Michelle Greene: Meet the Beakers, July 26, 2018

NOAA Teacher at Sea

Michelle Greene

Aboard NOAA Ship Gordon Gunter

July 19 – August 3, 2018

 

Mission: Cetacean Survey

Geographic Area: Northeast U.S. Atlantic Coast

Date: July 26, 2018

 

Latitude: 40° 0.989″ N

Longitude: 67° 30.285″ W

Sea Surface Temperature: 22.1° C (71.8° F)

Sailing Speed: 4.65 knots

 

Science and Technology Log

Premier marine ecologist Dr. Robert Pitman is a member of our cruise.  He works at the NOAA Fisheries at the Southwest Fisheries Science Center in the Marine Mammal and Turtle Division.  He has traveled the world in search of cetaceans, turtles, flying fish, and seabirds.  Currently he is doing extensive work with killer whales.  Dr. Pitman has viewed almost all of the 80 plus species of whales known to man; however, seeing some of the Mesoplodon beaked whales in person has been elusive… until now.  Dr. Pitman gave an excellent presentation on the different species of beaked whales that we might to see in the North Atlantic Ocean.

Blainville’s Beaked Whale (Mesoplodon densirostris)

Blainville's Beaked Whale

Blainville’s Beaked Whale

The Blainville’s beaked whale was first identified by Frenchman Henri de Blainville in 1817 from a piece of a jaw.  The average length of a Blainville’s beaked whale is 4.4 meters.  The most prominent feature of the whale is a high arching jaw. Blainville’s beaked whales have scars from raking which heal white.  Males are very aggressive and proud.  Dr. Pitman stated, “They want a pair of horns but only have a pair of teeth.”  They leave deep scars with their pairs of teeth, because they will savagely charge each other.  Sometimes barnacles will settle on their teeth.  The head of a Blainville’s beaked whale is flat to expose the teeth.

Cuvier’s Beaked Whale (Ziphius cavirostris)

Cuvier's Beaked Whale

Cuvier’s Beaked Whale

The Cuvier’s beaked whale was first identified by Frenchman Georges Cuvier from a skull in 1823.  The skull had a large cavern in the head which was the reason for the name cavirostris (cavi means hollow or cavernous in Latin).  Cuvier’s beaked whales also go by the name of goose beaked whale.  The whale can grow to a length of seven meters.  Cuvier’s beaked whales have the most variable coloration.  Some Cuvier’s will be grey in color while others may be reddish brown in color.  They have white sloping melons.

Gervais’ Beaked Whale (Mesoplodon europaeus)

Gervais' Beaked Whale

Gervais’ Beaked Whale

The Gervais’ beaked whale was first identified by Frenchman Paul Gervais in 1855.  The average size of a Gervais’ beaked whale is 4.8 meters.  The prominent feature of the Gervais’ beaked whale is the vertical striping along its back along with a dark band just behind the melon.  A white circular spot is located just below the melon.  The dorsal fin is dark.  The male Gervais’ beaked whale has one set of teeth located about one-third of the way back from the tip of the beak.  Males turn dark and lose their striping with age.  Males also rake each other; however, scars from the encounters re-pigment a darker color.

Sowerby’s Beaked Whale (Mesoplodon bidens)

Sowerby's Beaked Whale

Sowerby’s Beaked Whale

The Sowerby’s beaked whale was first identified by Englishman James Sowerby in 2804.  The average size of a Sowerby’s beaked whale is 5.5 meters.  They are one of the few whales that have a long beak.  Males have one pair of teeth that are located about two-thirds of the way back from the tip of the beak (or rostrum).  Males have make scratch marks along their backs; however, since the teeth are positioned so far back, scratch marks are from just one tooth and not a pair which would create parallel tracks.  Scientists believe the scarring is due to male competition.  The dorsal fin is located approximately two-thirds of the way along the back.  These whales are not very aggressive and more than one male will be seen in a group.  These animals do not usually travel alone unless it is a male.

True’s Beaked Whale (Mesoplodon mirus)

True's Two

True’s Beaked Whale Photographed on Our Cruise

True's Beaked Whales

True’s Beaked Whales

The True’s beaked whale is the dominant subject of study of this cruise.  The True’s beaked whale was first identified by American Frederick True in 1913.  Due to his excitement over his discovery of the marine mammal, he named it mirus, which means wonderful in Latin.  A True’s beaked whale can grow to be about 5.4 meters.  The identifying features of a True’s beaked whale include: a dark band behind the melon, a large light spot behind the dark band, a pale melon, two tiny flippers, dorsal fin that is small and triangular,  and for males two tiny teeth at the front of the rostrum.  These whales will have paired parallel scarring because their teeth are so close together.

 

Personal Log

First and foremost, I am in awe every day at the different things I see in nature on this cruise.  I have seen so many birds that I cannot remember one from the other… not to mention the dolphins.  I did not know there were so many kinds of dolphins.  I watched the television series “Flipper” when I was a little girl, and now I can say I have seen a bottlenose dolphin in person.  I think the scientists get almost as excited as I do about seeing an animal even though they have probably seen them hundreds, if not thousands, of times.  Nature is always amazing no matter how many times you see it.

During Dr. Pitman’s presentation, I was captivated by the way he spoke about the whales like they were his best friends he had known forever.  I found out why.  He has spent most of his life studying them.  Dr. Pitman is an amazing resource for me on this cruise.  Being a marine mammal observer newbie, Dr. Pitman took the time to answer all of my questions about whales.  I really value the conversations I have had with a famous whale lover.

The weather has not been ideal for marine mammal observation for several days.  If the swell is too high, it makes it hard to see the animals, because they can breach in the waves where we cannot see them.  The fog also makes it difficult to see the animals, and it is not safe on the flying bridge if it is raining.  During times of foul weather, the scientists are busily working on projects except for the seabirder.  The seabirder sees several birds during foul weather.  The chief scientist, Dr. Danielle Cholewiak, has assembled an international crew of scientists who are as passionate as she is about beaked whales.

During the foul weather when people are not working on other projects, the galley is place to be.  The scientists have taught me how to play a card game called Peanut.  It is a wild version of a multiplayer solitaire.  I am usually pretty good at catching on how to play card games, so learning another game was fun.  It gets fast and furious, and you cannot be faint of heart.  The first person to 100 wins, but the person with the lowest score which can be negative also gets to be the winner of the lowest score.  Sometimes even a NOAA Corps officer will join in on the excitement.  All kinds of fun happens on board the Gordon Gunter!

One of the best experiences I have had so far on this cruise is talking with the crew.  They are from all over the country and take their work very seriously.  As different NOAA Corps officers on board get promoted, they may not stay with the Gordon Gunter and may move to other ships.  Most of the crew, however, sticks with the Gordon Gunter.  I thought when we went on the cruise that we were basically going on a “fishing” trip to watch whales and dolphins and no machinery would be on board.  Oh how I was wrong!  There are several pieces of heavy machinery on board including a crane and a wench.  The boatswain is in charge of the anchors, rigging, and other maintenance including the heavy machinery.  Boatswain is not a term I was familiar with before this cruise.  The word is pronounced like “Bosun” not “Boat Swain.”  Boatswain Taylor is the first one I see in the mornings and last one I see at night.  He works tremendously hard to make sure the “work” of the ship is done.

 

Did You Know?

The Smithsonian National Museum of Natural History Marine Mammal Program created a beaked whale identification guide.  Check out the website: http://vertebrates.si.edu/mammals/beaked_whales/pages/main_menu.htm

Animals Seen

  1. Audubon’s Shearwater Bird (Puffinus iherminieri)
  2. Barn Swallow Bird (Hirundo rustica)
  3. Blue Shark (Prionace glauca)
  4. Brown Booby Bird (Sula leucogaster)
  5. Brown-headed Cowbird (Molothrus ater)
  6. Common Dolphin (Delphinus delphis)
  7. Cory’s Shearwater Bird (Calonectris diomedea borealis)
  8. Cuvier’s Beaked Whale (Ziphius cavirostris)
  9. Fin Whale (Balaenoptera physalus)
  10. Great Shearwater Bird (Puffinus gravis)
  11. Leach’s Storm Petrel Bird (Oceanodroma leucorhoa)
  12. Parasitic Jaeger Bird (Stercorarius parasiticus)
  13. Pilot Whale (Globicephala)
  14. Pomarine Jaeger Bird (Stercorarius pomarinus)
  15. Portuguese Man O’war (Physalia physalis)
  16. Pygmy Sperm Whale (Kogia breviceps)
  17. Red-billed Tropicbird (Phaethon aethereus)
  18. Risso’s Dolphin (Grampus griseus)
  19. Spotted Dolphin (Stenella frontalis)
  20. South Polar Skua Bird (Catharacta maccormicki)
  21. Sowerby’s Beaked Whale (Mesoplodon bidens)
  22. Sperm Whale (Physeter macrocephalus)
  23. Striped Dolphin (Stenella coeruleoalba)
  24. True’s Beaked Whale (Mesoplodon mirus)
  25. White-faced Storm Petrel Bird (Pelagodroma marina)
  26. Wilson’s Storm Petrel Bird (Oceanites oceanicus)

Vocabulary

  1. Barnacles (balanus glandula) – sticky crustaceans related to crabs and lobsters that permanently stick themselves to surfaces
  2. Blowhole – similar to “nostrils” in humans which sits on top of the head to make it easier for cetaceans to breath without breaking their swimming motion.
  3. Dorsal fin – a fin made of connective tissue that sits on the back of a whale believed to be used for balance, making turns in the water, and regulating body temperature
  4. Fluke – a whale’s tail is comprised of two lobes made of tough connective tissue called flukes which help it move through the water
  5. Melon – an oil-filled sac on the top of a beaked whale’s head that is connected it vocal chords.  The melon helps the whale to make clicks which help it to find food.
  6. Rostrum – snout or beak of a whale
  7. Winch – a machine that has cable that winds around a drum to lift or drag things

 

Photograph References

“Beaked Whale Sets New Mammalian Diving Record.” The Guardian. 27 March 2014. https://www.theguardian.com/science/2014/mar/27/beaked-whale-new-mammalian-dive-record

“Blainville’s Beaked Whale (Mesoplodon denisrostris).” NOAA Fisheries: Species Directory.  https://www.fisheries.noaa.gov/species/blainvilles-beaked-whale

“Gervais’ Beaked Whale (Mesoplodon europaeus).” NOAA Fisheries: Species Directory. https://www.fisheries.noaa.gov/species/gervais-beaked-whale

“Sowerby’s Beaked Whale (Mesoplodon bidens).” Ocean Treasures Memorial Library: The Legacy Continues.   http://otlibrary.com/sowerbys-beaked-whale/

Photographs of True’s beaked whales taken by Salvatore Cerchio.  Images collected under MMPA Research permit number 21371.

 

Michelle Greene: Acoustics Team…Do You Hear What I Hear?

NOAA Teacher at Sea

Michelle Greene

Aboard NOAA Ship Gordon Gunter

July 19 – August 3, 2018

 

Mission: Cetacean Survey

Geographic Area: Northeast U.S. Atlantic Coast

Date: July 24-25, 2018

 

Latitude: 40° 2.629″ N

Longitude: 67° 58.954″ W

Sea Surface Temperature: 23.3° C (73.9° F)

Sailing Speed: 1.80 knots

 

Science and Technology Blog:

Today I had the opportunity to shadow the acoustics team in the dry lab.  The acoustics team uses a linear array or a prototype tetrahedral array of hydrophones to listen to the sounds that whales and dolphins make under the water.  So far in this journey, the team has only used the linear array.  The array has been towing behind the ship with the “line” of hydrophones parallel to the surface of the water about 10 meters below the surface.

Linear array of hydrophones

Linear array of hydrophones

The hydrophone is the black device in the cable

The hydrophone is the black device in the cable

When the array is deployed, the acoustics team uses a computer software called PAMGuard to record the sounds and track the clicks and whistles of whales and dolphins.  PAMGuard can be programmed to record sounds in any frequency range.  On this cruise, acoustics is looking at sounds up to about 100,000 hertz.  A human being can hear from about 20 Hz to about 20 kilohertz with normal human speech frequency between 1,000 Hz and 5,000 Hz.  The optimal hearing age for a person is approximately 20 years of age and declines after that.

Beaked whales click at a frequency too high for human hearing; however, PAMGuard can detect the clicks to help the acousticians possibly locate an animal.  PAMGuard produces a real-time, time series graph of the location of all sounds picked up on the array.  A series of dots is located on a continual graph with the x-axis being time and the y-axis being bearing from the ship. The array picks up all sounds, and PAMGuard gives a bearing of the sound with a bearing of 0° being in front of the ship and a bearing of 180° being behind the ship.  The ship creates noise that is picked up by all the hydrophones at the same time, so it looks like a lot of noise at 90°.  The acousticians must sift through the noise to try to find click trains.  Rain and heavy waves also create a lot noise for the hydrophone array.  The acoustician can click on an individual dot which represents a sound, and then she can see a Wigner plot of the sound which is a high resolution spectrogram image of the sound.

A screenshot of a spectrogram from PAMGuard

A screenshot of a spectrogram from PAMGuard

Scientists have determined what the Wigner plot image of a beaked whale sound should look like.

Wigner plot of a True's beaked whale (Mesoplodon mirus) or a Gervais' beaked whale (Mesoplodon europaeus)

Wigner plot of a True’s beaked whale (Mesoplodon mirus) or a Gervais’ beaked whale (Mesoplodon europaeus)

 

Wigner plot of a Cuvier's beaked whale (Ziphius cavirostris)

Wigner plot of a Cuvier’s beaked whale (Ziphius cavirostris)

When a Wigner plot image looks to be a possible Mesoplodon, the acoustician starts tracking a click train on the time series graph in hopes of getting the sound again.  If the acoustic signal repeats, the acoustician then adds it to the click train.  Each time the acoustician adds to a click train, the bearing to the new click is plotted on a graph.  The array cannot calculate the actual location of an animal, so a beam of probability is plotted on a chart.  Then the acoustician uses the angle of each click in a click train to determine a possible location on the port or starboard side of the ship.  If the click train produces a sound that can be localized with the convergence of beams to a certain point, the acoustician can call the visual team to look on a particular side of the ship or ask the bridge to slow down or turn in a certain direction.  Mesoplodons have average dive times of between 15 and 20 minutes and foraging dive times of up to 45 minutes, so there is a time delay between getting the clicks and seeing an animal.

PAMGuard map of a sighting of a beaked whale

PAMGuard map of a sighting of a beaked whale

The objective of this cruise is to find the occurrence of beaked whales, but PAMGuard does not record just beaked whale clicks, so several other whales and dolphins are heard by the array.  Sperm whales (Physeter macrocephalus) have clicks that can be heard by the human ear with an average frequency of 10 KHz.  Sperm whales have a synchronized click train.  It can be thought of as “click click click click…” with about 0.5 to 1.0 second between each click.  Scientists believe the clicks are used for echolocation.  Since it is very dark in the ocean and light does not travel far underwater, sperm whales use their clicks as sort of flashlight for locating food which usually consists of squid.  When a sperm whale senses the location of food, it produces a rapid series of clicks called a buzz.  After the buzz, the animal makes a dive.  If the dive is not successful, in other words the whale did not get food, then clicks return to their normal pattern until another attempt is made.  Clicks are also used for social interaction between sperm whales.  Sperm whales have been very vocal on the cruise so far.

Personal Log

I have been spending my days rotating between the visual sighting team and the acoustics team.  Even when I am not scheduled to be there, I am in acoustics.  I find listening to the sounds very interesting.  I had no idea whales made clicking sounds.  I knew dolphins whistled, but clicking is not a term I was familiar with until this cruise.  We have had several episodes where many dolphins will go by the ship.  When that happens, the whole plot in PAMGuard almost turns black from all of the dots on the screen.  It is amazing to hear all of the clicks and whistles from the dolphins.  My favorite whales right now are sperm whales.  I can now look at the screen and see the clicks and know it is a sperm whale.  I get so excited.

Getting a Mesoplodon click train is like watching a whale lover’s version of Storm Chasers.  When a possible Mesoplodon click train is detected, everybody gets excited in hopes of seeing a beaked whale.  I can really understand how the visual sighting team relies on the acoustics team to find a location.  We have two people on big eyes and two people on binoculars, and the ocean is all around us.  We have a high probability of missing a Mesoplodon, so having the acoustics team getting a click train with convergence in a certain direction helps to focus the visual sighting team in sighting an animal.  The reverse idea is also true.  When the visual sighting team sees a Mesoplodon, they call down to acoustics to see if a click train can be detected.

Life aboard the Gordon Gunter has been a real classroom for me.  I think I learn something new about every five seconds.  Since I have been out of college, I have not dealt with biological sciences much, so this math teacher is relearning some key information about marine animals.  I have really enjoyed seeing the passion in everyone’s eyes for the beaked whales.  When we get a sighting of a beaked whale on the flybridge, everyone rushes to that side of the ship in hopes of just getting a glance at the elusive creature.  When we get a Mesoplodon click train, the acousticians get really excited.  One evening, we got a sustained click train for a Sowerby’s beaked whale (Mesoplodon bidens).  One of the acousticians was not in the dry lab, so I went to try and find her with no luck.  She was really upset when she returned, because she had not been there to see it.  I hope to develop that kind of passion in my students, so they can become great thinkers about life in their futures.

Did You Know?

  1. Even though Moby Dick was a fictional sperm whale, real life event inspired Herman Melville to write the novel.  Check out this page on those events:  https://oceanservice.noaa.gov/facts/mobydick.html.
  2. Sperm whales use an organ in the front of their head, something called the spermaceti organ, to make their clicking sounds.  Check out this PBS article: http://www.pbs.org/odyssey/odyssey/20010809_log_transcript.html.

Animals Seen

  1. Sperm whales (Physeter macrocephalus)
  2. Fin whales (Balaenoptera physalus)
  3. Cuvier’s beaked whale (Ziphius cavirostris)
  4. Risso’s dolphins (Grampus griseus)
  5. Manta ray (Manta birostris)
  6. Whale shark (Rhincodon typus)

Vocabulary

  1. (Ocean) Acoustics – the study of how sound is used to locate whales and dolphins and how whales and dolphins communicate
  2. Bridge – the room from which the boat can be commanded
  3. Click train – a series of whale clicks
  4. Dry lab – a lab that primarily uses electronic equipment such as computers
  5. Echolocation – a process used by whales and dolphins to locate objects.  A whale will emit a pulse, and the pulse then bounces off an object going back to the whale.  The whale can then determine if the object is food or something else.
  6. Flybridge – an open platform above the bridge of a ship which provides views of the fore, aft, and sides of a ship
  7. Hertz – a measure of sound frequency.  For example, when you hear someone singing in a low (or bass) voice, the frequency of the sound is low.  When someone is singing in a high (or soprano) voice, the frequency of the sound is higher.
  8. Hydrophone – a microphone that detects sound waves under water
  9. Spectrogram – a visual representation of a sound
  10. Wigner plot – a high resolution spectrogram

Helen Haskell: Watching the Wildlife, June 15, 2017

NOAA Teacher at Sea

Helen Haskell

Aboard NOAA Ship Fairweather

June 5 – 26, 2017

 

Mission: Hydro Survey

Geographic Area of Cruise: Southeast Alaska – West Prince of Wales Island Hydro Survey

Date: June 15, 2017

Weather Data:

Wind: 3 knots from the west

Visibility: 6 nautical miles

Barometer: 997.6 hPa

Air temperature: 9°C

Cloud: 100% cover, 1000’

Location:

54°54.4’N 132°52.3’W

Science and Technology Log:

While Fairweather is a hydrographic research ship, responsible for collecting data for navigational charts, one of the side reports the survey crew makes is a Marine Mammal Observation Log. When a marine mammal is spotted on a survey, its location is noted, the species is identified if possible and notes about the numbers, behavior and any other observations are documented. Along with documenting sightings of these animals, the coxswains also follow protocols for minimizing disturbance and impact to these creatures.

Since joining this leg of the hydrographic research, humpback whales (Megaptera novaeangilae) have been the most numerous whale species seen. These whales that spend the summer in South-east Alaska winter mainly in Hawaii. Mating happens during the winter and the calves are born 11 months later. The calves stay with their mother for about 11 months after they are born. Individuals can grow up to 60 feet in length and live 50 years. These large grey whales have numerous barnacles that attach to their skin and filter feed as the whale travels. It is thought that the whales find shallower rocky areas to swim alongside in order to rub off the barnacles. It was in some of the shallower survey areas that I first saw humpbacks.

 

Harbor seals have fast become one of my favorites during my time here in Alaska. Growing to about six feet in length, the harbor seal, Phoca vitulina, have a diet of shellfish, crustaceans and fish and appear to be non-migratory, staying here year round. They are grey in color and can weigh up to 250 lbs as a mature male. Data seems to suggest that in some areas of their range in Alaska, the populations are declining but in other areas, seem stable. As the seals give birth in the summer, we’ve been fortunate enough to see seal pups too on this leg of the research.

 

The Northern sea otter, Enhydra lutris kenyoni, has perhaps been the most numerous marine mammal so far on this trip. Appearing small next to the seals and whales, upon reading more about them, I learned that they not small creatures, as they measure up to five feet in length and weigh up to 100 lbs. Feasting on a diet of invertebrates, such as clams and sea urchins, the sea otters are often spotted floating on their backs and are often associated with kelp beds. The otter fur trade began in the 1700’s and by 1900 populations were on the brink of extinction. Legislation has allowed the populations to rebound in most areas in the last 100 years, and they are seen regularly by survey crews and from the bridge.

 

Another species I saw here, up a small shallow cove, was the river otter, Lutra Canadensis. Five heads popped up in front of me and then bobbed under. Seconds later the otters were up on land running in to the trees. Seemingly fast and sleek, they were not acting like sea otters. It was not any behavior we had observed before. A little bit of research confirmed our suspicions that these were indeed river otters. Sea otters rarely come out on land, and when they do, do not move swiftly, having more flipper-like back legs, making land movement more arduous. River otters are smaller than sea otters weighing up to 35lbs and are 40-60 inches in length.

IMG_0109

While obviously not a marine mammal, the bald eagle is pretty much a guaranteed daily sight as the surveys are being done. A friend referred to the bald eagle as an Alaskan pigeon, and while I have not experienced as many bird species or numbers of birds here as I thought I would, the eagle has been one of the main species sighted. With an estimated population of 30,000 in Alaska, more numerous here than any other state, that hasn’t always been the case. With bounties on them at the turn of the 20th century, and population reductions due to pesticides and habitat loss, especially in the lower 48 states, the bald eagle, Haliaeetus leucocephalus, was put on the Endangered Species List in 1967. Measures put in place both locally and nationally have been so successful that in 2007 the bald eagle was removed from the Endangered Species List.

 

Another species I have seen regularly but not up at close range, is the Marbled Murrelet, Brachyramphus marmoratus. These small, almost 10 inch long marine birds are in breeding plumage right now and, although they have been hard to see, due to distance and poor light conditions in the rain, are beautiful shades of brown and cinnamon. They build nests here in southeast Alaska in the mossy branches of old growth conifer trees or on the ground.

IMG_0346

A little blurry but here are the Marbled Murrelets

 

Personal log

While it’s easy to get sidetracked with the mammals and birds here, there is a host of other species here that play significant roles in the food web. Kelp has been one of the organisms that I’ve seen a lot while doing the small boat surveys, and on our first completely sunny day, I got the chance to get up close and personal with the kelp from the vantage point of a kayak. The Fairweather has several kayaks that on occasion the crew uses to explore the local area. Together with NOAA Corps Junior Officer ENS Peter Siegenthaler and Hollings scholar Carly Laroche, we filed a Small Boat Plan with the bridge, stating where we were going and our anticipated return time, picked up radios, and carried the kayaks down from the top deck. It’s a little tricky to get a small kayak in the water from a large ship, but with the help of a small boat, we launched and paddled, in almost glassy water, over towards the shoreline.

FullSizeRender (1)

Me in one of the kayaks

Being even closer to the water in a shallow keel-less boat, allowed us to paddle through those kelp forests, pick up the otter-opened clamshells and explore the intertidal community much more easily. We were also able get close to some of the terrestrial species, the Sitka spruce and the other trees species growing vertically out of often steep slopes, right down to the high tide mark. We paddled along these inter-tidal edges listening to hermit thrush sing from the trees up the hillsides as we debated how logging companies actually cuts trees on such steep slopes. It was a glorious day, a rare sunny, calm day in the early summer of southeast Alaska, and perfect for paddling. This area is filled with small islands and coves, waiting to be explored, especially at low tide, when more inter-tidal life is exposed. My fingers are crossed that the weather and water conditions will allow for more explorations by kayak before I have to leave Fairweather in Kodiak.

 

 

 

Fact of the day: KELP

There are three species of kelp found here in southeast Alaska: bull kelp, ribbon kelp and sugar kelp. Kelp is an algae, not a plant, although it does photosynthesize. It is an essential part of the ecosystem here and many species are dependent on it.

Word of the day: Baleen

Humpbacks are a baleen whale, meaning that they have these plates, up to 600, make out of a substance called keratin in their mouths that act as filters in feeding. The keratin is referred to as baleen and is similar to our fingernails. In an earlier blog posting I held up a piece of baleen in an art store in Ketchikan. Below is a picture of baskets woven out of strips of baleen.

IMG_0122

What is this?

(Previous post: The picture is of the sonar equipment on the bottom of the small boats).

IMG_0147

Michael Wing: What’s there to see out there? July 24, 2015

NOAA Teacher at Sea
Michael Wing
Aboard R/V Fulmar
July 17 – 25, 2015

Mission: 2015 July ACCESS Cruise
Geographical Area of Cruise: Cordell Bank National Marine Sanctuary
Date: July 24, 2015

Weather Data from the Bridge: Northwest wind 5 to 15 knots, wind waves 1’ to 3’, west swell 3’ at 14 seconds, patchy fog.

Science and Technology Log

I’ve been putting in long hours on the back deck, washing plankton in sieves and hosing down the hoop net. Often by the time the sample is safely in its bottle and all the equipment is rinsed off, it’s time to put the net down and do it all again.

On the back deck

Here’s where I wash plankton on the back deck

But, when I look up from the deck I see things and grab my camera. The surface of the ocean looks empty at first glance but it isn’t really. If you spend enough time on it, you see a lot.

Black Footed Albatross

Black Footed Albatross

Black footed albatrosses turn up whenever we stop to collect samples. They probably think we are a fishing boat – we’re about the same size and we have a cable astern. They leave once they find out we didn’t catch any fish. Kirsten tells me these birds nest on atolls east of Hawaii, and that most of the thirty or so species of albatross live in the southern hemisphere.

Mola

Mola

We also see lots of molas, or ocean sunfish. These bizarre looking fish lie on their side just under the water’s surface and eat jellyfish. They can be really large – four feet long, or more. I wonder why every predator in the ocean doesn’t eat them, because they are big, slow, very visible and apparently defenseless. The scientists I am with say that sea lions sometimes bite their fins. Molas are probably full of bones and gristle and aren’t very appetizing to sharks and seals. There are more molas than usual; one more indicator of the extra-warm water we’re seeing on this cruise.

Spouting whales

Humpback whales; one has just spouted

whale back

The back of a humpback whale

And of course there are WHALES! At times we a have been completely surrounded by them. Humpback whales, mostly, but also blue whales. The humpbacks are black with white patches on the undersides of their flippers and barnacles in places. They are playful. They breach, slap the water with their flippers, and do other tricks. The blue whales are not really blue. They are a kind of slate grey that may look blue in certain kinds of light. They are longer and straighter and bigger than the humpbacks, and they cruise along minding their own business. Their spouts are taller.

Humpback whale flukes

Humpback whale flukes

When we see one whale breaching in the distance, we call out. But, when a bunch of whales are all around us, we speak in hushed voices.

Personal Log

Orange balloon

Orange balloon

I have seen six balloons floating on the water, some dozens of miles offshore. Four of them were mylar, two like this one. The scientists I am with say they see the most balloons in June, presumably because June has more graduations and weddings. Maybe it’s time to say that balloons are not OK. When they get away from us, here’s where they end up.

Container ship

Container ship

We see container ships on the horizon. Sometimes they hit whales by accident. Every t-shirt, pair of sneakers, toy and electronic device you have ever owned probably arrived from Asia on one of these. Each of those boxes is forty feet long.

This is my last post from the R/V Fulmar. I go home tomorrow. I sure am grateful to everyone on board, and to NOAA, Point Blue Conservation Science, the Greater Farallones National Marine Sanctuary and the Cordell Bank National Marine Sanctuary for giving me the opportunity to visit this special place.

Common murre

Common murre

Did You Know? When common murre chicks fledge, they jump out of their nests onto the surface of the sea. The drop can be forty or fifty feet. At this point they can swim, but they don’t know how to fly or find food. So, their fathers jump in after them and for the next month or two father and chick swim together on the ocean while the father feeds the chick. These are small birds and they can easily get separated in the rough seas. When this happens, they start calling to each other. It sounds sort of like a cat meowing. We have heard it often on this cruise.

Murre with chick

Adult murre with almost-grown chick

Michael Wing: How to Sample the Sea, July 20, 2015

NOAA Teacher at Sea
Michael Wing
Aboard R/V Fulmar
July 17 – 25, 2015

Mission: 2015 July ACCESS Cruise
Geographical Area of Cruise: Pacific Ocean west of Marin County, California
Date: July 20, 2015

Weather Data from the Bridge: 15 knot winds gusting to 20 knots, wind waves 3-5’ and a northwest swell 3-4’ four seconds apart.

Science and Technology Log

On the even-numbered “lines” we don’t just survey birds and mammals. We do a lot of sampling of the water and plankton.

Wing on Fulmar

Wing at rail of the R/V Fulmar

We use a CTD (Conductivity – Temperature – Depth profiler) at every place we stop. We hook it to a cable, turn it on, and lower to down until it comes within 5-10 meters of the bottom. When we pull it back up, it has a continuous and digital record of water conductivity (a proxy for salinity, since salty water conducts electricity better), temperature, dissolved oxygen, fluorescence (a proxy for chlorophyll, basically phytoplankton), all as a function of depth.

CTD

Kate and Danielle deploy the CTD

We also have a Niskin bottle attached to the CTD cable. This is a sturdy plastic tube with stoppers at both ends. The tube is lowered into the water with both ends cocked open. When it is at the depth you want, you clip a “messenger” to the cable. The messenger is basically a heavy metal bead. You let go, it slides down the cable, and when it strikes a trigger on the Niskin bottle the stoppers on both ends snap shut. You can feel a slight twitch on the ship’s cable when this happens. You pull it back up and decant the seawater that was trapped at that depth into sample bottles to measure nitrate, phosphate, alkalinity, and other chemical parameters back in the lab.

Niskin bottle

Niskin bottle

When we want surface water, we just use a bucket on a rope of course.

We use a hoop net to collect krill and other zooplankton. We tow it behind the boat at a depth of about 50 meters, haul it back in, and wash the contents into a sieve, then put them in sample bottles with a little preservative for later study. We also have a couple of smaller plankton nets for special projects, like the University of California at Davis graduate student Kate Davis’s project on ocean acidification, and the plankton samples we send to the California Department of Health. They are checking for red tides.

Hoop net

Hoop net

We use a Tucker Trawl once a day on even numbered lines. This is a heavy and complicated rig that has three plankton nets, each towed at a different depth. It takes about an hour to deploy and retrieve this one; that’s why we don’t use it each time we stop. The Tucker trawl is to catch krill; which are like very small shrimp.  During the day they are down deep; they come up at night.

Tucker trawl

Part of the Tucker trawl

 

krill

A mass of krill we collected. The black dots are their eyes.

What happens to these samples? The plankton from the hoop net gets sent to a lab where a subsample is taken and each species in the subsample is counted very precisely. The CTD casts are shared by all the groups here – NOAA, Point Blue Conservation Science, the University of California at Davis, San Francisco State University. The state health department gets its sample. San Francisco State student Ryan Hartnett has some water samples he will analyze for nitrate, phosphate and silicate. All the data, including the bird and mammal sightings, goes into a big database that’s been kept since 2004. That’s how we know what’s going on in the California Current. When things change, we’ll recognize the changes.

Personal Log

They told me “wear waterproof pants and rubber boots on the back deck, you’ll get wet.” I thought, how wet could it be? Now I understand. It’s not that some water drips on you when you lift a net up over the stern of the boat – although it does. It’s not that waves splash you, although that happens too. It’s that you use a salt water hose to help wash all of the plankton from the net into a sieve, and then into a container, and to fill wash bottles and to wash off the net, sieve, basins, funnel, etc. before you arrive at the next station and do it all again. It takes time, because you have to wash ALL of the plankton from the end of the net into the bottle, not just some of it. You spend a lot of time hosing things down. It’s like working at a car wash except with salty water and the deck is pitching like a continuous earthquake.

The weather has gone back to “normal”, which today means 15 knot winds gusting to 20 knots, wind waves 3-5’ and a northwest swell 3-4’ only four seconds apart. Do the math, and you’ll see that occasionally a wind wave adds to a swell and you get slapped by something eight feet high. We were going to go to Bodega Bay today; we had to return to Sausalito instead because it’s downwind.

sea state

The sea state today. Some waves were pretty big.

We saw a lot of humpback whales breaching again and again, and slapping the water with their tails. No, we don’t know why they do it although it just looks like fun. No, I didn’t get pictures. They do it too fast.

Did You Know? No biologist or birder uses the word “seagull.” They are “gulls”, and there are a lot of different species such as Western gulls, California gulls, Sabine’s gulls and others. Yes, it is possible to tell them apart.

Michael Wing: Seabirds to starboard, whales and seals to port, July 18, 2015

NOAA Teacher at Sea
Michael Wing
Aboard R/V Fulmar
July 17 – 25, 2015

Mission: 2015 July ACCESS Cruise
Geographical Area of Cruise: Pacific Ocean west of the Golden Gate Bridge
Date: Saturday, July 18, 2015

Weather Data from the Bridge: Wind Southeast, ten knots. Wind waves less than two feet. Swell 4-6 feet ten seconds. Patchy morning fog.

Michael Wing and Fulmar

Michael Wing and the R/V Fulmar

Science and Technology Log

We loaded the boat yesterday at 3:00 PM and I met a lot of people including the three co-principal investigators Jan Roletto of the Greater Farallones National Marine Sanctuary, Danielle Lipski of the Cordell Bank National Marine Sanctuary, and Jaime Jahncke of Point Blue Conservation Science. There are others, including volunteers and visitors, and I will try to introduce some of them in future posts.

Today we didn’t collect water or plankton samples. We’ll do that tomorrow.  We sailed west from the Golden Gate Bridge on a track called “Line 5” at ten knots until we passed the edge of the continental shelf and then dropped south and cruised back to our dock in Sausalito on another line called “Line 7.” Plankton and water samples are for the even-numbered lines. Our purpose today was to count seabirds, whales and seals and sea lions. It’s not simple. By 7:30 AM we are assembled on the “flying bridge” (the highest part of the boat) with Jaime and the Greater Farallones Association’s Kirsten Lindquist on the starboard side and volunteers Jason Thompson and Rudy Wallen on the port. Kirsten notes birds, focusing just on the area from dead ahead to the starboard beam and calls out things like “Common murre, zone two, thirteen, flying, bearing 330 degrees.” This means she saw thirteen common murres flying northwest together not too far from the boat. This time is called being “on effort” and she is really focused on it. I don’t talk to her unless spoken to. Jamie enters all this into a database on his laptop.

On bird patol

On bird patrol

The guys on the port side are doing the same thing for marine mammals and saying “Animal, by eye, bearing 320, reticle seven, traveling, immature California sea lion, one-one-one.” These last numbers are estimates of the most probable number of animals in the group, and maximum and minimum estimates. Obviously, in this example just one animal was seen.

I am in awe of their ability to identify species, maturity and other things from just a glimpse. Kirsten can tell the difference between a Western gull and a California gull from hundreds of feet away, even if the gull is flying away from her. They also record floating trash, dead animals, and boats and ships.

So what are we seeing? Common murres, western gulls, California gulls, Sabine’s gulls, sooty shearwaters, pink footed shearwaters, storm petrels, black footed albatrosses, red necked phalaropes, tufted puffins, Pacific white sided dolphins, northern fur seals, a bottlenose dolphin, humpback whales, a dead seal, Mola molas (ocean sunfish), one flying fish, mylar balloons (4), a paper cup, a piece of Styrofoam. The flying fish was totally unexpected because they are mostly tropical and everyone talked about it all afternoon.

Port side

The port (left) side is for spotting marine mammals

Some of these birds have come here from Chile, New Zealand, or Hawaii in their “off” (non-breeding) season because there is a world-class food supply here for them. The sooty shearwaters start in New Zealand and fly to Japan, to Alaskan waters, and then down the west coast of North America before returning to New Zealand across the Pacific! However, a lot of these were far away. Visually, the ocean looks pretty empty from the flying bridge.

striped crab

This little crab was clinging to a piece of kelp we caught with a boat hook

Personal Log

The specter of seasickness haunts us on the first day of a cruise. Most of us are snacking on starchy treats like pretzels and Cheez-Its and drinking carbonated drinks. Paradoxically, these foods help prevent nausea. I have not taken any seasickness medicine and I am feeling a little queasy during the morning, but by noon I feel great. Nobody throws up. The Fulmar doesn’t roll from side to side very much but she does lurch when smacked head-on by a wave. It helps that the waves weren’t very big today. Soon we’ll all get our “sea legs.”

Also, you might appreciate these photos of me getting into a “Gumby suit” in under a minute, as part of my safety training. This is a survival suit meant to keep you from freezing to death if the boat sinks. You have to be able to get into it in less than a minute.

survival suit

Getting into the survival suit. I have 1 minute, and the suit is stiff. Photo credit: Ryan Hartnett

into survival suit

I am into the survival suit. Photo credit: Ryan Hartnett

Did You Know? Here’s what you need to untangle fishing nets from a frustrated humpback whale: Boathooks, sharp knives, and a GoPro digital camera on the end of a pole. The GoPro helps you study the tangles so you can decide where to make that one cut that causes the whole mess to fall apart and off the whale.

 

life ring

R/V Fulmar’s life ring

Tom Savage: Whales to the Left, Whales to the Right, June 12, 2015

NOAA Teacher at Sea
Tom Savage
On Board NOAA Ship Henry B. Bigelow
June 10 – 19, 2015

Mission: Cetacean and Turtle Research
Geographic area of Cruise: North Atlantic
Date: June 12, 2015

Weather Data from the Bridge
Air temperature: 18 C
Wind speed: 10 knots
Wind direction: coming from north west
Relative humidity: 90%
Barometer: 1015 millibars

Personal Log

Today is my second day at sea and I can finally walk to various places on the ship in less time. I have found sleeping on the ship to be very easy as the ship rocks back and forth. I really enjoy being at sea; it is very tranquil at times and I am not rushed to go anywhere except my assigned duty locations. While on deck observing, the sights and smell of the ocean invokes memories of my former home in Bar Harbor, Maine.

After a full day of observing whales in the sunshine I was very excited to conduct some star-gazing at night. At 2200, as I opened the first hatch outside, I walked into a wall of fog and was reminded quickly that I am miles offshore on Georges Bank in June!

Science and Technology Log

Sighting whales yesterday was very slow, but today made up for it. The weather was perfect, as the sky was mostly sunny with few high cirrus clouds early. Today I was assigned to the Flying Bridge for observations all day. There are three stations and we rotate every thirty minutes. The stations are Big Eyes on port and starboard sides and a computer in the center for data entry. We use different terms for orientation on the ship. For instance, the front of the ship is called the bow. While facing the bow, the left side is called the port and the right side starboard.

DiscussingSightings

Discussing sightings on the “Fly Bridge”

My rotation began on the port side of the ship using the “Big Eyes”. After a half hour, your eyes become tired, strained and shifting to the computer to enter whale sighting helps. At the computer we enter whale sighting data called out by observers.

LookingThroughBigEyes

Looking through the “Big Eyes”. Do you see anything?

In addition to recording the identification of animals; other important attributes are called out by the observers such as bearings and direction headings. Looking through the “big eyes”, a range finder is located from center with a scale from 0 – 24, and is called the reticle. To properly calculate distance, the observer needs to adjust the “Big Eyes” to align zero with the ocean horizon. This is very difficult since the ship is always in motion. The “Big Eyes” in the image above is not correctly aligned. There is a chart we used to translate the reticle values to distance.

An early morning break was followed by an amazing hour of multiple whale sightings. Fin, humpback whales and pods of Atlantic white-sided dolphin sightings were all around the ship. One humpback whale came within twenty feet of the boat. The afternoon was less active but we tracked pilot whales later which were not seen during morning rotations.

ViewFlyBridge

View from the “Fly Bridge” looking down on the “Rolling Bridge”

 

Until next time, happy sailing!

~ Tom