that healthier birds had more diverse MHCII complexes.

Brian is a sensory ecologist and studies how seabirds interact with their environment  through observations of their behavior and physiology. When Ily asked Brian how do the seabirds know where the fish are in the open ocean, he explained that birds have a sense of smell that is as good or better than any commercial sensor that detects sulfur.  Why have some seabirds evolved to be so good at sniffing out traces of sulfur in the ocean breeze up to 10 miles away from its source? Brian explained that sulfur is an important part of the photosynthetic pathway for phytoplankton (algal cells) and that when krill eat the algae, the algae releases the chemical dimethyl sulfide (DMS).  Marine plastic debris floating on the sea surface also release DMS and provides an explanation as to why seabirds eat plastic.

Andria Keene: The sun is setting on my adventure! October 21, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 21, 2018

Weather Data from the Bridge
Date: 2018/10/21
Time: 12:52
Latitude: 029 23.89 N
Longitude 094 14.260 W
Barometric Pressure 1022.22mbar
Air Temperature: 69 degrees F

The isness of things is well worth studying; but it is their whyness that makes life worth living.
– William Beebe

 

Last sunset
My last sunset aboard the Oregon II.

Science and Technology Log

Today is our last day at sea and we have currently completed 53 stations!  At each station we send out the CTD.   CTD stands for Conductivity, Temperature and Depth.   However, this device measures much more than that.  During this mission we are looking at 4 parameters: temperature, conductivity, dissolved oxygen and fluorescence which can be used to measure the productivity of an area based on photosynthetic organisms.

science team with the CTD
Some of the science team with the CTD.

Once the CTD is deployed, it is held at the surface for three minutes.  During this time, 4,320 scans are completed!  However, this data, which is used to acclimate the system, is discarded from the information that is collected for this station.

CTD Collage
The crane lifts the CTD from the well deck and deploys it into the water.

Next, the CTD is slowly lowered through the water until it is about 1 meter from the bottom.  In about 30 meters of water this round trip takes about 5 minutes during which the CTD conducts 241 scans every 10 seconds for a grand total of approximately 7,230 scans collected at each station.

CTD Graph
The computer readout of the data collected at one of the stations.

Our CTD scans have gathered the expected data but during the summer months the CTD has found areas of hypoxia off the coast of Louisiana and Texas.

Summer Hypoxia Zones
Data from CTD scans was used to create this map of hypoxic zones off the coast of Louisiana in summer of 2018.

 

Personal Log

The gloomy weather has made the last few days of the voyage tricky. Wind and rough seas have made sleeping and working difficult. Plus, I have missed my morning visits with dolphins at the bow of the ship due to the poor weather.  But seeing the dark blue water and big waves has added to the adventure of the trip.

Dark clouds lifting
The gloom is lifting as a tanker passes in the distance.

We have had some interesting catches including one that weighed over 800 pounds and was mostly jellyfish.  Some of the catches are filled with heavy mud while others a very clean. Some have lots of shells or debris.  I am pleasantly surprised to see that even though I notice the occasional plastic bottle floating by, there has not been much human litter included in our catches.  I am constantly amazed by the diversity in each haul.  There are species that we see at just about every station and there are others that we have only seen once or twice during the whole trip.

Catch collage
A few of the most unique catches.

I am thrilled to have had the experience of being a NOAA Teacher at Sea and I am excited to bring what I have learned back to the classroom to share with my students.  

 

Challenge Question:

Bonus points for the first student in each class to send me the correct answer!

These are Calico Crabs, but this little one has something growing on it?  What is it?

Calico crabs
Calico crabs… but what is that growing on this small one?

Did you know…

That you can tell the gender of a flat fish by holding it up to the light?

Flatfish collage
The image on the top is a female and the one of the bottom is the male. Can you tell the difference?

 

Today’s Shout Out! 

Kudos to all of my students who followed along, answered the challenge questions, played species BINGO, and plotted my course!  You made this adventure even more enjoyable!  See you soon 🙂

Andria Keene: Let the fun begin! October 17, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 17, 2018

Weather Data from the Bridge
Date: 2018/10/17
Time: 13:10
Latitude: 027 39.81 N
Longitude 096 57.670 W
Barometric Pressure 1022.08mbar
Air Temperature: 61 degrees F

Those of us who love the sea wish everyone would be aware of the need to protect it.
– Eugenie Clark

Science and Technology Log

After our delayed departure, we are finally off and running! The science team on Oregon II has currently completed 28 out of the 56 stations that are scheduled for the first leg of this mission. Seventy-five stations were originally planned but due to inclement weather some stations had to be postponed until the 2nd leg. The stations are pre-arranged and randomly selected by a computer system to include a distributions of stations within each shrimp statistical zone and by depth from 5-20 and 21-60 fathoms.

Planned stations and routes
Planned stations and routes

At each station there is an established routine that requires precise teamwork from the NOAA Corps officers, the professional mariners and the scientists. The first step when we arrive at a station, is to launch the CTD. The officers position the ship at the appropriate location. The mariners use the crane and the winch to move the CTD into the water and control the decent and return. The scientists set up the CTD and run the computer that collects and analyzes the data. Once the CTD is safely returned to the well deck, the team proceeds to the next step.

science team with the CTD
Some members of the science team with the CTD

Step two is to launch the trawling net to take a sample of the biodiversity of the station. Again, this is a team effort with everyone working together to ensure success. The trawl net is launched on either the port or starboard side from the aft deck. The net is pulled behind the boat for exactly thirty minutes. When the net returns, the contents are emptied into the wooden pen or into baskets depending on the size of the haul.

red snapper haul
This unusual haul weighed over 900 pounds and contained mostly red snapper. Though the population is improving, scientists do not typically catch so many red snapper in a single tow.

The baskets are weighed and brought into the wet lab. The scientists use smaller baskets to sort the catch by species. A sample of 20 individuals of each species is examined more closely and data about length, weight, and sex is collected.

The information gathered becomes part of a database and is used to monitor the health of the populations of fish in the Gulf. It is used to help make annual decisions for fishing regulations like catch and bag limits. In addition, the data collected from the groundfish survey can drive policy changes if significant issues are identified.

Personal Log

I have been keeping in touch with my students via the Remind App, Twitter, and this Blog. Each class has submitted a question for me to answer. I would like to use the personal log of this blog to do that.

3rd Period - Marine Science II
3rd Period – Marine Science II: What have you learned so far on your expedition that you can bring back to the class and teach us?

The thing I am most excited to bring back to Marine 2 is the story of recovery for the Red Snapper in the Gulf of Mexico. I learned that due to improved fishing methods and growth in commercial fishing of this species, their decline was severe. The groundfish survey that I am working with is one way that data about the population of Red Snapper has been collected. This data has led to the creation of an action plan to help stop the decline and improve the future for this species.

4th Period - Marine Science I
4th Period – Marine Science I: What challenges have you had so far?

Our biggest challenge has been the weather! We left late due to Hurricane Michael and the weather over the past few days has meant that we had to miss a few stations. We are also expecting some bad weather in a couple of days that might mean we are not able to trawl.

5th Period - Marine Science I
5th Period – Marine Science I: How does the NOAA Teacher at Sea program support or help our environment?

The number one way that the NOAA Teacher at Sea program supports our environment is EDUCATION! What I learn here, I will share with my students and hopefully they will pass it on as well. If more people know about the dangers facing our ocean then I think more people will want to see changes to protect the ocean and all marine species.

7th Period - Marine Science I
7th Period – Marine Science I: What is the rarest or most interesting organism you have discovered throughout your exploration?

We have not seen anything that is rare for the Gulf of Mexico but I have seen two fish that I have never seen before, the singlespot frogfish and the Conger Eel. So for me these were really cool sightings.

 

 

 

 

 

 

 

 

 

 

8th Period - Marine Science I
8th Period – Marine Science I: What organism that you have observed is by far the most intriguing?

I have to admit that the most intriguing organism was not anything that came in via the trawl net. Instead it was the Atlantic Spotted Dolphin that greeted me one morning at the bow of the boat. There were a total of 7 and one was a baby about half the size of the others. As the boat moved through the water they jumped and played in the splashing water. I watched them for over a half hour and only stopped because it was time for my shift. I could watch them all day!

Do you know …

What the Oregon II looks like on the inside?
Here is a tour video that I created before we set sail.

 

Transcript: A Tour of NOAA Ship Oregon II.

(0:00) Hi, I’m Andria Keene from Plant High School in Tampa, Florida. And I’d like to take you for a tour aboard Oregon II, my NOAA Teacher at Sea home for the next two weeks.

Oregon II is a 170-foot research vessel that recently celebrated 50 years of service with NOAA. The gold lettering you see here commemorates this honor.

As we cross the gangway, our first stop is the well deck, where we can find equipment including the forecrane and winch used for the CTD and bongo nets. The starboard breezeway leads us along the exterior of the main deck, towards the aft deck.

Much of our scientific trawling operations will begin here. The nets will be unloaded and the organisms will be sorted on the fantail.

(1:00) From there, the baskets will be brought into the wet lab, for deeper investigation. They will be categorized and numerous sets of data will be collected, including size, sex, and stomach contents.

Next up is the dry lab. Additional data will be collected and analyzed here. Take notice of the CTD PC.

There is also a chemistry lab where further tests will be conducted, and it’s located right next to the wet lab.

Across from the ship’s office, you will find the mess hall and galley. The galley is where the stewards prepare meals for a hungry group of 19 crew and 12 scientists. But there are only 12 seats, so eating quickly is serious business.

(2:20) Moving further inside on the main deck, we pass lots of safety equipment and several staterooms. I’m currently thrilled to be staying here, in the Field Party Chief’s stateroom, a single room with a private shower and water closet.

Leaving my room, with can travel down the stairs to the lower level. This area has lots of storage and a large freezer for scientific samples.

There are community showers and additional staterooms, as well as laundry facilities, more bathrooms, and even a small exercise room.

(3:15) If we travel up both sets of stairs, we will arrive on the upper deck. On the starboard side, we can find the scientific data room.

And here, on the port side, is the radio and chart room. Heading to the stern of the upper deck will lead us to the conference room. I’m told that this is a great place for the staff to gather and watch movies.

Traveling back down the hall toward the bow of the ship, we will pass the senior officers’ staterooms, and arrive at the pilot house, also called the bridge.

(4:04) This is the command and control center for the entire ship. Look at all the amazing technology you will find here to help keep the ship safe and ensure the goals of each mission.

Just one last stop on our tour: the house top. From here, we have excellent views of the forecastle, the aft winch, and the crane control room. Also visible are lots of safety features, as well as an amazing array of technology.

Well, that’s it for now! Hope you enjoyed this tour of NOAA Ship Oregon II.  

 

Challenge Question of the Day
Bonus Points for the first student in each class period to come up with the correct answer!
We have found a handful of these smooth bodied organisms which like to burrow into the sediment. What type of animal are they?

Challenge Question
What type of animal are these?

Today’s Shout Out:  To my family, I miss you guys terribly and am excited to get back home and show you all my pictures! Love ya, lots!