Ginger Redlinger, July 29–31, 2007

NOAA Teacher at Sea
Ginger Redlinger
Onboard NOAA Ship Rainier
July 15 – August 1, 2007

Mission: Hydrographic Survey
Geographical Area: Baranof Island, Alaska
Date: July 29–31, 2007

Weather log on the RAINIER.  Data is gathered, then entered into a database.
Weather log on the RAINIER. Data is gathered, then entered into a database.

The RAINIER started its work in South East Alaska in April of this year. Four months and hundreds of nautical miles later it was time to leave: Juneau, Ketchikan, Sitka, Baranof Island, and the Gulf of Esquibel. Three or four research boats were in the water everyday rain or shine, calm or rough water, gathering data. At night, crews’ maintained watch, reviewed data, and planned for the next day’s work. Equipment was checked to ensure everyone’s health and safety.  Quality control ensured that the data gathered met NOAA’s expectations. Now it is time to end the Alaskan part of their work and move to their next working location.

While traveling from South Each Alaska to Washington I reflected on the most memorable parts of the journey.  I immediately remembered the compliments from pleasure boaters and fishermen about NOAA’s work. Next I thought about the ease at which the crew safely delivered and returned their equipment and crew to and from the ship each day.  Then I thought about the NOAA resources I learned about as I studied information about hydrography, technology, satellites, weather, and tides.  And how could I not mention the food – it was great. Good food compensates for the sacrifice of being away from home for such a long time.

Water from the Fraser River (green) and the southern end of  Georgia Strait waters.
Water from the Fraser River (green) and the southern end of Georgia Strait waters.

There would be a short break between the end of this voyage and the start of the next, some would remain on the ship, and for others it meant being “at home” for the first time since April. This is part of the sacrifice that mariners, and those who explore the oceans make.  As we traveled closer to home many off-duty crewmembers gathered on the fly deck to see home slowly approaching from the distance.  They shared stories from the last four months and recalled the moments of laughter on “the big white ship.” After traveling through Canadian waters, around Vancouver Island and into Puget Sound, people began to gather in earnest of the desk. At first I thought it was because we were taking a picture for a “NOAA 200th Anniversary Postcard from the Field,” but many remained on deck. Many were anxious for the first glimpse of their families and their homes.  Many of their family members arrived at the Ballard Locks – waving and communicating their excitement about the reunions that would happen in a few short hours.

Mt. Rainier and Seattle in the distance.
Mt. Rainier and Seattle in the distance.

The sun is setting as we traveled past the many marinas for all types of marine vessels, houseboats, and dry-docks. As we passed through crewmembers neighborhoods the fading sunlight was replaced with light shining in their eyes as they talked about the view from their windows, their favorite neighborhood haunts, and local treats that mean “home.” As we turn toward the waters that lead to downtown Seattle the crew on the fly deck is silent. The last embers of sunlight are reflecting on the downtown Skyline, it is spectacular.  We turn away from downtown and travel through the Fremont Cut.  Thank goodness for the navigational skills of this young and talented team – the water traffic from Seattle’s SeaFair was busy. Once we arrived at the NOAA Western Regional Center in Sand Point, CO Noll’s work was done.  He had trained his crew to successfully navigate the ship and complete the mission.  We are all home; the final navigational command is given.

Rear Admiral De Bow handing the Command Coin to Commander Noll
Rear Admiral De Bow handing the Command Coin to Commander Noll

“All Engines Stop” “All Engines Stop, Aye. – All Engines Stopped” “Very Well.” Rear Admiral De Bow was on board to congratulate him, and pass the time-honored command coin.

I hate to admit it, but like a kid at camp leaving a new set of friends knowing that I most likely will not see many of them again, I feel sadness. The memories and lessons will remain.  What a great adventure for a teacher, what a great experience for those who work on the ship, and what a great service provided to those who depend on navigation for commerce, recreation, and those who seek a greater scientific understanding of the earth and how it changes. I can’t wait to share it all with my students and colleagues!!!!

The Seattle skyline at night
The Seattle skyline at night

Allison Schaffer, September 27, 2007

NOAA Teacher at Sea
Allison Schaffer
Onboard NOAA Ship Gordon Gunter
September 14 – 27, 2007

Mission: Ichthyoplankton Survey
Geographical Area: Gulf of Mexico
Date: September 27, 2007

A beautiful sunset on the Gulf of Mexico
A beautiful sunset on the Gulf of Mexico

Science and Technology Log 

The past few days have been kind of crazy on the ship.  Two days ago we did a fire drill and an abandon ship drill. We did these drills the within the first few days of our cruise and I got lost trying to get to my correct area for the abandon ship drill. But this time, not a problem. First we did a fire drill.  They sounded the horn and let us know it’s a drill and all the scientists report to the same area where wait for word from the bridge to release us from our drill.  While we were waiting, the crew suited up in the gear they would need for a real fire and the Executive Officer, or XO, Nathan Hancock, picked me and one of the other scientists to help out with the fire hose. I was up front and held the nozzle while the other scientist supported the hose. That was my very first fire hose experience!  Next we did an abandon ship drill. Everyone on board is assigned a specific area to report to and you must bring with you few items: your survival suit for cold water, a long sleeve shirt, long pants and a hat. Once everyone has reported to their area, we wait for word from the crew to let us know we can head back to the lab.  Then yesterday, we did a man overboard drill. To simulate a real man overboard situation, the crew threw a dummy into the water, sounded the man overboard alarm and alerted everyone that there was a man overboard on the port (left) side.

The scientists all report to the same area and have the important job of being the eyes for the crew while they ready the rescue boat.  For this drill, we stood up on deck and pointed in the direction of the man overboard as the crew deployed the rescue boat and headed in the direction we were pointing.  We did that until the rescue boat was in view of the man overboard.  I liked watching the crew in action and seeing how well they worked together.   Last night I was able to visit the bridge to see how they run everything up there.  My shift was over and the night shift was getting set up to do their first station of the night.  I asked if I could stick around and watch them do a station so I would know what it’s like from the perspective of the officers.  It was very cool. And then we had our last full station today.  I finished my last bongo, Neuston and CTD tonight. We will be doing some more methot samples as we head home for me and some other teachers to bring to their classrooms.  So we aren’t completely done with everything, but the cruise is definitely winding down.

Personal Log 

Last day of stations was today!  This is exciting because it means that we successfully finished the leg of our cruise. But at the same time it’s sad because that means I will be going home soon.  And I just figured out how to get everywhere on the ship.  As educational and fun as this has been, I am excited to get home.  I have so many stories that I can’t wait to share with everyone and hopefully inspire some of my co-workers to get involved with experiences like this.

Addendum: Glossary of Terms 

  • Visibility is how far ahead you can see from the ship.  On a very foggy day you may only have a visibility of 10 ft whereas on a clear day you can see all the way to the horizon, or 12 nautical miles.
  • Wind direction tells you which way the wind is blowing from: 0° is north, 90° is east, 180° is south, and 270° is west.
  • Sea wave height is the height of the smaller ripples
  • Swell height is the estimates larger waves
  • Sea level pressure (or Barometric Pressure) indicates what the trend of the weather has been. High barometric pressure usually means sunny weather and rain can not build up in clouds if they are being squeezed together by high pressure.  Low barometric pressure means rainy or stormy weather is on the way.
  • Present Weather is a description of what the day’s weather is.

– Courtesy of Thomas Nassif, NOAA Teacher at Sea, 2005 Field Season

  • Field Party Chief or FPC is in charge of the team of scientists on board the ship. This person oversees all activities having to do with collection of samples and is the go to person in case anything goes wrong that the scientists can’t handle.  They also act as an extra set of hands when needed.
  • Bongo Net is two circular frames 60 cm in diameter sitting side by side with two 333 micron nets and a weight in the center to help it sink.  At the base of each net is a plastic container used to collect all the plankton that can be easily removed so we can retrieve the samples
  • Lab Scientist is the scientist that stays in the lab to work the computers recording the data on sample time, sample depth and is the one that relays information to the deck
  • personnel about when the nets have hit maximum depth.  They keep watch in case anything goes wrong underwater.
  • Deck Scientist is the scientist out on deck getting the nets ready, rinsing the nets, collecting and preserving samples.  They are the eyes on deck in case anything goes wrong at the surface or on deck.
  • Neuston Net is one net 1 X 2 meters with a 947 micron net.  Neuston samples are done only at the surface and placed in the water for ten minutes.
  • The Bridge is the navigational hub of the ship. This is where the officers steer and navigate the ship and where all the equipment is located to help them to do so.  It is usually the top deck on ships to give the crew the best visual of the water.
  • XO or Executive Officer is the second in command to the CO.  The XO is responsible for the administration of the ship, supervising department chiefs as well as all officers.  They are also responsible for the budget.

Allison Schaffer, September 25, 2007

NOAA Teacher at Sea
Allison Schaffer
Onboard NOAA Ship Gordon Gunter
September 14 – 27, 2007

Mission: Ichthyoplankton Survey
Geographical Area: Gulf of Mexico
Date: September 25, 2007

Science and Technology Log

Today I took my first CUFES sample.  CUFES stands for Continuous Underway Fish Egg Sampler.  The purpose of this is to map the distributions of fish eggs along our cruise path and the samples are collected every 30 minutes.  Basically what happens is there is an intake pump at the bow of the ship to collect water at the surface.  From there the water pumped into a collector where the water is run over a sieve to catch any eggs.  We preserve the eggs for ID back at the lab on land.  This is something that usually just the lab scientist handles, but they allowed me the opportunity to try it out a few times.  Along with collecting all the samples, all the information about latitude and longitude, time, and sample number must be input into the computer to collect all the information needed to map the distribution once the numbers have been collected.

Since I have been working as a deck scientist since we started stations, the FPC (Field Party Chief) offered me a chance to stay inside and to see what the lab scientist does while we are working out on deck. This way I would get to see both sides of the collection process. We got the 10 minute to station notice from the bridge, the lab scientist started filling in station information into the computer.  She inputs longitude and latitude, time, sample number, and station number in databases for each of the different sample methods.  For this station we were doing bongo, Neuston and CTD sample collections. Once we got the OK that the deck and bridge were ready, she sent out the OK that she was ready and the deck got started placing the bongo in the water.  She let them know the final depth they were going to give them an idea of how long the collection will take.  The sensor that goes in with the bongo relayed all the information about depth back to her. Once we hit maximum depth, she gave them the “all stop” and they started hauling it back in. The Neuston involves the same information being entered into the computer but all she needs to relay to the deck personnel is the 2 minute warning and so they could start hauling the net back in.  The CTD seemed very complicated so I just sat quiet and tried not to ask too many questions and distract her.  For this the graphs on the screen displayed everything that the CTD reads and as they lowered into the water column I watched as the graphs collected all the data.  She let them know how deep to go, when to pull it back up and how long to leave the CTD at each depth.  She also fired the three bottles to collect water for chlorophyll measurements.  They brought it back on deck and that was it for this station up in the lab.

Personal Log 

I am very thankful that I got put on a cruise with such a great team of people.  Between the crew and scientists, everyone has been so helpful and accommodating.  The FPC always goes out of his way to take pictures for me, explain things further and give me opportunities to experience everything the scientists do.  Coming on as a volunteer I wasn’t sure how much of the different tasks they would allow me to do, but they have been great explaining everything and showing me the different things.  They have also been helpful showing me different techniques when rinsing samples and helping me out with the different ship terms and names.

Addendum: Glossary of Terms 

  • Visibility is how far ahead you can see from the ship.  On a very foggy day you may only have a visibility of 10 ft whereas on a clear day you can see all the way to the horizon, or 12 nautical miles.
  • Wind direction tells you which way the wind is blowing from: 0° is north, 90° is east, 180° is south, and 270° is west.
  • Sea wave height is the height of the smaller ripples
  • Swell height is the estimates larger waves
  • Sea level pressure (or Barometric Pressure) indicates what the trend of the weather has been. High barometric pressure usually means sunny weather and rain can not build up in clouds if they are being squeezed together by high pressure.  Low barometric pressure means rainy or stormy weather is on the way.
  • Present Weather is a description of what the day’s weather is.

– Courtesy of Thomas Nassif, NOAA Teacher at Sea, 2005 Field Season

  • Field Party Chief or FPC is in charge of the team of scientists on board the ship. This person oversees all activities having to do with collection of samples and is the go to person in case anything goes wrong that the scientists can’t handle.  They also act as an extra set of hands when needed.
  • Bongo Net is two circular frames 60 cm in diameter sitting side by side with two 333 micron nets and a weight in the center to help it sink.  At the base of each net is a plastic container used to collect all the plankton that can be easily removed so we can retrieve the samples
  • Lab Scientist is the scientist that stays in the lab to work the computers recording the data on sample time, sample depth, station number, sample time and is the one that relays information to the deck personnel about when the nets have hit maximum depth.  They are the eyes underwater.
  • Deck Scientist is the scientist out on deck getting the nets ready, rinsing the nets, collecting and preserving samples.  They are the eyes on deck in case anything goes wrong at the surface or on deck.
  • Neuston Net is one net 1 X 2 meters with a 947 micron net.  Neuston samples are done only at the surface and placed in the water for ten minutes.
  • CTD stands for conductivity, temperature and depth.  It is lowered into the water column to get salinity, chlorophyll, dissolved oxygen and turbidity readings at the stations. There are three bottles that are attached to the CTD to take water samples at the surface, mid layer and bottom of the water column at that station.
  • The Bridge is the navigational hub of the ship. This is where the officers steer and navigate the ship and where all the equipment is located to help them to do so.  It is usually the top deck on ships to give the crew the best visual of the water.

Allison Schaffer, September 21, 2007

NOAA Teacher at Sea
Allison Schaffer
Onboard NOAA Ship Gordon Gunter
September 14 – 27, 2007

Mission: Ichthyoplankton Survey
Geographical Area: Gulf of Mexico
Date: September 21, 2007

Weather Data from Bridge 
Visibility: 12 nautical miles
Wind direction: E
Wind speed: 12 kts.
Sea wave height: 1 – 2 feet
Swell wave height: 2 – 3 feet
Seawater temperature: 29.0 degrees
Present Weather: Partly Cloudy

Science and Technology Log 

Today we had the opportunity to try out two new sample methods.  One method is along the same lines as the bongo and Neuston sample but this one is called a methot.  A methot is 2.32 X 2.24 m frame with 1/8” mesh netting.  The total length of the methot net is 43 feet. It’s huge! It works just like regular plankton net where it has a large opening and then as it moves towards the end it becomes more and more narrow and eventually ends at a collection container. The reason this is my first time doing one is because they are usually done only at night and since the net is so large they must be done in fairly deep water. The deck personnel helped us put the net in the water and then we waited.  As the net was brought back on deck, we rinsed it down and collected samples the same way we would a bongo or Neuston sample. Of course with such a large net we collect bigger animals that we would with the other two.  We did collect some fairly large fish along with smaller larvae.  Our collection wasn’t the most excited some of the scientists have seen but to me, it was very exciting.

The second collection we took wasn’t a plankton collection but a water sample.  It is important to know the physical and biological parameters of different areas when collecting. For this, we used a very large (and expensive) piece of technology: a CTD which stands for conductivity, temperature and depth.  The CTD also measures dissolved oxygen and can do all of these measurements without actually collecting any water.  We do however collect water to look at chlorophyll levels.  The CTD frame has three bottles attached to the frame to collect water throughout the water column.  Once we open the bottles on deck and set them, the lab scientist has the capability to fire the bottles shut at different depths. All measurements and water collection happen at three areas in the water column. One data and water collection is done at maximum depth, the second at mid depth at the third just a few feet from the surface.  After all of the data has been collected, the CTD is brought back on deck where we bring the water samples up to the lab to test. It was definitely an exciting day on deck today.

Personal Log 

It has one week since we left port in Pascagoula and I am having such a great time!  I forgot how much fun field work is and how excited I get over the smallest things when it comes to animals.  I am so fortunate to have such an experience and I can not wait to get some samples home to share with our students.  I already have started making some lesson plans!

Addendum: Glossary of Terms 

  • Visibility is how far ahead you can see from the ship.  On a very foggy day you may only have a visibility of 10 ft whereas on a clear day you can see all the way to the horizon, or 12 nautical miles.
  • Wind direction tells you which way the wind is blowing from: 0° is north, 90° is east, 180° is south, and 270° is west.
  • Sea wave height is the height of the smaller ripples
  • Swell height is the estimates larger waves
  • Sea level pressure (or Barometric Pressure) indicates what the trend of the weather has been. High barometric pressure usually means sunny weather and rain can not build up in clouds if they are being squeezed together by high pressure.  Low barometric pressure means rainy or stormy weather is on the way.
  • Present Weather is a description of what the day’s weather is.

– Courtesy of Thomas Nassif, NOAA Teacher at Sea, 2005 Field Season

  • Field Party Chief or FPC is in charge of the team of scientists on board the ship. This person oversees all activities having to do with collection of samples and is the go to person in case anything goes wrong that the scientists can’t handle.  They also act as an extra set of hands when needed.
  • Bongo Net is two circular frames 60 cm in diameter sitting side by side with two 333 micron nets and a weight in the center to help it sink.  At the base of each net is a plastic container used to collect all the plankton that can be easily removed so we can retrieve the samples
  • Lab Scientist is the scientist that stays in the lab to work the computers recording the data on sample time, sample depth and is the one that relays information to the deck personnel about when the nets have hit maximum depth.  They keep watch in case anything goes wrong underwater.
  • Deck Scientist is the scientist out on deck getting the nets ready, rinsing the nets, collecting and preserving samples.  They are the eyes on deck in case anything goes wrong at the surface or on deck.
  • Neuston Net is one net 1 X 2 meters with a 947 micron net.  Neuston samples are done only at the surface and placed in the water for ten minutes.
  • CTD 
  • Photic Zone 

Allison Schaffer, September 18, 2007

NOAA Teacher at Sea
Allison Schaffer
Onboard NOAA Ship Gordon Gunter
September 14 – 27, 2007

Mission: Ichthyoplankton Survey
Geographical Area: Gulf of Mexico
Date: September 18, 2007

Weather Data from Bridge 
Visibility: 12 nautical miles
Wind direction: NE
Wind speed: 18 kts.
Sea wave height: 3 – 4 feet
Swell wave height: 3 – 4 feet
Seawater temperature: 27.5 degrees
Present Weather: Mostly Cloudy

Our sample from one of the bongo collections
Our sample from one of the bongo collections

Science and Technology Log 

I woke up this morning excited and ready to go! My morning doesn’t exactly start bright and early at 6am but tends to start much later around 10am.  The way life on board the boat works for the team of scientists is that there are two teams: the night watch which is from midnight to noon and the day watch runs from noon to midnight. The field party (that’s what the team of scientists on board is called) consists of six scientists and the FPC (Field Party Chief).  I work as part of the day watch along with two of the other scientists.  The remaining three work the night shift. Each of the pre-selected stations is about 30 miles apart, so it takes us close to three hours to commute between stations. Once we arrive at the station, all the sample collections and last about 45 minutes to an hour. After we have completed a station we head back into the lab where we have three hours to wait until our next station. During this time we usually watch a movie, read a book, email friends, family or work, do work, play cards, etc. Or in my case, I like to sit out on the deck and look at the ocean since living in Chicago it’s not something I get to see everyday.

Teacher at Sea, Allison Schaffer, rinsing one of the bongo samples into a glass container to be preserved
Teacher at Sea, Allison Schaffer, rinsing one of the bongo samples into a glass container to be preserved

So this particular morning, I wake up and get dressed just in time for an early lunch before our shift. Today it happens that we reach our station around 11 and since each station takes about an hour, myself and the other scientists from my shift decided we would head up and relieve the night shift early so they can head down for lunch since lunch is only out until noon. Since they had already done the bongo net sampling and preserving, we finished up the station with a Neuston collection. Once we labeled all the samples, I sat down at one of the computers to do some more emailing and started staring out the window in the lab. It was another beautiful day on the Gulf! At least from my perspective it was.  What I didn’t see yet on our horizon was a fairly large storm system was headed our way from the Atlantic across Florida in our direction. We arrived at our second station, did our two sample collections and headed back in for dinner. When we got back in, the FPC said that the Commanding Officer (or CO), Lieutenant Commander Brian Parker, said we were going to be heading south to get away from the storm. He said that was our best bet to avoid any bad weather and that the safety of everyone on board is most important to him.  We would definitely not be able to hit anymore stations on my shift but we now had the rest of the night off to relax!

Bongo nets coming out of the water getting rinsed down by one of the scientists
Bongo nets coming out of the water getting rinsed

Personal Log 

I have been finding some very cool animals in the samples we have collected!  The other deck scientist and I spend more time looking through our sieves to see what caught than we do doing anything else. At our first station we got more jellies—and the stinging ones this time!  But at our second station, we caught a bunch of juvenile flat fish and eels.  And we are getting tons of crabs and shrimp!  Little tiny ones!  It is still amazing to me the variety of what we are finding and the different colors of everything! Bright blue copepods, orange or purple crabs, purple amphipods, silvery blue and yellow jacks, silvery blue half beaks, yellow and gray triggers, pink shrimp, and more!

 

Teacher at Sea, Allison Schaffer, taking wire angle measurements for the bongo nets using the inclinometer.
Allison Schaffer taking wire angle measurements for the bongo nets with the inclinometer
Teacher at Sea, Allison Schaffer holding a cannon ball jelly caught in the Neuston net
Allison Schaffer holding a cannon ball jelly caught in the Neuston net

Allison Schaffer, September 16, 2007

NOAA Teacher at Sea
Allison Schaffer
Onboard NOAA Ship Gordon Gunter
September 14 – 27, 2007

Mission: Ichthyoplankton Survey
Geographical Area: Gulf of Mexico
Date: September 16, 2007

Weather Data from Bridge 
Visibility: 12 nautical miles
Wind direction: NE
Wind speed: 10 kts.
Sea wave height: 1 – 2 feet
Swell wave height: 1 – 2 feet
Seawater temperature: 30.1 degrees
Present Weather: Clear with scattered clouds

NOAA Teacher at Sea, Allison Schaffer, gets ready to set sail aboard NOAA Ship GORDON GUNTER
NOAA Teacher at Sea, Allison Schaffer, gets ready to set sail aboard NOAA Ship GORDON GUNTER

Science and Technology Log 

We left port in Pascagoula, MS and headed toward the coast of Florida’s panhandle to begin our ichthyoplankton survey. The purpose of the cruise is to assess the abundance and distribution of the early life stages of different fish. I am part of Leg II of the Fall Ichthyoplankton cruise.  Leg I took place the two weeks prior.  Throughout the Gulf of Mexico there are 143 pre-selected stations set about 30 miles apart at specific latitudes and longitudes.  They spread across the Gulf of Mexico’s continental shelf in water depth of 6 meters to just over 200 meters.  Some species we are specifically keeping and eye out for are king and Spanish mackerel, red drum, and snapper.

Once we arrived at our first station, I put on my hard hat and got to work.  The first sample collected was done using a bongo frame net.  This is two circular frames 60 cm in diameter sitting side by side with two 333 micron nets and a weight in the center to help it sink. At the base of each net is a plastic container used to collect all the plankton that can be easily removed so we can retrieve the samples.  The bongo net is placed in the water and deployed near the bottom.  We don’t want it to hit bottom though!  The bongo sampler is towed at a 45 degree angle that I, as one of the deck scientists, measure using an inclinometer and report back to the lab scientist.  The time that the bongo is in the water depends on how deep it is at each station.  Once the tow was completed, the bongo was brought back on board and using a sea water hose, I rinsed the net allowing all the plankton to fall into the container to collect any plankton caught in the net.  I removed the collection container and rinsed the sample into a sieve.

Then the fun part! I got to look around and see what we caught.  Our first station was full of jellies! I rinsed the samples and placed them in jars to preserve them for identification back at the lab on land. The next sample I collected was done using a Neuston net.  This is very different from the bongo nets in that it is one large net 1 X 2 meters with a 947 micron net and we sample only at the surface.  The Neuston is placed in the water for ten minutes and then brought back on board, rinsed and preserved the same way as the bongo nets. Once I was done with that I headed back inside where we label everything to make sure all samples have numbers and what equipment was used for collection.  I sat down to email some friends back home feeling a little overwhelmed but excited to get to our next station!

Personal Log 

I am still getting my sea legs and learning as I go.  Since today was my first day on deck, everything was very new to me but that didn’t stop me from jumping right in.  My fellow deck scientist has been very helpful and patient about teaching me everything and making sure I feel comfortable doing the different tasks.  I can’t wait to learn more!

Addendum: Glossary of Terms 

  • Visibility is how far ahead you can see from the ship.  On a very foggy day you may only have a visibility of 10 ft whereas on a clear day you can see all the way to the horizon, or 12 nautical miles.
  • Wind direction tells you which way the wind is blowing from: 0° is north, 90° is east, 180° is south, and 270° is west.
  • Sea wave height is the height of the smaller ripples
  • Swell height is the estimates larger waves
  • Sea level pressure (or Barometric Pressure) indicates what the trend of the weather has been. High barometric pressure usually means sunny weather and rain can not build up in clouds if they are being squeezed together by high pressure.  Low barometric pressure means rainy or stormy weather is on the way.
  • Present Weather is a description of what the day’s weather is.

Courtesy of Thomas Nassif, NOAA Teacher at Sea, 2005 Field Season  

  • Field Party Chief or FPC is in charge of the team of scientists on board the ship. This person oversees all activities having to do with collection of samples and is the go to person in case anything goes wrong that the scientists can’t handle.  They also act as an extra set of hands when needed.
  • Bongo Net is two circular frames 60 cm in diameter sitting side by side with two 333 micron nets and a weight in the center to help it sink.  At the base of each net is a plastic container used to collect all the plankton that can be easily removed so we can retrieve the samples
  • Inclinometer is the instrument which measures the wire angle to insure that the bongo nets are at the ideal 45 degrees.
  • Lab Scientist is the scientist that stays in the lab to work the computers recording the data on sample time, sample depth and is the one that relays information to the deck personnel about when the nets have hit maximum depth.  They keep watch in case anything goes wrong underwater.
  • Deck Scientist is the scientist out on deck getting the nets ready, rinsing the nets, collecting and preserving samples.  They are the eyes on deck in case anything goes wrong at the surface or on deck.
  • Neuston Net is one net 1 X 2 meters with a 947 micron net.  Neuston samples are done only at the surface and placed in the water for ten minutes. 

Adrienne Heim, September 4, 2007

NOAA Teacher at Sea
Adrienne Heim
Onboard NOAA Ship Albatross IV
August 7 – September 2, 2007

Mission: Sea Scallop Survey
Geographic Region: Northeast U.S.
Date: September 4, 2007

NOAA Ship Albatross IV
NOAA Ship Albatross IV

All about the Ship!

For ten days I have been living aboard the ALBATROSS IV – the oldest research vessel within the NOAA fleet. It has been quite an amazing experience for me to wake up each morning surrounded by water. I have been loving every minute of it including falling asleep to the lapping sound of the waves against the porthole of my room. For the most part, the waves have not been too large, except for the first few days. Eating while the ship rocks back and forth has been an interesting sensation. It certainly evokes smiles on all of us who are not accustomed to this environment. When the ALBATROSS IV is not at sea, she resides in Woods Hole, MA. The ALBATROSS IV conducts fishery and living marine resource research for NOAA’s National Marine Fisheries Service in Woods Hole, Ma. Her purpose is to conduct fisheries and oceanographic research within the waters of the Northwest Atlantic Ocean. She is fully equipped to collect information on the distribution and abundance of ground fish and sea scallops, as well as, on the environmental factors that may affect fish populations. Some basic facts regarding the ALBATROSS IV are:

Living quarters
Living quarters

Length: 57.0 meters (187 feet)
Breadth: 10.1 meters (33 feet)
Draft: 4.9 meters (16.2 feet)
Gross Tonnage: 1,115
Range: 3,933nmi at 11.5 knots
Date Commissioned: May 1963

QUESTIONS OF THE WEEK FOR MY STUDENTS:

What is the meaning of tonnage and range?

How fast is a knot when compared to miles?

Taking a tour of the ship
Taking a tour of the ship
Mechanics on deck
Mechanics on deck
Sunset over the water
Sunset over the water

Adrienne Heim, September 2, 2007

NOAA Teacher at Sea
Adrienne Heim
Onboard NOAA Ship Albatross IV
August 7 – September 2, 2007

Colorful sea stars!
Colorful sea stars!

Mission: Sea Scallop Survey
Geographic Region: Northeast U.S.
Date: September 2, 2007

Science and Technology Log: Ocean Diversity

Contrary to my initial thoughts, there is an eclectic amount of diversity AND color among the species that dwells within the Georges Bank/Nantucket Shoals. I have been very surprised at the amount of species we collect during our tows. I also am very surprised by the variations of color among the starfish. I just typically associated marine color to warm saltwater dwelling creatures where you would find coral reefs and such, but there is a beautiful array of colors up here. Among the typical sort of sea life you would expect to see here, like dolphins, whales, cod, crabs, sea scallops, clams, tuna etc. there exists a greater level of diversity here. Just to give you an idea, here is a list of some of the marine life we have encountered at our stations:

Monkfish brought up in the survey
Monkfish brought up in the survey

Winter Skate
Little Skate
Silver Hake
Red Hake
Fourspot Flounder
Yellowtail Flounder
Windowpane Flounder
Gulfstream Flounder
Longhorn Sculpin
Ocean Pout
Cancer Crab
Sea Scallop
Atlantic Hagfish
Fourbeard Rockling
American Plaice
Moustache Sculpin

Alligator fish
Alligator fish

Northern Sandlance
Spoonarm Octopus
Goosefish
Loligo Squid
Sea Raven
Asterias Boreal
Fluke
Northern Searobin
Rock Gunnel
American Lobster
Leptasterias Tenera
Alligator Fish
Butterfish
Seacucumber
and many more…

Sea cucumber
Sea cucumber
Spoonarm octopus
Spoonarm octopus

Adrienne Heim, August 27, 2007

NOAA Teacher at Sea
Adrienne Heim
Onboard NOAA Ship Albatross IV
August 7 – September 2, 2007

The CTD, recording information at depth
The CTD, recording information at depth

Mission: Sea Scallop Survey
Geographic Region: Northeast U.S.
Date: August 27, 2007

Science and Technology Log: CTD Casts
Immediately following the fire and abandon ship drills, we proceeded to have a debriefing regarding appropriate and professional behaviors, as well as, receiving information regarding shift schedules, meals, work expectations, etc. Our Chief Scientist, Victor Nordahl, informed us of the various duties and responsibilities each of us would have during the Sea Scallop Survey. I was paired with another volunteer, Shawn, to help with the measuring of the sea scallops once they were sorted and weighed. I was also assigned the role of performing CTD casts and collecting data from the inclinometer.CTD casts are performed at every third station. The acronym stands for conductivity, temperature, and depth. It is a hefty contraption that is hooked onto a cable and sent down, a vertical cast, into the water. Basically, while the CTD is sent down vertically, it records the temperature, depth, salinity, and pressure. The saltier the water, the more conductivity is generated. The cast first soaks for about one-two minutes at the surface of the water to record the salinity. It is then sent down, stops about 5-10 meters before reaching the bottom of the ocean floor and then is hauled back. Recording this data is essential for scientists, especially while conducting a Sea Scallop Survey; because the CTD casts helps to associate water temperature and salinity with sea scallop abundance. Scientists record the data to view it later and assess the casts with the other data collected from the work stations.
Computers and cameras recording information from the CTD
Computers and cameras recording information from the CTD
The winch at the back of the ship
The winch at the back of the ship
Communicating with the winch operator
Communicating with the winch operator

Amy Pearson, August 27, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 27, 2007

A full moon over the Gulf of Maine
A full moon over the Gulf of Maine

Weather Data from the Bridge 
Air temp: 15.6
Water temp: 15.1
Wind direction: 003
Wind speed: 12 kts
Sea wave height: 2-3 ft.
Visibility: 10+

Science and Technology Log 

What a gift. After what seems like many days of fog, it is a perfect day in the Gulf of Maine. I witnessed it at about 1:30 a.m. from the bridge where I went to photograph a full moon from the “darker” end of the ship. The deck where we work (stern) is well lit all night, so there is light pollution.  The reflection of the moon on the water is hard to reproduce in a photo, but worthy of the attempt. The air has also cleared, replaced with dry, crisp Canadian air, and as a bonus, the seas are calm.  After a good six hour sleep I head to the deck for what I think is the best morning yet.  Clear skies with visibility that seems infinite, deep blue water with barely 1 ft. waves, and a gentle breeze mark the morning hours.  The air feels so clean, almost brand new.

Shearwaters are gliding onto the top of the water and dunking their head in for a quick taste.  It is the first time I’ve see herring gulls at sea in at least a week.  There are large mats of yellowish sargassum floating in the water.  There have been humpback whales spotted but I haven’t seen them yet.  It is still quite deep here, about 200 meters.  The plankton samples contain a lot of Calanus which is almost a salmon color and appears like small grains of rice in the sieve. It is a tiny crustacean, and food for so many large organisms…a favorite of young cod. I was late for breakfast but had some freshly cut honeydew melon, toast and cheese. Some warm coffee cake was soon put out.  I’m so lucky to have this great experience. I spotted a grey triangular shaped dorsal fin in the water. It was quite wide at the base and a lighter grey near the top. It appeared twice then disappeared.  Claire on the bridge confirmed sighting, a Mola Mola, a large sunfish.

On one side of the ship a lunar eclipse was taking place, while on the other the sun was rising.
On one side of the ship – a lunar eclipse, the sun was rising on the other

Today is such a spectacular weather day. The Chief Steward pulled out the barbecue grill and charcoals were lit late in the afternoon. He added some hickory wood and grilled steaks and tuna. What a feast! We took samples in the Gulf of Maine today and tonight. They were a salmon pink color due to the calanus but contained a mix of zooplankton including amphipods, glass shrimp, and a few large, clear jellyfish.  I preserved a jar from the baby bongo net for my students. Because I work into Tuesday morning, I wanted to include a special event on 7/28 at about 4:50 a.m.  There was a lunar eclipse going on one side of the ship and a gorgeous sunrise on the other. Photos of both are below, as well as the moon rise the evening of 8/27, above.

Thanks to Kim Pratt, a fellow teacher, & Jerry Prezioso, a NOAA scientist.
Thanks to Kim Pratt, a fellow teacher, & Jerry Prezioso, a NOAA scientist.

A Shipboard Community 

Nineteen people living aboard a ship, working twenty-four hours a day, seven days a week for seventeen days. A very unique community. Thirteen of them are there to support the scientific research of four science staff and to maintain the ship for its use as a scientific research vessel.  The four-man deck crew maintains the ship and runs the heavy equipment for the scientists. The four-person NOAA Corps staff navigate, drive and manage the ship.  They re-adjust courses when conditions force a change, deal with fog and rough seas, lots of other boats that want to be in the same place we do, and make sure everyone has their needs met.  The two-person kitchen staff feeds this team of nineteen as they work on twenty-four hour shifts. Good food is so important on a ship.  The Four-person engineering team seems to stay behind the scenes (below deck!) and keep all systems running like clock-work.  Last, but certainly not least is the electronic technician, a genius with anything that has wires. He told me the favorite part of his job is problem-solving, and quite frankly, that is what is required of him each day.  From email to satellite TV reception to the electronics in the winch, he is constantly fixing new problems or finding ways to make things work better.  Each person has a different background and reason for being here.

Thanks to Betsy Broughton, also a scientist.
Thanks to Betsy Broughton, also a scientist.

The age range of the members of this community begins at 23 and goes to the upper 50’s. The key to a good working ship is respect, consideration, and cooperation between people.  There are many personal stresses on everyone, from lack of personal space, lack of sleep, seasickness, little contact with family, and inability to “go home”.  In addition, each person needs to think of the needs of others so as not to disturb them or make their jobs any harder than they already are.  This may seem like a utopian ideal.  I suspect it is achieved on many vessels, though I can only speak for the DELAWARE II. What a great team to work with.  Thank you for your support.

Teachers Kim Pratt and Amy Pearson say thanks to the crew of the DELAWARE II.
Teachers Kim Pratt and Amy Pearson say thanks to the crew of the DELAWARE II.

Amy Pearson, August 25, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 25, 2007

Teachers Amy Pearson and Kim Pratt deploy a drifter buoy
Teachers Amy Pearson and Kim Pratt deploy a drifter buoy

Weather Data from the Bridge 
Latitude: 4130  Longitude: 6650
Air temp: 17.8
Water temp: 16.7
Wind direction: 220
Wind speed: 16 kts.
Sea wave height: 2 ft.
Visibility: 4 nm

Science and Technology Log 

Woke to another foggy day, though the air temperature is warm (18.6 at 1:30 p.m.).  When a humid air mass hits the cooler Gulf of Maine water, fog results.  At about 1 p.m. we got a call from the bridge saying we just crossed into Canada – could we see the line in the water? (everyone has a sense of humor here). Yesterday we decorated the surface drifter buoy that will send location, air and water temperature data to a satellite. Our school logos and websites are written on the buoy as well as the message “leave in the water”.   NOAA will post this data on the Internet for anyone to track. Today we will deploy the buoy. Our school communities can watch this for over 400 days! Deployment went well, but the cloth drogue (holey sock) came apart and seemed to disappear below the buoy. We wore inflatable life vests and were tethered to the boat when we tossed the buoy off the ship.

Amy and Kim decorate the buoy for launch
Amy and Kim decorate the buoy for launch

Shortly after this, we took a plankton sample and as the net was coming up, I spotted some pilot whales about 40 ft. off the starboard side of the ship. There were six together, then another group appeared off the stern. They seem to stay very close together. Length was approximately 12-16 feet. They seemed to enjoy riding the stern waves.  They were very cute, as the photo below shows.

Science Topic 

This cruise is called an Ecosystems Monitoring Cruise. They happen four times per year, during January, May, August and November.  Additional data to support this data set is collected on Fish Survey Cruises that occur in March, April, September and October.  As I said in an earlier log entry, its mission is to assess changing biological and physical properties which influence the sustainable productivity of the living marine resources of the mid-Atlantic Bight, southern New England, Gulf of Maine and Georges Bank portions of the northeast continental shelf ecosystem.

Amy Pearson with a harnass connecting with ship for buoy deployment.
Amy Pearson with a harness connecting with ship for buoy deployment.

The plankton that is collected and analyzed must be collected in the same exact manner during each cruise in order to compare it from season to season and year to year. The constant materials used are identical 61 cm diameter Bongo Nets with mesh size of 335 microns.  The net is towed at a constant speed of 1.5-2 knots, 5 meters from the bottom or to a maximum depth of 200 meters.  The rate of release of the nets into the water is constant as is the rate of return. There is always a 45 kg weight at the end of the wire that the nets are clipped to. The angle of the wire with the water is maintained at 45 degrees. Keeping these parameters constant allows scientists to compare the net catches because the only variable is what is very enthusiastic and dedicated. Even when I offered to take over the hosing of nets at the end of his shift, his response was, “I live for this!” NOAA is fortunate to have so many dedicated scientists and employees who work at sea.  This is definitely not like any job I’ve experienced. The challenges of life at sea make it not something everyone can do. Betsy Broughton, the other scientist aboard is also high energy when it comes to this work. She clearly loves every minute and enjoys sharing her knowledge with others.  I have learned much from both of them.

A flowmeter in each net measures how much water passes into each net and its data is part of the equation when amount of plankton per amount of water is calculated. Jerry Prezioso has been involved with this project since the 1970’s and is very enthusiastic and dedicated.Even when I offered to take over the hosing of nets at the end of his shift, his response was, “I live for this!” NOAA is fortunate to have so many dedicated scientists and employees who work at sea. This is definitely not like any job I’ve experienced. The challenges of life at sea make it not something everyone can do. Betsy Broughton, the other scientist aboard is also high energy when it comes to this work. She clearly loves every minute and enjoys sharing her knowledge with others. I have learned much from both of them.

Pilot whale observed in the Gulf of Maine, following our ship.Others were underwater when I snapped the photo!
Pilot whale in the Gulf of Maine, following us. Others were underwater when I shot the photo!

Adrienne Heim, August 24, 2007

NOAA Teacher at Sea
Adrienne Heim
Onboard NOAA Ship Albatross IV
August 7 – September 2, 2007

Working at night
Working at night

Mission: Sea Scallop Survey
Geographic Region: Northeast U.S.
Date: August 24, 2007

Science and Technology Log: Sample Sorting

It is then time to get to work. Each of us works in 12 hour shifts. We are either designated to a noon-midnight shift or visa-versa. First, the winch operator sends out the dredge. It trolls in 15 minute increments and collects everything that it encounters along the way. This includes various marine life, vegetation, and bottom sediment like rocks and sand. Once it is brought to surface the deck handler’s work with the winch operator to lower the dredge to the middle of the stern. The dredge is emptied of its contents and then it is our turn to sift through it. The marine life is sorted into blue buckets according to their species. Our Watch Chief teaches us how to identify them, especially when sorting Winter versus Little Skates or Winter versus Yellow-Tail Flounders. We put all of the scallops into large orange baskets. The species are then weighed and measured. We work in pairs and each pair is assigned to one of the three work stations. The data is recorded into the FSCS, which stands for Fisheries Scientific Computer System. Some of the scallops are frozen for further scientific investigation while the others, as well as the other marine life collected from the dredge are put back into the water. The buckets are washed and stored for the next tow, which occurs every 45 minutes as we wait to reach the following station.
Sorting baskets
Sorting baskets

I am learning so much and I can’t wait to bring all of this information back to my students. My next log will discuss the diversity of the marine life here along the Georges Bank and Nantucket Shoals, as well as, the purpose of the FDA sending employees to test for PSP (Paralytic Shellfish Poison) within the meat, viscera, and gonads of the sea scallops.

QUESTIONS OF THE WEEK FOR MY STUDENTS:
What preys upon sea scallops besides starfish?
How are the open and closed waters designated and determined?
What is the impact of scallop fishing on the overall ecosystem?

Sorting on deck
Sorting on deck

Chuck Gregory, August 24, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 24, 2007

THOMAS JEFFERSON Interviews

The Questions

  1.  Name and rank (or job title).
  2.  How long have you been working for NOAA and what did you do prior to working for NOAA?
  3.  How did you “find” NOAA?
  4.  Describe your job on board the NOAA Ship THOMAS JEFFERSON.
  5.  What is the best part of your job?
  6.  What is the worse part of your job?
  7.  Immediately after my Teacher At Sea Internship I plan to turn my experience into a Hollywood blockbuster. What person do you want to act as you in this movie?

Interview #1: Commanding Officer (CO) Tod Schattgen 

  • CO Schattgen has worked for NOAA for 22+ years
  • Before NOAA, the CO graduated from the University of Missouri at Rolla with a Bachelor’s degree in Mechanical Engineering.
  • He “found” NOAA by attending a NOAA recruiting session during his senior year at the University of Missouri at Rolla. [He obviously liked what he heard and saw!]
  • His job as CO is to safely and effectively operate a world class hydrographic survey ship and provide quality data in a timely manner to our customers.
  • The best part of his job is the people, mission and driving the ship.
  • The worst part of his job is the politics.
  • The actor he would like in his role as CO would be Nicole Kidman.

Interview #2: Field Operations Officer (FOO) Chris VanWestendorp 

  • Chris has been with NOAA for almost 2 years.
  • Prior to joining NOAA, Chris spent 6.5 years in the Navy as a submarine officer aboard the SSN Oklahoma City. He chose not to stay in the Navy and began looking for other job opportunities. While getting his degree in Marine Science and working as a NROTC instructor at Savannah State University, Chris befriended a NOAA Corp Officer who encouraged him to look into the NOAA Corp.  At first Chris had no idea what the NOAA Corp was, but, after doing a little homework, he became interested enough to apply.
  • Now, Chris is third in command of the NOAA Ship THOMAS JEFFERSON.  He is in charge of the ship’s survey operations: planning the logistics of a hydrographic survey, data management (acquisition and processing), managing the Survey  Department personal, and he has indirect oversight of the Junior Officers.
  • The best part of Chris’ job as FOO is the challenges he faces on a daily basis while at sea. In addition, Chris enjoys doing something that he and the general public can actually see once the product is final.
  • Ironically, the worst part of Chris’ job can also be the challenges he faces on a daily basis while at sea. These challenges can make for hectic times and difficult decision making.
  • Chris would like Val Kilmer to play his role as FOO aboard the NOAA Ship THOMAS JEFFERSON.  [However, he feels the ship’s personnel would vote for William Shatner instead.]

Interview #3: NOAA Corp Ensign/Junior Officer Megan Nadeau 

  • Megan has been with NOAA for 1.5 years.
  • After high school, Megan took classes for two years at the University of New Hampshire (UNH) before receiving her B.S. degree from the University of Maine (UMaine). After receiving her degree, Megan took a job in a local store while looking for a job in the marine sciences.
  • Megan was first exposed to NOAA while at UNH, but didn’t really investigate NOAA as a career until a U of Maine graduate student encouraged her.
  • Now an Ensign in the NOAA Corp, Megan’s job is to drive the NOAA Ship THOMAS JEFFERSON.  She is qualified as an Officer of the Deck, giving her command of both the Deck and Bridge of the ship.  In addition, Megan is the ship’s Information Technology Officer, Tides Officer (ensuring the ship has up-to-date tide data from the area being surveyed), and she makes sure the ship’s store is open and operating smoothly.
  • The best part of Megan’s job is being on the water – she loves the ocean.  And she loves driving the ship! She also enjoys finding wrecks, and updating the NOAA charts.
  • The worst part of her job is being lonely and away from her family and friends.  But, Megan is quick to add, she had made her own family while aboard the THOMAS JEFFERSON.
  • Megan would like to be played by Kate Bosworth, currently staring in the new “Superman Returns” movie.

Interview #4: NOAA Corp Ensign/Junior Officer Andrew (Andy) Ostapenko 

  • Andy has been with NOAA one year.
  • Before NOAA Andy was a paralegal in Duluth, Minnesota.
  • He found NOAA through the NOAA Corp internet. Working in Duluth he knew about the work NOAA was doing, but not about the NOAA Corp.  The NOAA Corp website changed all that.
  • Andy’s primary job aboard the NOAA Ship THOMAS JEFFERSON is navigation.  He is responsible for the ship’s charts, plotting safe courses, and driving the ship.  His collateral duties include standing watch, working on the hydrographic survey launches, deploying and retrieving the launches, and he is the “Keys, Flags & Labels Officer”.
  • The best part of Andy’s job is being at sea and driving the ship.
  • The worst part of his job is adjusting to life at sea.
  • The person he would like in the role of Ensign Andrew Ostapenko is either Val Kilmer or Matt Damon.  [I think I’ll have to let Matt do this one as the FOO has already asked for Val.]

Interview #5: Senior Survey Technician Peter (Pete) Lewit 

  • Pete has been working with NOAA for the past 17 years.
  • Before coming to NOAA, Pete spent four years in the Coast Guard.  And before that he received his Associates degree in History and English from Westchester Community College. During his time at Westchester CC, Pete had to take a science class. He signed up for a course in geology and “the light bulb came on.”
  • Pete originally spoke with a NOAA recruiter in the fisheries division, but he was told there were no jobs available. So he went into the Coast Guard and then spent nine years working for a mapping company.  One day he spotted a tiny NOAA ad in the New York Times asking for people interested in doing map work.  He applied.
  • Pete’s is a hydrographer on the NOAA Ship THOMAS JEFFERSON.  He examines the data that gets on the charts, writes reports, recommends changes, and assesses the data.
  • The best part of Pete’s job is the feeling he gets as being part of an organization that’s been around for a long time, plus being able to use his skills to create modern charts from reams of data.  He likes being a part of history.
  • The worst part of Pete’s job is being at sea, away from his family.
  • The actor who will play Pete in the Hollywood blockbuster is Jeff Goldbloom.

Interview #6: Assistant Hydrographic Survey Technician Melody Ovard 

  • Melody has been working for NOAA for just over six months.
  • Prior to working for NOAA, Melody applied her B.S. degree in Marine Biology from the University of North Carolina, Wilmington to a variety of jobs: as a Reserve Boatswain’s Mate in the Coast Guard, as a subcontracted SCUBA diver, and in a benthic ecology lab.
  • Her marine biology background also kept her abreast of job postings on NOAA’s website, and when the right job appeared she applied.  The rest is history!
  • Her job aboard the NOAA Ship THOMAS JEFFERSON is to collect and process data, including working on the survey launches.  She writes reports and helps to maintain the survey equipment.
  • The best part of Melody’s job is finding uncharted objects and wrecks, and learning about the equipment.
  • The worst part of her job is that she can’t get time for herself.
  • The person she wants to play Melody Ovard in Hollywood is Sandra Bullock.

Interview #7: Chief Electronics Technician Eric Thompson 

  • Eric has been with NOAA for 1.5 years.
  • Before working for NOAA Eric was a federal government contractor.
  • He found his NOAA job posting through government websites.
  • Eric’s job aboard the NOAA Ship THOMAS JEFFERSON is to maintain all electrical equipment: sonar, radar, communications, etc.  In addition, he assists with deploying and retrieving the survey launches, and he occasionally goes on a launch assignment.
  • There are two best parts of Eric’s job: 1) being on a survey mission looking for unique objects on the seafloor (e.g., wrecks) and using specialized equipment, and 2) going to new and different ports of call.
  • The worst part of Eric’s job occurs when the Direct TV is down – usually resulting from a lightening strike.  The entire crew is after him to fix it!
  • The person he wants to play Eric Thompson in Hollywood is either James Doohan (Mr. Scott on Star Trek), or “Carrot Top” Thompson.

Interview #8: Chief Steward Dave Fare 

  • Dave has been with NOAA just over 1.5 years.
  • Before working for NOAA Dave was a Chef in a restaurant.
  • He heard about NOAA and the job opening by word of mouth (friends).
  • His job as Chief Steward is to cook and supervise the cooks, deliver quality meals, develop the menus, and maintain the ship’s store inventory (e.g., food and mess supplies).
  • The best part of his job is making sure the crew is happily fed.
  • He says there is no worst part to his job.
  • The person he wants to play Dave Fare, Chief Steward in Hollywood is Charlie Sheen.

Summary 

  • My Hollywood blockbuster will be entitled “NOAA’s Skark”
  • It will mostly take place aboard the NOAA Ship THOMAS JEFFERSON.
  • It will star Nicole Kidman as the righteous Commander Tod Schattgen, and Val Kilmer as the dedicated “FOO”.  The supporting cast will be:
      1. Kate Bosworth as the charming Ensign Megan Nadeau;
      2. Matt Damon as the young and talented Ensign Andrew Ostapenko;
      3. Jeff Goldbloom as the worldly Senior Survey Technician Peter Lewit;
      4. Sandra Bullock as the captivating Melody Ovard;
      5. Carrot Top Thompson as the brilliant Chief Electronics Technician Eric Thompson; and
      6. Charlie Sheen as the multitalented David Fare

Also staring: Sean Connery at the evil Teacher At Sea Chuck Gregory

The plot: A mysterious Teacher At Sea boards the quiet NOAA Ship THOMAS JEFFERSON and turns it into a den of greed, passion, and corruption.

Stay tuned…….if you dare!!!

Amy Pearson, August 24, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 24, 2007

Teacher Amy Pearson and Kim Pratt dressing up as plankton
Teacher Amy Pearson and Kim Pratt dressing up as plankton

Weather Data from the Bridge 
Air temp: 19.9
Water temp: 16.8
Wind direction: 185
Wind speed: 10 kts.
Sea wave height: 1to2 ft.
Visibility: 4

Science and Technology Log 

Early this morning we were at the southeastern edge of George’s Bank. Last night my team (Betsy and I) had collection stations at about 5:10 p.m., 7:30 p.m., 10:30 p.m., and 2:20 a.m. (today!). At 2:20 a.m. we were at a very deep location (305 meters depth) and about 200 miles offshore. I was surprised to come on deck and see 3 lights from other boats.  Two were just small single lights. The other ship had bright lights on and was moving away from us, probably fishing.  We first did a vertical drop of the CTD to get the temperature and salinity with depth all the way to the bottom. At 298 meters it was 6.7 degrees Celsius.  One can look at the salinity and temperature here and predict if this continental slope water is coming from the north (Labrador Current) or from the continental shelf.  It will be less salty and cooler if coming from Labrador.  Betsy predicts it is coming from Labrador, based on the data.  go to sleep around 3 a.m. and wake several times, hearing foghorns from our ship.  At 10:30 a.m. there is pretty dense fog, and while we are underway we must sound a foghorn once every 2 minutes.  If we are limited in our movements (plankton tow) we must sound one long and two short sounds. It is quite humid (we are in a cloud!) and the air temperature at 1 p.m. is about 19 degrees Celsius.  Our 75th station samples were loaded with gammarid amphipods that Betsy nicknamed clingons because they cling to the plankton net. This fog does make seeing whales more challenging.  Hope it lifts soon!

Jerry Prezioso, Amy Pearson, Kim Pratt, Joe Kane with 1 weeks worth of plankton samples collected during the southern leg of Ecosystem Cruise
Jerry Prezioso, Amy Pearson, Kim Pratt, Joe Kane with 1 weeks worth of plankton samples collected during the southern leg of Ecosystem Cruise

What Is the Mission of This NOAA Cruise? 

The primary objective of the cruise is to assess changing biological and physical properties which influence the sustainable productivity of the living marine resources of the mid-Atlantic Bight, southern New England, Gulf of Maine and Georges Bank portions of the northeast continental shelf ecosystem.  The following items are being measured: water column temperature, salinity, and chlorophyll-a fluorescence, and ichthyoplankton and zooplankton composition, abundance and distribution. The teachers aboard will deploy a surface current drifter buoy that will allow our students to track water movements and temperatures in near real-time on an Internet website.  We will also collect Pseudonitzchia (a red-tide pinnate diatom) samples from the ship’s flow-through seawater system for mapping the distribution of it in the Gulf of Maine and George’s Bank.  Zooplankton is also being collected for the Census of Marine Zooplankton Project (formerly called the Zooplankton Genome Project).

Small puffer fish and salps mixed w/ other plankton
Puffer fish and salps mixed with plankton

From my perspective, I never thought there would be such big differences in the type and amount of plankton we collect at different locations.  The diversity is very interesting, from large jellies to small zooplankton.  We have seen amphipods (tiny crustaceans), tiny crabs (still maturing), brownish phytoplankton, salps (clear jellies the size of a small walnut), to brownish creatures too small to see, krill, arrow worms…and many more.  The scientists are quite knowledgeable and usually predict what we will be seeing at each spot. I’ve put a few photos here to illustrate the diversity.

 

Small fish, large jelly fish and other types of plankton
Small fish, large jelly fish and other types of plankton
A plankton sample full of amphipods
A plankton sample full of amphipods

Chuck Gregory, August 23, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 23, 2007

“Leave all the afternoon for exercise and recreation, which are as necessary as reading. I will rather say more necessary because health is worth more than learning.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0614h Sunset = 1944h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey)
0800h Deploy Launches
1745h Retrieve launches

Tides for Sandy Hook High @ 0400h (3.7 ft.) & 1631h (4.7 ft.); Low @ 1018h (1.2 ft.) & 2320h (1.0 ft.); Currents in Sandy Hook Channel Flood: 0120h (1.0 kt.), 1344h (1.7 kts.); Ebb: 0744h (1.1 kts.), 2028h (1.4 kts.); weather from Sandy Hook to Fire Island AM: SE winds 10 kts., seas 3-5 ft., PM: S winds 10-15 kts., seas 204 feet.

Today is my last full day on the NOAA Ship THOMAS JEFFERSON.  My goal today is to clean up any loose ends before I leave the ship tomorrow: laundry, catch up on my log, take a few extra photos, etc.

Chris Van Westendorp, the TJ’s FOO
Chris Van Westendorp, the TJ’s FOO

Like the previous three days the sky is gray.  I can’t even see Manhattan.  Fortunately, the seas have calmed and I am quite sure the launches will be deployed.  I am not scheduled to be on a launch, but Andy is going out. He switches between two full days of launch duty, and then two days of watch duty: 0330h to 0730h, and 1530h to 1930h.  They do keep him busy. For lunch I had chicken tacos and lasagna. A brief note on Chief Steward Dave – he sure must like to cook chicken. It was served to us often and in a variety of styles.  All in all, Dave and his crew do an excellent job of feeding us and deserve a commendation.  There was always something to eat, and no one left the Mess Deck hungry.

I also found time to go up to the bridge and chat with Megan Nadeau.  Megan is from Lewiston, Maine and gave me a good interview.  After two years at the University of New Hampshire, Megan graduated from the University of Maine with a B.S. degree in Marine Science. She seems to really enjoy her role on the THOMAS JEFFERSON, and has a nice career plan ahead of her. The Field Operations Officer – affectionately referred to as “The FOO” – Chris Van Westendorp, joined us on the bridge and I was able to interview him as well.  Chris has quite an experienced past that includes years on a Navy submarine and a degree in Marine Science. As I noted in a previous log entry, the interview is pretty straight forward, except the last question about who will play you in my Hollywood blockbuster. Those I interviewed almost always paused when I asked this question. Some of the answers I got were funny, others quite revealing.

At the end of the day I did a little more computer work, ate dinner, exercised, and began the packing process. I even washed and dried my sweaty exercise cloths.  After a little “White Fang” I was asleep by 2230h. 

Chuck Gregory, August 22, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 22, 2007

To penetrate and dissipate these clouds of darkness, the general mind must be strengthened by education.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0613h Sunset = 1945h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey) and take first Dramamine
0800h Deploy Launches – I’ll be on the 3101 this time!
1145h Take second (and last!) Dramamine
TBD Commence underway check-off; Light off main engine, ship underway/anchor
TBD Mail pick-up (boat TBD)
1745h Retrieve launches

Tides for Sandy Hook High @ 0259 (3.7 ft.), 1532 (4.6 ft.); Low @ 0911h (1.3 ft.) & 2225h (1.5 ft.); currents in Sandy Hook Channel Flood: 0018h (1.0 kt.), 1243h (1.7 kts.); Ebb: 0648h (1.1 kts.), 1937h (1.3 kts.); weather from Sandy Hook to Fire Island AM: NE winds 15-20 kts., seas 5-8 ft., PM: E winds 10-15 kts., seas 5-8 feet.

Cox'n Pooser driving a launch
Cox’n Pooser driving a launch

What a day! When I awoke it was apparent that the launches would be deployed on schedule (0800h). Once again the sky was gray, but the wind and sea was calm enough for us to get work done. After breakfast (oatmeal and Dramamine) we met in the Survey area for a safety brief.  I was assigned to be on launch 3101 with Cox’n Pooser, Cox’n-in-Training “House” and Survey Tech Scott. Launch 3101 is only equipped with a MultiBeam Echo Sounder.  We were the first to be deployed, and Bob Schwartz filmed the launch before joining the 3102 to continue his video work.

Our morning on the 3101 began simple enough.  Pooser was training House to drive the launch around the inner Sandy Hook harbor area. It was House’s first time on a NOAA launch, and, while he was quite eager to learn, the rough sea and his lack of experience showed. Pooser spent a long time instructing him on operating the launch and how to “drive lines” (that’s NOAA speak for keep the launch on the correct survey heading).  Scott was all set up to gather data, but stayed very patient while House would attempt to drive a line and have to repeat the track because he veered off course.  Scott and I joked that House was drawing a “double helix”.  But House persisted and his skills soon improved.  From the perspective of this novice, it was not a good sea for the first-timer.

Towing the Fast Response Boat (FRB)
Towing the Fast Response Boat (FRB)

After about an hour of “drawing double helixes”, Pooser grabbed the wheel and began knocking off the lines like a veteran. It was about then that we first saw the FRB (Fast Rescue Boat) leave the THOMAS JEFFERSON on a mail run to the Sandy Hook Coast Guard Station.  When the FRB got about half way to shore we noticed that it suddenly stopped in the water. We heard over the radio that their engine was smoking and she was dead in the water.  Bummer!  Since we were the nearest boat (about 300 yards away), we motored over and began the process of towing them back to the TJ.

FOO Chris, Ensign Megan G., and Chief Buck were on the FRB, and they hung on as we slowly motored back to the TJ.  We passed their lines to the crew on the ship and waited until we were told they were safe and secure.  Then we were back to doing lines. After lunch the TJ called and asked us to go to the Sandy Hook Coast Guard Station and retrieve mail.  The Sandy Hook Coast Guard Station is a nice facility with a great location. But the biggest thrill of all (for me at least) was setting foot on solid land!  Yes, I thoroughly enjoyed our brief sojourn on land (about 15 minutes).  (Now if only I could have a beer!!) We picked up two packages and, once again, went back to the 3101 and driving lines. 

We were surveying in shallow water close to the Coast Guard Station.  Pooser really showed his skill driving the launch in these close conditions.  This was a good learning experience for House. When in shallow water there is always a threat of running the expensive MBES into the seafloor. Pooser got as close as he could (only 7-8 feet deep!), but reached a point where he had to tell Scott that we couldn’t get any nearer to land even though the plan called for it. Pooser suggested we return at high-high tide.  There is no doubt about it, while the survey technician directs the data gathering, the Cox’n is in charge of the boat and everyone’s safety.

We stayed out driving lines in the Sandy Hook area until 1730h.  Most of the lines were short and taken as quality control (QC) checks for the existing data.  When I spoke to Pete last night, he explained to me how there were questionable sections of the data, and additional QC lines were needed.  Pete pointed out to me that these were usually areas on the grid where the Side Scan Sonar (SSS) and/or the MBES missed (e.g., the launch hit a wake and heaved a little too much).  And it was Pete’s job to look over all the data and determine where these “holidays” were located. Another important part of our survey work is getting 200% coverage of the area.  In short, the launches pass over the survey area twice, staggering their tracks to optimize the overlap. So, while it’s easy to see how well the launches contribute to the survey work, it is just as important (if not more so) to understand how all that data is checked and double-checked (and triple-checked!) before it is submitted as a report.

When 1730h arrived, and it was time to return to the ship, Pooser let me take the wheel one last time.  We went full throttle and reached 20 knots before arriving at the ‘TJ’.  Pooser turned the wheel over to House and let him bring the 3101 to the vessel for a smooth retrieval. We cleaned the launch of our stuff, and were soon in the Mess Deck enjoying another meatloaf dinner.  Once again, after a full day on the water, meatloaf never tasted so good!  After dinner I called Roxann, went to the exercise room for a good 30 minute ride on the stationary bike, and checking on some more emails.

As a final note, I’ve learned that there are two times of the day to optimize the ship’s dial-up internet connection: before 0900h and after 2000h.  So, at 2000h I got on line and corresponded with a few folks. I was tired and was in bed by 2130h.  All in all, a good day full of new experiences.

Amy Pearson, August 22, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 22, 2007

Morning light in Woods Hole Harbor
Morning light in Woods Hole Harbor

Weather Data from the Bridge 
Air temp: 18.7
Water temp: 17
Wind direction: 75
Wind speed: 15kts.
Sea wave height. 2 ft.
Visibility: 7 nm

Science and Technology Log 

Woke to the sound of engines warming up.  We were docked in Woods Hole having arrived at 6 p.m. on Tuesday to exchange scientists.  Scientist Joe Kane who supervised my shift was departing and a new scientist, Betsy Broughton, was joining us.  Yesterday, the crew and scientists were very excited for the chance to get on land.  Many joined their families who live nearby.  I met my husband for dinner at a location about half-way between here and my home.  It was great seeing him. The DELAWARE II would be departing Woods Hole at 6a.m. The water was very calm and the morning light just beautiful. Everyone seemed recharged for the final leg of our cruise. After an early morning walk, I got on the exercise bike for a while.

Martha’s Vineyard Lighthouse being restored
Martha’s Vineyard Lighthouse being restored

Today I had a tour of the engine room, a place I had observed engineers entering with earphones but hadn’t seen. I followed Engineer Chris O’Keefe down a ladder into a very warm and noisy engine room.  It is huge and very clean. We first went into the office/control room where it was quiet and he showed me the many dials, switches, and screens that monitor the different systems of the ship.  There is one engine, two generators for producing electricity, and another generator in the bow to run the bow thrusters and hydraulic winches. There is also a system for making fresh water from sea water, utilizing a heat exchanger. Cool salt water condenses the steam to form fresh water, which is then chlorinated. The ship has about 10 fuel tanks and can carry 70,000 gallons of fuel. There is also a machine shop below with tools and some space to work.  I am very impressed with the organization of materials, cleanliness of the space and the size of the engine. There is a lot to keep track of down here, and it is well organized and clean.

Jerry Prezioso and Betsy Broughton changing CTD batteries
Jerry Prezioso and Betsy Broughton changing CTD batteries

As we left Woods Hole, we passed north of Martha’s Vineyard and I noticed a light house with an orange ladder next to it. I recalled that a friend of mine, Marty Nally, was going to be restoring this lighthouse at this time.  Right is a photo of the lighthouse with the orange ladder, Marty must be nearby! The CTD (conductivity, temperature, and depth) unit that we use can work for about 90 times before it needs a battery change. It is close to 60 stations and Jerry decided to change the batteries. He and Betsy (our new scientist on board) did this today during a calm moment.

My first plankton sample was done at around 9 p.m., and loaded with amphipods, tiny crustaceans that have little hook-like structures on their legs that make them very hard to remove from the nets.  Our midnight sample was about the same.  We were collecting at an area called Nantucket Shoals, east of Nantucket. It is shallow and has a hard bottom. I was surprised to get on deck to see at least 15 lights from fishing boats, fairly evenly spaced in a long line.  I heard that we had to change our collection site a bit due to the position of all of these boats.  I was quite tired and went to sleep at about 12:30 until 2:20 a.m. when I thought we would be at our next station.  I discovered that it would not be happening on our shift and went to sleep.  One thing about this ship, there is always noise, humming of some piece of equipment.  Headphones are very helpful in blocking it out…whether there is music, a book on tape, or just no noise.  It looks like tomorrow will be a much busier night, so I hope to stock up on some rest tonight! 

Chuck Gregory, August 21, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 21, 2007

“Nothing gives one person so much advantage over another as to remain always cool and unruffled under all circumstances.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0612h Sunset = 1947h
0000h Ship at Sandy Hook, NJ anchorage
0730h Take first Dramamine
0745h Launch safety brief (Survey)
0800h Deploy Launches
1130h Take second Dramamine
TBD Commence underway checkoff; Light off Main Engine; Ship underway/anchor
1745h Retrieve launches

Tides for Sandy Hook High @ 0205h (3.8 ft.) & 1438h (4.6 ft.); Low @ 0759h (1.3 ft.) & 2122h (1.4 ft.); Currents in Sandy Hook Channel Ebb: 0548h (1.1 kts.), 1840h (1.2 kts.); Flood: 1149h (1.7 kts.) & 0018h (1.0 kts.); weather from Sandy Hook to Fire Island AM: E winds 10-15 kts., seas 4-6 ft., PM: NE winds 10-15 kts., seas 4-6 feet. AM/PM Showers & Drizzle.

One of the life rings on the TJ
One of the life rings on the TJ

As expected, we were greeted this morning with more wind and rain.  For now the launches are delayed two hours, but, from the looks of the sea, we’re assuming they will be canceled. While waiting for the final word I responded to a few e-mails.  My TAS log is up on the NOAA TAS website, and the pictures Eric and I sent look great thanks to Liz McMahon in the TAS office. At 0945h we heard that launch operations were canceled for the day.  So, I went down to exercise and found the room “crowded” – two others were using the equipment.  Since the stationary bike was in use I spent 20 minutes on the elliptical.

Since I have the time, I’d like to add a little note about life at sea and working on a NOAA ship. Many of the crew I spoke with love their jobs, but cite distance from home as the #1 downer of their NOAA job.  I can see why.  Phone calls and e-mails at the only real contact points with loved ones.  And if you think the dial up internet connection is slow, try sending a snail mail letter when the ship won’t be able to deliver your note to the post office for days. It takes the right attitude to stay on the ship for weeks, and you do need to keep your mind and body busy.  Like anything else, the work is hard but the rewards are great! Each night, when I go out on deck to phone Roxann, it’s common to see four or five crew members at some corner of the main deck phoning their families.  A sweet time to catch up with the folks at home, and informing the family that we are well and miss them.  I am on the THOMAS JEFFERSON for 12 days and really miss my beautiful wife.  I can’t imagine what it must be like to stay on the ship for three or four weeks!  Sometimes I wonder if even NOAA’s seasoned veterans get used to the time away?

While I’m at it, and on a lighter note, there is another item I sadly miss – a beer!  Roxann and I are so use to coming home after work and having a drink.  However, drinking aboard NOAA ships is forbidden (as it should be).  Maybe this is why some of the “boys” have a little toooo much when they go on leave. Feast or famine. So, when asked, “What is the first thing I will do when I get home?”  The answer is drink a beer. This rainy afternoon everyone on the ship went through two drills: fire & emergency (one long bell), and abandon ship (seven short bells followed by a long one). The CO and FOO coordinate these activities to keep us on our safety toes, and Bob Schwartz was filming both exercises.

For the fire & emergency drill my assignment is to muster (assemble) at the 02 Deck, port side. [That’s two floors above the main deck on the left side of the ship.] I was in my stateroom at the time and was able to grab my raincoat on my way out the door. It was a good thing as the 02 Deck was being lashed with wind and rain.  We stayed there about ten minutes – long enough for the fire team to put on their gear and respond to the mock fire. Immediately afterward, the abandon ship drill was held in the main deck hallway.  Most ship’s personal gathered with immersion (survival) suits and life jackets.  Those without suits acted as inspectors and waxed the zippers for ease of use. All in all, two good exercises.

When the drills were done we all assembled in the Mess for a debriefing – what went right and what could be improved.  Safety is paramount on a ship like the THOMAS JEFFERSON. As was stated during the debriefing, we are responsible for each other on the THOMAS JEFFERSON and we can’t rely on the local fire department to help us out.  The CO and FOO lead a brief discussion, and we soon returned to our task at hand. Dinner was ribs and duck. Good stuff. There are always potatoes or rice and a veggie to add to the meat.  And there is a salad bar for the “roughage”, plus dessert.  No one goes hungry on the THOMAS JEFFERSON.

After dinner Helen gave me a CD of four of NOAA’s sonar Power Point presentations.  While most of the sonar theory is over my head, I really wanted the cool pictures that make up most of the presentations.  I am sure to use these back at SMCC.  Thanks Helen! Another phone call to Roxann – all is well but cold at home – and I am ready to enjoy the evening. With only two plus days to go I need to be sure I have seen and experienced as much as possible. If only the weather would improve!

Tomorrow I am scheduled to be on launch 3101 – a first for me.  Good night!

Chuck Gregory, August 20, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 20, 2007

One man with courage is a majority.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0611h Sunset = 1948h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey) and take first Dramamine
0800h Deploy Launches
1145h Take second Dramamine
TBD Commence underway check-off; Light off main engine, ship underway/anchor
TBD Personnel transfer (boat TBD)
1545h Retrieve launches

Tides for Sandy Hook High @ 0116 (4.0 ft.), 1351 (4.6 ft.); Low @ 0705h (1.1 ft.) & 2014h (1.4 ft.); Currents in Sandy Hook Channel Ebb: 0447h (1.2 kts.), 1739h (1.2 kts.); Flood: 1059h (1.7 kts.) & 2324h (1.1 kts.); weather from Sandy Hook to Fire Island AM: E winds 10-15 kts., seas 3-4 ft., PM: NE winds 15-20 kts., seas 4-7 feet; AM/PM Rain.

“Captain” Chuck at the wheel of the TJ
“Captain” Chuck at the wheel of the TJ

Today is the day I drive the NOAA Ship THOMAS JEFFERSON.  I am also scheduled  to be on one of the launches. But once again the sky is gray and the sea choppy. Given what happened the previous bad weather days, I doubt if the launches will go out today.  At least the ship will head out on its housekeeping voyage – 12 miles offshore to dump the “wet” trash. For some unexplained reason, I rose early and went down to the stationary bike for 20 minutes.  Then I showered and ate. As expected, today’s launch schedule was canceled during breakfast. And tomorrow’s launch schedule doesn’t look good either.

At 0800h I could hear The CO and Ensign Guberski prepping the ship to get us underway.  Engines warming, anchor chain clanging, and hull shuddering. At 0900h I made my way to the bridge where CO Schattgen was the Deck Officer, Ensign Megan Guberski was at the “Conn”, Ensign Andrew Ostapenko was navigating, Anthony was Helmsman, Tom was changing the engine speed on command, and Electrical Engineer Eric was there just in case.

Our outgoing course to get to the shipping channel was a bit tricky, so the CO told me I would take the wheel once the ship began a straight (and safe) course.  I was very OK with that. In the mean time, I observed the dynamics of the bridge: the CO was obviously in charge, the Conn (or controlling officer) was shouting out driving orders, the helmsman would repeat the command to make sure he heard it correctly, the navigator was giving advice to the Conn and charting the course, and everyone kept their eyes open. It went something like this: CO: “We need to go a little right.” Conn: “Right five degrees rudder” Helmsman: “Right five degrees rudder, aye” And when the rudder had moved its five degrees the Helmsman would say: “Rudder five degrees right.” The Conn would reply in an acknowledging way. Then you’d hear the Conn say: “Increase to ten.” Helmsman: “Increase to ten, aye.” Followed by “Rudder at ten right.” And so on. It was another classic example of teamwork and coordination.

Ensign Megan Guberski assists in prepping the ship to get underway
Ensign Megan Guberski assists in prepping the ship to get underway

I was at the helm for about 90 minutes.  We went straight out Sandy Hook Channel, past the channel buoys, and out into the open ocean.  Anthony was watching over my shoulder the entire time, and he was a great teacher.  He let me make a few small mistakes and corrected me when my mistakes threatened to get larger.  All in all, I thought I did a pretty good job in a choppy sea with a good wind. I was relieved as helmsman at 1145h by Mark.  I quickly went down to my stateroom and took another Dramamine.  The ship was rockin’ and rollin’ and I needed a little preventative maintenance.  I am a firm believer in fixing things before they break. Lunch was great, and then I took a little nap. On our way back to New York Harbor we picked up Bob Schwartz who will be taking video footage for a new NOAA Corp recruitment video.  Never a dull moment!  He will also take a little footage of me as Teacher At Sea.

This evening I watched sunset (what little there was), called Roxann, and spent 20 minutes on the stationary bike.  I was in bed by 2130h reading a new book; “White Fang” by Jack London.

Chuck Gregory, August 19, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 19, 2007

“Our greatest happiness does not depend on the condition of life in which chance has placed us, but is always the result of a good conscience, good health, occupation, and freedom in all just pursuits.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0610h Sunset = 1950h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey)
0800h Deploy Launches
1745h Retrieve launches

Tides for Sandy Hook High @ 0031h (4.2 ft.) & 1307h (4.7 ft.); Low @ 0627h (0.8 ft.) & 1913h (1.2 ft.). Currents in Sandy Hook Channel Ebb: 0356h (1.3 kts.), 1638h (1.2 kts.); Flood: 1011h (1.8 kts.) & 2234h (1.3 kts.). Weather from Sandy Hook to Fire Island AM: NW winds 5kts., seas 1-2 ft., PM: S winds 10 kts., seas 2-3 feet.

Today’s goal: Conduct a few of those interviews. I’m not going out on the launches so I should have time to interview, do a little exercise and continue typing. The skies are overcast, but the seas are calm. I hope the calmness lasts throughout the day.

Ensign Andrew (Andy) Ostapenko on the bridge of the TJ
Ensign Andrew (Andy) Ostapenko on the bridge of the TJ

The interviews went well.  I was able to talk with CO Schattgen, my roommate Ensign Ostapenko, Senior Hydrographic Survey Technician Peter Lewit, Assistant Hydrographic Survey Technician Melody Ovard, Chief Electronics Technician Eric Thompson, and Chief Steward Dave Fare.  I’d like to do two or three more before my cruise is done. I was pretty impressed with myself when, once again, I exercised!  The exercise room is packed with a stationary bike, treadmill, free weights, and a few other pieces.  It’s never packed with users, and I was able to get right on the stationary bike for 20 minutes.  A note to anyone interested in going on a TAS cruise: take the time to exercise.  You can’t continue to eat three-plus square meals a day and not gain some serious weight.

While interviewing the CO, he again stated that tomorrow I would be able to steer the ship when we go out to sea to dump the “wet” trash.  He reviewed the equipment I would use (wheel, compass, etc.) and commands I would hear from the “Con” (or controller). He also went over my responses to the commands.  I am looking forward to this experience. Today ended with a light rain, a good dinner (turkey), and a bad movie (“Vacancy”).

Amy Pearson, August 19, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 19, 2007

Amy Pearson hosing down plankton net
Amy Pearson hosing down plankton net

Weather Data from the Bridge 
Air temp: 24.8
Water temp: 24.3
Wind direction: 200
Wind speed: 11 kts.
Sea wave height: 1-2 ft.
Visibility: 10+

Science and Technology Log 

Woke at 8 a.m., had some breakfast, and then went back to my cabin to read and sleep more.  Lunch was wonderful, including smoked salmon Sunday and some great butternut squash soup. I visited the bridge to collect some data and learned that the ship receives XM satellite radio to gain weather data.  As I was shown the Nobeltec software system along with a map that showed the currents in different locations, LT Monty Spencer remarked that sometimes he felt like he was “driving the ship with a mouse”….so much important computer-based navigation.

Opening the cod end of net to release plankton
Opening the cod end of net to release plankton

It was a busy sampling shift, with collections at about 6 p.m., 8:30 p.m., 11 p.m., 1:10 a.m., and 2:45 a.m., though the other shift workers came early and told us to go to sleep. Our first sample occurred off Delaware Bay and was loaded with lots of heavy jellies and brownish green phytoplankton. As we moved north the plankton changed. The 8:30 p.m. sample was still high in jellies and phytoplankton but had some amphipods.  The 11 p.m. sample had a small puffer fish puffed out, several worms, and amphipods.  The 1:10 a.m. sample had a worm and lots of amphipods.  The photos in this log show me hosing down the plankton within the nets, and then hosing it into a sieve which will be taken into the wet lab where the plankton will be preserved with formalin.  I saw the glow of Atlantic City from the sea—it was a long white light with a red light near the middle.

A phytoplankton sample with small pufferfish
A phytoplankton sample with small pufferfish

Life on a Research Vessel 

Working on a scientific research vessel requires adjusting to some changes from life/work on land. Basics like smaller living space, meals at designated hours, a limited area to live, are changes I have observed. Working 24 hours means shifts for all.  The scientists work from 3 a.m. to 3 p.m. and another group works from 3 p.m. to 3 a.m. The NOAA officers on the bridge work 4 hours on, 8 hours off, then 4 hours on again. At night a crewmember joins the officer on the bridge, to provide a second set of eyes.  I was amazed to find the bridge dark at night with the exception of the instruments.  This allows them to see what’s on the water clearly. The engineers work similar hours: 4 hours on, 8 hours off. The crew works 12 hours on, 12 hours off, from 12 to 12.  The wiper works a day shift beginning about 6 a.m., for about 8 hours. The chief steward (head chef) and second cook work over 12 hours, as breakfast begins at 6 a.m. and dinner ends at 6:20 p.m.

Amy takes a spin on the stationary bike
Amy takes a spin

Then there is clean up. Because someone is always off shift, one must be quiet so as not to wake up those sleeping. If you share a room with someone who is sleeping, you are not supposed to go into the room when they are sleeping. Free time can be spent sending email, on deck (there are some chairs), in the galley, or in your room if no one is sleeping. The galley has satellite TV at one end and a big screen at the other where movies can be watched.  The ship receives about 20 new movies per month that rotate among ships. ENS Claire Surrey has the responsibility of updating a movie list. There are also many other movies that stay on the ship. There is also an exercise bike and some free weights for those interested in this form of exercise. 

Chuck Gregory, August 18, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 18, 2007

It takes time to persuade men to do even what is for their own good.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0609h Sunset = 1951h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey)
0800h Deploy Launches
1745h Retrieve launches

Tides for Sandy Hook Low @ 0554h (0.6 ft.) & 1825h (1.0 ft.); High @ 1225h (4.8 ft.) & 0031h (4.2 ft.). Currents in Sandy Hook Channel Ebb: 0314h (1.4 kts.), 1546h (1.3 kts.); Flood: 0925h (1.8 kts.) & 2146h (1.4 kts.). Weather from Sandy Hook to Fire Island AM: NW winds 15-20 kts., seas 3-5 ft., PM: NW winds 5-10 kts., seas 2 feet.

One of the jobs on the ship is coxswain, or “cox'n.”  Here, Cox’n Pooser drives a launch.
One of the jobs on the ship is coxswain, or “cox’n.” Here, Cox’n Pooser drives a launch.

Today is Saturday, but on the ship it’s difficult to tell the work week from the weekend.  Just like the previous five days, the launches are scheduled to go out, the data is scheduled to come in, and there is work to be done around the ship.  For now deploying the launches has been put on hold until the sea calms down.  It’s a windy morning, but crystal clear, cool and beautiful.

My one goal today is simple – do laundry!  The laundry and exercise rooms are at the bottom of the stairway I use to access my stateroom: laundry to the left and exercise to the right. The laundry room is well equipped with two washing machines and two dryers, soap, bleach and softener. And it is all free!  I was able to do two loads, read some side scan sonar material and use the stationary bike at the same time.  [A Teacher At Sea of many talents!].  Peter loaned me a good book on the basics of side scan sonar.  Its citation is: Fish, J.P. and H.A. Carr. 1990. “Sound Underwater Images: A guide to the generation and interpretation of side scan sonar data.”  Lower Cape Publishing, Orleans, MA. I am particularly interested in learning about the history and development of side scan sonar, its applications, and how to interpret the many images we are producing from the launches. In addition, I hope to use some of this information when I write up my lessons for my Teacher At Sea Internship.  So I read a few chapters of this book and took several pages of notes.

Chris, the FOO (Field Operations Officer) & Eric, the Chief Electronics Technician
Chris, the FOO (Field Operations Officer) & Eric, the Chief Electronics Technician

While I was eating lunch I learned that today’s launches will not be going out.  The wind is still strong and the seas to rough to risk deploying the launches.  And a choppy sea can result in poor data when the launches heave, pitch and roll.  [I won’t even get into the sea sickness issue.] Also, today the CO gave me a copy of one of NOAA’s latest publications: Stanitski, D.M., 2007.  “Teacher at Sea: Mrs. Armwood’s Hydrographic Adventure on the NOAA Ship FAIRWEATHER.”  NOAA publication.  It’s a cute but accurate account of Linda Armwood’s trip to Alaska and her TAS internship work on the hydrographic survey.  At the time, Linda was a high school teacher from Richmond, Virginia. I can’t wait to read it!

As previously mentioned, one part of my internship assignment is coming up with 6-8 lessons that correspond with the science and research being done on the NOAA Ship THOMAS JEFFERSON. I am having a little trouble with this assignment because I have never written “lessons”.  As a community college teacher I have written lectures, labs, assignments, etc., but not lessons.  After looking over a few examples in the “Teacher At Sea” book, and some sent me from TAS Deputy Program Manager Elizabeth McMahon, I am going to assume that a “lesson” is similar to an “assignment” and work from there.  Goodness knows I have been exposed to enough interesting information to produce 6-8 assignments.  And I have 90 days to submit them after my cruise.

Another part of my internship is to do a few interviews of the ship’s crew.  I thought I’d interview at least one representative from each working group of ship personnel: an Executive Officer, a Junior Officer, a Survey Technician, a Deck Hand, someone  working in the Mess Hall, an Engineer, and the Electronics Technician.  Here are the questions I have so far:

  1.  Name and rank (or job title).
  2.  How long have you been working for NOAA?
  3.  What did you do prior to working for NOAA?
  4.  Describe your college education.
  5.  How did you “find” your NOAA position?
  6.  Describe your job on board the NOAA Ship THOMAS JEFFERSON.
  7.  What is the best part of your job?
  8.  What is the worse part of your job?
  9.  Immediately after my Teacher At Sea Internship I plan to turn my experience into a Hollywood blockbuster. What person do you want to act as you in this movie?

Well, I’ve got some side scan sonar notes to type, dinner to eat, and Roxann to call. Maybe I’ll even spend a little more time on the exercise bike and catch tonight’s movie “Disturbia”. Good night! 

Amy Pearson, August 18, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 18, 2007

Chief Steward, Jonathan Rockwell, and CO of the DELAWARE II, Jeff Taylor
Chief Steward, Jonathan Rockwell, and CO of the DELAWARE II, Jeff Taylor

Weather Data from the Bridge 
Air temp: 24.1
Water temp:  26.4
Wind direction:  030
Wind speed:  12 kts.
Sea wave height: 3 ft.
Visibility: 10+

Science and Technology Log 

What a beautiful day. Humidity is gone and there is a nice breeze, bright sun and 2-3 ft seas.  Up at 7 a.m. just in time for breakfast of blueberry pancakes, bacon and an egg sandwich. Email checked and data collection for logs happened. I went to the bridge and interviewed the Commanding Officer (CO) Jeff Taylor and the ship’s navigator, Ensign Claire Surrey. I also interviewed and taped Patrick Bergin, the ship’s electronic technician. Information from them will be in another log entry.  We also observed a large pod of bottlenose dolphins (at least 25) swim with the boat for a short time in the morning. A smaller group with larger individuals came by around 3:30 p.m.  I did get some video of the first group—very beautiful creatures.

Ensign Clair Surrey at the bridge
Ensign Clair Surrey at the bridge

After lunch I sent my first four logs to the NOAA office in Maryland. We do not have Internet access here, just email access on 3 computers.  This all went quite smoothly.  My evening watch begins with a sampling at about 6 p.m., another at about 9 p.m. and one more at approximately 12:20 a.m. During the evening we headed inshore, the ocean depth decreased, and flies were annoying us on deck. Contents of the plankton tows have increased in volume with more jelly-like creatures, such as Salps.  We observe more ships in the area. Learning about NOAA’ s mission and how this ship fits into the mission took place today. The organization NOAA falls under the auspices of the Department of Commerce (DOC). It used to be under the Dept. of Interior.  NOAA’s many divisions support the mission of DOC. The organization has just 299 NOAA Corps officers, a congressionally approved maximum. All others who work for NOAA (99% of workers) are civilian marine workers employed by the government.  They include scientists, crew, who are called wage mariners, and the many support staff who work for these people. To become a NOAA Corps officer, one must apply and compete with many worthy candidates.

LT Monty Spencer at the bridge
LT Monty Spencer at the bridge

The maximum age to apply is forty-two years old. One must have a bachelor’s degree in an area of science or engineering with two semesters of both calculus and physics. Upon being accepted, one would begin with a sixteen-week training program at the Merchant Marine Academy in Kings Point, N.Y.  Then the individual would receive their first sea assignment that would last two to three years.  Following this, a three-year land based assignment would happen. For both of these assignments the officers can submit a rank of requests for location. After twenty years, they may retire with a pension. On this cruise there are four NOAA Corps officers: LT Jeff Taylor, the acting Commanding Officer, LT Monty Spencer, the Executive Officer, ENS Francisco Fuenmayor, operations officer, and ENS Claire Surrey, navigation officer. More information on their job descriptions will appear in another log.

Chuck Gregory, August 17, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 17, 2007

“Nothing can stop the man with the right mental attitude from achieving his goal; nothing on earth can help the man with the wrong mental attitude.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0608h Sunset = 1952h
0000h Ship at Sandy Hook, NJ anchorage
0745h Launch safety brief (Survey)
0800h Deploy Launches
1745h Retrieve launches

Tides for Sandy Hook Low @ 0523h (0.3 ft.) & 1743h (0.8 ft.); High @ 1143h (4.9 ft.) & 2347h (4.5 ft.). Currents in Sandy Hook Channel Ebb: 0235h (1.6 kts.), 1501h (1.4 kts.); Flood: 0840h (1.9 kts.) & 2058h (1.6 kts.). Weather from Sandy Hook to Fire Island AM & PM: NW winds 5-10 kts., seas 2-4 ft.

Rise and shine for me was about 0630h, but the stateroom phone rang at 0300h.  Andy was soon up and out for his 0330h watch.

Our stateroom is small, but air conditioned and cozy.  It is about 16 feet long and 8 feet wide. The bunks hold two comfortably (I’m on the bottom) and each bunk has a curtain to keep the light out and the sound low. There’s a light above each bunk and a small shelf that holds my reading material, glasses and clock.  Andy even has a porthole above his bunk. Today you can see Manhattan through the porthole.  The room has a sink with odd tasting hot and cold water. Above the sink is an empty medicine cabinet.  Two sets of drawers hold our cloths and “stuff”, and what doesn’t fit in the drawers finds a home in one of two lockers. We even have a phone, TV and a refrigerator.  Last but not least is our emergency equipment: survival suits, life jackets, and emergency escape breathing devices. (Let’s hope we never have to use them!).

As I have mentioned before, adjoining our stateroom is a shared toilet and small shower.  So far I am doing quite well remembering to lock and unlock that gal’s door.  Two Ensign Megans reside next door: Ensign Megan G. who received a Bachelor’s degree from Smith, and Ensign Megan N. who is from the great state of Maine (Lewiston) and an UMaine graduate with a degree in marine biology. My goal today is to keep going with my log and do some school work. Classes start three days after I return to Maine and there is little prep time between now and then.  In short, it should be a quiet day.

I even had time to e-mail Tom Long, our Lab Technician back at Southern Maine Community College (SMCC).  Tom keeps our equipment ‘happy’, and I asked him about our side scan sonar – make, model, etc.  It turns out we have an Imagenex SportScan and Tom would like more input on possible post-survey software.  None of the folks on the THOMAS JEFFERSON have heard of Imagenex, but they were eager to offer advice about possible software.

Here’s an exciting addition form the CO, Tod Schattgen: “[Today] the boats returned to the ship at 1545 on schedule as a rather intense thunderstorm was fast approaching from the west.  The deck and boat crews quickly stored the launches on deck as lightning began to strike closer and closer to the ship.  10 minutes later the winds picked up to 20 knots with gusts to 33 knots and a band of rain passed over the ship. Rob the deck hand got a photo of a lightning striking the water on his cell phone.”

I was down below and missed all this excitement.  Bummer!

Oh, well…After a phone call to Roxann and a little TV, I was asleep by 2215h.

Amy Pearson, August 17, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 17, 2007

A beautiful moth landed on the plankton net
A beautiful moth landed on the plankton net

Weather Data from the Bridge 
Air temp:  21.7
Water temp:  24.3
Wind direction: variable
Wind speed: variable
Sea wave height: 4kts.
Visibility: 2 nm

Science and Technology Log 

Slept till 9:30 though woke several time during the night.  Much bigger rolling than before. Had a banana and some coffee cake for breakfast, after taking a shower and putting in a load of wash. Lay down for about an hour, then moved wash to dryer, ate a little lunch, half a burger, asparagus, and a fresh baked chocolate chip cookie.  Have been working on logs and then to laundry – good news is the laundry chemicals got out most of the grease that I got on my shorts.  This is a working ship and one does get dirty!

An amazing lunch menu and the delicious food served.  Cheers to Chief Steward Jonathan Rockwell and second cook Terence Harris
An amazing lunch menu and the delicious food served. Cheers to Chief Steward Jonathan Rockwell and second cook Terence Harris

The crew said there had been some lightning this morning, and it was raining lightly at 10a.m.  Several things to record on boat life – floor is sometimes not where you think it is, hold on to railings…including the shower which does have railings.

Sample from a Bongo net with some jellyfish—a finch flew into the wet lab to check it out!
Sample from a Bongo net with some jellyfish—a finch flew into the wet lab to check it out!

Getting out of my lower bunk continues to be a challenge. I am not big but the opening requires planning to exit the bed! We have been told some rough weather is on the way for later today.  Deployment of scientific equipment is halted if seas are over 12 ft. and winds are 30 knots. Today’s first station for me was at 5 p.m.  This timing went well and we were able to eat dinner when it was served. I made some photo transfers with Kim Pratt, the other teacher, and did more log work as well as email.  Two more stations to work—I’m on deck for the later two.  Our last station was at 10:45 p.m., and I was able to sleep at about 12:00 a.m.  Very fortunate to get a good night’s sleep!  Did not notice any rough weather!

The other nice discoveries are the bright lights on deck for night sampling and rock and roll music we hear when on deck.  Lots of good oldies!

Adrienne Heim, August 16, 2007

NOAA Teacher at Sea
Adrienne Heim
Onboard NOAA Ship Albatross IV
August 7 – September 2, 2007

IMG_0478Mission: Sea Scallop Survey
Geographic Region: Northeast U.S.
Date: August 16, 2007

Science Log: Beautiful Sunsets

The best thing about working 12 hour shifts are the sunsets! Sunsets along the Atlantic Ocean have been positively beautiful.
The weather has shifted drastically while on board the ALBATRSS IV. Initially in the voyage the weather was cold, foggy, damp, and windy. The visibility was difficult, as well as, balancing myself with the continuous rocking of the vessel. Quite a feat! Recently the weather has been gorgeous: fair skies, very warm, with a rewarding breeze. My partner, Shawn McPhee, and I have developed quite a rhythm for measuring the scallops and cleaning up. We have even “graduated” to measuring many other species in order to help expedite the process and allow enough time for our Watch Chiefs to focus, more importantly, on collecting other sorts of data during each tow.
IMG_0453
IMG_0415

Chuck Gregory, August 16, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 16, 2007

The boisterous sea of liberty is never without a wave” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0607h Sunset = 1954h
0000h Ship at Sandy Hook, NJ anchorage
0700h Breakfast and first Dramamine
0745h Launch safety brief (Survey)
0800h Deploy Launches (3101 & 3102) – I will be on 3102.
1100h Time for second Dramamine
1210h Lunch
1500h Third Dramamine
1745h Retrieve launches & dinner

Tides for Sandy Hook Low @ 0450h (0.1 ft.) & 1704h (0.5 ft.); High @ 1102h (5.0 ft.) & 2306h (4.8 ft.). Currents in Sandy Hook Channel Ebb: 0158h (1.7 kts.), 1419h (1.5 kts.); Flood: 0757h (1.9 kts.) & 2013h (1.8 kts.). Weather from Sandy Hook to Fire Island AM: NE winds 5-10 kts., seas 2-4 ft.; PM: S winds 15-20 kts., seas 3-5 ft. Chance of PM showers and thunderstorms.

Chuck on board one of the hydrographic survey launches.  The launch is getting ready to be retrieved by the NOAA Ship THOMAS JEFFERSON, thus the protective gear.
Chuck on board one of the hydrographic survey launches. The launch is getting ready to be retrieved by the NOAA Ship THOMAS JEFFERSON, thus the protective gear.

Today is another 10 hour day on Launch 3102. We’ll be mostly surveying the area just off Sandy Hook beach. Sandy Hook beach is a nice stretch of sand that is half public beach and half private (read: nudist) beach.  I am sure the view of us running back and forth in front of the private beach was seen with as much curiosity as the view from #3102.

Ten hours is a long day on a 31’ launch. I was with Cox’n (Coxswain) Pooser and Survey Tech. Melody: two very competent people.  The seas were calm at first, but, as forecasted, wind and waves picked up as our day progressed.  Doing track lines on the open-ocean side of Sandy Hook only made the seas rougher, but when tracking took us into the lee of the harbor the seas calmed right down and all was good.

A little note on Dramamine.  With a history of seasickness, I made sure I had enough of this wonderful medication before I left Maine.  On days in the launch, my plan was to take one an hour before we left the ship, a second pill four hours later, and a third (if necessary) in the afternoon. Today this plan worked quite well.  At no time did I feel sea sick, even though the seas were 3-5 feet and the launch was bouncing up and down.  [Of course having an air conditioned cabin, staring at the horizon, and eating crackers is still recommended.]

Lunch was left over meatloaf sandwiches (I love left over meatloaf sandwiches!), yesterday’s beef and noodles (I love day old beef and noodles!), chips, juice, and cookies.  Needless to say, lunch was good!  It took us about 20 minutes to eat and get back to work. Our launch day ended around 1730h and we were back on the ship, as planned, by 1745h.  There was some concern with the cables used to deploy and retrieve the launches, so we were asked to use the wooded Jacob’s ladder to get back on the ship.  Actually kinda fun!

Dinner was tuna steak, beef steak, rice, and green beans.  A day working at sea in the fresh, salt air sure makes me hungry.  What’s new, Chuck!?!? I phoned Roxann, responded to a few e-mails, and decided to watch a movie and ‘veg’ for a little while before going to bed at 2130h.

Amy Pearson, August 16, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 16, 2007

Scientist Jerry Prezioso and teacher Amy Pearson in the wet lab of DELAWARE II
Scientist Jerry Prezioso and Amy Pearson in the wet lab

Weather Data from the Bridge 
Air temp: 20.0
Water temp: 20.1
Wind direction: 215
Wind speed: 11 kts.
Sea wave height: 2ft.
Visibility 10+ nm

Science and Technology Log 

Woke up after a good night’s sleep. Slept from about 3:00-10 a.m. Meals are served at certain hours so I had missed breakfast, but was able to get some cereal and coffee cake.  I worked on my logs. Lunch is pictured below, amazing food!  As the seas were reasonably calm, I decided to video-tape Chief Scientist Jerry Prezioso and teacher Kim Pratt going through their duties during a bongo net drop. This went well, and then I showed it to them.  With seas rolling, and staring at the small camera screen, I began feeling ill.

Data collection station for scientists on the DELAWARE II
Data collection station for scientists

Yes, I did become seasick, feeling really awful. I took a Bonine at about 3 p.m., then tried wrist bands about an hour later, and then went to my cabin to lie down. It got worse and yes, I lost lunch. This does make one feel a little better, though not much. I thought I’d feel better out on deck in the fresh air, which is where I stayed. I felt quite weak and unsteady on my feet.  About 6:45 p.m. I had a little water and some crackers, which tasted good. I decided I had to try a patch of scopolamine that I had brought just in case….good thing. I put it on and remained on deck, feeling weak and drowsy until the captain suggested I’d be better off in my cabin.  Scientist Joe Kane was very understanding and he took over the whole task of sampling this evening. A good sleep ensued and I woke up feeling much better.

My cabin aboard the DELAWARE II
My cabin aboard the DELAWARE II
Ensign Claire Surrey and Scientist Jerry Prezioso enjoying a delicious lunch. Bravo to the chefs!
Ensign Claire Surrey and Scientist Jerry Prezioso enjoying a delicious lunch. Bravo to the chefs!

Chuck Gregory, August 15, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 15, 2007

“Delay is preferable to error.” ~Thomas Jefferson

Here’s the Plan of the Day (POD):
Sunrise = 0606h Sunset = 1955h 0000h
Ship at Sandy Hook, NJ anchorage 0745h
Launch safety brief (Survey) 0800h
Deploy Launches (3101 & 3102) 1745h
Retrieve launches

Tides for Sandy Hook Low @ 0416h (-0.1 ft.) & 1624h (0.4 ft.); High @ 1020h (5.0 ft.) & 2225h (5.2 ft.). Currents in Sandy Hook Channel Ebb: 0120h (1.7 kts.), 1339h (1.6 kts.); Flood: 0717h (2.0 kts.) & 1930h (2.0 kts.). Weather from Sandy Hook to Fire Island AM: SW winds 10 kts., seas 2-4 ft.; PM: SW winds 10-15 kts., seas 2-4 ft.

My goal today is to improve my computer skills on the ship.  After an oatmeal breakfast I met with Eric, the ship’s Electronics Technician.  Eric was able to check out my laptop, get me a cable for the dial-up connection, and help me access NOAA charts for my Power Point Presentation. He was a huge help!

I am now able to catch up on my e-mails, surf the net, and get in touch with Teacher At Sea Coordinator, Elizabeth McMahon. Before I send out my log for day’s 1 & 2, I was asked to have Commander Schattgen (or his designee) review my material.  He was quick to read my e-mail log and add a few edits. Now it’s time so send it to Liz in Silver Spring.

The CO also added a few ideas for me to consider – being the helmsman when the ‘TJ’ heads out to sea for house keeping, observing the data acquisition and reporting process, and checking out a multibeam calibration test or patch test.  Since this is a once in a lifetime opportunity for my I ensured him I was open to anything…once! The rest of my day was spent getting all caught up with my computer work, and calling Roxann. I saw tomorrow’s POD and learned I will be once again heading out on Launch 3102 for 10 hours. The weather looks OK in the AM, but the wind and thunderstorms will pick up in the afternoon.  Now where did I put those Dramamine? I was in bed finishing up Cannery Row by 2100h.

Amy Pearson, August 15, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 15, 2007

Weather Data from the Bridge 
Air temp: 23.0
Water temp: 22.1
Wind direction: 195
Wind speed: 13 kts.
Sea wave height: 3-4 ft.
Visibility: 7nm

After dark, Amy Pearson operates the A-frame, which is used to lower the CTD and Bongo Nets.
After dark, Amy Pearson operates the A-frame, which is used to lower the CTD and Bongo Nets.

Personal Log 

Not ready to eat much food, the cook let me make some toast.  Lunch was rice and as the day progressed I felt much better.  During the day we saw a pod of dolphins, length of about 4 feet (grey upper body and light underside) riding the ship’s bow waves, some as close as 20 ft. to ship. I ate steak and tuna (also a little sushi!) for dinner with a little pasta. I rested a bit today and did some work on logs and email. Sampling occurred from 3 p.m. until 1 a.m. (3 stations – with me doing the outside work for several of them), and as the next station was at 3:45 a.m., we got to sleep at 1 a.m.

Science and Technology Log: What I have learned about ship life and some of the jobs on this ship…… 

One must work when the weather/seas are good as it’s difficult to focus or do certain tasks when the ship is rolling. The deck crew had been painting yesterday but today it was not conducive to that. Also, everyone is on a shift, with people working around the clock. Someone is always sleeping so one must be quiet when opening doors and talking near people’s cabins. There is a policy of only loud equipment use (sanders) between 9 am and 3 pm as this is when shifts change for some. The deck hands do ship maintenance (painting, some repairs) and help the scientists in their work.  The CTD/Bongo nets are dropped from wire connected to a winch.

A crewmember bringing in the CTD and Bongo Nets after sampling
A crewmember bringing in the CTD and Bongo Nets after sampling

One crew member is in charge of the winch and has radio to communicate w/ the computer person who is watching the depth of the equipment.  A second helps position the CTD/Bongo nets so they go out and away from the ship, and the when they come in, helps to get them on deck safely.  A third deck person, this being a scientist works the A-frame controller that carries the equipment away from the side of the boat for deployment.  I got to do this last night and it was a thrilling experience. When the equipment comes up, I had to pull the lever to bring the A-frame back in. It is very exciting to control this big piece of equipment.

We had some very deep sampling tonight. We went off the continental shelf for a short time with depths of over 400 meters. Here the maximum drop is 200 meters.  There was not a lot of plankton retrieved in this cast.  When we came back in to shallower water the contents of the cast did increase, with lots of amphipods and Calanus. Scientist Joe Kane said these are found in deeper colder waters this time of year.

Chuck Gregory, August 14, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 14, 2007

“For here we are not afraid to follow truth wherever it may lead.”  ~Thomas Jefferson

Happy Birthday, Dad!

Here’s the Plan of the Day (POD):
Sunrise = 0605h Sunset = 1956h 0000h
Ship at Sandy Hook, NJ anchorage 0700h
Took first Dramamine 0745h
Launch safety brief (Survey) 0800h
Deploy Launches (3101 & 3102) – I’ll be on the 3102 0830h
At first station of the day (somewhere between Coney Island, NY and Sandy Hook, NJ). Boot up computer systems and deploy multibeam. 0930h
Debug computer systems and we’re ready to track 1210h
Lunch and second Dramamine 1745h
Retrieve launches

Tides for Sandy Hook Low @ 0339h (-0.2 ft.) & 1543h (0.2 ft.); High @ 0938h (5.1 ft.) & 2145h (5.4 ft.). Currents in Sandy Hook Channel Ebb: 0041h (1.7 kts.), 1257h (1.6 kts.); Flood: 0640h (2.0 kts.) & 1851h (2.2 kts.). Weather from Sandy Hook to Fire Island AM: N winds 10-15 kts., seas 2-3 ft.; PM: S winds 5-10 kts., seas 2-3 ft.

One of the two 31 foot launches aboard the NOAA Ship THOMAS JEFFERSON.  These launches are used to do the hydrographic survey work - side scan sonar and multibeam echo sounder - in coastal areas.
One of the two 31 foot launches aboard the NOAA Ship THOMAS JEFFERSON. These launches are used to do the hydrographic survey work – side scan sonar and multibeam echo sounder – in coastal areas.

Today was a full day. After going to bed early (2030h) and rising early (0530h), I continued to bang away at my e-mails.  The internet connection on the ship is dial up and quite slow. Or is it my understanding of computers that’s slow?!?! Probably the latter. Either way, I’m finding it frustrating to communicate with the ship’s computers.  I’ll work on this tomorrow when I have the time. Breakfast was cereal and an English muffin.  Then I got ready for the 0745h safety briefing and launch deployment.  All went quite smoothly as I did my best to stay out of the way. Teamwork is huge on a vessel like the THOMAS JEFFERSON, and I was impressed by the teamwork effort to deploy and retrieve both launches. After the launch we were on our first station within 30 minutes.  We had to deal with the customary computer snafu, but it was quickly fixed and we were soon doing our tracklines.  Back and forth, east and west, forth and back, and west and east.  Bill was at the wheel, Taylor was at the computers, Megan G. assisted with both, and I just watched, asked questions, learned, and helped out wherever possible.

Chuck studying some of the side-scan sonar (SSS) data as it is relayed from the SSS 'towfish' to the launch's computer.
Chuck studying some of the side-scan sonar (SSS) data as it is relayed from the SSS ‘towfish’ to the launch’s computer.

To help matters, the day was beautiful: warm, light breeze, and subsiding seas. I couldn’t have asked for better weather. Three times during our day we stopped to do a CTD cast. They use a SBE 19Plus Seacat with a stainless cage and tethered to a line.  After two minutes of acclimating at the surface, Taylor would lower the CTD to the bottom and lift it back onto the boat. Then a computer cable was attached to the CTD, the CTD software booted up, and the data downloaded. Taylor and Megan taught me a lot about the launch computers and even let me attend to them for about an hour.  Setting up the computer programs for the SSS Fish and the MultiBeam Echo Sounder (MBES) was complicated to this novice, thus the initial delay.  There are screens to view the data as it is coming in from the side scan and another for the multibeam.  There are screens to view the files as they are filling with data, screens to view the launch’s tracks, and screens to measure heave, pitch, and roll.  And it was all fed into an on-board memory.  Wow!

The 3102 was strong, but cramped for four adults.  There were two comfortable seats on the boat – one for the coxswain and one for the survey tech – but we made the most out of every available space. Lunch was last night’s chicken made into sandwiches (not bad!), chips, chili, fruit, water, and cookies. There was other food to munch on and I found it hard not to eat with the sea air and full sun beaming down upon us.  So much for my “food plan.”  

Today I learned the importance of understanding computers, well planed navigation, and teamwork.  The tracklines were well laid out and followed.  Bill and Megan did a good job of maneuvering us around lower New York Harbor, as there were several recreational and commercial craft moving across the water.  At no time were we in any danger. The day went smoothly and there was even a time of boredom after lunch when the launch was on course, the data was streaming in, and the weather was hot and sunny. Life was good!

We returned to the THOMAS JEFFERSON at 1745h tired and starved! After a full day at sea that was one of the best meatloaf dinners I’ve ever had!!!  After dinner I returned to the ship’s computers, but continue to be frustrated as I try to get to my e-mails.  Tomorrow my sole mission is to meet with engineer Eric and tap his computer expertise.  For now I think I’ll call Roxann and go to bed early and do a little ‘Cannery Row’ reading.

Amy Pearson, August 14, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 14, 2007

Weather Data from the Bridge 
Air temp: 18.2
Water temp: 19.0
Wind direction: 160
Wind speed: 13 kts.
Sea wave height: 2 ft.
Visibility: 10+

Amy Pearson dons her survival suit during a safety drill
Amy Pearson dons her survival suit during a safety drill

Personal Log 

I got up around 7 a.m. and had some breakfast, a delicious egg sandwich on a bagel w/ bacon on the side. The ship is supposed to depart at 1 p.m., but due to some mechanical problems the time is bumped to 5:30 p.m.  Kim Pratt, an ARMADA Teacher at Sea, and I helped Jerry with organization of jars, labels, supplies and received a second lesson in CTD data acquisition from Tamara.  We had time to squeeze in another walk through Woods Hole, a great village, devoted to marine science study.  The town is perfectly developed for working with the sea—many places for boats to tie up, great research facilities (MBL, WHOI, and National Marine Fisheries with NOAA), and just the right amount of shops and restaurants.

We departed Woods Hole at 5:45 p.m.  It was very exciting to pull away from the dock.  We looked back at a village devoted to science and saw the majestic Knorr that had just arrived yesterday and is tied up at the WHOI dock.  We had drills to insure all are prepared for fires, abandoning ship, and man overboard.  The photo shows me in a survival suit (nicknamed a Gumby suit) that we had to bring to deck in the event of having to abandon ship. We also had to bring along a long-sleeve shirt, hat and blanket, and were assigned life rafts. We headed out passing Martha’s Vineyard on our port (left) side and the Elizabeth Islands on our starboard (right). Dinner was a pork roast in mango sauce or fish.  Great veggies. Our first station to sample was at about 10:00 p.m.

Science and Technology Log 

Lots of science to learn and experience today. One goal of this trip is to collect plankton samples at over 100 stations ranging from Cape Hatteras to the Gulf of Maine and east to Georges Bank. Some stations are offshore, over 200 miles offshore.  Others are closer to the coastline called inshore stations.  This plankton will be preserved for identification and counted at a later date.

We collected the plankton in Bongo Nets – two round metal frames (look like bongo drums) that have fine netting attached.  As we traveled slowly through the water, the nets collected plankton of a certain size, letting smaller plankton (phytoplankton) through.  We are collecting large zooplankton (animal-like creatures-many crustaceans) and ichthyoplankton (fish larva).

As we head south from Woods Hole we will start doing offshore stations as the weather is good and if it deteriorates, we will move in-shore.  For our first sample, my job was to man the computer, recording the data collected.  At this station, there were 3 monitors to watch, one that has basic navigational info such as latitude, longitude, water and air temperatures, wind speed and direction, depth and more.  The other monitor has the software that I am to input data on the cast.  A third showed real time views of the stern deck where the scientific equipment was being deployed.  Here I watched what was happening on deck and communicated with the winch operator who was lowering the equipment.

Another role here is to monitor the depth of the scientific equipment being lowered.  Besides the Bongo Nets, a CTD is lowered. There is also a large lead weight at the end of this equipment to make it go down.  The CTD unit (costing about $14,000) collects data on Conductivity, Depth, and Temperature.  The conductivity reading produces data for ocean salinity. If this scientific equipment hits bottom it may be destroyed so I had to watch the depth reading to insure safety for the equipment.  Based on the depth of the ocean, I check a chart to determine the rate of output wire release and input wire return, telling this to the winch operator.

All of this data is recorded on paper logs and the computer.  Once the plankton is brought to the surface, the cod end of the net (tied end) is opened and the plankton is washed out of the net into a sieve that retains this plankton.  This is then rinsed into a collection jar and formalin is added to preserve this.  Labels are marked to identify its station location.  All of this takes about thirty to forty minutes depending on the depth of the cast.

Amy Pearson, August 13, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 13, 2007

Amy Pearson helping Chief Scientist Jerry Prezioso load equipment onto  DELAWARE II
Amy Pearson helping Chief Scientist Jerry Prezioso load equipment onto DELAWARE II

Science and Technology Log 

DAY 1 – Onboard, pre-cruise work Woods Hole, MA.

Arrived in Woods Hole at 11:45 to an overcast, humid day. Upper 70’s.  Felt privileged to be able to drive into a shipside parking lot. There he and Kim Pratt, another teacher on our cruise, helped me load my gear onto the ship. Everyone was friendly, and I was shown my room – meant for 4 w/ 2 bunk beds. Great to feel the air-conditioning!!! All to myself, how wonderful, and its own bath, a shower and head in one room, sink in the room w/ the bunks.  Under the bunks were latched drawers, four in total. There were also four hanging lockers, which I filled w/ hanging stuff, shoes and was able to place things on the top shelf. Assorted activities included lunch in the galley- delicious choice of crab cakes (my choice-awesome), rice, asparagus, creamy pot-onion soup and fresh green salad.  Bravo to John the Chief Steward. In the galley there is a fridge w/ milk, juice, and a freezer w/ ice cream plus snacks and sandwich supplies for those who work at times that cause them to miss a meal.

Teachers Amy Pearson and Kim Pratt during their first evening on DELAWARE II
Teachers Amy Pearson and Kim Pratt during
their first evening on DELAWARE II

On to unloading supplies from a nearby storage area using wheeled carts.  Boxes of jars, bongos, and much more, several trips. We were introduced to Cristina who would later instruct us on CTD data collection, but as the CTD was being repaired that was moved until later in the afternoon.  We met Betsy who would be on board during the second week, saw her lab and the cool fish larva – ichthyoplankton, that she studies the stomach contents of. Met some of the crew and visited the helm to see equipment and borrow a 3-hole punch. Unpacked our stuff a little, then had lessons on CTD data collection. Free time for the rest of the evening. Time to explore the village of Woods Hole. Fish were jumping in water, seemed to be small stripers, lots of action. Tired and turned in – cannot sit up in lower bunk w/o hitting head, that’s ok. Finished unpacking as once we get moving, it may be difficult. There is a good light above my bunk for working here. I will have 3pm-3 am shift….We leave at 1 pm tomorrow, which is slack tide. The ship only goes 8 knots so the idea is to leave when the tidal flow into Woods Hole is best for departure.

Chuck Gregory, August 13, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 13, 2007

Chuck's stateroom aboard the NOAA Ship THOMAS JEFFERSON.  During his voyage, Chuck (bottom bunk) shared his stateroom with Ensign Andrew Ostapenko (top bunk).
Chuck’s stateroom aboard the ship. During his voyage, Chuck (bottom bunk) shared his stateroom with Ensign Andrew Ostapenko (top bunk).

“He who knows best knows how little he knows.” ~Thomas Jefferson

Andy’s alarm clock went off around 0600h. I was already awake but comfortable, so I didn’t get up right away. I could hear that one of the Megan’s was using the shower. The staterooms on our deck have an interesting arrangement – two guys sharing a bath (shower and toilet) with two gals (Megan & Megan). The trick is to knock first and, once the coast is clear, to enter and lock the gal’s door from the inside.  But the real trick is to remember to UNlock the gal’s door before leaving. Stay tuned…

After Andy used the shower it was my turn.  I’ve used smaller showers, but not much smaller.  The water pressure was good, and the temperature comfortable.  I am now awake!  I quickly dressed and went to the Mess Hall to catch up on some eating.  I met the CO, and a few other crew. I also met Tom who is from the NOAA office in Silver Springs, Maryland (near DC). He is on board to observe and get a better idea what the ships do to gather the data.  Breakfast was simple (I am trying to lose about 10 lbs.) – cereal, fruit and coffee – and I was off to take a few pictures before we headed out to sea.

The morning sky is clear and the day will be hot, so it’s probably a good thing we are going to be on the water. Next to us on the pier a group of visitors was getting the tour of the USS INTREPID. Manhattan and the surrounding area was enshroud in a gray haze.  It’s going to be a learning day and I have a lot to learn.  For now, I think it’s time for me to stop writing and take my Dramamine.

The Plan of the Day (Day #225) for the THOMAS JEFFERSON is as follows:
Sunrise = 0604h Sunset = 1958h 0000h
Ship moored alongside Stapleton Pier, Staten Island, NY 1100h
Ship underway 1130h
Deploy 31’ Launches (3101 & 3102) 1215h
Anchor @ Sandy Hook Anchorage 1545h
Retrieve launches

Tides for Sandy Hook Low @ 0258h (-0.2 ft.) & 1459h (0.2 ft.); High @ 0855h (5.0 ft.) & 2105h (5.6 ft.)  Currents in Sandy Hook Channel Flood: 0604h (2.0 kts.) & 1814h (2.3 kts.); Ebb: 1212h (1.6 kts.) & 0041h (1.7 kts.)  Weather from Sandy Hook to Fire Island AM: W winds 10-15 kts., seas 2-3 ft.; PM: NW winds 10 kts., seas 2 ft.

Today was a learning day as I wanted to learn more about the bathymetry instruments. The THOMAS JEFFERSON is equipped with a Klein 5000 Side Scan Sonar (aka SSS Fish).  Informative place settings dot the mess hall and I was able to learn the basics of the equipment from them:

“The side-scan sonar is NOT just like a photo of the ocean floor.  Objects get “stretched and distorted”. They need to be interpreted.”

“The SSS Fish data can be affected by: 1) tides, 2) survey speed, 3) sea conditions, 4) angle of incidence of sound waves, 5) launch (or ship) attitude (roll, yaw & heave), 6) etc.”

“When sound waves from the SSS Fish are reflected off an object a dark or “hard” return is created in the data. The object blocks the sound waves from traveling beyond it, which creates a “light colored shadow”.

“Unlike Multibeam Sonar, side-scan sonar created better images of the bottom when objects are off to the side, rather than directly beneath the instrument.”

“Side-scan sonar sends out an acoustic pulse out both sides of the vessel.  The intensity of the acoustic reflection from each side is measured for a period of time.  An image of a stripe of sea bottom is made with each pulse.”

At 1730h I met with Peter the hydrosurvey data technician and observed him downloading today’s data. Peter applied a series of corrections (heave, tide and sound velocity) to the data. This time consuming process took about two hours.  This data will be sent to NOAA’s Atlantic Hydrographic Branch (AHB) where it will be reviewed, checked, cross checked, and additional data will be added if needed (e.g., from Army Corp).  The raw data is also sent to the National Geographic Data Center in Boulder, CO where it is archived. From AHB the data is sent to NOAA’s Chart Division where it is made into the navigation charts we commonly use.  FOO and Acting XO Chris informed me I will be going on one of the launches tomorrow.  #3102 with SSS Fish and Multibeam (MBES).  I can’t wait.  I’m going to need a good night’s sleep as we’ll be on the launch for about 10 hours!  Good night!!

Chuck Gregory, August 12, 2007

NOAA Teacher at Sea
Chuck Gregory
Onboard NOAA Ship Thomas Jefferson
August 12 – 24, 2007

Mission: Hydrographic Survey
Geographical Area: New York Harbor
Date: August 12, 2007

“Determine never to be idle. No person will have occasion to complain of the want of time who never loses any. It is wonderful how much may be done if we are always doing.” 

~Thomas Jefferson

NOAA Teacher At Sea, Chuck Gregory, getting ready to leave from Portland, Maine. His destination is LaGuardia airport on Long Island, and from there, the NOAA Ship THOMAS JEFFERSON tied up to the Stapleton Pier on Staten Island.
NOAA Teacher At Sea, Chuck Gregory, getting ready to leave from Portland, Maine. His destination is LaGuardia airport on Long Island, and from there, the NOAA Ship THOMAS JEFFERSON tied up to the Stapleton Pier on Staten Island.

I left the Portland, Maine Jetport at 1:55 pm for LaGuardia on US Airways. A nice, short flight. About 1 hour later we landed on Long Island. It was a beautiful day to fly.  After a 45 minute wait for my duffel bag I grabbed a cab for the ride to Staten Island and 355 Front Street.

At 1610h – and $70 later (including tip) – we pulled up to the NOAA Ship THOMAS JEFFERSON (affectionately called the ‘TJ’). She was docked on the northern side of the Stapleton pier, hidden by the retired USS INTREPID – an “old” (commissioned by the Navy in 1943) aircraft carrier now acting as a floating sea, air and space museum.  You may remember the USS INTREPID as the aircraft carrier that got stuck in the Hudson River mud not to long ago.  No wonder, she is 872 feet long and an overall beam of almost 150 feet! And very, very gray.

In the distance, off the northern side of the pier is (from left to right) the Staten Island Ferry and piers, New Jersey, the Statue of Liberty & Ellis Island, the entrance to the Hudson River (the west side), Manhattan, the entrance to the East River (the east side), Governors Island, and Long Island (Queens & Brooklyn).  In the foreground is the Inner Harbor of New York bustling with tankers, tugs, and ferries.  Not many recreational boats in sight.

Destination - The NOAA Ship THOMAS JEFFERSON tied up at the Stapleton Pier, Staten Island, NY.
Destination – The NOAA Ship THOMAS JEFFERSON tied up at the Stapleton Pier, Staten Island, NY.

The THOMAS JEFFERSON is a member of the NOAA Fleet.  She was delivered to the Navy in 1992 and commissioned by NOAA in 2003. She is 208 feet long, 45 feet broad, and has a draft of 14ft. She can berth 36 (crew and guests), and is packed with neat equipment (multibeam sonar, side-scan sonar, two 31’ launches, an emergency launch, and more hoses, cables and gizmos than I care to mention).  She is scheduled to leave port tomorrow for 19 days.  I will be getting a ride back to shore after day 12.  The THOMAS JEFFERSON will not return to Staten Island, but head on to her home base of Norfolk, VA.

The first person I met when I crossed the gangway was Ensign Megan Guberski. She is a NOAA Corps Officer and a graduate from Smith College.  She took me down a flight of stairs to my ‘stateroom’ and introduced me to my bunkmate, Ensign Andy Ostapenko.  Andy is another NOAA Corps Officer who works on the important navigation systems.  He is from Minnesota.  He gave me a great tour of the vessel, showing me the six decks, emergency areas and equipment, various stations, bathymetry equipment, etc., etc. Boy do I have a lot to learn. Port, starboard, aft, forward, main deck, amidships, bridge, lounge, computer station, yadda, yadda!  The one term that stuck was “Mess Hall”. It is located just up the main stairway and almost above our room.  Nice location!

Andy and I chatted for about an hour and he kindly answered all of my basic questions – toilet protocol, shower, a good place on the ship to hang out, where to make cell phone calls, what we will be doing for the next 12 days, etc.  He is a really nice person and seems like a great crewmember.  I’m really interested to see him at work doing his navigation thing.  In addition to Andy, I met the Commanding Officer (CO), Commander Tod Schattgen.  Another nice person and easy to talk with. He really seems interested in the various activities occurring on the ship, but not in a controlling way.  I am sure he and I will have more opportunities to talk during the voyage.  I met the FOO (Facilities Operation Officer) and Acting XO, Chris Van Westandorp.  Chris will be my ‘supervisor’ since the regular XO, Jim Crocker, is on leave.

While in the Mess Hall I ran into Engineer Charlie.  A retired Navy person, Charlie was eager to give me the tour of the engine room area.  And what a tour it was. This may be the only time I get to tour the engine area, so I took advantage of the moment.  Engines, air conditioner, water treatment, sewage treatment, compressors, refrigeration systems, control room, workshop, etc., etc. And all compressed into a small space.  There was enough equipment (and back-up equipment) to keep that vessel going for weeks!  And that’s a good thing! Charlie was happy to show me around and give me some ear plugs for the engine room.  It was loud and I needed them!

I’m trying my best to meet everyone on the ship and chat about what they do on THOMAS JEFFERSON and how they “found” NOAA.  In general, it seems like there are two types of crew – the old ex-navy types, and the young recently-graduated types.  A nice mix of both.  Lots of experience able to teach the next generation.  One piece of bad news: I forgot the cable that connects my digital camera to my computer.  While I can take many photos I just can’t send them to NOAA until I return home.  Bummer!

Another piece of bad news: Since I was busy getting the tour of the ship and missed dinner. Not like me, but I was too interested in the ship to stop for food.  Once my initial excitement calmed down I was able to call my wife, Roxann, and have a snack before bed. After a few pages of “Cannery Row” I drifted off and slept quite well.

Elizabeth Martz, August 8, 2007

NOAA Teacher at Sea
Elizabeth Martz
Onboard NOAA Ship Albatross IV
August 5 – 16, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: August 8, 2007

Weather Data from the Bridge 
Visibility = <1 nautical miles
Cloud cover = fog
Wind direction = 200 degrees
Wind speed = 21 knots (kts.)
Sea wave height = 2-3 feet
Swell wave height = 2 feet
Seawater temperature = 15.1 degrees Celsius
Sea level pressure = 1004.2 mb

I love finding the sea scallops in the pile of all items from one dredge tow. I am having a remarkable time on the ALBATROSS IV
I love finding the sea scallops in the pile of all items from one dredge tow. I am having a remarkable time on the ALBATROSS IV

Science and Technology Log 

12:00 midnight—Today my 12 hour shifts began.  This is an amazing experience.  I am loving my time onboard the ALBATROSS IV.  It is quite exciting.  Today was outstanding. I am experiencing being a researcher at sea. The ALBATROSS IV has 12-hour shifts. The researchers are organized into two different shifts which are each 12 hours. I am on the midnight to noon shift.  It is very different than my “teacher hours”. I usually work from 7:30 to 5:00 at school. I am only required to be at school from 7:45- 3:15, but I can never accomplish all of my responsibilities in that brief of a time.  I love school and I love being prepared. To work on the ALBATROSS IV, you need to be prepared and ready for a hard day’s work! I am loving the work and at this time it is not too hard. 

My Responsibilities 

Steve is assisting with sending the dredge into the water.  It is about 2 am and we are 2 hours into our watch shift.  The dredge is over 1,600 lbs. and there are many pieces of equipment that help the dredge function properly!
Steve is assisting with sending the dredge into the water. It is about 2 am and we are 2 hours into our watch shift. The dredge is over 1,600 lbs. and there are many pieces of equipment that help the dredge function properly!

I am a working member onboard the ALBATROSS IV.  I am making every moment count and I am learning so much. The dredge haul experience is unbelievable. There are two fishermen that help to release and the dredge.  The two fishermen on my watch are Steve and Mike.  They are amazing at fixing the net, loading the dredge, releasing the dredge, retrieving the dredge, cleaning the deck, helping to sort the organisms in the  tow, and so much more.  These fishermen have the expertise of sending the dredge into the water and helping it return back after a 15-minute tow.  The Chief Boatswain (head fisherman), Tony, controls the mechanical devices that assist the fishermen in sending the dredge to sea.  Tony is so talented. He has the ability to communicate and accomplish any task onboard the ALBATROSS IV!  The fisherman and all the scientists on my watch observe the dredge coming onboard the ship. Once the dredge is on deck there is so much to do!!! When the dredge returns from being in the water for 15 minutes, there is so much to do.  First, the fishermen need to bring the dredge up on deck. There are strong metal wires that bring the dredge up on deck. There are metal pulleys that help move the wire.  There are mechanically parts that are controlled so that the dredge lands on deck without damaging anything… including the dredge. The entire process is so awesome and neat.

The scientists are all so excited to discover new things in this pile.  Every dredge tow is full of biotic (living) and abiotic (non –living) items.  It is so wonderful to discover new things.
The scientists are all so excited to discover new things in this pile. Every dredge tow is full of biotic and abiotic items. It is so wonderful to discover new things.

After the dredge is placed on deck, the fun begins. First, a scientist checks the dredge to see if it laid correctly on the ocean floor.  The equipment that records the behavior of the tow is called an inclinometer. The inclinometer is placed inside the top of the dredge and the information is recorded.  The scientist then needs to go to a different room to read the information from the inclinometer.  It is an interesting piece of scientific equipment.  The next experience is the best!!  After a quick photo of what materials are found in the dredge, all the scientists gather around the dredge materials.  We all marvel at what we dredged and then sort the items.  We place all fish in one bucket and all skates in another.  The scallops are all collected.  The scallops are even organized by size. (Very small scallops are placed in a different bucket.)  All the extra items go in a different bucket. When all biotic items have been discovered, then we shovel all the “habitat” (rocks and sand) into baskets.  Every object that lands on deck is counted and documented.

I love all the amazing things I have found from this experience

Miriam Hlawatsch, August 6-7, 2007

NOAA Teacher at Sea
Miriam Hlawatsch
Onboard NOAA Ship Nancy Foster
July 29 – August 10, 2007

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: August 6-7, 2007

The science team awoke to this notice on Monday, August 6th.
The science team awoke to this notice on Monday, August 6th.

Personal Log 

Bad news… late Sunday night the ship’s main computer, the Integrated Vessel Monitoring and Control system failed. The IVMC functions as the brain of the ship —monitoring engineering related systems such as propulsion, ship’s power, fire main, tank levels, alarms, etc. CDR James Verlaque returned NANCY FOSTER to the Ft. Macon Coast Guard Station.  We awoke to find the mission on hold—so, for two days; I became a Teacher in Port. At one point during our stay, NANCY FOSTER was relocated from the Coast Guard station to the state port in Morehead City. To everyone’s delight, we learned we would be underway again at 0900 hours, August 8th. As most of the scientists live nearby, they returned to their homes and jobs at the NOAA research facility in Beaufort, NC. The ship was very quiet while they were away…

CDR James Verlaque supervises as ENS Marc Weekley docks NOAA ship NANCY FOSTER in the Morehead City port.
CDR James Verlaque supervises as ENS Marc Weekley docks NOAA ship NANCY FOSTER in the Morehead City port.

Science Log 

Objective #6: Deploy and retrieve temperature sensors… 

Understanding that lionfish are tropical and their survival is dependent upon temperature, Chief Scientist Paula Whitfield continues to collect data to answer questions regarding the role temperature plays in lionfish distribution in North Carolina waters. Along the North Carolina shelf, temperature in waters deeper than 90 feet are moderated year round by the warm Gulf Stream current. Data collected from surveys on this research cruise suggest lionfish are not found in high numbers in water shallower than 90 feet. Laboratory studies have revealed lionfish will not tolerate temperatures below 11ºC (52ºF) and it appears they stop eating at temperatures below 16ºC (61ºF). Lionfish will die at 10ºC (50ºF). To better understand the role temperature plays in limiting lionfish distribution, temperature sensors were deployed along the seafloor to monitor seasonal bottom water temperatures. Sensors deployed during the 2006 mission were retrieved and will be analyzed. New sensors are being deployed during this mission and will be retrieved in 2008.

NOAA divers, Thor Dunmire and Roger Mays analyze air supply tanks during our stay in the Morehead City port.
NOAA divers, Thor Dunmire and Roger Mays analyze air supply tanks during our stay in the Morehead City port.
How do the warm waters of the Gulf Stream contribute to lionfish distribution along the southeastern coast of the US?
How do the warm waters of the Gulf Stream contribute to lionfish distribution along the southeastern coast of the US?
Gulf Stream winter temperature gradient for Onslow Bay, NC.
Gulf Stream winter temperature gradient for Onslow Bay, NC.
Chief Scientist Paula Whitfield
Chief Scientist Paula Whitfield

Adrienne Heim, August 7, 2007

NOAA Teacher at Sea
Adrienne Heim
Onboard NOAA Ship Albatross IV
August 7 – September 2, 2007

Woods Hole
Woods Hole

Mission: Sea Scallop Survey
Geographic Region: Northeast U.S.
Date: August 7, 2007

Weather Data

Visibility: 10 miles or more
Latitude: 68° 27.5 W
Longitude: 41° 24.7 N
Wind Speed: 6.5-7 Knots
Wind Direction: N NE
Cloud Cover: 10-20% : Stratus
Seawater Temperature: 15.5 °C
Sea Level Pressure: 1013.2mb
Sea Wave Height: 1 foot
Sea Wave Swell: 2 feet
Science and Technology Log
Downtown shops
Downtown shops

I arrived in Woods Hole, MA on Sunday August 5th, 2007. The ALBATROSS IV was scheduled to depart early Monday morning, but we were unfortunately delayed a couple of days as a result of waiting for some diesel oil and fresh water shipments to arrive. During our delay we took a tour of the NOAA Aquarium right there in Woods Hole, MA. We started to become more acquainted with some of the species we would encounter while on the survey. We set sail early Tuesday afternoon. I stood at the stern of the vessel watching the landscape fade away into the foggy mist.

Once on board and steadily sailing north bound, a few procedures and protocols were immediately rehearsed. The first procedure was a fire drill. As the alarm sounded, we quickly retrieved life jackets and a large orange tote containing a wet suit from our rooms and proceeded into the “wet lab” where we waited for the following instructions. Afterwards, an abandon ship drill was announced. The entire crew congregated at the stern of the vessel. Each individual had to rapidly unpack the survival suit from the large orange tote. We had to slip into the red immersion suits, which proved to be a bit difficult for me to maneuver. However, hopefully in the event of an actual abandon ship emergency, I would be much more successful at putting them on. They certainly provide enough protection in case of an emergency.

The harbor
The harbor

Elizabeth Martz, August 7, 2007

NOAA Teacher at Sea
Elizabeth Martz
Onboard NOAA Ship Albatross IV
August 5 – 16, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: August 7, 2007

Weather Data from the Bridge 
Visibility = <.2 nautical miles
Cloud cover = Fog
Wind direction = 185 degrees
Wind speed = 5 knots (kts.)
Sea wave height = <1 feet
Swell wave height = 2 feet
Seawater temperature = 15.2  degrees Celsius
Sea level pressure = 1013.8 mb

Science and Technology Log 

8:00 a.m.—Breakfast.  Yummy!  Breakfast is one of the best meals of the day.  Great food and selection.

9:30 a.m.—I went to the local post office!  I went to the Marine Biological Laboratory.  I viewed information on the Alvin launch in 1964.  This submersible is amazing!  It can withstand such water pressure changes. Science Rules!

11:00 a.m.—Sea Scallop research and information: Presentation by Victor Nordahl:  Chief scientist!

The dredge has an 8-ft. wide opening and a sweep chain. This opening moves across the bottom of the ocean floor collecting organisms.  The sweep chain is heavy metal that holds the opening … well… open!
The dredge has an 8-ft. wide opening and a sweep chain. This opening moves across the bottom of the ocean floor collecting organisms. The sweep chain is heavy metal that holds the opening … well… open!

The dredge has a net liner and its purpose is to keep fish and scallops in the dredge. The liner is often damaged by rocks & boulders that enter it. These 2 scientists are repairing the ripped net liner on our standard dredge. On a common dredge found on fishing boats, there is no liner. Fishermen finding scallops do not want to catch & analyze fish. They just want the scallop meats.  As scientists, we want to study everything.  The basic dredge haul provides us with lots to study.  It is 7’ wide metal rod covered with rubber disks across the bottom of the dredge.  There are dumping chains attached to the clubstick that help with the dumping of materials out of the dredge. The dredge goes out three times the water depth. For example:  If the water depth is 100 meters, the dredge will send 300 meters of metal cable out.  To calculate the distance of the dredge from the ship, you could use the Pythagorean Theorem (a^2 + b^2 = c^2.  BUT the net curves & the equation doesn’t give you the most accurate results. So, you can calculate the amount and make a estimate of the net distance from the ship.  In this example, the dredge is about 260 meters away from the ship. The dredge’s bag has an opening where all the organisms enter. The ring bag is built to hold rocks, living organisms, movement on the floor, and store many organisms for study. The dredge sometimes needs to be repaired due to weather conditions or course substrate (items found on the ocean floor).

LOOK at the dredge above. This is showing the longer top side. Try to imagine a metal opening on the other side. This opening is about 6 feet from the top of the dredge. When the dredge is in the water, the longer side is on top. The part with the opening is found underneath. The dredge runs along the bottom floor and collects the organisms.  It is amazing how many organisms you can find on the ocean floor. It is incredible how many diverse species are located in the Atlantic Ocean.

More Notes about the Dredge 

This dredge collects organisms from the ocean floor. Notice the strong metal cable and metal pulley which help to reel the dredge back onto the ship.  The roller helps move the dredge in and out of the water.  When the dredge is empty, it weighs 1600 pounds. The pulleys and metal cable help scientists bring the dredge back up on the ship’s deck!
This dredge collects organisms from the ocean floor. Notice the strong metal cable and metal pulley which help to reel the dredge back onto the ship. The roller helps move the dredge in and out of the water. When the dredge is empty, it weighs 1600 pounds.

We have 5 dredges on board the ship. When we get to the end of the Leg III, we will be conducting surveys in areas with lots of rocks and materials that will harm the dredges.  We will determine the strength of the dredges. We will be using different dredges.  We will use the standard dredge and the rock- chain dredge. The standard dredge can capture large rocks or boulders during the dredge haul. The rock-chain dredge is designed to stop large rocks from entering the dredge. With the rock-chain dredge, the scientists who analyze the findings from the dredge have fewer rocks to

Sea Scallop Survey = Goals and Information 

The Sea Scallop Survey is an important and interesting task for scientists onboard the ALBATROSS IV. Purpose of the scientific expedition of learning:

1. What is range of the scallops?  Do you find them in shallow water?  Do you find them in deep water?   Where do scallops prefer to grow and survive?  Do we find more scallops in areas of a smaller rocks, bigger boulders, or small particles of sand?

2. Scientists can estimate how many scallops we will find.  Marine biologists would like to learn more about the population of scallops in various areas.  Scientists would like to come to an understanding about where most scallops reside on the ocean floor.

3. Scientists have randomly selected stations from Cape Hatteras, NC to Georges Bank (east of Cape Cod). An area close to Nova Scotia is where scientists test to see the existence of scallops.

4. Scientists ask, “How many scallops are out there?”

5. Scientists ask, “How will the scallop population be different in the future?”

      • I ask: Why will the population be different?
      • I ask: What makes one species survive and another species not survive in an area?
      • • I ask: How can science help the scallop population increase?  Will helping the scallop population help or hurt the ecosystem? Other questions:
      • What bottom substrate is most prevalent in areas with large sea scallop harvests? (This year, the scientists found the most scallops on an area with a sandy bottom.)
      • Why is that bottom substrate a better environment for sea scallop growth? {little scallops = gravel, sand; bigger scallops orientate to areas by the current (moving water)
      • How long do sea scallops live? (10-15 years)
      • What temperature is the best for sea scallop survival? (The most important temperature is one that produces the most spawning. When more scallops are born, then more scallops survive.
  • How much do sea scallops cost to buy in the store? (about $12/pound)
  • How much do the fisherman make for spending a day at sea catching scallops that they sell to the local restaurant or buyer?
  • What topics do scientists find interesting about scallops? (Each scientist has their own ideas and opinions.)
This picture is taken right off the fantail of the ALBATROSS IV.  It is a gorgeous view of the sunrise from the back deck of the ship.
It is a gorgeous view of the sunrise from the back deck.

6. How can scientists protect fisheries (the scallops) and those who harvest them (the fishermen)?

7. Various universities, scientists, and government agencies closed water areas around Nantucket in 1994. In this area, no fishing or dredging is allowed.  All citizens must not remove anything from the area.

      • If you have a permit to fish, you need to be knowledgeable of the fishing rules.   When water areas are closed for fishing, you need to know where they are and what to do.
      • When they closed the area, the fish did not return.
      • The scallop population has greatly increased.
      • Many areas of the ocean are under a rotational management plan. (This is also called limited access areas).  In these areas of the ocean, fishermen are allowed into an area for various times.
      • Sometimes fishermen are not allowed to capture a specific type of fish.
      • There are times when fishermen cannot collect any scallops.
      • These rotational management areas are created due to research and scientific studies that are completed at sea. In other words, all the scientists onboard the ALBATROSS IV are making a difference in the regulations that fishermen adhere to.
      • Scallops are a resource. They are a biotic (living) thing. Many people spend their lives harvesting this resource from the ocean. Many people spend their lives eating this resource.  No matter who you are, you can impact the health of the water and the home to this resource. We all need to make an effort to protect our waterways and care about the resources that benefit our lives. 
This was the basic size of a tow. It is incredible how many organisms and sea scallops are found in one dredge tow. It is beautiful to see such amazing animals and species from our ocean.
This was the basic size of a tow. It is incredible how many organisms are found in one dredge tow. It is beautiful to see such amazing animals from our ocean.

8. The ALBATROSS IV has surveyed over 525 randomly- generated locations.  The ALBATROSS IV has selected over 25 basic locations to compare studies year after year. The scientists have been collecting data since 1975. (I think that is so outstanding and AWESOME!)

9. Here is a small lesson about how the stations are randomly-generated.  First, think of an area in the ocean. Then, divide that area into 100 squares.  Next divide those 100 squares into small areas.  The randomly-generated stations are determined from all those small areas.  Finally, the researchers need to decide the best way to travel to all of those randomly-generated areas.

10. The tow “what you catch” naturally changes year after year.  You will never catch all the same organisms every year.  You will discover that fish populations change for many reasons.  Here is a list of some reasons why a population may be different each year:

      • Birth rate/death rate
      • Habitat change
      • Fish movement
      • Fish maturity
      • Number of fish caught by the fishermen
      • Amount of water in the area
      • Environmental factors = salinity over time, temperature, rainfall, hurricanes, tsunamis, and more…
      • 13. Sometimes ships are retired and new ships replace them.  When a new ship surveys an area, the scientists need to make sure that the new ship’s equipment is consistent with the old equipment.  Long-term data is analyzed.  The new equipment and old equipment must keep the data valid. Many factors are taken into consideration:
  • Do ships have the same power, dredge, wire used, and same liner?
  • If the equipment is different, how can we control bias?
  • Do the ships test areas with the same water level, salinity, disease, same amount of fishermen in the area, wind, etc.?
  • There are so many factors to consider and to control!
  • A few ways to control bias and determine an average number of scallops include: = determine fish mortality: death due to being caught = natural mortality: predation/ death = don’t factor in temperature, salinity, water currents, food availability, recruitment (spawning and growing)

11. The ALBATROSS IV keeps a constant 3.8 knots speed when the dredge is out in the water. The ALBATROSS IV can reach 10- 11 knots when cruising along.  I think it is an amazing how it feels on the water.

This is a winter flounder.  It is a resource to many fisherman and scientist.  There were several types of flounder in each dredge tow.
This is a winter flounder. It is a resource to many fisherman. There were several types of flounder in each dredge tow.

12. The sea scallop study is a great arena to start an ecosystem investigation. We need to know more about other organisms to determine details about ecosystem!  Animals help and hurt each other.

13. As a scientist, you map habitat with a multibeam, tow camera, and dredge an area.  The dredge validates the information from the tow camera.  (The efficiency issue is solved.) The multibeam shows the entire habitat and determines everything there is to validate animal documented.

14. There are so many characteristics about the sea scallops.

      • Thickness of the sea scallop shell
      • Weight of the meat
      • Color of the meat
      • Shape of the shell
      • Texture of the shell
      • Weight of the shell
      • On the ALBATROSS IV, many procedures are followed for each dredge tow!
      • There is an inclinometer on the dredge.  The inclinometer will show if the dredge flipped.
      • A photo is taken right when the dredge tow is dumped on the deck.  The picture shows the station number, tow number (location), if it is open or closed area, and more. (See picture above.)
      • When sorting the tow, there are procedures to follow.  Always sort what is in front of you. By sorting all animals right in front of you, true randomness and validity of diverse sizes are discovered.  Place all fish in one bucket. Put all skates in one bucket.  Place all crabs in another (if you need to collect them.) Put all small scallops in a blue bucket.  Place all large and medium scallops in another bucket. Put all other animals in another bucket.  Place all “habitat” in an orange basket.
      • What do sea scallops eat?  Well, they eat starfish.  They eat the Asterias Boreal and Elptarstius Tenera. So neat. 

Elizabeth Martz, August 6, 2007

NOAA Teacher at Sea
Elizabeth Martz
Onboard NOAA Ship Albatross IV
August 5 – 16, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: August 6, 2007

Wood’s Hole is an amazing place of nature, water, and other environmental benefits.  Notice how many boats & people benefit from the water.
Wood’s Hole is an amazing place of nature, water, and other environmental benefits. Notice how many boats & people benefit from the water.

Science and Technology Log

7:15 a.m.—Breakfast.  I met many scientists, crew, teachers, officers, & more… details about Sea Scallop Leg III will occur at 10 am.  Awesome food for breakfast.

8:30 a.m.—Free time in the town.  I saw the countryside, the marina, & visited the town of Wood’s Hole. We had a scientist’s meeting for all watch shifts.  (I am on the 12 a.m. (midnight) -12 p.m. (noon) watch.) We discussed expectations, responsibilities, and ideas about this adventure/experience. We were informed of sexual harassment, drug possession rules, and other NOAA policies.  I clearly understood my expectations and responsibilities.  The ALBATROSS IV is 187 feet in length, 38 feet in width. The major reason that the ALBATROSS IV is out to sea is to learn more about the sea scallop population. We sample for sea scallops from Virginia to Eastern Georges Bank (off the coast of Nova Scotia). This is the Leg III of the Sea Scallop study.  We will be surveying sea scallops from Northern part of Georges Bank that borders on the Gulf of Maine to the Great South Channel east of Massachusetts.  The dredge is towed for 15 minutes at a speed of 3.8 knots.  The dredge covers about 1.0 nautical miles of ocean bottom.  A nautical mile is compared to 1.15 land mile.

Questions for the Day (I am always thinking about how my students can benefit from my experiences!)

  1. How many students in my class have been to the ocean?
  2. How many students in my class have touched an aquatic or marine organism?
  3. How many students can name 10 different aquatic organisms?
  4. How many students have been on a large ship or cruise ship?
This sea a scallop was collected during a night dredge onboard the ALBATROSS IV on 8/9/07.
This sea a scallop was collected during a night dredge onboard

Details about sorting the dredge haul:

Sea scallops are collected, measured, and weighed. This scallop is upside down. The top of a scallop is more convex (curves out) and the bottom of a scallop is more flat.  Do you see how the convex side (the top of the sea scallop) fits nicely in your hand? The white area you see is the male gonad of the sea scallop. The fleshy, white section that a customer eats is found deeper inside the sea scallop. All the diverse organisms we find in the dredge are collected in blue buckets. Each organism is sorted by type and measured individually by a researcher.  Many studies are being conducted onboard the ALBATROSS IV.  Some of the studies include: sea scallop shell analysis for age, sea scallop size analysis, sea scallop health analysis, human health when consuming sea scallops, skate analysis, populations of starfish and crabs, water characteristics are analyzed, and so much more.  The focus of the ALBATROSS IV’s voyage is to count the number of sea scallops from each dredge.  The scientists also collect fish, skates, and other unique organisms at each station.

Shawn McPhee & Adrienne Heim are measuring scallops.  Over 350 scallops were collected on one dredge haul.
Shawn McPhee & Adrienne Heim are measuring scallops. Over 350 scallops were collected on one dredge haul.

The fish include American plaice flounder, Atlantic Hagfish, fourspot flounder, goosefish, longhorn sculpin, northern sand lance, ocean pout, red hake, sea raven, windowpane flounder, winter flounder, yellowtail flounder, and more. The skates include  barndoor skate, little skate, winter skate, smooth skate, and more.  Unique organisms include octopus, squid, and lobsters. If there are more scallops than we can sort or measure, we conduct a subsample.  A subsample is when you choose a smaller amount to measure and expand by volume.

For example, if you have 10 baskets of scallops, you choose 5 to measure and your expansion is two.

  •  Orange baskets hold “habitat”. Abiotic habitat items include rocks, boulders, gravel, sand, and shells. Biotic habitat items include: brittle stars, shrimp, sand dollars, clams, and spider crabs.  All of these biotic and abiotic items are counted and documented for each station.

The number of crabs and starfish is calculated every third station. The CTD shows the details of the water column and helps determine where scallops are found.

The dredge is equipped with an inclinometer.  This equipment is a sensor that measures dredge angle relative to the bottom of the ocean floor.  The sensor has an internal clock that allows us to determine the amount of time that the dredge is on the bottom and in fishing position.

We collected this many sea scallops from one dredge.  It is outstanding how many scallops live in one area of the Atlantic Ocean.  I counted and learned details about scallops.
We collected this many sea scallops from one dredge. It is outstanding how many scallops live in one area of the Atlantic Ocean. I counted and learned details about scallops.

Good Questions for My Students 

  1. If you know the average speed (V) of the vessel during that time (T) you can calculate the distance that the dredge travelled. The students can use the equation : Distance = Velocity x Time
  2. Would you be a researcher out at sea(on the ocean)? If you had the chance to investigate the number of sea scallops in an area of the Atlantic Ocean, would you go?
  3. Why are research vessels, like the ALBATROSS IV, so important for the study of science?

ALBATROSS IV Topics of Investigation 

  1.  Sea Scallop study and investigation.
  2.  FDA sea scallop study. The FDA is dissecting and analyzing the health of the sea scallops. The sea scallop gonads and viscera are being tested for hazardous toxins: a marine biotoxin called saxitoxin.  It causes PSP:  Paralytic Shellfish Poisoning. The sea scallop is unharmed because saxitoxin is part of their diet.  The sea scallops are filter-feeders. The saxitoxin is produced by a dinoflagellate called Alexandrium Species.   Saxitoxin is a neuron toxin that affects your nervous system.  It specifically causes concerns in the nervous system where your breathing and muscle movement is controlled. If saxitoxin is consumed by a person, the affected person can be incubated (a tube is placed down your throat and air is forced into your lungs), then you will be fine.  If you do not seek medical attention, you will have major difficulty breathing and the person will have concerns with their nervous system (all other functions).  Not good!!

A Tour of the ALBATROSS IV 

There are 3 outside wet work stations, inside dry station, CTD station, Watch Chief station, and more! There is a galley, Researcher work areas, hurricane deck, computer room, Officer’s staterooms, our living quarters, exercise room, “the bridge”, and other areas that I will discover throughout the boat. There are 14 scientists onboard this vessel.  I am one of those scientists.  It has been stated that the research collected would not be possible without the help of volunteers.   Very cool. I feel like I am an important part of this journey out to sea.

Important fact:  When I am on watch:  It is so important to take everything with me! Do not go back to the room.  Be sure to have your computer, notes, change of clothes, and more. Be prepared.

All stations (randomly picked sites) give scientists about the sea scallop population and details about their survival. Victor has a map posted in the dry lab.  It is awesome.  It is really, really cool and neat.

Victor stated over and over again!!!!  ASK QUESTIONS!

Questions I Have 

  1. What is the basic sea scallop population in the Atlantic Ocean?
  2. How do the populations change from one site to another?  The distribution is relative to depth, latitude, bottom type, and temperature/ salinity!  If we go to an area more shallow we will not locate as many sea scallops.
  3. Why does the population change over several years in the same area? Recruitment is a factor. This means that baby scallops larvae will settle  in an area and they will grow.
  4. In what water depth can you find the most sea scallops?  Why?
  5. What environmental conditions are best for sea scallop survival?
  6. In what other areas of the world are sea scallops present and prevalent?
  7. What helps the sea scallops survive?

Drills 

Fire/ collision drill:  bring life vest and emergence suit; go to the wet lab and listen for announcements Abandon ship drill: 7 short sounds and one long sound ;  bring life vest, emergent suit, long sleeve shirt, long pants, and go to raft #6 Man overboard: go to lookout area and point the entire time!

This is the standard dredge used on the ALBATROSS IV. This dredge is extremely important in collecting sea scallops from the ocean.
This is the standard dredge that is extremely important in collecting sea scallops from the ocean.

Other Announcements 

Always report concerns! Be vocal when you have a problem and let’s solve it.  Please don’t keep it inside and cause you concern… share what you feel.

This Sea Scallop survey has viewed, documented, and calculated organism counts in over 500 stations. The Sea Scallop survey is analyzing information about the location of sea scallops, the growth of sea scallops, and so much more.  The Chief Scientist, Victor Nordahl, would love to use this information about sea scallops to begin more studies about the ecosystem.  He stated “The sea scallop information is an excellent start to understanding the entire make-up of the ecosystem where the scallops are found.  If we discover more about where we find the sea scallops, then we can help the sea scallops and more organisms survive.  The ALBATROSS IV may be retired soon.  The boat has experienced and investigated numerous events.  The vessel is beginning to show wear and tear.  It has equipment that shows age and needs repair. Each boat needs to stay in compliance with NOAA standards and the ALBATROSS IV continues to make repairs to keep up with those standards.

The major goal of a research vessel is to collect accurate and reliable data.  When an old ship is retired (no longer used to collect scientific information), then scientists need to compare the equipment on the old ship with the equipment on the new ship.  This is called calibration. The new ship will use information from the old ship for at least one year. The data needs to be compared and analyzed because all data is used for long-term studies. If one ship makes scientific conclusions and another ship makes conclusions that are totally different from the first ship, then the data is not valid.  The data could not be used and the scientists work would be a waste.  So, NOAA and other research companies who collect scientific data need to make sure that their research procedures are accurate and reliable.

We will actually collect information about the sea scallop population using 2 different nets. The information will be analyzed and conclusions will be calculated about the reliability of the different dredges.  The research outcomes will allow scientists to determine how the dredges and nets are different.  The scientists will calculate the differences between the equipment and make a calibration.  Neat stuff.

10:45 a.m.—Tour of Marine Biological Lab.  Bill Kramer, an information technology scientist for NOAA, gave us a tour MBL (Marine Biological Laboratory).  We learned about the marine environment and observed animals in the aquariums.

12:20 p.m.—Lunch.  Excellent selection and many healthy choices.  Great food.

1:20 p.m.-12:30 a.m.—ALBATROSS IV needs a special type of fuel/oil.  We had free time.  I explored Wood’s Hole on 8/6/06, so I took the ferry to Oak Bluff!  It was outstanding. I did get caught in an enormous rain storm, but I made it safely to Wood’s Hole. I am so honored to be a part of the NOAA crew and I look forward to my adventure! I had the chance that night to speak to many other volunteers.  We stayed up and talked all evening about our ideas and hopes for this trip.  We are all excited and motivated to be a part of the crew of the ALBATROSS IV!!

I am very enthusiastically anticipating what I am going to do and what I will learn.

  1. Will I personally collect sea scallops? I think so!
  2. Will I see other marine organisms? Whales?  Dolphins?  Fish?  Birds? I hope!!
  3. How can I share with my students what I learned from this experience? Pictures, lessons, stories, and interviews
  4. How will I organize all the information I learn so that my students have a better understanding about being a researcher?  Computer documents and more
  5. How can I document everything I see and do using my digital camera? Take 1,000 pictures
  6. How can I motivate my students to be life-long learners?   Smile and share stories of my adventures at sea!
  7. How many of my students participate in fun summer activities involving science? I do hope that many students get involved in science camps and more.  After I return, I plan to share stories and I hope this motivates them to attend science events!!
  8. Why should students want to be scientists and researchers? I think it is obvious!! Science rules!!!
  9. How will I help the marine organisms survive or how will I make a difference in the lives of others who study marine life?  Be happy!
  10. I am so excited and I am ready!

Miriam Hlawatsch, August 5, 2007

NOAA Teacher at Sea
Miriam Hlawatsch
Onboard NOAA Ship Nancy Foster
July 29 – August 10, 2007

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: August 5, 2007

Crew of the NOAA ship NANCY FOSTER deploys a small boat at a pre-marked dive site.
Crew of the NOAA ship NANCY FOSTER deploys a small boat at a pre-marked dive site.

Weather Data from the Bridge 
Visibility: 10 miles
Wind Direction: 0º
Wind Speed: 0
Sea Wave Height: 0 ft.
Swell Wave Height: 2-3 ft.
Seawater Temperature: 29ºC
Sea Level pressure: 1015.5 mb (millibars)
Cloud Cover: 0-1 oktas

Personal Log

The weather continues to be extremely favorable for dive operations and I look forward to assisting as dive tender again tomorrow morning. For the past week, I’ve observed as the NOAA divers and crew of the NANCY FOSTER work together to facilitate the study of lionfish in their watery habitat. Also, I’ve watched with great interest as the divers prepared themselves for their underwater excursions. Having purchased a wet suit in preparation for my Teacher at Sea adventure I thought I had an appreciation for these preparatory activities. Imagine my surprise when Coxswain Leslie Abramson informed me my wetsuit was too big (I couldn’t imagine squeezing into anything smaller). NOAA diver Roger Mays clarified the issue noting, tongue in cheek, that the proper fitting wetsuit should take at least five minutes to put on and the experience should hurt. Obviously there is more to diving than the wetsuit “experience,” so I asked Doug Kesling from NOAA’s Undersea Research Center (NURC) for specific information regarding diver training and specialized equipment.

A team of NOAA divers leaves the NANCY FOSTER. Small boats are used to transport the scientists and their equipment to and from the actual dive sites.
A team of NOAA divers leaves the NANCY FOSTER. Small boats are used to transport the scientists and their equipment to and from the actual dive sites.

Science Log 

Doug Kesling addressed three key components–training, equipment and dive operation procedure. All divers on the NOAA Ship NANCY FOSTER are certified to dive with standard open water SCUBA (Self Contained Underwater Breathing Apparatus) techniques. Additional training in scientific diving research methods is provided by the NOAA Diving Program and the NOAA Undersea Research Program at the University of North Carolina Wilmington. Divers use standard dive equipment that consists of dive mask, fins, snorkel, cylinder, buoyancy compensator, scuba regulator, dive computer and wet suit. Additional tools–tape measures, quadrates, goody bags, video and still photographic equipment–also must be transported by the divers to the sea floor. To conduct their underwater research, the scientists dive to depths of 100 to 120 feet. Prior to each dive, the divers fill their Scuba cylinders with an enriched air nitrox (EANx) mixture to 3500 psig. Each mix must be analyzed to ensure a safe breathing mix for the targeted depth. Compared to tanks of compressed air (21 % oxygen), the enriched mixture enables the scientists to double the amount of time they can spend underwater. In preparation for their dive, divers don wet suits and load their equipment onto the small boats. The boats are lowered from the mother ship onto pre-marked dive sites. Working in buddy teams of two or three, the divers’ underwater work times range from 25 to 30 minutes. To return to the surface divers first ascend to a depth of 20 feet. At this point they conduct a safety stop of three to five minutes to allow off gassing of nitrogen (inert gas) from the body before surfacing. Divers then surface and are recovered by the small boats.  The boats return to the mother ship where they are hoisted back on deck and off loaded.

NOAA diver Roger Mays conducts a safety stop to decompress before surfacing.
NOAA diver Roger Mays conducts a safety stop to decompress before surfacing.
Dive Team A: NOAA divers, Brian Degan, PaulaWhitfield, Doug Kesling, and Wilson Freshwater
Dive Team A: NOAA divers, Brian Degan, PaulaWhitfield, Doug Kesling, and Wilson Freshwater
Dive team B: NOAA Divers Jenny Vander Pluym, Thor Dunmire, and Roldan Muñoz (left) and Dive team C: NOAA divers Brad Teer, Roger Mays, and Tom Potts
Dive team B: NOAA Divers Jenny Vander Pluym, Thor Dunmire, and Roldan Muñoz (left) and Dive team C: NOAA divers Brad Teer, Roger Mays, and Tom Potts (right)

Elizabeth Martz, August 5, 2007

NOAA Teacher at Sea
Elizabeth Martz
Onboard NOAA Ship Albatross IV
August 5 – 16, 2007

NOAA Teacher at Sea, Elizabeth Martz, works aboard NOAA Ship ALBATROSS IV.
NOAA Teacher at Sea, Elizabeth Martz, works aboard NOAA Ship ALBATROSS IV.

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: August 5, 2007

Personal Log

12:50 p.m. I boarded the airplane at BWI for its journey to Boston, MA. This little plane handled the changes of air pressure, air currents, take off, landing, and so much more… Excellent experience. I documented my journey in the air by taking numerous pictures with my camera.   This photo shows the details of the land about 25 minutes into flight from BWI to Boston.  3:20 p.m. Bus to Wood’s Hole:  It was an experience. I loved the plane ride. I did not enjoy the bus ride. It took forever to reach Wood’s Hole.  6:30 p.m. Arrive on NOAA boat: Awesome vessel!  I discovered details about the ship’s size, location of my room, crew members, & security personnel.  I am so thankful that NOAA allowed me to stay onboard the ALBATROSS IV the night before I began my duties as a researcher. I was able to see and understand more about the life on a sea vessel.

The ALBATROSS IV is docked at Wood’s Hole preparing for its journey on the high seas.  It is an impressive ship with lots of equipment.
The ALBATROSS IV is docked at Wood’s Hole preparing for its journey on the high seas. It is an impressive ship.

Other volunteers arrived to board the ship. Adrienne, a Teacher from New York, teaches Spanish and more.  Vickery and Greg are scientists from the FDA (Food and Drug Administration) who are researching the Sea Scallops. Sean, cousin of the Chief Scientist, is heading towards a degree from the University of Maine.  We are all enthusiastically ready for this trip on board the ALBATROSS IV.

7:00- 11:50 p.m. Walked at Wood’s Hole: I am so impressed by this town (small & sweet).  I had dinner at Shucker’s Seafood Restaurant.  Yummy!  Upon returning to the boat, I talked with scientists and security about their experiences and what they love about being out at sea.

The view from the plane.
The view from the plane.

Miriam Hlawatsch, August 4, 2007

NOAA Teacher at Sea
Miriam Hlawatsch
Onboard NOAA Ship Nancy Foster
July 29 – August 10, 2007

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: August 4, 2007

On the Bridge, XO LT. Stephen Meador and CO CDR. James Verlaque plot the course for NOAA ship NANCY FOSTER.
On the Bridge, XO LT. Stephen Meador and CO CDR. James Verlaque plot the course for NOAA ship NANCY FOSTER.

Weather Data from the Bridge 
Visibility: 10 miles
Wind Direction: 215º
Wind Speed: 1 knot
Sea Wave Height: 1 ft.
Swell Wave Height: 2-3 ft.
Seawater Temperature: 28.5ºC
Sea Level pressure: 1016.0 mb (millibars)
Cloud Cover: 3-5 oktas, cumulous

Personal Log

While on the Bridge today, Commanding Officer James Verlaque allowed me a brief opportunity to steer the ship and set the course for a new dive location. Activity on the Bridge continues to fascinate me. It takes tremendous attention to detail to keep NANCY FOSTER safe in the water. It is most evident that the success of the scientific mission and the safe efficient operation of the ship are a result of the true spirit of cooperation between the crew and scientists aboard. The fact that everyone (crew and science) shares the mess during meals serves to reinforce the team approach. Certainly, it afforded me an opportunity to get to know many on an individual basis.

NOAA Officers keep NANCY FOSTER safe and on course.
NOAA Officers keep NANCY FOSTER safe and on course.

Science Log

Objective #5: Conduct multi-beam sonar transects using RV NANCY FOSTER at multiple locations.  

NANCY FOSTER is one of a fleet of research and survey vessels used by NOAA to improve our understanding of the marine environment. She is equipped with sonar technology to conduct hydrographic surveys of the sea floor. Chief Scientist Paula Whitfield explains that, for this mission, specialized multi-beam sonar technology is used to create detailed maps of potential dive areas. Habitat mapping is important because it provides specific information that will allow her to make decisions about where to send divers for sampling; otherwise, there could be a great deal of wasted effort, both in terms of time and resources. Multi-beam Bathymetric Sonar is technology that provides detailed, full-coverage mapping of the sea floor using multiple sonar beams (sound waves) in a fan-shaped pattern or swath. The ship goes back and forth in straight lines over a pre-determined area much like a lawn mower goes back and forth over the grass, making sure the entire area has been covered. In addition to habitat mapping, multi-beam hydrographic surveys have many applications such as navigation safety and civil engineering projects.

Example of a Multi-beam swath
Example of a Multi-beam swath
Multi-beam survey results
Multi-beam survey results
NOAA scientists Paula Whitfield and Brian Degan compare bottom topography for dive site selection (left) and hydrographic survey technicians Missy Partyka and Mike Stecher (left).
NOAA scientists Paula Whitfield and Brian Degan compare bottom topography for dive site selection (left) and hydrographic survey technicians Missy Partyka and Mike Stecher (left).

Methea Sapp-Cassanego, August 4, 2007

NOAA Teacher at Sea
Methea Sapp-Cassanego
Onboard NOAA Ship Delaware II
July 19 – August 8, 2007

Mission: Marine Mammal Survey
Geographical Area: New England
Date: August 4, 2007

Weather Data from Bridge 
Visibility: 5 in haze lowering 3 to 5 in showers
Wind Direction: Southwest
Wind Speed: 10-15 knt increasing to 20 knt.
Swell height: 3-5 feet building 4-6 feet

A solitary ocean sunfish basks in the sun while a shearwater skims by.
A solitary ocean sunfish basks in the sun while a shearwater skims by.

Science and Technology Log 

Rotations have been going like clock-work, although today’s sightings have again been numerous we still have not found any more right whales.  Again I’ll fill today’s blog with some species profiles of animals we’ve seen today.  By the way, the sightings list for today includes, pilot whales, minke whales, offshore bottlenose dolphins, common dolphins, white-sided dolphins, beaked dolphins and harbor porpoise.  We’ve also seen a few Mola mola which are not tallied since they are not marine mammals.

Atlantic White-sided Dolphin (Lagenorhynchus acutus) Researchers and scientists also refer to this animal as a “Lag.” Identification: At first glance the Atlantic white-sided dolphin looks very much like the common Atlantic dolphin. Its body is slightly more robust then that of the common Atlantic dolphin; its tail stock is also thicker.  The upper portions of the body are black while the lower belly and chin are white; a long horizontal grey strip bisects the upper and lower body portions. The flippers are also grey.  Max length and weight: 510 pounds and 9 feet. Diet and Feeding: Fish and squid Migration: No organized or seasonal migration Distribution: Found in cold waters of the northern North Atlantic from the Northeast United States to Northern Europe and Southern Greenland.    Special Note: Atlantic White-sided Dolphins are especially gregarious and are often seen swimming along the side of boats and bow riding.  They will also mingle and feed with fin and humpback whales. Several hundred are caught and killed each year as a source of food by the Faroese Island people.  

References 

Collins Wild Guide: Whales and Dolphins. HarperCollins Publishers, New York, New York. 2006.

Ocean Sunfish (Mola mola)

Identification: This oddly shaped fish is most easily identified when it is basking at the surface. Its large disk-like body is pale grey to white in color; lacks a true tail; both the dorsal fin and anal fin are extremely elongated so that the fish is as tall as it is long. Sunfish are solitary but may occasionally be found in pairs.

Max length and weight: Averages 5 feet 9 inches in length and 2,200 pounds.  Records exist of sunfish spanning 10.8 feet in length and weighting just over 5,000 pounds.

Diet and Feeding: Primarily seajellys but also feeds on salps, squid, crustaceans, comb jellies and zooplankton. Sunfish are pelagic and may feed at depths just shy of 2,000 feet.

Migration: No organized or seasonal migration

Distribution: Ocean sunfish are found globally in both temperate and tropical waters. Research suggests that populations of sunfish inhabiting the Atlantic and Pacific have greater genetic differences than populations in the Northern and Southern Hemispheres.

Special Note: The ocean sunfish poses no threat to humans and is commonly approached by divers. Its meat is of minimal economic importance although there seems to be an increasing popularity in sunfish cuisine and it is considered a delicacy in some parts of the world. The sunfish has few natural predators due to the thickness of its skin which can measure up to 3 inches in some places.  More often than not the sunfish encounters its greatest threat when caught in fishing gear.  Sunfish by-catch totals ~30% of the total swordfish catch off the coast of California and ~90% of the total swordfish catch in the Mediterranean.

Impressive size and startling appearance make the ocean sunfish a favorite attraction at the Monterey Bay Aquarium.  This photo is freely licensed via Wikimedia Commons and is courtesy of Fred Hsu.
Impressive size and startling appearance make the ocean sunfish a favorite attraction at the Monterey Bay Aquarium. This photo is freely licensed via Wikimedia Commons and is courtesy of Fred Hsu.

 

Elizabeth Eubanks, August 3, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: August 3, 2007

Weather Data from the Bridge taken at 1300 (5am)  
Visibility: 10+ miles
Air temperature: 18.7 degrees C
Sea Temperature at surface: 21.9 degrees C
Wind Direction: 010N
Wind Speed: 5 kts
Cloud cover: partially cloudy– stratus
Sea Level Pressure: 1014.2 MB
Sea Wave Height: 1-2 ft
Swell Wave Height: <1 ft

Science and Technology Log 

Cleaning – Cleaning – Cleaning. We fuel for 4+ hours – Amazing! We will be in port by 2pm today.

Screen shot 2013-04-18 at 7.23.31 AM

Personal Log 

Thank you, thank you, thank you. I have been honored to be selected to participate in NOAA’s Teacher at Sea program. This has been a life-changing adventure. I am wiser and have so much to share with my students and community.

A huge thanks to all of the scientist for being so nice and so helpful. I feel honored to have worked with Dr. Suzi Kohin, Dr. Russ Vetter and Dr. Jeff Graham as well as grad students Lyndsay Field, Heather Marshall, Dovi Kavec (thanks for being my on board conscience!), Noah Ben Aderet, Alfonsia “Keena” Romo-Curiel, South West Fisheries staff (including Suzi and Russ), Anne Allen (thanks for taking me to the bow chamber), Eric Lynn, Monterey Bay Aquarium staff, Ann Coleman (thanks for teaching me how to set and haul and collect data), and my roommate Leanne Laughlin from California Department of Fish and Game.  The crew has been awesome. I give you many, many thanks and wish you the best at sea. Chico – I am happy and I know it – so my face surely shows it! Jose – “any minute now” and you will catch a fish.

Peter good luck at the Maritime Academy and with the guitar.

LCDR Keith Roberts, thanks for your command. XO Kelley Stroud, thanks for your help with kids’ supplies. I am going to stop here, in case I forget someone, but please know I appreciate all of the folks on the deck, bridge, engine room (Great tour John!) and the galley (the food was amazing) so much. Thanks for your interviews – you will be famous. This trip has been amazing!

Screen shot 2013-04-18 at 7.23.46 AM

Questions of the Day 

What sounds most interesting about the adventure at sea? Would you like to go to see to study sharks? 

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis. ———Yes, you get extra credit for this. 

Miriam Hlawatsch, August 3, 2007

NOAA Teacher at Sea
Miriam Hlawatsch
Onboard NOAA Ship Nancy Foster
July 29 – August 10, 2007

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: August 3, 2007

NOAA Teacher at Sea Miriam Hlawatsch recording weather data on the Bridge of the NANCY FOSTER.
NOAA Teacher at Sea Miriam Hlawatsch recording weather data on the Bridge of the NANCY FOSTER.

Weather Data from Bridge
Visibility: 10 miles
Wind Direction: 186º
Wind Speed: 11 knots
Sea Wave Height: 1-2 ft.
Swell Wave Height: 2 ft.
Seawater Temperature: 28.6ºC
Sea Level pressure: 1017.3 mb (millibars)
Cloud Cover: 8 oktas, cumulous, cumulonimbus

Personal Log

I’ve been recording weather data for the last two days and spent three hours on the Bridge learning the responsibilities of the watch crew. When NANCY FOSTER began hydrographic multi-beaming at 1500 hours, there were several ships (tankers and small craft) in the area. The NOAA Officers on watch had to keep a careful eye on those vessels and, at times, let them know survey work was going on … so move over, please! Also, I’ve been able to watch as our dive locations were plotted on the nautical chart of Onslow Bay. Ensign Lecia Salerno explained that, as Navigation Officer, one of her duties is to update the nautical charts when NOAA informs her of changes. She must record these updates by hand as new charts are only printed every few years.

NOAA Teacher at Sea Miriam Hlawatsch attempting to read sea swells and sea wave height from the Bridge.
NOAA Teacher at Sea Miriam Hlawatsch attempting to read sea swells and sea wave height from the Bridge.

Science Log

Objective #3: Conduct cryptic/prey fish sampling using a special enclosure quadrat net. 

In order to collect cryptic (small) prey fish, NOAA scientist Dr. Roldan Muñoz sets up a special enclosure net during his dive rotation. Divers in the next rotation retrieve the net with captured specimens. Dr. Muñoz examines the catch to determine the type and number of prey fishes (what lionfish may be eating) within a square meter. Such data provides a better understanding of the habitat community.

Objective #4: Characterize and quantify habitat and macroalgae with digital still photography and specimen collections. 

Currently, not much is known about off shore Hard Bottom habitats where lionfish appear to be thriving. In order to understand the impact an outside force (i.e. lionfish) has upon a marine community, scientists must first examine the community in its original state. In other words, a baseline must be established. When Marine Phycologist Dr. D. Wilson Freshwater dives, his goal is to identify habitat characteristics and existing macroalgae. This is done via still photographs and specimen collections gathered every five meters along the transect line.

Dr. Freshwater’s photo showing seven types of algae.
Dr. Freshwater’s photo showing seven types of algae.

Back in the lab, Dr. Freshwater processes his samples for species identification and DNA analysis. He reviews the photos, creates a list of everything he sees, then uses the computer to establish the percentage of cover and frequency of occurrence for each species. A comparison of the different sites is made and, from this empirical data, an overall picture of the community structure begins to emerge.

Note: I learned the term Hard Bottom refers the rocky outcrops that cover much of the continental shelf along the southeastern US from Cape Hatteras, NC to Cape Canaveral, FL. Fish are drawn to the hard bottom outcroppings; here, they find a source of food and shelter on what is otherwise a vast sandy sea floor. It explains why recreational fishermen often seek out hard bottom areas.

Dr. D. Wilson Freshwater processing algae specimens in the lab aboard NOAA ship NANCY FOSTER.
Dr. D. Wilson Freshwater processing algae specimens in the lab aboard NOAA ship NANCY FOSTER.
NOAA scientist Dr. Roldan Muñoz counting cryptic fish collected.
NOAA scientist Dr. Roldan Muñoz counting cryptic fish collected.
Hard Bottom habitat with lionfish invader.
Hard Bottom habitat with lionfish invader.

Methea Sapp-Cassanego, August 3, 2007

NOAA Teacher at Sea
Methea Sapp-Cassanego
Onboard NOAA Ship Delaware II
July 19 – August 8, 2007

Mission: Marine Mammal Survey
Geographical Area: New England
Date: August 3, 2007

Weather Data from Bridge 
Visibility: 5 in haze lowering 3 to 5 in showers
Wind Direction: Southwest
Wind Speed: 10-15 knt increasing to 20 knt.
Swell height: 3-5 feet building 4-6 feet

Pilot whales as seen from the zodiac—note the calf in the foreground.  Photo courtesy of Brenda Rone.
Pilot whales as seen from the zodiac—note the calf in the foreground.

Science and Technology Log 

Today was another great day for sightings. Critter counts include sperm whales, white sided dolphins, a whopping 17 minke whales, a Sei whale, offshore bottle nose dolphins, a finback whale, another pod of pilot whales and 100’s of common dolphins.  At one point during my starboard observation shift, both I and my portside counterpart were calling off sightings so rapidly that the recorder was having problems keeping up with us.  We both paused for a moment and pulled away from the big eyes to look around and discover that we were surrounded by literally 100’s upon 100’s of common dolphins.  The sea was frothing with their activities; some doing aerobatics, others charging, some came to bow-ride of the ship, while other could be seen chasing large fish which were identified as yellow-fin tuna.

Researchers position themselves to rejoin the main ship.
Researchers position themselves to rejoin the ship.

In a repeat from several days ago the pilot whale sighting prompted another launch of the zodiac…only this time I got to climb down the Jacob’s ladder and go for a zodiac ride which brought me as close to pilot whale as I could ever hope to be.  We were able to procure 5 tissue samples for further genetic study along with an untold number of dorsal fin photographs. (Please see log from August 1st for further explanation of these genetic studies and photos.) My job on the zodiac was to fill out the photography data sheets which record the GPS headings, frame numbers, animal position within pod, approximate size of animal, special markings on the animal, if an attempt to biopsy the whale was made, if the shot resulted in a hit or miss….etc.  I was madly recording all this information as cameras were shooting and crossbows were firing and the whole experience whizzed past me.  I hope I didn’t forget to record anything!

An ill-fated Northern yellow warbler rests on the deck of the DELAWARE II
An ill-fated Northern yellow warbler rests on the deck of thevDELAWARE II

Aside from all the sightings (some of which have become rather common place), and my zodiac ride I really have nothing left to report for the day….except of course that the day flew by. In fact every day passes in a blink…even the foggy ones.  I suppose that’s what happens when each day is filled with something new to see and do. Before I sign off for the day I’ll leave you with two more species profiles.  One of which may surprise you!

Yellow warbler (Dendroica petechia)

There are approximately 40 subspecies of this widely distributed little bird. This bird, in particular, was most likely from the subspecies aestiva thus making it a ‘Northern’ yellow warbler.

As a true bird-lover I’ve been taking notice and taking note of every new bird I’ve seen while out at sea, and naturally all of the birds I’ve seen lately from black-backed gulls to shearwaters are suppose to be out here in the open ocean searching for fish and bobbing around in the waves while resting.  The yellow warbler however is not suppose to be here….and in fact being at sea means certain death for the delicate songbird as its food source is almost non-existent out here and it is ill-equipped to handle a lack of freshwater.  The warbler pictured above probably hitched a ride with us following our 24 hour port call in Yarmouth, Nova Scotia.  Sad to say that this warbler did in fact perish at sea despite my offerings of fresh water and bread crumbs (I was all out of their primary food which are insects!)  A second warbler and a grosbeak did however find the boat as we were coming back into harbor so we hope they were more fortunate then the first stowaway.

Common Dolphins Bow-riding off the DELAWARE II: Note the crisp crisscross markings on the dolphins’ side.
Common Dolphins Bow-riding off the DELAWARE II: Note the crisp crisscross markings on the dolphins’ side.

Identification: The yellow warbler is fairly large compared to other warblers and has an exceedingly short set of tail feathers.  Both sexes have a yellowish green head and back with yellow underbellies. Females tend to be a bit duller in color while males typically have brown streaks on the cheek and breast. Distribution: The Northern Warbler breeds from Alaska to Newfoundland and Southern Labrador, south to South Carolina and into Northern Georgia, and as far west as the Pacific Coast. It is also found periodically in the American Southwest.   Migration: Winters in the Bahamas, Northern Mexico, Peru and the Brazilian Amazon.  Diet and Habitat: In its northern and eastern distribution the warblers live in damp habitats surrounding swamps, bogs, marshes, ponds and stream or river banks.  They will also feed and nest in woodland areas, meadows, and overgrown pasture lands.  In the west and southwest the bird is restricted mainly to riparian habitats.  Unfortunately riparian habitat is rapidly decreasing in the Southwest as are the population of yellow warblers within this region.  The warbler feeds primarily on insects, but will occasionally eat berries. Listen to its song here.

Common Dolphin

Until recently both the short-beaked and long-beaked common dolphins were considered to be one species. Although much of the recent research and literature still does not differentiate between short-beaked and long-beaked, they are technically two different species.  For the purposes of our survey we also did not distinguish between the two as they are nearly identical in physical appearance.   

Short Beaked Common Dolphin and Long-beaked Common Dolphin

Identification: Very distinctive crisscross patterning on the sides; yellow/tan patches on the side, dark gray over the topside and pale underside. Light grey patch along the peduncle of the tail.

Max length and weight: 330 pounds and 9 feet. Males are just slightly larger then females

Diet and Feeding: Fish and squid

Migration: No organized or seasonal migration

Distribution:  Widely distributed throughout the Atlantic, Pacific, and Indian Oceans as well as the Black and Mediterranean Seas. Special Note: Common Dolphins are especially active and are commonly seen doing aerobatics and bow riding. They are also extremely vocal; to such a degree that their high pitched whistles and clicks may be heard above water.

References 

Collins Wild Guide: Whales and Dolphins. Harper Collins Publishers, New York, New York, 2006.

More Common Dolphins riding the bow.
More Common Dolphins riding the bow.

Elizabeth Eubanks, August 2, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: August 2, 2007

Weather Data from the Bridge 
Visibility: 10+ miles
Air temperature: 20.3 degrees C
Sea Temperature at 500 m:
Sea Temperature at surface: 19.8 degrees C
Wind Direction: 280 W
Wind Speed:  17 kts
Cloud cover: partially cloudy–alto cumulus
Sea Level Pressure: 1015.7 MB
Sea Wave Height: 1-2 ft
Swell Wave Height: 2 ft

Bow Chamber
Bow Chamber

Science and Technology Log 

The Bow Chamber! Wow! The Bow Chamber is in the bulbous bow. It is located in the very front of boat where the V hull is. Basically this area breaks up the water pressure to create less drag. The chamber is actually a little room about 20 feet down below the main deck. It has port holes/windows so you can see aquatic life. Currently the windows have a lot of algae on them so it is hard to see out of them during the day. A group of us went down after dark and we could see bioluminescent creatures zipping by. We were seeing things such as dinoflagelletes/ plankton and jelly fish. It was so beautiful to watch.

Personal Log 

Doctoral student Dovi Kacev and NOAA Teacher at Sea Elizabeth Eubanks look down into the bow chamber.
Doctoral student Dovi Kacev and NOAA Teacher at Sea Elizabeth Eubanks look down into the bow chamber.

Great day. I got up at 5:30am to watch and learn a little more about the CTD, which I wrote about yesterday. We completed our 2 final sets and I gathered goodies to bring back to school. We had the perfect ending to our last set. One of the very last hooks we pulled in possessed a huge, enormous Blue Shark. He was the biggest that we had caught so far, in length (229 cm) and girth. He gave a huge fight while in the water and even threw up a little (but thankfully not his stomach) before they got him onto the cradle. The best part of this was that the rest of the scientists could watch the people on the platform work with the shark, because the long line hauling was finished. It was truly the perfect ending to the perfect adventure.

Question of the Day 

How do bioluminescent creatures shine? 

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis. ———Yes, you get extra credit for this. 

A big Blue Shark.  Graduate student Heather Marshall holds the tail while Dr. Jeff Graham helps Dr. Suzi Kohin with the bolt cutters as Dr. Russ Vetter retains the head.
A big Blue Shark. Graduate student Heather Marshall holds the tail while Dr. Jeff Graham helps Dr. Suzi Kohin with the bolt cutters as Dr. Russ Vetter retains the head.

Susie Hill, August 2, 2007

NOAA Teacher at Sea
Susie Hill
Onboard NOAA Ship Albatross IV
July 23 – August 3, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: August 2, 2007

The “Day Crew”From Left to Right: Larry Brady (Watch Chief), Nikolai Klibansky, Jakub Kircun, Stacy Rowe (Chief Scientist), Sarah Pregracke, Claude Larson, Susie Hill, and Melissa Ellwanger
The “Day Crew”From Left to Right: Larry Brady (Watch Chief), Nikolai Klibansky, Jakub Kircun, Stacy Rowe (Chief Scientist), Sarah Pregracke, Claude Larson, Susie Hill, and Melissa Ellwanger

Weather Data from the Bridge 
Air Temperature: 18.9° C
Sea Temperature: 20.1° C
Relative Humidity: 78 %
Barometric Pressure: 1016.6 millibars
Windspeed: 3.5 knots
Water Depth: 60.6 meters
Conductivity: 43.21 mmhos
Salinity: 32.05 ppt

Science and Technology Log 

My final day aboard the NOAA ALBATROSS IV is here! I’ve had such a wonderful experience learning about the marine life at the bottom of the North Atlantic, working with the Scientist and NOAA Corp staff, and getting the real feel of what it’s like to live and have a career out at sea. I cannot wait to get back to last two weeks. As a NOAA Teacher at Sea, we get to develop curriculum based on our trip that can be used by our local schools, or in my case, a maritime and marine science themed museum, as well as could be used by teachers around the country through NOAA. I’ve got so many cool ideas brewing through my head about what I want to develop lesson plans on. Once again, I came here thinking that we’re only going to be studying scallops, but I’ve learned so much more! Thank you, NOAA!

Miriam Hlawatsch, August 2, 2007

NOAA Teacher at Sea
Miriam Hlawatsch
Onboard NOAA Ship Nancy Foster
July 29 – August 10, 2007

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: August 2, 2007

NOAA Junior Officer Emmons with NOAA Ship NANCY FOSTER in the background.
NOAA Junior Officer Emmons with NOAA Ship NANCY FOSTER in the background.

Weather Data from the Bridge
Visibility: 10 miles
Wind Direction: 060
Wind Speed: 11 knots
Sea Wave Height: 1-2 ft.
Swell Wave Height: 2 ft.
Seawater Temperature: 28.3ºC
Sea Level pressure: 1016.8 mb (millibars)
Cloud Cover: 3-5 oktas, cumulous, cumulonimbus

Personal Log

Today I served as assistant dive tender for two dive rotations. That means I stay in the small boat with the coxswain (driver) and keep track of the divers by watching their bubbles. While the divers were working below I took the opportunity to converse with NOAA Junior Officer Trey Emmons and learned a great deal about the NOAA Officer Corps. Trey received a degree in Meteorology/Marine Science from NC State, Raleigh and will serve on the NANCY FOSTER for two years. During one outing I actually put on my snorkel gear and took some underwater shots of divers ascending to the surface.

NOAA diver Brad Teer ascending to the surface.
NOAA diver Brad Teer ascending to the surface.

Science Log

Previously, I mentioned the multi-faceted nature of Paula Whitfield’s current lionfish research. Having done my homework before joining the cruise I was familiar with her lionfish work since 2004. Paula explained how her research has evolved from finding, counting and sampling lionfish for life history analysis to her current objectives that now include analysis of the native habitat community. With the aid of hydrographic surveys (mapping the sea floor) using multi-beam sonar technology, Paula hopes to expand the search area to determine lionfish distribution changes since 2000. Paula has an ambitious plan to accomplish her objectives and I will attempt to translate and provide an explanation for each. Feel free to email any questions to me at mhlawatsch@mac.com.

Objective #1: Conduct visual transect surveys to quantify lionfish and native fish populations, and characterize habitat at locations within Onslow Bay. 

Paula’s divers will count lionfish and native fishes. They will also examine and define lionfish habitats by setting up visual transect surveys at pre-selected locations within Onslow Bay. A transect survey is set up by running a tape measure for 50 meters (transect line). The divers will observe and record what they see for five meters on either side of the transect line.

Screen shot 2013-04-18 at 9.30.53 PM

Note: I always thought the term fish was both singular and plural and found myself confused to hear the scientists use the term fishes. Scientist Thor Dunmire explained that using fish was appropriate when referring to many fish of one species. However, the use of fishes applies when referring to several different species of fish.

Objective #2: Conduct video transect surveys to quantify, smaller potential prey fish populations and characterize habitat. 

Identify what lionfish may be eating by using visual observation and video cameras to record the smaller fish populations within the habitat. Video footage can be reviewed after the dive for more detailed information.

NOAA Diver Roldan Muñoz working with a transect line.
NOAA Diver Roldan Muñoz working with a transect line.

Claude Larson, August 2, 2007

NOAA Teacher at Sea
Claude Larson
Onboard NOAA Ship Albatross IV
July 23 – August 3, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: August 2, 2007

larson_log5Weather Data from the Bridge 
Air Temperature: 15.4° C
Water Temperature: 15.2° C
Relative Humidity: 96%
Wind Speed: 11 knots
Wind Direction: SW

Science and Technology Log 

Well with 202 tows behind us, the ALBATROSS IV is headed for Woods Hole. It has been a busy 10 days and the scientists and crew are tired, yet anxious for their return home to their family and friends.  Reflecting on the Sea Scallop Survey cruise, I have a new found and deep respect for the gritty science that this group does. The wealth of knowledge that the scientific team brings to the survey is extremely impressive.  The experience and skills of the crew afforded us the opportunity to conduct scientific research in a most effective manner.  The specifically designed technology that is utilized on board shows the depth and breadth of understanding that goes into a project of this undertaking. The years of work that have gone into the planning and execution of this project from its beginnings to the present, some thirty years later, are evident as each task has been streamlined for effective sample collection and data analysis.  It has truly been a hands-on experience with top notch scientific research for practical application. I feel privileged to have met and worked with the people aboard this ship.

Along with having the opportunity to learn and experience the marine science that is presented here in the North Atlantic, it has been my pleasure to meet and get to know the people on the ALBATROSS IV. In the eleventh hour of a watch when your energy resources start to dwindle, there is always someone to make you laugh, lend you a hand and help you find the fun in what would otherwise be considered arduous amounts of work. The crew, from the bridge to the engine room, has been so friendly and has shared their stories and humor throughout our time on board.  It is an experience like no other I have ever had. I am glad I took every opportunity I had to sit and talk with them and listen to their histories and future plans.

Although thanks doesn’t seem like nearly enough to say, this is one final thank you to NOAA for opportunity to sail on this cruise, to the crew for their efforts to help us a million different ways and to the scientists for all that I have learned and experienced.  I will certainly have stories to share and memories to keep for a long time.

Susie Hill, August 1, 2007

NOAA Teacher at Sea
Susie Hill
Onboard NOAA Ship Albatross IV
July 23 – August 3, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: August 1, 2007

Weather Data from the Bridge 
Air Temperature: 16.4° C
Sea Temperature: 18.1° C
Relative Humidity: 100%
Barometric Pressure: 1012.8 millibars
Windspeed: 2.70 knots
Water Depth: 83.3 meters
Conductivity: 42.72 mmhos
Salinity: 32.03 ppt

Chris Daniels, Operations Officer, and Kurt Zegowitz, Executive Officer, on the bridge sailing the NOAA ALBATROSS IV
Chris Daniels, Operations Officer, and Kurt Zegowitz, Executive Officer, on the bridge sailing the NOAA ALBATROSS IV

This morning was awesome! We’re heading our way into Canada and we see whales! There were about 4 of them scattered around the ship. Unfortunately, they were too far away from the ship to get good pictures. We think they were humpback or fin whales by seeing the fluke (or tail fin) and the way they arched their back.  The best place to get a great view of the wide ocean or see the big marine life is the bow, or front of the ship. The bridge is also up there. This is the command center where the ship’s officers sail the ship. There are six NOAA Corps officers aboard the ship including Commanding Officer (CO), Steve Wagner, and Executive Officer (XO), LCDR Kurt Zegowitz. Kurt has many responsibilities as XO including sailing the ship (of course), supervising the four Junior Officers, managing the ship’s budget, being the ship’s Safety Officer, being the Dive Master, and serving as Acting CO if Steve is unavailable to sail. Formerly known as the U.S. Coast and Geodetic Survey Corps before 1970, the NOAA Corps is recognized as one of the seven uniformed services of the United States. The officers manage the vessel and work together with the scientists to ensure that the scientific missions of each ship are accomplished. 

Elizabeth Eubanks, August 1, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: August 1, 2007

Weather Data from the Bridge  
Visibility: 10 miles
Air temperature: 17.4.0 degrees C
Sea Temperature at 500 m: 4 degrees C
Sea Temperature at surface: 15.2 degrees C
Wind Direction: 300 W
Wind Speed:  13 kts
Cloud cover: cloudy–stratus
Sea Level Pressure: 1014.7 MB
Sea Wave Height: 1-2 ft
Swell Wave Height: 3-4 ft

Science and Technology Log 

Make use of all or your resources! Yes, this ship is charted to study sharks, but as mentioned previously there are many other research projects going on. Dr. Russ Vetter and Eric Lynn are administering a CTD apparatus twice daily in the proximity of where the long lines are set: every night at 2000 (8pm) and every morning at 0500 (5am). CTD stands for Conductivity, Temperature and Depth. This machine costs approximately $15,000 and helps give scientist data to evaluate. The apparatus is dropped from a J Frame, a crane-like structure, from the ship into the ocean, while being guided by E. Lynn and R. Vetter who are strapped to the ship. See photos above and below. The apparatus contains two bottles, similar to a large thermos. Both bottles are open all the way down, depending at what depth the CTD drops to. On this trip it has ranged between 250m and 1,000m down. Once it gets to its destination the scientist pushes a button on their computer that is connected to the bottles and tells them to fire. This action shuts the bottles trapping water samples inside. One bottle is used for maximum depth water collection and the other is used for water sample collections at 10m. They have boxes filled with water samples that will be taken back to San Diego for testing by other scientists.

NOAA scientists, Eric Lynn and Dr. Russ Vetter prepare to lower the CTD. Notice the green cylinders on the left side of the CTD – they are bottles for water samples.
NOAA scientists, Eric Lynn and Dr. Russ Vetter prepare to lower the CTD. Notice the green cylinders on the left side of the CTD – they are bottles for water samples.

There are many other structures on the CTD that measure, salinity, temperature, depth, oxygen levels and fluorescence. Fluorescence measures how much chlorophyll is in the ocean and can be compared to the oxygen levels. Chemical Scientists who work for NOAA have put CO2 detection equipment on board many of the NOAA ships including the NOAA ship DAVID STARR JORDAN. The scientists do not travel with the ship, but come and check the data quite often. Global warming and CO2 levels in the atmosphere have been a hot topic. Many, many years ago when scientists were determining what to do with all the extra CO2, they had thought about pumping into the ocean. Thinking has changed a lot since then. Now scientists realize that the extra CO2 in the ocean is just as detrimental to the ocean as it is to the atmosphere. We’re all connected, we’re all affected. 

A very simple way to think about this is to think of the age-old science experiment of when you put a tooth in a bottle of soda and after a short time the tooth dissolves.  When CO2 is added to ocean water it creates a carbonic acid. Our bones are made of the mineral calcium (Ca) which keeps them hard and allows them to support our bodies.  Sea creatures that have bones or a shell count on Ca as well. Can you imagine what would happen to a clam that didn’t have enough Ca to make a shell? Or could you imagine a clam that had a shell and the acidic ocean water ate it up? These are things we need to imagine. Because of the increase in CO2, our average ocean Ph has dropped from ~ 8.1 down to 7.8, thus making the ocean more acidic. What I write here is only a first stepping stone to so many various things that are occurring with an increase of CO 2 levels on our planet.

The CTD being lowered from the J Frame on the NOAA ship DAVID STARR JORDAN
The CTD being lowered from the J Frame on the NOAA ship DAVID STARR JORDAN

Personal Log 

I can recall sitting in my classroom sometime in March or April. Maggie, a student, was in the room and it was well over an hour after school. I checked my email as I do routinely and there it was, the long awaited message from NOAA. I was a little nervous opening it, but did rather quickly. I was so excited to find out that I had been chosen to participate and immediately shared the news with Maggie, Rob and Dr. Finely the principal of my school. Anticipation filled my life until I got my assignment which was to board the NOAA Ship ALBATROSS IV in July, out of Woodshole, Mass to do a sea scallop survey. Of course I started reading all of the logs teachers had written. I prepared myself for working 12-hour shifts and measuring scallops. In May, when the staff at NOAA realized I would be in San Diego and that there was an opening on the NOAA Ship DAVID STARR JORDAN, they called and asked if I wanted to work with sharks.

It only took me 24 hours to accept that position and then I had new logs to read and new things to anticipate. I was extremely excited and equally as nervous. Would I get sick? Would people be nice? Would I feel safe and comfortable? Would I like the jobs I needed to do? Was I capable of doing the jobs? Oh no – I am not so great with the metric system, will people think I am stupid if I have to think and research before making a conversion? How much will I miss Rob? Will I like boat life? Then my questions even got more specific. Will have enough food? Which snacks should I bring? What does closed-toed shoes mean– can I wear Keens? Do I bring a towel? How many hobby supplies or books should I bring? How many girls will be there? Do we have to share a room with a guy (really I didn’t know)? You can imagine all of the questions I had and they didn’t stop until I had spent 24 hours on the ship and then I understood.

Here I am 11 days into this amazing adventure that has far surpassed anything I imagined. I have 2 more nights to get a giant “rock” (from the ocean waves) to sleep and 3 days to live on the Pacific Ocean. We only have 2.5 sets left to do.  Amazing. – I am going to enjoy every bit – starting right now – I am going to enjoy some of the great folks on board.  

Question of the Day 

What are some things YOU can do to further prevent the ocean from becoming more acidic?

What is a terapod?

What are some things that you anticipate about the upcoming school year?

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis. ———Yes, you get extra credit for this.  

Miriam Hlawatsch, July 29, 2007

NOAA Teacher at Sea
Miriam Hlawatsch
Onboard NOAA Ship Nancy Foster
July 29 – August 10, 2007

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: July 29 – August 1, 2007

NOAA Teacher at Sea, Miriam Hlawatsch, dons a survival suit
NOAA Teacher at Sea, Miriam Hlawatsch, dons a survival suit

Day 0

Personal Log

I report to the NANCY FOSTER a day early and find all is quiet. Tim Olsen, Chief Engineer and Lt. Sarah Mrozek, Officer of Operations were the first to greet me. Sarah and Tim help me to my stateroom where I stow my gear and settle in for my adventure. Later in the evening I meet several other shipmates, including Lt. Stephen Meador, the ship’s Executive Officer, or XO.

Day 1

Personal Log

I’m awake and dressed by 0600 hours. The ship is still quiet but not for long. The scientists come aboard early and we are underway by 0930 hours. At 1000 hours, Chief Scientist, Paula Whitfield, conducts a science briefing for the eleven-scientists/research divers involved in the lionfish mission. Additionally, Lt. Sarah Mrozek, Operations Officer and Lt. Stephen Meador, XO, brief the scientists on ship procedures and safety. During the Abandon Ship drill everyone aboard must put on a survival suit. The suits are all the same size and it was quite comical to see me, at 5 ft, wearing the same suit as someone who is 6’2” tall.  After lunch the NANCY FOSTER reaches the first dive site located in Onslow Bay, approximately 19 nautical miles, S/SE of the Beaufort Inlet. It’s exciting to watch the divers ready themselves and deploy to sea.

Divers from the NANCY FOSTER ready themselves for the first dive of the mission.
Divers from the NANCY FOSTER ready themselves for the first dive of the mission.

Day 2

Personal Log 

I thought I had the seasick thing beat because I wore the anti-seasick wristbands my student, Troy Wilkens, gave me. Unfortunately, at about 1800 hours, I became sick while discussing the mission with Paula. On her advice I took some medication and went to bed. I did not find my “sea legs” until this evening at about 1900 hours. Apparently, sleep is the best remedy but I lost most of the day. I feel well enough to begin my work so I spend what is left of the evening viewing underwater video shot during today’s dives. Divers today visited two sites at 210 Rock, 27 miles almost due south of Beaufort Inlet.

Day 3

Divers take a small boat to the dive site.
Divers take a small boat to the dive site.

Personal Log

While discussing the mission with Paula I realize that, unlike similar missions in the past, her 2007 research is multi-faceted. I will elaborate on the facets when I better understand how they all relate. At the moment I am feeling a bit overwhelmed…  Today’s dive site is located 24 nautical miles S/SE of Beaufort Inlet.

Scientific Log: What are Lionfish? 

Common name:  Lionfish, Red lionfish, and turkey fish. Scientific Name: Pterois volitans (Pisces: Scorpaenidae). Lionfish are identified by their distinctive red, maroon and white stripes; fleshy tentacles above the eyes and below the mouth; fan-like pectoral fin and long separated dorsal spines. These tropical fish can grow to approximately 17 in. / 38.0 cm or more. Native to Indo-Pacific waters, the scope of their territory is huge. They can be found from western Australia and Malaysia, to southern Japan and southern Korea, as well as throughout Micronesia.

A lionfish swims in the Atlantic Ocean, not its native habitat
A lionfish swims in the Atlantic Ocean, not its native habitat

Why Research Lionfish in North Carolina?  

Non-native (meaning invasive) to waters along the southeastern United States Coast lionfish are now established and reproducing along the continental shelf from Florida to North Carolina. Since 2000, lionfish have been primarily found in water depths greater than 130fsw (feet sea water) due to warmer water temperatures created, year round, by the Gulf Stream. Now, there is evidence the lionfish population is increasing and surviving closer to shore than researchers originally thought.

Why is the Invasion of Lionfish a Problem? 

There are several reasons lionfish are a potential problem.

  • Lionfish are members of the Scorpion fish family and known for their venomous spines. Although there have been no known fatalities caused by lionfish stings, they are reported to be extremely painful. As they increase in numbers, and move closer to shore, there is a greater risk of encounters with humans.
  • Lionfish have no known natural predators in the Atlantic. They are voracious feeders and may compete with native species for food that would be disruptive to the ecosystem. They also may pose a threat to the commercial fishing industry.

Methea Sapp-Cassanego, August 1, 2007

NOAA Teacher at Sea
Methea Sapp-Cassanego
Onboard NOAA Ship Delaware II
July 19 – August 8, 2007

Mission: Marine Mammal Survey
Geographical Area: New England
Date: August 1, 2007

Weather Data from Bridge 
Visibility: 7nm lowering to less then 1 in fog
Wind Direction: Southerly
Wind Speed: 3-8 knt increasing to 8-13
Swell height: 3-5 feet

The flexible Jacob’s ladder rolled up for easy storage.
The flexible Jacob’s ladder rolled up for easy storage.

Science and Technology Log 

Fog has kept our sightings to a minimum over the past two days. In fact we’ve had only two sighting since my last log on July 27th. Yet despite today’s weather forecast, the fog horn has been silenced and everyone is outside enjoying the sunshine and stretching their eyes.  It is a wonder to see color other then a shade of grey!  The change in weather has also brought new sightings including 3 humpback whales, a pod of harbor porpoises, 4 right whales, a minke whale and a dozen or so pilot whales (spotted by your’s truly).  These sightings kept the observers busy as well as those involved in the launching of the zodiac (aka little grey boat) and the Tucker trawl. The morning sighting of the right whales prompted a Tucker trawl sampling in order to examine the copepod densities in the surrounding areas.

Dr. Richard Pace assists with deployment of the zodiac.
Dr. Richard Pace assists with deployment of the zodiac.

The trawl did yield a higher density of copepods then all of our previous trawls which where carried out in the absence of right whale sightings, however compared to their prior experiences most of the researchers thought that the copepod densities were still on the sparse side. The sighting of pilot whales brought the first launching of the zodiac boat.  The goal for this expedition is two fold:  1. To attain tissue samples from some of the pods larger whales so that genetic analysis and subsequent pedigrees may be chronicled and;  2. Acquire photographic images of individual dorsal fins in an effort to establish a method of identifying individuals based on their unique dorsal fin features. Such features may include nicks, scratches, unusual scars and or color patterns. Deployment of the zodiac requires numerous experienced hands and a wherewithal for safety. First the boat is loaded with all the supplies (photography equipment, biopsy tips and crossbows, and tissue specimen jars) that will be needed for the sampling and documentation of the pilot whales.  Then the crane on the back deck is used to hoist the zodiac up and over the side of the DELAWARE II.  Chief scientist, Dr. Richard Pace then climbs on board the zodiac while the crane slowly lowers the boat into the water.   Dr. Pace keeps the zodiac in position while a special flexible hanging ladder called a Jacob’s ladder is unrolled down the side of the DELAWARE II.  All other persons enter the zodiac from the DELAWARE’s back deck via the Jacob’s ladder. 

Once deployed, the researchers make final adjustments before pursuing the pilot whales.
Once deployed, the researchers make final adjustments before pursuing the pilot whales.

After the little grey boat is loaded it sets off in the direction of the whales as indicated by the observers on the fly bridge, who have all the while been communicating the whales’ position to the captain of the DELAWARE who then makes sure that the ship stays relatively close to the pod.   As one can imagine three-way communication between the fly bridge, the wheel house and the zodiac is critical for not only tracking the swiftly moving whales but also for the safety of all involved. Today was my day to be on the fly bridge as all of this was going on but if the weather holds and we keep seeing pilot whales then I too may get to ride on the zodiac.

Elizabeth Eubanks, July 31, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 31, 2007

Weather Data from the Bridge 
Visibility: 10 miles
Air temperature: 16.0 degrees C
Sea Temperature at 700m: 5 degrees C
Sea Temperature at surface: 19.2 degrees C
Wind Direction: 300 W
Wind Speed:  15 kts
Cloud cover: Clear –stratus
Sea Level Pressure: 1013.9 MB
Sea Wave Height: 4-5 ft
Swell Wave Height: 2 ft

Science and Technology Log 

Salt, Sodium, NaCl, Salinity. How much salt is in the ocean? How much salt is in me and you? Is there a difference between the amount of salt in from the Pacific to the Atlantic ocean? How much salt is in a fish or shark? Lots of questions about salt. I spent some time again with Dr. Jeff Graham and he showed me some nice diagrams to help me understand.

Percent of average salt content – salinity. ***The top of the box marks only 10%   scale subject to revision (due to lack of resources on board ship)
Percent of average salt content – salinity. The top of the box marks only 10% scale subject to revision (due to lack of resources on board ship)

Personal Log 

Yeah I added a new species to my list and yesterday I was able to get a photo of the Black Footed Albatross. While we were hauling our line he kept circling. He seemed to be very interested in the line. Some of the scientists were tossing bait to him from the hooks they were debating, but he didn’t seem that interested our old Mackerel.  Albatross are beautiful birds. They are the largest of seabirds and spend most of their time on the water. They have long, narrow wings as you can see from the photo below. One of the scientists on board was telling me that she read studies, indicating that they can travel 3,000 miles across the ocean, before they need to touch land.  Rarely does a person have the opportunity to view them from shore unless you are on some remote island when they are breading and nesting.

Black-footed albatross, tagged.
Black-footed albatross, tagged.

Look at the photo I took. You will notice a yellow band on left leg and a white one oh his right. I am told that to band these birds, you go to a remote island and just band them. They aren’t really afraid of people. – I would love to do that…. When is that cruise?  Nobody likes it when this happens, especially the sea lions. This is the only we caught this trip. They put up a huge fight and this one actually got off of the line. Hopefully, he will be fine. It is such a treat to see them out here. During this set we had a lot of half eaten bait, so we believe he was having a feast!

Steller sea lion hooked in the mouth
Steller sea lion hooked in the mouth

Question of the Day 

Salt is essential for all life. However too much salt can be toxic. Animals have special ways of regulating the salt in their bodies. How does the shark regulate its salt? Define these terms associated with salinity and adaptations an animal makes to an environment: Isosmotic,  Hypoosmotic, and  Hyperosmotic.

Question of the trip: Which hook, the J or Circle, will catch more sharks?

Please make a hypothesis. Utilize resources to justify your hypothesis. ———Yes, you get extra credit for this.  

Richard Coburn, July 31, 2007

NOAA Teacher at Sea
Richard Coburn
Onboard NOAA Ship Rainier
July 17 – August 1, 2007

Mission: Hydrographic Survey
Geographic Region: Alaska
Date: July 31, 2007

Weather Data from the bridge

Visibility: 10 Nautical Miles
Wind directions: 325 degrees
Wind Speed: 10 Knots
Sea Wave Height: 1-2 feet
Seawater Temperature 13.9 degrees Celsius
Sea level Pressure: 10009.2 millibars
Cloud cover: Partly Cloudy

Science and Technology log

Flora and Fauna 

Some very interesting features here in Alaska are the rocks and the various shapes and textures that they form as well as the animals that inhabit the environment.  Below are some pictures illustrating this.

The rugged coastline is abruptly ends with this beautiful cliff. There are so many wonderful vistas I have captured on this trip, each one more breathtaking than the last.
The rugged coastline is abruptly ends with this beautiful cliff. There are so many wonderful vistas I have captured on this trip, each one more breathtaking than the last.
Seals lying on a rock out cropping.
Seals lying on a rock out cropping.
Two eagles perched on the branch of a tree on a tiny island in the Bay of Escobelie
Two eagles perched on the branch of a tree on a tiny island in the Bay of Escobelie
A young deer watching intently from an island while our launch takes readings of the water depth.
A young deer watching intently from an island while our launch takes readings of the water depth.
Haul out-rocks and beaches where seals come ashore to rest or molt. This haul out was located near Timber Island. The seals watched us but did not seem to react as we got closer to the area to survey it. The waves were not large but there was lots happening here so the crew and I were very mindful of not only the animals around us but also the rocks that we could see and we were constantly on the lookout for those we could not see.
Haul out-rocks and beaches where seals come ashore to rest or molt. This haul out was located near Timber Island. The seals watched us but did not seem to react as we got closer. The waves were not large but there was lots happening here so the crew and I were very mindful of not only the animals around us but also the rocks that we could see and we were constantly on the lookout for those we could not see.
Humpback whale feeding. The humpbacks often entrap prey using “bubble nets” to corral prey in a smaller area and consume them. I am very grateful to my TAS colleague Ginger Redlinger for letting me use this picture of a humpback whale. She took beautiful video of the humpbacks while we were both out on the RAINER. She kindly shared this picture with me and I would like to include it here.
Humpback whale feeding. The humpbacks often entrap prey using “bubble nets” to corral prey in a smaller area and consume them. I am very grateful to my TAS colleague Ginger Redlinger for letting me use this picture of a humpback whale. She took beautiful video of the humpbacks while we were both out on the RAINER. She kindly shared this picture with me and I would like to include it here.

This was truly an awesome adventure.  I cannot wait to share this with my students, family, friends and colleagues.

Claude Larson, July 31, 2007

NOAA Teacher at Sea
Claude Larson
Onboard NOAA Ship Albatross IV
July 23 – August 3, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: July 31, 2007

Weather Data from the Bridge 
Air Temperature: 17º C
Water Temperature: 18.3º C
Wind Speed: 10.8 knots
Wind Direction: W Latitude: 41 24.54 N Longitude: 66 34.50 W
Cloud Cover: 8/8
Humidity: 100%

Dive Master and Executive Officer Kurt Zegowitz (left) and Commanding Officer Steve Wagner (right) inspect the hull of the ALBATROSS IV prior to setting sail.
Dive Master and Executive Officer Kurt Zegowitz (left) and Commanding Officer Steve Wagner (right) inspect the hull of the ALBATROSS IV prior to setting sail.

Science and Technology Log 

NOAA ships are equipped with the necessities for successful scientific research and sea voyages. Much of which goes unnoticed, unless a specific set of circumstances arises.  With these capabilities, there is an understanding that not only does the ship have a wealth of material resources, but the ship’s crew has been trained in the operation, maintenance and procedures required for use of all of these devices.  One aspect of gear and training I’d like to focus on is this log entry is the SCUBA capabilities on board. I caught up with the ship’s Dive Master and Executive Officer, LCDR Kurt Zegowitz to get a better understanding of what the SCUBA team does on board the ALBATROSS IV.

The ALBATROSS IV SCUBA team also includes crew members Commanding Officer Steve Wagner, Operations Officer ENS Chris Daniels, and Navigation Officers ENS Chad Meckley and ENS Chris Skapin. Their primary responsibility is ship husbandry or taking care of the ship’s hull. To ensure proper operation of the ship the hull must be inspected, usually before each sail.  The propeller is checked for line entanglement.  The bow thruster, transducers and sea suction intake grates are also cleaned.  The sea suction intake grates allow sea water to be brought in to cool the engine as the boat steams along.  While in Woods Hole, the crew also helps the aquarium by clearing the intakes for their sea water supply.

Some other aspects of SCUBA team work throughout NOAA include research, sample taking and fish collecting. For example, on research trips off of the Hawaiian Islands scientists will have the divers collect species of fish and other sea creatures for scientific study. In order to collect fish, the divers use a Hawaiian sling and collect the fish in a bag that is attached to their leg and towed behind them at a distance of about 30 feet.  This precaution protects the divers in the event that a shark in search of the injured fish is in the area.

NOAA Corps personnel who choose to receive SCUBA training can go to one of two sites, Seattle, Washington or the Florida Keys.  The basic training requires three intense weeks of work with SCUBA gear and dives.  Upon completion of the training they receive the title of working diver and with increased experience and training can move up to advanced diver, master diver and diving instructor.  NOAA divers are required to dive every six weeks and do so in both warm and cold water.  They have wet suits for warmer weather and dry suits for colder months.

Now for a quick physics lesson. The SCUBA air tanks are filled with compressed air and weigh approximately 35 pounds when full.  Which is quite a lot to tow around on land however, in the water the buoyant force equalizes the weight and the divers can float easily even with the 35 pound weight on their backs.  The air lasts for approximately 40 minutes give or take, depending on their rate of breathing and lung capacity.  The divers must also wear weight belts to help them stay submerged easily.  Some physics here again, the larger you are the more buoyant you are and the leaner you are the less buoyant you are. This means that if you a larger person you will need a heavier weight belt to keep you submerged, whereas a thinner person will only need a small amount of weight.  Again, these belts feel like they’d be rather uncomfortable to wear on land, but with the counter force of buoyancy the divers do not feel the weight once they are in the water.

Although modest about his skills, it is obvious that Kurt is an accomplished diver and that he enjoys it thoroughly. SCUBA training has given Kurt opportunities to dive in Hawaii, Alaska, Seattle, New England and the Chesapeake Bay.  He’s been up close and nosey with tiger sharks at 80 foot depths and has seen giant kelp beds and coral reefs.  Executive Officer LCDR Kurt Zegowitz encourages anyone from the Corps who is interested in becoming SCUBA certified to go through training with NOAA.

Susie Hill, July 30, 2007

NOAA Teacher at Sea
Susie Hill
Onboard NOAA Ship Albatross IV
July 23 – August 3, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: July 30, 2007

Mesh netting in the dredge
Mesh netting in the dredge

Weather Data from the Bridge 
Air Temperature: 17.5° C
Sea Temperature: 18.6° C
Relative Humidity: 100 %
Barometric Pressure: 1014.8 millibars
Wind Speed: 3.62 knots
Water Depth: 65.3 meters
Conductivity: 43.45 mmhos
Salinity: 32.03 ppt

Science and Technology Log 

I can’t believe it’s already been a week already since we left from Woods Hole, MA. I’m still getting a hang of the time schedule, but it’s working out okay. The weather has been beautiful. The staff is great—I’ve learned so much from them. The food is delicious, too! Today’s focus will be on the dredge. This is a metal frame with a metal ringed and meshed net that we use to dredge or scoop the sea bottom in hopes of finding our prize catch, sea scallops. The bag is about 8 feet wide with 2” rings and mesh netting. The mesh netting, called a liner, is in the dredge to ensure catching of the smaller scallops as well as the other species that coexist with the scallops. The dredge is lifted, put into the water, and dragged using a motorized gantry with a block and tackle system. The dredge is towed for 15 minutes at each station. The depths for this trip have been ranging from 29 meters to 112 meters. Sea Scallop dredge surveys have been conducted by the National Marine Fisheries Services since 1975.

The dredge is prepared for deployment.
The dredge is prepared for deployment.

 

Elizabeth Eubanks, July 30, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 30, 2007

Weather Data from the Bridge  
Visibility: 10 miles
Air temperature: 20.0 degrees C
Sea Temperature at 1,000m: -No CTD test tonight
Sea Temperature at surface: 19.8 degrees C
Wind Direction: 270 W
Wind Speed:  11 kts
Cloud cover: Clear –very cloudy, stratus, cumulus
Sea Level Pressure: 1011.9 MB
Sea Wave Height: 2 ft
Swell Wave Height: <1 ft

Science and Technology Log 

Today as my early shift which means I was up and on deck by 5:45 am. The morning was beautiful. I got to clip the gangion with line, hook and bait onto the long line. This has the potential to be a very stressful job, if it is really windy or there are large waves. I have avoided this job, for fear I would get tangled and go over board or miss the long line and drop the baited line, miss the space to clip my gangion or get the alternating Circles and J’s messed up.  Lots to remember. But when Dr. Kohin asked me to do it, of course I said “sure”. And guess what nothing bad really happened. I didn’t wreck the whole survey or anything! The long line has little bolt like things on it with a space between where you are supposed to clip the gangion. It can be tricky to clip them on, because the long line is moving out past you to the sea. I did miss two, but it wasn’t a huge disaster. The circles got a little knotted in the basket so there was nothing that could be done about keeping those in order, it was more important to get bait on the hooks, but later we added a few extra circles to keep the data on target and even.

Gangion clip attached to 20 foot line with hook (Circle or J) and Pacific Mackerel bait.
Gangion clip attached to 20 foot line with hook (Circle or J) and Pacific Mackerel bait.

Funny, I actually found it to be my favorite job. It was exciting and challenging and keeps your attention. Of course it was a calm day so it wasn’t as stressful as it could’ve been. The hardest thing about clipping this morning was to resist running to get my camera. The sun magnificently peaked through the clouds as a bright pinkish red ball at 6:30 am . The ocean was alive with visible life as sea gulls circled, and dolphins and seals splashed in the water. I worked on de-meating shark jaws for a while, which is tedious but fun. Their teeth are so plentiful and sharp. Fours hours later we hauled the line and had four Mako Sharks. Not the best set, but not the worst either!

Heather Marshall, grad student from U Mass. of Dartmouth on the phone with her mother. Too bad she couldn’t talk to her boyfriend, but he had just boarded a research vessel studying northern shrimp out of Maine for Massachusetts.
Heather Marshall, grad student from U Mass. of Dartmouth on the phone with her mother. Too bad she couldn’t talk to her boyfriend, but he had just boarded a research vessel studying northern shrimp out of Maine

Personal Log 

We arrived near Avalon, which is on Santa Catalina Island, California at 3:30pm. As soon as we got close to it people started to pull out their cell phones. I have to admit that as wonderful and adorable that Avalon was the best part was talking to Rob, my mom, Jim, Bob and Sue.  Telephones are not a luxury that we have on this ship. I am sure I wasn’t the only one that felt this way, because every time I turned around either on the ship or on Avalon, people were on their phones. In fact even down to the last minute while the ship was pulling away from civilization, people were still making one last call to their loved ones.

“26 miles across the sea, Santa Catalina is a waiting for me” – old tune from the 50’s – Who is the artist? 

Santa Catalina Island is about 25 miles long and 26 miles off of the west coast of California. To get there from the mainland you take a Ferry from Long Beach, which is south west of Los Angeles. You need special permission to bring a car.  We were in a town called Avalon, it is located in the south eastern part of the island. The Wrigley’s, as in Wrigley’s gum family use to own a lot of the Island, but some years ago donated most of it to the state, the Nature Conservancy and to the University of Southern California. Many organizations such as the Boy Scouts use some of the areas and are allowed to continue providing they take care of it. Avalon was very popular back in the day. During the big band swing era in the 50’s musicians like Glenn Miller, Benny Goodman and Tommy Dorsey would come place at the Casino which is really a Ballroom. It is a quaint little town with electric cars, buses and golf carts driving all about. Rarely do you see a typical car. There are lots of shops and cute places to eat.

Harbor at Avalon, Santa Catalina Island, California. The former Wrigley house is the one that sits highest on the mountain in the photo.
Harbor at Avalon, Santa Catalina Island, California. The former Wrigley house is the one that sits highest on the mountain in the photo.

We were brought over to the island on Zodiacs, a small rubber watercraft and stayed for 2 or so hours. A group of us wandered around, while some swam and others ate. It was such an unexpected bonus and so nice to be in a town. About an hour or so after we arrived I was interviewing Charlie with my camcorder and as I looked at the screen I noticed I was rocking – okay so I felt like I was rocking! I didn’t expect this. When I told Ann Coleman who was an experienced scientist at sea, she said it was common and said the strangest would be when I get home and take a shower, especially when I close my eyes and when I go to bed.  I will see how that goes.

Question of the Day 

Why do you think it is important to throw the fish and the line overboard before you clip the gangion onto the long line?

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Susie Hill, July 28, 2007

NOAA Teacher at Sea
Susie Hill
Onboard NOAA Ship Albatross IV
July 23 – August 3, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: July 28, 2007

Here I am measuring a skate using the FSCS system.
Here I am measuring a skate using the FSCS system.

Weather Data from the Bridge 
Air Temperature: 21.4° C
Sea Temperature: 19° C
Relative Humidity: 100%
Barometric Pressure: 1013.6 millibars
Wind Speed: 10.78 knots
Water Depth: 62.4 meters
Conductivity: 44.76 mmhos
Salinity: 32.58 ppt

Science and Technology Log 

I am completely exhausted! We had about 12-14 stations almost back to back last night. Down on your knees picking through the sort to find scallops and fish to back bending of lifting up full baskets and cleaning the deck, I’m tired. It was loads of fun, though. We went from collections of sand dollars to big scallops, quahogs (clams), flounders, big sea stars, and sticky, slimy skates.  When the scallops, flounders and skates come in, we weigh them on a scale and then measure their length and count them using the Fisheries Scientific Computer System (FSCS). It’s pretty cool how it works. You lay the species on the electronic board, and it gets measured by us using a magnetic stick to mark it. Once marked, the measurement goes right into the computer as well as counts it. One station, we counted 788 scallops! That is a lot, but they say there’s more where that came from!

Elizabeth Eubanks, July 28, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 28, 2007

Weather Data from the Bridge   
Visibility: 10 miles
Air temperature: 19.0 degrees C
Sea Temperature at 5000m: 6 degrees C; Sea Temperature at surface: 20.3 degrees C
Wind Direction: 270 W
Wind Speed:  16 kts
Cloud cover: clear –some cumulus, cirrus
Sea Level Pressure: 1013.7 mb
Sea Wave Height: 1-2 ft
Swell Wave Height: 2 ft

Blue Shark with an evertted stomach.
Blue Shark with an evertted stomach.

Science and Technology Log 

The mortality (death) rate has spiked a little – very sad. We brought in a Blue shark last night that had evertted (thrown up) its stomach. Sometimes sharks do this when they eat something bad, like a hook. Most times they just suck it back up. It isn’t a common thing to happen and obviously it is a last extreme measure to feel better. It is probably dangerous to throw up your stomach when you have all of those teeth it needs to get passed to leave your mouth. When the scientists first saw the shark, they said it would be okay. We were all hopeful, but by the time it got on the ship it had died. Of course as always when there is a mortality, paper work is filled out and researchers use so much of the shark, so that is the good part.

Bedrooms on board the DAVID STARR JORDAN -mine is the bottom bunk
Bedrooms on board the DAVID STARR JORDAN -mine is the bottom bunk

Personal Log 

Simplify, Simplify. -Henry David Thoreau 

One “simplify” would have sufficed. Ralph Waldo Emerson, in response 

Life on this ship is simple. I have not looked in full length mirror since I boarded. Actually I haven’t seen myself too much below my chest even. Well, a couple of times in a photograph I saw my full body. Makeup, jewelry, matching clothing, high fashion, hats, they just aren’t important out here. In fact I did boycott the hats for a few days, because ever since I shaved my head I felt like I looked funny in a hat – like a boy. Oh well, too bad. It is so sunny out here so I need to wear my floppy hat to protect my skin. I need to wear Rob’s knit hat, because it gets equally as cold. My shirt sleeves smell fishy some of the time. But instead of washing the whole shirt, I was the sleeves. Quite often I sleep in the clothes – hat and all I wore all day if they aren’t dirty, because for some reason it is so chilly in my room. I live in the same clothes day after day if they don’t smell fishy. We eat what we are fed and get called to eat by an extremely loud bell. We sleep in small, simple bed. I washed a batch of clothes yesterday – sheets included. It all went in one load and took me about 5 minutes to put away.

We work at certain hours and relax or help out, read or wander about the ship, watching the ocean for creatures. We aren’t at the grocery store choosing what food to buy or shopping at a mall. We aren’t talking on the phone or watching a whole lot of TV, we do have to pick movies sometimes though (500 choices – now that is complicated).  Dovi, one of the Doctoral students did not take a shower or change his clothes until yesterday (mid trip). I didn’t get too close to him, but didn’t notice him smelling from a distance. Simple life. I imagine the most extravagant thing about living on this ship is the fancy food we get to eat and the huge choice of movies—and the no-brainer—being in contact with sharks. Of course I am definitely putting some time into my hobby – photography and boy have I got thousands of interesting shots. I like it. I can easily see how people make this life style a permanent one. The hardest thing about it is missing your family and I do miss Rob and Hooch! Now my goal is to bring parts of this life style with me when I return to land, that will be the challenge and goal!  How is your life simple and how is complicated?

Question of the Day 

Make a list of things that complicate your life. Make a list of things that simplify your life.

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Roy Arezzo, July 28, 2007

NOAA Teacher at Sea
Roy Arezzo
Onboard NOAA Ship Oscar Dyson
July 11 – 29, 2007

Mission: Summer Pollock Survey
Geographical Area: North Pacific, Alaska
Date: July 28, 2007

Weather Data from Bridge 
Visibility: 10 nm (nautical miles)
Wind direction:   240° (SW)
Wind speed:   10 knots
Sea wave height: 3 foot
Swell wave height: 0 feet
Seawater temperature: 8.6 °C
Sea level pressure: 1020.5 mb (millibars)
Air Temperature: 0°C
Cloud cover: 8/8, Stratus

Creature at Sea:  Roy holds a sea pen in the top picture and a basket star (bottom) from the bottom trawl study
Creature at Sea: Roy holds a sea pen

Science and Technology Log: Wrap Up 

The Echo Integration-Trawl Survey of Walleye Pollock closed the season with a total of 74 Aleutian wing trawls (AWT mid-water trawls), 19 bottom trawls, 27 Methot trawls (plankton) and 81 ConductivityTemperature-Depth Sensor Package deployments (CTD water quality checks) collecting a wealth of biological and physical oceanographic data. The crew and scientists are excited to be headed back to shore but also there is a good feeling regarding the mission of the trip and the validity of the data collection. Of the 50,840 Kg of fish netted more then half was caught in the 44 AWT mid-water trawls executed this third leg of the survey.  During this time we took the length of 16,761 individual pollock and identified 19 other species of fish.I spent some time looking at graphs of preliminary data to try and make sense of what was accomplished from the work done during the sail. This past winter had a higher incidence of sea ice relative to the previous years. Generally the colder and saltier the water, the greater the density and the deeper it sinks. Although this concept was illustrated in salinity measurements at different depths (deeper being saltier) we found this not to be true when looking at temperature profiles.

Basket star
Basket star

In the sea, deeper does not always mean colder. The Bering shelf is influenced by more than one current system and we found the data taken from the northern parts of the transect along the shelf had colder water than the southern areas as expected but along the slope near the edge of the deep basin the water remained consistently warmer relative to the shelf water despite the latitude change, rarely dipping below 1°C. Generally, we found colder water near the bottom of the shelf between 50 and 100 meters then we did near the bottom of the deeper slope at 200 meters or more. This is mainly due to ice melt in the northern latitudes slowly moving cold water along the bottom of the shelf, where as the deep basin and slope are influenced by slightly warmer currents moving northwest from the Aleutian chain. As a teacher working on the water in the east I came out here assuming the deep areas would be colder but instead I was schooled on currents and their influence on water temperatures.

Leg 3 Transects of Pollock Survey Area: Fish symbols indicate trawl locations. Circles represent CTD readings and diamonds represent the line between Russian and US fishing grounds.
Leg 3 Transects of Pollock Survey Area: Fish symbols indicate trawl locations. Circles represent CTD readings and diamonds represent the line between Russian and US fishing grounds.

Through much of the cruise the lead scientists on shift spend enormous amounts of time monitoring the acoustic signal (echograms) from sounds waves beamed below the ship. When they find a significant mass of pollock they often would take a sample – go fishing. Using patterns on computer monitors scientists are able to hypothesize which signals indicate pollock. Both the length data taken from measuring fish and the acoustic estimates are used to come up with biomass numbers. In the echogram in figure 3 there is what appears to be a signal indicating mixed size pollock. We know that pollock schools tend to be homogeneous with respect to age and size. The strong blue layer at the top of the echogram represents plankton near the surface and in this instance the fish are mostly near the bottom with larger fish indicated in blue and more evenly dispersed, while dense schools of small fish show up as odd shaped clumps with lighter colors. When we sampled this water we found this to be true; we observed two groups of pollock, large adults and small two year old juveniles. The data in Figure 4 (histogram lengths) shows the two size groups. Cannibalism may be part of the reason the smaller fish stick together in separate densely packed schools.

Temperature Profile from CTD readings
Temperature Profile from CTD readings
Conductivity (salinity) Profile from CTD readings
Conductivity (salinity) Profile from CTD readings
Echogram of trawl haul
Echogram of trawl haul
Trawl histogram
Trawl histogram

In the echogram, we see more evenly dispersed adult pollock. This is verified by the haul 92 histogram in figure 6 that shows that most of the pollock sampled where between 40 and 55 centimeters long. Looking at the distribution of pollock in our study area (Figure 7) shows a consistent band of greater incidence of fish near the slope particularly to the western parts of the study area. As the fishery scientists fine tune hydro-acoustic technology they hope to get a better understanding in zooplankton (Figure 8) trends that influence survivorship of young Pollock.  A Krill Survey would be ambitious but by looking at the higher frequency acoustic waves, verified with Methot Trawls, one can estimate krill biomass in pollock regions. Environmental monitoring of chlorophyll concentration (phytoplankton measured from CTD water samples analyzed back on shore) and krill biomass (zooplankton) relative amounts from year to year can help create a better understanding of the resources necessary to support fish stocks.

FIGURE 7: Preliminary data of pollock distribution throughout the survey area
FIGURE 7: Preliminary data of pollock distribution throughout the survey area
FIGURE 8: Preliminary data of zooplankton estimates through out the pollock survey area
FIGURE 8: Preliminary zooplankton estimates throughout the pollock survey area

I would like to thank Chief Scientist, Paul Walline and B-Watch Chief ,Patrick Ressler for taking the time to explain to me the science of hydroacoustic survey analysis and sharing with me their preliminary data.

Chief Scientist, Paul Walline, monitoring the echogram from the bridge of OSCAR DYSON.
Chief Scientist, Paul Walline, monitoring the echogram from the bridge of OSCAR DYSON.

Bird of the Day: 

The bird survey folks identified over 35 species on our trip. I became familiar at least 6 species of birds that I felt comfortable identifying on the fly. When there were hundreds of birds circling the boat there was sometimes one type of bird that stood out making identification a snap. The Auks are related to penguins and have rounder body shapes and unique flight patterns. Like penguins of the southern hemisphere, the denser body composition makes them excellent at swimming under water, but they less nimble taking off and flying in the air compared to sleeker less dense seabirds like the gulls. Unlike penguins all 13 species of auks in the northern hemisphere can fly. The two most abundant types observed onboard are the Murres and the Puffins. I was fortunate to see two species of puffin this trip, the Horned and Tufted Puffin, seemingly too exotic for the Bering Sea. Both have specialized large colorful beaks for carrying multiple prey items and attracting mates. As we sail southeast we are fortunate to be seeing more of them.

Personal Log: 

Patrick, always with a smile, takes a break from the computer screens to look at the catch.
Patrick, always with a smile, takes a break from the computer screens to look at the catch.

These last few days, despite the lack of fishing, have not been without excitement. The bottom-study video sled captured Dall’s Porpoises swimming under water as it was deployed off the stern. As we head southeast there seems to be more whales and clearer skies. This evening we saw dozens of fin whales and one pod was feeding so close that I was able to see baleen. The whales’ baleen is used to screen their plankton food.  I learned the Right Whale has asymmetrical coloring on its baleen and the right side has a lighter off-white color, which we were able to see from the port side of the ship. I would like to take this opportunity to express my gratitude to the crew of the OSCAR DYSON for their help in getting acclimated to the Bering and to NOAA’s Teacher at Sea program for providing this amazing experience.

Question of the Day 

Today’s question: What is next for the OSCAR DYSON? She is headed back out to the Bering to find rare Right Whales. Check out ship tracker at NOAA’s website or the OSCAR DYSON Web site for more info.

Previous Question: How much fish did we catch? 26,575 kilograms (summer extra credit – convert this number to pounds and metric tons)

Horned Puffin (Fratercula corniculata)
Horned Puffin (Fratercula corniculata) 
Tufted Puffin (Fratercula cirrhata)
Tufted Puffin (Fratercula cirrhata)

Susie Hill, July 27, 2007

NOAA Teacher at Sea
Susie Hill
Onboard NOAA Ship Albatross IV
July 23 – August 3, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: July 27, 2007

Weather Data from the Bridge 
Air Temperature: 21° C
Set Temperature: 22° C
Relative Humidity: 100 %
Barometric Pressure: 1017.1 millibars
Wind Speed: 3.76 knots
Water Depth: 67.0 meters
Conductivity: 45.75 mmhos
Salinity: 32.13 ppt

Science and Technology Log 

The weather has been very nice, sunny, and calm. Conditions were so clear last night that we could see fireworks far off into the distance. I’m getting into the routine of all of the stations- sorting for fish and scallops, weighing, measuring the length (or in scallop terms, shell height), counting starfish, and cleaning off the deck.

Today’s focus is on the CTD meter that measures conductivity, temperature, and depth. This is the instrument that they use to determine the conditions of the water. It is lowered down to about 5-10 meters from the ocean floor about twice in a shift (12 hours). Some other results they also receive are pressure and salinity levels. These measurements are collected at the surface as well as at the bottom. Once they receive all of the data, it is loaded into a computer and turned into a very colorful graph.  Scallops like to live in water temperatures of < 20° C and in water depths of up to 200 meters south of Cape Cod (Dvora Hart, WHOI, 2002).

The CTD
The CTD

Elizabeth Eubanks, July 27, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 27, 2007

Weather Data from the Bridge  
Visibility: 8-10 miles
Air temperature: 17.0 degrees C
Sea Temperature at 350m: 7 degrees C
Sea Temperature at surface: 19.0 degrees C
Wind Direction: 290 W Wind Speed:  18 kts
Cloud cover: clear –some cumulus, cirrus
Sea Level Pressure: 1013.2 mb
Sea Wave Height: 2-3 ft
Swell Wave Height: 2-3 ft

Science and Technology Log 

“First, do no harm.” –Michael J. Zoghby RPT 

Today was so exciting. We caught a Mola mola, Ocean Sunfish, and 22 sharks.  Many of them were baby Blue sharks and although this team tries very hard to keep all of the sharks alive, some of them are so badly thrashed by the hook and/or line that they don’t make it. Yesterday was the first day that we had our first mortality (dead shark).  It was a baby Blue and the gills were just ripped out by the hook.  Sad, no one likes to see a dead shark. Everyone is out here to preserve them and keep them safe.

We caught many average size sharks and a few really large ones.  Watching the scientist work on the large animals has got to be one of the most thrilling things to see, especially when they have the extra challenge of wave swells coming across the platform, soaking them and giving the shark a chance to do what it does best… swim. As one of the grad students put it, the pictures and videos we have taken during these events are not ones you would want your mom to see, the mix of slippery platform, scalpel in hand, swell water pouring in and of course a HUGE SHARK, could be a deadly mixture. But safety comes first. They probably had the shark on the platform for a good 3-5 minutes. The Blue was using every bit of what it had to get off of the platform. It was so exciting that I had to video and take still shots. This shark would’ve been a great choice for the satellite tag because of its size, but they didn’t get a chance to that. They removed what they could of the hook, identified him as a male and struggled to hold him down. The Blue shark was estimated at 220cm. We never did get an actual measurement, because for one thing it appeared to be longer than the platform measuring tape and for another Dr. Kohin made a decision to “just let it go” and that is a direct quote. Safety comes first for shark and for people.

Dr. Suzy Kohin surrounded by a big Blue Shark – notice the eye, the nictitating membrane covers the eye.
Dr. Suzy Kohin surrounded by a big Blue Shark – notice the eye, the nictitating membrane covers the eye.

More safety notes: Late night we found out that there was a problem with one of the engine fans. So tomorrow morning our set is canceled. We will have to wait to see if they can fix it and if they can’t we go back to San Diego and the trip is over. Why? Because they follow the rule, the only rule you really ever need– First Do No Harm. Extra note: The Ocean Sunfish is an amazing fish. You will see them in the Pacific and at first think that they are sharks, because of their dorsal fin that sticks out of the water. They have been described as one of the most evolved fish and look like a super sized Frisbee.- A great fish to do a little personal research on, if you are into fish. (Sean Maloney – check it out!)

Personal Log 

Bet ya goin’ fishn’ all the time, I’mma goin’ fishin’ too. I bet your life, your lovin’ wife is gonna catch more fish than you, so many fish bite if ya got good bait, here’s a little tip that I would like to relate, I’mma goin’ fish, yes I’m goin’ fishn’ and my babies goin’ fishin too!” 

– Not sure who sang or wrote this little diddy first, so I can’t give credit right now – but I didn’t write this “catchy” tune. 

I am working/ living on a fishing boat. Dah! It’s a goofy realization that just hit me today. Since I got accepted for this project, I have been in a narrow mindset that I am on a shark research vessel, which I am. I broaden my mindset and hit me that I am also on a fishing vessel. Fishing is what we do when we set and haul the long line. Fishing is what we can do in our spare time. We have bait, we have hooks and we have line. We catch fish. Oh and we cook and eat fish too. We are fishing.  Funny, but now it makes my experience even cooler. I have always wanted to work on a fishing vessel.

Right out of high school my girl friend and I had done a heap of research and were planning on moving to Ocean City, MD for the summer. We had spent hours investigating different job possibilities. We had heard that sometimes you spend all your summer working to pay your bills and don’t really get to enjoy the beach, but we didn’t care. She was interested in a job as a waitress and I had sent in a ••• dozen applications to fishing vessels. That is what I really wanted to do. That was my glamour job! I dreamed that I could be the one who baits the hooks and cleans the deck. I figured if I had to spend most of my time working, it should be on the water with fish and people who liked to fish. Anyway, that dream ended with a car crash – no one was killed, just minor injuries but it sure shook up my folks enough to keep me in PA for the summer.  So after all these years – I am working and living on a fishing ship. Super cool, huh!

Scientists Suzy Kohin and Russ Vetter tag the Mola mola, Ocean Sunfish
Scientists Suzy Kohin and Russ Vetter tag the Mola mola, Ocean Sunfish

Question of the Day 

If you had to pick a research science career, what would you study? What would your problem be?

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Methea Sapp-Cassanego, July 27, 2007

NOAA Teacher at Sea
Methea Sapp-Cassanego
Onboard NOAA Ship Delaware II
July 19 – August 8, 2007

Mission: Marine Mammal Survey
Geographical Area: New England
Date: July 27, 2007

Weather Data from Bridge 
Visibility: 7nm lowering to less then 2 in patchy fog
Wind Direction: Westerly
Wind Speed: 8-13 knots with gusts of 20
Swell height: 2-4 feet

From left to right; Melissa Warden, Kate Swails, and Methea Sapp staff their observatory stations on the flying bridge of the DELAWARE II
From left to right; Melissa Warden, Kate Swails, and Methea Sapp staff their observatory stations on the flying bridge

Science and Technology Log 

Today marks one of the most active sighting days yet!  The species list for today included the following; common Atlantic dolphin, fin whale, sei whale, sperm whale, humpback whale, white sided dolphin, minke whale, offshore bottlenose dolphin and pilot whale. The methodology for logging each sighting is fairly straight forward yet detail orientated.  There are nine of us scientists on board and we have been organized into shifts which begin at 7:00am and end at 18:00. In the absence of fog three of us are stationed on the fly bridge at any given time; one person uses big eyes on the starboard side, the second person serves as the sightings recorder and the third person uses the big eyes on the port side. Every thirty minutes we rotate stations with the port side station retiring from their shift, and a new person taking up watch on the starboard side.

Data is recorded in two electronic touch pad tablets called Pingles.  The first pingle is used to record effort and as such is updated each time a rotation is made. Other points of effort which are also recorded are weather conditions, beaufort scale (or degree of wave action), sun angle, glare, swell height, swell angle, etc.  The second pingle is used to record the sightings. When an observer calls out “sighting” the recorder will log the following information (as iterated by the observer):

  • Animal identification
  • Cue (or what the observer saw first ie. a splash, or the animal itself)
  • Behavior (swimming, milling, aerobatics etc)
  • Bearing relative to the ship
  • Swim direction relative to the ship
  • Distance from the horizon
  • Best head count followed by estimations of highest and lowest probable numbers

sapp_log4a

sapp_log4b

Flukes of two different humpbacks; Notice the variations in white and black patterning.  Such patterns are used by researchers to identify and track individual humpbacks.

On a day like today the recorder is certainly in the hot seat trying to log the sightings of two people! Based on today’s sighting list I’ve chosen two species to profile for you, the humpback whale and sperm whale.

Species Profile for Sightings of July 25th 2007 

Humpback Whale, Megaptera novaeangliae  Identification:  Stocky body, black topside with white or mottled underside, flippers are exceedingly long and marked with white as is the fluke.  Flukes are often visible when animal begins dive. (see photo below)   Max length and weight: 56 ft and 40 tons Diet and Feeding: Krill and small schooling fish. Up to 20 individuals may cooperatively hunt and feed via bubble net fishing.  Humpbacks are a baleen whale Migration: Extensive migration between Antarctic feeding grounds to breeding grounds off the coast of Columbia.  Round trip = 11,000 miles Distribution: Ranges from the poles to the tropic.  Have made a good post-whaling recovery and are one of the best studied of all cetaceans.  Record breaker for the longest flippers:  Averages 15 feet but may be as long as 18 feet; humpback flippers are the longest of any whale species.

Sperm Whale, Physeter catodon Identification:   Huge square shaped head; no dorsal fin; blow is often angled forward; body is dark and wrinkled  Max length and weight: 36 ft and 24 tons (female), 59 ft and 57 tons (male)  Such sexual dimorphism is rare among whales.  Diet and Feeding: Mostly squid and some octopi, sharks and other fish.  Sperm whales are a toothed whale as opposed to a baleen whale.  Migration: Is not wide spread in females and young whales although adult males will travel long distances. Distribution:  Sperm whales are found in population clusters from the tropics to the extreme southern and northern latitudes.  They are most common offshore in deep water.  Record breaker:  The sperm whale holds three records in the cetacean world; One being that it is the largest of the tooth whales. This whale also holds the record for diving depth and longest dive. One particularly large male sperm whale has been recorded diving to 6,500 feet and on a separate dive stayed down for 52 min.  Famous Sperm Whale: Moby Dick; the great white whale from Herman Melville’s 1851 classic Moby Dick.

Sorry, no photos of the sperm whale sighting 

References 

Collins Wild Guide: Whales and Dolphins. HarperCollins Publishers, New York, New York.  2006.