Jenny Gapp: Let Them Eat Hake! August 14, 2023

NOAA Teacher at Sea

Jenny Gapp (she/her)

Aboard NOAA Ship Bell M. Shimada

July 23 – August 5, 2023 

Mission: Pacific hake (Merluccius productus) Survey (Leg 3 of 5)
Geographic Area of Cruise: Pacific Ocean off the Northern California Coast working north back toward coastal waters off Oregon.
Date: Monday, August 14, 2023

Weather Data from Portland, Oregon
Friday, August 11, 2023 (one week from our final trawl)
Sunrise 6:06am PDT | Sunset 8:24pm PDT
Current Time: 2:53pm PDT
Location: 45. 59578° N, 122.60917° W (Portland International Airport)
Visibility: 10 miles
Sky condition: A few clouds
Wind Speed: 6.8 mph
Wind Direction: NW
Barometer: 1016.80 mb
Air Temp: 82° F
Relative Humidity: 37%
Speed Over Ground (SOG): 0 knots as I sit on my front porch at home!
Willamette River water temperature: 74°F

Monday, August 14, 2023
Sunrise 6:10am PDT | Sunset 8:19pm PDT
Current Time: 2:53pm PDT
Location: 45. 59578° N, 122.60917° W
Visibility: 10 miles
Sky condition: Clear
Wind Speed: 10 mph
Wind Direction: WNW
Barometer: 1010.10 mb
Outdoor Air Temp: 105°F (record ended up at 108°F)
Relative Humidity: 21%
Indoor Air Temp: 78°F (our AC consists of several Doug Fir trees)
Speed Over Ground (SOG): 0 knots as I sit at my computer in my home office space. 
Willamette River water temperature: 75.02°F

Science and Technology Log
I’ll start my last blog post with some vocabulary… and a sports analogy. Apologies in advance, I’m testing out some sports jokes to appeal to my 5th-grade sports fans who are skeptical about science. My hope is that the vocabulary (at least) will aid in understanding the following narrative about NOAA Ship Bell M. Shimada’s Leg 3 centerboard retraction.

Don’t worry, it’s not too complicated. It isn’t that different from how rookie Trail Blazer Ibou Badji (Center) was removed for knee surgery at the end of last season… or how the other Center, Jusuf Nurkic, was ejected after an altercation with an opponent and then retracted for the remainder of the same season with plantar fasciitis… Where have all the Centers on the board gone? At least there is more certainty of Shimada’s centerboard returning than Nurkic (even though he has three years on his contract left)!

Vocabulary

Acoustics – In our case, acoustics refers to an entire branch of physics concerned with the properties of sound. Yes, acoustics can also refer to how your voice sounds when singing in the shower.

Sonar – A system for the detection of objects underwater by emitting sound pulses and detecting or measuring their return after being reflected by the objects. The vocabulary words that follow are all related to the sonar system on the Shimada.

Centerboard – A retractable hull appendage, similar to the keel on a sailboat.

Ping – To emit a signal and then listen for its echo in order to detect objects. Sean Connery may have introduced you to the concept. “Give me a ping, Vasili. One ping only, please.” (Captain Ramius, The Hunt for Red October, 1990)

Hertz – One hertz (Hz) is equal to one event per second. The unit’s most common usage is to describe periodic waveforms (as is used in acoustics) and in musical tones. Kilohertz (kHz) is equal to 103, megahertz (mHz) is equal to 106 .

a graphical representation of the spectrum of soundwaves. from left to right, a red line meanders up and down at increasing frequencies (2 Hz, 20 Hz, 200 Hz, 2 kHz, 20 kHz, 200 kHz, 2 MHz) and decreasing wavelengths (170 m, 17 m, 1.7 m, 17 cm, 17 mm, 1.7 mm, 172 um.)  The labeled wavelengths are compared to images about the same size: a baseball field (170 m), a tractor trailer (17 m), two people holding hands (1.7 m), a sub sandwich (17 cm), a penny (17 mm), the width of a quarter (1.7 mm), and grains of salt (172 um). Ranges of frequencies are labeled "infrasound" (2 Hz to 20 Hz), "audible sound" (20 Hz to 20 kHz), and "ultrasound" (20 kHz to 2 MHz).
Spectrum of soundwaves illustration from BYU Acoustics Research Group

Transducer – A device that converts variations in a physical quantity, such as sound, into an electrical signal, or vice versa. On the Shimada, the transducer emits a ping.

Transceiver – A device that both transmits and receives communication. There are five transceivers on the Shimada, one for each frequency—measured in kHZ—that the scientists monitor. Walkie-talkies are one example of transceivers.

Note: I have a habit of calling things by their incorrect names, and had some confusion about how a “transponder” fits into these “trans” terms. A transponder is a blend between “transmitter” and “responder.” Essentially, a device that receives a radio signal and emits a different signal in response. They are used to detect and identify objects. If you have a car key fob that locks and unlocks your doors remotely (or starts your engine), then you are walking around with a transponder. Transponders are also commonly found in airplanes.

Echosounder – A type of sonar. The Shimada uses a wideband transceiver (WBT) scientific echosounder system for the hake survey.

Echogram – The visualization of sound once the transceiver “listens” to the acoustic return pinged off objects.

Cleaning up is often a sign of good things coming to an end. Whether it’s scraping glitter glue off the tables of my library, or fish scales off stainless steel in the Shimada, both signal the end of a productive work period. On Friday night, August 4th, the Wet Lab crew conducted a deep clean of the space after the last trawl. On Saturday, the net was streamed one last time (for Leg 3 anyway) on our way back to Newport, Oregon. Creatures like pyrosomes, flatfish, and young-of-the-year (YOY) hake that had been stuck in the net were flushed out after a period of time waving goodbye in surface waters. YOY is used interchangeably with the term “fingerlings” in the vocabulary of fish development.

Jenny, wearing overalls, rubber boots, rubber gloves, kneels on one knee to scrub an overturned plastic basket on the aft deck. there is a bucket of cleaning solution to her right and a stack of three more baskets to her left.
In which I get to “swab the deck”… or swab the baskets in this case.

Another event that occurred Saturday was the raising of the centerboard. The centerboard is always raised at sea and cleaned once in port. “Biofouling mitigation” is the fancy term for centerboard cleaning. This is to ensure sea life, such as barnacles, do not adhere themselves to the surface. A build-up of these stowaways could interfere with the sonar. Hmm, I sense potential here for another sports analogy… something about fouls.  

The Survey Crew coordinates with the bridge and the engineers to retract the centerboard. Transducers are mounted on the centerboard so they can be lower than the hull. This reduces bubbles and noise. In the Shimada’s case, bubbles are air pockets created by the movement of the ship’s bow. A centerboard extends the distance between sonar equipment and the activity of bubbles gathered near the hull. When seas are rough enough there can actually be a data dropout that appears as a white line on the echogram.  

Elysha stands at metal box, with indicator lights and switches, mounted on a wall. She holds a corded phone receiver up to her ear with her left hand. With her right hand she reaches toward a button or dial on the control panel.
Elysha Agne, at the centerboard control panel.

Fully extended, the centerboard is 3.4 m below the hull of the ship and 9.15 m below the baseline sea surface. There is a manual option for retracting the centerboard, but it is generally only used if there’s a problem. Automatic operations are the norm, and were used when I observed the procedure.

Officers on the bridge slow the ship to 0 knots. The bridge confirms with survey technicians which position the centerboard should be moved to. A control panel for the centerboard is located one deck below the acoustics lab. I stood with Senior Survey Technician, Elysha Agne, to observe the process for retraction. NOAA Corps crew actually push the button on the bridge for retraction, but Agne communicates over the phone with them to confirm what the centerboard control panel is indicating.

close up view of a metal panel - a red circle, surrounded by a yellow ring, on a red background. over the center of the circle, there's a beige-colored smear of what must be tiny barnacles.
Barnacles on a Shimada transducer after three legs of the 2023 hake survey. Photo taken by Elysha Agne.

Just down the passageway from the control panel are the double watertight doors that provide access to the instrument pod on the retracted centerboard. I include a picture of these doors in the Hook, Line, and Thinker section of blog post, “Let’s Get Specific in the Pacific.”

Once the button is pushed and the centerboard is ostensibly moved, Agne confirms the indicator lights on the control panel and looks through the porthole on the watertight doors nearby to confirm the white letter “R” (for “retracted) is visible on the appendage. Agne turns off the transducers (no pinging) before retraction starts in case the transducers accidentally go out of the water.

This is important because sound travels differently through air than in water. If the transducer were still pinging while a crewmember had their head through the open centerboard access doors—that wouldn’t be good for human ears. The transducer can actually be damaged beyond repair if it pings in the air. The centerboard actually has holes in it, so it fills with water when lowered, then drains as it is raised. I could hear the water draining during the retraction process. 

Career feature

CO Slater, wearing a blue NOAA Corps uniform, stands at a white metal post (housing what must be the gyro repeater) near a railing aboard NOAA Ship Bell M Shimada. He holds his right hand up, pointing out over the bright blue ocean, and looks in the direction he points.
CO Slater at one of Shimada’s gyro repeaters.
CO Slater, wearing a blue NOAA Corps uniform, sits in his Captain's Chair on the bridge. Facing away from us, he holds his binoculars up to his eyes to scan the horizon.
CO Slater sits in his Captain’s Chair and inspects the horizon.

Joshua Slater, CO (Commanding Officer)
Give us a brief job description of what you do on NOAA Ship Bell M. Shimada.

I’m responsible for the safety of the ship and its 41 crewmembers (depending on the voyage), including safe navigation, accomplishment of science missions, project management, budget, personnel, and training of the crew.

What’s your educational background?

I have a Bachelor’s in Marine Biology and a Master’s in Marine Sciences both from the University of North Carolina, Wilmington. I grew up in a Navy family, so we moved all around the world. I don’t consider one place home over another. After graduation, I wanted to go to either California or Hawaii. I got a job as a contractor with NOAA doing free-diving and scuba in Hawaii as a Marine Debris Technician. I removed derelict fishing gear and nets off the coral reefs of the northwestern islands. I joined NOAA Corps after that. I attended the U.S. Merchant Marine Academy in King’s Point, New York. In the Corps, there’s a 2:3 rotation ratio in years spent on assignments at sea and on land.

I started out on NOAA Ship McArthur II. We sailed from Seattle out to Hawaii, down to South America, Mexico, and up the West Coast of the U.S. to Canada. My assignment after that was emergency response for incidents at sea such as hurricanes and chemical spills. One of those projects was on the Deepwater Horizon oil spill response down in the Gulf of Mexico. My next ship was in South Carolina on NOAA Ship Nancy Foster, where I worked from Massachusetts to Key West, to Galveston, Texas. After that were land assignments in Washington DC, then Chief of Operations at NOAA’s Marine Operations Center for the Pacific (MOC-P) in Newport, Oregon. I’ve bounced between MOC-P and the Shimada in that land-to-sea ratio since then.

In the NOAA Corps, you start out as an Ensign (pronounced “en-sin”). Within 2-3 years you usually get promoted from ensign to Lieutenant junior grade. During your first sea tour, you need to learn how to drive the ship, keep everyone safe, and understand the basics of ship operations. During your second sea tour, you help coordinate logistics for operations. On the third sea tour you’re running all the administrative functions (hiring, firing, discipline), and on the fourth time out hopefully you are experienced enough to be considered for the ship’s Captain, overseeing the safety of the whole ship, and making sure operations are done efficiently. So, as you work your way through your career you also get promoted. Beyond the rank of Lieutenant junior grade, there’s Lieutenant, Lieutenant Commander, Commander, Captain, and then Admiral.

For civilians, Ship Captain and CO may be viewed as interchangeable. In NOAA Corps you can be a commanding officer and be any number of different ranks. In the civilian world, the ship’s boss is called “Captain” or “Master.” Since NOAA Corps stems from military origins, they use “Commanding Officer.”

What took you by surprise about sailing on the ocean?

What took me by surprise was the amount of operations we could do in less-than-ideal weather. You might have a calm day on shore, but at sea it’s usually windy and you have waves of some sort. We do the best we can given the situation.

Why are conditions rougher further out at sea?

A few things. Currents. Wind. Sometimes headlands protect you from wind when you’re closer to shore. How big the waves get is a combination of how strong the wind blows, how long it blows, and over what distance of water. That’s called the fetch. That gives the time needed for the swell to fully develop based on the wind. Wind at a short distance is a wave. Once you get beyond where the wind is that localized phenomenon, further away it’s the swell. While our wind may be calm here, we may still have a big swell because there’s a storm off Hawaii or Alaska. We’re not feeling the wind but we’re feeling the side effects. Or we could just be in the wind, it’s blowing 50, and not that bad right now, but give it 12 hours to develop, 24 hours, and it’s going to be a lot worse. You do what you can given what you have to work with. The ship is seaworthy and can handle a lot of different conditions. 

an illustration of the surface of the ocean, if it were contained in a square angled toward the viewer. an orange arrow entering the square from the left is labeled Wind; a blue arrow exiting the square to the right is labeled "direction of wind advance." near the arrow, small curved white lines indicate small waves emanating out in all directions, but in the direction of the arrow there are many more; farther to the right, they spread out some; all the way to the right, they are large waves. This progression is labeled "ripples to chop to wind waves," then "full developed seas," then "changing to swell." An oval with a point at the back describes the center of the image, where most of the waves are, and a nearby measurement bar marks the length of that shape as the length of fetch.
An illustration of fetch. Image origin.

What’s the biggest weather you’ve been in on the Shimada?

Probably 20-foot waves, although waves are not consistently one height, they’re a range. They may be normally 16-18 feet, but you might get a 22-foot wave come through. The ones I’ve been in consistently were about 20.

At what point is it not safe to conduct operations?

It depends what the wind is, what the swell is, whether they’re from the same direction or opposing directions, or 90 degrees off. Sometimes our whole project is in the trough, which means the waves are hitting us from the sides, so we’re rolling a lot. The way transects are laid out for trawling and sampling gets us rolling a lot. If it’s really bad we’ll angle our way from one location to another. We do have safety standards for operations. Once the wind is above a certain limit, or the waves above a certain range in height, we’ll reassess. Usually, we reassess the operation if wind is over 30 knots, but we’ve done ops in 40 knots before. We’ve also done ops in 16-foot waves. There are a lot of variables to be considered, including the type of operation we’re attempting to execute.

We’ll get people who have never been out here before, or we’ll get people that are so focused on the science, they don’t think about safety. My job is to make sure they don’t forget about safety! We have a daily safety meeting of department heads on the ship. There are weekly drills at sea. During monthly safety meetings, we go over accidents in the NOAA fleet. It’s a lot easier to learn from other people’s mistakes. We all want to come home with our fingers and toes!

What advice do you have for a young person interested in ocean-related careers?

Grow where you’re planted. In NOAA Corps, you don’t get to necessarily choose the jobs where you go next. A board of officers chooses for you, based on your skill set and the needs of the service at that time. For example, I can list my preferences, but there’s no guarantee I will get any of them. There have been many times where officers haven’t even received their second or third choice. My advice to everyone is, you may not want to go to a particular assignment or a particular part of the country, but you’re there, so make the most of it. Every place I have been assigned has good qualities, good things to offer. Those are what I choose to focus on. When I talk to some people, they never seem happy no matter where they are.  I think that is a mindset issue. One of my favorite quotes is, “Positivity is a superpower.” The term “Shimada-tude” got its start in the early days of the ship’s service to NOAA and is all about positivity. We want to like what we do and want people to like coming out to sea. We want them to have a good experience, and treat everyone with respect. 

Do you have a favorite book?

Growing up I often looked for the Newbery Prize Medal seal or the Newbery Honor seal on a book cover when I was walking through the library. I figured if somebody liked it I might as well try it. It’s hard to pick just one book. I tried a lot of the classics and have made my way through most of “The 100 Greatest Books Ever Written.” Some were enjoyed while others were not. I remember taking an interest in The Odyssey and The Iliad, by Homer; Robinson Crusoe, by Daniel Defoe; Shipwrecked, by Robert Louis Stevenson; The Phantom of the Opera, by Gaston Leroux; and Dracula, by Bram Stoker—to name a few. 

Lately, I’ve been reading more and more about financial education. One book I recommend is The Richest Man in Babylon, by George Samuel Clason. It uses fictitious ancient parables to give you sound monetary advice, and that is something that I don’t think is really taught anymore.

As for children’s literature, I’ve recently read a few of the Harry Potter books with my son. I remember reading and enjoying The Chronicles of Narnia series, by C.S. Lewis, Island of the Blue Dolphins, by Scott O’Dell; and Where the Red Fern Grows, by Wilson Rawls. 

NOAA Fishwatch logo, reading: FishWatch U.S. Seafood Facts, NOAA, www.FishWatch.gov


Floating (Food) Facts (& Opinions)

Here’s the part where we “Let them eat hake.” If you can get your hands on some hake through a company like Pacific Seafood (headquartered in Clackamas, Oregon), then you can decide for yourself whether all this fuss over hake is worth the hype.

Hake (Pacific Whiting) is the most abundant commercial stock on the Pacific Coast.

If you aren’t into hake but consume other seafood, use Fish Watch. NOAA Fisheries hosts sustainable seafood profiles with current information on marine fish harvested in the U. S.

The first couple of paragraphs on the Fish Watch site define “sustainable seafood:”

“Sustainable seafood is wild-caught or farmed seafood that is harvested or produced in ways that protect the long-term health of species populations and ecosystems. The United States is a global leader in sustainable seafood. U.S. fishermen and seafood farmers operate under some of the most robust and transparent environmental standards in the world. If the seafood you purchase is caught or farmed in the United States, you can feel confident you’re making a sustainable seafood choice. 

Marine wild-capture fisheries in the United States are scientifically monitored and regionally managed. They are enforced under 10 national standards of sustainability through the Magnuson-Stevens Act—exceeding the international standards for eco-labeling of seafood.”


You may have stood in front of the seafood counter and noticed those green (best choice) and yellow (good alternative) labels. I have yet to see red, which means avoid, which seems counter to the marketing impulse of grocery stores. These labels are based on the Monterey Bay Seafood Watch guidelines. Here’s a pocket guide for my West Coast friends. There are a handful of seafood guides you can consult, but not all are created equal. This article from 2017 captures the frustration consumers sometimes have about what fish to choose.

Part of my confusion is often based on the many names a single species has! For example, I just now learned (on the NOAA Fish Watch site) that Bocaccio are rockfish and are the Oregon Red Snapper I recall from shopping trips and meals as a kid. For me, the thing that makes NOAA’s Fish Watch site superior to the rest is the comprehensive overview of each species profiled. You get detailed sections on Population Status, Appearance, Biology, Where They Live, Fishery Management, and Harvest all in one place. Bon appetit!

photograph of a hake, cutout and superimposed on a stylized background. text reads: Wild Pacific Hake (Whiting). A North Pacific Speciality. Wild Pacific Hake (Whiting) is unique to the waters off the coast of Oregon and Washington. But chefs worldwide like this sustainable fish for its rich, white flesh, flaky texture, and mild and slightly sweet flavor. Calories: 90 per serving. Protein: 18.31 g per serving. Fat: 1.31 g per serving. Omega-3: 260 mg per serving.
Image of a hake with nutritional information from American Seafoods.
image of plated Garlic Baked Whiting on a bed of rice, garnished with lemon and parsley.

Garlic Baked Whiting
Ingredients

4 whiting fillets
Kosher salt
Freshly ground black pepper
5 Tbsp butter, melted
2 cloves garlic, minced
¼ tsp red pepper flakes
Juice and zest from 1/2 a lemon
1 lemon, sliced into rounds
Parsley for garnish
Directions

    Preheat oven to 400°. Season whiting with salt and pepper and place on a small baking sheet.
    Mix together butter, garlic, red pepper flakes, lemon juice, and zest then pour over whiting fillets. Place lemon rounds on top and around fillets.
    Bake whiting for 10-12 minutes or until fish is fork tender.
Hake recipe courtesy of Pacific Seafood.
Click to enlarge.
image of plated spicy baked whiting with sides of couscous and asparagus

Spicy Baked Whiting
Ingredients

4 Pacific whiting fillets
2 Tbsp olive oil

Rub ingredients:
1 tsp garlic powder
1 tsp dried parsley
1 tsp onion powder
1 tsp red pepper flakes
1 tsp of lime juice
2 tsp of seasoned salt
Directions

    Preheat oven to 400°F.
    Mix all rub ingredients together.
    In a baking pan, coat fish with olive oil. Then coat the fish in the spice mixture.
    Place the fish the oven and bake for 10-15 minutes until fish is flaky.
Hake recipe courtesy of Pacific Seafood.
Click to enlarge.


Personal Log

Fog persisted on our steam north back to Newport. Without the temptation of visibility on the flying deck, I took extra time vacuuming the stateroom… that’s a joke because vacuuming a 4-person stateroom takes all of 5 minutes. In truth, my roommate and I took care to leave our space Pine-Sol fresh for Leg 4. After packing away my gear I bounced around the ship like you might in a hotel room—surreptitiously checking drawers for items you may have forgotten. That last nautical mile seemed to take forever. I kept looking out of the portholes in the acoustics lab to see nothing but white. Excitement for home began to build once it was time to gather on the flying deck and peer through the misty water vapor. Yaquina Bay Bridge slowly materialized, an elevated street floating in the sky, weirdly disembodied from the solid ground that usually frames it. As we went under the bridge the fog disappeared. Beyond, an 80° Oregon summer in the Willamette Valley beckoned. The Wet Lab Crew ate dinner together while the crew of the Shimada safely docked and worked with the port crew to reattach the gangplank. After hugs and handshakes all around it was time to part. My drive home was uneventful save a dramatic sky. 

A HUGE thank you to the Shimada crew aboard Leg 3! You welcomed me, answered my questions, allowed me to look over your shoulder, tolerated me taking photographs of you, and clarified things I didn’t understand. You all are amazing. I appreciate your labor and am thrilled to have witnessed you all working in sync to do science! My students at Peninsula thank you as well—even if they don’t know it yet. Your time and attention will enhance not just one, but many ocean-related lessons I share with them in the forthcoming year. A special thanks to my blog editors: Chief Scientist Steve de Blois and XO CDR Laura Gibson. Your feedback polished these meanderings and gave me confidence that I correctly represented NOAA and the hake. 

You Might Be Wondering…

What Next?

To complete my commitment to NOAA as a Teacher at Sea I agree to blog, write one science-related lesson, one career-related lesson, and either present at a conference or publish an article about my experience. I’m back in my school building this week and will soon be working on lessons. At least part of the science lesson will follow the path of hake otoliths (ear bones) from the ocean to the lab back on land. Many thanks to Liz Ortiz, Fisheries Technician, for helping me connect the dots on how the otolith contributes to our understanding of Pacific whiting (hake) life cycles. I’ve decided to publish an article, although I will likely also present at a conference in years to come. I have reviewed children’s books for the national journal, School Library Connection, since 2011, and will start my query for publication there.

view over the aft deck (probably from the flying deck) of NOAA Ship Bell M. Shimada back at Yaquina Bay, and the Yaquina Bay Bridge. In this photo, the sky is bright blue and clear, and the water is calm and bright blue as well.
The sky was blue when we left Yaquina Bay on Day 1, not so on Day 14.
A brief video reflection of Leg 3.

Hook, Line, and Thinker

Do you eat or consume products harvested from the ocean? Where do those products come from?

If the country of origin for products consumed isn’t the U.S. does that country have an equivalent of NOAA that gathers data and prioritizes sustainability in its policies? For context, consider this recent article from NPR: Demand for cheap shrimp is driving U.S. shrimpers out of business. I’m doing a homemade pad thai recipe this week and reading this motivated me to pay attention to where my shrimp came from. All the shrimp choices at Fred Meyer (Kroger) were imported so I went elsewhere (paid more) and found some from the Gulf of Mexico, harvested in U. S. waters. 

While you’re eating your own pad thai with U. S. shrimp, or Pacific whiting mac ‘n cheese, consider NOAA Fisheries first-ever National Seafood Strategy, just released on August 9th, 2023.

A Bobbing Bibliography: Reflections of a Librarian at Sea

Additions to the Science Crew’s Reading Recommendations:

Chris Hoefer, OSU marine mammal & seabird project – The Three-Body Problem, science fiction by Liu Cixin (Scientific American article about the concept behind the name.)

Samantha Engster, eDNA Scientist – The Shell Collector, short stories by Anthony Doerr

***

Parting thoughts from your Teacher-Librarian at Sea as inspired by quotes from a few children’s literature classics.

“Look at that sea, girls—all silver and shadow and vision of things not seen. We couldn’t enjoy its loveliness any more if we had millions of dollars and ropes of diamonds.”
Lucy Maud Montgomery, Anne of Green Gables

In my current reading of this quote, I can’t help but immediately extract the tension between commerce and being. It seems to be a theme I have returned to again and again throughout my blog posts. To be, to exist on our planet, is dependent on a healthy ecosystem, and a healthy ocean. NOAA Fisheries leans on the scientific method to tackle a barrage of pressures: consumer demand, climate change, economic prosperity, pollution.

We would do well to remember that NOAA is made up of ordinary people. The government, by the people and for the people. Many of these you have met in my interviews. I was at a dinner party recently (since I’ve returned to land) and there’s always someone in the crowd who makes half-joking remarks about “the government.” What? You killed fish in the name of science? What? Do the fisherman have the same opportunity to trawl? C’mon. Who do you think “the government” is made up of? Your uncle with a Ph.D. in physics. Your daughter with a passion for birds. “Things not seen,” are confusing, intimidating, sometimes scary. NOAA is utterly transparent. The amount of unfettered data available for citizen scientists to freely examine on the internet is mind-boggling. Keep asking questions, then ask more questions! Then do some research—ask a librarian for help!

“The sea, the sea, the sea. It rolled and rolled and called to me. Come in, it said, come in.”
― Sharon Creech, The Wanderer

It said “Come in” the loudest when smooth and glassy. While there were no swimming opportunities on board the Shimada, I have since returned to swimming at my local health club. While doing laps and staring at the dirt, hair bands, and Band-Aids at the bottom of the pool I thought about the chemicals, hair bands, and Band-Aids at the bottom of the ocean. This is not what the sea meant when she said, “Come in.” NOAA Fisheries is an integral part of the solution to the problems that face us as a species. Homo sapiens is only one of many species that have a right to thrive—both for our benefit and their own.


“The castle of Cair Paravel on its little hill towered up above them; before them were the sands, with rocks and little pools of salt water, and seaweed, and the smell of the sea and long miles of bluish-green waves breaking for ever and ever on the beach. And oh, the cry of the seagulls! Have you ever heard it? Can you remember?”
― C.S. Lewis, The Lion, the Witch and the Wardrobe

While perusing a glossary of nautical terms in the downtime after a marine mammal watch, I discovered “caravel” a small, highly maneuverable sailing ship used by the Portuguese in the 15th and 16th centuries. The Niña and the Pinta, of 1492 notoriety, were caravels. I wondered whether this term had inspired C. S. Lewis’ naming of Cair Paravel. I will not remember the cry of seagulls so much as I will the cat-like meow of the common murre, at least that’s what they sounded like to me at the time. I’m a compulsive Googler, so that’s how I came upon this Minecraft version of Cair Paravel.

It made me think of my students and how NOAA scientists are the stars of real-world exploration and discovery. Scientists are also world-builders of a sort—reports on their findings influence policy-makers, lawmakers. As science moves forward, it continuously corrects itself as new things are discovered. Listening to the latest science can make or break the world.  

And oh, the cry of the scientists! Have you ever heard it? Can you remember? 

screenshot from a video game showing a castle near the ocean
A Minecraft version of Cair Paravel.
photo of a hatchetfish and a lanternfish on a metal table, facing one another. Jenny has added speech bubbles so that the hatchetfish says: "So, what did you think of the Teacher at Sea experience on the Shimada?" and the lanternfish replies: "It was illuminating - and that's not just my photophores talking!"
A hatchetfish and a lanternfish reflect on the Teacher at Sea experience.

Jenny Gapp: Literate Fish, August 4, 2023

NOAA Teacher at Sea

Jenny Gapp (she/her)

Aboard NOAA Ship Bell M. Shimada

July 23, 2023 – August 5, 2023

Mission: Pacific hake (Merluccius productus) Survey (Leg 3 of 5)
Geographic Area of Cruise: Pacific Ocean off the Northern California Coast working north back toward coastal waters off Oregon.
Date: Friday, August 4, 2023

Weather Data from the Bridge
Sunrise 0614 | Sunset 2037
Current Time: 0700 (7am Pacific Daylight Time)
Lat 43 16.7 N, Lon 124 38.0 W
Visibility:  10 nm (nautical miles)
Sky condition: partly cloudy
Wind Speed: 5 knots
Wind Direction: 030°
Barometer: 1020.3 mb
Sea Wave height: 1 ft | Swell: 340°, 1-2 ft
Sea temp: 13.7°C | Air Temp: 16.2°C

Science and Technology Log

On Wednesday night I stayed up to participate in the first CTD cast of the evening. What is a CTD? The short version: a water sample collection to measure conductivity, temperature, and depth. eDNA information is also collected during the CTD casts.

The longer version: As is true of all operations, all departments collaborate to get the science done. The bridge delayed casting due to erratic behavior from marine traffic in the area. When that vessel moved away, the deck crew got busy operating the crane that lowered the CTD unit to 500 meters. The Survey Technicians, along with the Electronics Technician, had just rebuilt the CTD unit days before, due to some hardware failures at sea. The eDNA scientist prepared the Chem Lab for receiving samples that would confirm the presence of hake as well as other species. 

When I arrived, Senior Survey Technician Elysha Agne was watching a live feed of the sensors on the CTD unit. Agne explained what was happening on the feed: There are two sensors per item being tested, then both sensors are compared for reliability of the data. There is one exception: A dual channel fluorometer, which gauges turbidity and fluorescence (which measures chlorophyll). Turbidity spikes toward the bottom in shallow areas due to wave action. Salinity is calculated by temperature and conductivity.  Sometimes there are salinity spikes at the surface, but it’s not usually “real data” if just one sensor spikes. The CTD unit is sent down to 500 meters as requested by scientists. Measurements and water collection occur at 500, 300, 150 and 50 meters. The number of CTDs allocated to a transect line varies according to how many nautical miles the line is. For example, multiple readings at the 500 meter mark may be taken on a line. CTD casts west of the one done at the 500m depth contour are spaced every 5 nm apart. Scientists are not currently taking CTD samples beyond the ocean bottom’s 1500m contour line.

The main “fish,” called an SBE 9plus, has calibrated internal pressure. As it descends you can tell the depth the “fish” is at. Sea-Bird Electronics (the origin of the SBE acronym) manufactures the majority of scientific sensors used on board, with the exception of meteorological sensors. The Seabird deck box (computer) is connected to the winch wire. The winch wire is terminated to a plug that is plugged into the main “fish.”

The other day, the termination failed. Termination means the winch wire is cut, threaded out, and the computer wire plugged into the winch wire. The spot it’s terminated can be exposed to damage if internal wires aren’t laid flat. Tension and tears may occur anyway because it’s a weak point. The plug on the main “fish” where the winch wire cable connects broke too, so the whole CTD had to be rebuilt. The “Chinese finger,” the metal spiral that pulls the load of the CTD on the winch wire, was also defective, so modifications were made. 

When the CTD is at the target depth, Agne presses a button in the chem lab that logs a bunch of meteorological and location data. She remotely “fires” a bottle which sends a signal to the “cake” that sits on top of the CTD. The signal is an electric pulse to release a magnet that holds the niskin bottle open. If it pops correctly, water is sealed inside. Since two bottles of water were requested at each depth, a second signal is sent to the second bottle. There are 12 niskin bottles on the CTD “carousel.” After two were done at 500 m, the winch operator takes the CTD unit up to 300 m; Agne fires two more bottles there, then two more bottles at 200 m, 150 m, and 50 m. About two and a half liters of water are taken per bottle. 


Samantha stands at a work bench in the wet lab. Wearing blue or purple latex  gloves, she pipettes water onto a filter above a section set up. Elsewhere on the bench, we can see a line of water filters, several styrofoam cases of test tubes, a notebook for recording data.
Samantha Engster, eDNA Scientist

Once the CTD unit returned to the surface, I got to help “pop the nipples” on the bottles to release the water into plastic bags. Back in the Chem Lab, eDNA Scientist, Samantha Engster, pours the water through a filter 1 micron thin. The filter is then folded in half and placed in a vial of Longmire’s solution until the eDNA can be analyzed in a lab back on land. Microscopes are not used for DNA analysis. Phenol-chloroform is used to remove proteins from nucleic acids. Quantitative polymerase chain reaction (qPCR) technique is then used to perform gene expression. This is the third hake survey that has been done in conjunction with eDNA analysis. 

While the CTD “fish” and all its sensors are collecting oceanographic data, Engster collects environmental data from the water samples. Surface water samples are also taken at the underway seawater station courtesy of a pump hooked up near one of the chem lab sinks. The eDNA verifies abundance and distribution of hake. When information from these water samples is partnered with data from the echo sounders, and “ground-truthed” with physical hake bodies in the net, the data set is strengthened by the diverse tests. 

Career Feature

Note: A handful of the people I have met aboard are experienced “Observers.” NOAA contracts with companies that deploy observers trained as biological technicians. Find out more here.

The two Evans stand against an interior wall and smile for a photo. They are each wearing t-shirts and beanie hats. Their similar builds and beards add to the visual symmetry of the photo. On the wall behind them hangs a photo of the ship and several plaques. Right Evan has a walkie-talkie attached to the pocket of his jeans.
Engineers Evan McNeil (Right), and Evan Thomas (Left).

Evan McNeil & Evan Thomas, Engineers

Give us a brief job description of what you do on NOAA Ship Bell M. Shimada.

Evan M.
I’m a manager over our engineers. Below me is the second engineer. We have three third engineers, a junior engineer, and an oiler, also called a GVA (General Vessel Assistant), or wiper. I set the pace of work everyday. I assign all the jobs. Traditionally the Engine Department is under the First Engineer, but technically the Engine Room is mine. The Chief Engineer and the Captain (NOAA Corps Commanding Officer in this case) are in charge of the safety of the whole ship. The Chief Engineer also directs jobs to me that need to get done and I’ll delegate those jobs out. 

Evan T.
Third Assistant Engineer, soon to be Second. I mostly fix stuff that is broken.

What’s your educational background?

Evan M.
I have a Bachelor’s of Science in Marine Engineering Technology with a minor in marine science from California Maritime Academy. I grew up near Bodega Bay, so my background is oriented toward the ocean. I really enjoy it. 

Evan T.
Graduated from Cal Maritime, 2019. I grew up in Southern California, Redlands, a desert that somehow grows oranges. I applied to all the engineering schools in California, and Cal Maritime was one of the few that replied back. I said “Yeah, I could see myself doing this.” And here I am! 

What do you enjoy most about your work?

Evan M.
I enjoy who I work with. It makes work go by quickly. I enjoy our schedule and our time off. This is what I enjoy about my NOAA job and about sailing jobs in general. Shore leave is a type of leave. There’s also annual leave and sick leave. We call it going on rotation or off rotation. Off rotation is usually for a month, and on rotation is usually two months. Every ship is different but that’s how it is for the Shimada, a two-on, one-off schedule. If you talk to other sailors they’ll tell you ratios for time on and time off. For example, I did Leg 2 of the hake survey, I’m on Leg 3, and then I’m off. 

Evan T. Learning new equipment, new ways to do things.

What advice do you have for a young person interested in ocean-related careers?

Evan M.
If you are interested in going straight to being an officer, I would go straight to a maritime academy. It’s a very niche thing to know about. No one knows what they want to do at 19. NOAA’s always hiring. If you are interested in being an engineer, you start out as a wiper, then you can work your way up in the engineering department pretty easily.  

Evan T. 
Imagine being stuck in an office and you can’t go home for a month. Find something that will distract you when you are out on the ocean for weeks at a time. Hang out with people, play games, read a book. You have to be ready to fight fires, flooding, that sort of thing. 

If you could invent a tool to make your work more efficient—cost is no concern, and the tool wouldn’t eliminate your job—what would it be and why?

Evan M.
A slide that goes from the bridge to the engineering operations deck.

Evan T.
I would go for an elevator on the ship.

Do you have a favorite book?

Evan M.
Modern Marine Engineering volume 1

Evan T. My 5th grade teacher wrote their own book that I found entertaining. I also liked Huckleberry Finn, by Mark Twain.

Vince reaches both hands to do something with a pile of wires mounted on the wall
Vince Welton, Electronics Technician

Vince Welton

Give us a brief job description of what you do on NOAA Ship Bell M. Shimada.

I’m an electronic technician. I deal with everything that has to do with electronics, which includes: weather, navigation, radars, satellite communications, phone systems, computers, networking, and science equipment. All the ancillary stuff that doesn’t have to do with power or steering. Power and steering belongs to the engineers.

What’s your educational background?

When I was in high school my father had an electronics shop and I worked with him. He was career Air Force and an electronics technician as well. My senior year of high school  I was also taking night classes at a college in Roseburg, Oregon in electronics. I joined the U.S. Air Force and was sent off to tech school and a year’s worth of education in electronics. Then there was a lot of learning on the job in electronic warfare. I worked on B52s. I was a jammer. In order to learn that you had to learn everybody else’s job. That’s what makes mine so unique. You had to learn radio, satellite, early warning radar, site-to-site radar, learning what other people did so I could fix what was wrong with their electronic tools. I went from preparing for war to saving the whales, so to speak. Saving the whales is better!

What do you enjoy most about your work?

I enjoy the difficulty of the problems. We’re problem solvers.

What are the challenges of your work?

Problems you can’t fix! That’s what disturbs a technician the most, not being able to solve a problem. 

What advice do you have for a young person interested in ocean-related careers?

The sciences are important no matter what you do. Having curiosity is the biggest thing. My hope is that education systems are realizing the importance of teaching kids how to think. Young people need to grow the ability to ask questions, instead of just providing answers.

If you could invent a tool to make your work more efficient—cost is no concern, and the tool wouldn’t eliminate your job—what would it be and why?

I think AI has phenomenal potential, but it’s a double-edged sword because there’s a dark side to it as well.

Do you have a favorite book?

The Infinity Concerto, by Greg Bear
The Little Book of String Theory, by Steven S. Gubser

What’s the coolest thing you’ve seen at sea?

Actually seeing a whale come out of the water is probably the coolest thing. Watching that enormous tonnage jumping completely out of the ocean. If you look out the window long enough and you’ll see quite a few things. 

Markee, wearing a blue jumpsuit over a black hoodie and a beanie that reads "California Republic," smiles for a photo, standing in an interior hallway.
Markee Meggs, Able Bodied Seaman

Markee Meggs

Give us a brief job description of what you do on NOAA Ship Bell M. Shimada.

I’m an AB, or Able Bodied Seaman. The job looks different on different ships. On the Shimada I stand watch and look for things that don’t show up on radar. Most ships you drive—only NOAA Corps Officers drive on the Shimada—I can drive rescue boats, tie up the ship, and do maintenance on the outside. I’m a crane operator. On a container ship you make sure the refrigerated containers are fully plugged in. On a refueling ship (tanker) you hookup fuel hoses. Crowley is a major tanker company. On RoRo ships (roll on, roll off) you work with ramps for the vehicle decks, transporting cars from overseas.

AB is a big job on a cruise ship. I did one trip per year for three years, then got stuck on one during the pandemic in 2020.  On the cruise ship you stand watch, do maintenance, paint, tie up the ship, drive the ship. There’s even “pool watch” where you do swimming pool maintenance. You also assist with driving small boats and help guests on and off during a port call.

I’m a member of SIU (Seafarers International Union) and work as an independent contractor for NOAA. I like the freedom of choosing where I go.

What’s your educational background?

I’m from Mobile, Alabama. I spent four years in the Navy (my grandad served on submarines during World War Two), one year in active Navy Reserves, then eight years as a contractor supporting the Navy with the Military Sealift Command. I spent a year as a crane operator in an oceaneering oil field, and have an Associate’s Degree in electrical engineering. On the oil field job we used an ROV to scope out the ocean floor first. After identifying a stable location I laid pipe with the crane, and took care not to tip over the boat in the process! My first NOAA ship  was the Rainier, sailing in American Samoa. 

What do you enjoy most about your work?

I most enjoy meeting different types of people. Once you’ve been to a place you have friends everywhere. I also love to travel—seeing different places. It’s a two-for-one deal because once you’ve finished with the work you are in an amazing vacation place.

What advice do you have for a young person interested in ocean-related careers?

If ships interest you, do the Navy first. They pay for training, and your job is convertible. Becoming a merchant mariner is easier with Navy experience than coming straight off the street. There is a shortcut to becoming a merchant mariner, but you’ll have to pay for classes. Finally, always ask questions! Yes, even ask questions of your superiors in the Navy. 

What’s the coolest thing you’ve seen at sea?

The coolest things I’ve seen at sea have been the northern lights in Alaska, whales, volcanic activity, and rainbow-wearing waterfalls in Hawaii.

Do you have a favorite book?

Some of my favorite books are Gifted Hands, and Think Big, both by Ben Carson. Gifted Hands: The Ben Carson Story was turned into a film with Cuba Gooding Jr in 2009. Another book that made an impression was Mastery, by Robert Greene. Its overarching message is “whatever you do, do well.” 

Julia points her left index finger an echogram on a large computer monitor.
Julia Clemons, FEAT Team Lead

Julia Clemons

Give us a brief job description of what you do on NOAA Ship Bell M. Shimada.

I am the Team Lead of the FEAT (Fisheries Engineering and Acoustic Technologies) Team with the NWFSC (Northwest Fisheries Science Center). The primary mission of our team is to conduct a Pacific hake biomass survey in the California Current ecosystem and the FEAT team was born specifically to take on that mission from another science center. The results of this survey go into the stock assessment for managing the fishery. Fisheries and Oceans Canada are partners in this survey. Hake takes you down many paths because their diet and habitat are tied to other species. For example, krill are a major prey item in the diet of hake, so understanding krill biomass and distribution is important to the hake story as well. Rockfish also have an affinity for a similar habitat to hake in rockier areas near the shelf break, so we use acoustics and trawling to distinguish between the two. 

What’s your educational background?

My undergraduate degree from University of Washington was in geological oceanography. I began with NOAA in 1993 and worked for the Pacific Marine Environmental Laboratory’s Vents program to study hydrothermal systems. This involved a diverse team of scientists: chemical and physical oceanographers, biologists, and geologists. I got my Master’s in Geology at Vanderbilt but shifted to NOAA Fisheries in 2000 working in the Habitat Conservation and Engineering (HCE) Program where we looked at habitat associations of rockfish. We looked at ROV and submersible video of the rocky banks off Oregon to identify fish and their geological surroundings. The HCE program shifted its focus to reducing bycatch by experimenting with net modifications and I moved to the FEAT team.

What do you enjoy most about your work?

I think one of the most important components of Team Lead is to be a supporter—supporting the facilitation of good science, supporting people. I also think about what I can do to support the overall mission of NOAA Fisheries. That’s my favorite thing, supporting others. I love when the focus is not on me!

What advice do you have for a young person interested in ocean-related careers?

Think about ways you can put yourself in the right place at the right time. Ask about volunteer opportunities. Ask questions, explore, think about what you want to do and look at people who are doing that—ask them how they got to that position. 

What’s the coolest thing you’ve seen at sea?

When I was with the NOAA Vents group in 1994 I got to go to the bottom of the seafloor in the submersible Alvin. I was in there for nine hours with one other scientist and Alvin’s pilot. You think you’re going to know what it looks like, because you’ve seen video, and you think you’re going to understand how it feels, but then you get down there and everything is bigger, more beautiful, in all its variation and glory. We navigated to a mid-ocean ridge system that had an eruption the year previously. There was bright yellow sulfur discharge on black basalt rocks… after all those hours looking at ROV video, to see it in person through the porthole was incredible.

Do you have a favorite book?

The 5 AM Club, by Robin Sharma. I’m a morning person, and this book lays out how to structure those early hours and set you up for a successful day. When I was little I loved The Little Mermaid story by Hans Christian Anderson—the original, not the Disney version. I grew up in Vancouver, Washington and was always asking my parents, “Can we go to the beach?”

Taxonomy of Sights

Day 11. Three lampreys in the bycatch! Risso’s Dolphin (Grampus griseus).
Day 12. Blue Whales! I guess they read my blog post about the Gordon Lightfoot song. What may have been a blue shark came up near the surface, next to the ship. Strange creatures from the deep in the bycatch: gremlin looking grenadier fish.
Day 13. Pod of porpoises seen during marine mammal watch. 

You Might Be Wondering…

How often are safety drills?

Weekly drills keep all aboard well-practiced on what to do in case of fire, man overboard, or abandon ship. Daily meetings of department heads also address safety. One activity of monthly safety meetings is to review stories of safety failures on other ships to learn from those mistakes. Each time a member of NOAA Corps is assigned a new tour at sea they must complete a Survival-at-Sea course. The Fishery Resource Analysis and Monitoring division (FRAM) also requires yearly Sea Safety Training for the scientists. “Ditch Kits,” found throughout the ship, contain: a rescue whistle, leatherman, food rations & water, and emergency blankets. Additionally, there are multiple navigation and communication tools in the ditch kit: a traditional compass, a handheld Garmin GPS, a boat-assigned PLB (personal locator beacon) registered with the Coast Guard, and a VHF radio with battery backup providing access to marine channel 16.   

After a tour of the engine rooms, I learned that the diesel engines also have built in Emergency Diesel Generators (EDG). If you look up at the lights on the mess deck you’ll see some of the light fixtures have a red and white “E” next to them. This label indicates which would be powered by the generators, and which would not. 

Floating Facts

The NOAA Corps is not a part of a union, however there are unions that advocate for other NOAA employees. Licensed engineers are a part of MEBA, The Marine Engineers’ Beneficial Association. Non-licensed positions are represented by SIU, Seafarers International Union. Both of these unions are a part of AFL-CIO, the largest federation of unions in the U.S.

I had been curious whether there was a database that housed an inclusive list of NOAA Fisheries field research, and NOAA did not disappoint. You can find the Fishery-Independent Surveys System (FINNS) here, and browse as a guest. I’m now brainstorming how I might use the database with students—perhaps as a scavenger hunt—to have them practice their search skills. You can search by: fiscal year, fiscal quarter, science center, survey status, and platform type. 

Which Cook Inlet species is the subject of Alaska Fisheries Science Center (AFSC) 2023 research, which is underway in a small boat?
Hint: Raffi 

Another tool I’m looking forward to using in the classroom is NOAA’s Species Directory, which can serve as a scientifically sound encyclopedia for ocean animal reports conducted by students.

Librarian at Sea

“The sea is a desert of waves,
A wilderness of water.”― Langston Hughes, Selected Poems

This quote from Hughes’ poem, Long Trip, had me thinking about the surface of the ocean. I have seen the surface in many states over the past days: soft folds, jagged white-tipped peaks, teal, turquoise, indigo. Sometimes there are long snaking paths of water that have an entirely different surface than water adjacent. Whether it is due to currents colliding, chemical process, biological process, temperature difference—I cannot say. If I were to anthropomorphize the phenomena, I’d say these lines are wrinkles, as the ocean creases into different expressions. A hint of what lies within and beneath.

It also has me thinking about the interviews I’ve conducted with the people on NOAA Ship Bell M. Shimada. I started with a superficial name and title, a face on a board near the Acoustics Lab depicting all hands on Leg 3. When I sat down to talk with people representing Scientists, Engineers, Deck Crew, Electronics, Officers, Survey, and Steward, I began to unspool colorful stories from a broad spectrum of life experiences, many from divergent habitats, all who have converged here to do in essence what the concierge at my Newport hotel said to me as I walked out the door, “Keep our oceans safe!” A tall order in so few words. From shore we’re a small white blip on the horizon; up close there’s a frenzy of activity, a range of expertise, a conviction that our actions can improve living for humans, for hake, and for all the species in Earth’s collective ecosystem.  

a view of the surface of the ocean extending toward the horizon on a clear day
A wilderness of blue water.

Hook, Line, and Thinker

We opened up a hake in the Wet Lab today to find it had a green liver. Why? Parasites? A bacterial infection? An allergy to krill? There’s always more beneath the surface, more stories to suss out. This is what makes science exciting, what makes living with 30+ strangers exciting. It’s what I enjoy about teaching. 

How do the albatross know when we’re hauling back a net full of hake? They seem to appear out of nowhere. First a couple, then maybe 40 of them materialize around the net, squabbling over fish bits. 

Have you ever discovered something unexpected and wondered about its origins?
How could the scientific method support you in finding out an answer… or to at least develop a theory?

A Bobbing Bibliography

Known as “charts” at sea and “maps” on land, NOAA Ship Bell M. Shimada has a small library of charts. Find out more at NOAA’s Office of Coast Survey. Paper charts are actually being phased out. “NOAA has already started to cancel individual charts and will shut down all production and maintenance of traditional paper nautical charts and the associated raster chart products and services by January 2025.”

view of a stack of long, thin metal drawers with printed labels, most too small to read in the photo
Paper chart library on the bridge.
photo of a portion of a paper nautical chart
Nautical chart of Oregon’s southern coast.

Jenny Gapp: An Ode to Big Blue, July 29, 2023

NOAA Teacher at Sea

Jenny Gapp (she/her)

Aboard NOAA Ship Bell M. Shimada

July 23 – August 5, 2023

Mission: Pacific hake (Merluccius productus) Survey (Leg 3 of 5)
Geographic Area of Cruise: Pacific Ocean off the Northern California Coast working north back toward coastal waters off Oregon.
Date: July 29, 2023

Weather Data from the Bridge

Sunrise 0616 | Sunset 2037
Current Time:  1500 (3pm Pacific Daylight Time)
Lat 41 06.7 N, Lon 124 37.6 W
Visibility:  10 nm (nautical miles)
Sky condition: A few clouds
Wind Speed:  13 knots
Wind Direction: 334°
Barometer:  1019.7 mb
Sea Wave height: 2-3 ft | Swell: 330°, 3-4 ft
Sea temp: 14.1°C | Air Temp: 17.6°C

Science and Technology Log

Hake are not the only thing being studied during this mission. In the Chemistry Lab, there are a variety of ongoing tests. Every few transects, seawater is collected and tested for Harmful Algal Bloom (HABs). A vacuum pump sucks the sample through a 0.45um filter, which is then removed and placed into a test tube for microscopic study. The Southern California coast is currently dealing with a bloom toxic to animals. Scientists want to know if the bloom is drifting north. Blooms are a natural phenomenon, but human activity cannot be ruled out from having an impact.

water filtration equipment, and a datasheet on a clipboard, on a metal table
HAB test in the Chem Lab

A seawater pump connects to a software program that allows you to see images of phytoplankton being photographed in real time as they are sucked past the camera. Phytoplankton forms the base of the aquatic food web. They provide food for huge whales, small fish, invertebrates, and zooplankton. Plankton makes up 95% of life in the ocean, they generate half of our oxygen and absorb carbon. A sudden removal of phytoplankton would result in a collapse of aquatic ecosystems, and would accelerate climate change further.

The phytoplankton images are taken using a robotic microscope automating identification. The name of the artificial intelligence is Imaging Flow CytoBot (IFCB). Flow cytometry uses lasers to create both scattered and fluorescent light signals. These signals are read by photosensitive diodes and tubes, and then those signals can be converted electronically to be read by a computer. The data gathered enables ecosystem modeling, and can act as an early warning to toxic blooms. 

Career feature

Steve stands at a line of computer screens and keyboards on the bridge. Through the bridge windows, we can make out blue water. Steve holds what might be an electronic pad in his left hand and a stylus in his right hand. He looks down, focused on his work.
Chief Scientist, Steve de Blois, on the bridge during a trawl.

Steve de Blois, Chief Scientist

Steve’s favorite thing about his job is getting out in nature, seeing, and photographing marine mammals. Even though the hours are long, the commute is short when you’re at sea! His educational background includes an undergraduate degree in biology from the University of Michigan, Ann Arbor; and a Master’s from Humboldt State University (now called Cal Poly Humboldt) in marine mammals. It was tough finding work after graduate school since working with marine mammals generally holds more appeal than fish, and thus more people are competing for a finite number of jobs. Once Steve secured a job at one of NOAA’s regional offices, he found out about other opportunities and ended up on a walleye pollock acoustic trawl survey in Alaska. This is where he had one of those National Geographic moments where the scenery is so stunning it touches you at your core. He has been with NOAA since 1990—the same year the Teacher at Sea Program began. 

Steve’s advice for young people interested in ocean-related careers is to focus on getting your education. He states that getting a graduate degree (PhD and/or Master’s) will make you more competitive in the scientific community. However, he also advises, “get experience.” Nothing can compare to first-hand experience and there are many opportunities for volunteering in the field, in marine labs, and on ships.

During his leisure time, Steve prefers to fly his home-built plane (A Zenith CH 650), go scuba diving, and enjoy photography. When it comes to reading he prefers nonfiction. He has German heritage on his mother’s side and shared some personal history of family members surviving both World War One and World War Two. This part of his family tree has increased his interest in true tales about World War Two German fighter pilots. In his youth, he absorbed science fiction novels by Arthur C. Clarke and recalls enjoying Dune, by Frank Herbert. Recently, he read Rachel Carson’s classic The Sea Around Us and was impressed by its lyrical prose.

Steve has patiently taught me about how to detect hake sign on an echogram. Acoustically speaking, hake have a unique characteristic. The visualized pings usually show hake near the slope of the continental shelf, and they appear as a diffuse cloud of colored pixels, or as a “hakey snakey” line gently curving up and down.  A calculation called NASC, Nautical Area Scattering Coefficient, makes an estimate of individuals in that defined area drawn by scientists.

The acoustic echogram has a color key representing the strength of return on what the sound waves bounce off. The color scale looks something like you’d see in an art room class teaching color theory. The weakest return is signified by a pale grey to dark, then a light blue shade into dark, the blue turns teal as it morphs into greens, then when yellow appears the scientists start getting excited. After yellow is orange, pink, then many shades of red ending with a deep magenta. The ocean floor appears as deep magenta. On Leg 2 the Shimada saw several very dense balls of fish; these fish are likely herring or sardines, species smaller than hake.  The acoustic return from these very dense balls of fish is extremely high—their color in the acoustic software is easily deep red, almost brown.

a screenshot likely of a powerpoint slide combining several graphs. most are grids with thousands of colored dots on them, representing acoustic signatures. diagonal, jagged lines of darker colors mark the seafloor. this slide is labeled AWT 27, Transect 38, July 27, 2023. 40 degrees 36.67'N, 124 degrees 31.82'W. 15:05 PDT (22:05 GMT), 20.7 min. TD 210 m/bottom depth 550 m.
The thicker reddish brown line you see is the continental shelf/ocean floor. The greenish-yellow cloud represents an acoustic signature historically found to be hake. The thin red lines in the echograms on the right represent the head rope from imaging by the SBE (Sea-Bird Electronics) camera, aka “the turtle.”

Taxonomy of Sights

Day 5. Bycatch highlights: Intact squid, Chinook salmon (also known as King salmon), and excited albatross following a record haul.

Day 6. More salmon, two kinds of rockfish, a Thetys vagina salp (more on the awkward name here), and a marine hatchetfish so small my camera found it difficult to focus on. Ethan Beyer, Wet Lab Lead, shared a trick to determine the difference between a yellowtail rockfish and widow rockfish (they look similar). The difference? Widow rockfish have a “widdle” mouth. Meaning, the mouth is smaller than the yellowtail’s (ha, ha). The two types of rockfish we caught were the widow and the shortbelly (Ethan says they make great tacos!) Speaking of tacos, the widow rockfish are due to make an appearance on our mess deck menu soon. 

Day 7. Not much…

You Might Be Wondering…

What is the furthest you’ve been from shore?
To date (July 28th), an extension of transect 39 took us a total of 62 nautical miles from shore, which beat our extension record on Wednesday, July 26th. Leg 3 has extended more transects than Leg 2. The reason for extending a transect is to go where the fish sign is. The NOAA Fisheries protocol is to discover what the western extent is for schools of hake on that transect. So, they wait for at least one mile without seeing hake before ending the transect.

What is the deepest trawl you’ve made?
So far on Leg 3 we’ve gone 400 meters (about a quarter of a mile) to reach a target depth. Simply put, target depth is where the fish are estimated to be.

Floating Facts

Vocabulary

Bycatch – Some dictionaries call them unwanted creatures caught in the pursuit of a different species. NOAA however, thinks it worthwhile to catalog the biomass of these tag-alongs.

Biomass – The total weight (sometimes quantity) of a species in a given area or given volume.

One of these things is not like the others
Tow, Haul, and Trawl are used interchangeably in reference to fishing.
“Catch” is what we’ve caught in the net.

Survey Permits

You know how you ask permission at school and at home to do a thing? The hake survey requires a number of permits to conduct its research. A permit is an official document saying you have asked for and been granted permission. 

NOAA’s Western Region office issues “Authorizations and Permits for Protected Species.” The protected species are salmon and eulachon, a thin silvery thing about the size of a herring. The permit dictates what you can (measure and weigh it) and can’t do (eat it) with protected species.

A state’s jurisdiction over ocean waters only extends three nautical miles from shore. The Oregon Department of Fish and Wildlife wants to know the number of all species caught off its coast. California’s Department of Fish and Wildlife issues a Memorandum of Understanding (MOU) along with a permit. The MOU calls out particular species they are interested in: longfin smelt, coho and chinook salmon. 

Jenny stands in the wet lab holding a sizable salmon with two hands. She wears black gloves, black overalls, and a Teacher at Sea beanie.
I should be frowning – we don’t intend to be pulling salmon out of the water. However, their appearance does contribute to data about the health of their populations.

While fishing rarely ever happens in Alaskan waters during the hake survey, the Department of Fish and Game issues a permit that is shared with Canadian colleagues who may pursue hake further north. Waters defined by NOAA’s National Marine Sanctuaries have their own monitoring system and permit issuance. The hake survey passes through three sanctuaries in California waters and one in Washington (the Olympic Coast). Finally, the West Coast Region of NMFS (National Marine Fisheries Service) issues a permit and requires a record of all species caught in U.S. waters, so a grand total of sorts for all states involved. 

Personal Log

Thursday was a huge improvement over the icky Wednesday ride. We made two successful trawls, and two trawls on Friday. Wet Lab Lead, Ethan Beyer, commented during fish processing on Friday, “I feel like I’m the world’s foremost expert on the visual maturity of hake. I look at a lot of hake gonads.” This was memorable.

Saturday dawned with too much fishing line in the water to do anything so we waited until we moved past it before dipping the net in. We did squeeze in a catch before lunch, but it produced exactly one hake among the usual lanternfish and pyrosomes. Disappointing for the science crew.

Note: In an earlier post I referred to lanternfish as “lampfish,” which is incorrect. I’ve also been calling Dramamine “dopamine” for some reason. I’ll blame it on the mild disorientation that is caused by floating around on the ocean.

My Daily Routine

I wake around 0600 and sometimes make it up to the flying bridge to see the sunrise, but usually go up regardless before breakfast to view the morning light. I stop in at the acoustics lab to sit at my workstation, blog a bit, and see what hake sign there is on the echogram (software visualization of what lies beneath us). Breakfast is served at 0700, then I return to acoustics to stay up to date on when we’re going fishing.

When you hear, “Fishing, fishing, fishing,” on the radio you know it’s almost time for the marine mammal watch. Marine mammal watch happens on the bridge, and I continue watching for a while even after the watch ends. I’ll stay up there for most of the trawl until I hear, ”Doors at the surface.” (More on the stages of a trawl next time.)

Next, I’ll go to the “ready room” in the wet lab where boots and fishy rubber overalls are stored. Blog post three walked you through what we do in the Wet Lab once the catch has been dumped in the crate. Processing species takes us into lunch hour at 1100.

A second trawl after lunch, and assuming the catch is decent, processing will take us to dinner. I have down time after dinner, watch the evening light if the weather is amenable, then return to acoustics for more blog time. I’m in bed somewhere between 2030 and 2230.

While there is a general routine, no day is exactly alike. On Saturday I assisted Ethan with collecting sea water from a vertical net dipped by a crane to 100 meters. Scientists will look at the plankton, krill, and other small species to determine stratification and measure abundance.

Librarian at Sea

“It is a curious situation that the sea, from which life first arose should now be threatened by the activities of one form of that life. But the sea, though changed in a sinister way, will continue to exist; the threat is rather to life itself.”― Rachel Carson, The Sea Around Us

The cover of Rachel Carson’s book, The Sea Around Us, appears on the wall of the dining room at Sylvia Beach Hotel where I stayed prior to the departure of leg three. Her poetic approach to scientific insight continues to inspire readers. The book I brought with me on the ship does something similar. In How Far the Light Reaches, author Sabrina Imbler blends personal memoir with profiles of ten sea creatures. Imbler attempts to keep metaphors and personal (human) parallels at a distance from the scientific integrity of species. Both titles are recommended reading.

image of the cover of How Far the Light Reaches: A Life in Ten Sea Creatures by Sabrina Imbler.
How Far the Light Reaches: A Life in Ten Sea Creatures by Sabrina Imbler
photo of an old copy of The Sea Around Us by Rachel Carson mounted to a red wall
The Sea Around Us by Rachel L. Carson

Hook, Line, and Thinker

When I was a kid, my Dad sometimes sang Gordon Lightfoot’s ‘Ode to Big Blue’ as a lullaby before bed. It’s one of the only songs I know all the lyrics to, although sometimes I scramble the verses up. I think it was my first exposure to the tension between commerce and the sustainability of natural resources. The sixth verse says,

Now the gray whale is run and the sperm is almost done
The finbacks and the Greenland rights have all passed and gone
They’ve been taken by the men for the money they could spend
And the killing never ends it just goes on

Herein lies another ethical debate on balancing preservation, economics, and the needs and wants of Homo sapiens. The song celebrates the natural wonder of whales alongside the biting reality of human enterprise.

In April 2023 NOAA released a 2022 Status of Stocks report. Data displayed overfishing status of 490+ stocks managed by NOAA. 

a NOAA Fisheries infographic showing two pie graphs in the shape of fish silhouettes. the first is labeled 355 Stocks with Known Overfishing Status. This graph shows that 93% are not subject to overfishing (331 stocks) while 7% (just the tip of the tail of this snapper-shaped fish) are subject to overfishing (24 stocks). The other graph is labeled 249 Stocks with Known Overfishing Status. It shows that 81% are not overfished (201 stocks) while 19% (a little more than the tail of this tuna-shaped fish) are overfished (48 stocks).



NOAA Fisheries assistant administrator, Janet Coit, said in the Status of Stocks news release, “Managing fisheries sustainably is an adaptive process, relying on sound science and innovation to conserve species and habitat, and meet the challenge of increasing our nation’s seafood supply in the face of climate change.” NOAA Fisheries priorities for fiscal year 2023 are full of words like: sustainability, resilience, mitigate, adapt, diversify, ensure equity, safeguard, propel recovery, conservation, protect, and restore. NOAA continuously strives to balance the scales between conservation and consumption.

What are the ethical concerns that should guide economics?
Is it possible to view the ocean other than as a natural resource?
Is that view in fact imperative to the sustainability of life on Earth?

A Bobbing Bibliography

If you keep your eye out for books, you will find them. Tucked away on the bridge is a shelf containing…

photo of books on a shelf. we see: Marine Weather, Cold Weather Handbook... , Dutton's Nautical Navigation, Solas, American Merchant Seaman's Manual sixth edition, Shiphandling with Tugs second edition, Watch Officer's Guide fifteenth edition, Stability and Trim for the Ship's Officer fourth edition, Naval Ceremonies, Customs, and Traditions sixth edition, The Bluejacket's Manual, Nautical Almanac 2023, Nautical Almanac 1981

Jenny Gapp: Aboard a Floating Library of Data, July 27, 2023

NOAA Teacher at Sea

Jenny Gapp (she/her)

Aboard NOAA Ship Bell M. Shimada

July 23, 2023 – August 5, 2023

Mission: Pacific hake (Merluccius productus) Survey (Leg 3 of 5)
Geographic Area of Cruise: Pacific Ocean off the Northern California Coast working north back toward coastal waters off Oregon.
Date: July 26, 2023

Weather Data from the Bridge

Sunrise 6:31am | Sunset 8:46pm
Current Time:  0700 (7:00am Pacific Daylight Time)
Lat 40 16.7 N, Lon 124 33.6 W
Visibility: 10 nm (nautical miles)
Sky condition: broken cloud cover, aka partly sunny
Wind Speed: 25 knots
Wind Direction: 355°
Barometer: 1014.3 mb
Sea Wave height: 4-5 ft | Swell: 340°, 6-8 ft
Sea temp: 9.8°C | Air Temp: 12.6°C

Science and Technology Log

The Wet Lab:

In addition to interviewing members of the crew, working on my blog, and doing a bit of independent research, I am here to help in the wet lab. What does this entail? It begins with waiting. First, there is a marine mammal watch that lasts for 10 minutes. If an animal is within 500 meters we wait until it moves off. Then a second 10-minute watch is started. We continue monitoring mammal activity even after the net is deployed. Sometimes the navigation crew scouts the transect first to make sure the ocean floor won’t cause issues with the net when it is deployed. 

Deploying the net is a team effort among deck crew, navigation officers, and scientists. Once the net is off the reel and in the water, the crew disconnects the wire line to the reel and it is transferred to the doors. Winches connected to the trawl doors take the weight of the load. Depending on fish sign, the net is payed out according to depths the acousticians wish to fish at.

The length of time the net is streamed is also determined by the scientists. They monitor how many fish are going into the net via an FS70 third-wire trawl sonar which has a similar function to Doppler radar. Nicknamed “the turtle,” it is attached to the head rope. Sometimes there’s a “thunderstorm” of fish, and sometimes a “drizzle.” Once the acousticians have determined how much to punish the wet lab (joke), the lead scientist calls, “haul back.” The average fishing time is around 20 minutes, although it can be as little as a half minute in a fish thunderstorm or as long as 40 minutes in a fish drizzle. A sensor attached to the net records temperature and depth.

Once the net is back on board and we get a look at the catch size, a decision is made where to dump the haul. Under 100kg (220lbs), the catch goes in a black crate; over 100 kg, it goes into a hopper that leads to a conveyor belt inside the wet lab. The hopper door is opened a little at a time to avoid a fishy waterfall over the sides. Dominant species—hake in this case—go down the belt, and all other species are pulled out and sorted. 


All our hauls to date have been on the smaller side, and so the net is hoisted and dumped into the black crate containing three smaller baskets. The deck crew slides this through double doors leading into the wet lab and we begin sorting species. Crew members often linger to see what cool things have been hauled aboard, and when they are impressive enough—like medium-sized squid and King-of-the-Salmon almost as long as you are tall—we take photos of each other, shaking our heads at the marvel of it. Ethan weighs the biomass of creatures that are not hake, then they go down the chute back to the ocean and return to the food chain. 

Jenny, wearing black overalls, rubber boots, gloves, and a Teacher at Sea hat, stands in the wet lab surrounded by plastic sorting bins. With her right hand, she hoists up a very large fish by its gills. it is pinkish in color, with a large head and a body that tapers all the way from a large round eye to the tail. the top of its open mouth is about in line with Jenny's hat, and the tip of its tail rests on her boot.
A King-of-the-Salmon almost as long as me!


The goal is 400 hake per haul, and to date we’ve counted 282 as the biggest catch. A handful of other species are measured, usually others that are commercially fished.

Depending on the number of hake collected, 50 have otoliths (ear bones) removed for aging and a random 10 of these have their stomachs examined. Krill and Blue lampfish appear to be favorite foods. A measuring device for the stomachs provides us with a number for the volume of food in their stomach.

If the ideal haul is taken, 350 hake are sexed and measured. The sexes are sorted into baskets of different colors: green (“little green men”) for the males and white (“snow white”) for the females. A set number of females have their liver and gonads taken for examination. I have yet to find out why just the females have this done.

After we’ve processed everything we clean the lab after each haul. If you don’t, the fishy aspect can get out of control quickly. Allegedly herrings are the smelliest. 

two scientists work at adjacent tables in the wet lab; Ethan in foreground, and Liz in the background. each wears navy blue shirts, orange overalls, orange gloves, and hats. they are working up fish on electronic boards connected to computer screens mounted above the tables. With his left hand, Ethan holds a sliced-open fish (probably a hake) steady; with his right, he reaches with tweezers to remove a part of the fish.
Ethan Beyer, Wet Lab Lead
Liz Ortiz, Fisheries Technician

Taxonomy of Sights

Day 3. Multiple whale spouts throughout the day. Species that appeared in our hauls: King- of-the-Salmon, Pyrosomes, Spiny dogfish, Brown cat shark, Glass shrimp, Jewel squid, and a viperfish that looked like the stuff of nightmares! A couple of albatross cruised behind us during one of the trawls, hoping for some fishy treats.

Day 4. One Jack mackerel mixed in with hake, a monitored species, so we took its measurements. One partial squid tangled in the trawl net.

You Might Be Wondering…

Do you have to wear a life jacket the whole time?

Life jackets and hard hats are required on the aft deck when there is an operation in progress. The safety mantra is, “If you don’t need to be on the deck, don’t go on the deck.” Each of us carries a PLB, or personal locator beacon, in the event of a worst-case scenario. Life jackets, along with immersion suits, are located in staterooms as well as the wet lab. No, I do not wear a life jacket while sleeping, showering, and spending time on the interior of the ship. Safety equipment is never far away. Emergency egress arrows show you a way out, and there are three emergency shower and eye wash stations on the ship. There are also devices called EEBD (Emergency Escape Breathing Device) that contain 15 minutes of oxygen. 

If you have questions you are curious about, please leave them in the comments section!

Floating Facts

Nautical Terms
Aft is the back of the boat where the trawling happens. The bow, or forward, is the front of the ship. Port is left, which you can distinguish from starboard because port and left have the same number of letters. Starboard is right. Stairs are referred to as “ladders,” walls are “bulkheads,” not to be confused with “bulwark,” which are the sides of the vessel above the main deck.

New Blue Economy
The “blue economy” is a new term for me. According to Dr. Richard Spinrad, Under Secretary of Commerce for Oceans and Atmosphere & NOAA Administrator, it’s “a knowledge-based economy, looking to the sea not just for extraction of material goods, but for data and information to address societal challenges and inspire their solutions.”

40% of the U.S. population lives in or near coastal communities. A NOAA article on the blue economy states, “If American coastal counties were an individual country, they would rank third in the world in gross domestic product, surpassed only by the United States and China.” I assume this means as compared to the remainder of the United States that do not qualify as a “coastal community.”

The demands of climate change only hasten the need for information about our oceans and coastal regions. NOAA serves as a foundation for the blue economy, providing free, open source data–temperature, water level, hydrography, fisheries health, pH, salinity, and surface currents to name a few. The shipping challenges that the recent global pandemic posed have increased the need for U.S. seaports to add terminals and piers. Maritime commerce is expected to triple by 2030. (source: New Blue Economy, NOAA)

Educator Resources
If you are an educator and have not been to the Oregon Coast STEM hub website, it is highly recommended. It is managed by Oregon State University’s Hatfield Marine Science Center. There’s something for everyone, even if you and your students aren’t located in Oregon.

While aboard I learned that the University of Oregon—my alma mater—also has a Marine Biology program. In fact, U of O’s Oregon Institute of Marine Biology (OIMB), located in Charleston, Oregon near Coos Bay, is a field institute like the Hatfield Marine Science Center. OIMB also has a section on its website for educators including lessons and resources. There is some crossover with the STEM hub, but both sites are valuable and worth examining. Note that at the time of my visit to the OIMB site there were some broken links on the resources page. 

watercolor illustration of a Pacific giant octopus. handwritten words at the top read: HATFIELD MARINE SCIENCE CENTER Oregon State University.
A watercolor and pen drawing from a previous visit to HMSC.

Personal Log

The NOAA Ship Bell M. Shimada has seven levels: (from top to bottom) flying bridge–where our marine mammal and bird observers spend much of their time; bridge–where officers spend much of their time, where navigation happens, where a marine mammal watch happens before a trawl, where the boatswain, also known as a bosun, (deck boss) has a view of the nets going in and out, operates the net reel and communicates between nav crew and deck crew; officers berth–along with the hospital and quarters for the Chief Engineer; science berth–including lounge and offices; labs, mess deck, and access to the aft deck where the net is pulled in and the catch is transferred to the wet lab; deck crew berth–along with gym, winch and trawl rooms, centerboard access; and finally additional machinery rooms–including one for the bow thruster. I have been promised a tour of the engine room toward the end of our cruise, so I am looking forward to that!



Monday and Tuesday were great days, particularly Tuesday. I felt good, held all my meals, talked with a variety of crew members about their work, and got my hands dirty for the first time in the wet lab. Julia Clemons said of Tuesday, “It was a great day for science!” We made a record number of trawls—three—for the 2023 survey thus far.

a gloved hand holds a fish (possibly a hake) straight toward the camera so we can see down its open mouth to its gill rakers
Oh, the horror of being seasick!


Highlights of Wednesday’s trawl were part of a squid tangled in the net (much larger than the jewel squid), and some baby hake. I got into a rhythm assisting Ethan with entering data. He measured, weighed, sexed, examined stomach contents of some, and removed otoliths. I supported by entering the barcodes from the otolith collection vials manually (nothing new for a librarian who has her own trouble with temperamental barcode scanners from time to time), entered sex and maturity level, entered data on stomach contents (primarily blue lanternfish, and euphausiids, aka krill).

Librarian at Sea

“The world turns and the world spins, the tide runs in and the tide runs out, and there is nothing in the world more beautiful and more wonderful in all its evolved forms than two souls who look at each other straight on.” ~Gary D. Schmidt, Lizzie Bright and the Buckminster Boy

In this middle-grade novel, a friendship is formed between Turner Buckminster, son of a preacher, and Lizzie Bright Griffin, a resident of Malaga Island. Malaga is located off the coast of Maine and was founded by people who were formerly enslaved. The quote above refers to a moment when the two young people are in a boat and Turner comes eye to eye with a whale five times the size of the dory they are traveling in. It reminds me a little of looking into the eyes of the creatures who come aboard in our net. I wonder if some are still capable of seeing… 

Hook, Line, and Thinker

The NOAA Teacher at Sea program requires fortitude, flexibility, and following orders.
On Monday the crew followed orders for our first safety drills. These include special signals indicating fire, abandon ship, and man overboard. The science crew (which includes me) musters in the wet lab for fire, where the Chief Scientist reports muster to the bridge. “Muster” means that all are assembled who should be there. During an abandon-ship drill, the crew is split up between six life rafts, three on each side of the ship. New members of the crew try on their immersion suit, a bulky get-up that guards against hypothermia and increases flotation. I tried on two different sizes, and while neither was quite right we concluded bulkier was better than too small. As the XO put it, “It will save your life. Throw in your shoes and a loaf of bread and you’re good to go!” The man overboard drill requires the science crew to muster on the flying bridge where we locate the individual in trouble (in the case of a drill, a couple of buoys tied together) and point.

Can you think of an example in which following orders may save your life?

A Bobbing Bibliography

On the bridge you will find binoculars on the sill of many windows. You will also find whale and dolphin identification guides, as well as one for birds. Some of the binoculars are “reticulated.” When you look into the eyepieces of these you see a series of fine lines (reticules) to determine distance between marine mammals and the vessel. Line up the top line to the horizon and you have the distance between objects and the ship.

There are many great spots along the Oregon Coast for whale watching that don’t require going out on the ocean. Oregon State Parks has a whale watching site with more information. 

The book Whales and Other Marine Mammals of Washington and Oregon, by Tamara Eder and illustrated by Ian Sheldon, is propped up against a window. Through the window we can see a deck of the ship, the ocean, sea spray.

Stephen Kade: How Sharks Sense their Food & Environment, August 9, 2018

Ampullae of Lorenzini and nostrils

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: 30 19’ 54’’ N, 81 39’ 20’’ W, 10 nautical miles NE of Jacksonville, Florida

Date: August 9, 2018

Weather Data from Bridge: Wind speed 11 knots, Air Temp: 30c, Visibility 10 nautical miles, Wave height 3 ft.

Science and Technology Log

Sharks have senses similar to humans that help them interact with their environment. They use them in a specific order and rely on each one to get them closer for navigational reasons, and to find any food sources in the area around them. The largest part of the shark’s brain is devoted to their strong sense of smell, so we’ll start there.

Smell– Sharks first rely on their strong sense of smell to detect potential food sources and other movement around them from a great distance. Odor travels into the nostrils on either side of the underside of the snout. As the water passes through the olfactory tissue inside the nostrils, the shark can sense or taste what the odor is, and depending which nostril it goes into, which direction it’s coming from. It is said that sharks can smell one drop of blood in a billion parts of water from up to several hundred meters away.

Ampullae of Lorenzini and nostrils
Ampullae of Lorenzini and nostrils of a sharpnose shark

Sharks can also sense electrical currents in animals from long distances in several ways. Sharks have many electro sensitive holes along the snout and jaw called the Ampullae of Lorenzini. These holes detect weak electrical fields generated by the muscles in all living things. They work to help sharks feel the slightest movement in the water and sand and direct them to it from hundreds of meters away. This system can also help them detect the magnetic field of the earth and sharks use it to navigate as well.

Ampullae of Lorenzini and nostrils
Ampullae of Lorenzini and nostrils of a sharpnose shark

Hearing– Sharks also heavily use their sense of smell to initially locate objects in the water. There are small interior holes behind their eyes that can sense vibrations up to 200 yards away. Sound waves travel much further in water than in the air allowing them to hear a great distance away in all directions. They also use their lateral lines, which are a fluid filled canal that runs down both sides of the body. It contains tiny pores with microscopic hairs inside that can detect changes in water pressure and the movement and direction of objects around them.

Sight– Once sharks get close enough to see an object, their eyes take over. Their eyes are placed on either side of their head to provide an excellent range of vision. They are adapted to low light environments, and are roughly ten times more sensitive to light than human eyes. Most sharks see in color and can dilate their pupils to adapt to hunting at different times of day. Some sharks have upper and lower eyelids that do not move. Some sharks have a third eyelid called a nictitating membrane, which is an eyelid that comes up from the bottom of the eye to protect it when the shark is feeding or in other dangerous situations. Other sharks without the membrane can roll their eyes back into their head to protect them from injury.

dilated pupil of sharpnose shark
dilated pupil of sharpnose shark

Touch– After using the previous senses, sometimes a shark will swim up and bump into an object to obtain some tactile information. They will then decide whether it is food to eat and attack, or possibly another shark of the opposite gender, so they can mate.

Taste– Sharks are most famous for their impressive teeth. Most people are not aware that sharks do not have bones, only cartilage (like our nose and ears) that make up their skeletal system, including their jaw that holds the teeth. The jaw is only connected to the skull by muscles and ligaments and it can project forward when opening to create a stronger bite force. Surface feeding sharks have sharp teeth to seize and hold prey, while bottom feeding sharks teeth are flatter to crush shellfish and other crustaceans. The teeth are embedded in the gums, not the jaw, and there are many rows of teeth behind the front teeth. It a tooth is damaged or lost, a new one comes from behind to replace it soon after. Some sharks can produce up to 30,000 teeth in their lifetime.

Personal Log

While I had a general knowledge of shark biology before coming on this trip, I’ve learned a great deal about sharks during my Teacher at Sea experience aboard the Oregon II. Seeing, observing, and holding sharks every day has given me first hand knowledge that has aided my understanding of these great creatures. The pictures you see of the sharks in this post were taken by me during our research at sea. I could now see evidence of all their features up close and I could ask questions to the fishermen and scientists onboard to add to the things I read from books. As an artist, I can now draw and paint these beautiful creatures more accurately based on my reference photos and first hand observations for the deck. It was amazing to see that sharks are many different colors and not just different shades of grey and white you see in most print photographs. I highly encourage everyone that has an interest in animals or specific areas of nature to get out there and observe the animals and places firsthand. I guarantee the experience will inspire you, and everyone you tell of the many great things to be found in the outdoors.

Animals Seen Today: Sandbar shark, Great Hammerhead shark, Sharp nose shark

Staci DeSchryver: Things We Deliberately Throw Overboard Part Deux: The Ocean Noise Sensor July 20, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard Oscar Elton Sette

July 6 – Aug 2

Mission:  HICEAS Cetacean Study

Geographic Area:  Northwest Hawaiian Island Chain, Just past Mokumanamana (Necker Island)

Date:  July 20, 2017

Weather Data from the Bridge:

Science and Technology Log:

As promised in Blog Post #3, I mentioned that “Thing number four we deliberately throw overboard” would have a dedicated blog post because it was so involved.  Well, grab some popcorn, because the time has arrived!

Thing number 4 we deliberately throw over the side of a ship does not get thrown overboard very often, but when it does, it causes much hubbub and hullaballoo on the ship.  I had the unique opportunity to witness one of only ten ocean noise sensors that are deployed in US waters come aboard the ship and get redeployed.  These sensors are found all over US waters – from Alaska to the Atlantic.  One is located in the Catalina Marine Sanctuary, and still others are hanging out in the Gulf of Mexico, and we are going to be sailing right past one!  To see more about the Ocean Noise Sensors, visit the HICEAS website “other projects” tab, or just click here.  To see where the Ocean Noise Recorders are, click here.

The Ocean Noise Sensor system is a group of 10 microphones placed in the “SOFAR” channel all over US waters.  Once deployed, they collect data for two years in order to track the level of ocean noise over time.  It’s no secret that our oceans are getting louder.  Shipping routes, oil and gas exploration, and even natural sources of noise like earthquakes all contribute to the underwater noise that our cetacean friends must chatter through.  Imagine sitting at far ends of the table at a dinner party with a friend you have not caught up with in a while.  While other guests chat away, you and the friend must raise your voices slightly to remain in contact.  As the night progresses on, plates start clanging, glasses are clinking, servers are asking questions, and music is playing in the background.  The frustration of trying to communicate over the din is tolerable, but not insurmountable.  Now imagine the host turning on the Super Bowl at full volume for entertainment.  Now the noise in the room is incorrigible, and you and your friend have lost all hope of even hearing a simple greeting, let alone have a conversation.  In fact, you can hardly get anyone’s attention to get them to pass you the potatoes.  This is similar to the noise levels in our world’s ocean.  As time goes on, more noise is being added to the system.  This could potentially interfere with multiple species and their communications abilities.  Calling out to find a mate, forage for food, or simply find a group to associate with must now be done in the equivalent din of a ticker-tape parade, complete with bands, floats, and fire engines blaring their horns.  This is what the Ocean Noise Sensor is hoping to get a handle on.   By placing sensors in the ocean to passively collect ambient noise, we can answer two important questions:  How have the noise levels changed over time?  To what extent are these changes in noise levels impacting marine life?   

Many smaller isolated studies have been done on ocean noise levels in the past, but a few years ago, scientists from Cornell partnered with NOAA and the Pacific Islands Fisheries Science Center (PIFSC) and the Pacific Marine Environmental Lab to streamline this study in order to get a unified, global data source of ocean noise levels.  The Pacific Marine Environmental Lab built a unified sound recording system for all groups involved in the study, and undertook the deployments of the hydrophones.  They also took on the task of processing the data once it is recovered.  The HICEAS team is in a timely and geographical position to assist in recovery of the data box and redeploying the hydrophone.   This was how we spent the day.

The recovery and re-deployment of the buoy started just before dawn, and ended just before dinner.

 Our standard effort of marine mammal observation was put on hold so that we could recover and re-deploy the hydrophone.  It was an exciting day for a few reasons – one, it was definitely a novel way to spend the day.  There was much to do on the part of the crew, and much to watch on the part of those who didn’t have the know-how to assist.  (This was the category I fell in to.)

At dawn, an underwater acoustic command was sent to the depths to release a buoy held underwater attached to the hydrophone.  While the hydrophone is only 1000m below the surface seated nice and squarely in the SOFAR channel, the entire system is anchored to the ocean floor at a depth of 4000m.  Once the buoy was released, crew members stationed themselves around the ship on the Big Eyes and with binoculars to watch for the buoy to surface.  It took approximately 45 minutes before the buoy was spotted just off our port side.  The sighting award goes to CDR Stephanie Koes, our fearless CO.  A crewmember pointed out the advancement in our technologies in the following way:  “We can use GPS to find a buried hydrophone in the middle of the ocean…and then send a signal…down 4000m…to a buoy anchored to the ocean floor…cut the buoy loose remotely, and then actually have the buoy come up to the surface near enough to the ship where we can find it.”  Pretty impressive if you think about it.

The buoy was tied to the line that is attached to the hydrophone, so once the buoy surfaced, “all” we had to do was send a fast rescue boat out to retrieve it, bring the buoy and line back to the ship, bring the crew safely back aboard the ship, hook the line up through a pulley overhead and back to a deck wench, pull the line through, take off the hydrophone, pull the rest of the line up, unspool the line on the wench to re-set the line, re-spool the winch, and then reverse the whole process.

Watching the crew work on this process was impressive at least, and a fully orchestrated symphony at best.  There were many tyings of knots and transfers of lines, and all crew members worked like the well-seasoned deck crew that they are.  Chief Bos’n Chris Kaanaana is no stranger to hauling in and maintaining buoys, so his deck crew were well prepared to take on this monumental task.

Much of the day went exactly according to plan.  The buoy was safely retrieved, the hydrophone brought on board, the lines pulled in, re-spooled, and all sent back out again.  But I am here to tell you that 4000m of line to haul in and pay back out takes. A Long. Time.  We worked through a rainstorm spooling the line off the winch to reset it, through the glare of the tropical sun and the gentle and steadfast breeze of the trade winds.  By dinner time, all was back in place, the buoy safely submerged deep in the ocean waters, waiting to be released again in another two years to repeat the process all over again.  With any luck, the noise levels in the ocean will have improved.  Many commercial vessels have committed to adopting “quiet ship” technology to assist in the reduction of noise levels.  If this continues to improve, our cetacean friends just might be able to hear one another again at dinner.

 

Personal Log

So, I guess it’s pretty fair to say that once you’re a teacher, you’re always a teacher.  I could not fully escape my August to May duties onboard, despite my best efforts.  This week, I found myself on the bridge, doing a science experiment with the Wardroom (These are what all of the officers onboard as a group are called).   How is this even happening, you ask?  (Trust me, I asked myself the same thing when I was in the middle of it, running around to different “lab groups” just like in class.)  Our CO, CDR Koes, is committed to ensuring that her crew is always learning on the ship.

 If her staff do not know the answer to a question, she will guide them through the process of seeking out the correct answer so that all  officers learn as much as they can when it comes to being underway –  steering the ship, preparing for emergencies, and working with engineers, scientists, and crew.  For example, I found out that while I was off “small-boating” near Pilot Whales, the Wardroom was busy working on maneuvering the ship in practice of man overboard scenarios.  She is committed to ensuring that all of her staff knows all parts of this moving city, or at a minimum know how to find the answers to any questions they may have.  It’s become clear just how much the crew and the entire ship have a deep respect and admiration for CDR Koes.  I knew she was going to be great when we were at training and word got out that she would be the CO of this Leg on Sette and everyone had a range of positive emotions from elated to relieved to ecstatic.

As part of this training, she gives regular “quizzes” to her staff each day – many of them in good fun with questions for scientists, crew, engineers, and I.  Some questions are nautical “things” that the Wardroom should know or are nice to know (for example, knowing the locations of Material Safety Data Sheets or calculating dew point temperatures), some questions are about the scientific work done onboard, while others are questions about personal lives of onboard members.

docandbromineDES_4437.JPG
The Chief Medical Officer, “Doc” gives a lesson on water quality testing.

 It has been a lot of fun watching the Wardroom and Crew seek out others and ask them where they live while showing them their “whale dance” to encourage sightings.  It has exponentially increased the interactions between everyone onboard in a positive and productive way.

The other teaching element that CDR Koes has implemented is a daily lesson each day from Monday to Friday just after lunch.  All NOAA Officers meet on the bridge, while one officer takes the lead to teach a quick, fifteen minute lesson on any topic of their choosing.  It could be to refresh scientific knowledge, general ship operations, nautical concepts, or anything else that would be considered “good to know.”

chiefengineerDES_4589.JPG
The Chief Engineer gives a rundown on the various ship emergency alarms.

 This sharing of knowledge builds trust among the Wardroom because it honors each officer’s strong suits and reminds us that we all have something to contribute while onboard.

I started attending these lunchtime sessions and volunteered to take on a lesson.  So, this past Tuesday, I rounded up some supplies and did what I know best – we all participated in the Cloud in a Bottle Lesson!

sextantDES_4607.JPG
Here I am learning to use a sextant for navigation.

The Wardroom had fun (I think?) making bottle clouds, talking about the three conditions for cloud formation, and refreshing their memories on adiabatic heating and cooling.  It was a little nerve wracking for me as a teacher because two of the officers are meteorologists by trade, but I think I passed the bar.  (I hope I did!)

groupworkbottlesDES_4329.JPG
Teaching about adiabatic cooling with the the Cloud in a Bottle Demo with the Wardroom!

It was fun to slide back into the role of teacher, if only for a brief while, and served as a reminder that I’m on my way back to work in a few weeks!  Thanks to the Wardroom  for calling on me to dust up my teacher skills for the upcoming first weeks of school!

JoshandTimDES_4325.JPG
ENS Holland and ENS Frederick working hard making clouds.

 

 

 

 

 

 

 

 

 

crew with bottlesDES_4340.JPG

Facebook Asks, DeSchryver Answers

I polled all of my Facebook friends, fishing (ha ha, see what I did there?) for questions about the ship, and here are some of the questions and my answers!

 

Q:   LC asks, “What has been your most exciting moment on the ship?”

It’s hard to pick just one, so I’ll tell you the times I was held at a little tear:  a) Any sighting of a new species is a solid winner, especially the rare ones  b) The first time I heard Sperm Whales on the acoustic detector c) The first time we took the small boat out for UAS operations….annnndddd d) The first time I was on Independent Observation and we had a sighting!

DES_3739.JPG
A group of Melon-Headed Whales, or PEPs, cruise along with the ship.

Q:  JK asks, “What are your thoughts on the breakoff of Larsen C?  And have there been any effects from the Alaskan quake and tsunami?”

We’re actually pretty isolated on board!  Limited internet makes it hard to hear of all the current events.  I had only briefly heard about Larsen C, and just that it broke, not anything else.  I had no clue there was a quake and tsunami!  But!  I will tell a cool sort of related story.  On Ford Island, right where Sette is docked, the parking lot is holding three pretty banged up boats.  If you look closely, they all have Japanese markings on them.  Turns out they washed up on Oahu after the Japan Tsunami.  They tracked down the owners, and they came out to confirm those boats were theirs, but left them with NOAA as a donation.  So?  There’s tsunami debris on Oahu and I saw it.

 

Q:  NG asks, “Any aha moments when it comes to being on the ocean?  And anything to bring back to Earth Science class?”

So many aha moments, but one in particular that comes to mind is just how difficult it is to spot cetaceans and how talented the marine mammal observers are! They can quite literally spot animals from miles away!  There are a lot of measures put in place to help the marine mammal observers, but at the end of the day, there are some species that are just tougher than nails to spot, or to spot and keep an eye on since their behaviors are all so different.  And as far as anything to bring back to our class?  Tons.  I got a cool trick to make a range finder using a pencil.  I think we should use it!

 

Q:  MJB asks, “Have you had some peaceful moments to process and just take it all in?”

Yes.  At night between the sonobuoy launches, I get two miles of transit time out on the back deck to just absorb the day and be thankful for the opportunities.  The area of Hawai’i we are in right now is considered sacred ground, so it’s very powerful to just be here and be here.

DES_3109_resize.JPG
These sunsets will give Colorado sunsets a run for their money.  No green flash in Colorado = point awarded to Hawai’i.

 

Q:  SC asks, “What souvenir are you bringing me?”

Well, we saw a glass fishing float, and we tried to catch it for you, but it got away.

Q:  LC asks, “What’s the most disgusting ocean creature?”

Boy that’s a loaded question because I guarantee if I name a creature, someone out there studies it for a living.  But! I will tell you the most delicious ocean creature.  That would be Ono.  In sashimi form.  Also, there is a bird called a Great Frigate bird – it feeds via something called Klepto-parasitism, which is exactly how it sounds.  It basically finds other birds, harasses them until they give up whatever they just caught or in some cases until it pukes, and then it steals their food.  So, yeah.  I’d say that’s pretty gross.  But everyone’s gotta eat, right?

Q:  KI asks, “Have you eaten all that ginger?”

I’m about two weeks in and I’m pretty sure I’ve eaten about a pound. I’m still working on it!

Q:  HC asks, ”Have you seen or heard any species outside of their normal ocean territory?”

Sort of.  Yesterday we saw Orca!  They are tropical Orca, so they are found in this area, but they aren’t very common.  The scientific team was thinking we’d maybe see one or two out of the entire seven legs of the trip, and we saw some yesterday!  (I can’t say how many, and you’ll find out why in an upcoming post.)  We have also seen a little bird that wasn’t really technically out of his territory, but the poor fella sure was a little far from home.

Q:  JPK asks, “What kinds of data have you accumulated to use in a cross-curricular experience for math?”

We can do abundance estimates with a reasonably simplified equation.  It’s pretty neat how we can take everything that we see from this study, and use those numbers to extrapolate how many of each species is estimated to be “out there.”

Q: AP asks, “What has surprised you about this trip?”

Many, many things, but I’ll mention a couple fun ones.  The ship has an enormous movie collection – even of movies that aren’t out on DVD yet because they get them ahead of time!  Also? The food on the ship is amazing.  We’re halfway through the trip and the lettuce is still green.  I have to find out the chef’s secret!  And the desserts are to die for.  It’s a wonder I haven’t put on twenty pounds.  The crew does a lot of little things to celebrate and keep morale up, like birthday parties, and music at dinner, and shave ice once a week.  Lots of people take turns barbecuing and cooking traditional foods and desserts special to them from home and they share with everyone.  They are always in really high spirits and don’t let morale drop to begin with, so it’s always fun.

DES_4454.JPG
Celebrating Engineer Jerry’s Birthday.

Q:  TS asks, “What’s the most exciting thing you’ve done?”

I’ve done lots of exciting things, but the one thing that comes to mind is launching on the small boat to go take photos of the pilot whales.  Such a cool experience, and I hope we get good enough weather to do it again while we’re out here!  Everything about ship life is brand new to me, so I like to help out as much as I can.  Any time someone says, “Will you help with this?” I get excited, because I  know I’m about to learn something new and also lend a hand. 

 

Kimberly Scantlebury: It’s All About the Little Things, May 8, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 8, 2017

Weather Data from the Bridge

Time: 18:00

Latitude: 2755.757 N, Longitude: 9200.0239 W

Wind Speed: 14.21  knots, Barometric Pressure: 1015.3 hPa

Air Temperature: 24.56  C, Water Temperature: 24.4  C

Salinity: 36.37  PSU, Conditions: 50% cloud cover, light wind, seas 2-4 feet

Science and Technology Log

IMG_2969
The CTD

The CTD (conductivity, temperature, depth) array is another important tool. It goes down at each station, which means data is captured ten-twelve times a day. It drops 50 m/min so it only takes minutes to reach the bottom where other winch/device systems can take an hour to do the same. This array scans eight times per second for the following environmental factors:

  • Depth (m)
  • Conductivity (converts to salinity in ppt)
  • Temperature (C)
  • Dissolved oxygen (mg/mL)
  • Transmissivity (%)
  • Fluorescence (mg/m^3)
  • Descent rate (m/sec)
  • Sound velocity (m/sec)
  • Density (kg/m^3)

There are two sensors for most readings and the difference between them is shown in real time and recorded. For example, the dissolved oxygen sensor is most apt to have calibration issues. If the two sensors are off each other by 0.1 mg/L then something needs to be done.

Software programs filter the data to cut out superfluous numbers such as when the CTD is acclimating in the water for three minutes prior to diving. Another program aligns the readings when the water is working through the sensors. Since a portion of water will reach one sensor first, then another, then another, and so on, the data from each exact portion of water is aligned with each environmental factor. There are many other sophisticated software programs that clean up the data for use besides these two.

These readings are uploaded to the Navy every twelve hours, which provides almost real-time data of the Gulf. The military uses this environmental data to determine how sound will travel through sound channels by locating thermoclines as well as identifying submarines. NOAA describes a thermocline as, “the transition layer between warmer mixed water at the ocean’s surface and cooler deep water below.” Sound channels are how whales are able to communicate over long distances.

NOAA Ocean Explorer: Sound in the Sea 2001
This “channeling” of sound occurs because of the properties of sound and the temperature and pressure differences at different depths in the ocean. (NOAA)

The transmissometer measures the optical properties of the water, which allows scientists to track particulates in the water. Many of these are clay particles suspended in the water column. Atmospheric scientists are interested in particulates in the air and measure 400 m. In the water, 0.5 m is recorded since too many particulate affects visibility very quickly. This affects the cameras since light reflecting off the clay can further reduce visibility.   

Fluorescence allows scientists to measure chlorophyll A in the water. The chlorophyll molecule is what absorbs energy in photosynthetic plants, algae, and bacteria. Therefore, it is an indicator of the concentration of organisms that make up the base of food chains. In an ecosystem, it’s all about the little things! Oxygen, salinity, clay particles, photosynthetic organisms, and more (most we can not actually see), create a foundation that affects the fish we catch more than those fish affect the little things.  

The relationship between abiotic (nonliving) and biotic (living) factors is fascinating. Oxygen is a great example. When nitrates and phosphates wash down the Mississippi River from the breadbasket of America, it flows into the Gulf of Mexico. These nutrients can make algae go crazy and lead to algae blooms. The algae then use up the oxygen, creating dead zones. Fish can move higher up the water column or away from the area, but organisms fixed to the substrate (of which there are many in a reef system) can not. Over time, too many algae blooms can affect the productivity of an area.

Salt domes were created millions of years ago when an ancient sea dried up prior to reflooding into what we have today. Some salt domes melted and pressurized into super saline water, which sinks and pools. These areas create unique microclimates suitable to species like some mussels. A microclimate is a small or restricted area with a climate unique to what surrounds it.

IMG_3032
The ship’s sonar revealing a granite spire a camera array was deployed on.

Another great example is how geology affects biology. Some of these salt domes collapsed leaving granite spires 30-35 meters tall and 10 meters across. These solid substrates create a magical biological trickle down effect. The algae and coral attach to the hard rock, and soon bigger and bigger organisms populate this microclimate. Similar microclimates are created in the Gulf of Mexico from oil rigs and other hard surfaces humans add to the water.

Jillian’s net also takes a ride with the CTD. She is a PhD student at Texas A&M University studying the abundance and distribution of zooplankton in the northern Gulf of Mexico because it is the primary food source of some commercially important larval fish species. Her net is sized to capture the hundreds of different zooplankton species that may be populating the area. The term zooplankton comes from the Greek zoo (animal) and planktos (wanderer/drifter). Many are microscopic, but Jillian’s samples reveal some translucent critters you can see with the naked eye. Her work and the work of others like her ensures we will have a deeper understanding of the ocean.   

This slideshow requires JavaScript.

Personal Log

Prior to this I had never been to the Gulf of Mexico other than on a cruise ship (not exactly the place to learn a lot of science). It has been unexpected to see differences and parallels between the Gulf of Mexico and Gulf of Maine, which I am more familiar. NOAA scientist, John, described the Gulf to me as, “a big bathtub.” In both, the geology of the area, which was formed millions of years ago, affects that way these ecosystems run.   

Quote of the Day:
Jillian: “Joey, are we fishing at this station?”
Joey: “I dunno. I haven’t had my coffee yet.”
Jillian: “It’s 3:30 in the afternoon!”

Did You Know?

Zooplankton in the Gulf of Mexico are smaller than zooplankton in the Gulf of Maine. Larger species are found in colder water.  

why_zoo
Zooplankton under microscope (NOAA)

Kimberly Scantlebury: Getting Ready to Ship Out. April 26, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 26, 2017

Weather Data from the Bridge

16806786_610426269901_2847107978351918522_n
At home in New England, where you can enjoy the mountains and the sea all in a day.

Greetings from New Hampshire! Our variable spring weather is getting me ready for the coolness at sea compared to hot Galveston, Texas, where I will ship off in a few days.

It is currently 50 F and raining with a light wind, the perfect weather to reflect on this upcoming adventure.

Science and Technology Log

I am excited to soon be a part of the 2017 SEAMAP Reef Survey. The National Oceanic and Atmospheric Administration (NOAA) writes the objective of these surveys is, “ to provide an index of the relative abundances of fish species associated with topographic features (banks, ledges) located on the continental shelf of the Gulf of Mexico in the area from Brownsville, Texas to Dry Tortugas, Florida.” The health of the Gulf is important from an ecological and economic perspective. Good science demands good research.

We will be working 12 hour shifts aboard the NOAA Ship Pisces. I expect to work hard and learn a lot about the science using cameras, fish traps, and vertical long lines. I also look forward to learning more about life aboard a fisheries research vessel and the career opportunities available to my students as they think about their own futures.

Personal Log

I’ve been teaching science in Maine and New Hampshire for eight years and always strive to stay connected to science research. I aim to keep my students directly connected through citizen science opportunities and my own continuing professional development. Living in coastal states, it is easier to remember the ocean plays a large role in our lives. The culture of lobster, fried clams, and beach days requires a healthy ocean.

I love adventure and have always wanted to “go out to sea.” This was the perfect opportunity! I was fortunate to take a Fisheries Science & Techniques class with Dave Potter while attending Unity College and look forward to revisiting some of that work, like measuring otoliths (ear bones, used to age fish). I have also benefited from professional development with The Bigelow Laboratory for Ocean Sciences and other ocean science experiences. One of the best parts of science teaching is you are always learning!

11264902_575518814721_8101743023779813565_n
Science teachers benefit from quality professional development to stay informed in their content areas.

There was a lot of preparation involved since I am missing two weeks of school. I work at The Founders Academy, a public charter school in Manchester, New Hampshire. We serve students from 30 towns, but about a third come from Manchester. The school’s Vision is to: prepare wise, principled leaders by offering a classical education and providing a wide array of opportunities to lead:

  • Preparing students to be productive citizens.
  • Teaching students how to apply the American experience and adapt to become leaders in today’s and tomorrow’s global economy.
  • Emphasis on building ethical and responsible leaders in society.

I look forward to bringing my experiences with NOAA Teacher at Sea Program back to school! It is difficult to leave my students for two weeks, but so worth it. It is exciting to connect with middle and high school students all of the lessons we can learn from the work NOAA does. My school community has been very supportive, especially another science teacher who generously volunteered to teach my middle school classes while I am at sea.

13417611_591938624291_8919445317025949442_n
I am grateful for the support at home for helping me participate in the NOAA Teacher at Sea Program.

My boyfriend too is holding down the fort at home and with Stone & Fire Pizza as I go off on another adventure. Our old guinea pigs, Montana & Macaroni, prefer staying at home, but put up with us taking them on vacation to Rangeley, Maine. I am grateful for the support and understanding of everyone and for the opportunity NOAA has offered me.

Did You Know?

NOAA Corps is one of the seven uniformed services of the United States.

NOAA is the scientific agency of the Department of Commerce. The agency was founded in 1970 by consolidating different organizations that existed since the 1800’s, making NOAA’s scientific legacy the oldest in the U.S. government.

IMG_0993
As a science teacher, it is funny that I really do have guinea pigs. Here is our rescue pig Montana, who is 7-8 years old.

Denise Harrington: Tenacity – May 7, 2016

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Pisces (In Port)
May 04, 2016 – May 17, 2016

Mission: SEAMAP Reef Fish Survey

Geographical Area of Cruise: Gulf of Mexico

Date: Saturday, May 7, 2016

Tenacity helps NOAA manage our seafood supply.

P1050630

Tenacity, otherwise known as perseverance or stamina, is a required skill at the National Oceanic and Atmospheric Administration (NOAA). Aboard NOAA Ship Pisces, we are all anxious to head out to collect data about the type and abundance of reef fish along the continental shelf and shelf edge of the Gulf of Mexico.  However, things don’t always go as planned. Much like the animals we study, scientists must rapidly adapt to their changing circumstances. Instead of waiting for a problem to be solved, fisheries biologists of all ages and experience work in the lab, using the newest, most sophisticated technology in the world to meet our demand for seafood.

As I ate dinner tonight in the mess (the area where the crew eats), I stared at the Pisces’ motto on the tablecloth, “patience and tenacity.”

P1050609

The Pisces is a “quiet” ship; it uses generators to supply power to an electric motor that turns the ship’s propeller. The ship’s motor (or a mysteriously related part) is not working properly, and without a motor, we will not sail. This change of plans provides other opportunities for me, and you, to learn about many fascinating projects developing in the lab. Sound science begins right here at the Southeast Fisheries Science Center Laboratory in Pascagoula, Mississippi.

P1050488

Kevin Rademacher, a fishery biologist in the Reef Fish Unit, meets me at the lab where he works when he isn’t at sea. As he introduces me to other biologists working in the protected species, plankton, and long line units, I begin to appreciate the great biodiversity of species in the Gulf of Mexico. I get a glimpse of the methods biologists use to conduct research in the field, and in the lab.

While it looks like a regular old office building on the outside, the center of the building is filled with labs where fish are taken to be discovered.  Mark Grace, a fisheries biologist in the lab, made one such discovery of a rare species of pocket shark on a survey in the gulf. The only other specimen of a pocket shark was found coast of Peru in 1979. Mark’s discovery raises more questions in my mind than answers.

When I met Mark, he explained that capability of technology to gather data has outpaced our ability to process it. “Twenty years ago, we used a pencil and a clipboard. Think about the 1980s when they started computerizing data points compared to the present time… maybe in the future when scientists look back on the use of computers in science, it will be considered to be as important as Galileo looking at the stars” he said. It’s important because as Mark also explains,  “This correspondence is a good example.  We can send text, website links, images, etc…and now its a matter of digital records that will carry in to the future.”

How do fishery biologists find fish?

P1050731
Charlie McVea, a retired NOAA marine biologist, and his trusty assistant Scout, pictured above, learned they may need more sophisticated equipment to locate fish.

Earth has one big connected ocean that covers the many features beneath it. Looking below the surface to the ocean floor, we find a fascinating combination of continental shelves, canyons, reefs, and even tiny bumps that make unique homes for all of the living creatures that live there.  Brandi Noble, one of 30-40 fishery biologists in the lab, uses very complicated sonar (sound) equipment to find “fish hot spots,” the kinds of places fish like to go for food, shelter and safety from predators. Fisheries sonar sends pulses of sound, or pings, into the water.  Fishery biologists are looking for a varied echo sound that indicates they’ve found rocky bottoms, ledges, and reefs that snapper and grouper inhabit.

The sonar can also survey fish in a non-invasive way. Most fish have a swim bladder, or a gas filled chamber, which reflects sonar’s sound waves.  A bigger fish will create a returning echo of greater strength. This way, fisheries biologists can identify and count fish without hurting them.

sonar fish
The circular image shows a three-dimensional map NOAA scientists created from the sonar data they collected about the seafloor and a school of fish.

Ship Pisces uses a scientific methods to survey, determining relative abundance and types of fish in each area. They establish blocks of habitat along the continental shelf to survey and then randomly sample sites that they will survey with video cameras, CTD (measures temperature, salinity, and dissolved oxygen in the water), and fishing. Back in the lab, they spend hours, weeks, and years, analyzing the data they collect at sea. During the 2012 SEAMAP Reef Fish Survey, the most common reef fish caught were 179 red snapper (Lutjanus campechanus), 22 vermillion snapper (Rhomboplites aurorubens), and 10 red porgy (Pagrus pagrus).  Comparing the 2012 data with survey results from 2016 and other years will help policy makers develop fishing regulations to protect the stock of these and other tasty fish.

How do fishery biologists manage all the information they collect during a survey?

Scientists migrate between offices and labs, supporting each other as they identify fish and marine mammals from previous research expeditions.

P1050572
Kevin Rademacher, at work in the lab.

Our mission, the SEAMAP Reef Fish Survey has been broken into four parts or legs.  The goal is to survey some of the most popular commercially harvested fish in the Gulf of Mexico.  Kevin Rademacher is the Field Party Chief for Leg 1 and Leg 3 of the survey.

Last week, he showed me collections of frozen fish, beetle infested fish, and fish on video. At one point the telephone rang, it was Andrew Paul Felts, another biologist down the hall. “Is it staying in one spot?” Kevin asks. “I bet it’s Chromis. They hang over a spot all the time.”

We head a couple doors down and enter a dark room.  Behind the blue glow of the screen sits Paul, working in the dark, like the deep water inhabitants of the video he watches. Paul observes the physical characteristics of a fish: size, shape, fins, color.  He also watches its behavior. Does it swim in a school or alone?  Does it stay in one spot or move around a lot?  He looks at its habitat, such as a rocky or sandy bottom, and its range, or place on the map.

As you watch the video below, observe how each fish looks, its habitat, and its behavior.

To learn about fisheries, biologists use the same strategies students at South Prairie Elementary use.   Paul is using his “eagle eyes,” or practiced skills of observation, as he identifies and counts fish on the screen.   All the scientists read, re-read and then “read the book a third time” like a “trying lion” to make sense out of their observations.  Finally, Paul calls Kevin, the “wise owl,” to make sure he isn’t making a mistake when he identifies a questionable fish. paul screen

Using Latin terminology such as “Chromis” or “Homo” allows scientists to use the same names for organisms. This makes it easier for scientists worldwide, who speak different languages, to communicate clearly with each other as they classify the living things they study.

I appreciate how each member of the NOAA staff, on land and at sea, look at each situation as a springboard to more challenging inquiry.  They share with each other and with us what they have learned about the diversity of life in the ocean, and how humans are linked to the ocean.  With the knowledge we gain from their hard work and tenacity, we can make better choices to protect our food supply and support the diversity of life on Earth.

 

This slideshow requires JavaScript.

 

P1050551
Spined Pygmy Shark Jaw (Squaliolus laticaudus)

Personal Log

Crew members tell me that every day at sea is a Monday.  In port, they are able to spend time with family and their communities.  I have been able to learn a bit about Pascagoula, kayak with locals, and see many new birds like the least tern, swallow tailed kite, eastern bluebird and clapper rail.  Can you guess what I ate for dinner last night?P1050747

 

 

 

 

Jeff Miller: Sharks and Dead Zones, September 12, 2015

NOAA Teacher at Sea
Jeff Miller
Aboard NOAA Ship Oregon II
August 31 – September 14, 2015

Mission: Shark Longline Survey
Geographical Area: Gulf of Mexico
Date: September 12, 2015

Data from the Bridge
Ship Speed:  9.2 knots
Wind Speed:  8.8 knots
Air Temp: 27,7°C
Sea Temp: 30.2°C
Seas: 1-2 meters
Sea Depth:  457 meters

GPS Coordinates
Lat:  27 47.142 N
Long:  094 04.264 W

Science and Technology Log
On September 8 – 9, we surveyed a number of stations along the Texas and Louisiana coasts that were in shallow water between 10-30 meters (approximately 30-100 feet).  Interestingly, the number of sharks we caught at each station varied dramatically.  For example, we pulled up 65 sharks at station 136 and 53 sharks at station 137, whereas we caught only 5 sharks at station 138 and 2 sharks at station 139.  What could account for this large variance in the number of sharks caught at these locations?

Weighing a bonnethead shark
Weighing a bonnethead shark caught off the coast of Texas.

One key factor that is likely influencing shark distribution is the amount of dissolved oxygen in the water.  Oxygen is required by living organisms to produce the energy needed to fuel all their activities.  In water, dissolved oxygen levels above 5 mg/liter are needed for most marine organisms to thrive. Water with less than 2 mg/liter of dissolved oxygen is termed hypoxic, meaning dissolved oxygen is below levels needed by most organisms to thrive and survive.  Water with less than 0.2 mg/liter of dissolved oxygen is termed anoxic (no oxygen) and results in  “dead zones” where little, if any, marine life can survive.

As part of several missions, including the ground fish and longline shark surveys, NOAA ships sample the levels of dissolved oxygen at survey stations in coastal waters of the Gulf of Mexico.  Measurements of dissolved oxygen, salinity, and temperature are collected by a device called the CTD.   At each survey station, the CTD is deployed and it collects real-time measurements as it descends to the bottom and returns to the surface.

CTD
Standing with the CTD, which is used to measure dissolved oxygen, salinity, and temperature.

Data collected by the CTD is used to produce maps showing the relative levels of dissolved oxygen in coastal regions of the Gulf of Mexico.    For more environmental data go to the NOAA National Centers for Environmental Information.

2015 Gulf Hypoxia Map
Map showing dissolved oxygen levels in the coastal areas of the Gulf of Mexico. Red marks anoxic/hypoxic areas with low dissolved oxygen levels.  Source: NOAA National Centers for Environmental Information.

Environmental surveys demonstrate that large anoxic/hypoxic zones often exist along the Louisiana/Texas continental shelf.  Because low dissolved oxygen levels are harmful to marine organisms, the anoxic/hypoxic zones in the northern Gulf of Mexico could greatly impact commercially and ecologically important marine species.  Overwhelming scientific evidence indicates that excess organic matter, especially nitrogen, from the Mississippi River drainage basin drives the development of anoxic/hypoxic waters.  Although natural sources contribute to the runoff, inputs from agricultural runoff, the burning of fossil fuels, and waste water treatment discharges have increased inputs to many times natural levels.

Runoff in the Mississippi basin
Map showing sources of nitrogen runoff in the Mississippi River drainage basin. Source NOAA National Centers for Coastal Ocean Science.

Nitrogen runoff from the Mississippi River feeds large phytoplankton algae blooms at the surface.  Over time, excess algae and other organic materials sink to the bottom.  On the bottom, decomposition of this organic material by bacteria and other organisms consumes oxygen and leads to formation of anoxic/hypoxic zones.  These anoxic/hypoxic zones persist because waters of the northern Gulf of Mexico become stratified, which means the water is separated into horizontal layers with cold and/or saltier water at the bottom and warmer and/or fresher water at the surface. This layering separates bottom waters from the atmosphere and prevents re-supply of oxygen from the surface.

Since levels of dissolved oxygen can  greatly influence the distribution of marine life, we reasoned that the high variation in the number of sharks caught along the Louisiana/Texas coast could be the result of differences in dissolved oxygen.  To test this idea, we analyzed environmental data and shark numbers at survey stations along the Louisiana/Texas coast.  The graphs below show raw data collected by the CTD at stations 137 and 138.

CTD 137
Dissolved oxygen levels at station 137 (green line; raw data). At the surface: dissolved oxygen = 5.0 mg/liter. At the bottom: dissolved oxygen = 1.5 mg/liter.  Notice the stratification of the water at a depth of 7-8 meters.

 

CTD 138
Dissolved oxygen levels at station 138 (green line; raw data).  At the surface: dissolved oxygen = 5.5 mg/liter. At the bottom: dissolved oxygen = 0 mg/liter.  Notice the stratification of the water at a depth of 7-8 meters.

Putting together shark survey numbers with environmental data from the CTD we found that we caught very high numbers of sharks in hypoxic water and we caught very few sharks in anoxic water.  Similar results were observed at station 136 (hypoxic waters; 65 sharks caught) and station 139 (anoxic waters; 2 sharks caught).

Data table
Relationship between dissolved oxygen levels and numbers of sharks caught at stations 137 and 138.

What can explain this data?  One possible answer is that sharks will be found where there is food for them to eat.  Thus, many sharks may be moving in and out of hypoxic waters to catch prey that may be stressed or less active due to low oxygen levels.  In other words, sharks may be taking advantage of low oxygen conditions that make fish easier to catch.  In contrast, anoxic waters cannot support marine life so there will be very little food for sharks to eat and, therefore, few sharks will be present.  While this idea provides an explanation for our observations, more research, like the work being done aboard the NOAA Ship Oregon II, is needed to understand the distribution and movement of sharks in the Gulf of Mexico.

Personal Log
My time aboard the Oregon II is drawing to a close as we move into the last weekend of the cruise.  We have now turned away from the Louisiana coast into deeper waters as we travel west to Galveston, Texas.  The weather has changed as well.  It has been sunny and hot for much of our trip, but clouds, rain, and wind have moved in.  Despite this change in weather, we continue to set longlines at survey stations along our route to Galveston.  The rain makes our job more challenging but our catch has been relatively light since we moved away from the coast into deeper waters.  Hopefully our fishing luck will change as we move closer to Galveston.  I would like to wrestle a few more sharks before my time on the Oregon II comes to an end.