Jenny Smallwood: Can I borrow a cup of sugar? September 8, 2017

NOAA Teacher at Sea
Jenny Smallwood
Aboard Oscar Dyson
September 4 – 17, 2017

Mission: Juvenile Pollock Survey
Geographic Area of Cruise: Gulf of Alaska
Date: September 8, 2017

Weather Data from the Bridge
Latitude: 55 20.5 N
Longitude: 156 57.7 W
Clear skies
Winds: 12 knots NNW
Temperature: 11.0 degrees Celsius (51.8 degrees Fahrenheit)

Can I borrow a cup of sugar? Just what does a ship do if it starts running low on critical supplies? In our case, the Oscar Dyson met up with the Fairweather on a super foggy morning to swap some medical supplies and other goods that will be needed on the next leg.

Science and Technology Log
You might remember from my first blog post that Alaskan Walleye Pollock is one of the largest fisheries in the world and the largest by volume in the U.S. Because of this, Walleye Pollock is heavily researched and managed. The research cruise I’m on right now is collecting just a small portion of the data that feeds into its management. Being a plankton nerd, I’m interested in the relationship between year 0 Pollock and its zooplankton prey. Year 0 Pollock are the young of the year; fish hatched in Spring 2017.

IMG_20170908_194023 - Edited (1)

Year 0 Walleye Pollock

Year 0 Pollock feed on a variety of zooplankton some of which have greater nutritional value than others. Certain zooplankton, such as Calanus spp and euphausiids, are preferred prey items due to high lipid content, which yield fatter year 0 Pollock.
Other less lipid rich zooplankton prey, such as small copepod species, yield skinny fish. The fat, happy Pollock are more likely to survive the winter, and the scrawny, skinny fish aren’t likely to survive the winter. So why is this important to know? Well, surviving its first winter is one of the biggest hurdles in the Pollock’s life. If it can survive that first winter, it’s likely to grow large enough to be incorporated in the Pollock fishery. So you just want to make sure there are lots of Calanus spp in the water right? Wrong….

Knowing Calanus spp and euphausiids possess higher lipid content is just the tip of the iceberg. It turns out that in colder years they have higher lipid content, and in warmer years they have lower lipid content. So it’s not enough to just know how many Calanus spp and euphausiids are out there. You also need to know what their lipid levels are, which is related to water temperatures. Clearly a lot goes into Pollock management, and this is only a small portion of it.

Personal Log
I have a theory that like minded people tend to seek out similar life experiences. For example, yesterday I was in the bridge getting the scoop on Fairweather meet-up when I met one of the fishermen, Derek. Turns out Derek and I both attended UNC-Wilmington, both graduated in 2003, and both majored in environmental studies. For a while growing up, we lived just a couple of towns over from each other too. What. In. The. World. What are the odds that I run into someone like that? It’s such a small world….or is it?

This is where I get back to the theory that like minded people tend to seek out similar life experiences. There are those people in your life that seem to orbit in the same sphere as you. Maybe it’s shared interests, backgrounds, or experiences, but these are the people that totally “get you.” I feel lucky to have so many of them, from my co-workers at the Virginia Aquarium to the Teacher at Sea folks, in my life right now.

Did You Know?
Did you know Alaska has beautiful sunsets?IMG_20170908_210337

 

Amanda Dice: From Fin to Wing, September 1, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

IMG_1639

We have made it around Kodiak Island and will dock in Kodiak tomorrow morning.

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: September 1, 2017

Weather Data: 12 C, sunny

Latitude: 57 40.9 N, Longitude: 151 37.2 W

 

 

Science and Technology Log

In addition to NOAA’s juvenile walleye pollock survey, this leg of voyage is also hosting a seabird survey. The United States Fish and Wildlife Service (USFWS) sent a scientist aboard Oscar Dyson to identify and record bird species as the boat travels from one sampling station to the next. To do this, a bird observation station has been set up on the port side (left hand side) of the bridge. This is a good spot to get a clear view of the water and sky ahead of the boat and to the port side.

IMG_1613

Jessica “the bird lady” keeps a sharp eye out for birds from her station on the bridge.

Not every bird that is seen from the bridge is included. There are some guidelines that must be followed in order to collect data that has scientific validity. One of the major guidelines is that the ship should be moving at a consistent speed for each of the observation periods. If a scientist were to observe birds at a slower speed, he or she might end up recording more species because there is more time to look for and identify then. If a scientist were to observe birds at a faster speed, he or she might end up recording fewer species because there is less time to look for them and identify them.

IMG_1074

A northern fulmar soars alongside the ship.

It is difficult to correctly identify birds at a distance further than 300 meters away. It is also much more likely that a bird will be identified correctly if it closer than if it is further away. In order to account for differences in how accurately a bird can be identified, scientists have set up a system to put the data collected into different categories. First of all, only birds that are 300 meters away or closer are counted and identified. Birds that are seen between 0 – 50 meters away are considered in “Bin 1” and can be identified with the most accuracy. Bin 2 is 50 – 100 meters away, Bin 3 is 100 – 200 meters away, and Bin 4 is 200 -300 meters away. The further away a bird is, the greater the chance that it will not be identified correctly or missed altogether.

IMG_1608

This diagram shows how birds are categorized into bins depending on how far away they are when they are spotted.

Some of the common birds seen on this survey in the Gulf of Alaska include northern fulmars, auklets, shearwaters, black-footed albatross, tufted and horned puffins, storm petrels, kittiwakes, and common murres. Some of these birds, like the fulmars and albatross like to hang around the boat and look for an easy meal from the fishing net. This can make it difficult to avoid counting the same bird more than once. Adjustments are made by the scientist to prevent an overestimation in the number of birds recorded.

IMG_1073

A pair of albatross looks for food off of the starboard (right) side of the ship.

We have also seen some very unexpected bird species. There was a trio of peregrine falcons that landed on the ship and traveled with us for a day. Some of the crew on the bridge saw one of them catch a smaller bird and fly off with it! There was also a masked booby that spent a few hours cruising along with us. Masked boobies are native to the waters much further south and have never been seen in the Gulf of Alaska!

30aug2017_2

A masked booby is far from home. Photo by Jessica Stocking

31aug2017_2

One of three peregrine falcons spends the day perching on different spots of the Oscar Dyson. Photo by Jessica Stocking

Other data about the weather conditions are automatically recorded with the help of a computer. Air temperature, water temperature, wind speed, and wind direction are recorded at the start of each observation session. A GPS device also records the latitude and longitude of the ship every few seconds. All this information helps scientists get a better understanding of which birds were present at different times of year and how weather conditions may affect where they go.

 

DLOG screen capture

GPS, weather, and bird species data are collected in one spot.

Personal log

This is the last day of the survey and it is finally sunny! It has been an interesting two weeks for me. It was full of observing new animals and gaining a new understanding of how marine science is conducted. It has also been a great opportunity to meet some very interesting people passionate about their work.

IMG_1644

My roommate, Jessica, and I in our stateroom bunks.

 

Did you know?

Flatfish have one eye that migrates, or moves, from one side of their head to the other! This happens within the first few months after they hatch. The result is that both of their eyes end up on the same side of their head. This allows flatfish to swim along the bottom of the ocean floor while keeping both eyes facing upward to look for food and to spot predators.

IMG_1567

These two flatfish are a few months old. They already have both eyes on one side of their head.

Amanda Dice: Fish Sticks with a Side of Science, August 29, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

IMG_1553

We have made it to the most northern point on the survey.

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise:
Western Gulf of Alaska

Date: August 29, 2017

Weather Data: 10.2 C, rainy/stormy

Latitude: 59 20.0 N, Longitude: 152 02.5 W

 

 

Science and Technology Log

The main focus of this survey is to gather information about juvenile walleye pollock, Gadus chalcogrammus. Juvenile pollock less than 1 year of age are called young-of-the-year, or age-0 juveniles. Age-0 walleye pollock are ecologically important. Many species of birds, mammals and other fish rely on them as a food source. Adult pollock have a high economic value. Pollock is commercially fished and commonly used in fish sticks and fish and chips. This study is interested in learning more about the size of current juvenile pollock populations, where they occur, and how healthy they are.

IMG_1132

An age 0 juvenile pollock is shown below an adult pollock.

In order to collect a sample, a trawl net is lowered into the water off of the back of the ship. The deck crew and bridge crew work together to release the right amount of wire and to drive the ship at the right speed in order to lower the net to the desired depth. The net is shaped like a sock, with the opening facing into the water current. In order to keep the mouth of the net from closing as it is pulled through the water, each side is connected to a large metal panel called a “door”. As the doors move through the water, they pull on the sides of the trawl net, keeping it open. When the doors are ready to be put in the water, the fishing officer will instruct the winch operator to “shoot the doors”!

IMG_1272

The deck crew bring the trawl net back on deck. One of the metal “doors” can be seen hanging off of the back of the ship.

Sensors help monitor the depth of the upper and lower sides of the net and relay a signal to computers on the bridge, where the data can be monitored.

Screen Shot 2017-08-29 at 7.44.24 PM

Sensors on the trawl net relay data to computers on the bridge which show the position of the net in the water.

Once the net is reeled in with a large winch, the catch is placed on a sorting table, in a room just off of the back deck called the fish lab. Here, the science team works to sort the different species of fish, jellyfish, and other kinds of marine animals that were caught.

IMG_1217

Crew members stand below a winch and empty the catch from the trawl net into a large bin.

IMG_1576

The catch is then sorted on the sorting table in the fish lab.

Juvenile pollock are sorted into their own bin. If it is a small catch, we weigh, count, and measure the length of each one. However, if it is a large catch, we take a smaller sample, called a subsample, from the whole catch. We use the weight, lengths, and count of animals in the subsample to provide an estimate count and average size of the rest of the fish caught at that station, which are only weighed. This information is compiled on a computer system right in the fish lab.

IMG_1097

Here I am measuring some fish.

 

IMG_1117

Data from the catch is collected on computers in the fish lab.

 

The focus of this study is juvenile pollock, but we do catch several other species in the trawl net. The presence of other species can provide information about the habitats where juvenile pollock live. Therefore, data from all species collected are also recorded.

Screen Shot 2017-08-29 at 8.36.24 PM

Here are some other interesting species we caught: 1. jellyfish (with a partially digested pollock inside it!) 2. lumpsucker 3. herring 4. spider crab

A small sample of juvenile pollock are frozen and saved for further study, once back on land. These fish will be analyzed to determine their lipid, or fat, content and calorie content. This data reveals information about how healthy these fish are and if they are getting enough food to survive through the cold Alaskan winters.

Other agencies within NOAA also conduct scientific surveys in this area. These studies might focus on different species or abiotic (non-living) properties of the Gulf of Alaska marine ecosystem. The data collected by each agency is shared across the larger NOAA organization to help scientists get a comprehensive look at how healthy marine ecosystems are in this area.

 

Personal Log

As we move from one station to the next, I have been spending time up on the bridge. This gives me a chance to scan the water for sea birds and marine mammals, or to just take in the scenery. Other members of the crew also like to come up to do this same thing. I have really enjoyed having this time every day to share in this activity (one of my favorite past-times) with other people and to learn from them how to identify different species.

IMG_1192

Here I am outside of the bridge, posing with some glaciers!

 

Did You Know?

You can find the exact age of many fish species by looking at a bone in their ears! Fish have a special ear bone, called an otolith. Every year, a new layer will grow around the outside of this bone. As the fish ages, the otolith gets larger and larger. Scientists can find the exact age of the fish by cutting a cross section of this bone and counting the rings made from new layers being added each year.

IMG_1099

A small otolith of an age 0 juvenile pollock

IMG_1168

Larger otoliths from an adult pollock

Amanda Dice: From Sea to Shining Sea, August 17, 2017

NOAA Teacher at Sea

Amanda Dice

Soon to be aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Walleye Pollock and Forage Fish Survey

Geographic Area of Cruise: Gulf of Alaska (near Kodiak)

Date: August 17, 2017

Weather Data: 30.5°C, cloudy, 78% humidity

Location: Baltimore, MD

Intro

Out on the east coast waters utilizing my favorite form of Baltimore’s transportation options – its fleet of kayaks!

Introduction

It is hot and sticky here in Baltimore and I am looking forward to breathing in the crisp air in Alaska. I am also looking forward to being out on the water. As a Baltimore resident, I am able to spend time in the beautiful Chesapeake Bay. It is a great place to get out on a kayak and take in nature. I can’t wait to take this experience to the next level on the waters of the Gulf of Alaska. I try to go on at least one big adventure each year, and the Teacher at Sea experience definitely will fulfill this goal for 2017! I am also excited about all of the new things I will learn on this trip and I am looking forward to sharing these with my students. I teach STEM courses to students who attend online school. I have seen how connecting scientific experiences and data with students can spark their interest in STEM fields.  I am very excited to have the opportunity to use this experience to engage students in scientific activities and discussions.

 

Science and Technology Log

This mission will take place on the NOAA Ship Oscar Dyson, which has its home port in Kodiak, Alaska. From Kodiak we will move through the waters surrounding Kodiak Island and eastward into the Gulf of Alaska. The scientific team will be studying populations of walleye pollock and zooplankton in these waters. The mission will be conducted in two parts. I will be aboard for Leg 1 of the mission. Leg 2 will begin shortly after we return to port on September 2nd. The map below show all of the sampling locations that will be visited during this mission. Leg 1 sampling locations are indicated by red dots. At each location, a variety of sampling will take place. From what I have learned about the mission, it looks like we will be using several different trawls to collect samples. We will then use a variety of methods to identify species and collect data once the samples are onboard.

leg 1 map

This map shows the sampling locations of Leg 1 (red) and Leg 2 (blue) for the Gulf of Alaska Juvenile Walleye Pollock Survey. Courtesy of NOAA.

The Oscar Dyson is described as “one of the most technologically advanced fisheries survey vessels in the world.” From what I see on the NOAA website, it seems to have an impressive amount of scientific equipment onboard. It has a wet lab, dry lab, computer lab, biology lab and hydrology lab. It also has a wide array of data collection gear and mechanical equipment. I am looking forward to checking out all of this equipment for myself and learning more about how it will be used.

Science and Tech Log

NOAA Ship Oscar Dyson on the chilly waters in Alaska. Courtesy of NOAA.

This study will focus on collecting data on walleye pollock populations. This fish is a member of the cod family and lives primarily in the waters of the northern Pacific Ocean. As juveniles, this species feeds on krill and zooplankton. As they mature, they eat other fish, including juvenile pollock!  Many marine species rely on populations of these fish as a food source in the Gulf of Alaska. Humans also like to eat pollock. It is sold as fillets, but is also used in fish fingers and to make imitation crab meat. Pollock fillets are becoming more popular as cod and haddock populations become overfished. Pollock populations have fluctuated over the years, but are not currently overfished. The dotted line in the graph below shows population numbers in the Gulf of Alaska (GOA).

pop graph

The dotted line on this graph shows the population numbers of walleye pollock in the Gulf of Alaska (GOA). Courtesy of NOAA.

A scientist from the U.S. Fish and Wildlife Service will also be aboard the Oscar Dyson conducting a seabird observation study. She will work mainly from the bridge, keeping track of the different seabird species she sees as we move from one sampling location to the next.

Personal Log

I am excited about my upcoming adventure for many reasons. As an undergrad, I majored in Natural Resource Management. I went on to be a science teacher, but have always been interested in learning about findings from ecological studies. This experience will allow me to get an up close look at the technology and techniques used to conduct this kind of study. I am looking forward to being able to contribute to the team effort and learn new things to bring back to my students. I am also very excited to be aboard a ship off the coast of Alaska. A trip to Alaska has always been on my bucket list and I am looking forward to taking in the scenery and spotting marine mammals and seabirds. I am also hopeful that we will be able to see a partial solar eclipse from the water. I am bringing my sun viewers, just in case!

Did You Know?

It would take 88 hours to drive from Baltimore, MD to Kodiak, AK.

Did You Know

Glad I am flying! Courtesy of Google Maps.

Sian Proctor: It’s Getting Fishy, July 20, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard NOAA Ship Oscar Dyson

July 2 – 22, 2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 20, 2017

 

Me with an adult pollock.

Me with an adult pollock.

Weather Data from the Bridge

  • Latitude:  57° 47.02 N
  • Longitude: 152° 24.56 W
  • Time: 1700
  • Sky: Overcast
  • Visibility:  2 nautical miles
  • Wind Direction: variable
  • Wind Speed:  Knots
  • Sea Wave Height:  0  foot swell
  • Barometric Pressure:  994 millibars
  • Sea Water Temperature:   11.9° C
  • Air Temperature:   12.2° C

Science and Technology Log: It’s Getting Fishy!

Alaska pollock are found in the Bering Sea and Gulf of Alaska and are part of the cod family. The dorsal side of the pollock is speckled brown in color with a slight olive green hue and the ventral side is silver. They eat krill, copepods, and small fish – mainly their own offspring. They quickly grow into adults, reaching reproductive age after 3-4 years, and are very fertile, replacing harvested fish in just a few years. Pollock swim in large schools during the day and disperse overnight. They can be found throughout the water column, but young pollock tend to live in the mid-water region while the older fish tend to live near the sea floor.

Alaska_Pollock_-_source_NOAA_fishwatch.govScience-based monitoring and management play a key role in the sustainability of the Alaska pollock fishery. It is managed by the North Pacific Fishery Management Council based on data provided by the NOAA’s Alaska Fisheries Science Center. The Alaska pollock fishery is the largest, by volume, in the United States and one of the most valuable in the world.  Products made from pollock include fish fillet, roe eggs, and imitation crab. The entire industry is valued at over a billion dollars. It is also considered one of the best-managed fisheries in the world. Scientists from the Alaska Fisheries Science Center conduct acoustic trawl surveys to estimate the abundance of Alaska pollock using acoustics and by catching small samples.

While on NOAA Ship Oscar Dyson I had the opportunity to spend time in  the fish lab learning how pollock data are collected.. This video is an example of what I experienced.

The main way commercial pollock is caught in the United States is by net. Scientifically trained observers are sent out on U.S. pollock fishing boats and, similar to the NOAA scientists, they collect sample data from each catch and send it back to NOAA.  They also observe the fishing practices on the boat and  report any regulatory infractions. All the collected data and interactions between the fishing industry and NOAA have been established to make sure the Alaska pollock fishery remains sustainable.

NOAA Opportunities for students: https://www.afsc.noaa.gov/education/students/careers.htm 

Interview with Michael Martin

Fisheries Biologist

  • Official Title
    • Deputy Director
  • Normal Job Duties
    • Leadership and administration of the Resource Assessment and Conservation Engineering (RACE) Division within Alaska Fisheries Science Center (AFSC)
  • What is your current position on Oscar Dyson?
    • Fish lab biologist
  • How long have you been working on Oscar Dyson?
    • of and on for ~ 10 years
  • Why the ocean? What made you choose a career at sea?
    • I loved exploring sea creatures a the beach as a kid; Jacques Cousteau.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • Getting out of the office; Seeing amazing scientists do their work and getting to participate.
  • Why is your work (or research) important?
    • The information we collect plays a very important role in managing fisheries in Alaska, providing economic and food security for many people. We also do tremendous research that benefits the science community and subsequently people world-wide. We are among the leaders in understanding fish and invertebrate abundance and behavior in the world.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • I’m still trying to figure out what I want to do if I grow up! Probably between 10 and 13 years old I developed an interest in the ocean.
  • What part of your job with NOAA (or contracted to NOAA) did you least expect to be doing?
    • Dealing with bureaucracy.
  • What are some of the challenges with your job?
    • Leading a group of scientists is, in some ways, like herding a group of very intelligent cats. They are very focused on their research and have very strong opinions about things that they feel could detract their ability to do the best job possible. This can be a challenge for me at times, but is a great problem to have!
  • What are some of the rewards with your job?
    • Being able to facilitate scientists and help them accomplish their goals is very rewarding.
  • Describe a memorable moment at sea.
    • Rescuing a family in a life raft that had been missing for 3+ days.

P1130809

Interview with Meredith Emery

Fisheries Biologist

  • Official Title
    • Survey Technician
  • Normal Job Duties
    • As Survey Technicians, our primary responsibility is to monitor and maintain fisheries and oceanographic equipment. In addition, we have to run and verify the Scientific Computer System (SCS) is collecting quality data and all the ship’s sensors connected to SCS are working properly. We also are the liaison between scientists and the crew members, and assist the scientists with any part of their research. Survey Technicians have the unique opportunity to participate in all aspects of the fisheries or oceanographic operation start to finish. During the fishing operations: 1. Scientist communicates to the people on the bridge, deck and survey technicians when they are going to fishing. 2. We put the fishing equipment on the net, as the net is casting out. 3. Assist the scientists log net dimension data when the net is in the water. 4. As the net is being recovered, we retrieve all the fishing equipment. 5. We help the deck with emptying the catch on the fish table, when needed. 6. Lastly, which is my favorite part, is when we get to assist the scientists collect biological fish samples in the wet lab. During oceanographic operations we are in charge of deploying and recovering the equipment (Conductivity, Temperature and Depth (CTD)). In addition we verify all the sensors on the CTD are presenting quality real time data. From the CTD we can collect water samples that can be used for several studies, like salinity, dissolved oxygen, chlorophyll, or micro plankton. We are able to see the operations in action, understand the importance of the research through the science perspective and ultimately know the reason the Oscar Dyson is in the middle of the Gulf of Alaska.
  • What is your current position on Oscar Dyson?
    • I am one of two Survey Technicians on the Oscar Dyson.
  • How long have you been working on Oscar Dyson?
    • I have been working on the Oscar Dyson about 10 months.
  • Why the ocean? What made you choose a career at sea?
    • My fascination for the ocean started when I was young playing with the anemones on the rocky intertidal beach. I’ve always enjoyed being at the beach and seeing the organisms there. I became curious of life at sea and really wanted to see the marine wild life in action, especially when the ice first melts and there is a high abundance of phytoplankton and zooplankton that attracts marine mammals, birds and fish to migrate there. Being on the Oscar Dyson, I was able to observe the fluctuation between high abundance of phytoplankton, zooplankton or fish, depending on the area and time of year.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • I enjoy seeing the scenery. Like the untouched lands, glaciers, marine wild life; the fishes, mammals or birds. Also I like seeing the endless blue of the ocean, especially calm weather. Really puts the vastness of the ocean in perspective.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • The reason I pursued a career in studying the ocean is because I come to realize that people take the ocean for granted and don’t recognize how much we depend on it. I obtained a Bachelor’s of Science degree in Biology emphasis marine. One of my favorite college courses was oceanography. It was the first time for me to see the connection between geology, physics, chemistry and biology in one scenario like in the ocean processes. Each component relies on the other. First the geological features of the ocean floor and land masses influences the physics of the current flow, wave motion, and up-welling. Then the ocean movement determines the mixing and distribution of the water chemistry. Finally the biodiversity, location, and populations of marine organisms rely on the water chemistry, like nutrients or dissolved oxygen.

Personal Log

I really enjoyed learning about the variety of sea creatures in the Gulf of Alaska. Here is a video showing a few of the sea creatures I encountered. Totally amazing!

Education Tidbit: FishWatch Website

Another cool resources is the Fishwatch website. Here you can learn more information about sustainable fisheries and the science behind the fish we eat. It is worth checking out!

Did You Know?

Did you know that fresh pollock have a very distinctive smell that isn’t like any other fish? It’s not fishy – more like dirty feet!

Sian Proctor: Nothing But Net!, July 12, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard Oscar Dyson

July 2 – 22, 2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 12, 2017

Me next to chafing gear from AWT. Image by Meredith Emery.

 

Weather Data from the Bridge

  • Latitude:   56° 46.8 N
  • Longitude: 154° 13.7 W
  • Time: 0800
  • Sky:Clear
  • Visibility: 10 nautical miles
  • Wind Direction: 279
  • Wind Speed: 9 Knots
  • Sea Wave Height: 1-2 foot swell
  • Barometric Pressure: 1019.9 millibars
  • Sea Water Temperature:   11.1°C
  • Air Temperature:   12.0°C
  • Sunrise: 0531
  • Sunset: 2300

Science and Technology Log: Nothing But Net!

Once the scientists determine where and how deep they want to fish, based on analyzing the echogram, then the boat moves into position and the net is deployed. Safety is the top priority when working on the vessel. The deckhands all have to wear life jackets, hard hats, and good boots when working on deck because the conditions can be sunny one moment and stormy the next.  There is some serious hardware at the back of boat. There are cranes, winches, and spools of wire ropes & chains. The Chief Boatswain is responsible for all deck operations and deploying any gear overboard. The following video illustrates the sampling process using an Aleutian Wing Trawl net.

There is a camera (aka camtrawl) attached to the net along with a small pocket net. The pocket net is designed to catch tiny animals that slip through the AWT meshes. The pocket mesh only catches a small amount of escaping animals which can then be used to determine what was in the water column with the bigger pollock. The camtrawl has a pair of cameras that shoot stereo images of what is entering the net. The camtrawl was developed by NOAA scientists and its goal is to estimate the size and identify the species that enter the net using visual recognition software from University of Washington. The ultimate goal of the camtrawl is to be able to identify everything entering the net without ever having to actually catch the fish.

 

This slideshow requires JavaScript.

A limitation of the AWT is that it can’t go closer than a few meters from the sea floor. Pollock are semi-pelagic so they are sometimes down at the sea floor and a different net is used. The Poly Nor’Easter (PNE) is used to trawl along the bottom of the Gulf of Alaska because the bottom can be rocky. The PNE has roller gear along its bottom to keep it from getting stuck. The opening of the PNE is 6 meters tall and 15 meters wide and also funnels to a codend.

There is a third net on Oscar Dyson called the Methot and it is used to catch large plankton such as krill. The Methot is so small that it sits on the deck and is easily lifted and put into the water. The net you use is determined by what you are trying to catch and where they are located in the water column.

Interview with Ryan Harris

Chief Boatswain

Chief Boatswain Ryan Harris managing Oscar Dyson crane.

  • Official Title
    • Chief Boatswain
  • Normal Job Duties
    • I am in charge of the deck operations on board the ship from deploying gear over the side to up keep of the ship.
  • How long have you been working on Oscar Dyson?
    • 15 months
  • What is your favorite thing about going to sea on Oscar Dyson?
    • I get to see things normal people do not.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • 11 years ago I fell in love with the excitement of travel.
  • What are some of the challenges with your job?
    • Trying to keep all the gear working to complete the mission.
  • What are some of the rewards with your job?
    • I get to serve my country and leave something behind that me and my family can be proud of.
  • Describe a memorable moment at sea.
    • Seeing killer Whales 5 feet away.

Interview with Tom Stucki

Lead Fishermen

Lead Fishermen Tom Stucki on the NOAA ship Oscar Dyson. Image by Matthew Phillips.

  • Official Title
    • Lead Fishermen
  • Normal Job Duties
    • I run the winches for trawls, Maintain and fix the nets, help with maintenance of our equipment. Paint and preserve the ship when time and weather allows, clean up inside of ship.
  •  How long have you been working on Oscar Dyson?
    • 2 months this time and a month long trip last year. I am a relief pool employee. I fill in where the fleet needs me.
  • Why the ocean? What made you choose a career at sea?
    • I grew up on the coast in a fishing community.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • The crew and work we do.
  • Why is your work (or research) important?
    • Our work is translated back to the commercial fleets so we don’t end up overfishing.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • Once I got out of the Army and went on my first successful Salmon fishing trip.
  • What part of your job with NOAA (or contracted to NOAA) did you least expect to be doing?
    • Traveling as a relief pool employee.
  • What are some of the challenges with your job?
    • Working 12 hour days for months at a time.
  • What are some of the rewards with your job?
    • Knowing that the work I am helping with actually matters and hopefully will have positive implications down the road.
  • Describe a memorable moment at sea.
    • There are lots but its always nice in the middle of a trawl when you look up the sun is setting the water is flat calm and you think to yourself “yeah, I get paid for doing this.

Interview with Jay Michelsen

Skilled Fisherman

  • Official Title
    • Skilled Fisherman
  • Normal Job Duties
    • Operations of equipment to facilitate the needs of the science party.
  •  How long have you been working on Oscar Dyson?
    • two years
  • Why the ocean? What made you choose a career at sea?
    • I love the challenge of creating something stable from something so uncertain and ever changing as the ocean.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • Seeing some of the creatures that the ocean has living in its depth.
  • Why is your work (or research) important?
    • My work is important more for personal reasons, I am able to support my family and make their lives more comfortable. My work on the ship is nothing special besides understanding the rigging and being able to trouble shoot issues that arise just as quickly as they show up.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • I have wanted to pursue a career on the water for as long as I can remember, however it was my mother five years ago who pushed me to follow that desire.
  • What are some of the rewards with your job?
    • I enjoy seeing the creatures that we pull up from the ocean. The pay isn’t bad. If you are able to stay in for a long period of time, you can get a stable retirement.
  • Describe a memorable moment at sea.
    • There was a time that we brought up a salmon shark in the net and I was able to get it back into the water by cutting a hole in the net and pulling it out with the help of another deckhand. It was exhilarating!

Personal Log

Me in the survival suit.

I will admit that my biggest concern with going to sea was the thought of falling overboard. Now that I have been on Oscar Dyson I have learned that safety is a top priority and there are a lot of procedures for keeping everyone productive yet safe. Every week there are safety drills such as fire, abandon ship, and person overboard. The one I like the most is the abandon ship because I get to try on the survival suit. The waters here are so cold that survival overboard is unlikely without the survival suit.

It is comforting to know that the crew of Oscar Dyson work hard to keep themselves and everyone on board safe. I am no longer afraid of falling overboard because I’ve learned to be safe when navigating around the vessel and I have finally developed my sea legs – well sort of! The weather has been amazing with smooth sailing almost everyday. We did have a few days with some rolling seas and I had to put a seasickness patch behind my ear.

 

Education Tidbit: NOAA Fisheries Website

Another cool NOAA website that lets you explore deeper into fisheries and this video shows you how to find information for educators and students.

Did You Know?

The average size of a Bering Sea commercial fishing net is 60m tall by 120m wide.

Sian Proctor: A Ship & Seashells! July 3, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard NOAA Ship Oscar Dyson

July 2 – 22, 2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 3, 2017

Weather Data from the Bridge

Latitude:   57° 47′ 24″ N
Longitude: 152° 24′ 26″ W
Time: 1000
Sky: Broken Clouds
Visibility:  10 nautical miles
Wind Direction: 068
Wind Speed:  5 knots
Sea Wave Height:   <1 foot swell
Barometric Pressure:  1013.3 millibars
Sea Water Temperature:   9.0° C
Air Temperature:   9.8° C

IMG_2307

NOAA Ship Oscar Dyson in Kodiak, Alaska

Science and Technology Log

Oscar Dyson is one of NOAA’s fisheries survey vessels. It was commissioned in 2005 and its home port is Kodiak, Alaska. The ship was named after the Alaskan fisherman Oscar Dyson who was an activist for improving the fishing industry. He passed away in 1995. The purpose of Oscar Dyson is to collect data on marine life and ecosystems primarily in the Bering Sea and Gulf of Alaska. Most of the research has been focused on the management of Alaska pollock, which is the largest fishery by volume in the United States. The ship houses a crew of up to 24, which includes NOAA Corps officers, engineers, deck hands, survey technicians, stewards, and electronic technicians along with up to 15 scientists. They all work together to make daily operations on the Oscar Dyson a success.

The 208 ft. long Oscar Dyson runs on 4 super charged diesel engines. The engines are designed to produce up to 3 megawatts of electricity a day. The alternating current is converted into direct current in order to power the two propulsion motors. Oscar Dyson’s engine room is fully automated and will add or remove diesel generators based on load demand. Oscar Dyson has a cruising speed of 12 knots and a range of 12,000 nautical miles.

I was pleasantly surprised by how spacious my accommodations are on Oscar Dyson. I am in a 4-person room but have only 1 roommate. Her name is Alex Padilla. She is an ocean engineering graduate student from University of New Hampshire interested in  studying the acoustics of bubbles. Our room has bunk beds on both sides of the room, a desk, multiple storage lockers, a toilet & shower, and a large wall mounted TV with movies and Direct TV.

This slideshow requires JavaScript.

Just down the passageway from my stateroom is a crew lounge where we can gather and watch movies. There is a mess deck (cafeteria) that serves three meals a day and is open 24/7 for soup, salad, and snacks. Oscar Dyson has a variety of labs that I will cover in future blogs. I was fortunate to have 3 days on the ship before our departure and have become somewhat familiar with the layout of the ship.

Click here for more specification on the Oscar Dyson: NOAA Ship Oscar Dyson Specification

Personal Log

I got to go on a field trip to Fossil Beach before leaving Kodiak and here is a short video about my experience.

To dive deeper into the fossils and geologic history of that region you can click this link for Allison and Marincovich Jr’s geologic survey paper: A Late Oligocene or Earliest Miocene Molluscan Fauna From Sitkinak Island, Alaska

Click this link for more information on concretions.

Did You Know?

The Weather Bureau was founded in 1870 and Fish and Fisheries in 1971, making up the first conservation agency for the United States. The National Oceanographic and Atmospheric Administration was started in 1970 as an agency within the department of Commerce. Today NOAA has many branches that focus on weather, climate, ocean & coasts, fisheries, satellites, marine & aviation, etc. You can learn more about the history of NOAA and the various branches by clicking this link: NOAA.gov