Jessica Cobley: An Introduction, July 15, 2019

NOAA Teacher at Sea

Jessica Cobley

NOAA Ship Oscar Dyson

July 17 – August 8, 2019


Mission: Midwater Acoustic Trawl Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Aleutian Islands)

Date: Monday, July 15th, 2019

Weather Data from Juneau, AK: 8:50am Lat: 58.35° N Lon: 134.58° W 

Personal Log

Hello everyone. In just a few days I will be swapping out halibut fishing in Juneau, AK for surveying walleye pollock in the Gulf of Alaska (GOA)…and I can’t wait! Our cruise on NOAA Ship Oscar Dyson will depart from Kodiak Island and sail out along the Aleutian Islands, a place I have yet to see or experience since moving to Alaska. 

Jessica halibut fishing
Fishing for Halibut near Holkham Bay. This photo was taken just after the fillet had slipped out of my hands and onto the boat deck…guess I’ll benefit from fish handling practice on the cruise! Photo Credit: Laura Maruhashi

Three years ago, I left a curriculum consulting job in Portland, OR to begin teaching in Juneau. Prior to Oregon, I was living overseas in Australia, where I completed my Masters in Education and spent time with the Australian side of my family. I am incredibly excited to now call Juneau my home and be in the classroom as both an educator and a learner. Alaska is such a unique and special place – sometimes I still can’t believe I live here! 

Currently, I work as a 7th grade Life Science teacher at Floyd Dryden Middle School. Not only is middle school my favorite age of kids to teach (yes, you heard that right), but I also love the curriculum we get to share with them. One main focus during the school year is to teach about ecosystems. Two years ago I developed a unit, along with NOAA Scientist Elizabeth Siddon, that focuses on how commercial fisheries quotas are set in Alaska. The lessons range from data collection and stakeholder input to presenting recommendations to the North Pacific Fisheries Management Council. Alaska takes several different aspects of the ecosystem into consideration when setting quotas and I think it is a great way for students to see how the science they learn in school can be applied to real life careers. 

7th grade students
Students in my 7th grade life science class presenting ecosystem risk table recommendations to a panel of scientists for sablefish quotas in the Gulf of Alaska.

I myself have never had the chance to work as a scientist. That is why I am so excited for the opportunity to participate in data collection and analysis alongside a research team right here in Alaska. It will be fantastic to bring what I learn back to my students and be able to give them an even better understanding what being a scientist can entail. 

Lastly, outside of teaching, I try to enjoy all of the outdoor activities Juneau has to offer. With the recent streak of unusually warm and sunny weather, my friends and I have been boating, swimming, and hiking as much as possible. While it will be hard to leave those things behind, I am looking forward to this next adventure! 

Jessica hiking
Midway through a hike from Granite Creek Basin to Mount Juneau. Photo Credit: Laura Maruhashi


Science and Technology Log

The research team on NOAA Ship Oscar Dyson is conducting an acoustic-trawl (AT) survey to collect data, primarily on walleye pollock, to be used in stock assessment models for determining commercial fisheries quotas. When collecting data, scientists will work in 12 hour shifts and be looking to determine things such as species composition, age, length distribution etc. 

NOAA Ship Oscar Dyson
NOAA Ship Oscar Dyson. Photo Credit: NOAA

Trawl fishing, for those of you unfamiliar, is a method of fishing when a net of particular size is pulled through the water behind a boat. Oscar Dyson is a 64 meter stern trawler that contains acoustic and oceanographic instruments to collect the necessary data. After researching online, I learned that the main instrument used is a Simrad EK60 split-beam echosounder system. Look for more information about what this instrument is (and others) in future blog posts! 

Did You Know?

Alaska pollock is one of the largest commercial fisheries in the world! 

Thank you for reading and I am looking forward to sharing more about life out at sea! 

Erica Marliane: SAY CHEESE, July 7, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 7, 2019

Weather Data from the Bridge:

Latitude: 55º 24.63N
Longitude:155 º 18.86 W
Wind Speed: 10 knots
Wind Direction: 210º
Air Temperature:  11º Celsius
Barometric Pressure: 1097 mb


Science and Technology Log

Fishing nets like the ones used on the NOAA Ship Oscar Dyson or on commercial fishing boats can be very expensive.  If one plans on doing a bottom trawl (fishing with a net that goes down to the sea floor) one wants to make sure that there are not rocks or other things that can snag or tear the net.  If there are too many rocks or boulders or uneven topography, the area is considered “untrawlable”. While computer imagery can provide some guidance with regard to what lies deep beneath the surface, scientists onboard the NOAA Ship Oscar Dyson are hoping that video images taken with an underwater camera can provide a more complete picture and be the basis for a more precise computer model of what areas are in fact untrawlable.

Drop camera
Drop camera

Why is this important? Scientists onboard the NOAA Ship Oscar Dyson are surveying the fish that live in the middle of the water column. However, groundfish surveys account for all the fish living on the ocean floor. If the groundfish program can’t trawl in certain areas, then they don’t know what is there.  For example, rockfish often live in untrawlable areas. If a groundfish survey can’t put a net in areas where rockfish live, then they won’t really “count” the correct numbers of rockfish in their survey. Data obtained using an underwater camera can help determine what species of rockfish are being underrepresented by the groundfish program.

One of the many perks of being on the 4 p.m. to 4 a.m. shift is that I get to watch the drop camera in action!  The camera (with its attached light) is slowly lowered to the sea floor.  I have seen the camera take 4 minutes to reach the bottom or as long as 8 minutes depending upon the depth of the water being surveyed.  The camera is then “driven” along the bottom (or right above it) for 15 minutes via a control box on the boat (similar to a tiny joystick).  I even got to “drive” it a few times!

The images are recorded and also seen in real time on a computer screen on the boat.  We have seen rocks, of course, but also jellyfish, sea whips, crabs, octopi, sea stars, and a wide variety of fish. One night, there were thousands of sand dollars. It looked like we had come across a buried treasure! It is fascinating to see what is happening deep beneath the boat. It’s kind of like virtual scuba diving!

Sand dollars and brittle stars
Sand dollars and brittle stars
Tiger Rockfish
Tiger Rockfish
Flatfish
Flatfish
Giant Pacific Octopus
Giant Pacific Octopus
Kelp Greenling
Kelp Greenling
Quillback
Quillback


Drop Camera Elementary School Math Fun

If the stereo drop camera takes 8 minutes to reach the bottom when the water is 200 meters deep, how long might it take to reach the bottom if it was:

100 meters deep?  ____________

50 meters deep? ______________

300 meters deep? _____________


Personal Log

It’s time to come clean and admit that I suffer from Pareidola.  Don’t worry, it’s not contagious, or even dangerous. In fact, I think it’s a lot of fun.  You see, Pareidola is a psychological phenomenon where you see patterns.  Quite often, people with Pareidola will see faces in objects where there really isn’t one, like on an electrical outlet. 

Electrical outlets
Electrical outlets… do you think they look like faces?

My Pareidola has reached a new level on the NOAA Ship Oscar Dyson as I am seeing not just faces but ROBOTS like these:

Let me know if you see any robots at your house, and I am on the lookout for more here!


Erica Marlaine: No Peanut Butter and Jelly but PLENTY OF JELLYFISH, July 1, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 1, 2018

Weather Data from the Bridge:

Latitude: 56º 50.94N
Longitude: 155º 44.49 W
Wind Speed: 11.3 knots
Wind Direction: 240º
Air Temperature:  12.98º Celsius
Barometric Pressure: 1027.5 mb

Crew Member Spotlight

At present, there are 31 people onboard the NOAA Ship Oscar Dyson, and each plays a vital role in making sure that everything runs as it should.  One person whose job touches each and every one of us is Judy Capper, the Chief Steward.  One might think that being onboard a ship for three weeks would mean limited food choices, or lots of peanut butter and jelly sandwiches, but so far every meal onboard the NOAA Ship Oscar Dyson has been abundant and delicious. From shrimp kabobs to stuffed pork loin to homemade soups to delicious baked goods, Judy keeps everyone onboard fed and happy.

I got a chance to talk to Judy about her job and her journey to becoming a NOAA Chief Steward.  Judy’s first career was in the corporate world (including Hewlitt-Packard) but being the oldest of 5 siblings, she has been cooking since the age of 12.  An interest in cooking led her to study culinary arts at UCLA and other locations.  She then took seamanship training at Orange Coast College.  At the time, she owned a sailboat, and enjoyed cooking and entertaining on the boat.  The captain loved her cooking and asked if she would be interested in cooking on some sailboat charters.  That led to working on yachts and supply ships, and lucky for us, in 2015, Judy was hired by NOAA.  Judy loves her job as a NOAA Steward.  She says it is never boring and allows her to be creative.  Her advice for anyone interested in following in her footsteps is to eat in good restaurants so that you develop your taste buds, get good training, and watch cooking shows.

Judy Capper
Judy Capper, Chief Steward Extraordinaire


Science and Technology Log

Last night we used a different kind of net, known as a Methot net, in order to collect macroscopic zooplankton. Named after its designer, Richard D. Methot, it is a single net with a large square opening or mouth attached to a rigid steel frame. The net is deployed from the stern and towed behind the vessel.

Methot Net
Deploying the Methot Net

The Methot uses fine mesh (e.g. 2×3 mm) but has openings that are slightly larger.  This design allows the net to be towed at high speeds. A flowmeter suspended in the mouth of the Methot net measures the flow of water moving through the net.  Scientists use the flowmeter data to calculate the volume of water sampled.

The flowmeter
The flowmeter

Watching the crew preparing to launch the Methot net was a lesson in teamwork. Everyone knew their job, and they reviewed what each would do when.  They even discussed what hand signals they would use (“If I make this movement, that means XYZ”).

The Methot net did catch a lot more krill than I had seen before, as well as many jellyfish.

Erica and jellyfish
One of the many Chrysaora melanaster we came across.


Fun Jellyfish Facts:

Jellyfish are invertebrates, and have no brain, heart, eyes, or bones.  Instead they have a bag-like body that feels like slippery jello and tentacles covered with small, stinging cells.  They sting and paralyze their prey before eating it.  A jellyfish sting can be painful, but it is not usually harmful for humans.  However, some people may be allergic to the venom, and will have a reaction.

Erica Marlaine: Onboard the City That Never Sleeps, June 28, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 28, 2018

Weather Data from the Bridge:

Latitude: 58º 28.54 N
Longitude: 154º 46.05 W
Wind Speed: 16.8 knots
Wind Direction: 190º
Air Temperature:  11º Celsius
Barometric Pressure: 102


Science and Technology Log

Scientists aboard NOAA Ship Oscar Dyson are estimating the numbers and biomass of walleye pollock in the Gulf of Alaska.  They use acoustics (sound data)  to help them do this.

acoustic readout
Acoustic representation of fish in the area


Acoustic representation of fish in an area

Echo sounders send an acoustic signal (ping) into the water.  The sound bounces off objects that have a different density than the surrounding water (such as the swim bladder in a fish) and returns back to the echo sounder.  Using the speed of sound, this technology can determine how deep the fish are in the water column. 

How much sound each object reflects is known as the target strength.  The target strength is dependent upon the type of fish and the size of the fish.  A bigger fish will give off more of an echo than a small fish will.  A fish’s swim bladder is primarily what reflects the sound.  Smelt and krill do not have swim bladders. As a result, they do not reflect as much sound as a pollack would. Even though a big fish gives off more sound energy than a small fish of the same species, it is possible that a return echo could indicate either one big fish or several smaller fish clumped together. A big fish of one species could also give off similar sound energy to a big fish of a different species. For that reason, actual fish are collected several times a day in the nets described in a previous blog.

From a net sample, scientists determine the number of each species in the catch as well as the length and weight of individuals of each species. 

Measuring pollock
Measuring pollock

Additionally, scientists also determine the sex and age of the pollock.  The catch data is used to scale the acoustic data, which in turn allows scientists to estimate how many pollock there are of various size and age groups in a given area. These numbers help scientists  determine the sustainability of the pollock population, which in turn allows the North Pacific Fishery Management Council to set catch quotas. 

Counting krill
Counting krill


Krill Fun Facts:

Krill (aka euphausiids) are small crustaceans (a couple of millimeters long) of the order Euphausiacea.  The word “krill” is a Norwegian word meaning “a small fry of fish.” Krill are found in every ocean and are a major food source. They are eaten by fish, whales, seals, penguins, and squid, to name a few.  In Japan, the Phillipines, and Russia, krill are also eaten by humans.  In Japan, they are called okiami.  In the Phillipines and Russia, they are known as camarones. In the Phillipines, krill are also used to make a salty paste called bagoong. Krill are a major source of protein and omega-3 fatty acids.

krill on spoon
There are many kinds of krill. Thus far, in the Gulf of Alaska, we have been seeing mostly Thysanoessa enermis, which measure approximately 1/2 inch in length.

Personal Log  

People often refer to New York as the city that never sleeps. The same can be said for the NOAA Ship Oscar Dyson. Life onboard the Oscar Dyson carries on 24 hours a day, 7 days a week.  There is never a time that the ship is not bustling with activity.  Everyone on the boat works 12-hour shifts, so someone is always working while others are sleeping (or doing laundry, exercising, or watching a movie in the lounge before they go to sleep.) Most people on the boat work either the noon to midnight shift or the midnight to noon shift.  However, the science team works 4 a.m. to 4 p.m., or 4 p.m. to 4 a.m. I am in the latter group.  It was easier to get accustomed to than I had imagined, although it is sometimes confusing when you look at your clock and wonder whether it is 5 a.m. or 5 p.m. since the sun is shining for most of the day.  Kodiak has only 4-5 hours of darkness now, and the sun sets at approximately midnight.  Therefore, it does not really feel like nighttime for much of my shift.

View
The view from NOAA Ship Oscar Dyson
Sunset
Views (and sunsets) like these make it easy to work the night shift!

Erica Marlaine: One Fish, Two Fish, June 26, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 26, 2019


Weather Data from the Bridge:

Latitude: 58º 33.15 N
Longitude: 152º 58.87 W
Wind Speed: 17.5 knots
Wind Direction: 229º
Air Temperature:  13º Celsius
Barometric Pressure: 1020.2 mb


Science Log

Today we did our first two trawls of the trip. According to Webster’s dictionary, trawl is defined as the act of fishing with a trawl net, which is a large conical net dragged along the sea bottom in order to gather fish or other marine life. It can also mean the act of sifting through something as part of a search.  Both definitions are accurate for what is done on the NOAA Ship Oscar Dyson.

The Oscar Dyson uses a variety of nets to catch the fish being studied. One net that has been used for many years is called an Aleutian Wing Trawl (or an AWT). The mesh size of the AWT is ½ inch.  Attached to the AWT net are smaller nets (called pocket nets) which also have a ½ inch mesh size.  The new net being used this year is an LFS 1421, which has a 1/8 inch mesh size. It has 9 pocket nets, also with 1/8 inch mesh size. It is thought that fewer fish will escape the LFS net because the mesh size is smaller, in turn allowing the scientists to get a more accurate picture of the fish and other creatures living in the areas they are trawling.  Trawls are being conducted using both nets (back-to-back) to determine the extent to which the new net is more efficient and provides a more accurate measure.

AWT and LFS nets
The older AWT net is on the left. The newer LFS 1421 net is on the right.

Once the nets are pulled in, the processing begins. The main net (i.e., codend) is emptied onto the large processing table in the fish lab.

catch on the processing table
One catch on the processing table.

Each pocket net is emptied into a separate plastic bin.  The fish are then identified, weighed, measured, and sometimes dissected in order for us to accurately determine the age and sex of each fish.

Evan with plastic bin
Volunteer Biologist Evan Reeve with a pocket net bin.

Otoliths (ear bones) and ovaries are collected from a sample of the walleye pollock caught in the codend of the net. Otoliths allow scientists to determine the age of the fish.  Over time, ridges form on the otoliths, and are indicative of age in much the same way a tree’s age can be determined by counting the rings of its trunk. 

Ovaries are collected to be sent back to the lab as part of a long-term histology study which hopes to determine whether walleye pollock experience multi-batch spawning events (i.e., do pollock spawn more than one time) within or between seasons. Histology, also known as microscopic anatomy or microanatomy, uses a microscope to study the anatomy of biological tissues. In contrast, gross anatomy looks at structures without a microscope.

After a trawl, scientists onboard the NOAA Ship Oscar Dyson examine the ovaries with the naked eye to determine the reproductive stage of the walleye pollock that has been caught. There are 5 stages: Immature (not yet capable of spawning, typically age 0-2); Developing (beginning to develop the ability to spawn) Pre-spawning, Spawning, and Spent (completed spawning).  Once a pollock spawns, it begins the cycle again beginning at step 3 (pre-spawning). Additionally, the histology study also hopes to determine whether the spawning stages being designated by scientists during the cruise are in fact accurate.

Elementary Math Fun

Let’s say 200 total fish were caught in the new LFS 1421 net, including the nine pocket nets attached.

Pocket nets 1, 2 and 3 each had 20 age-0 pollock in them.

Pocket nets 4, 5 and 6 each had 13 lantern fish in them.

Pocket net 7 had 3 small herrings  in it.

Pocket nets 8 and 9 each had 2 age-1 pollock in them.

How many fish were in the codend or main part of the net?


Personal Log

As a Southern Californian, I imagined Alaska to be cold even in the summer, and packed sweaters and a big puffy winter coat.  Apparently shorts and t-shirts would have been more appropriate! The weather in Kodiak has been warm and beautiful, with the sun shining until midnight.

Barometer Mountain
Barometer Mountain, Kodiak, Alaska

My first day in Kodiak was a free day, so I joined the science team on a hike up Barometer Mountain, which many say is the most difficult hike in Kodiak.  It is 2100 feet straight up a very steep, rocky, brush-filled path, and then 2100 feet down that same, steep path.  It was quite the challenge, but the view from the top was magnificent.

NOAA Ship Oscar Dyson
My home for the next three weeks!

At present, there are 31 people onboard the NOAA Ship Oscar Dyson, including NOAA corps officers, engineers, deck personnel, cooks, scientists, interns, and me, the NOAA Teacher at Sea. The ship, which was originally launched in 2003, and commissioned into service as a NOAA ship in 2005, is named for Alaskan fisherman and fishing industry leader Oscar E. Dyson. It is one of the most advanced fisheries research vessels in the world, due in part to its acoustic quieting technology.  This allows scientists to monitor fish populations without concern that the ship’s noise will affect the behavior of the fish.

Emily Cilli-Turner: Back on Land, August 13, 2018

NOAA Teacher at Sea

Emily Cilli-Turner

Aboard NOAA Ship Oscar Dyson

July 24 – August 11, 2018

 

Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: August 13, 2018

 

Weather Data for Claremont, CA from National Weather Service:

Latitude:  34.1368º N

Longitude:  117.7076º W

Wind Speed: 12 mph

Wind Direction: SSW

Air Temperature:  29.4º Celsius

Humidity: 36%

Personal Log 

Well, NOAA Ship Oscar Dyson docked in Dutch Harbor on August 11th from the 19-day journey in the Eastern Bering Sea.  During our time at sea, I learned so much and got to know both the NOAA scientists and the crew and officers on the ship.  When I applied for the Teacher at Sea program, I knew that it would be an invaluable experience, but it far exceeded my expectations.  I learned about the work of the NOAA scientists pretty much non-stop and any question I had was answered in detail, which allowed me to have a robust picture of the work the NOAA scientists do, the different types of scientific instruments they use and the underlying principles behind them as well as the day-to-day operations of a scientific vessel such as NOAA Ship Oscar Dyson.  Additionally, I also ate the best food of my life made by the stewards; there was always amazing entrees and dessert at every meal!

NOAA Ship Oscar Dyson

NOAA Ship Oscar Dyson in Dutch Harbor, Alaska

After we came into port, I was able to explore the town of Dutch Harbor as well.  Along with other NOAA Scientists and the ship’s medic, I explored the Museum of the Aleutians in town and learned about the native people of the island and their traditions as well as the military encampments that were built on Unalaska (the island where Dutch Harbor is) during WWII.  The next day we went up Ballyhoo mountain and saw the ruins of one of the WWII bases.  The view from there was amazing and we saw all around Unalaska.  I was surprised in Dutch Harbor to see so many bald eagles everywhere!  The next day I said goodbye to the many people I got to know aboard the Oscar Dyson, many of whom were staying aboard for the next leg or for a long time thereafter.  I was surprised how easily I transitioned to life aboard the boat and it still feels a bit weird to not be moving all the time!

 

Emily Cilli-Turner: Journey’s Coming to an End, August 9, 2018

NOAA Teacher at Sea

Emily Cilli-Turner

Aboard NOAA Ship Oscar Dyson

July 24 – August 11, 2018

 

Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: August 9, 2018

 

Weather Data from the Bridge:

Latitude: 60º28.02 N

Longitude: 175º25.19 W

Wind Speed: 8.77 knots

Wind Direction:  236.54º (SW)

Air Temperature:  8.8º Celsius

Barometric Pressure: 1010.7 mb

Sea Wave Height: 2-3 feet

Visibility: less than 1 nautical mile

 

Science Log

I had a chance to interview the chief scientist aboard NOAA Ship Oscar Dyson, Taina Honkalehto, and ask her about her career path to working at NOAA as well as recommendations she has for anyone interested in an ocean career.

Taina knew that she wanted to pursue a career in science ever since she was a child as she has always been interested in the outdoors and collecting and observing things.  During college, she took an oceanography course as a junior and knew she wanted to work with the ocean.  Her college advisor recommended that if she wanted to pursue science she needed to do a field program.  As a junior, she was able to secure participation at a marine lab in the U.S. Virgin Islands, which inspired her choice to go to graduate school and study invertebrate zoology.

At NOAA, Taina really enjoys her colleagues and the field work, which includes the pollock counting work she is currently doing on NOAA Ship Oscar Dyson.  She feels that her work at NOAA is an opportunity to contribute to the preservation of our planet.  Additionally, she enjoys doing outreach at NOAA and talking to people about her work and answering questions about the ocean.  Often, discussions with the public involve balancing what they have heard about fisheries and overfishing in the news versus the reality and experiences Taina has had in the field counting pollock in the Bering Sea and Gulf of Alaska.

The advice that Taina has for those wanting to work for NOAA is to get an internship.  Students can find internship opportunities through the NOAA website and there are avenues into NOAA experience for students at the middle and high school level as well as college students.  These internships are a great way to get hands-on experience (as I can attest!) and some of them are even paid if students apply for the Hollings scholarship. Taina also recommends reading some of the following books to get an idea about what it is like on a field placement: “The Log from the Sea of Cortez” by John Steinbeck, “Moby Duck” by Donovan Hohn, and “Cod” by Mark Kurlansky.

Taina Honkalehto

Chief Scientist aboard NOAA Ship Oscar Dyson, Taina Honkalehto

 

Personal Log

The wet lab aboard NOAA Ship Oscar Dyson is where most of the action happens during my shift.  When a haul comes in, we are responsible for processing the catch and obtaining the needed measurements so that the MACE team can put together their report on the health of the pollock population.  The catch is released from the trawling net onto a hydraulic table that can be dumped onto a conveyor belt.  The first job to be done is to sort the catch, where all species that are not adult pollock are separated out.

Pollock on belt

Adult pollock from a haul on the sorting belt

The next task is to measure the length of a subsample of about 300 of the adult pollock in the catch.  This helps the NOAA scientists to create histograms of pollock lengths to compare between hauls.  Finally, about 30 pollock are separated to measure length, weight and to determine gender and maturity and another 30 have length and weight measured, otoliths taken, and ovaries weighed and collected if the pollock is a spawning female.  During my shift, there are six of us in the fish lab and we are working like a well-oiled machine!

Today we are starting the long transit back to Dutch Harbor.  It is bittersweet since I feel like we have a nice routine down in the fish lab and I finally feel used to the motions of the ship.  However, I am grateful for this opportunity and for all the great people that I have gotten to know during my time on NOAA Ship Oscar Dyson.  Also, we finally saw some blue sky again and a rainbow even came out for a moment!

rainbow

A small rainbow over the Bering Sea

 

Did You Know?

The NOAA Ship Oscar Dyson was launched on October 17, 2003. It is named after Alaskan fisherman Oscar Dyson and there is a smaller boat on board named after his wife, Peggy Dyson.