Laura Guertin: My Journey Begins on NOAA Ship Oscar Dyson, May 31, 2023

NOAA Teacher at Sea

Laura Guertin

Aboard NOAA Ship Oscar Dyson

May 31 – June 22, 2023


Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska

Geographic Area of Cruise: Islands of Four Mountains area, Western Gulf of Alaska
Location (in port): 57o 47.0200′ N, 152o 25.5543′ W

Date: May 31, 2023

Not every educator has the amazing opportunity to volunteer with scientists on a NOAA ship. But in 2014, that opportunity became a reality for me when I joined NOAA Ship Thomas Jefferson for a hydrographic survey in the Atlantic Ocean. Now my journey at sea with NOAA continues in 2023 as I head out on NOAA Ship Oscar Dyson for an acoustic-trawl survey of walleye pollock populations in the Gulf of Alaska.

Ever since I was an undergraduate intern for two summers at NOAA Maine Operations Center – Atlantic in Norfolk, VA, I wanted to sail on a NOAA ship. The NOAA Teacher at Sea (TAS) program opened that door for me and has provided so much, from my own advancement of the science and technology used to map the ocean floor, to content and stories I share with students and at science outreach events for the public. Now as a TAS alumna, I can’t wait to see how much more I can learn, teach, and share from my latest ocean expedition with NOAA.

Photo of Laura Guertin on a boat on the Atlantic ocean
Offshore of Miami, Florida, where I went to graduate school (University of Miami – Rosenstiel School of Marine & Atmospheric Science)

I’m a college professor, teaching introductory-level earth science courses primarily for non-STEM majors at Penn State Brandywine in Media, Pennsylvania. I am dedicated to not only helping my students build their science literacy but also seeing the relevance of why and how science matters in their present and future lives. My research has involved using technology tools to enhance student learning of geoscience content, with my current work focusing on having students produce audio narratives (or “podcasts”).

Photo of Laura Guertin with RDML Gallaudet standing in front of flags in DC office
RDML Gallaudet and I in his office in Washington DC

I also blog for the American Geophysical Union (AGU) about educational technology, pedagogy, and science communication on my blog GeoEd Trek. I’ve dedicated several posts on NOAA and its programs and resources . But it was my blog post A New Year’s resolution: help the public learn about NOAA (December 30, 2017) that caught the attention of RDML Tim Gallaudet, Assistant Secretary of Commerce for Oceans and Atmosphere and Acting Under Secretary of Commerce for Oceans and Atmosphere at that time. He was kind enough to invite me to his office in Washington DC to thank me for the post – and, naturally, I wrote up a blog post about the visit and our conversation! That visit has been “the” highlight of all my NOAA experiences! (*see A conversation about science communication with NOAA’s RDML Tim Gallaudet, Ph.D. (March 13, 2018))

Heading back out to sea with NOAA in 2023 is special for so many reasons. Life for all of us was disrupted in March 2020 – the COVID pandemic has been long and hard. My teaching and research has had so many twists and turns, and I still don’t know how everything will be moving forward. Getting out to sea on my first-ever fisheries expedition is not just exciting for me, but it has been heartwarming to see how many of my students and colleagues are sending me messages and looking forward to frequent updates! In a way, I’m taking so many people out to sea with me, and I’m going to work so hard to make this an informative and thrilling adventure for us all!

Photo of book cover, Endless Novelties of Extraordinary Interest - The Voyage of H.M.S. Challenger and the Birth of Modern Oceanography
Cover photo of Macdougall’s book on the Challenger expedition

Last year (2022) was a notable year for the field of oceanography. It was the 150-year celebration of when the H.M.S. Challenger set sail to collect meteorological and oceanographic data ranging from deep sea soundings and temperatures to biological samples. Although there were several ships that went out on scientific expeditions prior to 1872, the Challenger expedition (from 1872-1876) is the one credited as giving rise to the field of oceanography – and it’s interesting that before 1872, the term “oceanography” didn’t even exist in any dictionaries! I read the book Endless Novelties of Extraordinary Interest: The Voyage of H.M.S. Challenger and the Birth of Modern Oceanography by Doug Macdougall, and I couldn’t help but make connections between the methods of oceanographic research back at the time of Challenger versus today. Keep a look out for many comparisons between the work and logistics of Challenger to my experiences on Oscar Dyson in my upcoming blog posts – no doubt I will be sharing some current items of “extraordinary interest!”

I’m also looking forward to continuing to explore the intersections of science and art (STEAM) can be used to engage audiences and to communicate science data. I like to crochet temperature data and use these temperature records created in yarn for teaching and outreach (it is similar to the amazing work of The Tempestry Project!). While on board Oscar Dyson, I’ll not only be exploring under the sea but looking up towards the sky as my atmospheric observations will inform my Stitch the Sky project! Stay tuned for a future blog post to follow along and/or to create your own data visualization for your location.


*If you are interested in reading about my first TAS experience on NOAA Ship Thomas Jefferson, here are direct links to those blog posts:

Photo of Laura Guertin in front of the hull of the NOAA Ship Thomas Jefferson
NOAA Ship Thomas Jefferson (at Marine Operations Center-Atlantic, 2014)

Phil Moorhouse: Look What the Net Dragged In! September 12, 2019

Pavlof Volcano

NOAA Teacher at Sea

Phil Moorhouse

Aboard NOAA Ship Oscar Dyson

August 27 – September 15, 2019


Mission: Fisheries-Oceanography Coordinated Investigations.

Geographic Area of Cruise: Gulf of Alaska (Kodiak – Aleutian Islands)

Date: September 12, 2019

Weather Data from the Bridge

Latitude: 57 35.35 N
Longitude: 153 57.71 W
Sea wave height: 1 ft
Wind Speed: 14 knots
Wind Direction: 208 degrees
Visibility: 8 nautical miles
Air Temperature: 15.4 C
Barometric Pressure: 1002.58 mBar
Sky:  Overcast


Science and Technology Log

Well, we only have a few days left on this trip and it looks like mother nature is going to force us to head for Dutch Harbor a little early.  I thought this might be a good time to spend some time sharing some information on some of the species we have been pulling out of the ocean.  This is far from a complete list, but just the ones that made “the cut”.

At the top of the list has to be the Pollock.  After all, this is the primary objective of this study.  On the left is an adult three-year-old pollock and on the right is an age-0 pollock.  The sampling of age-0 pollocks is a good indicator of the abundance of the future population.

There were several species of salmon caught on our trawls.  On the left is a Coho Salmon and on the right is a Pink Salmon.  These fish are very similar, but are classified as separately Coho Salmon are larger and have larger scales.  Coho also has a richer, fuller flavor with darker red meat while the Pink Salmon has a milder flavor and a softer texture.

zooplankton
Another important part of this survey is the collection and measurement of zooplankton as this is a primary food source and the amount and health of the zooplankton will have a lasting impact on the ecology of the fish population in the area.
capelin
Capelin is another common fish caught in our trawls. This fish eats krill and other crustaceans and in turn is preyed upon by whales, seals, cod, squid, and seabirds.
Pacific Saury
The Pacific Saury was a fish that wasn’t expected to be found in our trawls. Also called the knifefish, this species always seemed to be found in substantial quantities when they were collected – as if the trawl net came across a school of them. They are found in the top one meter of the water column.
Prowfish
The Prowfish was another interesting find. This fish is very malleable and slimy. Adults tend to stay close to the ocean floor while young prowfish can be found higher up in the water column where they feed on jellyfish. As with the saury, the prowfish was not kept for future study. It was weighed, recorded, and returned to the water.

Jellyfish were abundant on our hauls.  Here are the five most common species that we found. 

bubble jellyfish
The Bubble Jellyfish, Aequorea sp., is clear with a rim around it. This jellyfish is fragile and most of them are broken into pieces by the time we get them from the trawl net and onto the sorting table.
moon jellyfish
The Moon Jellyfish, Aurelia labiata, is translucent and when the sun or moon shines on them, they look like the moon all lit up.
white cross jellyfish
The White Cross Jellyfish, Staurophora mertensi, was another mostly clear jelly that was very fragile. Very few made it to the sorting table in one piece. You have to look close it is so clear, but they can be identified by their clear bell with a distinctive X across the top of the bell.
Lion's mane jellyfish
The Lion’s Mane Jellyfish, Cyanea capillata, are the largest known species of jellyfish. These guys can become giants. They are typically a crimson red but could appear faded to a light brown.
sunrise jellyfish
The Sunrise Jellyfish, Chrysaora melanaster, was the most common jelly that we found. It is also arguably the least fragile. Almost all made it to the sorting table intact where they were counted, weighed, recorded, and returned to the water. It lives at depths of up to 100 meters, where it feeds on copepods, larvaceans, small fish, zooplankton, and other jellyfish.
arrowtooth flounder
Arrowtooth flounder are a relatively large, brownish colored flatfish with a large mouth. Just one look at its mouth and you can tell how it got its name. Their eyes migrate so that they are both on the right side and lie on the ocean floor on their left side.
Eulachon
Eulachons, sometimes called candlefish, were another common find on the sorting table. Throughout recent history, eulachons have been harvested for their rich oil. Their name, candlefish, was derived from it being so fat during spawning that if caught, dried, and strung on a wick, it can be burned as a candle. They are also an important food source for many ocean and shore predators.
vermilion rockfish
The Vermilion Rockfish – This guy was the only non-larval rockfish that we caught. Most can be found between the Bering Sea and Washington State.

While the Smooth Lumpsucker is significantly larger than the Spiny Lumpsucker, both have unique faces.  The Smooth Lumpsucker is also found in deeper water than the smaller Spiny Lumpsucker.

Most of the squid caught and recorded were larval.  Here are a couple of the larger ones caught in a trawl.

There were a variety of seabirds following us around looking for an easy meal.  The Black-footed Albatross on the right was one of several that joined the group one day.

Pavlof Volcano
And of course, I couldn’t leave out the great view we got of Pavlof Volcano! Standing snow capped above the clouds at 8,251 feet above sea level, it is flanked on the right by Pavlof’s Sister. Pavlof last erupted in March of 2016 and remains with a threat of future eruptions considered high. Pavlof’s Sister last erupted in 1786. This picture was taken from 50 miles away.


Personal Log

In keeping with the admiration I have for the scientists and crew I am working with, I will continue here with my interview with Rob Suryan. 

Robert Suryan is a National Oceanic and Atmospheric Administration Scientist. He is currently a Research Ecologist and Auke Bay Laboratories, Science Coordinator, working on the Gulf Watch Alaska Long-term Ecosystem Monitoring Program.

How long have you been working with NOAA?  What did you do before joining NOAA?

One and a half years.  Prior to that, I was a professor at Oregon State University

Where do you do most of your work?

In the Gulf of Alaska

What do you enjoy about your work?

I really enjoy giving presentations to the general public, where we have to describe why we are conducting studies and results to an audience with a non-science background. It teaches you a lot about messaging! I also like working with writers, reporters, and journalists in conducting press releases for our scientific publications. I also use Twitter for science communication.

Why is your work important?

Having detailed knowledge about our surroundings, especially the natural environment and the ocean. Finding patterns in what sometimes seems like chaos in natural systems. Being able to provide answers to questions about the marine environment.

How do you help wider audiences understand and appreciate NOAA science?

I provide information and expertise to make well informed resource management decisions, I inform the general public about how our changing climate if affecting marine life, and I train (and hopefully inspire) future generations of marine scientists

When did you know you wanted to pursue a career in science an ocean career?

During middle school

What tool do you use in your work that you could not live without?

Computer! So much of our instrumentation and sampling equipment are controlled by software interfaces. Also, much of my research involves data assimilation, analysis, creating graphs, and writing scientific papers. Although, at the very beginning of my career, most of our data collection was hand written, as were our scientific papers before typing the final version with a typewriter. So glad those days are gone!

If you could invent one tool to make your work easier, what would it be?

For in the office: a computer program that would scan all of my emails, extract the important info that I need to know and respond to, and populate my calendar with meetings/events. For the field: a nano-power source that provided unlimited continuous power for instruments AND global cell phone or wireless connectivity.

What part of your job with NOAA did you least expect to be doing?

I joined NOAA later in my career and had collaborated with NOAA scientists for many years, so everything was what I expected for the most part.

What classes would you recommend for a student interested in a career in Marine Science?

Biology, math, chemistry, and physics are good foundation courses. If you have an opportunity to take a class in marine biology at your school or during a summer program, that would be ideal. But keep in mind that almost any field of study can be involved in marine science; including engineering, economics, computer science, business, geology, microbiology, genetics, literature, etc.

What’s at the top of your recommended reading list for a student exploring ocean or science as a career option?

I originally studied wildlife biology before marine science and one of my favorite books initially was A Sand County Almanac, by Aldo Leopold. For marine biology, I would recommend The Log from the Sea of Cortez, by John Steinbeck.

What do you think you would be doing if you were not working for NOAA?

I would probably work at a university again – I was a professor at Oregon State University before working for NOAA.

Do you have any outside hobbies?

Pretty much any type of outdoor adventure, most frequently kayaking, mountain biking, hiking, camping, and beachcombing with my family and our dogs.

Phil Moorhouse: It’s Bongo Time! September 7, 2019

NOAA Teacher at Sea

Phil Moorhouse

Aboard NOAA Ship Oscar Dyson

August 27 – September 15, 2019


Mission: Fisheries-Oceanography Coordinated Investigations.

Geographic Area of Cruise: Gulf of Alaska (Kodiak – Aleutian Islands)

Date: September 7, 2019

Weather Data from the Bridge

Latitude: 56 15.09 N
Longitude: 157 55.74 W
Sea wave height: 8 ft
Wind Speed: 1.9 knots
Wind Direction: 179 degrees
Visibility: 10 nautical miles
Air Temperature: 12.8 C
Barometric Pressure: 1010.45 mBar
Sky:  Clear

Science and Technology Log:

One of the more technologically interesting pieces of equipment we are using is the Bongo net.  One of the main aspects of this cruise is the zooplankton survey. As I have stated before, this survey is important to studying the prey for the juvenile pollock and is done at the same stations where we trawl for juvenile pollock so that scientists looking at the data can compare the ecology of the pollock with the ecology of their prey.  The Bongo net is used to collect the zooplankton. This contraption is a series of two large and two smaller nets attached to metal rings. It gets its name because the frame resembles bongo drums.  

The diagram on the left shows a 20 cm bongo net set-up. (Photo credit: NOAA – Alaska Fisheries Science Center).  The picture on the right shows the Bongo we are currently using on the Oscar Dyson with two 60 cm nets and two 20 cm nets.

lowered bongo
The Bongo has just been lowered into the water and following its descent.

The bongo net design we are using includes two large nets on 60 cm frames with 500 micrometer nets and two small nets on a 20 cm frames with 153 micrometer nets.  The 500 micrometer nets catch larger zooplankton and the 153 micrometer nets catch smaller zooplankton.  The diagram above has just two nets, but our Bongo has 4 total nets.  At the top of the bongo net setup is a device called the Fastcat.  This records information from the tow including the depth that bongo reaches and the temperature, salinity, and conductivity of the water.

This whole process involves a lot of working together and communication among the scientists and crew.  It usually involves three scientists, one survey tech, a winch operator, and the officer on the bridge. All members involved remain in radio contact to ensure that the operations run smoothly.  Two scientists and the survey tech work on the “hero deck”.  They oversee getting the nets overboard safely and back on the deck at the end of the evolution.  The unit is picked up and lowered over the side of the ship by a large hydraulic wench attached to the side A-frame.  Another scientist works in the data room at a computer monitoring the depth and angle of the Bongo as it is lowered into the water.  As the Bongo net is lowered, the ship moves forward at approximately 2 knots (2.3 mph).  This is done to keep the cable holding the Bongo at a 45-degree angle. A 45-degree angle of the wire that tows the Bongo is important to make sure that water flows directly into the mouth opening of the net.  One of the scientists on the hero deck will constantly monitor the wire angle using a device called an inclinometer or clinometer and report it to the officer on the bridge.  The bridge officer will then adjust the speed if necessary, to maintain the proper wire angle.
 

monitoring the bongo tow
Here, I am monitoring the angle of the Bongo wire using the inclinometer.
inclinometer
The flat side of the inclinometer gets lined up with the wire and an arrow dangles down on the plate and marks the angle.

The depth the Bongo is sent down depends on how deep the water is in that area (you wouldn’t want an expensive piece of equipment dragging on the ocean floor).  The Bongo is deployed to a depth of up to 200 meters or to a depth of no less than 10 meters from the bottom. When the Bongo is at the designated depth, the survey tech will radio the winch operator to bring the Bongo back up slowly.  It is brought back up slowly at 20 meters per minute and the 45-degree angle needs to continue to be maintained all the way back up. When the Bongo reaches the surface and is lifted back into the air, the survey tech and two scientists grab it and guide it back onto the deck.  This operation can be difficult when the conditions are windy, and the seas are rough.  

Once the Bongo has been returned to the deck, the scientist that was in the data room will record the time of the net deployment, how long it took to go down and back up, how much wire was let out, and the total depth of the station.  They will also come back out to read the flowmeters in order to see how much water has flowed through the net during the deployment. If anything goes wrong, this is also noted on the data sheet.

Next the nets are washed down with sea water, rinsing all material inside the net towards the codend.  The codend is the little container at the end of the net where all the plankton and sometimes other organisms are collected.  The codends can then be removed and taken into the Wet Lab to be processed with all the collected material placed in glass jars and preserved with formalin for future study.  

These samples are then shipped to Seattle and then on to Poland where they are sorted, the zooplankton identified to species, and the catch is expressed at number per unit area.  This gives a quantitative estimate of the density of the plankton in the water column and can provide good information on the overall health of the ocean as they indicate health of the bottom of the food chain.  After all, a high density of pollock prey means there is a good feeding spot for juvenile walleye pollock, which in turn means more Filet-O-Fish sandwiches down the line.

Species caught during the last Shift:

        Common Name            Scientific Name

  • Capelin                                          M. villosus
  • Northern Smoothtongue                      L. schmidti
  • Walleye Pollock                                      G. chalcogrammus
  • Eulachon or Candlefish                        T. pacificus
  • Arrowtooth Flounder            A. stomas
  • Rockfish                S. aurora
  • Smooth lumpsucker            A. ventricosus
  • Prowfish                Z. silenus
  • Sunrise Jellyfish            C. melanaster
  • Lion’s Main Jellyfish            C. capillata
  • Moon Jellyfish            A. labiata
  • Bubble Jellyfish            Aequorea sp.
  • Fried Egg Jellyfish            P. camtschatica
  • Shrimp
  • Isopods


Personal Log:

As I have said, I am working with some interesting people with some very interesting stories.  I am going to start sharing a little of their stories here.

LT Laura Dwyer
LT Laura Dwyer is the Field Operations Officer on the Oscar Dyson.

How long have you been working with NOAA?  What did you do before joining NOAA?

Laura has been a commissioned officer with the National Oceanic and Atmospheric Administration (NOAA) Corps for almost seven years.  Before joining NOAA, Laura attended James Madison University, earning her degree in International Business.  She went to Bali, working as a dive instructor before moving on to Australia to do the same. While in Australia, she decided she wanted to study Marine Biology and came back to the states to study at George Mason University.  

Where do you do most of your work?

Most of the time, she can be found on the bridge navigating the ship.

What do you enjoy about your work? 

Laura said the most fun thing about the job is driving a 209-foot ship.  

Why is your work important?

She gets to safely navigate the ship safely while working with scientists to help them get their work done.

How do you help wider audiences understand and appreciate NOAA science?

Laura had the opportunity to be the second NOAA officer who completed a cross-agency assignment with the Navy.  While there, she said she was able to show the Navy personnel that they were using NOAA products such as navigational charts and weather data.  Most of them did not realize that these products were made by NOAA.  
 

When did you know you wanted to pursue a career in science an ocean career?

Laura said that while she was in Australia, she was working with another diver who was going out counting fish species for his PhD.  She said that experience made her realize her father was right all along and she should have studied science.

What tool do you use in your work that you could not live without?

Radar

What part of your job with NOAA did you least expect to be doing?

Driving ships.  She also stated that she never expected to be part of a Navy Command and shooting small arms weapons.

What classes would you recommend for a student interested in a career in Marine Science?

A lot of your regular classes, but definitely any conservation classes.

What’s at the top of your recommended reading list for a student exploring ocean or science as a career option?

  • “Unnatural History of the Sea” – about overfishing throughout history
  • “The Old Man and the Sea” by Ernest Hemmingway

What do you think you would be doing if you were not working for NOAA?

Laura said she would probably be going back to school to work on her Masters in Marine Biology, particularly coral conservation, or going to Fiji to be a dive instructor.

Do you have any outside hobbies?

Diving, reading, working on puzzles, and just being outside exploring (I also understand that she is a pretty good water polo player.)

Did You Know?

For each minute of the day, 1 billion tons of rain falls on the Earth.

Every second around 100 lightning bolts strike the Earth.

Question of the Day:

The fastest speed of a falling raindrop is __________.

a. 10 mph

b. 18 mph

c. 32 mph

d. 55 mph

Answer: b

Phil Moorhouse: We’re At Sea! September 2, 2019

NOAA Teacher at Sea

Phil Moorhouse

Aboard NOAA Ship Oscar Dyson

August 27 – September 15, 2019


Mission: Fisheries-Oceanography Coordinated Investigations.

Geographic Area of Cruise: Gulf of Alaska (Kodiak – Aleutian Islands)

Date: September 2, 2019

Weather Data from the Bridge

Latitude: 57 35.35 N
Longitude: 153 57.71 W
Sea wave height: 1 ft
Wind Speed: 14 knots
Wind Direction: 208 degrees
Visibility: 8 nautical miles
Air Temperature: 15.4 C
Barometric Pressure: 1002.58 mBar
SkyOvercast

After a series of unfortunate events, we finally got underway!  It turns out arriving several days before the ship departure ended up being very helpful.  My checked bag did not arrive with me and the morning of departure it still had not arrived.  I had given up on seeing it before we pulled out and gone shopping for replacement “essentials”.  Then, an hour before our scheduled departure I got a call from my airline hero saying that my bag had finally made it to Kodiak.  A quick trip to the airport and back to the ship and I was ready to go. That’s when the waiting game really started. Repairs to the Bongo apparatus caused a several hour delay as we waited on repairs, then after moving out into open water to test it, we found that it still wasn’t working properly.  The ship crew worked to make adjustments and finally, we were off!  


Science and Technology Log

We departed for the stations where the previous group had left off.  The first couple of stations were methodical as everyone was becoming accustomed to what to expect. I have been asked by multiple people what kinds of things are going on during these expeditions and what the day-to-day life of a scientist is on this ship.  There are several projects going on. The primary focus is on assessing the walleye pollock population, but there is also data being collected simultaneously for scientists working on other projects.

Each station starts with a bongo tow in which the bongo nets are lowered over the side and pulled along collecting plankton.  Once the bongo is pulled back onto the ship, the flowmeters are read to record the amount of water that went through the net, and the nets are then carefully washed down to concentrate the plankton sample into the cod end.  This end piece can then be removed and taken into the lab area to prepare the sample for shipping back to the NOAA labs. As this process is being completed, our ship’s crew is already working to bring the ship back around to complete a trawling operation in the same area. 

Trawling operations
Trawling operations off the ship’s stern. During an average trawl, the net will extend up to 540 meters behind the boat and up to 200 meters deep.
at work on the bridge
A good example of scientists and crew working together during a trolling operation. Ensign Lexee Andonian is manning the helm and watching the trawling operations on the monitor while scientist, Annette Dougherty is recording data off the monitors.

It is preferable to complete both operations from the same location since the plankton are the primary food source and a comparison can then be made between the amount of producers and consumers. Unfortunately, this is not always possible.  During one of the trials yesterday, a pod of humpback whales decided they wanted to hang out just where we wanted to trawl.  Because of this, it was decided to attempt to move away from the whales before starting the trawl.  When all goes well, the trawling nets should bring in a nice variety of species and in our case, a large number of pollock!  For the first two trials, we found mostly jellyfish with only a few other fish samples.  Later trials, though, have been much more successful in finding a better mix of species.  Below is a list of species caught during the last Station.

As the catch is spread onto the table, all other sea life is separated from the jellyfish and sorted for measurement and recorded.  The jellyfish are weighed as a mixed sample, then re-sorted by species and weighed again.  The fish are all measured, recorded, and bagged and frozen for future use by scientists back in the lab in Seattle that are working on special projects.

Species caught during the last Station:

Common NameScientific Name
Sockeye SalmonO. nerka
Northern SmoothtongueL. schmidti
Walleye PollockG. chalcogrammus
unidentified juvenile GunnelsPholidae family
Eulachon, or CandlefishT. pacificus
Isopods
Shrimp
Sunrise JellyfishC. melanaster
Lion’s Mane JellyfishC. capillata
Moon JellyfishA. labiata
Bubble JellyfishAequorea sp.


Personal Log

Drills were the word of the day the first day as we went through fire drills and abandon ship drills.  It is always nice to know where to go if something goes wrong while out at sea.  I now know where the lifeboats are, how to get into my immersion suit, and what to do in case of a fire on the ship.

*** Of course, just when we really start to get into the swing of things, a weather front comes through that forces us to find a place to “hide” until the waves calm down.

On another note, I have seriously been geeking out enjoying talking to the NOAA scientists about their research and experiences. There is a wealth of information in the minds of the scientists and crew on this ship.  I have initially focused on getting to know the scientists I am working with and slowly branching out to get to know the crew.  Hopefully I will be able to translate some of my admiration here in the coming posts.

Did You Know?

Did you know, there are approximately 1800 thunderstorm events going on in Earth’s atmosphere at any one time?

Question of the Day:

What type of fish can be found in McDonald’s Filet-O-Fish sandwich, Arby’s Classic Fish Sandwich, Long John Silver’s Baja Fish Taco, Captain D’s Seafood Kitchen, and Birds Eye’s Fish Fingers in Crispy Batter?


Answer: Pollock

Callie Harris: Back to Land Life, September 3, 2019

NOAA Teacher at Sea

Callie Harris

Aboard NOAA Ship Oscar Dyson

August 13 – 26, 2019


Mission: Fisheries-Oceanography Coordinated Investigations

Geographic Area of Cruise: Gulf of Alaska

Date: 9/3/19

Weather Data from Key West, FL

Latitude: 24.551°N
Longitude: 81.7800 °W
Wind Speed: 15 MPH
Air Temperature: 32°C
Sea Temperature: 31°C
Barometric Pressure: 1009 mbar


Personal Log

I can’t believe I’ve been back on land for one week already. My 14 days on the NOAA Ship Oscar Dyson flew by. Everyone has asked me how my trip was and I simply state, “epic.” It was by far one of the coolest experiences of my life. I am proud of myself for taking on such an adventure. I hope I inspire my daughters, students, and colleagues to never stop daring, dreaming, and discovering. The trip itself exceeded my highest expectations. I realized how lucky I was to have such warm weather and calm seas. The scientists agreed it was one of calmest expeditions they have ever had in terms of sea conditions. One of the coolest experiences of being a Teacher at Sea was the ability to see every aspect of the vessel. The NOAA Corps officers, the deck crew, and the scientists were so welcoming and friendly. I truly felt at home on board wherever I ventured. By the end of our cruise, our science watch was seamless while conducting the fish surveys. I got the biggest compliment on the last day of our trip when two of the deck crew said they thought I was one of the NOAA scientists the whole time. They both had no idea I was actually a teacher at sea until I mentioned that I was headed back home to teach in Key West.

Callie in front of plane
Callie prepares to head home. Photo Credit: Ali Deary

Just when I thought my adventure was over, I had one of my most memorable moments of the trip. The science team and I had some down time while waiting to board our flight out of Kodiak to Anchorage. We were so thrilled to be back on land that we decided to go on a walk-about around the airport area. We stumbled upon a freshwater river where Pink Salmon were spawning (aka a salmon run). The salmon run is the time when salmon, which have migrated from the ocean, swim to the upper reaches of rivers where they spawn on gravel beds. We stood on the river bank in awe watching hundreds of them wiggle upstream. We also came across fresh bear scat (poop) that was still steaming. It was pretty crazy! Our walk-about was such a random fun ending to an epic adventure.

Pink salmon run
Pink salmon run
at the river
Callie and friends from NOAA Ship Oscar Dyson. Photo Credit: Matt Wilson
Fresh bear scat!
Fresh bear scat!

I am so thankful for this opportunity. It was the trip of a lifetime. It was an honor and a privilege that I will never forget. I will be sharing it with my students for years to come. I am looking forward to attending future NOAA Teacher at Sea Alumni gatherings to meet fellow TAS participants and continuing this amazing experience.

Jessica Cobley: A Busy Return to Home, September 2, 2019

NOAA Teacher at Sea

Jessica Cobley

Aboard NOAA Ship Oscar Dyson

July 19 – August 8, 2019


Mission: Midwater Trawl Acoustic Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Yakutat Bay)

Date: 9/2/2019

Weather Data from Juneau, Alaska:  

Lat: 58.3019° N, Long: 134.4197° W 
Air Temp:  12º C

Personal Log

Phew…finally a day to sit back and take a breath! A few days after getting back from sea, I attended our school district’s inservice and am now 2 weeks into the new school year. It is hard to believe how quickly the summer break goes by!

Back in Juneau, the sunny, warm weather has continued, which has also meant no shortage of adventures. Since getting home, friends and I have hiked the Juneau Ridge, fished in Lynn Canal, and hunted on Admiralty Island. It has been a warm welcome home! A group of us are also training for the upcoming Klondike Running Relay from Skagway, AK to Whitehorse, YT. Needless to day, I was VERY happy to have a treadmill and workout equipment on the boat to keep active while at sea.

Jess' dogs
Our pups at the end of a trail run to the Herbert Glacier in Juneau.
Admiralty Island
Spotting deer at sunset on Admiralty Island.
Jess and fish
Fishing after a night camping on a nearby island. Photo by Max Stanley

On the school side of things, I felt lucky to have some time to spend curriculum planning while at sea. It has helped me have a smooth start to the year and give the new 7th graders a great start. I am definitely looking forward to sharing my Teacher at Sea experience with all my new kiddos.

With the return to school, my relaxing days at sea have been replaced with nonstop action in and out of the classroom. Not only does the school year bring teaching science classes, but also an Artful Teaching continuing education course, coaching our middle school cross country team, and planning events for SouthEast Exchange (SEE). SEE is an organization I am a part of that works to connect local professionals, like those I met at sea, with local teachers. Our goal is to bring more real-world and place-based experiences into our classrooms. Through my involvement with SEE, I met and worked with NOAA scientist Ebett Siddon. Along with collaborating together on a unit about Ecosystem Based Fisheries Management for my 7th graders, she also told me about Teachers at Sea!

With that, I would like to say a HUGE thank you to all of the staff at NOAA who help make this program possible. It was a once in a lifetime experience that has helped me better understand the field I am teaching about. I look forward to using what I have learned about studying fish populations and the unique career opportunities at sea with my students. I know they will appreciate my new expertise and see that there always opportunities to keep learning!

Kodiak Island mural
Last photo taken in Kodiak! Photo by Ruth Drinkwater

Thank you again and please consider applying for this program if you are a teacher reading this. 🙂

Callie Harris: Life Above and Below Deck, August 24, 2019

NOAA Teacher at Sea

Callie Harris

Aboard NOAA Ship Oscar Dyson

August 13-26, 2019


Mission: Fisheries-Oceanography Coordinated Investigations

Geographic Area of Cruise: Gulf of Alaska

Date: 8/24/19

Weather Data from the Bridge

Latitude: 57° 01.84 N
Longitude: 151 ° 35.12 W
Wind Speed: 8.45 knots
Wind Direction: 257.79°
Air Temperature: 15.3°C
Sea Temperature: 14.6°C
Barometric Pressure: 1010 mbar

Science and Technology Log

Chief Scientist Matt Wilson showed me how to collect otolith samples from pollock. Otoliths are the inner ear bones of fish that keep a record of a fish’s entire life. Similar to tree rings, scientists count the annual growth rings on the otolith to estimate the age of the fish. The size of the ring can also help scientists determine how well the fish grew within that year. To remove the otolith, a cut is made slightly behind the pollock’s eyes. Using forceps, you then remove the otoliths carefully.

Pollock Otoliths
Pollock Otoliths
extracting otoliths
To extract the otoliths, Callie first makes a cut into the top of the pollock’s head. Photo by Lauren Rogers.
extracting otoliths
Next, Callie uses tweezers to extract the otoliths. Photo by Lauren Rogers.

NOAA Junior Unlicensed Engineer Blair Cahoon gave me a tour of the engine room yesterday. Before venturing below deck, we had to put on ear protection to protect our ears from the loud roars of engine equipment.

JUE Blair Cahoon
JUE Blair Cahoon
Oscar Dyson control panels
Oscar Dyson control panels
Oscar Dyson control panels
Oscar Dyson control panels

The Oscar Dyson has a total of four engines. The two larger engines are 12 cylinders and the two smaller engines are 8 cylinders. These engines are attached to generators. The motion of the engines gives force motion to the generators, which in turn power the entire ship. On a safety note, NOAA Junior Unlicensed Engineer Blair Cahoon also pointed out that the ship has two of every major part just in case a backup is needed.

Oscar Dyson engine
Oscar Dyson engine
Oscar Dyson generator
Oscar Dyson generator

 The engine room also holds the water purification system, which converts seawater into potable water. Each of the two evaporators can distill between 600-900 gallons of water a day. The Oscar Dyson typically uses between 800-1000 gallons of water a day. The engineers shared with me how this system actually works:

1.       Seawater is pumped onto the boat and is boiled using heat from the engine.

2.       Seawater is evaporated and leaves behind brine, which gets pumped off of the ship.

3.       Water vapor moves through cooling lines and condenses into another tank producing fresh water.

4.       This water is then run through a chemical bromide solution to filter out any leftover unwanted particles.

5.       The finely filtered water is stored in potable water holding tanks.

6.       The last step before consumption is for the water to pass through a UV system that kills any remaining bacteria or harmful chemicals in the water.

evaporator
One of two evaporators on board.
down the hatch
Down the ladder we go to the lower engine room

We then got to explore the lower parts of the engine room where I got to see the large rotating shaft which connects directly to the propeller and moves the ship. I have learned from my years of working on boats to be extremely careful in this area near the rotating shaft. You must make sure you do not have any loose clothing, etc. that could get caught or hung up in it.

Rotating shaft
Rotating shaft that connects to propeller.
Rotating shaft
Another view of the rotating shaft


Personal Log

I was unsure of what life would be like for two weeks on a scientific research vessel. We are now steaming towards station number 72 on day twelve at sea. We have done 65 bongo tows and 65 trawls. So yes, there is a lot of repetition day in and day out. However, each day brings its own set of challenges and/or excitement. Weather (wind direction, wave direction, current, etc.) makes each station uniquely challenging for the NOAA Corps Officers on the bridge and the deck crew below. I stand back in awe watching it all come together on our 209 foot ship. I get excited to see what new creature might appear in our latest trawl haul besides the hundreds of kilograms of jellyfish, haha. 


Did You Know?

One of the coolest things I learned on my engine tour is that when large equipment parts need to be replaced (like an engine or generator), engineers actually cut a giant hole in the side of the ship to get the old equipment out and the new parts in rather than take it apart and lug it up through the decks piece by piece. 

 
Animals Seen Today

The overnight science shift found a juvenile Wolf Eel in one of their trawl samples. It is not actually a wolf or an eel. It is in fact, a fish with the face of a ‘wolf’ and the body of an eel. Its appearance has been described as having the eyes of a snake, jaws of a wolf, and the grace of a goldfish. They can grow up to eight feet in length and weigh upwards of ninety pounds. Juveniles have a burnt orange hue and the adults are brown, grey, or green. Check out this website for more info about the super creepy wolf eel: https://www.alaskasealife.org/aslc_resident_species/44

adult wolf eel
Adult wolf eel. Image credit: Monterey Bay Aquarium.


Something to Think About

In one of our trawls, we processed 850 kilograms of jellyfish…. That’s 1,874 pounds of jellyfish!!!

Phil Moorhouse: Science on the High Seas, August 27, 2019

NOAA Teacher at Sea

Phil Moorhouse

Aboard NOAA Ship Oscar Dyson

August 27 – September 15, 2019


Mission: Fisheries-Oceanography Coordinated Investigations.

Geographic Area of Cruise: Gulf of Alaska (Kodiak – Aleutian Islands)

Date: August 27, 2019


Personal Introduction:

OK, this may be the science geek in me, but I’m feeling a bit like Leonard from Big Bang Theory when he was invited on Stephen Hawking’s expedition to the North Sea.  My excitement has been simmering as I made it through what I thought was going to be an expedition to the Caribbean coral reefs – only to have it cancelled due to ship engine problems. Luckily, I was rescheduled for a different expedition; this time off the coast of Alaska.

There was a silver lining to having the first trip cancelled.  In its place, I was able to join with fellow science teachers and Chesapeake Bay Foundation staff for a week studying the Chesapeake Bay Watershed and the effects of global warming and erosion on Tangier Island.  It was interesting getting a taste of the scientific research done while taking samples and measuring water quality of both the James River and the Chesapeake Bay near Tangier Island for comparison.  The environmental challenges facing Tangier Island and the Chesapeake Bay are similar to the challenges facing other places.  Now I am anxious to head the other direction to the seas of Alaska to do some real scientific work aboard the Oscar Dyson

Science teachers to Chesapeake Bay
Science teachers to Chesapeake Bay!!!

Striped Burrfish – a native of the Chesapeake Bay, a bottom-dweller found in the grassbeds eating invertebrates such as hermit crabs and barnacles.

Blue Crab – living in the grass beds of the bay, they are an important economic species of the Chesapeake Bay as well as an important key to the reading the health of the bay. (and very tasty!)

Tangier waterman out checking crab pots. 35% of the blue crabs caught in the United States come from the Chesapeake Bay.

Tangier Island has shrank by 66% since 1850 and could completely disappear by the end of this century.


Science Introduction

The research team on NOAA Ship Oscar Dyson is conducting an acoustic-trawl (AT) survey to collect data, primarily on walleye pollock, to be used in stock assessment models for determining commercial fisheries quotas. When collecting data, scientists will work in 12 hour shifts and be looking to determine things such as species composition, age, length distribution etc. 

NOAA Ship Oscar Dyson
NOAA Ship Oscar Dyson
Photo credit: National Oceanic and Atmospheric Administration

Growing up as a farm boy in Kansas, I never dreamed I would have a chance to spend two weeks on a research ship in the middle of the ocean exploring a part of our world that we really know little about.  In teaching my students about the importance of learning about the world around us and taking care of this rock we live on, I find it ironic how we know more about space than we do about our oceans.  I myself spent a 20-year career in the Army that took me to numerous parts of the world, but my experience with the oceans has been limited to time at the beach, paddling or snorkeling close to the shore, or researching on land. 

This is one of the reasons I am so excited about being selected for this specific expedition.   I have joined the concerns of many scientists where it comes to the receding of our glaciers and icebergs and what this means to our Earth as a whole.  The health of our oceans is so important to the health of our earth as a whole. and yet we are just now realizing how our species has created such havoc to the ocean ecosystems.  I can’t wait to bring back everything I learn from this trip to share with my students. 

Callie Harris: Lots to See While at Sea, August 20, 2019

NOAA Teacher at Sea

Callie Harris

Aboard NOAA Ship Oscar Dyson

August 13-26, 2019


Mission: Fisheries-Oceanography Coordinated Investigations

Geographic Area of Cruise: Gulf of Alaska

Date: 8/20/19

Weather Data from the Bridge

Latitude: 58° 27.67 N
Longitude: 152 ° 53.00 W
Wind Speed: 5.96 knots
Wind Direction: 152°
Air Temperature: 12.4°C
Sea Temperature: 15°C
Barometric Pressure: 1008 mbar


Science and Technology Log

I feel the need to start off by stating that the shark did in fact swim away. During our mid-afternoon trawl haul back, Chief Boatswain Ryan Harris called over the radio that we had caught a shark in the trawl net. We quickly put on our boots, hard hats, and life preservers and headed to the back deck. Unfortunately, a 3.2m female Pacific Sleeper Shark had gotten caught in our trawl as bycatch. Thanks to the quick response of our NOAA deck crew, we were able to release the shark back into the water alive.

Unlike most sharks, the Pacific Sleeper Shark is predominantly a scavenger and rarely hunts. They are slow swimmers, but move through the water quite gracefully without much effort of body movement. This lack of movement allows them to catch prey easy since they don’t make much noise/ vibrations in the water. They feed by cutting and suction. The sleeper shark’s large mouth allows it to suck its prey in. Its spear-like teeth help cut prey down into smaller pieces. It then swallows its prey by rolling its head. For more info about this cool shark, visit: https://www.sharksider.com/pacific-sleeper-shark/ .

Bycatch is defined as the unwanted fish and other marine creatures caught (e.g. hooked, entangled or trapped) during commercial fishing for a different species. Bycatch is both an issue ecologically and economically. Bycatch can slow the rebuilding of overfished stocks. Organisms that are discarded sometimes die and cannot reproduce. These mortalities put protected species such as whales and sea turtles even further at risk. Bycatch can change the availability of prey and cause cascading effects at all trophic levels. Bycatch can also occur when fishing gear has been lost, discarded, or is otherwise no longer being used to harvest fish (aka marine debris).

Releasing shark from net
Releasing the shark from our trawl net.

NOAA Fisheries works hand in hand with fishing industries to better understand fishing gear, and to develop, test, and implement alternative fishing gear. For example, NOAA Fisheries and their partners developed turtle excluder devices to reduce sea turtle mortality in the southeastern shrimp trawl fishery. NOAA Fisheries funds the Bycatch Reduction Engineering Program that supports the development of technological solutions and changes in fishing practices designed to minimize bycatch. Laws like the Marine Mammal Protection Act and the Endangered Species Act also uphold the reduction of current and future bycatch of species.


Personal Log

It’s hard to believe that today is already day eight at sea. To be honest, I don’t even notice that I am on a ship anymore. We have been very lucky weather wise and the seas are still very calm. I have been spending more time on the bridge assisting with the ‘marine mammal watch’. As I said in blog two, we must keep an eye out for any marine mammals in the area before conducting any water surveys. The bridge is amazing because not only do you get the best view, but you also get to observe how the ship operates in terms of headings, maneuverability, and navigation.

Shelikof Strait
Shelikof Strait

The Shelikof Strait is breathtaking. Chief Electronics Technician Rodney Terry pointed out the white ‘cloud’ above one of the snow-capped mountains was actually an active volcano with a smoke plume rising above it. It was incredible to be able to look out and see a glacier and an active volcano in the same panorama.

Map of Kodiak Island
Map of Kodiak Island and Shelikof Strait. Credit: Kodiak archipelago images.

During one of my marine mammal watches on the bridge, I noticed an oddly flat area of land in the middle of the mountain range that ran along the shoreline. NOAA Corps Officer LT Carl Noblitt explained to me this was actually where a glacier had once weathered down part of the mountain range over time. The glacier has since melted so now all that remains today is its glacial trough.

glacial trough
The remains of a glacial trough.


Animals Seen Today

Besides our unexpected visitor today in the trawl, I was thrilled to hear Chief Boatswain Ryan Harris call out from the scientific deck for Orcas on the horizon. Orcas (aka Killer Whales) have always been a dream of mine to see in the wild. They were pretty far away from the boat, but I was able to see the trademark black dorsal fin rising and sinking at the surface for a few minutes. Hoping to get a photo of one of these pods before our expedition ends.

orca dorsal
Orca dorsal fin. Photo Credit: gowhales.com

Another fun organism I got to see in person today was a Lanternfish that was caught in one of our deeper bongo net surveys. Lanternfish are a deep-water fish that gets its name from its ability to produce light. The light is given off by tiny organs known as photophores. A chemical reaction inside the photophore gives off light in a chemical process known as bioluminescence.

lanternfish
Note the photophores (silver dots).
lanternfish v pencil
This laternfish is full grown. Adults measure 5cm to 15cm in length typically.

Callie Harris: More than Meets the Eye, August 18, 2019

NOAA Teacher at Sea

Callie Harris

Aboard NOAA Ship Oscar Dyson

August 13 – 26, 2019


Mission: Fisheries-Oceanography Coordinated Investigations

Geographic Area of Cruise: Gulf of Alaska

Date: 8/18/19

Weather Data from the Bridge:

 Latitude: 57° 01.32 N
Longitude: 155 ° 01.21 W
Wind Speed: 14.56 knots
Wind Direction: 334°
Air Temperature: 15.5°C
Sea Temperature: 15°C
Barometric Pressure: 1017 mbar


Science and Technology Log

Today marks our sixth day at sea. We are headed north into the Shelikof Strait between the Alaska Peninsula and Kodiak Island. We are continuing along our survey stations with bongo nets and midwater trawls. A bongo net consists of two plankton nets mounted next to each other. These plankton nets are ring nets with a small mesh width and a long funnel shape. Both nets are enclosed by a cod-end that is used for collecting plankton. The bongo net is pulled horizontally through the water column by a research vessel. 

bongo net diagram
Bongo Net Diagram. Image credit: Flanders Marine Institute
Bongo nets on deck
Bongo nets on deck

We are using a combination of four total bongo nets simultaneously to sample plankton. Two of our nets are 60 cm in diameter and the other two are 20 cm in diameter respectively. Depending on the depth at each station, the nets are lowered until they reach a depth of ten meters above the sea floor. Scientists and NOAA crew on the scientific deck must constantly communicate with the bridge via radio during this survey to maintain consistent wire angles. Ideally, the goal is to maintain the winch wire angle at 45° so that the water flow into the nets is parallel to the ocean floor.

Callie measuring bongo angle
Me measuring the bongo net wire angle. Photo by Matt Wilson.

Plankton are plants and animals that float along in the oceans’ tides and currents. Their name comes from the Greek meaning “drifter” or “wanderer.” There are two types of plankton: tiny plants called phytoplankton, and weak-swimming animals called zooplankton. Oceanic plankton constitute the largest reservoir of biomass in the world’s oceans. They play a significant role in the transfer of energy within the oceanic ecosystems. Ongoing plankton monitoring data is essential for evaluating ecosystem health and for detecting changes in these ecosystems.

Plankton ID
One of the plankton ID cards we use when identifying samples under the microscope

Once the nets are brought back onto the deck, we immediately rinse the nets so that all of the plankton collects in the cod-end (the plastic tube attachment at the bottom). We carefully remove the cod-end tubes and bring them into the wet lab for processing. Using sieve pans, we filter the cod-end sample (plankton) into glass jars. We add formaldehyde and sodium borate to each jar to preserve the plankton for future analysis and study. NOAA Chief Scientist Matt Wilson informed me that all of the sample jars we collect on this expedition will actually be sent to the Plankton Sorting and Identification Center in Szczecin, Poland. Check out their website for more info: https://mir.gdynia.pl/o-instytucie/zaklad-sortowania-i-oznaczania-planktonu/?lang=en .

At even numbered stations, NOAA scientists on board will conduct a RZA (rapid zooplankton assessment) of samples collected using a microscope. This rapid assessment of plankton yields current data that allows scientists to quickly evaluate present-day ecosystem health and changes while they await more in-depth sample results and analysis from Poland.


Personal Log

Everything is still going great on day six at sea. Seas are remaining relatively calm, which I am very thankful for. I am actually sleeping more than I do at home. I am averaging about nine to ten hours sleep at night which is amazing! Most mornings, I get up and head down to the gym to run on the treadmill for some much needed exercise. As I said in my second blog, our meals have been delicious. Chief Steward Judy leaves us out some late night treats to help us get through our long shifts. I thoroughly enjoyed some late night ice cream to help me power through the last trawl of the night. I really like lunch and dinner time on the ship because it brings everyone together for a few minutes to catch up and enjoy each other’s company. Most of the scientists and NOAA crew and officers have traveled all over the world on scientific vessels. It is fascinating to hear about all of their stories and adventures. I have already decided to add the ‘PolarTREC’ (Teachers and Researchers Exploring and Collaborating in Antarctica and/or the Artic) Program to my bucket list for a few years down the road. My most favorite organism that we have caught in the trawl so far was this Smooth Lumpsucker. 

Smooth lumpsucker
Smooth lumpsucker

Me and my buddy Mister Lumpsucker – Photos by Lauren Rogers


Did You Know?

The answers to day three blog’s temperature readings were 62.6°F for air temperature and 59°F for sea temperature.

All jellyfish are such weak swimmers that they too are considered plankton. There is also some scientific debate as to whether or not the Ocean Sun Fish (aka Mola mola) is considered a type of plankton. The sun fish is a passive planktonic creature which can only move vertically in the water column since it lacks a back fin. They have a long dorsal and anal fin that help them maneuver clumsily up and down in the water column.

Callie Harris: Jellyfish Landslide, August 15, 2019

NOAA Teacher at Sea

Callie Harris

Aboard NOAA Ship Oscar Dyson

August 13 – 26, 2019


Mission: Fisheries-Oceanography Coordinated Investigations

Geographic Area of Cruise: Gulf of Alaska

Date: 8/15/19

Weather Data from the Bridge

Latitude: 57° 16.15 N
Longitude: 152 ° 30.38 W
Wind Speed: 6.53 knots
Wind Direction: 182°
Air Temperature: 17.1°C
Sea Temperature: 15°C
Barometric Pressure: 1026 mbar


Science and Technology Log

Now that we have been out to sea for 3 days, I can better describe what my 12 hour ‘work shift’ is like. We average about three stations (i.e. research locations) per shift. Each ‘station’ site is predetermined along a set transect.

transect map of stations
Transect Map of all of our tentative stations to survey (red dots). Image credit: Matt Wilson

Before we can put any scientific equipment in the water, we have to get the all clear that there are no marine mammals sighted within 100 yards of the boat. I was thrilled yesterday and today that we had to temporarily halt our survey because of Humpback Whales and Harbor Porpoises in the area. I rushed from the scientific deck up to the bridge to get a better look. Today, we saw a total of 6 Humpback Whales, one of which was a newborn calf. Chief Electronics Technician Rodney Terry explained to me that you can identify the calf because the mother often times pushes the calf up to help it breach the surface to breathe. We observed one tall and one short breathe ‘spout’ almost simultaneously from the mother and calf respectively.

humpback whale spout
Humpback Whale breath spout off of bow.

Once we arrive at each station, we must put on all of our safety equipment before venturing out on the deck. We are required to wear steel-toed boots, a life preserver, and hardhat at all times. On scientific vessels, one must constantly be aware that there is machinery (A frames, booms, winches, etc.) moving above you overhead to help raise and lower the equipment in the water. We survey each station using bongo nets, a midwater trawl, and sometimes a CTD device. In future posts, I will go more into detailed description of what bongo nets and a CTD device entail. This post I want to focus on my favorite survey method: the midwater trawl, aka the ‘jellyfish landslide.’

A midwater trawl (aka a pelagic trawl) is a type of net fishing at a depth that is higher in the water column than the bottom of the ocean. We are using a type of midwater trawl known as a Stauffer trawl which has a cone shaped net that is spread by trawl doors.

trawl net
Trawl net aboard NOAA Ship Oscar Dyson

One of the survey’s goals over the next two weeks is to assess the number of age-0 Walleye Pollock (aka Alaskan Pollock.) These juvenile fish hatched in April/May of this year. As NOAA Scientist Dr. Lauren Rogers, my fellow shift mate, explains, this population of fish species tends to naturally ebb and flow over the years. Fisheries management groups like NOAA study each ‘year class’ of the species (i.e. how many fish are hatched each year).

Typically, pollock year classes stay consistent for four to five years at a time. However, every so often management notes an ‘explosion year’ with a really large year class. 2012 was one of these such years. Hence in 2013, scientists noted an abundance of age-1 pollock in comparison to previous years. Based on the data collected so far this season (2019), scientists are hypothesizing that 2018 was also one of these ‘explosive’ years based on the number of age-1 pollock we are observing in our trawl net samples. It is extremely important scientists monitor these ebbs and flows in the population closely to help set commercial limits. Just because there is a rapid increase in the population size one year doesn’t mean commercial quotas should automatically increase since the population tends to level itself back out the next year.

If you have ever gone fishing before, you probably quickly realized just because you want to catch a certain species doesn’t mean you are going to get it. That is why I have nicknamed our midwater trawl samples, “The jellyfish landslide.” After the trawl net is brought back onto the deck, the catch is dumped into a large metal bin that empties onto a processing table. I learned the hard way on our late night trawl that you must raise the bin door slowly or else you will have a slimy gooey landslide of jellies that overflows all over everywhere. At least we all got a good laugh at 11:15 at night (3:15AM Florida time).

Jellyfish Landslide
Jellyfish landslide! (I’m desperately trying to stop them from falling over the edge.) Photo credit: Lauren Rogers.
jellyfish landslide thumbs up
Jellyfish landslide, managed. Photo credit: Lauren Rogers

Once on the processing table, we sort each species (fish, jelly, invertebrate, etc.) into separate bins to be counted and weighed. Each fish specimen’s fork length is also measured on the Ichthystick.

Measuring fork length
Measuring fork length of pollock.

We then label, bag, and freeze some of the fish specimens to bring back for further study by NOAA scientists in the future. There is a very short time window that scientists have the ability to survey species in this area due to weather, so each sample collected is imperative.

Callie and salmon
Our first salmon catch in the trawl. Photo credit: Lauren Rogers.


Personal Log

This experience is nothing short of amazing. Upon arriving in Kodiak on Sunday, I got to spend the next two days on land with my fellow NOAA scientists setting up the boat and getting to know these inspiring humans. Everyone on the boat, scientists and the Oscar Dyson crew, are assigned a 12 hour shift. Therefore, you may not ever see half of your other ship mates unless it is at the changing of a shift or a safety drill. I did thoroughly enjoy the abandon ship safety drill yesterday where we had to put on our survival (nicknamed the orange Gumby) suits as quickly as possible.

Survival Suit Practice.
Survival Suit Practice. Photo credit: Lauren Rogers

Everyone has been commenting that I brought Key West here to Alaska. The last three days at sea have been absolutely beautiful — sunny, warm, and calm seas. I am sure I am going to regret saying that out loud, haha. At the end of my work shift, I am beat so I am beyond thrilled to curl up in my bunk for some much needed rest. Yes, it does finally get dark here around 10:30PM. I was told we might be lucky enough to see the Northern Lights toward the final days of our survey. I am also getting very spoiled by having three delicious homemade meals (and dessert J) cooked a day by Chief Steward Judy. That is all for now, we have another trawl net full of fun that is about to be pulled back onto the deck.


Did You Know?

NOAA CORPS Officer LT Laura Dwyer informed me of the ‘marine mammal’ protocol aboard the NOAA Ship Oscar Dyson. Scientists must temporary halt research collection if any marine mammal (i.e. a Humpback Whale, porpoise, orca, seal, etc.) is within 100 yards or less of the vessel; if a North Pacific Right Whale is within 500 yards; or if a polar bear (yes you read that correctly) is within half a mile on land or ice.


Challenge Yourself

Do you know how to convert Celsius to Fahrenheit? You take the temperature in Celsius and multiply it by 1.8, then add 32 degrees. So today’s air temperature was 17°C and the sea temperature 15°C. Therefore, what were today’s temperatures in Fahrenheit? Answers will be posted in my next blog.

Callie Harris: Key West to Kodiak, August 10, 2019

NOAA Teacher at Sea

Callie Harris

Aboard NOAA Ship Oscar Dyson

August 13 – 26, 2019


Mission: Fisheries-Oceanography Coordinated Investigations

Geographic Area of Cruise: Gulf of Alaska

Date: 8/10/19

Introduction

Hi everyone! I am currently on flight number two of four over the next two days to get me all the way from Key West, Florida to Kodiak, Alaska! Sure beats the 5,516 mile drive it would take me by car! My new home for the next two plus weeks will be aboard the NOAA Ship Oscar Dyson. It is an ultra-quiet fisheries survey vessel built to collect data on fish populations, conduct marine mammal and seabird surveys, and study marine ecosystems. The ship operates primarily in the Bering Sea and Gulf of Alaska.

NOAA Ship Oscar Dyson
NOAA Ship Oscar Dyson. Photo credit: NOAA.

So what exactly will I be doing these next few weeks at sea? I will be working side by side with world-renowned NOAA scientists during twelve hour shifts (noon to midnight). Our research will focus on collecting data on the Walleye Pollock (also known as Alaskan Pollock) population and other forage fishes in the western Gulf of Alaska. Most of our samples will be collected by midwater trawling (or net fishing). I will be spending many hours in the onboard fish lab working hands-on with scientists to help sort, weigh, measure, sex, and dissect these samples. We will also collect zooplankton and measure environmental variables that potentially affect the ecology of these fishes. We will conduct CTD casts (an instrument used to measure the conductivity, temperature, and pressure of seawater) and take water samples along transects to examine the physical, chemical, and biological oceanography associated with cross-shelf flow.


A Little About Me

How did a little girl who grew up playing in the Georgia woods wind up being a marine science teacher in Key West and now on a plane to Kodiak, Alaska to work as a scientist at sea? I applied for every internship, program, and job I ever dreamed of often times with little to no experience or chance of getting it. I was a wildlife/zoology major at the University of Georgia. However during high school, my parents bought a second home in Key West where I would live during my summers off. I applied and got a job on a snorkel boat at 18 with zero boating experience. After college, I once again applied for a job with the Florida Fish and Wildlife Commission that I was not qualified for in the least. I did not get the job, but at least I went for it regardless of the outcome. So I continued to do odds and ends (often non-paying) internships at MOTE, the Turtle Hospital, and Reef Relief while working to get my 100 ton captain’s license at age 21.

Callie at turtle hospital
Callie interning at the Turtle Hospital on Marathon Key

About 6 months after the first FWC interview, the local FWC director called me one day out of the blue and said I now have a job that you are qualified for.

Over the next year at the FWC as a marine biologist, I found that my favorite part of my week was the student outreach program at local schools. I came across a job vacancy for a local elementary science position and thought why not. I had zero teaching experience, a love for science, and the mindset that I can learn to teach as I teach them learn. Eleven years later, I am very proud to be the head of our marine science program at Sugarloaf School. I get the pleasure of teaching my two passions: science and the ocean. I hope to instill a sense of wonder, discovery, and adventure to all my students from kindergarten all the way up through eighth grade.

Last December, I felt the same sense of adventure well up inside of me when I came across the NOAA Teacher at Sea Program. I’m a teacher, a mother of young twins, a part time server, a wife of a firefighter with crazy work hours, and someone who enjoys the comfort of their own bed. All rational thoughts lead to the assumption that this program was out of my league, but it didn’t nor will it ever stop me from continuing to dare, dream and discover. I hope my trip will inspire my students to do the same- to never stop exploring, learning, or continuing to grow in life.

Did You Know?

Walleye pollock is one of the type five fish species consumed in the United States. If you have ever eaten frozen fish sticks or had a fish sandwich at fast food restaurant then you have probably eaten pollock.

Jessica Cobley: Recalibrating, August 6, 2019

NOAA Teacher at Sea

Jessica Cobley

Aboard NOAA Ship Oscar Dyson

July 19 – August 8, 2019


Mission: Midwater Trawl Acoustic Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Yakutat Bay)

Date: 8/6/2019

Weather Data from the Gulf of Alaska:  Lat: 58º 44.3 N  Long: 145º 23.51 W 

Air Temp:  15.9º C

Personal Log

Currently we are sailing back across the Gulf of Alaska to the boat’s home port, Kodiak. I think the last few days have gone by quickly with the change of daily routine as we start to get all the last minute things finished and gear packed away. 

Since my last post, the definite highlight was sailing up to see the Hubbard Glacier in Disenchantment Bay (near Yakutat). WOW. The glacier is so wide (~6miles) that we couldn’t see the entire face. In addition to watching the glacier calve, we also saw multiple seals sunbathing on icebergs as we sailed up to about a mile from the glacier. 

We spent a few hours with everyone enjoying the sunshine and perfect view of the mountains behind the glacier, which form the border between the U.S. and Canada. We also had a BBQ lunch! Here are a few photos from our afternoon.

Hubbard Glacier
Sailing through little icebergs. The glacier went further than we could see from the boat.
Group photo of the science crew
Group photo of the science crew! Photo by Danielle Power

Another surprise was showing up for dinner the other night to find King Crab on the menu. What a treat! Most people are now trying to get back on a normal sleeping schedule and so mealtimes are busier than usual.

king crab legs
Our Chief Steward, Judie, sure does spoil us!

Lastly, the engineering department was working on a welding project and invited me down to see how it works. On the first day of the trip I had asked if I could learn how to weld and this was my chance! They let me try it out on a scrap piece of metal after walking me through the safety precautions and letting me watch them demonstrate. It works by connecting a circuit of energy created by the generator/welding machine. When the end you hold (the melting rod) touches the surface that the other end of the conductor is connected to (the table) it completes the circuit.

Jessica welding
Wearing a protective jacket, gloves and helmet while welding are a must. The helmet automatically goes dark when sparks are made so your eyes aren’t damaged from the bright light. Photo by Evan Brooks.


Scientific Log

Before making it to Yakutat we fished a few more times and took our last otolith samples and fish measurements. Otoliths are the inner ear bones of fish and have rings on them just like a tree. The number and width of the rings help scientists calculate how old the fish is, as well as how well it grew each year based on the thickness of the rings. In the wet lab, we take samples and put them in little individual vials to be taken back to the Seattle lab for processing. Abigail did a great job teaching where to cut in order to find the otoliths, which can be tough since they are so small.

Jessica and pollock otoliths
Our last time taking otolith samples from pollock. Photo by Troy Buckley

Another important piece of the survey is calibrating all of the equipment they use. Calibration occurs at the start and end of each survey to make sure the acoustic equipment is working consistently throughout the survey. The main piece of equipment being calibrated is the echosounder, which sends out sound waves which reflect off of different densities of objects in the water. In order to test the different frequencies, a tungsten carbide and a copper metal ball are individually hung below the boat and centered underneath the transducer (the part that pings out the sound and then listens for the return sound). Scientists know what the readings should be when the sound/energy bounces off of the metal balls. Therefore, the known results are compared with the actual results collected and any deviation is accounted for in the data accumulated on the survey. 

Calibration
Downriggers are set up in three positions on board to center the ball underneath the boat. They can be adjusted remotely from inside the lab.

After calibration, we cleaned the entire wet lab where all of the fish have been processed on the trip. It is important to do a thorough cleaning because a new survey team comes on board once we leave, and any fish bits left behind will quickly begin to rot and smell terrible. Most of the scales, plastic bins, dissection tools, nets, and computers are packed up and sent back to Seattle.

Gear packed
All packed up and ready to go! The rain gear also gets scrubbed inside and out to combat any lingering fish smell.


Did You Know?

Remember when you were a kid counting the time between a lightning strike and thunder? Well, the ship does something similar to estimate the distance of objects from the ship. If it is foggy, the ship can blow its fog horn and count how many seconds it takes for the sound to be heard again (or come back to the boat). Let’s say they counted 10 seconds. Since sound travels at approximately 5 seconds per mile, they could estimate that the ship was 1 mile away from shore. We were using this method to estimate how close Oscar Dyson was from the glacier yesterday. While watching the glacier calve we counted how many seconds between seeing the ice fall and actually hearing it. We ended up being about 1 mile away. 

Cheers, Jess

Erica Marlaine: Last Boat Not Least, July 19, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 17, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 19, 2019

Weather Data from Woodland Hills, California:

Latitude: 34º 16.54 N
Longitude: 118º 60.90 W
Wind Speed: 5 km/hr
Air Temperature:  33º Celsius
Pool Temperature 29º Celsius


Conclusion

It is hard to believe that my 26 days as a Teacher at Sea on the NOAA Ship Oscar Dyson are already over, and that I am back in California.  I am still rocking slightly, and still VERY AWAKE at 4 a.m. as a result of having the night shift. I met so many wonderful people, from the NOAA officers to the crew to the science team, and learned so much about marine species, the ocean, science, technology, Alaska, and myself.

When I tell people how much I loved being up to my elbows in pollock, jellyfish, and sparkly herring scales; processing a catch several times a day; filleting rockfish; and the utter satisfaction that comes from opening a pollock’s head in just the right spot in order to extract its otoliths, they think I am insane. I guess it’s just something they’ll have to experience for themselves. 

I have cooked both Alaskan cod and salmon since returning home, but nothing tastes like Chief Steward Judy’s cooking. I miss being rocked to sleep by the movement of the water; the anemones, sea stars, and fish we saw each night using the drop camera; the sunsets; the endless waves; and all the laughs. This has been the experience of a lifetime, and I look forward to sharing all that I learned with my students and my school. I will always treasure my time in Alaska and on the NOAA Ship Oscar Dyson and hope to return to both soon.

Some favorite memories:

Erica Marlaine: You Never Know Where a Good Book Will Take You, July 15, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 15 , 2019

Weather Data from the Bridge:

Latitude: 57º 0.79 N

Longitude: 152º40.72 W

Air Temperature:  16º Celsius


Interview with the Chief Scientist

When Sarah Stienessen was a little girl, she got a book about dolphins, and fell in love.  She read the book over and over, dreaming about meeting a real-live dolphin one day.  The problem was she grew up in Wisconsin, not a place with a lot of dolphins. However, as Sarah says “If you have an interest, don’t let location deter you from your dreams.”

When she grew up, Sarah studied zoology at the University of Wisconsin, Madison, but her burning fascination with the ocean led her to graduate school at Texas A&M where she finally got to study DOLPHINS (more specifically, the vocal behavior of dolphins). Her research there included using a hydrophone to listen to dolphins. She later moved to Seattle and began working for NOAA conducting acoustic surveys on walleye pollock in Alaska. On this leg of the Oscar Dyson, Sarah acted as the Field Party Chief (or Chief Scientist).  Sarah pointed out that while her use of acoustics with dolphins was passive (placing a hydrophone in the water and listening to the dolphins) she is now using acoustics actively by sending an audible PING into the water and reading the echos that the fish send back.

Sarah was part of the amazing NOAA science team onboard the NOAA Ship Oscar Dyson, which included, Denise McKelvey, Kresimir Williams, and Taina Honkalehto.

Scientists
Back row: Sarah and Kresimir Front row: Denise and Taina

Denise was on the day shift, so I mostly saw her during shift changes and on those rare mornings when I was still awake at 7 a.m. and came down for breakfast (okay, bacon). However, early in the trip, she took the time to explain the fish lab procedure to me, even drawing pictures and a flow chart. (Thanks!)

While the duties of the science team often overlap, Kresimir is definitely the “techie” who enjoys inventing and creating new underwater cameras and other devices.  Do you remember the TV show MacGyver?  MacGyver was a secret agent who was beyond resourceful and had an encyclopedic knowledge of science.  Every episode, he would solve the problem at hand in a matter of minutes using a combination of ordinary objects such as duct tape, household cleanser, a Q-tip, and some matches. Kresimir reminded me of MacGyver.  If something broke, he would enter the room, grab tools and items that just might work in place of the broken piece, and sure enough, within minutes, the device would be up and running again!

Taina was always in the chem lab during drop camera time, her eyes riveted on the screen.  I was excited whenever the camera spotted something, but I loved that Taina seemed equally excited to see what marine species the camera would uncover each night.  One of the most exciting, and clearly the biggest, was the Giant Pacific Octopus!

Giant Pacific Octopus
A Giant Pacific Octopus captured with the drop camera


Science and Technology Log

The Giant Pacific Octopus (or Octopus dofleini) is often rumored to weigh more than 600 pounds, but most adult octopuses are much smaller. An adult female might weigh up to 55 pounds while an adult male can weight up to 88 pounds. According to NOAA, the plural of octopus is octopuses, NOT octopi as some people say.  Because it doesn’t have bones, a giant octopus can squeeze through a hole the size of a quarter! The body of an octopus is shaped like a bag and it has 8 long arms (or tentacles) covered in suction cups. 

Suction cups
Suction cups on the arms of an octopus

A mature octopus can have as many as 280 suction cups on each arm. That’s 2,240 suction cups! The Giant Pacific Octopus loves to eat crabs, but it will also eat snails, oysters, abalone, clams, mussels, and small fish. The octopus’ mouth or jaw is shaped like a parrot’s beak. It is the only hard part of an octopus, and it’s more-or-less indigestible. That means that if a sperm whale eats an octopus, and the contents of the whale’s stomach are later studied, you will see the octopus beak even if you find no other sign that he ate an octopus.

In order to avoid whales and other predators, an octopus will camouflage, or change its color and skin texture to match its surroundings! When he feels threatened, he releases a cloud of purple-black ink to confuse his enemy.


Octopus Elementary Math Time

(Remember, an octopus has 8 arms.)

  1. If an octopus has 2 suction cups on each arm, how many does he have all together? _______
  2. If an octopus has 5 suction cups on each arm, how many does he have all together? _______
  3. If an octopus has 10 suction cups on each arm, how many does he have all together? ______
  4. If an octopus has 2 suction cups on 4 of his arms, and 3 suction cups on his other 4 arms, how many does he have all together? _____________
  5. If an octopus has 4 suction cups on 7 of his arms, but half as many on his 8th arm, how much does he all together? _____________
  6. If an octopus has 259 suction cups and his octopus friend has 751 suction cups, how many do they have all together?

Jessica Cobley: Not Just Fishing, August 1, 2019

NOAA Teacher at Sea

Jessica Cobley

Aboard NOAA Ship Oscar Dyson

July 19 – August 8, 2019


Mission: Midwater Trawl Acoustic Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Yakutat Bay)

Date: 8/1/2019

Weather Data from the Gulf of Alaska: Lat: 59º 18.59’ N Long: 146º 06.18W 

Air Temp:  14.8º C

Personal Log

We made it to Prince William Sound the other day, but I was asleep by the time we got all the way up. The part I did see, near the entrance, was pretty, but fog and clouds blocked the majority of the view. One of the beaches we attempted to fish by had what looked like an old red train car washed up on it. We wondered where it came from and how it got there!

Sunrise over Gulf of Alaska
Sunrise the day before we headed into Prince William Sound.

We are sailing the last few transects of the trip now and headed towards a small bay, called Broken Oar Bay, near Yakutat. Once we arrive, we need to calibrate the instruments used for collecting data and compare the results to the start of the trip. This will let the scientists know that their instruments are stable and making consistent measurements.

While calibrating we may have an opportunity to get a glimpse of the Hubbard Glacier at the head Yakutat Bay. The Hubbard Glacier is approximately 6 miles wide and when it calves, makes icebergs 3-4 stories tall. Fingers crossed we get to see it! 

On a side note, I have been drawing while on the boat. Here are some photos!

Jessica's sketch of a squid
One of the squids we caught… it was just a tiny little guy, about 2 cm.
Diagram of commercial fishing methods
Gus Beck, lead night fisherman, sat down with me yesterday and explained the main types of commercial fishing methods. Now I won’t get them mixed up.
Abigail's prowfish sketch
This is my favorite one! Abigail’s drawing of a prowl fish. They have the best facial expressions.


Science and Technology Log

The majority of my time has been spent above deck with the science and deck crews. Yesterday, I took the opportunity to head down below and learn some of the ways Oscar Dyson is kept running smoothly. 

Danielle and deck crew
Some of the deck crew that are responsible for putting the nets out. Danielle, one of our senior survey techs, is up top and controls the movement of the net.

There are several areas/rooms that hold different types of equipment below deck. One of the largest rooms is the engine room, where not 2 or 3, but 4 engines are located. At night, 2 of the engines are needed since the ship sails slowly for camera drops. During the day, when traveling along the transects and fishing, 3 engines are used. Engines 1 and 2 are larger with 12 cylinders and 3 and 4 are smaller with 8 cylinders. These engines are attached to generators. The engines give moving force to the generators, which they then convert into kilowatts/power and as a result, power everything on board. Also, I learned that the boat has at least 2 of every major piece of equipment, just in case!

Engineers Kyle and Evan
Two of the engineers, Kyle Mulkerin and Evan Brooks, who gave me a tour below deck. They are standing in front of engine #1.

The engine room also stores the water purification system, which Darin had mentioned to me the other day. He knew the ship converted seawater into potable water, but wasn’t exactly sure how the process worked. Here is a brief summary. 

  1. Seawater is pumped onto the boat and is boiled using heat from the engine.
  2. Seawater is evaporated and leaves behind brine, which gets pumped off of the ship.
  3. Water vapor moves through cooling lines and condenses into another tank producing fresh water. 
  4. The water is then run through a chemical bromide solution to filter out any left over unwanted particles.
  5. The finely filtered water is stored in potable water holding tanks.
  6. The last step before consumption is for the water to pass through a UV system that kills any remaining bacteria or harmful chemicals in the water.
Evan's notes
Notes from Evan Brooks on how to convert seawater into potable water. I wish all my student’s notes were this neat and organized!

After the engine room, Kyle and Evan took me one level deeper into the lower engine room. There are a few other lower areas but, being a bit claustrophobic, I was happy we didn’t explore those. The lower engine room (or shaft alley) holds the large rotating shaft which connects directly to the propeller and moves the ship. It was neat to see! 

Jessica descends to lower engine room
Heading down into the lower engine area.

We rounded out the tour in a workshop that holds most of the tools on board. The engineers help fix things from engines to air conditioners to plumbing. This week I may even be able to see them do some welding work. 

Did you know? 

If a large piece of equipment needs to be replaced, they do not take it apart and lug it to the upper deck and off the boat. Instead, they cut a giant hole in the side of the ship and get the parts in and out that way. I had no idea!

Cheers, Jess 

Jessica Cobley: Resurrection Bay, July 28, 2019

NOAA Teacher at Sea

Jessica Cobley

Aboard NOAA Ship Oscar Dyson

July 19 – August 8, 2019


Mission: Midwater Trawl Acoustic Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Yakutat Bay)

Date: 7/30/2019

Weather Data from the Gulf of Alaska:  Lat: 58º  50.39’ N  Long: 150º 14.72’ W 

Air Temp:  14.2º C


Personal Log

Today we had the chance to sail up into Resurrection Bay on the Kenai Peninsula and it was beautiful! In general, transects, or lines the boat collects acoustic information along, run perpendicular to the Gulf of Alaska shelf because that is where pollock are most likely found. Luckily for us, a few of them travel up into bays along the coast and give us a welcomed change of scenery from the open ocean. 

transect map
A map of the transects we followed up into Resurrection Bay.

Why do we survey in bays when pollock are usually open water fish? Well, during the winter, pollock sometimes aggregate to spawn (reproduce) in bays and those areas are documented by the scientists. In the summer, scientists want to see if there are still any pollock present in those areas. Unfortunately, we do not have time to survey all of the bays and so just a few are selected. For this leg, after the next couple of days back on the shelf, we will head up into Prince William Sound, which I am really looking forward to seeing. 

Seward
The town of Seward – can you spot the cruise ship?

While following the transects up into Resurrection Bay, it was fun to see sailboats, fishing boats, helicopters and float planes rushing around us. To my surprise, I also saw masses of RV campers through the binoculars when looking at town. I learned that Seward is a popular place for people to visit from Anchorage and other areas for summer vacations and fishing opportunities. As for those of us on the boat, we also enjoyed the summer weather while sailing through. The sun was shining and it seemed that everyone took a moment to step outside, make a few phone calls home (we had service for a bit!) and soak up the warm weather. All in all, I think everyone feels re-energized going into our final 10 days at sea.

top deck
Enjoying the sunshine from the top deck of the boat


Science and Technology Log 

We stopped to fish near the mouth of Resurrection Bay and found mostly age 1 and 2 pollock, along with a few adults. This shows us that pollock do utilize both the bay and the shelf areas during their lifecycle. Afterwards, we headed back out into the gulf and fished with a net called a Methot net.

A-frame
The Methot net gets lifted up by the A-frame (yellow metal beams). I did not know the A-frame moved before this!

A Methot net is a different kind of net that is specialized to catch Euphausiids (krill). In addition to collecting data on pollock, scientists also collect data on Euphausiids (krill). The net used to collect krill is a bit different than the one used for pollock. There are no pocket nets along the side and instead of the end of the net being mesh, there is a small canister that the net filters krill into. Once we haul in the net, it is time to sort and collect data on the catch, just like the pollock trawls. 

Processing fish in the wet lab.
Processing fish in the wet lab. This one had a lot of jellies! Photo by Darin Jones

It has been back to regular fishing trawls since then, along with comparison trawls. A comparison trawl is when we fish twice over the same area using two different nets. This year, the scientists decided to replace the old survey net with a newly designed one that is a little bit smaller and easier for the deck crew to deploy. Now they need to compare the two nets to make sure the newer net is catching the same species and size of fish. Darin was explaining to me that they have to do approximately 25 comparison trawls on this survey and will continue comparisons during the winter survey as well. If all goes according to plan, they will permanently replace the old net next summer. 

On one of our trawls the other day, we caught a lot of rockfish. Lucky for us, rockfish is a species we can keep and eat on the boat. We are not allowed to keep salmon, crab, halibut or herring since they are prohibited species. You are only allowed to keep those species if you have a special permit. While I wish we could eat the others, rockfish is also really tasty!

Darin filleting
Lead scientist, Darin Jones, filleting dusky rockfish for dinner.


Did You Know?

There is an incinerator on NOAA Ship Oscar Dyson that burns all of our trash from the boat so that we don’t have to keep it aboard for the whole trip. Also, nothing is thrown overboard, not even food scraps. When I was taking a look yesterday, the temperature was over 800 degrees Celsius. Diesel fuel is used as fuel initially, followed by burning sludge from the boat once it gets hot enough. All leftover ash gets put into bins and discarded when back in port.

Thanks for following along!

Cheers, Jess

P.S. We go up and watch the sunrise everyday…it is beautiful out here!

Abigail watches sunrise
Abigail McCarthy watches the sunrise every morning and ranks them. This one earned a “glorious!”

Jessica Cobley: While in Kodiak, July 19, 2019

NOAA Teacher at Sea

Jessica Cobley

Aboard NOAA Ship Oscar Dyson

July 19 – August 8, 2019


Mission: Midwater Trawl Acoustic Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Prince William Sound)

Date: Saturday, July 20th, 2019

Weather Data from Kodiak, AK: 4:00am Lat: 57.79° N Lon: 152.4072° W Temp: 56 degrees F.  


Personal Log

Good morning! It is currently 4:30am on Saturday, July 20th and I have just woken up for my first shift on the boat. So far, I have met scientists Abigail McCarthy and Troy Buckley, who will be working the day shift with me. I also met Ruth, an intern from the University of Washington and my bunkmate. It will be nice to have someone else on board who is also new to the experience! 

exploring Spruce Cape
From left to right: Myself, Ruth, Abigail and Darin exploring Spruce Cape. Photo Credit: Troy Buckley

Before talking about work, I’d like to share what we got up to in Kodiak before departing on the cruise. One thing to note – Chief Scientist Darin Jones explained that because this is the 3rd leg of the survey and the scientists are taking over from the previous group, we do not have any set up or calibration of equipment to do. If this had been leg 1 of the survey, the free days in port would have been spent doing those jobs. Lucky us!

After unpacking everything in our state rooms (bunks), we quickly set out to explore Kodiak. In two and a half days, were able to see a lot! Wednesday night, some friends of mine in town took us for a stroll on Near Island, followed by a yummy dinner at Noodle Bar.

Near Island
Walking with friends on Near Island, just across the bridge from Kodiak. Photo by Ruth Drinkwater

Thursday morning, team building began with a run to Safeway and Walmart for all last minute necessities. The teacher in me couldn’t resist a fresh pack of sharpie markers and colored pencils. 🙂 In the afternoon, we walked along Spruce Cape where we picked a TON of blueberries and found the largest barnacle I have ever seen. 

Check out this Giant Acorn Barnacle!

After a short recoup back on the boat, Darin and Abigail were ready for an evening surf session at Fossil Beach. This beach is the farthest south you can access by road in Kodiak and the drive was BEAUTIFUL. Prior to the trip, I hadn’t looked up any pictures of Kodiak and so the treeless green mountains, cliffy coastlines and herds of cows were exciting to see. Once at the beach, we jumped in the ocean, watched a successful surf session and finished our team building with a fire and dinner on the beach. 

Fossil Beach
Fossil Beach: We hiked up the cliffs in the background to check out old WWII bunkers.
grazing cows
Happily grazing cows on the drive back from Fossil Beach.


Science and Technology Log

In just a few days of being here, I have already learned a lot about the workings of the ship and what we will be busy doing for the next three weeks. Here is a preview.

To begin, science shifts run from 4am – 4pm and 4pm – 4am. Throughout this entire time, acoustic data is being collected and read. Acoustic data is gathered by sending out sound waves from a transducer box attached to the bottom of a centerboard underneath the boat. The sound waves reverberate out and bounce off of anything with a different density than water. In the picture below, you can see a bold line on the screen with smaller dots above. Take a look and see if you can identify what the line and dots might represent.

Darin looks over morning acoustic data
Chief Scientist Darin Jones looking at the morning acoustic data. This room is called “The Cave” because it is the only lab without windows.

If you thought the big bold lines on each screen were the seafloor, you were correct! Most of the little dots that appear above the sea floor are fish. Fish are identified from the sound waves bouncing off of their swim bladders. Swim bladders are the “bags” of air inside fish that inflate and deflate to allow the fish to raise and lower itself in the water column. Air has a different density compared to water and therefore shows up in the acoustics data.

acoustic data screen
Close up view of the acoustic data screen.

What is this acoustic data used for? There are 2 primary parts. The first is to identify where schools of fish are located and therefore areas well suited for collecting fish samples. The second is to calculate the total biomass of pollock in the water column by combining acoustics data with the actual measurements of fish caught in that same area. More specifics to come as I take part in the process throughout the survey. 

Did You Know?

On this survey, scientists do not catch/survey fish at night (when it is dark). The reason? At night, bottom dwelling species come up off the seafloor at night to feed. During the day they settle back down on the seafloor. The scientists are primarily interested in catching pollock, a mid water species, so they fish during daylight hours. 

hauling in the trawl net
View from the upper deck of the trawl net being hauled in.

Updates to come later in the week. It is time for me to join the scientists and get ready process our first catch! 

Cheers, Jess

Erica Marlaine: The Best Hardhat Ever, July 14, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 14, 2019

Weather Data from the Bridge:

Latitude: 56º 58.03 N
Longitude: 151º 26.26W
Wind Speed: 17 knots
Wind Direction: 120º
Air Temperature:  13º Celsius
Barometric Pressure: 1010.5 mb
Depth of water column 565 m
Surface Sea Temperature: 12.9º Celsius


Science & Technology Log

Safety is of the utmost importance on a ship. There are safety trainings, fire drills, lifeboat drills, and rules about where you can go and whether you need to be wearing a life jacket and/or a hard hat.  Hardhats come in many colors, but most look something like this:

Standard hard hat
Standard hard hat

That is why I had to interview Ryan Harris, the Chief Boatswain on the NOAA Ship Oscar Dyson about his cowboy hardhat.

cowboy hard hat
Yes, that’s a hardhat.

Ryan hails from Sacramento, California and loves to wear cowboy hats.  One day he saw a cowboy hardhat online, and knew he had to order one! He first started wearing it on the NOAA Ship Hiialakai in Hawaii and liked how it not only protected his head but kept the sun off his face.  In Alaska, he likes how it keeps the rain off.

Ryan began working for NOAA 14 years ago.  I wondered how a kid from landlocked Sacramento, who had never spent time on a boat, ended up with a career at sea. It turns out his aunt saw an advertisement about a free maritime internship program offered through the Sacramento School District (at the time). Ryan was interested in seeing the world, so he looked into it. Through the internship, he learned how to work on boats, and was introduced to NOAA.  Ryan has worked on NOAA ships with home ports in California, Mississippi, Hawaii, and Alaska, and has already traveled with NOAA to at least 13 countries.

So what does the Chief Boatswain do?

Ryan is in charge of all operations concerning the deck and also “watch standards” or lookout (such as making sure that there are not whales in the area if we are going to deploy the fishing net). He is also in charge of the maintenance and upkeep of the ship, including some mundane but all-important things such as making sure there is enough toilet paper or laundry detergent onboard before the ship sails.  (There is no “running to the market” while you are out at sea for weeks or months.)  

Like everyone I have met on the NOAA Ship Oscar Dyson, Ryan enjoys his NOAA life, and feels that NOAA offers a wealth of opportunities.  I asked Ryan how he manages the long stretches of time with no phone service or internet.  Ryan says the temporary “disconnect” allows him to focus on work and simply enjoy his life and his time with his co-workers.  I think a lot of us can learn from that.

Erica Marlaine: What’s an Oiler? And Where Does All That Water Come From? July 14, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 14, 2019

Weather Data from the Bridge:

Latitude: 56º 58.03 N
Longitude: 151º 26.26W
Wind Speed: 17 knots
Wind Direction: 120º
Air Temperature:  13º Celsius
Barometric Pressure: 1010.5 mb
Depth of water column 565 m
Surface Sea Temperature: 12.9º Celsius


Science & Technology Log

Ever heard of oilers?  I hadn’t until I got to know Daniel Ruble, a member of the engineering crew on the NOAA Ship Oscar Dyson.

Oiler Daniel Ruble
Oiler Daniel Ruble

Daniel is originally from Chicago but now calls Virginia home.  After serving our country for 20 years in the Marine Corps, a friend mentioned that it was always good to have a Mariner’s Document (a license from the Coast Guard) “just in case.”  Years later, he finally decided to put it to use, and got a job with NOAA in 2014.  He started doing deck work, but his interest and experience in mechanical engineering eventually led him to the NOAA engineering crew.  He is what they call an “oiler.” Oilers maintain, clean, and oil the ship’s engine, including the motors, gears, and compressors. Daniel has worked on every class of NOAA vessel (Oceanographic and Atmospheric Research, Charting and Hydrographic, and Fisheries Research) and all but one of the NOAA ships. 

Daniel and the other engineers onboard the NOAA Ship Oscar Dyson are easy to spot as they often have bulky, protective ear coverings either on or nearby. That is because the engine room is VERY LOUD.  When I was given a tour, I was first given ear coverings, and much of the explanation about what I was seeing had to come later as it was too difficult to hear each other.  I was told that seeing the engine room is like looking under the hood of your car. Just imagine your car’s engine magnified 1000 times.

Control panel in the Engine Room
Control panel in the Engine Room
Engine Room
Engine Room

The engineering crew is responsible for all of the internal systems of the ship.  Without them, the ship wouldn’t run, and there would be no power or water. The engineering room actually makes all of the water we use onboard by distilling saltwater into potable (drinkable) water.  Here’s how it works.

Saltwater is boiled using energy from the ship itself. Hot engine steam is passed through an evaporation unit, causing the saltwater to boil. The saltwater steam rises and then travel through a water separator which prevents any droplets of saltwater from passing through. After the steam becomes pure water, it is then carried away by a distillate pump. It is then safe for drinking and showering.

Each of the two evaporators on the NOAA Ship Oscar Dyson can distill between 600-900 gallons of water per day, depending upon how fast the ship is moving.   On an average day, the ship uses 800-1000 gallons!

One of the two evaporators
One of the two evaporators

Erica Marlaine: Diving Down the pH Scale, July 13, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 13, 2019

Weather Data from the Bridge:

Latitude: 57º 09.61 N
Longitude: 152º 20.99W
Wind Speed: 15 knots
Wind Direction: 210 º
Air Temperature:  12º Celsius
Barometric Pressure: 1013 mb
Depth of water column 84 m
Surface Sea Temperature: 12º Celsius


Science and Technology Log

Are you wondering what it’s really like to live and work full-time on a NOAA research vessel? I asked Andrea Stoneman, the Senior Survey Technician on the NOAA Ship Oscar Dyson.

Andrea Stoneman
Senior Survey Technician Andrea Stoneman

Like everyone onboard the Oscar Dyson, Andrea is always working hard, but always has a smile on her face. Originally from Duluth, Minnesota, she has been employed by NOAA as a “wage mariner” for a year. A wage mariner means she is an at-sea civilian employee of NOAA. She began college at the University of Minnesota as a business major, but an internship as a freshwater mussel researcher changed her life and made her realize her true love: BIOLOGY! She earned a degree in Environmental Science, and then attended graduate school at Delaware State University, where NOAA funded her research on ocean acidification and its impact on fish.

Are you wondering what ocean acidification means?  

The amount of carbon in the ocean is rising due to an increase in the amount of carbon dioxide (CO2) in the air. Carbon dioxide acidifies the water, reducing its pH level.  The letters pH stands for the ‘potential of Hydrogen.’ The pH scale was invented in 1909 by a biochemist names S.P. Sorenson. The scale uses numbers from 1 to 14, with 1 being the most acidic, 14 being the least acidic (or more alkaline) and 7 as the middle (neutral) point.

For the past 300 million years, the average pH of the ocean was approximately 8.2. It is now closer to 8.1, a drop of 0.1 pH units.  Remember, the numbers go “in reverse” so a drop in pH means it is MORE acidic.  You may be thinking, but it’s only a drop of 0.1. That doesn’t sound like a lot. However, a drop of 0.1 represents a 25-percent increase in acidity.  That’s because the pH scale is a logarithmic scale, not a linear scale.  To understand a linear scale, think of a ruler. The difference between inches on a ruler stays constant. A 5-inch fish is one inch bigger than a 4-inch fish, and 2 inches bigger than a 3-inch fish. In contrast, the pH scale is a logarithmic scale in which two adjacent values increase or decrease by a factor of 10.  Therefore, a pH of 3 is ten times more acidic than a pH of 4, and 100 times more acidic than a pH of 5.

Studies indicate that many marine species may experience adverse effects on their health, growth, reproduction, and life span due to ocean acidification. That means fish could develop diseases, have fewer babies, or die younger.

You and I need calcium to build strong bones. We get calcium through milk, cheese, green leafy vegetables, and many other sources. Marine species also need calcium carbonate to build their bones or shells. Ocean acidification causes carbonate ions to be less abundant in the ocean, which makes it harder for marine species to build strong bones and shells. This is especially bad for oysters, clams, sea urchins, corals, and mussels, the very species that made Andrea fall in love with science!

After graduate school, Andrea worked as a fisheries observer on commercial fishing vessels. (I met quite a few people on-board the ship who are or were observers.) To a non-fisheries person, an “observer” SOUNDS like someone who stands around watching others, but it is actually very hard work! Observers document compliance (making sure that things are being done the correct way). They take samples of the catch and collect data regarding the size of the catch and the species caught.  The data goes into the same service model that NOAA data does, which is vital for ensuring sustainable fishing for the future. 

Through her work as an observer in Alaska, Andrea met people at NOAA, took a tour of a NOAA ship, and decided to apply for a job with NOAA.  (Hmmm… When I interviewed Ensign Andonian for an earlier blog, she also mentioned visiting a NOAA ship as the thing that made her decide to choose a career with NOAA. That gives you an idea of just how amazing NOAA ships are!)

So what does a Senior Survey Technician do?

She runs and maintains all of the scientific sensors on the ship (including the meteorological and oceanographic sensors). She also runs the CTD, a device which measures the conductivity, temperature, depth, salinity, and other oceanographic parameters of the water. 

CTD
The CTD device

In addition, she is involved in setting and retrieving the fishing nets and is an expert at processing the catch in the fish lab. Andrea ensures that the data collected onboard is sound and accurate, and “packages” the data so that it is presentable and accessible to NOAA thus becoming accessible to the public whom NOAA serves.

Asked if she recommends a NOAA life, Andrea says it’s great for college graduates who have an interest in science and a love of the ocean. Some perks (especially for new college graduates) include living rent-free onboard, having delicious meals cooked for you three times a day, and getting to see the world while being involved in interesting, and sometimes ground-breaking, scientific research. An added perk is that working for the federal government can “erase” some of your student loans!

Andrea enjoys being the Senior Survey Technician onboard the NOAA Ship Oscar Dyson, and has fallen in love with Alaska, which she now considers her home.

Click below to watch a 2-minute video by NOAA about ocean acidification:



Personal Log

While I cannot describe what it is like to live full-time on a NOAA ship, I can tell you what it’s like as a Teacher at Sea for 26 days. Like everyone onboard, I “work” a 12-hour shift.  The science team works shifts starting at either 4 a.m. or 4 p.m.  I was assigned the 4 p.m. to 4 a.m. shift. That means I wake up most days between 2:30 and 3:00 in the afternoon.  On days that I am “good” I head down to the gym. On other days, I grab a light “breakfast” before heading to the chem lab to start my shift.

Often we start our shift processing fish by 4:30. First I suit up in steel-toed boots, a waterproof jacket and overalls, and elbow-high rubber gloves. 

Erica ready for the fish lab
I am ready to work in the fish lab!

Then we process the haul, which means sorting approximately 1000 pounds of fish and jellyfish by species.

haul
An average-sized haul

We weigh them, measure them, and dissect some to collect otoliths (ear bones) or ovaries.  All of this can take 2-3 hours. Then we clean.  The fish lab gets COVERED in fish slime, scales, and jellyfish goo.

Jellyfish "goo"
Jellyfish “goo”

There are high-powered waters sprayers hanging from the ceiling, and we blast every surface in the room with saltwater for at least 10 minutes after every haul. Imagine cleaning your kitchen with a fire engine hose! It’s definitely the most fun I have ever had cleaning!  

cleaning the fish room
One of the many high power saltwater sprayers

At the end of the cruise, I will join Andrea the Survey Technician and the science team for 2-3 hours of meticulously scrubbing and spraying the fish lab so that it is clean and ready for the next group that comes aboard a few days after we leave.

Since the scientists onboard often want to do “pair trawls” (fishing in the same area using the “old” AWT net and the “newer” LFS net in order to align the catch data with the acoustics data),  I am often back in the fish lab an hour later to process another haul, and again clean the fish lab.

After that, depending upon the time, I might have a snack, or do research and write blogs, or spend time in the chem lab with my co-workers, Matthew Phillips (the Fish Lab Lead) and volunteer biologist Nathan Battey, discussing the haul or what is coming up for the rest of the shift. At about 11 p.m., the sun sets, and sometimes it is spectacular, so I try to pop out onto the deck for a quick photo. 

The sun setting near Mitrofania
The sun setting near Mitrofania

At midnight, we start getting ready to do the drop camera to determine which areas are trawlable. We usually do at least 4 camera drops, from approximately 1 p.m. to 4 p.m. This time of night often involves the science team consuming caffeine, ice cream, red vines, sour patch kids, or all of the above. At 4 a.m., the next shift starts, and my roommate, Jamie Giganti, comes into the chem lab. Jamie is a field coordinator for AIS. She works as an observer part of the time, but also provides support and training for new observers, and acts as a liaison between boat captains and observers.

Jamie Giganti
My roommate Jamie Giganti

Jamie’s arrival in the chem lab means it is my turn to go to “our” room.  Although we are roommates, we are never actually in the room at the same time. The goal is that you stay out of the room for the 12 hours your roommate is off-shift, allowing them to sleep or relax.  That means that every time I am on shift I need to make sure that I take everything I might need for the day.

The first few days onboard, I was in bed and asleep 15 minutes after my shift ended. Now that I am accustomed to the schedule, or perhaps due to the caffeine or sugar, I am often up until 5 or 5:30 a.m. That means I go to sleep just as the sun rises.

My stateroom has a bathroom and shower, a desk, a few shelves, lockers that act as a closet, and bunkbeds.  (I was so happy when Jamie asked if she could have the top bunk!)

My state room
My state room

The large window has both magnificent views of Alaska and also blackout curtains that block the sun so that people on my shift can sleep.

The shower area in the bathroom has a slightly raised border, but since the boat moves while you are showering, so does the shower curtain.

shower
Shower

Perhaps other people have figured out how to get the water to stay IN the shower.  I am still working on that. On the upside, the bathroom floor gets cleaned every day! (I am told that one trick is to use zip ties to “lengthen” the shower curtain.  (Next time?)

Processing a haul seems easy now, but it was overwhelming the first few days! As a non-scientist, I was unfamiliar with fish and jellyfish species, perplexed by the computer program used to enter data, and kept confusing which fish to measure, which fish to weigh, and which fish to measure and weigh.  I am so grateful for the patience of everyone around me!

Amazingly, I never got seasick. I wore a scopolamine patch for the first part of the trip, and then one day decided to take it off and learned that I had in fact “gotten my sea legs.” Now I barely feel the boat moving during the day and enjoy the light rocking at night.

I am writing this during my last few days onboard.  While we have occasionally been near land, during much of our time onboard, the view was the incredibly beautiful Gulf of Alaska.  Yesterday, when I saw land in the distance, I was sad to learn that it was Kodiak.  That means my time on the NOAA Ship Oscar Dyson is almost over. 


Erica Marlaine: Bear Onboard, July 12, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 12, 2019

Weather Data from the Bridge:

Latitude: 57º 9.61 N
Longitude: 152º 20.99W
Wind Speed: 15 knots
Wind Direction: 210 º
Air Temperature:  12º Celsius
Barometric Pressure: 1013 mb
Depth of water column 84 m
Surface Sea Temperature: 12º Celsius


Welcome to a tour of the NOAA Ship Oscar Dyson.

Your tour guide today is the Room 11 Bear.

Allow me to explain.

When I am not a Teacher at Sea on the NOAA Ship Oscar Dyson, I am the special education preschool teacher in Room 11 at Nevada Avenue Elementary School in Canoga Park, California. My classroom has a classroom bear (made of construction paper) that “hides” every night when the students go home. In the beginning of the year, he is sort of easy to find, but as the year progresses, he is harder and harder to find. By the end of the year, only a paw or an ear might be showing!

The first thing my students want to do every morning is look for the bear.  When they find it, they excitedly explain where it is. Speech and language are things we work on in class all the time, and the bear gives us something fun to talk about! For some students, a single word might be the goal. Other students may be working on putting a few words together, or even enough to make a sentence.  It’s also a great time for them to learn prepositional words or phrases to describe where the bear is hiding, such as next to, under, beneath, or on top of.

Now it’s YOUR turn.  I hope you have fun touring the NOAA Ship Oscar Dyson with the Room 11 Bear and finding him in the photos where he decided to hide in a tricky spot.   He is in EVERY picture.

bear in captain's chair
Commanding Officer Bear up on the Bridge (the part of the ship above the weather deck which houses the command center). I also spy a snack that is a favorite of some students in Room 11.
bear charting the course
Bear charting our course on the Bridge
bear steering
Steering the NOAA Ship Oscar Dyson (up on the Bridge)
bear lookout
Binoculars are used to check for whales or other boats before the trawl nets are put out.
bear in the galley
Food is cooked in the galley (the nautical term for kitchen)
bear in the mess hall
This is the mess (the nautical term for eating place) where all of the delicious meals are served.
bear in laundry
The laundry room
bear in gym
One of the two gyms onboard the NOAA Ship Oscar Dyson
bear in engine room
The engine room
bear at fire station
There are “fire stations” onboard in case of an emergency
bear in jackets
This is where we put on our waterproof rain gear and high boots before entering the fish lab
bear on rubber gloves
High rubber gloves are worn so that we stay somewhat clean and to protect our hands as we use sharp tools and touch jellyfish or pointy quills
bear in acoustics lab
Lastly, a visit to the acoustics lab, where the scientists read and analyze the data from the echo sounders and determine when and where to drop the trawl nets.

Erica Marlaine: The Dreaded Melanasty and the Volunteer Biologists, July 12, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 12, 2019

Weather Data from the Bridge:

Latitude: 57º 09.61 N
Longitude: 152º 20.99W
Wind Speed: 15 knots
Wind Direction: 210 º
Air Temperature:  12º Celsius
Barometric Pressure: 1013 mb
Depth of water column 84m
Surface Sea Temperature: 12º Celsius

Science and Technology Log

Onboard the NOAA Ship Oscar Dyson with me are two volunteer biologists: Evan Reeve and Nathan Battey.  Evan is on the opposite shift, so we often pass each other, but on occasion, we have been in the fish or chem lab at the same time.

Volunteer biologist Evan Reeve
Volunteer biologist Evan Reeve

I arrived here knowing very little about fish (other than how to care for a beta fish and how to cook salmon and trout).  Evan, on the other hand, is a recent graduate of the University of Washington (or as he likes to say, “U-DUB”) with a degree in Biology (and an emphasis in fish biology).  When I say recent, I mean recent. Evan graduated five days before we boarded the ship.

Evan has a remarkable “ready for anything” attitude whether it is the start of his 12-hour shift, or the end. His background may be one reason why. Originally from San Diego, he spent his freshman year at the University of Missouri, Kansas City. A planned-year studying abroad at the Universidad Veritas in San Jose, Costa Rica got cut short after one semester due to an illness that forced him to return to San Diego.  There, Evan made the decision to serve our country and joined the Navy. For a few years, he served as a Navy corpsman stationed with Marine infantry units until he was injured during training. That’s when Ready-for-Anything Evan resumed his studies, eventually arriving at his beloved “U-DUB”. 

Evan currently lives in Washington, where he volunteers with the NOAA Hatchery Reform Program in Port Orchard, Washington, tracking hatchery released juvenile salmon in Puget Sound using both acoustics and traditional fishing techniques.  When a biology professor mentioned the opportunity to spend time on the NOAA Ship Oscar Dyson in the Gulf of Alaska, Evan of course volunteered, eager to participate in a larger scale study involving different fish species.  In Puget Sound, the haul is often 10 salmon.  In contrast, the haul being studied onboard the Oscar Dyson is often 1000 pounds of Walleye pollock several times a day (along with prowfish, Pacific herring, rockfish, and a lot of jellyfish). Speaking of prowfish, herring, rockfish, and jellyfish…

FUN FISH FACTS AND PHOTOS:

PROWFISH: In my earlier blog, Oh, the Places You’ll Go, I wrote about the lumpsucker being the cutest fish I had ever seen.  A close runner up is the baby prowfish. 

juvenile prowfish
juvenile prowfish

Every time we get a prowfish in a catch, everyone wants to look at it! We usually get juvenile prowfish which are about the length of my finger. (Adults can get up to 3 feet long.) The juveniles are very soft and smooth looking, and their lower jaw juts out slightly, making them look like they are pouting.  Unlike adults prowfish, who spend most of their time near the bottom of the sea floor, juvenile prowfish spend their time in the middle levels of the water column, which is the area we are trawling on the NOAA Ship Oscar Dyson.  I was surprised to learn that juvenile prowfish will try to avoid predators by hiding within the bells of large jellyfish.

PACIFIC HERRING, OR AS I LIKE TO CALL THEM, THE RAINBOW FISH:

Pacific herring
Pacific herring

As a special education preschool teacher, I often read and discuss The Rainbow Fish (by Marcus Pfister) with my students.

cover of The Rainbow Fish
The Rainbow Fish by Marcus Pfister

It is a popular children’s book about a little fish with very sparkly scales who learns to share. Rainbow Fish was considered the most beautiful fish in the ocean because of his many sparkly scales.  When a plain, little fish asks for one of the sparkly scales, Rainbow Fish refuses to share. This makes all the other fish mad, and they no longer want to play with the Rainbow Fish. In the end, Rainbow Fish decides to share his sparkly scales with all the other fish, keeping only one for himself.  He is less beautiful than he was before, but he has new friends and is now the happiest fish in the sea.

The Pacific herring is similarly covered in sparkly scales, but boy, is he a super sharer (as we say in preschool)!  Since herring are a small fish, they compensate for their size by forming schools (or groups of fish that swim together). Swimming in schools protects them as it reduces the likelihood that any one of them will be eaten by a predator. Sometimes we get only one herring with our huge haul of pollock.  They are somewhat similar in shape and color.  Evan (the volunteer biologist) has a theory: that it’s a herring who got separated from his school and sought protection by joining and blending in with a school of pollock. As a preschool teacher, I love the idea that a group of pollock would allow or even invite a lost little herring to “play” with them.

Other times, we get a lot of herring, and as I mentioned they love to share their sparkly scales.  Everything (and everyone) ends up sparkly: the pollock, the fish belt, the measuring boards, the tables, and ME!  You can always tell when there is herring in a catch by the sparkly fish scales in my hair.

ROCKFISH: Occasionally a few rockfish are in the trawl net.  Rockfish have large eyes, and are not particularly sparkly or cute, but they are delicious! I even learned to fillet them!

Erica fillets a rockfish
My first time filleting a fish
Erica fillets a rockfish
It’s easier than I thought it would be!

It was exciting to later see the rockfish cooked and served for dinner.

prepared rockfish
The rockfish deliciously prepared by the Chief Steward, Judy Capper

AND FINALLY THE JELLYFISH: Not yet… keep reading…

FIRST, Nathan Battey: Nathan, the other volunteer biologist onboard, is on my shift, and works in the fish lab with me 12 hours a day processing the fish hauls. He is my “go-to fisheries biologist” whenever I need help identifying a fish or jellyfish.”

Nathan and lumpsucker
Volunteer biologist Nathan Battey with a lumpsucker

Since he is originally from Goffstown, New Hampshire, it should not come as a surprise that Nathan ended up on a ship since Goffstown is home to the famous Giant Pumpkin Regatta! Every October, Goffstown residents transform enormous pumpkins into boats. They scoop out the sometimes 1000-pound pumpkins, climb in, and race them down the Piscatoquag River. 

Nathan studied biology and earth science at the University of New Hampshire and took a lot of oceanography courses along the way.  Since graduating in 2015, he has done a myriad of fascinating things.  He quantified nitrogen cycling in the wetlands of coastal New England, worked in a microbiology lab, counted larval fish under a microscope, regulated the upstream passage of salmon on the Seattle fish ladder, worked as a scallop fisheries observer, was a State Park Ranger on the eastern shore of Virginia, and worked with the Lower Elwha Klallam Tribe (alongside NOAA scientists, tribal scientists, fish and wildlife scientists, and National Park scientists) on the recolonization of the Elwha River for salmon and other fish after the dams there were removed.  (The tribe had successfully sued the U.S. for the removal of the dams based upon their right to fish there.)

The last two positions were through AmeriCorps, which he highly recommends! AmeriCorps is a network of national service programs.  It is sometimes thought of as the domestic Peace Corps since members serve on projects within the United States. According to their website: “AmeriCorps is your moment to take the path less traveled, to break the status quo, to stop talking about the problem and be the solution.” Whatever your passion, it is likely there is an AmeriCorps opportunity perfect for you. There are projects in the fields of education, public safety, health care, and environmental protection. If you are interested in learning more about AmeriCorps, visit https://www.nationalservice.gov/programs/americorps

Nathan is also a talented artist and drew detailed sketches of both marine and bird species which amazed everyone and now hang on the walls of the chem lab. 

Nathan's sketch
Nathan’s sketch of the albatross that would visit the ship during fishing times.

He will also be remembered for the nickname he gave to the Chrysaora melanaster jellyfish: Chrysaora melanasty.

Nathan's jellyfish
Nathan’s sketch of the beautiful but dreaded melanasty

AT LAST, THE JELLYFISH:

Chrysaora melanaster are magnificent creatures. The photo below, captured one night using the drop camera, shows how elegantly they glide through the water with their ribbon-like tentacles flowing gracefully behind them.

Chrysaora melanaster swimming
Chrysaora melanaster captured on drop camera

It is often my job to grab the jellyfish as they come down the belt, separating them from the pollock.  I have held some that are an inch wide, and some that are almost 3 feet wide (and quite heavy). Jellyfish are measured by their bell diameter, or how wide the top part is (not the tentacles).

Erica with large jelly
Here I am with a large Chrysaora melanaster. Before my time on the Oscar Dyson, if I saw a jellyfish in the ocean, I swam away as quickly as I could. Now I probably touch 100 jellyfish per day, albeit with gloves on. Also, look at the sparkly scales in my hair. It must have been a herring day!
Evan and jellies
Volunteer biologist Evan Reeve and a tangled mess of Chrysaora melanster

The photo above might give you an idea of how the nickname “melanasty” came to be.  In the net, all the glorious, long, sticky, ribbon-like tentacles of the Chrysaora melanaster get tangled and attached to all the glorious, long, sticky, ribbon-like tentacles of the other Chrysaora melanaster.  As you try to pull one jellyfish off the belt, several more are attached in a slimy mess, and you often get splashed in the face, mouth, or eyes with jellyfish “goo.”  One day, dealing with the tangle, Nathan dubbed them “melanasty” and the nickname stuck. 

Jessica Cobley: An Introduction, July 15, 2019

NOAA Teacher at Sea

Jessica Cobley

NOAA Ship Oscar Dyson

July 17 – August 8, 2019


Mission: Midwater Acoustic Trawl Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Aleutian Islands)

Date: Monday, July 15th, 2019

Weather Data from Juneau, AK: 8:50am Lat: 58.35° N Lon: 134.58° W 

Personal Log

Hello everyone. In just a few days I will be swapping out halibut fishing in Juneau, AK for surveying walleye pollock in the Gulf of Alaska (GOA)…and I can’t wait! Our cruise on NOAA Ship Oscar Dyson will depart from Kodiak Island and sail out along the Aleutian Islands, a place I have yet to see or experience since moving to Alaska. 

Jessica halibut fishing
Fishing for Halibut near Holkham Bay. This photo was taken just after the fillet had slipped out of my hands and onto the boat deck…guess I’ll benefit from fish handling practice on the cruise! Photo Credit: Laura Maruhashi

Three years ago, I left a curriculum consulting job in Portland, OR to begin teaching in Juneau. Prior to Oregon, I was living overseas in Australia, where I completed my Masters in Education and spent time with the Australian side of my family. I am incredibly excited to now call Juneau my home and be in the classroom as both an educator and a learner. Alaska is such a unique and special place – sometimes I still can’t believe I live here! 

Currently, I work as a 7th grade Life Science teacher at Floyd Dryden Middle School. Not only is middle school my favorite age of kids to teach (yes, you heard that right), but I also love the curriculum we get to share with them. One main focus during the school year is to teach about ecosystems. Two years ago I developed a unit, along with NOAA Scientist Elizabeth Siddon, that focuses on how commercial fisheries quotas are set in Alaska. The lessons range from data collection and stakeholder input to presenting recommendations to the North Pacific Fisheries Management Council. Alaska takes several different aspects of the ecosystem into consideration when setting quotas and I think it is a great way for students to see how the science they learn in school can be applied to real life careers. 

7th grade students
Students in my 7th grade life science class presenting ecosystem risk table recommendations to a panel of scientists for sablefish quotas in the Gulf of Alaska.

I myself have never had the chance to work as a scientist. That is why I am so excited for the opportunity to participate in data collection and analysis alongside a research team right here in Alaska. It will be fantastic to bring what I learn back to my students and be able to give them an even better understanding what being a scientist can entail. 

Lastly, outside of teaching, I try to enjoy all of the outdoor activities Juneau has to offer. With the recent streak of unusually warm and sunny weather, my friends and I have been boating, swimming, and hiking as much as possible. While it will be hard to leave those things behind, I am looking forward to this next adventure! 

Jessica hiking
Midway through a hike from Granite Creek Basin to Mount Juneau. Photo Credit: Laura Maruhashi


Science and Technology Log

The research team on NOAA Ship Oscar Dyson is conducting an acoustic-trawl (AT) survey to collect data, primarily on walleye pollock, to be used in stock assessment models for determining commercial fisheries quotas. When collecting data, scientists will work in 12 hour shifts and be looking to determine things such as species composition, age, length distribution etc. 

NOAA Ship Oscar Dyson
NOAA Ship Oscar Dyson. Photo Credit: NOAA

Trawl fishing, for those of you unfamiliar, is a method of fishing when a net of particular size is pulled through the water behind a boat. Oscar Dyson is a 64 meter stern trawler that contains acoustic and oceanographic instruments to collect the necessary data. After researching online, I learned that the main instrument used is a Simrad EK60 split-beam echosounder system. Look for more information about what this instrument is (and others) in future blog posts! 

Did You Know?

Alaska pollock is one of the largest commercial fisheries in the world! 

Thank you for reading and I am looking forward to sharing more about life out at sea! 

Erica Marlaine: SAY CHEESE, July 7, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 7, 2019

Weather Data from the Bridge:

Latitude: 55º 24.63N
Longitude:155 º 18.86 W
Wind Speed: 10 knots
Wind Direction: 210º
Air Temperature:  11º Celsius
Barometric Pressure: 1097 mb


Science and Technology Log

Fishing nets like the ones used on the NOAA Ship Oscar Dyson or on commercial fishing boats can be very expensive.  If one plans on doing a bottom trawl (fishing with a net that goes down to the sea floor) one wants to make sure that there are not rocks or other things that can snag or tear the net.  If there are too many rocks or boulders or uneven topography, the area is considered “untrawlable”. While computer imagery can provide some guidance with regard to what lies deep beneath the surface, scientists onboard the NOAA Ship Oscar Dyson are hoping that video images taken with an underwater camera can provide a more complete picture and be the basis for a more precise computer model of what areas are in fact untrawlable.

Why is this important? Scientists onboard the NOAA Ship Oscar Dyson are surveying the fish that live in the middle of the water column. However, groundfish surveys need to account for all the fish living on the ocean floor. If the groundfish program can’t trawl in certain areas, then they don’t know what is there.  For example, rockfish often live in untrawlable areas. If a groundfish survey can’t put a net in areas where rockfish live, then they won’t really “count” the correct numbers of rockfish in their survey. Data obtained using an underwater camera can help determine what species of rockfish are being underrepresented by the groundfish program.

One of the many perks of being on the 4 p.m. to 4 a.m. shift is that I get to watch the drop camera in action!  The camera (with its attached light) is slowly lowered to the sea floor.  

The drop camera

I have seen the camera take 4 minutes to reach the bottom or as long as 8 minutes depending upon the depth of the water being surveyed.  The camera is then “driven” along the bottom (or right above it) for 15 minutes via a control box on the boat (similar to a tiny joystick).  I even got to drive it a few times!

My turn to drive!

The images are recorded and also seen in real time on several computer screens on the boat.  We have seen rocks, of course, but also jellyfish, sea whips, crabs, anemones, octopuses, sea stars, and a wide variety of fish. One night, there were thousands of sand dollars. It looked like we had come across a buried treasure! It is fascinating to see what is happening deep beneath the boat. It’s kind of like virtual scuba diving!

Sand dollars and brittle stars
Sand dollars and brittle stars
Tiger Rockfish
Tiger Rockfish
Flatfish
Flatfish
Giant Pacific Octopus
Giant Pacific Octopus
ANOTHER Giant Pacific Octopus!
Kelp Greenling
Kelp Greenling
Quillback
Quillback


Drop Camera Elementary School Math Fun

If the stereo drop camera takes 8 minutes to reach the bottom when the water is 200 meters deep, how long might it take to reach the bottom if it was:

100 meters deep?  ____________

50 meters deep? ______________

300 meters deep? _____________


Personal Log

It’s time to come clean and admit that I suffer from Pareidola.  Don’t worry, it’s not contagious, or even dangerous. In fact, I think it’s a lot of fun.  You see, Pareidola is a psychological phenomenon where you see patterns.  Quite often, people with Pareidola will see faces in objects where there really isn’t one, like on an electrical outlet. 

Electrical outlets
Electrical outlets… do you think they look like faces?

My Pareidola has reached a new level on the NOAA Ship Oscar Dyson as I am seeing not just faces but ROBOTS like these:

Let me know if you see any robots at your house, and I am on the lookout for more here!


Erica Marlaine: Oh, the Places You’ll Go! July 6, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 6, 2019

Weather Data from the Bridge:

Latitude: 55º 4.07N
Longitude: 156º 42 W
Wind Speed: 3.2knots
Wind Direction: 96º
Air Temperature:  10.3º Celsius
Barometric Pressure: 1025.7. mb
Surface Water temperature: 11.05º Celsius
Depth of water column: 1,057.6 meters


If you love science and exploring, consider a career in the NOAA Corps!

NOAA Corps

The NOAA Corps is one of our nation’s seven uniformed services (along with the Army, Marine Corps, Navy, Air Force, Coast Guard, and Public Health Service Commissioned Officer Corps). NOAA Corps officers are an integral part of the National Oceanic and Atmospheric Administration (NOAA), an agency of the U.S. Department of Commerce. NOAA and the NOAA Corps can trace their lineage to 1807 when President Thomas Jefferson signed a bill for the “Survey of the Coast.” The survey work was done by Army and Naval officers along with civilian men and women. The Coast Survey was actually the first federal agency to hire female professionals! Their duties included charting our nation’s waterways and creating topographic maps of our shorelines, which made our marine highways among the best charted in the world.

Today, the NOAA Corps is an elite group of men and women trained in engineering, earth sciences, oceanography, meteorology, and fisheries science. NOAA is comprised of the National Weather Service, National Marine Fisheries Service (NOAA Fisheries), Office of Oceanic and Atmospheric Research (NOAA Research), National Environmental Satellite, Data and Information Service, National Ocean Service, and the Office of Marine and Aviation Operations. NOAA Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA.

NOAA Officer Spotlight

ENS Lexee Andonian
ENS Lexee Andonian

I had the opportunity to speak with Ensign (ENS) Lexee Andonian (although by the time this is published Ms. Andonian will have been selected for LTJG (Lieutenant junior grade)! ENS Andonian has been a member of NOAA Corps for almost 2 years, and loves her job, but it was not something she originally considered as a career (or even knew about). She first learned about NOAA while working at a rock climbing gym. A patron mentioned it to her, and offered to show her around a NOAA ship. She went home and googled NOAA. With her interest piqued, she decided to accept the patron’s offer, and went to Newport, Oregon to tour the NOAA Ship Bell M. Shimada (which is actually the sister ship of the NOAA Ship Oscar Dyson. A sister ship means they were based off the same blueprint and can serve similar projects.)

ENS Andonian applied for the NOAA Corps, but was waitlisted. NOAA is highly selective and accepts a very limited number of applicants (approximately 15-25 twice a year.) Undeterred, she applied for the next NOAA class, and was once again waitlisted, but this time she was accepted off the waitlist. After 5 months of training at the Coast Guard Academy, she was ready to begin her assignment onboard a NOAA ship, where additional hands-on training occurs non-stop. Each NOAA Corps member wears a multitude of “hats” while onboard. ENS Andonian is currently the Acting Operations Officer, the Navigation Officer, the Environmental Compliance Officer, and the Dive Officer. ENS Andonian loves that her job allows her to see unique places that many people never get to explore since they are not accessible by plane or car. Asked what she misses the most from home, she said, “Bettee Anne” (her dog).


Science and Technology Log

Today I was introduced to a few new species in the fish lab. Until now, most of the jellyfish have been Chrysaora melanasta, which are beautiful and can be quite large, but today I saw 2 egg yolk jellyfish, aptly named as they look like egg yolks.

Egg yolk jellyfish
Egg yolk jellyfish

I also saw a lumpsucker, which is the cutest fish I have ever seen. Lumpsuckers look like little balls of grey goo. He (or she) seemed to look right at me and kept opening and closing its mouth as if trying to say something. Lumpsuckers have a suction cup on their bottom which allows then to adhere to rocks or other surfaces.

Lumpsucker
Lumpsucker


Personal Log

As a teacher, I create experiences for my students that will take them out of their comfort zone so that they can realize just how much they are truly capable of. On the NOAA Ship Oscar Dyson, it is my turn to step outside my own comfort zone. If you would have told me a few months ago that I would feel comfortable being elbow-deep in live fish and jellyfish, or dissecting fish to see whether they are male or female, or slicing into a fish’s head to collect otoliths (ear bones), I would not have believed you, but that is how I spend every day onboard the Oscar Dyson, and after 2 weeks, it feels like something I have done all my life.  It is an experience I highly recommend to everyone!

Erica Marlaine: Happy Fourth of July from the 49th State, July 4, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 4-5, 2019

Weather Data from the Bridge:

Latitude: 55º 48.9 N
Longitude: 159º 2.3 W
Wind Speed: 4.2 knots
Wind Direction: 186.5º
Air Temperature:  14.7º Celsius
Barometric Pressure: 1022.12 mb
Depth of water column 84.5 m
Surface Sea Temperature: 10 º Celsius

History

On March 30, 1867, Secretary of State Seward purchased Alaska from the Russian Empire for 7.2 million dollars (or 2 cents per square mile). It was deemed a territory for many years until January 3, 1959 when President Eisenhower signed a proclamation admitting Alaska into the United States.  The word “Alaska” comes from an Aleut-language idiom that means “object to which the action of the sea is directed.” It is the northernmost and westernmost state in the United States. It is also the largest state.  By comparison, it is twice the size of Texas.


Celebrating the Fourth of July, NOAA style

My usual Fourth of July at home includes a bar-b-que, swimming, and attending a fireworks show at night. The Fourth of July celebration on the NOAA ship Oscar Dyson was completely different, and literally a BLAST.  At noon, an announcement was made for “all hands” to report to the galley for Fourth of July “mocktails” or fun non-alcoholic drinks.  (There is no alcohol on a NOAA ship.) I had a delicious “mimosa” made of orange juice and sparkling cider. Later, we were taken on a wonderful ride past Mitrofania Island. 

Approaching Mitrofania Island
Approaching Mitrofania Island
Mitrofania Island
Mitrofania Island

Photographs do not do it justice.  It was my first time up on the fly bridge (the “roof” of the boat) and I loved being able to take in the 360 degree views.  Many people never get to see this part of Alaska as it is not a route commonly taken by cruise ships. T