Roy Arezzo, July 16, 2007

NOAA Teacher at Sea
Roy Arezzo
Onboard NOAA Ship Oscar Dyson
July 11 – 29, 2007

Mission: Summer Pollock Survey
Geographical Area: North Pacific, Alaska
Date: July 16, 2007

We love Plankton
We love Plankton

Weather Data from Bridge 
Visibility: 8 nm (nautical miles)
Wind direction:   260° (SW)
Wind speed:   6 knots
Sea wave height: 1 foot
Swell wave height: 3 feet
Seawater temperature: 9°C
Sea level pressure: 1014.4 mb (millibars)
Air Temperature:   8°C
Cloud cover: 8/8, stratus

Science and Technology Log: Why fish pollock? What do pollock fish? Pelagic Food Webs of the Bering Sea 

Surveying pollock on the Bering shelf provides the data needed to set catch limits to manage the fishery. Catch limits for American fishing fleets are to be decided soon for next year. The pollock survey I am part of as Teacher at Sea is technically known as the Echo Integration Trawl Survey been an annual tradition of NOAA since 1971! The OSCAR DYSON, and before her the MILLER FREEMAN, use traditional trawling gear to achieve this goal. The fishing gear tends to be smaller then the larger fishing vessels since we don’t need to catch as many fish to estimate population trends. Like commercial operations we are interested in where the fish are in the water column and their geographic distribution. We also are concerned with their age composition. Although we primarily use acoustic sensors to detect fish, by trawling we can see how the technology used to locate fish in the water matches with what is being caught in the net. We also monitor by-catch organisms to observe what is mixed in with pollock when trawling.

Aleutian Islands
Aleutian Islands

Dutch Harbor, AK, according to the National Fisheries Service continues to be the No. 1 port by weight for seafood landings. In 2005, 877 million pounds of seafood passed through port, in 2006 it was more. In terms of seafood value only New Bedford, Mass., surpasses Dutch Harbor mostly due to the increase in the scallop market and decrease in crab populations. Dutch Harbor is known for its king crab industry in the winter and finfish year round, including hake, cod and salmon. Although shrimp is American’s most popular seafood item in terms of sales, finfish occupy much of the top five. Canned tuna is second highest for sales in the U.S., salmon is third and then pollock and tilapia; however if you factor in the global market, the amount of pollock being harvested and the sales for food products such as frozen whitefish foods, filets and surimi (Asian fish paste used in foods such as artificial crab) make it the largest seafood industry in the world (Anchorage Daily News). In addition Pollock are seasonally fished for roe. Commercially, fishing pollock is a good business venture due to its large schools and typically low by-catch. According to the National Marine Fisheries Service approximately 307 million dollars in pollock sales was made in the U.S in 2005. More than 3 million tons of Alaska pollock are caught each year in the North Pacific from Alaska to northern Japan. Of that the U.S. is responsible for about half. The population of Pollock in the Bering alone was estimated at 10 million metric tons early this decade and the catch limit was set around 10 –15% of the population size. Last year the survey team found a significant decline in populations and thus the catch limit was lowered but anecdotally there are preliminary signs of good recruitment with many young pollock being identified in this summer’s survey.

Assorted diatoms
Assorted diatoms

We are clearly at the top of the food web and consuming a large amount of pollock. The pollock are part of a very complex ecosystem. They are fragile fish and short lived but fast growing and quick to reproduce. The pollock population seems to be greater in number then most other harvestable finfish in the Bering, possibly due to a decline in Pacific Ocean perch, and shows interesting fluctuations in population density in response to global climate changes and sea current patterns. The Bering Sea lies between the Arctic Ocean to the north and the North Pacific to the south but remains a unique ecosystem exhibiting some characteristics of each of its neighbors.

Jellyfish found in the plankton net - large plankton!
Jellyfish found in the plankton net – large plankton!

The food web of the pelagic zone of open water in the cold Bering Sea is contingent on movement of nutrient rich waters. The main source of nutrients for the upper shelf region where one finds pollock seems to be influenced by the flow of the Alaskan Stream near shallower coastal waters which flows east across the Aleutian chain. Some of the water flows up through passes and becomes parts of currents like the Aleutian North Slope Current that feed the shelf. The Bering Sea is an extremely large and a relatively shallow body of water making it very different and it is this nutrient flow between shallow waters of the coast and shelf and deep basin/trenches to the west and south that account for its high biodiversity. In addition to currents ice melt and water temperature greatly affects nutrient flow and productivity. The nutrient rich water enables phytoplankton to flourish and reproduce in otherwise cold barren water. In turn zooplankton feed on the phytoplankton which transfers the organic carbon foods from producers to other levels of the food web. Invertebrates (ex. crabs, shrimp and jellyfish), small birds, small fish and baleen whales feed on the zooplankton. Seals, sea lions, skates, larger seabirds, porpoises and toothed whales feed on the fish and invertebrates. A substantial portion in the diet of larger pollock is made of plankton such as krill. This is the same food baleen whales filter out of the water when feeding.  Krill is the common name of shrimp-like marine invertebrates belonging to the order of crustaceans called the Euphausiids. Adult Pollock also dine on smaller pollock and this has been seen in our harvest as some pollock come up from the net with smaller fish in their mouth or stomach contents.

Pollock larvae
Pollock larvae

What is plankton? 

Plankton is a general word used to describe aquatic organisms that tend to drift with the current and are usually unable to swim against it. They are generally buoyant and found in the epipelagic zone (top of water receiving sun energy) although many species have serious vertical migration to feed and escape predators.  Most folks think of plankton as being tiny but large seaweeds and jellyfish are considered plankton. Phytoplankton refers to algae and photosynthetic organisms that make food with the sun’s energy. Diatoms are important phytoplankton in the Bering Sea ecosystem an have amazing silicon patterns. Zooplankton includes many groups of animal-like organisms, including microscopic protozoa and tiny crustaceans such as daphnia and copepods. The copepods population seems like an important link in understanding survivorship of young pollock. Many benthic crustaceans and mollusks (oysters and clams) start their life cycle as free-swimming larvae high in the water column. Young fish such as pollock also start their life cycle as plankton-like larvae.

Methot net, flow meter, and emptying the plankton net
Methot net, flow meter, and emptying the plankton net

Observing and Measuring Pollock Food: Last night we did a Methot Trawl. This involves dragging a net with a finer mesh than our fish trawl to pick up plankton. This is important in understanding what the fish we study are eating. When we dissect the belly of a pollock we often find it full of zooplankton with the occasional small fish, such as smelts or young pollock. We correlate the mass of the plankton caught in the net with the flow rate to estimate population density. We estimated 44,000 critters in the 35,000 cubic meters of water that passed through the net, much of which consisted of Euphausiids and Amphipods. This works out to approximately 1.3 plankton organisms per cubic meter of water.

Euphausiid pictured left and Amphipod pictured right
Euphausiid pictured left and Amphipod pictured right

Personal Log

The Bering Sea has been relatively calm with good visibility. We have seen our first boats in over 36 hours, some fishing boats and a Coast Guard Cutter. There have been some marine mammal sightings but nothing close enough to make an ID. I am settling into a bit of a routine, waking around 10:30 AM for lunch and then relaxing and working out before checking in for my shift at 4 pm. I spend a fair amount of my off time in our spacious bridge discovering new technological toys and looking out for wildlife. Each day I spend some time out on the deck above the bridge for fresh air.

Mature Female Pollock with visible eggs
Mature Female Pollock with visible eggs

After dinner we usually begin fishing and I don my foulies and safety equipment and observe operations from the back deck. I then photo anything new that comes in and try to process any bycatch to make sure it is returned to the water quickly and in good shape. The science team then works together, processing the pollock and helping with the clean up. Sometimes the fish schools are large so we have to stay in our gear and work back to back trawls. After trawling we often look at the data collected or deploy various test equipment and water quality checks. Nighttime is not best for trawling so the few hours between sunset and sunrise is reserved for special project applications designed to modify our methods. In between fishing I work on my Teacher-At-Sea writings and interviewing folks on the boat.

Mature Male Pollock; testis visible above
Mature Male Pollock; testis visible above

Question of the Day 

Today’s question: How is the field of acoustics used in science?

Previous Question: How does one tell a male fish from a female fish in Pollock?  

Male and female Pollock look the same from their exterior anatomy. Although we weigh and catalog all the fish we pull in, we sex a 300 fish sample batch from each trawl. This involves dissecting the fish to identify their gonads. We make a cut on the ventral surface from the gills towards the anus. We open the body cavity and move the liver to the side to expose the other internal organs. Gravid females are relatively simple to ID since they have large egg sacks with whitish eggs. A mature female will have a large ovary that tends to be reddish and lined with blood vessels. Immature females are more difficult to identify and have a less pronounced ovary that varies in color.

Mature males will have developed white coiled testis. For undeveloped males one looks for pink globular organs where the white testis should be. Immature males are more difficult to identify but when no ovary is visible we search for a thin membranous tissue running from the Uro-genital opening up into the body cavity towards the backbone.

Interested in more about Alaskan fisheries?

NOAA Alaska Fisheries Science Center

Pacific State Marine Fisheries Commission 

Anchorage Daily News 

Leave a Reply

%d bloggers like this: