Mission: Acoustic Trawl Survey (Leg 3 of 3) Geographic Area of Cruise: Pacific Ocean/ Gulf of Alaska Date: Wednesday, August 9, 2023
Weather Data Lat 58.16 N, Lon 148.97 W Sky condition: Cloudy Wind Speed: 2.88 knots Wind Direction: 301.28° Air Temp: 12.44 °C
Personal Log
School will soon be starting in Anchorage at Bettye Davis East High School. I will not be in school for the first three days because I am having fun on a teacher’s field trip. Good things come to those who apply for it. I applied and got accepted on this cruise before the pandemic, but life and safety concerns made my journey about three years longer. Finally, I am living the dream and out in the Gulf of Alaska surrounded by pure ocean, whales, seabirds and catching lots of fish.
Kayaking in Prince William Sound with Loki the dog. My family commercial fishes for Sockeye Salmon in Main Bay.
My name is Germaine Myerchin Thomas. I was born and raised in Ketchikan Alaska. I am the daughter of a fishermen and a teacher. I, myself, am a teacher, and I commercial fish in Prince William Sound. So far I have spent most of my summer fishing in the Eshamy district about 45 miles outside of Whittier. It has been a cold dark wet summer( the word “summer” is debatable). Recently, I jumped from Set Net fishing for Sockeye (Red) Salmon, in small open skiffs, to the fabulous NOAAS Oscar Dyson.
Just visualize the ice sculptures, swimming pool and yoga studio on the Lido Deck… nope! The NOAAS Oscar Dyson is a research vessel that you can find more about by clicking the link above. Currently there are 24 crew members and 8 scientists. The ship is outfitted to conduct an acoustic trawl survey, but there are other scientific projects going on during this leg of the cruise. It, also has great food and two gyms. The waves rolling under the hull of the boat make the feel of gravity extra strong while trying to do push ups.
Already I have discovered that working out in the ocean requires being very flexible and adaptable. Sometimes the weather or wildlife can delay setting out the trawl net. Last night the boat was surrounded by whales (Fin and Sei), marine birds (Fulmars, Shearwaters and Black footed Albatross) all enjoying the abundant fish that we wanted to catch in our trawl net. Naturally we just let the animals enjoy the abundance while the scientist patiently waited for their turn in another area.
When the cruise ends I will head back to Anchorage and teach high school, chemistry, oceanography, and marine biology. I am really looking forward to meeting my students for the first time. I hope that I might be able to Zoom into my classroom and share what I am doing while I am out here.
Mission: Acoustic Trawl Survey (Leg 3 of 3) Geographic Area of Cruise: Pacific Ocean/ Gulf of Alaska Date: Monday August 7, 2023
Weather Data Lat 58.31 N, Lon 151.58 W Sky condition: cloudy Wind Speed: 12.43 knots Wind Direction: 357.55° Sea Wave height: 1 ft | Swell: 340°, 1-2 ft Air Temp: 12.35 °C
Science log
The purpose of this trip is acoustic trawl sampling for pollock (Gadus chalchogrammus). There are other projects that people are working on during this leg that I will report on in other upcoming blogs.
Today, at about 5:30 pm we deployed a CTD (Conductivity, Temperature and Depth – Probe). This probe measures the salinity using conductivity, the temperature with a digital thermometer, and records the data all at different depths in the water column. This CTD also records fluorescence which is an easy way to determine the amount of plankton present. The plankton at the surface are producers and have chlorophyll, which reacts to fluorescence and can be recorded. This information will be important when we start taking trawl samples, so the ships crew will routinely send out the CTD while we cover our transects.
Watch the videos below of the crew members deploying and recovering the CTD.
Crew members deploying the CTD
Recapturing the CTD
The data from the CTD collection are shown on the picture of the computer screen below:
CTD Data: Fluorescence, or Chlorophyll (green) and Turbidity (orange) v. Depth on the first graph, and Salinity (yellow) and Temperature (blue) v. Depth on the third graph.
The data from the CTD are presented in graphical form. The first frame shows chlorophyll, which is the green line. The second frame is percent oxygen (which they were not measuring so it remains zero). The third frame shows salinity (yellow line) and water temperature (blue line).
Personal log
Currently we are cruising out to our transect destinations over the continental shelf. The seas are a little rough (6-8 foot waves) and I am enjoying some saltine crackers that help with mild sea sickness. It has been a while since I have been in a large boat in rolling seas.
Three days ago, I flew from Anchorage to Kodiak Island on an a sunny afternoon and met the science team for the cruise. The whole team was extremely welcoming, sharing stories of past cruises, colorful characters and the science behind acoustic trawl sampling. Later, they invited me to go surfing the next day at a beach on the far side of the island.
Through the camaraderie of playing in the waves I was introduced to these amazing people and their knowledge and love of the ocean. They are very professional and willing to share what they are studying. They also have a deep concern for the changes occurring in the ocean and honestly hope that their information can be shared and understood in order to mitigate the impact of change. Sitting on my surfboard I quickly learned I was the beginner, and they were the experts. With the experience of time, they would effortlessly snap up and slice through the waves. Smiles and whoops encouraged each other as the sea crashed into the beach.
Surfing off of Kodiak Island. Photo credit: Mathew Phillips
Surfing off of Kodiak Island. Photo credit: Mathew Phillips
Surf photos courtesy of Mathew Phillips
The next day was spent with the science crew getting ready to bring aboard equipment they will be using, accessing and streamlining the information they need for the data collection, and also a little bit more shore time with fishing and hiking. I hiked up a local mountain called Pyramid.
Overall this has been a great start for a wonderful trip. I love to get my students outside experiencing the real world. After a year of taking both Oceanography and Marine Biology my students get to touch, see and smell the ocean through a field trip. They get to see marine birds and mammals, touch and taste icebergs and smell the brine scent of the ocean. They also get a chance to apply the knowledge and skills that they have learned in my class. The NOAA as Teacher at Sea Program is my field trip. I get to see the science and technology in action and share it with my students, friends and family. Thanks so much for letting me play!
Mission: Hydrographic Survey of the Pribilof Islands
Geographic Area of Cruise: Pribilof Islands, Alaska
Date: July 19, 2023 Weather DataLocation: 57°11.82’N, 170°27.52’W
Outside temperature: 13°C
Water temperature: 11°C
True Winds: Direction 242.4°, 13.7 kn
Skies: Overcast and Foggy
Visibility: 2 nm
Sea Wave: 2 ft
Swell Wave: Direction 240°, 4 feet height
Science and Technology Log
We have arrived at the Pribilof Islands after being en route from Kodiak for 3 days. We are currently surveying.
Geology of the Aleutian Islands
The Aleutian islands stretch from North America into the Pacific and contain 40 active volcanoes. This string of islands is where the Pacific Plate sinks under the North American Plate causing some of the largest earthquakes of the last 100 years. NOAA Ship Fairweather often receives alerts about Volcanic Eruptions including information about ash in the water when sailing around the Aleutian Islands.
On July 15th at 10:48 pm, at a depth of 13 miles, a 7.2 magnitude earthquake struck just south of the Aleutian Peninsula, triggering a tsunami watch and then warning. NOAA Ship Fairweather was in the direct vicinity, but did not feel a noticeable shake. Luckily the tsunami watch and warning were canceled shortly after, and the earthquake did not cause significant wave heights. Investigation of observed water levels at the Sand Point, AK tide station showed some variability when compared to the tide predictions.
Observed water levels the night of the earthquake and tsunami warning.
Video showing the Bow of NOAA Ship Fairweather sailing just south of the Aleutian Peninsula
Engineering On Board
The engineering team on NOAA Ship Fairweather consists of 8 engineers. They are in charge of maintaining the engine, all power and water on board. They typically work in 4-8 hour shifts, 24-hours per day, to ensure everything is running smoothly. The ship’s two main engines power shafts that are connected to controllable pitch propellers. To move a boat forward, both the pitch of the propellers and Revolutions Per Minute (RPM) are adjusted. Pitch is the angle of the propeller blades and RPM is how many times the propellers rotate per minute.
The engine room also supplies clean potable water for the entire ship. Through the process of reverse osmosis, sea water is compressed in cylinders and salt is filtered out. The water then goes through multi-stage and UV filters to ensure safe sanitation.
Power is supplied by three generators and one emergency generator. These generators power all electric, navigational and satellite receiver systems.
One of the Engines
Reverse Osmosis Unit, used to make potable water from seawater
TAS Elli Simonen in the Engine Room
Surveying with NOAA Ship Fairweather
We have been surveying at the Pribilof Islands for the last 1-2 days. We are surveying using the ship and the team is on a 24 hour rotation. The survey area is divided up into polygons, or smaller areas, of which we completely cover one at a time. The ship drives back and forth in overlapping lines over the designated polygon. In addition to the MBES data, we gather both backscatter and water column data as well.
Backscatter is a visual representation of the surface of the seafloor. Backscatter provides information about the intensity of the returned echos, from which the “hardness” of the bottom as well as other characteristics can be used to differentiate between different types of seafloor composition. Darker colors represent harder surfaces such as rocks and hard coral and lighter colors represent softer surfaces such as sand and mud. This information is important for ships to know for anchoring purposes, as well as benthic habitat characteristics.
The water column data shows us what is under the ship throughout the water column– from the surface of the water to the seafloor. It detects bubbles, objects protruding from the seafloor, fish, or even a whale or a seal.
Water column Data
Backscatter showing a representation of the seafloor
TAS Elli Simonen with Survey Technician Finnegan Sougioultzoglou
Personal Log
Safety and Routine Checks
Before coming on board, I did not realize all the preemptive safety measures that need to be taken to ensure the health and safety of everyone on board. The staff and crew need to be self-sustaining on all accounts; another person, equipment or supplies cannot be added mid-sail. There are cooks onboard as well as medical staff. There are 3 drills and situations that the entire crew participates in, including myself – Fire, Mariner Overboard and Abandon Ship. You need to know the pattern of alarms for each, as well as where to go and what to do. For example, for Mariner Overboard I go to the fantail of the ship, with others, and point at the person in the water until a small boat can go out and rescue them. Each one of these drills is practiced periodically. Additionally there are two sets of rounds every hour, 24 hours a day – a deck round and engine rounds. Deck rounds check all public spaces for anything abnormal. Engine rounds check the engine room to see if everything is working properly. Every week, refrigerators are checked for correct temperatures and water is checked for potential bacteria.
New Terms/Phrases
I’ve learned several acronyms and initials since I have been on board NOAA Ship Fairweather. Sometimes I feel two consecutive sentences cannot be said without some type of abbreviation. These are some that have become part of my vocabulary:
Mission: Hydrographic Survey of the Pribilof Islands
Geographic Area of Cruise: Pribilof Islands, Alaska
Location (In Port): 57⁰43.8384’N, 152⁰30.8319’W
Date: July 12, 2023
Hi Everyone, my name is Elli and this week, I arrived in Kodiak, Alaska and right now I am aboard NOAA Ship Fairweather. This is my first time in Alaska as well as my first time being on a scientific research ship. I teach high school Mathematics, specifically Algebra 1, Algebra 2 and AP Calculus at Special Music School, a public school located in New York City. I also instruct two classes at the College and Graduate level as an adjunct lecturer at City College and Hunter College. My high school students are musically gifted and many go onto Music Conservatory Education. I am constantly in awe of their talent, grit and perseverance in pursuit of becoming better musicians. My students at the college and graduate levels are all learning how to be educators in the New York City school system. Their sense of purpose, commitment and openness to new ideas is inspiring.
Elli aboard NOAA Ship Fairweather
I am a Math for America (MfA) Master Teacher and first heard of the NOAA Teacher at Sea Program (TAS) in 2019 through MfA – I researched the TAS program, and thought this is something I definitely want to do, and applied. I was accepted in the 2020 cohort, but because of COVID was rolled over to 2023 so here I am, three and a half years later embarking on a hydrographic survey of the Pribilof Islands.
I have been teaching math for 20 years and at various points have had experiences learning about the oceans and marine life. I started my career as a Peace Corps Volunteer and lived in Zanzibar, Tanzania for 2 years. In addition to teaching math, I was able to take students to study the coral reefs that surround the island through the Chumbe Environmental Education Program. They snorkeled, learned about coral and how to preserve and protect this environment. I also like to scuba dive and have completed over 90 dives at various places around the world– learning not only about shoreline habitat at each diving spot I visited, but how different facets of the ocean interact. In 2019, I was awarded a Fund for Teachers Grant where I traveled to Australia, scuba dived and learned first hand about the Great Barrier Reef. And now, I’m still on a journey to learn more about the world’s oceans and marine environments, this time with NOAA in the waters around Alaska.
Elli scuba diving on the Great Barrier Reef, Australia
So, what is a hydrographic survey you might ask? And where are the Pribilof Islands? The Pribilof Islands are four volcanic islands about 300 miles west of mainland Alaska in the south Bering Sea and about 250 miles north of the Aleutian Islands; the two largest islands are Saint Paul and Saint George. A Hydrographic survey uses sonar data to interpret the ocean floor and coastlines which then is used to produce Nautical charts. The Pribilof Islands Hydrographic Survey will map the ocean floor and surrounding coastline to provide updated accurate charts of this area. The Pribilof Islands have not been mapped since the 1950’s.
I will be onboard NOAA Ship Fairweather. The ship embarks in Kodiak, Alaska and disembarks in Dutch Harbor, Unalaska, Alaska. I am very much looking forward to spending time with the Science team on NOAA Ship Fairweather and learning about what everyone does on a NOAA ship. I plan on taking this information back with me to New York City and bringing this real-world research experience into my classroom.
NOAA Ship Fairweather
Did you know?
NOAA has three different types of Scientific research ships: Hydrographic surveys, Fisheries survey and Oceanographic research
Since 1990, the TAS program has sailed more than 850 teachers aboard their ships. Teachers have come from every state and 4 territories. (For any fellow teachers reading this, TAS has cohorts every year and applications are due in the Fall.)
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, to Shumagin Islands area Location (in port, Kodiak Island): 57o 47.0200′ N, 152o 25.5543′ W
Date: June 22, 2023
TAS Laura Guertin and a pollock!
I’m wrapping up my time on NOAA Ship Oscar Dyson. There was so much that went in to getting out to sea for this expedition, and so many people that did so much work pulling for me and coordinating all the logistics before I joined Dyson (starting in 2020!), during my time at sea, and I’m sure after I leave the ship. Thank you to the wonderful people in the NOAA Teacher At Sea Office (Jennifer, Emily, Britta) and for giving me an opportunity to sail as a Teacher At Sea Alumna in 2023.
While waiting to board Oscar Dyson in 2022 during my first trip to Alaska, I prepared several blog posts that provided a background to NOAA, NOAA Fisheries, fisheries surveys, etc. With my undergraduate students in mind as my audience, I wanted to start the posts at the broadest scale and have the content easily utilized in multiple courses that I teach. As I authored these posts from Alaskan hotel rooms in 2022 and in 2023 and not while on the ship, they do not contain personal logs. Again, I thank the Teacher At Sea Program for giving me this flexibility in having one post that captures my personal log from the shortened expedition and keeping the “academic” focus for the prior content.
I’m trained as a geoscientist. During and after my studies in marine geology and geophysics, I’ve had the opportunity to participate in fieldwork in expeditions that have lasted hours to days to weeks to months. Although I think I know what it takes to live/work at sea, I’m reminded of new challenges on new ships in new ocean basins. It is so important as an educator that I take advantage of opportunities to get out to sea for my own professional development and to remind myself of what to share with students and community members when I present the story of what we did during our time at sea. I know I sound like a broken record – I’ve written these same words before. But that doesn’t mean these points are less important!
First topic of reflection – the people
This expedition had 32 people on board, which included the science party, bridge crew, stewards, engineering, deck, electronics technicians, and survey. The people on Oscar Dyson were born/raised and live in parts across the United States. Some people were sailing on a NOAA ship for the first time, and a few people were working for their first time on the ocean! We all have different backgrounds and training and personalities. In a way, I feel like stepping on to Oscar Dyson was like joining a game of Yahtzee – put all of these people together, shake us up (by sending us out to sea), and see what rolls out. Fortunately, during this “game”, everybody was a winner. On this 208.6-foot long ship, everyone has a purpose and function, and we must all work together to accomplish our research goals and the mission of the expedition. And to be successful, this group was supportive, understanding, respectful, took the time to listen, and made sure to laugh and smile through everything we faced.
Departing Kodiak aboard NOAA Ship OscarDyson
Next topic – the work
The schedule is very different than one I keep as an instructor. At home, I know the days/times I’m teaching, and I have a calendar to organize meetings and personal appointments. I’m pretty much in charge and in control of my own schedule. At sea, it’s not “me” but “we” when it comes to all day, each and every day. There are no weekends or holidays off. We work 12-hour shifts (mine was 4AM to 4PM) during the entire expedition. Once you leave your room at the start of your shift, you can’t go back to your room until your shift is over (you are sharing a room with someone that works a different shift than you, so the room is theirs during your work time).
But you are plenty busy during your 12 hours! There can be downtime as the ship transits to a site to begin data collection, and the weather can cause a change of plans for where you are headed and what work you can do. High winds, rainstorms, cold air temperatures, the ship rolling and heaving… we faced it all during our 13 days at sea.
And this work is hard! It is a balance of the physical demands faced by the deck crew setting the trawl net, and those working in the fish lab to furiously and accurately process the catch brought on board, and everyone ensuring that safety is a top priority at all times. The Chief Scientist working in the ship’s acoustics laboratory and all the NOAA Corps Officers working on the bridge must balance the scientific mission with the realities of our present situation – is there too much ship traffic to “go fishing” and set out the trawl net? Are there whales or other marine mammals in the vicinity? Is the wind speed too high for us to operate safely?
Everything on Oscar Dyson operates at a different pace and schedule from back home. Fortunately, we are able to balance out our time in the laboratories with taking short breaks to view beautiful sunrises and do some whale watching. Again, it is the amazing group of people on this ship, from the seasoned sailors to those doing fisheries work for the first time, that come together to mentor and support one another. They all make the work not seem like “work” but instead a really enjoyable and exciting time, knowing our efforts are making a difference for sustainable fisheries.
TAS Laura Guertin in the Gulf of Alaska
Final topic – what comes next
My time on Oscar Dyson has provided me an amazing opportunity and wealth of information about a field where I have had no training. Now that Leg 1 of the 2023 Summer Survey has wrapped up, I’m reminded of a popular saying from one of my graduate school faculty members – “so what?”
“So what?” stands for a family of questions or an attitude that leads to consideration of the broader significance of specific studies. These kinds of questions are particularly useful in descriptive research because, often, one can get so absorbed in collecting, organizing, and analyzing observations one forgets to consider the implications of the results. — Ginsburg (1982), Seeking Answers; suggestions for students
This “so what” piece is something I will spend even more time in the future thinking about. The “so what” of the survey is clear – NOAA does an excellent job explaining what sustainable fisheries are and why it matters (see my previous blog posts). But I still need to do a better job of figuring out how to connect the dots – the endpoints being what we do on the water (and the data we collect) to the production of the annual Status of Stocks and other products NOAA uses to inform the ecosystem management. The Magnuson-Stevens Fishery Conservation and Management Act, the primary law that governs marine fisheries management in federal waters, is also something I want to get up to speed on.
In addition, I need to think about defining the “so what” for the various audiences I will be sharing my at-sea experience. I have more NOAA resources to explore, such as The NOAA Fisheries Distribution Mapping and Analysis Portal (DisMAP) and The Fisheries One Stop Shop (FOSS) Public Data Portal. I will certainly be looking for other resources to pull in to my materials for students and presentations to the public, ranging from the Food and Agriculture Organization of the United Nations (FAO) to episodes of The Fisheries Podcast. I also look forward to exploring more resources on diversity and representation in fisheries science, with articles catching my eye: Women Leaders Are Essential for Tackling Ocean Sustainability Challenges (Fisheries Magazine, 2023) and Examining Diversity Inequities in Fisheries Science: A Call to Action (BioScience, 2016).
So my learning is not done! The sharing of my adventure and new knowledge is only beginning, and I look forward to sharing my pollock survey stories to not only positively impact the ocean literacy of my audiences, but to show how NOAA’s fishery work helps us address the Ocean Decade Challenges (part of the United Nations Decade of Ocean Science for Sustainable Development).
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, to Shumagin Islands area Location (in port, Kodiak Island): 57o 47.0200′ N, 152o 25.5543′ W
Date: June 22, 2023
TAS Laura Guertin shows off her Teacher at Sea beanie aboard NOAA Ship OscarDyson
As we return to Kodiak, Alaska, for Leg 1 to wrap up and Leg 2 to begin of the 2023 Summer Survey, it’s exciting to know that even during our shortened expedition time at sea, we’ve collected data that is going to inform Alaska walleye pollock stock assessment models and catch allocation. Any/all data are good data to have! I have thoroughly enjoyed my time on Oscar Dyson and met some incredibly smart, passionate, kind, creative, and innovative people. The NOAA community is filled with amazing individuals that are not only dedicated to the NOAA science mission but then sharing that new knowledge with others. I’ve played a small part in this NOAA community during the expedition (while wearing my NOAA hat!), but I hope my future teaching and outreach efforts will shine an even brighter spotlight on the essential work carried out by NOAA Fisheries and the agency as a whole.
Prior to joining the ship, this past academic year was filled with some highs and lows in teaching and student learning. There’s one topic that I’m not quite sure how to classify – and that’s the emergence of Chat GPT, and how AI is being used in higher education. I was joking with the Instructional Designer at my campus (Penn State Brandywine) that I was going to write a sea shanty about this expedition. Turns out, he was able to get AI (Bing, specifically) to write one for me! So as I wrap up my time as a Teacher At Sea Alumna, I leave you with these versus to sing to your favorite shanty rhythm.
A Song of Pollock and Trawls
Oh we are the surveyors of the Gulf so vast and wide We sail the seas with acoustic gear to find the pollock hide We use sound waves to scan the depths and mark what we have found We measure their abundance and their biomass by the pound
(Chorus)
Yo ho ho as we sing this song On Leg 2 we’ll bring the DriX along Yo ho ho as we sing this song We love our job and we love our fish We love our job and we love our fish
We work in shifts around the clock to cover all the grounds We set the course and speed and time to trawl a certain length We haul the net and sort the catch and check their age and health We record all the data and we share it with the world
(Chorus)
We do this work for science and for management as well We help to keep the fishery sustainable and well We study the pollock’s life history, ecology, and stock We are proud to be part of this crew and this important work
(Chorus)
Oh we are the surveyors of the Gulf so vast and wide We sail the seas with acoustic gear to find the pollock hide We love our job and we love our fish We love our job and we love our fish
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, to Shumagin Islands area Location (10:45AM (Alaska Time), June 21): 55o 29.7525′ N, 156o 44.7276′ W
Data from 10:45AM (Alaska Time), June 21, 2023 Air Temperature: 8.4 oC Water Temperature (mid-hull): 8.2oC Wind Speed: 8 knots Wind Direction: 20 degrees Course Over Ground (COG): 76 degrees Speed Over Ground (SOG): 11 knots
Date: June 21, 2023
Once the echo sounder has shown us the position of an aggregation of Alaska walleye pollock (we hope they are pollock and not some other fish species), we lower the trawl net and see what we can catch. This is where the trawl sonar and CamTrawl (see previous blog post) come in handy to give us an idea of what is going into the net. It’s an amazing coordination of effort between the acoustics lab (who decides where to trawl), the bridge for navigation, and the deck crew for setting/retrieving the haul.
We aim for trawling at the mid-water level, where the pollock are typically found. Pacific Ocean perch (POP, or rockfish) can also be found in the mid-water level in the Gulf of Alaska, especially just off the shelf break. Bottom trawls can yield pollock and other fish (e.g., POP and other rockfish species, various species of flatfish).
Once the trawl net has been brought back on board, the catch is emptied into a bin called a table. There is a door on the side of the table that opens into the fish lab. Once the table door opens, the fish spill into the laboratory where they travel down a conveyor belt for the initial sorting. Our target species is the pollock. We weigh everything that ends up onto the sorting table, either in bulk (by species) or individually.
Pollock moving along the sorting belt
Pile of Pacific Ocean perch (rockfish) after being hauled on the ship
Small squid that fell out of the trawl net on deck.
A subset of around 250 pollock are set aside to collect length data. The length of these of each individual pollock are measured on an Ichthystick. This is another invention by Rick Towler and Kresimir Williams (remember the CamTrawl? (see previous blog post)). As described in their article An inexpensive millimeter-accuracy electronic length measuring board, these NOAA scientists describe using magnetic measuring technology that, to millimeter resolution, takes a measurement when you placed a magnet on a sensor that runs the length of the board. For our pollock measurements, we were looking to record the fork length, and a quick placement of the red magnet along the fish tail sends the data to a computer program called CLAMS (Catch Logger for Acoustic Midwater Surveys).
Bins of pollock waiting to be measured on the Ichthystick
Ichthystick logo with a pollock sketch
Computer end of Ichthystick, which digitally shows the value of fish length and is written to CLAMS
Sketch showing what is measured for the fork length of a fish. From Corvallis Forestry Research Community.
Pollock lying on Ichthystick getting its fork length being measured
Two scientists measuring pollock fork length on Ichthystick
Another subset of approximately 50 pollock are set aside for additional data collection on individual specimens – length, weight, sex, maturity, and age. Otoliths (e.g., ear bones) are removed, and sometimes organs are removed and measured (ovaries for maturity development analyses, liver).
Otolith pairs (two per individual fish) from an assortment of Bering Sea fish species. Walleye pollock is located in the top left. Note: otolith sizes are not on a relative scale. Photo: NOAA Fisheries.
What are otoliths, and why remove them? Otoliths are ear stones, or ear bones, found in fish. To give you an idea of why we remove ear bones, let’s start by thinking about trees and corals… trees grow a new ring on their structure each year, and corals have differences in their skeletal density between the seasons (both trees and corals are also used to reconstruct past climate conditions (proxy data for paleoclimatology)). By counting the rings on trees and coral, we can calculate the age of that specimen. It turns out that fish also have a way to record their annual growth – and it occurs in their ear through Fish Otolith Chronologies.
Scientists are very interested in studying otoliths. When otolith data are combined with data on fish size, scientists are able to determine the growth rates of fish, which then combined with the survey work, helps inform annual fish stock assessment reports. We don’t do any of the otolith analyses on the ship, but we do collect the samples with a detailed label and all the corresponding data (fish length, sex, weight, location) that is sent back to the NOAA Fisheries Alaska Fisheries Science Center for analyses and entered into their Fish Otolith Collection Database.
Rockfish otoliths
Zoom of rockfish otoliths
Otoliths still inside a pollock
Placing an otolith cleaned in freshwater into a vial for storage and shipment for analysis
Did you know… More than 30,000 otoliths are read annually by NOAA Fisheries Alaska Fisheries Science Center scientists. So far, the Science Center has collected more than 1.1 million fish otoliths for ageing. (from NOAA Fisheries)
To learn more about the fascinating studies of otoliths and what NOAA Fisheries is doing, check out these websites:
NOAA Fisheries Age and Growth – NOAA Fisheries scientists assess the age and growth rates of fish species and populations to better monitor, assess, and manage stocks. There is also a separate site for Age and Growth Research in Alaska.
NOAA Fisheries Near-Infrared Technology Identifies Fish Species From Otoliths – NOAA Fisheries scientists are developing ways to use near-infrared spectroscopy (NIRS) analysis of otoliths (fish ear stones) to provide accurate information for sustainable fisheries management faster.
If you are really curious to explore some fish otolith data, check out the Alaska Age And Growth Data Map, an interactive map displays collected specimen information from recent age and growth studies from Alaska Fisheries Science Center.
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, to Shumagin Islands area Location (2PM (Alaska Time), June 19): 55o 30.9384′ N, 159o 47.6478′ W
Data from 2PM (Alaska Time), June 19, 2023 Air Temperature: 8.2 oC Water Temperature (mid-hull): 6.8oC Wind Speed: 18 knots Wind Direction: 62 degrees Course Over Ground (COG): 30 degrees Speed Over Ground (SOG): 11 knots
Date: June 20, 2023
To conduct a fisheries survey or any oceanographic research expedition, there’s an enormous checklist of items you need on a ship. Jokingly, those on board will tell you that food and internet access are at the top of the list. But there’s no doubt that technology and its function, application, durability, etc., are critical during the time at sea. For example, see NOAA’s explainers for Ocean Exploration Technology: How Robots Are Uncovering the Mysteries of the Deep and Collecting and Visualizing Deep-Sea Data. For a broader look at the technologies NOAA uses to explore the ocean (vessels and submersibles, observing systems and sensors, communication technologies, and diving technologies), see Exploration Tools.
Leg 2 of this Summer Survey will be bringing on board the DriX, an uncrewed surface vehicle (USV), to see if this technology can improve the efficiency of collecting acoustic and biological data to estimate pollock abundance when working alongside Oscar Dyson. To read more/see a video, check out NOAA’s article, Uncrewed Surface Vehicles Complement NOAA Vessels for More Efficient Fisheries Surveys.
Trawl Sonar
The Simrad FS70 on the back deck of Oscar Dyson (June 2023)
Trawl sonar units are used to provide a rough estimate of how many fish are going into the trawl net. The device (which we’ve been using on our expedition, a Simrad FS70 nicknamed “the turtle”) is a third wire system that in real time establishes communication between the submerged sonar head and the bridge. On this cruise, the trawl sonar unit is placed on the headrope of the trawl net (i.e., on the top of the mouth of the net). It communicates its depth back to the ship. It also scans the mouth of the net and relays any acoustic images of things going into the net back to the ship. These data allow the scientists and crew to adjust the depth of the net and length of time the trawl net remains in the water to collect samples. Our goal is to collect enough fish (approximately one ton) to have a representative sample of the various species and lengths of fishes in the water column.
Screenshot of the display returned by the FS70 during a trawl. The pink/yellow/blue line in the left column is where you see the bottom of the net. This is also represented in the middle column by the multi-colored horizontal line you see in the third circle from the center. (Screenshot from Leg 1 provided by Rick Towler).
One fascinating piece of technology we’re using on this pollock survey is the CamTrawl. This article I found will give you everything you would want to know about CamTrawl in a non-technical summary:
Introduced in 2012, the CamTrawl is a stereo camera system when attached to a trawl net, can provide data about fish without ever touching a fish. This 3D imagery records fish passing by the camera towards the codend (the closed end of the trawl net), which provides species and size composition data as well as how fish behave in the trawl net to be collected from within a midwater survey trawl. CamTrawl is used to verify the trawl catch and specimen data, and in some cases, can be used to determine where in the water column the species entered the net. These data help inform ecosystem-based fisheries management.
The CamTrawl on Oscar Dyson for 2023 Summer Survey. The orange balls are flotation devices, the two “eyes” in the middle are the stereo camera and computer system, with the battery power across/under the eyes. The four round devices in the corner are lights used during the image recording.
Top-down view of the CamTrawl. The front of the camera set-up is the wider side of the trapezoidal frame (top of image) which is then attached to the trawl net.
Figure 1 from Williams et al. (2016). CamTrawl system description.
CamTrawl attached to trawl net about to be set off the back of Oscar Dyson.
The CamTrawl has uses and applications beyond our walleye pollock survey. It can go to depths of the ocean where it is not possible to lower a trawl net and capture data on other fish species like the bottom-dwelling rockfish. CamTrawl can explore and map deep-sea corals, and there is potential for collaborative research with the fishing industry.
Some CamTrawl footage from Leg 1 of 2023 Summer Survey.
The CamTrawl was developed by NOAA scientists Kresimir Williams and Rick Towler (both of whom I’m sailing with on Oscar Dyson for Leg 1). I feel incredibly fortunate to have sailed with these two scientists and to hear how NOAA encourages their researchers to be creative and experiment with developing technologies to advance NOAA’s overall mission and expedition objectives.
CamTrawl being detached from a trawl net after a mid-water trawl (June 16, 2023, on Oscar Dyson)
Curious to see more? Check out this Salmon shark caught on CamTrawl underwater camera.Below is a picture of a salmon shark from the Shumagin Islands, Alaska area in February 2017 (photo provided by Sarah Stienessen).
Boldt et al. (2018). Development of stereo camera methodologies to improve pelagic fish biomass estimates and inform ecosystem management in marine waters. Fisheries Research, 198. https://doi.org/10.1016/j.fishres.2017.10.013
Williams et al. (2018). A method for computing volumetric fish density using stereo cameras. Journal of Experimental Marine Biology and Ecology, 508. https://doi.org/10.1016/j.jembe.2018.08.001
Williams et al. (2016). Automated measurements of fish within a trawl using stereo images from a Camera-Trawl device (CamTrawl). Methods in Oceanography, 17. https://doi.org/10.1016/j.mio.2016.09.008
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, to Shumagin Islands area Location (2PM (Alaska Time), June 18): 55o 15.3391′ N, 160o 17.8682′ W
Data from 2PM (Alaska Time), June 18, 2023 Air Temperature: 8.9 oC Water Temperature (mid-hull): 7.7oC Wind Speed: 4 knots Wind Direction: 182 degrees Course Over Ground (COG): 356 degrees Speed Over Ground (SOG): 12 knots
Date: June 19, 2023
Acoustic fisheries surveys seek to estimate the abundance and distribution of fish in a particular area of the ocean. In my case, this Summer Survey is looking at walleye pollock in the Gulf of Alaska. How is this accomplished? Well, it’s not through this method:
The Alaska walleye pollock is widely distributed in the North Pacific Ocean with the largest concentrations in the eastern Bering Sea. For this expedition, Oscar Dyson is traveling to specific regions in the Gulf of Alaska and running transects perpendicular to the bathymetry/contours (which are not always perpendicular to the shore) to take measurements using acoustics and targeted trawling to determine the abundance and distribution of walleye pollock which informs stock assessment and management models. For this blog post, let’s focus on how and why we can use acoustics to locate fish.
Walleye pollock (Gadus chalcogrammus) are distributed broadly in the North Pacific Ocean and eastern and western Bering Sea. In the Gulf of Alaska, pollock are considered as a single stock separate from those in the Bering Sea and Aleutian Islands. Image from Alaska Department of Fish and Game.An snapshot of a nautical chart with transects plotted. The first transect was run during Leg 1 on June 14 at the furthest location to the west, then the ship worked its way back east with approximately 40 nautical miles between transects. Once Oscar Dyson reached the Shumagin Islands, survey work shifted into this area..
Our story starts with the fish itself. Alaska walleye pollock have a swim bladder. The swim bladder is an internal organ filled with gas that allows a fish to maintain its buoyancy and stability at depth.
One interesting effect of the swim bladder is that it also functions as a resonating chamber that can produce and receive sound through sonar technology. This connection was first discovered in the 1970s, when low-frequency sound waves in the ocean come in contact with swim bladders and they resonated much like a tuning fork and return a strong echo (see WHOI’s Listening for Telltale Echoes from Fish).
Internal anatomy of a boney fish. From Wikipedia (CC BY-SA 3.0).
The sound pulses travel down into the water column, illustrated by the white cones here, and bounce back when encountering resistance.(from NOAA Fisheries)
NOAA Fisheries uses echo sounding, which works by emitting vertical pulses of sound (often referred to as pings), and measuring the return strength and recording the time for the signal to leave and then return. Anything having a different density from the surrounding water (in our case – fish, plankton, air bubbles, the seafloor) can return a signal, or “echo”.
The strength or loudness of the echo is affected by how strongly different ocean elements reflect sound and how far away the source of the element is. The seafloor usually makes the strongest echo because it is composed of rock which has a density different than the density of water. In fish, the swim bladder provides a contrast from the water. In addition, each fish species has a unique target strength or amount of sound reflected to the receiver. The size and shape of the swim bladder influence the target strength. There is a different target strength to length relationship for each species of fish – the larger the fish, the greater the strength of the returning echo.
It’s important to note that echo sounders cannot identify fish species, directly or indirectly. The only way we know which fish species is causing a signal is based on trawl catch composition. There is nothing within the acoustic data that lets us identify fish species, even with the catch data. This is a subtle, but important, distinction. Acoustic data, particularly calibrated acoustic data, in tandem with the information from the trawl, definitely allows us to count fish.
Where is the echo sounder on Oscar Dyson? Look at the figure in the next section of this post – it’s a sketch of NOAA Ship Rainier, but the placement of the echo sounder is the same for Dyson. You can see a rectangular “board” that is extended down from the center of the ship. This is called – what else – the center board! Attached to the bottom of the center board are the echo sounders. When lowered, the echo sounders sit at 9 meters below the level of the sea (~4 meters below the bottom hull of the ship).
Did you know… Southern Resident killer whales use their own echolocation clicks to recognize the size and orientation of a Chinook’s swim bladder? Researchers report that the echo structure of the swim bladders from similar length but different species of salmon were different and probably recognizable by foraging killer whales. (reported in Au et al., 2010)
It starts with a calibration
Typical setup of the standard target and weight beneath the echo sounder.(from NOAA Fisheries)
Before we can begin collecting data, we need to calibrate the echo sounder. The calibration involves a standard target (a tungsten carbide sphere) with a known target strength. The calibration needs to be completed in waters that are calm and without significant marine life for the best results.
The sphere is suspended below the ship’s hull using monofilament lines fed through downriggers attached to ship railings. One downrigger is in line with the echo sounder on the starboard side, and the other two on the port side. This creates a triangle that suspends the sphere in the center of the echo sounder’s sound beam. By tightening and loosening the lines, the sphere can be positioned under the center of the sound beam and can also be moved throughout the beam. By doing an equipment calibration at the beginning and end of a survey, we can ensure the accuracy of our data.
One of the port side downriggers
A weight that goes at the bottom of the filament to ensure the calibration sphere remains below the echo sounder
The tungsten carbide sphere attached to the line, being lowered over the side
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, Western Gulf of Alaska Location (2PM (Alaska Time), June 15): 53o 38.9534′ N, 166o 10.9927′ W
Data from 2PM (Alaska Time), June 15, 2023 Air Temperature: 8.74 oC Water Temperature (mid-hull): 6.2oC Wind Speed: 3.55 knots Wind Direction: 310.61 degrees Course Over Ground (COG): 64.09 degrees Speed Over Ground (SOG): 11.61 knots
And now, it’s time for some science and surveying! Before I dive into the specifics of the methods we are carrying out on Oscar Dyson, I’m sharing this incredibly helpful NOAA Fisheries page that summarizes their Research Surveys, where “Our scientists and partners collect data on the water, from aircrafts, and from shore to understand the abundance, distribution, and health of marine life and habitats. That data forms the scientific foundation for our management and conservation work.”
There is also an informative podcast episode, Learn About NOAA Fisheries Surveys (transcript available at link). This podcast covers the need for sustainable fisheries, the 2013-2016 North Pacific Blob, how surveys were done historically, how surveys are using new technology, the impact of the pandemic, and the concept of being in a “stationary” versus “non-stationary” world. Such a fascinating listen!
First episode of “Dive In with NOAA Fisheries,” titled Learn About NOAA Fisheries Surveys
There is another podcast episode from the same series that is an excellent follow-on from the episode available above. Surveying Alaska’s Waters (transcript available at link) shares how surveys are a tools that allow NOAA to reach its mission, whether those measurement techniques come from satellites, autonomous vehicles, buoys, ships, drones, etc. Although these tools assist NOAA scientists in collecting data, climate change is playing an even bigger role in making ecosystem management a moving target. Again – worth a listen!
Third episode of “Dive In with NOAA Fisheries,” titled Surveying Alaska’s Waters
Surveys in the Gulf of Alaska
Trawl surveys have been conducted by Alaska Fisheries Science Center (AFSC) beginning in 1984 to assess the abundance of groundfish in the Gulf of Alaska (2021 Stock Assessment Report, p. 9). Starting in 2001, the survey frequency was increased from once every three years to once every two years on odd-numbered years. This is a flyer that describes the biennial bottom trawl survey in the Gulf of Alaska 2023.
The strategy of combining trawl and acoustic surveys was developed by AFSC and the University of Washington. They published a paper in the Canadian Journal of Fisheries and Aquatic Sciences (Kotwicki et al., 2018) that discusses the need to perform acoustic-trawl (AT) and bottom-trawl (BT) surveys to accurately estimate the abundance of fish populations along with their spatial distribution. I’ve provided below part of a news release from the University of Washington describing the content of the publication:
Many species of fish spend some of the time on the ocean bottom, and some of their time far off the bottom, which makes them hard to survey. Acoustic surveys (that bounce sound off fish schools), can estimate the midwater component of so-called “semipelagic” fish, while trawl surveys can measure the portion on the bottom. Now a new method has been developed that combines data from both types of surveys into a single estimate using information about the environment (bottom light, temperature, sand type, and fish size). The new method has been used to assess the status of walleye pollock, which sustains the largest fishery in the United States.
This image from Kotwicki et al., 2018, does an excellent job of showing the two types of survey methods, acoustic and bottom trawling.
Fig. 1. Illustration of conceptual model of walleye pollock sampling by an echo sounder and a bottom trawl. Note that acoustic data are collected directly under the survey vessel, while the bottom trawl catches walleye pollock some distance behind the vessel. Diving occurs in the time between the vessel passing over the school of walleye pollock and the trawl catching the same school. Source: Kotwicki et al. 2018.
What is different for my current expedition is that we are not doing any bottom trawling. We are doing the acoustic piece of the survey and trawling off the bottom. Separate surveys and ships are collecting the bottom data, and then will be combined with our data to provide a more accurate snapshot for the water column for the annual Stock Assessment Report for Walleye Pollock. AT and BT surveys get NOAA to their research objective: informing fish stock assessment models and catch allocation. NOAA publishes an annual 100+page Assessment of the Walleye Pollock Stock in the Gulf of Alaska from the surveys conducted each year (see reports from 2019, 2020, 2021).
To prepare to sail on Leg 1 of the Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska, I did a lot of reading and preparation so I could better understand what I would be learning, and how I could then connect the material with my students and additional audiences I see post-expedition. These two books in the image below helped give me a much better picture of not only walleye pollock but the fisheries industry, policy, and practices over time and space.
Each of these books provides some fascinating insight into the history, thought, and even debates, about the nature of ocean resources.
The title of Chapter 4 in Kurlansky’s book gives a hint for how to respond to my questions: “Being The Myth of Nature’s Bounty And How Scientists Got It Wrong For Many Years.” Early in the chapter, Kurlansky states:
“In the 1800s, when the study of fish and oceans was a relatively new science, it was the fishermen who were afraid that fish populations could be destroyed by catching too many fish, especially small fish. Scientists at the time believed that it was impossible to catch too many fish because fish produced so many eggs.” — World Without Fish, p. 53
One of the causes of concern for fishermen was the new technology developing – specifically, engine power, that allowed for even more fish to be caught.
“I believe that it may be affirmed with confidence that, in relation to our present modes of fishing, a number of the most important sea fisheries… are inexhaustible… and probably all the great sea-fisheries, are inexhaustible; that is to say that nothing we do seriously affects the number of fish. And any attempt to regulate these fisheries seems consequently… to be useless.” (*feel free to dive into Huxley’s speech to see his reasoning – the multitudes of fish available, and the destruction is minimal)
Then Lankester gave the final summary speech of the Exhibition – a rebuttal to Huxley. Lankester made the point that the fish in the sea are not unlimited, and captured fish are not readily replaced by others that exist further offshore from the fishing location. He raised the concern that the removal of the parents by fishing was going to impact the production of the young.
Although at the time many gave Huxley the victory in this debate, Huxley did not take into account the new development that I mentioned above – the modern trawl and the steam trawler to pull it, resulting in larger nets and catches. It’s interesting to note that eventually, Huxley studied the impact from engine-driven net draggers and changed his story. Huxley eventually agreed that overfishing was not only possible, but that it was happening.
Now to circle back to why we survey fisheries… it ultimately comes down to ecosystem management. As described in the two audio files at the top of this blog post and in my other posts, as well as the title to Chapter 8 in Kurlansky’s book, “The Best Solution To Overfishing: Sustainable Fishing.” And to engage in sustainable fishing, you need the data to make that happen – hence, fisheries surveys!
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, Western Gulf of Alaska Location (2PM (Alaska Time), June 14): 52o 30.9860′ N, 169o 08.0942′ W
Data from 2PM (Alaska Time), June 14, 2023 Air Temperature: 8.11 oC Water Temperature (mid-hull): 8.0oC Wind Speed: 8.27 knots Wind Direction: 243.96 degrees Course Over Ground (COG): 239.25 degrees Speed Over Ground (SOG): 13.05 knots
Date: June 15, 2023
I’m trained as a geologist and oceanographer. My teaching and research has focused on the physical sciences, which is why I’m so excited to have the opportunity to work with scientists in the life sciences. But before I start with the acoustic-trawl survey of walleye pollock, I had to do my homework – namely, learn something about this fish!
There is a wealth of resources on NOAA’s website that are providing me the introductory overview or “101” on pollock and the overall mission of maintaining sustainable fisheries. I started by viewing this NOAA video on Alaska’s Pollock Fishery: A Model of Sustainability.
This video shared so much but also generated so many more questions! I decided to take a step back and do a deeper dive into some of these topics, starting with the fish…
Alaska (walleye) pollock
Alaska pollock (Gadus chalcogrammus) on the sorting table, from NOAA Photo Library
NOAA Fisheries is doing an incredible volume of work in the Alaska region – including a focus on the Alaska pollock.
A member of the cod family, Alaska pollock (Gadus chalcogrammus) is also referred to as pollock, walleye pollock, and Pacific pollock. The NOAA Fisheries Species Directory for Alaska pollock states that Alaska pollock typically grow between 12 and 20 inches and weigh between 1 to 3 pounds. Their speckled coloring allows them to blend in with the seafloor to avoid predators such as Stellar sea lions, fish, seabirds – even older pollock will feed on juvenile pollock! Humans feed on pollock in products from fillets to fish sticks to surimi.
Alaska pollock are found throughout the North Pacific Ocean but are most common in the Bering Sea. Pollock migrate inshore to shallow water to breed and feed in the spring, then move back to warmer, deeper waters in the winter.
The word “fishery” is used in many ways. It can refer to the occupation, industry, or season for catching fish. It can also refer to the area of ocean where fish are caught, or the business of catching the fish. U.S. fisheries include commercial (catching/marketing fish and shellfish for profit), recreational (fishing for sport/pleasure), and subsistence (fishing for personal/family/community consumption or sharing.
Next, what is meant by sustainable fisheries? NOAA defines this in the following video and in the quote below:
“U.S. fisheries are big business, providing jobs and recreation and keeping our coastal communities vibrant. In fact, the United States is a global leader in responsibly managed fisheries and sustainable seafood. Working closely with commercial, recreational, and small-scale tribal fishermen, we have rebuilt numerous fish stocks and managed to create some of the most sustainably managed fisheries in the world. U.S. fisheries are scientifically monitored, regionally managed, and legally enforced under 10 national standards of sustainability. Managing sustainable fisheries is a dynamic process that requires constant and routine attention to new scientific information that can guide management actions.” — from NOAA Fisheries – Sustainable Fisheries
NOAA’s FishWatch website is a great place to find the most up-to-date information on popular seafood harvested or farmed in the United States. This helps each of us as consumers to make smart choices! Check out the page for the Alaska pollock to see the details available for this fish, currently classified as a smart seafood choice because it is “sustainably managed and responsibly harvested under U.S. regulations.” This is so important to note, as according to FishWatch, the Alaska pollock fishery is one of the most valuable in the world, with commercial landings of Alaska pollock from the Bering Sea and Gulf of Alaska in 2020 totaling more than 3.23 billion pounds and were valued at approximately $420 million.
Alaska pollock library of articles
Several articles on NOAA’s website were helpful in not only providing me more background information to prepare for my time on Oscar Dyson, but the content really showed me the context of what NOAA is doing for fisheries research/management and why it matters. My students probably recognize this as a list of articles I would give them to develop their current event literacy, as these are recent dates of publication and from a credible source (NOAA, of course!) – and of course, contribute to advancing their ocean literacy.
If you wish to learn more about the current state of Alaska pollock research with NOAA, I highly recommend these recent articles from NOAA Fisheries News & Announcements:
For podcast fans, this 2013 NOAA Fisheries podcast episode titled Keeping an Eye on Pollock is an excellent overview of how “scientists and fishermen work together to understand how walleye pollock respond to a changing environment” (transcript available online).
NOAA Fisheries podcast, Keeping an Eye on Pollock
In reviewing these articles and the podcast, it is clear that NOAA is focused on advancing the technology to survey Alaska pollock with new tools such as saildrones. There is also an interest in closely monitoring the impact climate change is having on the juvenile and adult populations of pollock (see the NOAA Fisheries site on Climate Change). This video, released January 2022, is a great snapshot of how NOAA Fisheries is preparing and responding to the impacts of climate change (link to web page that supports the video).
OK, I’m feeling good about my background on the “what” and “why” of Alaska pollock, and I hope you are, too! Next, it’s time to share the activities of the science team that is applying science knowledge and technology tools to studying pollock on Oscar Dyson!
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, Western Gulf of Alaska Location (2PM (Alaska Time), June 13): 54o 19.3929′ N, 161o 35.5129′ W
Data from 2PM (Alaska Time), June 13, 2023 Air Temperature: 7.2 oC Water Temperature (mid-hull): 6.5oC Wind Speed: 9.25 knots Wind Direction: 144.73 degrees Course Over Ground (COG): 254.48 degrees Speed Over Ground (SOG): 11.34 knots
Date: June 14, 2023
As a trained scientist and educator who is passionate about communicating science, I’m always thinking of different ways we can tell stories and share our data with non-scientists and students. I have been crocheting temperature data since 2017 and sharing my temperature scarves that record daily maximum temperature values for a location. In 2018, I began a journey of quilting science stories (see my blog post on the Teacher At Sea Alumni Association (TASAA) blog, Sharing Stories of the Louisiana Coast Through Quilts). While I’m on Oscar Dyson, I’m going to be creating another type of story/data visualization, based upon the observations I make looking up at the sky – and I hope you will join me!
A full description of my Stitch the Sky At Sea project is available on the TASAA blog. But note that you can do any variation, use any colors, select any style of stitching… the project is yours to create! I started the project with my visual observations back home (Philadelphia, PA) on June 1, before I flew to Alaska. This is the color scale I’m using and selecting which yarn matches what I’m seeing in the sky. It has been overcast my entire time in Kodiak (AK) so far – you can see the jump in color!
Photos: Announcing the Stitch The Sky At Sea Project (top left); Photos of blue skies at my home (Philadelphia) and where I had a one-night layover during travel (Seattle) with rows stitched onto the beginning edge (top middle); Photo of what the sky has looked like every day I was in Kodiak before sailing – completely clouded over (top right); The five colors of yarn I’m using for the five shades of the sky I’m observing the same time each day (bottom center).The yarn is from The Tempestry Project and in the colors of Aurora (top left), Downpour (top right), Cumulus (middle), Nimbus (lower left), Nebula (lower right).
This table will include my recorded observations. Again, you can stitch what I’m seeing, stitch what you are seeing in your location on the same date – or stitch both data for comparison! I’ll continue stitching through the end of the month to see what I can learn from my observations between these locations.
I’m excited to be able to wear so many hats while at sea – scientist, educator, communicator, and crafter! If you decide to stitch along, please share your work!
Completed stitching, as of June 13. The top two rows are in a non-project color to mark the beginning. Each row is a double-crochet in the color I’m observing as I look to the sky each day at approximately the same time (~10:30AM Alaska Time).
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska Geographic Area of Cruise: Islands of Four Mountains area, Western Gulf of Alaska Location (in transit, location recorded on June 12 at 2PM (Alaska Time)): 56o 45.1227′ N, 155o 38.3353′ W
Data from 2PM (Alaska Time), June 12, 2023 Air Temperature: 7.72 oC Water Temperature (mid-hull): 6.8oC Wind Speed: 18.71 knots Wind Direction: 201.27 degrees Course Over Ground (COG): 207.53 degrees Speed Over Ground (SOG): 11.46 knots
Date: June 13, 2023
NOAA Ship Oscar Dyson as it docked in Kodiak, Alaska, on February 6, 2022
The journey of NOAA Ship Oscar Dyson begins as we are underway from Kodiak Island and head out along the Aleutian Islands.
Every NOAA ship has a name – but who is behind the name? I dedicate this blog post to Oscar Dyson (both Oscar Dysons, actually!)
Launched in 2003 and commissioned in 2005, the ship is named after Alaskan fisherman Oscar Dyson, a pioneer in Alaska’s fishing industry for half a century before his death in 1995. A well-known fishing activist and an industry advisor to government, Dyson was dedicated to improving the industry for the many Alaskans who make their living at sea. The ship is homeported in Kodiak, Alaska.
Peggy Dyson, wife of Oscar, christened the ship at its launch on October 17, 2003, in the VT Halter Marine shipyard in Moss Point, Mississippi. The first commanding officer was Commander Frank Wood.
Oscar Dyson (and Peggy!)
Oscar Dyson made an impact in Kodiak and across Alaska. I found a transcript of a Congressional Record read in 1995 less than two weeks after his passing with a detailed biography. There is a scholarship named for Oscar and his wife Peggy managed by the University of Alaska Fairbanks with a description I found online in 2022 that reads:
Oscar Dyson was a dedicated fisherman who turned his hobby into a business and his life’s work for 50 years. A Kodiak resident, Oscar had ample opportunity to partake in Alaska’s expansive fishing opportunities, but he also pioneered the crab fishing industry in Alaska. Oscar co-founded All Alaskan Seafoods (one of the largest seafood processing companies in the state) and built military bases during World War II …. The Oscar Dyson Memorial Scholarship was created in his honor and funded by numerous fishing and seafood companies within Alaska — a fitting homage to a man who did so much to develop Alaska’s marine economy. Oscar thought of himself — first, last and always — as a fisherman.
There is a dock in Kodiak named after Oscar Dyson with a marker to note his contributions and achievements (*photos taken by me as I spent some time exploring Kodiak in 2022)
Entrance sign for Oscar’s Dock
View of the dock
Memorial plaque for Oscar Dyson
View beyond Oscar’s Dock
And I’d like to give a shout-out to his wife Peggy, who made significant contributions of her own to the fishing community. Between 1965 and 2000, Peggy Dyson broadcast the marine weather from her house in Kodiak, twice a day over single sideband radio. She also reported sports scores and election results! The Kodiak Maritime Museum has a wonderful description of Peggy, including an audio clip of her voice, on their webpage, Peggy Dyson, Voice of the North Pacific. And NOAA Ship Oscar Dyson has a launch named Peggy D!
The launch Peggy D on NOAA Ship Oscar Dyson
NOAA Ship Oscar Dyson
The NOAA Oscar Dyson pulled into the Port yesterday. Homeported in Kodiak, Alaska, Oscar Dyson is the first in a class of ultra-quiet fisheries survey vessels built to collect data on fish populations, conduct marine mammal and seabird surveys, and study marine ecosystems. pic.twitter.com/zZ2gGzuYvd
NOAA Ship Oscar Dyson plays a major role in collecting data used in the management of Alaska pollock, one of the world’s largest commercial fisheries. At 208-feet in length with a cruising speed of 12 knots and an endurance of 40 days at sea, Oscar Dyson can support 24 crew and 15 scientists (*see additional Specifications). The six onboard laboratory spaces include: a wet lab, dry lab, electronics/computer lab, bio lab, acoustics lab and hydrographics lab. Oscar Dyson sails primarily in the Gulf of Alaska and Bering Sea.
I look forward to sharing more information about the ship and stories from my time at sea. But I don’t want to repeat the incredible work done by educators that sailed before me. Here are some excellent recent blog posts by other educators that have sailed on Oscar Dyson that describes everything from the facilities to the work involved on a fisheries survey:
View of NOAA Ship Oscar Dyson just as she docked in Kodiak, Alaska, on February 6, 2022
Old Ships, New Ships
The first NOAA ship I sailed on, Thomas Jefferson, started its life as US Naval Ship Littlehales. From January 1992 to January 2003, Littlehales recorded 85,018 hydrographic survey miles along the coast of Africa and in the Red Sea and Mediterranean Sea. Littlehales ended its time with the Navy and then renamed Thomas Jefferson and officially entered the NOAA fleet on July 8, 2003 (*see About Thomas Jefferson which also explains why the ship was named after the former U.S. president).
Oscar Dyson was new construction, the first of four planned 208-foot NOAA fisheries survey vessels.
In my first post, I mentioned how I’m reflecting upon this year being the 150+-year celebration of H.M.S. Challengerexpedition. Launched in 1858, Challenger was a small warship with cannons assigned to coastal patrols and to support larger ships in the British naval fleet, not built for a science expedition. Modifications to Challenger were funded by the British government through the navy to include laboratories and accommodations for six civilian scientists to join the 250 British Royal Navy sailors and officers for the 3+ year journey at sea. I could not find information on why the navy chose “Challenger” as the name of the ship – but this ship’s name was the inspiration for the NASA space shuttle, the lunar module on the Apollo 17 mission, the scientific ocean drilling vessel Glomar Challenger, and even Sir Author Conan Doyle is said to have named his recurring character Professor Challenger after this ship. (*information from Macdougall, 2019)
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, Western Gulf of Alaska Location (site of calibration, June 11): 57o 32.6154′ N, 153o 55.8318′ W
Data from 2PM (Alaska Time), June 11, 2023 Air Temperature: 8.29 oC Water Temperature (mid-hull): 6.3oC Wind Speed: 10.35 knots Wind Direction: 166.14 degrees Course Over Ground (COG): 222.34 degrees Speed Over Ground (SOG): 0.13 knots
COG = The direction the ship is heading relative to land. Over Ground means in relation to the Earth, so COG means the true direction free from the effects of sea currents. SOG = Speed, real progress with respect to Earth. SOG means the true speed free from the effects of sea currents.
Date: June 12, 2023
I am pretty sure that, on a daily basis, I mention NOAA in my classroom, during public outreach events, and in conversations with colleagues and neighbors. But too often, individuals are not aware of this government agency and the critical role NOAA plays in our lives, even for those that are not scientists. So this blog post is for everyone not familiar with the services NOAA provides us all, along with a focus on NOAA’s National Marine Fisheries Service (aka “NOAA Fisheries”).
NOAA is an agency that enriches life through science. Our reach goes from the surface of the sun to the depths of the ocean floor as we work to keep the public informed of the changing environment around them. — from About our agency
The letters N-O-A-A stand for National Oceanic and Atmospheric Administration, an agency in the U.S. Department of Commerce. NOAA has a fascinating history, going back to 1807 and President Thomas Jefferson founding America’s first physical science agency, the Survey of the Coast. Fast-forward to 1870, when the Weather Bureau was establshed as the first agency dedicated to the atmospheric sciences. In 1871, the first conservation agency, the U.S. Commission of Fish and Fisheries, was in place. All three of these agencies were brought together in 1970 with the formation of NOAA. (*yes, NOAA recently celebrated its 50th anniversary! See this playlist of videos to learn even more about its history and the people of NOAA from over the years. There is an additional video that goes back to the original agency and mission of 1807.)
NOAA mission: To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources. — from Our mission and vision
View this video for an overview of NOAA “meeting the moment.”
When I think of and hear “NOAA”, there are several terms/phrases that pop into my mind – science research, atmosphere, hydrosphere, weather and climate, health and safety, economy, conservation, sustainability, and so many more. The educational resources provided by NOAA are also valuable for additional background reading, citizen science opportunities, and multimedia materials (including podcasts!).
A STEAM Moment
I mentioned in my first blog post how I have a passion for and explore the integration of science and creative arts, specifically crafting via crocheting and quilting. To help others learn about the mission of NOAA and its key focus areas, I created a quilt to showcase NOAA’s work in research, weather, climate, ocean & coasts, fisheries, charting, satellites, marine & aviation, sanctuaries, and education. This quilt is just another tool in my education/outreach toolkit! To learn more about this quilt and to view a video, see this post.
NOAA Fisheries
NOAA Fisheries provides science-based conservation and management for sustainable fisheries and aquaculture, marine mammals, endangered species and their habitats. — from Fisheries
NOAA Fisheries, also known as the National Marine Fisheries Service, is a NOAA office composed of five regional offices, six science centers, and more than 20 laboratories around the United States and U.S. territories. Working with additional partners, NOAA Fisheries achieves its two core mandates: (1) to ensure the productivity and sustainability of fisheries and fishing communities through science-based decision-making and compliance with regulations; and (2) to recover and conserve protected resources including whales, turtles, and salmon.
There are several NOAA websites and videos that showcase the history and work of this office. I recommend the NOAA Fisheries About Us page, History page, YouTube playlist of NOAA Fisheries videos, and especially this overview video:
The main Fisheries page on NOAA’s website has fascinating facts you can scroll through. For example, I did not know that the total area NOAA Fisheries is responsible for monitoring and enforcing regulations for marine fisheries is 4.4 million square miles! This area is the largest Exclusive Economic Zone (EEZ) in the world! And the Fisheries News & Announcements page is a wealth of articles, press releases, multimedia material and more that will soon become required reading for students in my courses, adding to the materials I already tap into on NOAA’s Climate.gov and NOAA’s Ocean Facts!
#TheMoreYouNOAA
NOAA has an incredible range of resources and materials that are constantly being updated and expanded upon. There is something for everyone! (*including on Twitter, where you will find individuals and organizations highlighting NOAA’s work with the hashtag #TheMoreYouNOAA)
I’ll end this post with one of the fun audio narratives from the NOAA Ocean podcast series, which details phrases we use today that came from the Age of Sail (the period of time between the 16th and 19th centuries, transcript available).
NOAA Ocean Podcast: Episode 29 – The Nautical Origins of 10 Popular Phrases
The Challenger mission – so much more than fish
The mission of H.M.S. Challenger 150+ years ago was not as developed as the statements for NOAA and NOAA Fisheries – terms such as ‘conservation’, ‘management’, and ‘sustainability’ were not part of the expedition. Challenger was all about collecting samples, whether those samples be seafloor mud, manganese modules, corals, crabs, and plant and animal life from the islands they visited over their 3-year journey. The six Challenger scientists were not concerned about aquatic systems or human/environment interactions – this really was a journey of discovery and documenting what exists in these unexplored areas. It took 50 volumes of the Challenger Report to describe what was seen and collected – including roughly 4,700 new plant and animal species!
For the fish samples collected at that time, the “Challenger fishes” were incorporated into the British Museum (of Natural History) collection. There were 688 specimens of shallow water, shore and miscellaneous estuarine and freshwater fishes; 261 deep-sea fishes; and 125 pelagic fishes. Some of the fish were then sent over to the National Museum of Ireland in 1899, including type specimens of sixteen species (*data on the Challenger fishes from Wheeler and O’Riordan, 1969).
A deep-sea eel, one of the many sketches from samples collected on the H.M.S. Challenger (image in the public domain, part of the Freshwater and Marine Image Bank)
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, Western Gulf of Alaska Location (in port): 57o 47.0200′ N, 152o 25.5543′ W
Date: May 31, 2023
Not every educator has the amazing opportunity to volunteer with scientists on a NOAA ship. But in 2014, that opportunity became a reality for me when I joined NOAA Ship Thomas Jefferson for a hydrographic survey in the Atlantic Ocean. Now my journey at sea with NOAA continues in 2023 as I head out on NOAA Ship Oscar Dyson for an acoustic-trawl survey of walleye pollock populations in the Gulf of Alaska.
Ever since I was an undergraduate intern for two summers at NOAA Maine Operations Center – Atlantic in Norfolk, VA, I wanted to sail on a NOAA ship. The NOAA Teacher at Sea (TAS) program opened that door for me and has provided so much, from my own advancement of the science and technology used to map the ocean floor, to content and stories I share with students and at science outreach events for the public. Now as a TAS alumna, I can’t wait to see how much more I can learn, teach, and share from my latest ocean expedition with NOAA.
Offshore of Miami, Florida, where I went to graduate school (University of Miami – Rosenstiel School of Marine & Atmospheric Science)
I’m a college professor, teaching introductory-level earth science courses primarily for non-STEM majors at Penn State Brandywine in Media, Pennsylvania. I am dedicated to not only helping my students build their science literacy but also seeing the relevance of why and how science matters in their present and future lives. My research has involved using technology tools to enhance student learning of geoscience content, with my current work focusing on having students produce audio narratives (or “podcasts”).
RDML Gallaudet and I in his office in Washington DC
I also blog for the American Geophysical Union (AGU) about educational technology, pedagogy, and science communication on my blog GeoEd Trek. I’ve dedicated several posts on NOAA and its programs and resources . But it was my blog post A New Year’s resolution: help the public learn about NOAA (December 30, 2017) that caught the attention of RDML Tim Gallaudet, Assistant Secretary of Commerce for Oceans and Atmosphere and Acting Under Secretary of Commerce for Oceans and Atmosphere at that time. He was kind enough to invite me to his office in Washington DC to thank me for the post – and, naturally, I wrote up a blog post about the visit and our conversation! That visit has been “the” highlight of all my NOAA experiences! (*see A conversation about science communication with NOAA’s RDML Tim Gallaudet, Ph.D. (March 13, 2018))
Heading back out to sea with NOAA in 2023 is special for so many reasons. Life for all of us was disrupted in March 2020 – the COVID pandemic has been long and hard. My teaching and research has had so many twists and turns, and I still don’t know how everything will be moving forward. Getting out to sea on my first-ever fisheries expedition is not just exciting for me, but it has been heartwarming to see how many of my students and colleagues are sending me messages and looking forward to frequent updates! In a way, I’m taking so many people out to sea with me, and I’m going to work so hard to make this an informative and thrilling adventure for us all!
Cover photo of Macdougall’s book on the Challenger expedition
Last year (2022) was a notable year for the field of oceanography. It was the 150-year celebration of when the H.M.S. Challenger set sail to collect meteorological and oceanographic data ranging from deep sea soundings and temperatures to biological samples. Although there were several ships that went out on scientific expeditions prior to 1872, the Challenger expedition (from 1872-1876) is the one credited as giving rise to the field of oceanography – and it’s interesting that before 1872, the term “oceanography” didn’t even exist in any dictionaries! I read the book Endless Novelties of Extraordinary Interest: The Voyage of H.M.S. Challenger and the Birth of Modern Oceanography by Doug Macdougall, and I couldn’t help but make connections between the methods of oceanographic research back at the time of Challenger versus today. Keep a look out for many comparisons between the work and logistics of Challenger to my experiences on Oscar Dyson in my upcoming blog posts – no doubt I will be sharing some current items of “extraordinary interest!”
I’m also looking forward to continuing to explore the intersections of science and art (STEAM) can be used to engage audiences and to communicate science data. I like to crochet temperature data and use these temperature records created in yarn for teaching and outreach (it is similar to the amazing work of The Tempestry Project!). While on board Oscar Dyson, I’ll not only be exploring under the sea but looking up towards the sky as my atmospheric observations will inform my Stitch the Sky project! Stay tuned for a future blog post to follow along and/or to create your own data visualization for your location.
*If you are interested in reading about my first TAS experience on NOAA Ship Thomas Jefferson, here are direct links to those blog posts:
NOAA Ship Thomas Jefferson (at Marine Operations Center-Atlantic, 2014)
Geographic Area of Cruise: Gulf of Alaska (Kodiak to Yakutat Bay)
Date: 7/30/2019
Weather Data from the Gulf of Alaska: Lat: 58º 50.39’ N Long: 150º 14.72’ W
Air Temp: 14.2º C
Personal Log
Today we had the chance to sail up into Resurrection Bay on the Kenai Peninsula and it was beautiful! In general, transects, or lines the boat collects acoustic information along, run perpendicular to the Gulf of Alaska shelf because that is where pollock are most likely found. Luckily for us, a few of them travel up into bays along the coast and give us a welcomed change of scenery from the open ocean.
A map of the transects we followed up into Resurrection Bay.
Why do we survey in bays when pollock are usually open water fish? Well, during the winter, pollock sometimes aggregate to spawn (reproduce) in bays and those areas are documented by the scientists. In the summer, scientists want to see if there are still any pollock present in those areas. Unfortunately, we do not have time to survey all of the bays and so just a few are selected. For this leg, after the next couple of days back on the shelf, we will head up into Prince William Sound, which I am really looking forward to seeing.
The town of Seward – can you spot the cruise ship?
While following the transects up into Resurrection Bay, it was fun to see sailboats, fishing boats, helicopters and float planes rushing around us. To my surprise, I also saw masses of RV campers through the binoculars when looking at town. I learned that Seward is a popular place for people to visit from Anchorage and other areas for summer vacations and fishing opportunities. As for those of us on the boat, we also enjoyed the summer weather while sailing through. The sun was shining and it seemed that everyone took a moment to step outside, make a few phone calls home (we had service for a bit!) and soak up the warm weather. All in all, I think everyone feels re-energized going into our final 10 days at sea.
Enjoying the sunshine from the top deck of the boat
Science and Technology Log
We stopped to fish near the mouth of Resurrection Bay and found mostly age 1 and 2 pollock, along with a few adults. This shows us that pollock do utilize both the bay and the shelf areas during their lifecycle. Afterwards, we headed back out into the gulf and fished with a net called a Methot net.
The Methot net gets lifted up by the A-frame (yellow metal beams). I did not know the A-frame moved before this!
A Methot net is a different kind of net that is specialized to catch Euphausiids (krill). In addition to collecting data on pollock, scientists also collect data on Euphausiids (krill). The net used to collect krill is a bit different than the one used for pollock. There are no pocket nets along the side and instead of the end of the net being mesh, there is a small canister that the net filters krill into. Once we haul in the net, it is time to sort and collect data on the catch, just like the pollock trawls.
Processing fish in the wet lab. This one had a lot of jellies! Photo by Darin Jones
It has been back to regular fishing trawls since then, along with comparison trawls. A comparison trawl is when we fish twice over the same area using two different nets. This year, the scientists decided to replace the old survey net with a newly designed one that is a little bit smaller and easier for the deck crew to deploy. Now they need to compare the two nets to make sure the newer net is catching the same species and size of fish. Darin was explaining to me that they have to do approximately 25 comparison trawls on this survey and will continue comparisons during the winter survey as well. If all goes according to plan, they will permanently replace the old net next summer.
On one of our trawls the other day, we caught a lot of rockfish. Lucky for us, rockfish is a species we can keep and eat on the boat. We are not allowed to keep salmon, crab, halibut or herring since they are prohibited species. You are only allowed to keep those species if you have a special permit. While I wish we could eat the others, rockfish is also really tasty!
Lead scientist, Darin Jones, filleting dusky rockfish for dinner.
Did You Know?
There is an incinerator on NOAA Ship Oscar Dyson that burns all of our trash from the boat so that we don’t have to keep it aboard for the whole trip. Also, nothing is thrown overboard, not even food scraps. When I was taking a look yesterday, the temperature was over 800 degrees Celsius. Diesel fuel is used as fuel initially, followed by burning sludge from the boat once it gets hot enough. All leftover ash gets put into bins and discarded when back in port.
Thanks for following along!
Cheers, Jess
P.S. We go up and watch the sunrise everyday…it is beautiful out here!
Abigail McCarthy watches the sunrise every morning and ranks them. This one earned a “glorious!”
Geographic Area of Cruise: Bering Sea and Bristol Bay, Alaska
Date: July 23, 2019
Weather Data from Home Latitude: 41°42’25.35″N Longitude: 73°56’17.30″W Wind: 2 knots NE Barometer: 1011.5 mb Visibility: 10 miles Temperature: 77° F or 25° C Weather: Cloudy
Science and Technology Log
As you can tell from 1) the date of my research cruise and 2) my latitude and longitude, I am no longer in Alaska and I am now home. For my final NOAA Teacher at Sea post, I am pleased to show you the results of the hydrographic survey during the Cape Newenham project. The bathymetric coverage (remember that bathymetry means the topography underwater or depth to the bottom of oceans, seas and lakes) is not final as there is one more leg, but it is pretty close. Then the hard part of “cleaning up” the data begins and having many layers of NOAA hydrographers review the results before ever being placed on a nautical chart for Cape Newenham and Bristol Bay. But that day will come!
Fig 1. First, here is a reminder of the location area for the project in Alaska, in the Bering Sea and Bristol Bay (circled in red).
Fig 2. Here is the entire coverage of the project area to date. Notice that some of the coverage is complete and some is in spaced line segments. The red areas on the map are shallow and vessels should avoid those. The dark blue to purple zone is the deepest shown on the map and that is where ships should navigate and mariners will know that by looking on the future navigational chart. During the project, the Chief Hydrographer began to notice that the sea bed was nearly flat and gently sloping. The decision was made to use set line spacing for the rest of the project. (Hint: Click on the image to see more detail)
Fig 3. Going in a little more closely, I’ll show you the Cape Newenham area, shown in the dashed line region. You may recall that this is the nautical chart from three blog posts ago.
Fig 4. Now, we’ve zoomed in one of the cool parts of the bathymetric map. As I said above in Fig 2, most of the Cape Newenham sea floor surface is gently sloping. There are no obvious obstructions such as large boulders or shipwrecks; if there were, those would show up in the hydrographic survey. I’ll talk more about the red (or shallower) part of the map in the next figure.
Fig 5. This is a 3D side view of the upper part of Fig 4. The red that you see is 5 meters or about 16 feet below the ocean surface. The light blue area is about 36 or so meters deep which is about 120 feet deep. What the hydrographers noticed were sand waves, which they found interesting but non-threatening to navigation unless the crests neared the ocean surface. Sand waves can migrate or move around and they can also grow larger and possibly become a navigational hazard in the future. As a geologist, I think the sand waves are excellent. These waves (sometimes they are called ripples) of sediment form as a result of ocean currents and show the direction of flow. See the next figure for a profile view (cross section view) along the light blue line on this map.
Fig 6. This is 2D profile view along the surface of the light blue line shown in Fig 5. This is the top of the sand waves. I’ve pointed to a couple of sand wave crests; there are five crests shown in this profile length. Notice that there is a gently sloping face of the wave and a steeper face. The ocean current direction is moving from the gentle face towards the steep face in this location on Cape Newenham which is from north to south. The hydrographers told me that, though the ocean flow may be north to south here now, it is possible that in the winter, the current reverses. There is also a tidal influence on the current here, too.
Part II – Careers at Sea Log, or Check Out the Engine Room and Meet an Engineer
Photo 1. Klay Strand, 2AE, showing us around the Fairweather engine room.
This is Klay Strand who is 2nd Engineer on the Ship Fairweather. He’s been on the ship for about a year and a half and he graciously and enthusiastically showed three of us visiting folk around the engine room towards the end of our leg. It was truly eye-opening. And ear-popping.
Before I get to the tour, a little bit about what Engineering Department does and how one becomes an engineer. There are currently nine engineers on the Ship Fairweather and they basically keep the engines running right. They need to check fluid levels for the engine (like oil, water and fuel) but also keep tabs on the other tanks on the ship, like wastewater and freshwater. The engine is on the lower level of the ship.
Klay Strand’s path to engineering was to go to a two-year trade school in Oregon through the JobCorps program. Strand then worked for the Alaskan highway department on the ferry system and then he started accruing sea days. To become a licensed engineer, one needs 1,080 days on a boat. Strand also needed advanced firefighting training and medical care provider training for his license. There are other pathways to an engineering license like a four-year degree in which you earn a license and a bachelor’s degree. For more information on becoming a ship’s engineer, you can go to the MEBA union, of which Strand is a member. On Strand’s days off the ship, he likes to spend time with his niece and nephews, go skydiving, hike, and go to the gun range.
The following photos are some of the cool things that Klay showed us in the engine room.
Photo 2. There are two engines that power the ship. Ear protection is a must. Standing between the two engines felt like standing inside a running car engine if you were a tiny mouse. I didn’t get a shot of us standing there, so I drew an approximate line for reference.
Photo 3. The ceiling in the engine room is very low. There are A LOT of moving parts. And wires, cords, pipes, valves, enormous tools, tanks, meters and things I’ve never seen before. This part in the foreground, with the yellow painted on the cylinder, is akin to a car’s driveshaft.
Photo 4. This shows how much black water and gray water the ship currently has in the tanks. Those tanks are located in the engine area and the engineers keep a close eye on that information. Gray water is wastewater from washing dishes, clothes washers, and the showers. Black water is from the toilets, I mean ship’s heads. Black water is treated through a chlorination process. Both wastewaters are released at sea, where permissible.
Photo 5. Recall in my last “Did You Know?” that I said the ship makes its own freshwater from sea water. This is the reverse osmosis monitor showing how much freshwater is being produced. Yes, the engineers keep an eye on that, too.
Personal Log
Before I boarded the small plane that took off from Dutch Harbor to take me to Anchorage, AK, I looked out over the harbor. It was so lovely in Alaska. There’s so much space and untouched landscape. The green, pointed hill on the right side of the image is called Mount Ballyhoo, which I hear was named by Jack London on a swing through Dutch Harbor in the late 1800s.
Now that I’ve been home for a few days, I’ve had a chance to reflect on my time on NOAA Ship Fairweather. When I tell people about the experience, what comes out the most is how warm and open the crew were to me. Every question I had was answered. No one was impatient with my presence. All freely shared their stories, if asked. I learned so much from all of them, the crew of the Fairweather. They respected me as a teacher and wondered about my path to that position. I wondered, too, about their path to a life at sea.
My first week on the ship, I spent a lot of time looking out at the ocean, scanning for whales and marveling at the seemingly endlessness of the water. Living on the water seemed fun and bold. As time went by, I could tell that I may not be cut out for a life at sea at this stage of my life, but I sure would have considered it in my younger days. Now that I know a little bit more about these careers on ships, I have the opportunity to tell my students about living and working on the ocean. I can also tell my educator colleagues about the NOAA Teacher at Sea Program.
Though I loved my time on the Ship Fairweather, I do look forward to seeing my West Bronx Academy students again in September. I am so grateful for all I learned during my time at sea.
Did You Know?
Using the interactive Marine Protected Area map, I zoomed in on the Cape Newenham area. Though there is a Walrus Protection Area there, we did not see any on our leg.
If you are interested in finding out about areas of the ocean that are protected from certain types of human activity because of concerns based on habitat protection, species conservation and ecosystem-based marine management, here are some links to information about Marine Protected Areas. Marine Protected Areas are defined as “…any area of the marine environment that has been reserved by federal, state, territorial, tribal, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein.” Did you know that there are over 11,000 designated MPAs around the world?
“All of us have in our veins the exact same percentage of salt in our blood that exists in the ocean, and, therefore, we have salt in our blood, in our sweat, in our tears. We are tied to the ocean. And when we go back to the sea – whether it is to sail or to watch it – we are going back from whence we came.” – John F. Kennedy
Geographic Area of Cruise: Gulf of Alaska (Kodiak to Prince William Sound)
Date: Saturday, July 20th, 2019
Weather Data from Kodiak, AK: 4:00am Lat: 57.79° N Lon: 152.4072° W Temp: 56 degrees F.
Personal Log
Good morning! It is currently 4:30am on Saturday, July 20th and I have just woken up for my first shift on the boat. So far, I have met scientists Abigail McCarthy and Troy Buckley, who will be working the day shift with me. I also met Ruth, an intern from the University of Washington and my bunkmate. It will be nice to have someone else on board who is also new to the experience!
From left to right: Myself, Ruth, Abigail and Darin exploring Spruce Cape. Photo Credit: Troy Buckley
Before talking about work, I’d like to share what we got up to in Kodiak before departing on the cruise. One thing to note – Chief Scientist Darin Jones explained that because this is the 3rd leg of the survey and the scientists are taking over from the previous group, we do not have any set up or calibration of equipment to do. If this had been leg 1 of the survey, the free days in port would have been spent doing those jobs. Lucky us!
After unpacking everything in our state rooms (bunks), we quickly set out to explore Kodiak. In two and a half days, were able to see a lot! Wednesday night, some friends of mine in town took us for a stroll on Near Island, followed by a yummy dinner at Noodle Bar.
Walking with friends on Near Island, just across the bridge from Kodiak. Photo by Ruth Drinkwater
Thursday morning, team building began with a run to Safeway and Walmart for all last minute necessities. The teacher in me couldn’t resist a fresh pack of sharpie markers and colored pencils. 🙂 In the afternoon, we walked along Spruce Cape where we picked a TON of blueberries and found the largest barnacle I have ever seen.
Check out this Giant Acorn Barnacle!
After a short recoup back on the boat, Darin and Abigail were ready for an evening surf session at Fossil Beach. This beach is the farthest south you can access by road in Kodiak and the drive was BEAUTIFUL. Prior to the trip, I hadn’t looked up any pictures of Kodiak and so the treeless green mountains, cliffy coastlines and herds of cows were exciting to see. Once at the beach, we jumped in the ocean, watched a successful surf session and finished our team building with a fire and dinner on the beach.
Fossil Beach: We hiked up the cliffs in the background to check out old WWII bunkers.
Happily grazing cows on the drive back from Fossil Beach.
Science and Technology Log:
In just a few days of being here, I have already learned a lot about the workings of the ship and what we will be busy doing for the next three weeks. Here is a preview.
To begin, science shifts run from 4am – 4pm and 4pm – 4am. Throughout this entire time, acoustic data is being collected and read. Acoustic data is gathered by sending out sound waves from a transducer box attached to the bottom of a centerboard underneath the boat. The sound waves reverberate out and bounce off of anything with a different density than water. In the picture below, you can see a bold line on the screen with smaller dots above. Take a look and see if you can identify what the line and dots might represent.
Chief Scientist Darin Jones looking at the morning acoustic data. This room is called “The Cave” because it is the only lab without windows.
If you thought the big bold lines on each screen were the seafloor, you were correct! Most of the little dots that appear above the sea floor are fish. Fish are identified from the sound waves bouncing off of their swim bladders. Swim bladders are the “bags” of air inside fish that inflate and deflate to allow the fish to raise and lower itself in the water column. Air has a different density compared to water and therefore shows up in the acoustics data.
Close up view of the acoustic data screen.
What is this acoustic data used for? There are 2 primary parts. The first is to identify where schools of fish are located and therefore areas well suited for collecting fish samples. The second is to calculate the total biomass of pollock in the water column by combining acoustics data with the actual measurements of fish caught in that same area. More specifics to come as I take part in the process throughout the survey.
Did You Know?
On this survey, scientists do not catch/survey fish at night (when it is dark). The reason? At night, bottom dwelling species come up off the seafloor at night to feed. During the day they settle back down on the seafloor. The scientists are primarily interested in catching pollock, a mid water species, so they fish during daylight hours.
View from the upper deck of the trawl net being hauled in.
Updates to come later in the week. It is time for me to join the scientists and get ready process our first catch!
Weather Data from the Bridge Latitude: 54° 09.9 N Longitude: 161° 46.3 W Wind: 22 knots NW Barometer: 1014.2 mb Visibility: 10 nautical miles Temperature: 55.6° F or 13.1° C Weather: Partly cloudy, no precipitation
Careers at Sea Log, or Meet the ….
Life at sea on the Ship Fairweather, this past week and a half, with some 42 crew members, has been something I have never experienced. The closest thing that I can think of was when I was in undergraduate geology field camp, living in close quarters for weeks on end, with the same people, working together towards a goal. But I knew all of those field camp students; we were in college together. This is different. Everyone works here on the Fairweather and this is their job and their home. We’re all adults and no one knows anyone when they first come aboard. So, if you are friendly, open to people and welcoming, you can get to know some folks quickly. If you’re shy or try to ease in slowly, it may be a harder adjustment, living on a 231-foot heaving, rolling, pitching and yawing, ice-strengthened, welded steel hydrographic survey vessel. It’s a unique environment. And there are a lot of different but interesting jobs that people do here on the Fairweather. Here are but a few of the mariners on the ship.
NOAA Corps – The first group of ship crew that I’ll talk about are NOAA Corps officers. NOAA Commissioned Officer Corps (or NOAA Corps) is one of the nation’s seven uniformed services and they are an integral part of the National Oceanic and Atmospheric Administration (NOAA). NOAA Corps support nearly all of NOAA’s programs and missions.
XO Sam Greenaway, the Executive Officer on NOAA Ship Fairweather
Commander Greenaway is the Executive Officer onboard Fairweather and that work entails a variety of tasks that all function under the heading “administering the ships business.” Greenaway’s number one job is as the ship’s Safety Officer and he has additional tasks that include purchase requests from the departments, lining up contractors, making sure everyone has their training up-to-date, handling human resource issues, and accounting of the ship’s finances. On the Fairweather, Greenaway is second in command. He loves being at sea and has always liked sailing, which is one of his hobbies when not on the ship. What Greenaway least expected to be doing as a NOAA Corps officer was managing people but he finds that he loves that part of the job. Greenaway has a bachelors of science degree in Physics from Brown University and a masters degree in Ocean Engineering from University in New Hampshire.
*************************
ENS Jeffery Calderon, Junior Officer
Ensign Jeffrey Calderon is a NOAA Corps Junior Officer and has been on Ship Fairweather for two years. Calderon was previously with the Air Force for eight years and also with the National Guard for about four years. His duties on the ship include driving small boats, doing hydrographic surveys, bridge duty on the ship, and he’s the medical officer on board. Calderon enjoys the challenges he gets with NOAA Corps and likes to manage small teams and decide priorities. He learned about NOAA Corps from his college advisor at the University of Maryland, where he earned a bachelor’s degree in Physics.
*************************
ENS Iris Ekmanis, Junior Officer
Ensign Iris Ekmanis is also a Junior Officer who recently completed her basic training for the NOAA Corps. She has been on Ship Fairweather for about a month and a half. She chose NOAA Corps because she wanted to utilize her degree in Marine Science (from University of Hawaii, Hilo) and had worked on boats for six years. She likes that she has been learning new things everyday, like how to pilot the ship from the bridge, learning to coxswain a launch, and learning to use the hydrographic software to collect bathymetric data. In fact, when we left the dock in Dutch Harbor at the beginning of the leg, Ekmanis had the conn, which means she maneuvered the ship through her orders to the helm (although she had plenty of people around her in case she needed assistance.)
Survey team – The hydrographic survey team is involved in all aspects of collecting the data and generating the bathymetric surfaces that will be used to make updated nautical charts. They don’t drive the boats and ships, they run the software, take the casts that determine water salinity and temperature, tell the coxswain where to motor to next and then process the data back on Ship Fairweather. There are six members on the survey team; here are two of them.
Ali Johnson, Hydrographic Senior Survey Technician
Ali Johnson has been a hydrographer on the Ship Fairweather for two and a half years. She told me she always knew she wanted to work in ocean science in some capacity so she earned a degree in Environmental Studies at Eckerd College in St. Petersburg, Florida. With this job, Johnson enjoys going to places that most people don’t ever get to see and one of the highlights was surveying while dodging icebergs and seeing the interesting bathymetry as a result of glacial deposits, another was seeing an advancing glacier up close. She is the hydrographer who showed me most of the ropes on the ship, the launch surveys and in the plot room.
Michelle Wiegert has been with NOAA Ship Fairweather since last September. Although she did not lay eyes on the ocean until she was nineteen, she always knew she would do some ocean-based work. Wiegert earned a double major in Biology and Spanish from Metropolitan State University of Denver in Colorado and studied Applied Science Marine Technology at Cape Fear Community College in Wilmington, NC. As a Survey team member, she loves that she is working at sea and the fact that every day is different and she is always learning new things.
Ship Stewards – The stewards are the crew members who make the three square meals a day. The food on Ship Fairweather has been outstanding and every meal seems like two or even three meals in one because the stewards offer so much variety, including vegetarian and vegan options. There are four stewards on the Fairweather and they are all as nice as can be. Here is one of them.
Carrie Mortell, Acting Chief Cook
Carrie Mortell has been a steward with the Fairweather for two years and with NOAA for fifteen. She has ten years of commercial fisheries experience in southeast Alaska and she loves the ocean. Mortell told me she feels more comfortable at sea than on land. She likes to keep busy in her downtime by reading, writing letters, crocheting, cooking & baking and drawing.
Deck Department – The Fairweather’s Deck Department takes care of general ship maintenance, cleaning decks, painting, operating cranes, helming the ship, and coxswaining the launches. There are currently eight members of the Deck Department and I interviewed one for this post.
Eric Chandler, Able Seaman
Eric Chandler has been an Able Seaman with NOAA for one and a half years. He has driven the launches, taught coxswains-in-training, been a ship medic, moved launches with a davit, repaired jammed grab samplers, and many other tasks. Chandler started working on boats in 2016 when he was a deckhand, educator and naturalist on tour boats out of Seward, AK. He has also been a professional photographer and an auto mechanic. Chandler likes being on a ship because he sees remote places, gets to learn new skills all the time, and likes the feeling of being self-sufficient.
Visitors to NOAA Ship Fairweather – I am a visitor to Ship Fairweather but I am not the only temporary person onboard. Here are two of the four of us who are “just passing through.”
Fernando Ortiz, Physical Scientist at NOAA
Fernando Ortiz has been a Physical Scientist with NOAA since 2008 and works out of Western Regional Center in Seattle, WA. He was visiting the Fairweather on the same leg is mine. NOAA Physical Scientists normally work in the office but will go on a NOAA ship at least once a year to support field operations. Ortiz will possibly do the quality control check on the data for the Cape Newenham project in the future. Ortiz has a bachelor’s degree in Geography from the University of Washington, Seattle WA. His advice for people looking for a similar career is to take science classes and he emphasized having Geographic Information Systems (GIS) and programming experience.
*************************
Christine Burns, Knauss Fellow through NOAA Sea Grant
Christine Burns is visiting from Washington, DC, where she is a Knauss Fellow through NOAA Sea Grant. She is on a one-year post-graduate marine policy fellowship with NOAA’s Office of Coast Survey. She wanted to see what the hydrographic research going on so came out to Dutch Harbor as part of her fellowship. Burns has a bachelor’s degree in Environmental Science from Dickinson College in Carlisle, PA, and a masters in Marine Science from the University of Georgia in Savannah, GA. As she was visiting like I was and we were both very much observers, Burns filled me in on some scholarship and internship ideas she has for high school students and those students thinking of careers and college after high school graduation. By the way, once you’re nearing the end of college or have graduated already, don’t forget that there is usually career advisory office and your alumni network at your institution. You can make connections, seek advice, ask about positions, among other important functions those offices and groups do for you. Hollings Scholars – for current college sophomores, this is an undergraduate scholarship and internship through NOAA EPP/MSI Undergraduate Scholarship Program – this is the Hollings Scholarship for students attending HBCU or Minority Serving Institutions Student Conservation Association – a good place to get work and volunteer experiences or a gap year opportunity, for people 18-35 interested in land management. Youth Conservation Corps – a summer youth employment program that engages young people in meaningful work experiences on national parks, forests, and so on. USAJobs – this link has summer internships for college students or recent graduates. Rotary Clubs can help students find scholarships and volunteer opportunities Unions – you can find paid internships or educational opportunities through unions for skills such as pipefitters, electrical, plumbing, etc.
Next post: the Engineering Department of the Ship Fairweather
Personal Log
I am impressed and awed by the people who have chosen living and working on a ship. When I first came aboard the Fairweather, I felt everything was a little cramped and the space was confined. I couldn’t figure out how to get around very well. Now, I don’t get lost as often. It isn’t easy to live and work on a ship, but there are plenty of folks on the Fairweather who happily chose it.
On the flying bridge near Cape Newenham
I’ve enjoyed looking out at sea as we are underway. I try to spot whales and other flying and leaping sea critters. We have one more long transit before arriving back to Dutch Harbor so I am going to head up to the flying bridge and see what I can see.
Did You Know?
The Fairweather makes its own potable water. When I was shown the engine room, I was also shown the reverse osmosis water making machine that turns sea water into fresh water. The ship never runs out!
Quote of the Day
“It is not that life ashore is distasteful to me. But life at sea is better.” – Sir Francis Drake
Geographic Area of Cruise: Gulf of Alaska (Kodiak to Aleutian Islands)
Date: Monday, July 15th, 2019
Weather Data from Juneau, AK: 8:50am Lat: 58.35° N Lon: 134.58° W
Personal Log
Hello everyone. In just a few days I will be swapping out halibut fishing in Juneau, AK for surveying walleye pollock in the Gulf of Alaska (GOA)…and I can’t wait! Our cruise on NOAA Ship Oscar Dyson will depart from Kodiak Island and sail out along the Aleutian Islands, a place I have yet to see or experience since moving to Alaska.
Fishing for Halibut near Holkham Bay. This photo was taken just after the fillet had slipped out of my hands and onto the boat deck…guess I’ll benefit from fish handling practice on the cruise!
Photo Credit: Laura Maruhashi
Three years ago, I left a curriculum consulting job in Portland, OR to begin teaching in Juneau. Prior to Oregon, I was living overseas in Australia, where I completed my Masters in Education and spent time with the Australian side of my family. I am incredibly excited to now call Juneau my home and be in the classroom as both an educator and a learner. Alaska is such a unique and special place – sometimes I still can’t believe I live here!
Currently, I work as a 7th grade Life Science teacher at Floyd Dryden Middle School. Not only is middle school my favorite age of kids to teach (yes, you heard that right), but I also love the curriculum we get to share with them. One main focus during the school year is to teach about ecosystems. Two years ago I developed a unit, along with NOAA Scientist Elizabeth Siddon, that focuses on how commercial fisheries quotas are set in Alaska. The lessons range from data collection and stakeholder input to presenting recommendations to the North Pacific Fisheries Management Council. Alaska takes several different aspects of the ecosystem into consideration when setting quotas and I think it is a great way for students to see how the science they learn in school can be applied to real life careers.
Students in my 7th grade life science class presenting ecosystem risk table recommendations to a panel of scientists for sablefish quotas in the Gulf of Alaska.
I myself have never had the chance to work as a scientist. That is why I am so excited for the opportunity to participate in data collection and analysis alongside a research team right here in Alaska. It will be fantastic to bring what I learn back to my students and be able to give them an even better understanding what being a scientist can entail.
Lastly, outside of teaching, I try to enjoy all of the outdoor activities Juneau has to offer. With the recent streak of unusually warm and sunny weather, my friends and I have been boating, swimming, and hiking as much as possible. While it will be hard to leave those things behind, I am looking forward to this next adventure!
Midway through a hike from Granite Creek Basin to Mount Juneau.
Photo Credit: Laura Maruhashi
Science and Technology Log:
The research team on NOAA Ship Oscar Dyson is conducting an acoustic-trawl (AT) survey to collect data, primarily on walleye pollock, to be used in stock assessment models for determining commercial fisheries quotas. When collecting data, scientists will work in 12 hour shifts and be looking to determine things such as species composition, age, length distribution etc.
NOAA Ship Oscar Dyson. Photo Credit: NOAA
Trawl fishing, for those of you unfamiliar, is a method of fishing when a net of particular size is pulled through the water behind a boat. Oscar Dyson is a 64 meter stern trawler that contains acoustic and oceanographic instruments to collect the necessary data. After researching online, I learned that the main instrument used is a Simrad EK60 split-beam echosounder system. Look for more information about what this instrument is (and others) in future blog posts!
Did You Know?
Alaska pollock is one of the largest commercial fisheries in the world!
Thank you for reading and I am looking forward to sharing more about life out at sea!
Geographic Area of Cruise: Bering Sea and Bristol Bay, Alaska
Date: July 11, 2019
Weather Data from the Bridge Latitude: 58° 36.7 N Longitude: 162° 02.5 W Wind: 1 knot N Barometer: 1011.0 mb Visibility: 10 nautical miles Temperature: 58° F or 14° C Weather: Partly cloudy, no precipitation
“Red sky at night, sailors’ delight. Red sky in morning, sailors take warning.” This old mariner’s adage did NOT prove to be true when I saw this sunrise viewed from NOAA Ship Fairweather at 5:21am yesterday. It turned out to be a perfect delight for a surveying day!
What is NOAA and the Teacher at Sea program?
You may be wondering what, exactly, am I doing going “to sea” with NOAA. First off, NOAA stands for the National Oceanic and Atmospheric Administration and originates back to 1807 with Thomas Jefferson founding the U.S. Coast and Geodetic Survey (as the Survey of the Coast) with a mission to provide nautical charts to the maritime community for safe passage into American ports. Over time, the Weather Bureau was added and then the U.S. Commission of Fish and Fisheries was developed. In 1970, these three agencies were combined under one umbrella organization and named NOAA, an agency that supports accuracy and precision of physical and atmospheric sciences, protection of life and property, and stewardship of natural resources. NOAA is within the Department of Commerce.
I am standing on the flying bridge of the Fairweather where you get a fantastic 360° view.
NOAA’s Teacher at Sea (TAS) program has existed since 1990, sending over 800 teachers on NOAA research cruises. The TAS mission is “to give teachers a clearer insight into our ocean planet, a greater understanding of maritime work and studies, and to increase their level of environmental literacy by fostering an interdisciplinary research experience.” There is usually just one teacher sent per leg of a mission, that way the TAS gets full exposure to the research process and attention from the crew, scientists and staff on the ship. And it is true, everyone onboard has been friendly, helpful, welcoming, and willing to answer any question I might have, like, where is C deck? (That’s where my stateroom is located).
Science and Technology Log
Now that you understand NOAA’s mission, it should not surprise you that I am on a research cruise that is mapping a part of the seafloor that has not had detailed soundings. “Soundings” means the action or process of measuring the depth of the sea or other body of water. See the map below as that is where I am right now, in Bristol Bay. By the way, NOAA nautical charts are available for free at this NOAA site.
The NOAA nautical chart of Bristol Bay, Cape Newenham and Hagemeister Strait. Note that where there are small numbers in the white and blue sections of the chart (that is all water), you can see the sounding depths to surface shown in fathoms. The red polygon is drawn on by me. We are working in the upper, northwest part of that “poorly mapped” section. Notice that there are essentially no soundings in that region.
When I’ve told friends, family and students that I was chosen to be on a NOAA research vessel that was compiling a detailed map of the sea floor off of Alaska, it was met with great surprise. “The ocean floor hasn’t been mapped before? How could that be?” In fact, more than 80 percent of the ocean bottom has not been mapped using modern, highly precise technologies. But we do have a very coarse ocean floor – or bathymetric – map, created in the early 1950s by Marie Tharp using sounding data collected by the U.S. military and her collaborator Bruce Heezen. Tharp’s early map of the sea floor beautifully revealed the Mid-Atlantic Ridge and added another piece of evidence in support of the theories of continental drift plate tectonics. There’s a terrific Cosmos: A Spacetime Odyssey episode featuring Tharp.
This is the Tharp and Heezen (1977) colorized ocean floor map. This map is used under the Creative Commons license.
Why we need a more detailed bathymetry map than the one created by Tharp and Heezen can be explained by the original mission of the early version of NOAA. Jefferson wanted to build a “…survey to be taken of the coasts of the United States…” in order to provide safe passage of ships to ports within the navigable waters of the U.S. As the Bristol Bay chart above shows, there are still coastal areas that have limited to no data. Without detailed charts, mariners cannot know where the shallower waters are (called shoals), or rock obstructions, shifted underwater sand bars, shipwrecks, or other hindrances that cause safety concerns to the movement of boats.
The hydrographic Survey Team on the NOAA Ship Fairweather use several 30 foot boats, called launches, with a multibeam echosounder attached to the hull (the bottom of the ship). The multibeam echosounder uses sonar and is a device useful for both shallow and deep water. In a nutshell, depth measurements are collected by calculating the time it takes for each of the sound pulses to travel from the echosounder through the sea water to the ocean floor and back again. The distance from the instrument to the seafloor is calculated by multiplying the travel time by the speed of sound through seawater, which is about 1,500 meters/second or 4,921 feet/second. Right before a hydrographic survey is started, the team collects information on the conductivity, temperature and depth of the sea water, as temperature and salinity will modify the density and change the travel time of the sonar pulses. The video below can explain the process further.
This NOAA video explains multibeam sounding and hydrographic operations.
A launch on a lift right before going out to survey. The multibeam echosounder is permanently fixed to the bottom of the hull. It’s a square, rigid box that sits flat against the hull in front of the keel.
This is Ali Johnson in the cabin of a launch. She is a hydrographic survey technician and is analyzing the multibeam echosounder data as it is being collected. The length of a launch is 32 feet, and all the technology needed for the hydrographic surveys are directly on boats in the cabin. Post-processing, or stitching the completed surveys into one comprehensive product, is done “back in the office” on Ship Fairweather.
The software used to collect the soundings is created by the multibeam echosounder manufacturer, so the collection of millions of points on a transect is seamless. Data collection runs are taken over multiple days and several “legs” or extended periods of time when the crew are all out at the same time on the Fairweather. Following collection transects, the data are then post-processed using Caris HIPS and SIPS, which is the software that the Fairweather hydrographers use for data processing.
A close-up of one of the monitors that shows what the sounding data look like. By looking at these data returns, the hydrographers can tell immediately if something is not right with the equipment. The two windows that show maps colored red to yellow to blue (top right and bottom left) show the bathymetry. The red areas are shallow depths and the blue are deeper depths, relatively speaking. Also notice the window at the bottom right with a triangle and circle within the triangle; that is showing the fan-shape of the echosoundings.
Personal Log
We’ve motored to a new location, Cape Newenham, which is the name of this mission, so we will be here for about a week. When we got underway, the ship got to really rocking and my stomach could not handle it. I had one bad night but I am now fine and ship shape!
Cape Newenham is at latitude 58°N so we are up close to the Arctic Circle (66.5°N). At this time of year, there are about 5 hours of darkness per night here in Alaska, which is really cool. Compare that what we have in New York…
For July 11, 2019, the number of daylight hours in Anchorage, AK (closest large city to where I am now) is 18 hours and 41 minutes. Times of sunrise and sunset are also given….the sun sets at 11:25pm today! And in NYC, NY (where my school is located), you are getting four fewer daylight hours, or about 15 hours of light. Again, times of sunrise and sunset are shown. Source for both: https://www.timeanddate.com/sun/usa
Launches waiting to get underway. All boats going out for surveys stay close to the Fairweather until everyone is securely in their boat, just in case of MOB (man overboard).
This is where Ship Fairweather is anchored for the next few days, as the survey crews transect the project area. We are on the southern side of Cape Newenham. Again, the terrain is tree-less, though we are now adjacent the mainland of Alaska. I’ve seen so many types of sea birds, but the puffins are the best because they seem to not have figured out how to fly. I hear there are walrus in the area, but I haven’t spotted one as yet.
Did You Know?
You probably know that Charles Darwin was the naturalist on board the HMS Beagle which set sail on December 27,1831. Over the nearly five years the Beagle was at sea, Darwin developed his ideas on natural selection and evolution of species. But what you might not know is that the captain of the Beagle, Robert FitzRoy, was an officer in the Royal Navy, a meteorologist and hydrographer. In fact, the primary mission of the Beagle was to survey the coastline of South America and, in particular, the Strait of Magellan, at the southernmost tip. Better, more accurate charts were needed by the British government, to navigate the treacherous, rough waters of the channels. In addition, FitzRoy was a protégé of Francis Beaufort (who developed the Wind Force Scale which is still used to help explain wind speed) and both worked together to create the science of weather forecasting.
Quote of the Day
“In every outthrust headland, in every curving beach, in every grain of sand there is the story of the earth.” – Rachel Carson
Latitude: 55º 48.9 N Longitude: 159º 2.3 W Wind Speed: 4.2 knots Wind Direction: 186.5º Air Temperature: 14.7º Celsius Barometric Pressure: 1022.12 mb Depth of water column 84.5 m Surface Sea Temperature: 10 º Celsius
History
On March 30, 1867, Secretary of State Seward purchased Alaska from the Russian Empire for 7.2 million dollars (or 2 cents per square mile). It was deemed a territory for many years until January 3, 1959 when President Eisenhower signed a proclamation admitting Alaska into the United States. The word “Alaska” comes from an Aleut-language idiom that means “object to which the action of the sea is directed.” It is the northernmost and westernmost state in the United States. It is also the largest state. By comparison, it is twice the size of Texas.
Celebrating the Fourth of July, NOAA style
My usual Fourth of July at home includes a bar-b-que, swimming, and attending a fireworks show at night. The Fourth of July celebration on the NOAA ship Oscar Dyson was completely different, and literally a BLAST. At noon, an announcement was made for “all hands” to report to the galley for Fourth of July “mocktails” or fun non-alcoholic drinks. (There is no alcohol on a NOAA ship.) I had a delicious “mimosa” made of orange juice and sparkling cider. Later, we were taken on a wonderful ride past Mitrofania Island.
Approaching Mitrofania Island
Mitrofania Island
Photographs do not do it justice. It was my first time up on the fly bridge (the “roof” of the boat) and I loved being able to take in the 360 degree views. Many people never get to see this part of Alaska as it is not a route commonly taken by cruise ships. The “fireworks” part came the next morning, when “all hands” were again called to the deck to light off expired flares. While some made a popping noise, the one I did produced thick orange smoke for at least 30 seconds. It was, as I said, a literal blast!
Science and Technology
Later, we were back on the bridge but for a sadder reason. A dead whale was floating in the water right near the boat. I asked if anyone comes to pick up dead whales. It was explained to me that if a dead whale washes ashore, it will be picked up and taken for a necropsy to see if the cause of death could be determined. However, if they are at sea, they will be left to decompose and become part of the sea once again.
Whale carcass
On a
happier note, I was sent to the bridge later in the day to see if there were
any whales in the vicinity as we do not fish if whales are nearby. It turned out
that there were 5 whales in the distance (but close enough to see with binoculars).
Whales are somewhat easy to spot as they must come to the surface often to
breathe. When they exhale, they produce a spout of moist air from their
blowhole. Since different species of
whales produce different shape or size spouts, the spout is one way to identify
the type of whale you are seeing. Other identifying features are size, color,
fin shape, and whether they are alone or in a group. Some whale species travel
in groups or pods, while others are more solitary. For example, killer whales
(which are really dolphins) spend much of their time in large groups that
travel and hunt together. Sometimes 4 generations of killer whales will be
found together. In contrast, humpback
whales are more often found alone or with their calf.
Whale Fun Facts
While many
people think that whales spout water, it is actually mostly air. The spout is their exhale. Since they are
mammals, and not fish, they do not have gills, and must come to the surface to
breathe through their blowhole.
A baby
whale is called a calf.
A group of
whales travelling together is called a pod.
The blue
whale is the largest animal in the world. It can grow to be as long as 3 buses,
and its heart is as big as a car. Despite being so large, blue whales eat some
of the smallest marine life, such as the krill discussed in an earlier blog.
A blue whale’s
call is so loud, it can be heard underwater for hundreds of kilometers.
Whales are
warm-blooded, so they need to develop a layer of fat (called blubber) to stay
warm in cold water.
Whale blubber experiment for parents and kids to do together
Make a blubber glove by filling 2 ziploc-type plastic bags with shortening (such as Crisco) and taping them together to form a pocket.
Fill a
bowl with water and ice cubes.
Allow your
child to quickly touch the cold water in the bowl with their bare hand.
Then have your child put his or her hand in the blubber glove, and then put their gloved hand into the cold water.
Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)
Geographic Area of Cruise: Northern Gulf of Alaska
Date: 30 June 2019
Weather Data from the Bridge
Latitude: 60.32 N Longitude: 147.48 W Wind Speed: 3.2 knots Wind Direction: 24 degrees Air Temperature: 72 °F Sky: Hazy (smoke)
Science and Technology Log
We arrived in Seward mid-day on Thursday, June 27th to find it hazy from fires burning north of us; the normally picturesque mountain ranges framing the bay were nearly obscured, and the weather forecast predicts that the haze will be with us at sea for a while as well. Most of the two days prior to departure were busy with loading, sorting, unpacking and setting up of equipment.
All equipment and supplies are placed on pallets to load on board
There are multiple experiments and different types of studies that will be taking place during the course of this cruise, and each set of researchers has a specific area for their equipment. I am on the particle flux team with Stephanie O’Daly (she specifically requested to have “the teacher” so that she’d have extra hands to help her), and have been helping her as much as I can to set up. Steffi has been very patient and is good about explaining the equipment and their function as we go through everything. Particle flux is about the types of particles found in the water and where they’re formed and where they’re going. In addition, she’ll be looking at carbon matter: what form it takes and what its origin is, because that will tell her about the movement of specific types of plankton through the water column. We spent a part of Friday setting up a very expensive camera (the UVP or Underwater Visual Profiler) that will take pictures of particles in the water down to 500 microns (1/2 a millimeter), will isolate the particles in the picture, sort the images and download them to her computer as well.
Steffi’s friend Jess was very helpful and instructive about setting up certain pieces of equipment. I found that my seamanship skills luckily were useful in splicing lines for Steffi’s tows as well as tying her equipment down to her work bench so that we won’t lose it as the ship moves.
Spliced lines
Steffi’s work space
As everyone worked to prepare their stations, the ship moved to the refueling dock to make final preparations for departure, which was about 8:30 on Saturday morning.
Day one at sea was a warm up for many teams. Per the usual, the first station’s testing went slowly as participants learned the procedures. We deployed the CTD (conductivity, temperature and depth) at the second station. A CTD is a metal framework that carries various instruments and sampling bottles called Niskin bottles. In the video, you can see them arranged around the structure. The one we sent on June 28 had 24 plastic bottles that were “fired” at specific depths to capture water samples. These samples are shared by a number of teams to test for things like dissolved oxygen gas, and nutrients such as nitrate, nitrites, phosphate and silicate, and dissolved inorganic carbon.
The CTD is lowered over the side of the ship long enough to fill sample bottles and then is brought back on board. (This still photo is a placeholder for the video.)
One of my tasks today was to help her collect samples from specific bottles by attaching a tube to the bottle, using water from the sample to cleanse it and them fill it. Another team deployed a special CTD that was built completely of iron-free materials in order to run unbiased tests for iron in the water.
By late Saturday night, we will be in Prince William Sound, and will most likely spend a day there, before continuing on to Copper River. Usually LTER cruises are more focused on monitoring the state of the ecosystem, but in this case, the cruise will also focus on the processes of the Copper River plume, rates and interactions. This particular plume brings iron and fresh water into the Northern Gulf of Alaska ecosystem, where it is dispersed by weather and current. After spending some time studying the plume, the cruise will continue on to the Middleton Line to examine how both fresh water and iron are spread along the shelf and throughout the food web.
Personal Log
As the science team gathered yesterday, it
became evident that the team is predominantly female. According to lead scientist Seth Danielson,
this is a big change from roughly 20 years ago, and has become more of the norm
in recent times. We also have five
undergraduates with us who have never been out on a cruise, which is
unusual. They are all very excited for
the trip and to begin their own research by assisting team leaders. I’ve met most of the team and am slowly
getting all the names down.
I have to admit that I’m feeling out of my
element, much like a fish in a very different aquarium. I’m used to going to sea, yes, but on a
vessel from another time and place.
There is much that is familiar about gear, lines, weather, etc., but
there are also great differences. The
ship’s crew is a separate group from the science crew, although most are friendly
and helpful. Obviously, this is a much
larger and more high tech vessel with many more moving parts. Being on the working deck requires a hard
hat, protective boots, and flotation gear.
There are viewing decks that are less restricted.
I am excited to be at sea again, but a little
bit nervous about meeting expectations and being as helpful as I can without
getting in the way. It’s a little strange
to be primarily indoors, however, as I’m used to being out in the open! I’m
enjoying the moments where I can be on deck, although with the haze in the air,
I’m missing all the scenery!
Did you know?
Because space is limited onboard, many of the
researchers are collecting samples for others who couldn’t be here as well as
collecting for themselves and doing their own experiments.
Something to think about:
How do we get more boys interested in marine
sciences?
Questions of the day (from the Main Lab):
Do whales smell the smoke outside?
Answer: Toothed whales do not have a sense of
smell, and baleen whales have a poor sense of smell at best.
Mission: Northern Gulf of Alaska Long-Term Ecological Research (NGA-LTER)
Geographic
Area of Cruise: Northern Gulf of Alaska
Date: 18 June
2019
Weather Data
(From Honolulu,
HI)
Latitude:
21.33 N
Longitude:
157.94 W
Wind
Speed and Direction: NE 15 G 23
Wind
Swell Height and Direction: NE 3-5 ft
Secondary
Swell Height and Direction: SSW 2-4 ft
Humidity:
47%
Barometric
Pressure: 1016.1 mb
Heat
Index: 93 F (34 C)
Visibility:
10.00 nm
Weather:
clear and sunny
(From
Seward, AK)
Latitude:
60.12 N
Longitude:
149.45 W
Wind
Speed and Direction: S 9
Swell
Height: 2 ft
Humidity:
77%
Barometric
Pressure: 1016.0 mb
Heat
Index: 56 F (13 C)
Visibility:
10.00 nm
Weather:
Overcast
Personal Log
Aloha kākou! Greetings everyone! In about a week, I will be exchanging currently very warm and sunny Honolulu for the vastly different climate and ecological zone in Seward and the Northern Gulf of Alaska. I will be embarking on R/V Sikuliaq there to participate in one part of a long-term study of the variability and resiliency of species in the area, but I will get to that in a bit.
In August, I will begin my seventeenth year as a sixth grade social studies teacher at ‘Iolani School, an independent K-12 school that is academically competitive at a national level. In sixth grade social studies, our students focus on the development of the modern world from ancient civilizations such as Mesopotamia, Egypt, Greece and Rome. I enjoy challenging my students to broaden their worldviews, especially about the impacts ancient civilizations have had on today’s world. We cover those for three quarters, and in the fourth quarter we examine the choices these civilizations have made and whether or not they contribute to a sustainable society. I want my students to understand that sustainability is more than just picking up trash and conserving water, but it is also about choices in government, society, culture, behavior and environment. The content of our fourth quarter is predicated on the reality that we live in Hawai’i, an island group that is roughly 2000 miles from any other major point of land.
Living in Hawai’i can be just as idyllic as advertisements make it seem, with daily rainbows, colorful sunsets and blue ocean waves. However, it also comes with challenges that we all have to face. Our cost of living is among the highest in the nation, and we face constant struggles between maintaining culture and environment in a place with limited room for population growth. We have a high homeless population, yet many of us joke that the (construction) crane is our state bird. We are also braced to be at the forefront of climate change. With a rise in sea level of 3 feet, most of Waikiki and much of downtown Honolulu is at risk of inundation. In addition, changes in sea surface temperature affect our coral reefs and fish populations as well as minimizing or eliminating our trade winds through changes in weather patterns. For these reasons, I hope to plant the awareness in my students that their generation is poised to make some major decisions about the state of the world.
My passion for sustainability and ocean health stems from the amount of time I spend in and on the water. I have been a competitive outrigger canoe paddler for the last 30 or so years, and in the summers, I paddle five to six days a week. I go to six-man team practices as well as taking my one-man canoe out with friends. I also have coached high school paddling at ‘Iolani School for the last sixteen years. Being on the ocean so much makes me much more aware of the wildlife our waters shelter: monk seals, dolphins, sea turtles and humpback whales. It also makes me aware of the trash, especially plastics that are more and more present in the ocean. I’ve picked up slippers, coolers, bottles, bags and even pieces of cargo net out of the water on various excursions. Being on the water so often also fuels my interest in meteorology; you need to know what weather and ocean conditions to expect when you go to sea. One major impact that being on the water has is that it allows you to see your island from offshore and realize that it is an ISLAND, and not a very big one at that!
Me on my one-man canoe off He’eia, O’ahu
Some of the biggest lessons about the ocean that I’ve learned have come from my experiences with the Polynesian Voyaging Society, a non-profit organization founded in 1973 to recreate the original settlement of Hawai’i by ocean voyaging canoes, as well as revive the ancient art of non-instrument navigation. PVS is most well known for the voyaging canoe Hõkūlea, which sailed to Tahiti (and back again) in 1976 to prove the validity of these cultural arts. I began working with the organization in 1994, helping to build a second voyaging canoe, Hawai’iloa, and have been there ever since. As a part of this organization, I have sailed throughout the Pacific, to locations such as Tahiti, Tonga, Aotearoa (New Zealand), Mangareva, and the Marquesas. With Te Mana O Te Moana, another voyaging canoe initiative, I sailed to the Cook Islands, Samoa, Fiji, Vanuatu and the Solomon Islands. I’ve seen many faces of the Pacific Ocean on my travels and I look forward to seeing another.
Between 2012 and 2017, PVS sent Hõkūle’a on a journey around the world. The name of the voyage was Mālama Honua (To Protect the Earth) and the goal was to visit with indigenous communities to learn what challenges they face and how they work to preserve their lands and cultures. One of the founding principles for this voyage is a Hawaiian saying, “he wa’a he moku, he moku he wa’a”, which means “the canoe is an island and the island is a canoe”. The saying refers to the idea that the choices we make about positive behavior, bringing what we need as opposed to what we want, and what we do with our resources and trash while living in the limited space of a voyaging canoe are a reflection of the choices we need to make living on the islands of Hawai’i as well as living on island Earth. I strive every day to make my students aware of the consequences of their choices.
Hõkūle’a en route to Aotearoa, 2014
Science and Technology Log
I’m pretty excited to go to Alaska, first of all, because I’ve never been there! Secondly, we have species in Hawai’i (birds and whales) that migrate between our shores and Alaska on an annual basis. Although the two locations are distant from each other, there are connections to be made, as Hawai’i and Alaska share the same ocean.
The Long Term Ecological Research (LTER) project is funded by the National Science Foundation (NSF). R/V Sikuliaq is an NSF ship working with the University of Alaska in Fairbanks. LTER encompasses 28 sites nationwide, of which the Northern Gulf of Alaska (NGA) is one. In this area, three surveys a year are made to monitor the dynamics of the ecosystem and measure its resilience to environmental factors such as variability in light, temperature, freshwater, wind and nutrients. The origins of the NGA portion of this project have been in place since 1970 and have grown to include the Seward Line system (s series of points running southeast from Seward).
On our trip, we will be looking at microzooplankton and mesozooplankton as well as phytoplankton, the size and concentration of particles in the water, and the availability of nutrients, among other things. Information gathered from our study will be added to cumulative data sets that paint a picture of the variability and resiliency of the marine ecosystem. I will be a part of the Particle Flux team for this expedition. I have a general idea of what that entails and the kind of data we’ll be gathering, but I certainly need to learn more! If you’re curious, more detailed information about ongoing research can be found at https://nga.lternet.edu/about-us/.
I always ask my students, after they complete preliminary research on any project, what they want to learn. I want to know more about particle flux (as previously mentioned). I would like to learn more about seasonal weather patterns and how they influence the NGA ecosystem. I would like to find out if/how this ecosystem connects to the Hawaiian ecosystem, and I REALLY want to see the kinds of life that inhabit the northern ocean! For my own personal information, I am really curious to see how stars move at 60 degrees north and whether or not they can still be used for navigation.
Mahalo
(Thank you)
I’m spending my last week sorting through my collection of fleece and sailing gear to prepare for three weeks of distinctly cooler temperatures. I’m going to be doing a lot of layering for sure! My two cats, Fiona and Pippin are beginning to suspect something, but for now are content to sniff through the growing pile on the couch. While packing, I’m keeping in mind that this is just another type of voyage and to pack only what I need, including chocolate. As departure gets closer, I’d like to thank Russ Hopcroft, Seth Danielson, and Steffi O’Daly for their information and help in getting to and from Seward. I’m looking forward to meeting you all soon and learning a lot from each of you! Thanks also to Lisa Seff for her on board life hacks and detailed information…much appreciated!
Geographic Area of Cruise: South Bering Sea, Alaska
Date: June 14, 2019
Hello! My name is Erica Marlaine, and in one week I will be flying to Alaska for the first time ever to spend three weeks aboard NOAA Ship Oscar Dyson as a NOAA Teacher at Sea. I am a Special Education Preschool Teacher at Nevada Avenue Elementary School in West Hills, California.
Me at the Noah’s Ark Exhibit at the Skirball Cultural Center
in Los Angeles
My students are 3-5 year olds who have a variety of special needs, such as autism, Down syndrome, and speech delays. They are fascinated by science experiments and nature, love to explore their surroundings with binoculars and magnifying glasses, and often notice the details in life that the rest of us walk right by.
One of my little scientists
Checking the growth of our tadpoles.
Like most 3-5 years olds, they are obsessed with whales, octopi, and of course, sharks. (If you don’t yet know the baby shark song, ask any preschooler you know to teach it to you.)
When I tell people (with much excitement) that I have been selected to be a NOAA Teacher at Sea, they ask “who will you be teaching?” thinking that there will be students onboard the ship. I explain that in many ways, I will actually be both a Student at Sea and a Teacher at Sea. I will be learning from the scientists onboard the ship how to use acoustics as well as more traditional, hands-on methods to count Alaskan pollock in the Bering Sea, and exploring the issues oceanographers are most concerned or excited about. Then, through blogging while onboard, and upon my return to the classroom, I will use this first-hand knowledge to create STEM projects involving oceanography that will help students see their connection to the ocean world, and instill in them a sense of stewardship and responsibility for the world around them. I am hopeful that these experiences will inspire more students at my school to choose a career in science, perhaps even with NOAA.
When I am not teaching, or taking classes for my administrative credential through the University of Southern California, or being involved with education policy through a fellowship with Teach Plus, I enjoy spending time with my husband and daughter, and apparently EATING Alaskan pollock. It turns out that the imitation crabmeat in the California rolls and crab salad that I eat quite often is actually Alaskan pollock. We will see if catching them, looking them in the eye, and studying them, will make me more or less interested in eating them.
Finishing off the school year has never been so exciting as it is now, with an Alaskan adventure awaiting me! My students are nearly as giddy as I am, and it is a pleasure to be able to share the experience with them through this blog.
In two weeks, I will leave my home in the Appalachian foothills of Georgia and fly to Anchorage, Alaska. From there I will take a train to the port city of Seward, where I will board NOAA Ship Rainier. For 11 days we will travel around Kodiak Island conducting a hydrographic survey, mapping the shape of the seafloor and coastline. The Alaska Hydrographic Survey Project is critical to those who live and work there, since it greatly improves the accuracy of maritime navigational charts, ensuring safer travel by sea.
My Mozambican students, 2013
In the past, I have traveled and worked in many different settings, including South Carolina, Cape Cod, Costa Rica, rural Washington, and even more rural Mozambique. I have acted in diverse roles as volunteer, resident scientist, amateur archaeologist, environmental educator, mentor, naturalist, and teacher of Language Arts, English Language, Math, and Science.
Mount Yonah, the view from home in northeast Georgia
I now found myself back in my home state of Georgia, married to my wonderful husband, Nathan, and teaching at a local public school. Having rediscovered the beauty of this place and its people, I feel fortunate to continue life’s journey with a solid home base.
My husband and I at the beach
Currently I teach Earth Science at East Hall Middle School in Gainesville, Georgia. For the last five years, I have chosen to work in the wonderfully wacky world of sixth graders. Our school boasts a diverse population of students, many of whom have little to no experience beyond their hometown. It is my hope that the Teacher at Sea program will enrich my instruction, giving students a glimpse of what it is like to live and work on a ship dedicated to scientific research. I am also looking forward to getting to know the people behind that research, learning what motivates them in the work that they do and what aspects of their jobs they find the most challenging.
Did you know?
Kodiak Island is the largest island in Alaska and the second largest in the United States. It is located near the eastern end of the Aleutian Trench, where the Pacific Plate is gradually being subducted underneath the North American Plate.
Geographic Area of Cruise: Northern Gulf of Alaska (Port: Seward)
Date: April 22, 2019
Personal Introduction
Later this week, R/V Tiglax will depart the Homer Harbor in Homer, Alaska and begin the trip ‘around the corner.’ From the Homer Harbor, she will enter Kachemak Bay, flow into the larger Cook Inlet, and enter the Northern Gulf of Alaska and the North Pacific Ocean. Veering to the east, and then north, she will arrive in Seward, Alaska. That trip will take about 3 days, with stops along the way for some research near the Barren Islands. Meanwhile, I’ll be working in Homer for a few extra days before I begin my own trip to Seward. I will travel on the road system, first heading north and then jaunting southeast to Seward. It will take me 3.5 hours to drive there.
However you get there, Seward and the Northern Gulf of Alaska Long-Term Ecological Research project area are just around the corner from Homer. Homer is the place where I was born and raised, the place where I became inspired by science, the place where I now have the incredible privilege of working as an environmental educator for students participating in field trips and intensive field study programs from Homer, around Alaska, and beyond. At the Center for Alaskan Coastal Studies (CACS), one of the highlights of my job is guiding youth and adults into the intertidal zone to explore the amazing biodiversity that exists there.
A 4th grade student from West Homer Elementary explores a tidepool in Kachemak Bay
In my lifetime as a Homer resident, and over the past 12 years as an educator in Kachemak Bay, I have witnessed seemingly unfathomable changes in the Bay’s ecosystems. These changes have been concerning to all of us who live here and are sustained by Kachemak Bay. Most recently, we watched as many species of sea stars succumbed to sea star wasting syndrome, their bodies deteriorating and falling apart in the intertidal zone. By fall of 2016, only leather stars (Dermasterias imbricata) seemed to remain. But over the past year, we’ve watched as true stars (Evasterias troschelii), blood stars (Henricia spp.), little six-rayed stars (Leptasterias spp.), and others have begun to reappear in the tidepools.
Tidepooling in Kachemak Bay, this 4th grader found a healthy, large adult true star!
This past week, I was lucky enough to be the naturalist educator for students from West Homer Elementary as they spent 3 days in a remote part of Kachemak Bay. This was particularly poignant for me, as many of my most treasured memories from my own elementary school experience come from a similar field trip with CACS in 4th grade. That trip helped to inspire me towards a life of curiosity and wonder, passion for science and teaching, and commitment to stewardship of ecosystem and community.
So it was even more special that on this trip we observed a wonderfully diverse array of sea star species, including over a dozen sunflower stars (Pycnopodia helianthoides). I’ve only seen a couple of these magnificent sea stars since they all-but disappeared from Kachemak Bay in August 2016, leaving behind only eery piles of white goo. Their absence hurt my heart, and the potential impacts of losing this important predator reverberated in my brain. Though the future of these stars remains unknown, it was such a joy and relief to see a good number of apparently healthy sunflower stars in the intertidal this week!
Finally, a healthy, good-sized sunflower star!
The Northern Gulf of Alaska Long-Term Ecological Research (LTER) site was created, in part, to develop an understanding of the response and resiliency of the Northern Gulf of Alaska to climate variability. In a time when people, young and old, across Alaska and beyond are increasingly concerned about impacts of climate change, it can be challenging for educators to get youth involved in ways that aren’t overwhelming, saddening, or frustrating. Part of my work at CACS has been thinking and working with teachers, community educators, and researchers about how we can engage youth in ways that are realistic but hopeful and proactive. The idea that I’ll be learning about not just climate impacts but the potential resiliency of the Northern Gulf of Alaska is so cool! I’m excited to find out more about the unique species, life cycles, and natural histories that make the Gulf of Alaska such a good place to study ecosystem resiliency, and I’m inspired to learn more about other ecosystems close to Kachemak Bay and their own potential resilience.
I am really looking forward to my time on R/V Tiglax in the Gulf of Alaska!
A day kayaking with my partner Nathan and his 6-year old daughter, Johanna. I love spending time on the water, and am excited to get out in the Gulf on a much larger vessel!
This morning 25 knot winds from the NE, waves to 8ft, tonight calm seas variable winds, light rain
58.14 N, 151.35 W (Kodiak Line)
Science Log
Kodiak
CTD (water chemistry) data visualized along the Kodiak line.
My wife and I have traveled to Raspberry and Kodiak Islands twice. The island’s raw beauty, verdant colors, and legendary fishing make it one of my favorite places on Earth. Its forests are dense, with huge hemlocks and thick growths of salmon berries. The slopes are steep and covered with lush grasses. Fish and wildlife abound. As we moved our way down the Kodiak line, getting closer and closer to land, that richness of life was reflected in waters surrounding the Island. In just fifty nautical miles we moved from a depth of a few thousand meters to less than one hundred. Seabirds became more abundant, and we saw large groups of sooty and Buller’s shearwaters, some of them numbering in the thousands. Sooty shearwaters nest in the southern hemisphere and travel half way across the planet to feed in the rich waters surrounding Kodiak. Fin whales were also abundant today, and could be seen feeding in small groups at the surface. Our plankton tows also changed. Deep sea species like lantern fish and Euphausiids disappeared and pteropods became abundant. We caught two species of pteropods that go by the common names – sea butterflies and sea angels. Sea butterflies look like snails with clear shells and gelatinous wings. Sea angels look more like slugs, but also swim with a fluttering of their wings. Pteropods are an important part of the Gulf of Alaska Ecosystem, in particular to the diets of salmon.
Sooty shearwaters as far as you can see.
In the last decade, scientists have become aware that the ocean’s pH is changing, becoming more acidic. Sea water, like blood, is slightly basic, typically 8.2 on the pH scale. As we have added more and more CO2 into the atmosphere, about half of that gas has dissolved into the oceans. When CO2 is dissolved in sea water if forms carbonic acid, and eventually releases hydrogen ions, lowering the waters pH. In the last decade, sea water pH has dropped to 8.1 and is predicted to be well below 8 by 2050. A one tenth change in pH may not seem like much, but the pH scale is logarithmic, meaning that that one tenth point change actually represents a thirty percent increase in the ocean’s acidity. Pteropods are particularly vulnerable to these changes, as their aragonite shells are more difficult to make in increasingly acidic conditions.
A nice introduction to Pteropods
Personal Log
I chose teaching
We have been at sea now for one week. I feel adrift without the comforts and routines of family, exercise, and school. There are no distractions here, no news to follow, and no over-scheduled days. There is just working, eating, and sleeping. Most of the crew and scientists on board seem to really enjoy that routine. I am finding it difficult.
There was a point in my twenties where I wanted nothing more than to become a field biologist. I wanted to leave society, go to where the biological world was less disturbed and learn its lessons. I see the same determination in the graduate students aboard the Tiglax. When working, they are always hyper focused on their data and the defined protocols they use to collect it. If anything goes wrong with tow or sampling station, we repeat it. You clearly need that kind of focus to do good research. Over time, cut corners or the accumulation of small errors can become inaccurate and misleading trends.
When I was in graduate school hoping to become a marine biologist, I was asked to be teaching assistant to an oceanography class for non-science majors. Never having considered teaching, the experience opened my eyes to the joys of sharing the natural world with others, and changed my path in ways that I don’t regret. I am a teacher; over the last twenty years it has come to define me. On this trip, they call me a Teacher at Sea, yet the title is really a misnomer. I have nothing to teach these people, they are the experts. Really, I am a student at sea, trying to learn all that I can about each thing I observe and each conversation I have.
Mostly cloudy, winds variable 10 knots, waves four to six feet during the day, up to eight feet at night
57.27 N, 150.10 W (Kodiak Line)
Science Log
What Makes Up an Ecosystem? Part IV Jellies
Ever seen a jellyfish washed up on the beach? Ever gotten stung by one? Most people don’t have very favorable views of jellyfish. I’m getting to spend a lot of time with them lately, and I am developing an appreciation. We have a graduate student on board studying the interactions between fish and jellies. Her enthusiasm for them is infectious.
Graduate student Heidi photographing a phacellophora (fried egg) jelly
Jellyfish really aren’t fish. They belong to a group called Cnidarians, along with corals, sea anemones, and hydras. It’s one of the most primitive groups of animals on the planet. Ancient and simple, Cnidarians have two tissue layers, a defined top and bottom, but no left and right symmetry and no defined digestive or circulatory systems. Jellies have simple nerves and muscles. They can move, but they are unable to swim against oceanic currents and therefore travel at the whim of those currents. Jelly tissue is made of a collagen protein matrix and a lot of water. I have heard one scientist call jellies “organized sea water.” That’s really not too far off. Seawater has a density close to one kilogram per liter, and when you measure jellies, their mass to volume ratio almost always approaches one.
Despite their simplicity, jellies are incredible predators. When we scoop them up with the Methot net, they often come in with small lantern fish paralyzed and dangling from their tentacles. Jellies possess one of the more sophisticated weapons in the animal kingdom. Located in their tentacles are stinging cells, called cnidocytes. These cells contain tiny, often toxic harpoons, called nematocysts. The nematocysts are triggered by touch and can deploy as fast as a rifle bullet, injecting enough venom to kill small fish or to give the person weighing the jellies a nasty sting.
Holding up a Chrysaora (sea nettle) jelly.
Jellies have not been thoroughly studied in the Gulf of Alaska, and the work onboard the Tiglax may take us closer to answering some basic questions of abundance and distribution. How many jellies are there, where are they, and are their numbers increasing in response to increasing ocean temperatures?
In order to sample jellies each night, four times a night we deploy a Methot net. The Methot net is a square steel frame, two and a half meters on each side and weighing a few hundred pounds. It is attached to a heavy mesh net, ten meters long. Even in relatively calm seas, getting it in and out of the water takes a lot of effort. We have already deployed it in seas up to eight feet and winds blowing 20 knots, and that was pretty crazy. The net is attached by steel bridle cables to the main crane on the Tiglax. As the crane lifts it, four of us guide it overboard and into the water. We leave it in the water for 20 minutes, and it catches jellies – sometimes lots of jellies. On still nights, you can sometimes see jellies glow electric blue as they hit the net.
As we retrieve the net there are a few very tense moments where we have to simultaneously secure the swinging net frame and lift the jelly-filled cod end over the side of the boat. A few of the hauls were big enough that we had to use the crane a second time to lift the cod end into the boat.
Smaller ctenophores (comb jellies) caught in the Methot net.
Once on board, the jellies have to be identified, measured, and weighed. Assuming catches stay about the same, we will measure over one thousand jellies while on this cruise. I don’t know how all of this data compares with similar long-term ecological projects, but on this trip the trend is clear. Jellies are true oceanic organisms, the further we go offshore the larger and more numerous they get. Go much beyond the continental shelf and you have entered the “jelly zone.”
Personal Log
Seasick teacher
Last night was tough. During our transit from the Seward line to the Kodiak line, things got sloppy. The waves got bigger, and their periods got shorter. To make things more uncomfortable, we were running perpendicular to the movement of the waves. I retreated to my bunk to read, but eventually the motion of the ocean got the better of me and I made my required donations to the fishes. The boat doesn’t stop for seasick scientist (or teacher) and neither does the work; at 11:00 last night I dragged myself from bed and reported for duty.
The work on the Tiglax is nonstop. The intensity of labor involved with scientific discovery has been an eye-opener to me. We live in a world where unimaginable knowledge is at our fingertips. We can search up the answer to any question and get immediate answers. Yet we too easily forget that the knowledge we obtain through our Google searches was first obtained through the time and labor of seekers like the scientists aboard the Tiglax.
The goal of this project is to understand the dynamics of the Gulf of Alaska ecosystem, but one of the major challenges in oceanography is the vastness of its subject. This project contains 60-70 sampling stations and 1,800 nautical miles of observational transects, but that is just a few pin pricks in a great wide sea. Imagine trying to understand the plot of a silent movie while watching it through a darkened curtain that has just a few specks of light passing through.
“Pinpricks in the ocean,” Transect lines for the North Gulf of Alaska Long-term Ecological Research Program.
Did You Know?
Storm petrels periodically land on ships to seek cover from winds or storms. They are one of the smaller sea birds, at just a few ounces they survive and thrive in the wild wind and waves of the Gulf of Alaska.
Last night we had a forked-tailed storm petrel fly into the drying room as I was removing my rain gear between zooplankton tows. A softball-sized orb of grey and white feathers, it weighed almost nothing and stared at me with deep black and nervous eyes as I picked it up, wished it well, and released it off the stern of the boat. It was a cool moment.
Animals Seen Today
Fin whales
Lots of seabirds including Storm Petrels, tufted puffins, Laysan and black-footed and short-tailed albatross, flesh footed shearwater, and an osprey that followed the boat for half the night
Mola mola (ocean sunfish), which was far north of its normal range
Mostly cloudy, winds variable 10 knots, waves to four feet
58.27 N, 148.07 W (Gulf of Alaska Line)
Science Log
What Makes Up an Ecosystem? Part II Phytoplankton
Most of my students know that the sun provides the foundational energy for almost all of Earth’s food webs. Yet many students will get stumped when I ask them, where does the mass of a tree comes from? The answer of course is carbon dioxide from the air, but I bet you already knew that.
Scientists use the term “primary productivity” to explain how trees, plants, and algae take in carbon dioxide and “fix it” into carbohydrates during the process of photosynthesis. Out here in the Gulf of Alaska, the primary producers are phytoplankton (primarily diatoms and dinoflagellates). When examining diatoms under a microscope, they look like tiny golden pillboxes, or perhaps Oreos if you are feeling hungry.
Primary productivity experiments running on the back deck of the Tiglax.
One of the teams of scientists on board is trying to measure the rates of primary productivity using captive phytoplankton and a homemade incubation chamber. They collect phytoplankton samples, store them in sealed containers, and then place them into the incubator. Within their sample jars, they inject a C13 isotope. After the experiment has run its course, they will use vacuum filtration to separate the phytoplankton cells from the seawater. Once the phytoplankton cells are captured on filter paper they can measure the ratios of C12 to C13. Almost all of the carbon available in the environment is C12 and can be distinguished from C13. The ratios of C12 to C13 in the cells gives them a measurement of how much dissolved carbon is being “fixed” into sugars by phytoplankton. Apparently using C14 would actually work better but C14 is radioactive and the Tiglax is not equipped with the facilities to hand using a radioactive substance.
During the September survey, phytoplankton numbers are much lower than they are in the spring. The nutrients that they need to grow have largely been used up. Winter storms will mix the water and bring large amounts of nutrients back to the surface. When sunlight returns in April, all of the conditions necessary for phytoplankton growth will be present, and the North Gulf of Alaska will experience a phytoplankton bloom. It’s these phytoplankton blooms that create the foundation for the entire Gulf of Alaska ecosystem.
Personal Log
Interesting things to see
The night shift is not getting any easier. The cumulative effects of too little sleep are starting to catch up to me, and last night I found myself dosing off between plankton tows. The tows were more interesting though. Once we got past the edge of the continental shelf, the diversity of zooplankton species increased and we started to see lantern fish in each of the tows. Lantern fish spend their days below one thousand feet in the darkness of the mesopelagic and then migrate up each night to feed on zooplankton. The have a line of photophores (light producing cells) on their ventral sides. When they light them up, their bodies blend in to the faint light above, hiding their silhouette, making them functionally invisible.
A lantern fish with its bioluminescent photophores visible along its belly.
Once I am up in the morning, the most fun place to hang out on the Tiglax is the flying bridge. Almost fifty feet up and sitting on top of the wheelhouse, it has a cushioned bench, a wind block, and a killer view. This is where our bird and marine mammal observers work. Normally there is one U.S. Fish and Wildlife observer who works while the boat is transiting from one station to the next. On this trip, there is a second observer in training. The observers’ job is to use a very specific protocol to count and identify any sea bird or marine mammal seen along the transect lines.
Today we saw lots of albatross; mostly black-footed, but a few Laysan, and one short-tailed albatross that landed next to the boat while were casting the CTD. The short-tailed albatross was nearly extinct a few years ago, and today is still considered endangered. That bird was one of only 4000 of its species remaining. Albatross have an unfortunate tendency to follow long-line fishing boats. They try to grab the bait off of hooks and often are drowned as the hooks drag them to the bottom. Albatross are a wonder to watch as they glide effortlessly a few inches above the waves. They have narrow tapered wings that are comically long. When they land on the water, they fold their gangly wings back in a way that reminds me of a kid whose growth spurts hit long before their body knows what to do with all of that height. While flying, however, they are a picture of grace and efficiency. They glide effortlessly just a few inches above the water, scanning for an unsuspecting fish or squid. When some species of albatross fledge from their nesting grounds, they may not set foot on land again for seven years, when their own reproductive instincts drive them to land to look for a mate.
Our birders seem to appreciate anyone who shares their enthusiasm for birds and are very patient with all of my “What species is that?” questions. They have been seeing whales as well. Fin and sperm whales are common in this part of the gulf and they have seen both.
A Laysan Albatross, photo credit Dan Cushing
Did You Know?
Albatross, along with many other sea birds, have life spans comparable to humans. It’s not uncommon for them to live sixty or seventy years, and they don’t reach reproductive maturity until well into their teens.
Animals Seen Today
Fin and sperm whales
Storm Petrels, tufted puffins, Laysan and black-footed and short-tailed albatross, flesh footed shearwater
CTD (water chemistry) data visualized along the Gulf of Alaska Line.
The scientists aboard this ship are trying to understand the working parts of the North Gulf of Alaska ecosystem. Since Descartes, the western approach to science has required that the understanding of complex systems begin with the reduction of a system it to its simpler working parts. For example, to understand the clock, you must take it apart and try to understand the mechanism of each piece separately. The Gulf of Alaska is huge, and its ecosystem is both highly complex and highly variable. Changes take place because of weather, season, and climactic regime. Nonetheless, the first step to understanding it is to understand its chemistry.
The CTD gets dropped or “cast” at each station. On this boat, that means four people shoving it out the back door while trying not to fall out themselves. There is more than $100,000 worth of equipment attached to the CTD Rosette and there is a moment in each cast where the CTD swings precariously before the winch lowers it down into the water. When the CTD comes back up, all of that data is run through a computer and it paints a picture of what conditions are like at depth.
Inside the “van” where water samples are processed for trace medals
CTD stands for conductivity, temperature, depth. In reality, it tests for those things plus salinity, dissolved oxygen, nitrates, pressure, and florescence (which is a measurement of the chlorophyll in phytoplankton). The CTD also has a camera onboard that takes gray-scale images of particles and plankton in the water column as it goes down. Most of our CTD “casts” are showing a water column that is highly stratified, with a surface layer that is relative warm (34o Celsius), lower salinity, and a chlorophyll maximum around twenty meters. The CTD shows a thermocline (rapid change in temperature) around fifty meters. Below that, the water is colder and has a higher salinity, both of which results in water with a higher density. The density differences between these two layers make it so that they don’t easily mix. The stratification effect had been intensified by the recent stretch of sunny weather and light winds. Stratification by density “traps” phytoplankton at the surface in waters ideal for photosynthesis except that in September, the availability of nutrients needed for growth is quite low. Nitrates, nitrites, and silica have been used up by growing phytoplankton earlier in the summer and their absence now limits growth.
Catch from a Multi-net, mostly small euphausiids (krill)
We have scientists on board measuring the surface waters for trace metals – iron in particular. It’s a common joke on board that the smaller the subject you study, the greater the equipment needs. Whale watchers just need binoculars but the chemists have their own lab set up inside a twenty-foot shipping container or “van” strapped to the top deck. The metals team drags a missile shaped device along the side of the boat known as an “iron fish.” The iron fish, is connected to a long plastic tube and pump that provides them a constant stream of surface water. Samples are continuously collected and frozen for later analysis back in Fairbanks. Months of work will be required to process all of the samples collected on this trip.
A three-spined stickleback
Our plankton catches were much less variable last night. The Multi-net caught almost exclusively small euphausiids (krill.) The Methot net caught four kinds of jellies, including one moon jelly that the jelly expert was very excited about – perhaps a species not described in Alaska before. The Methot net also caught a lot of small fishes swimming at the surface. One of which was the three-spine stickleback. This was exciting for me because the three-spine stickleback is a species we use in my AP Biology class as an easy to understand and highly local example of natural selection. The three-spine stickleback is a small fish, around 1 inch in size, found in both fresh and saltwater. In saltwater, they have three large spines that discourage predators from eating them. Out here in the ocean, the spines give the fish a selective advantage. During the last ice age, some sticklebacks were trapped in fresh water ponds and lakes in South Central Alaska. There, they underwent a change. The spines which were such a great defense in the ocean were a disadvantage to them in freshwater. Aggressive dragonfly larva use the spines like handles to grab the small fish and eat them. Over time there was a selective advantage to have smaller spines, and today freshwater sticklebacks have greatly reduced pelvic spines as compared to their saltwater cousins. Natural selection did not design a better fish, it simply picked which variants were more likely to survive and reproduce in its environment.
Personal Log
Cetacean acoustic recording buoy recovered by the Tiglax.
My second night shift was not any easier, but it was more pleasant. Just before sunset, we took a slight detour from our transect line to recovery a buoy for a scientist from Scripps Institution of Oceanography. An acoustic recorder, designed to count whales by their unique calls, it had been deployed a year earlier in 900 meters of water. The crew had onboard a device that would talk to the buoy and signal it to release from its mooring. It took about a half an hour, but eventually there we saw it bobbing at the surface. Luckily the seas were pretty calm, and we were able to pull it through the side door.
The seas and weather continue to be excellent. Last night we were treated to a display of the aurora around 3:30 AM. It was so calm and so quiet that at one point, we could hear whales breathing around us. Both served as distractions to the routine of net deployment, net retrieval, sample containment, repeat.
As we traveled the ten nautical miles between stations, the flood lights on the front deck were turned off and I would sit down to watch the stars. To ancient mariners, the clear night sky was a map that could direct you across an ocean. It made me think of the Polynesian navigators tracking their small canoes across the Pacific. It also made me think about Ptolemy, who thought the Earth was encased in a perfect glass sphere with stars painted along its interior. I could see how you would think of such a sky as art.
Did You Know?
Did you know the Earth is round? It seems silly to have to say, but as a science teacher, the battle against the fantasies and fallacies of the Internet are never ending. Last year was the first year in twenty-one years of teaching that I was challenged by a student to prove to him that the Earth is round, and it happened twice. So here goes. On a boat in the Gulf of Alaska on a clear day, you know the Earth is round because as you move slowly away from the mountains, they disappear from the bottom up. By the end of the day we had traveled far enough from shore that we saw just the snow-covered tips of mountain peaks.
Sunset with the mountains receding in the background, it must be time to go to work.
Animals Seen Today
Dall porpoise
Lots of seabirds including black-footed and Laysan albatross, sooty shearwater, puffins and fulmars.
Most of day one was spent loading, sorting, unpacking, and storing gear. Scientists do not travel light. There were more action packers on board than I have ever seen in once place. At midday, we had a safety training, which consisted of learning how to put on a survival suit and how to use the coffee machine without flooding the galley. For night work, I was assigned a mustang float coat, a water activated flash light, and satellite locator, so that they could find my body if I went overboard.
After dinner, work shifted to putting together various nets and the CTD which I will describe in more detail later. We got underway at about 8:00 PM, just as the sun was setting. I slept for an hour and was woken at 10:30 to begin my shift doing zooplankton tows.
The first tow uses a Methot net, which is a large square steel frame attached by d-rings to a heavy mesh net, ten meters long. The net ends in a plastic sieve tube called a “cod end” that keeps any jellies from escaping. The net is quite heavy, and it takes four of us to guide it as a crane raises it off of the deck and then lowers it over the side. The net is dragged at the surface for twenty minutes. In the darkness of night, it glows slightly green as ctenophores and other bioluminescent jellies smash into it.
Dave demonstrating the proper technique for putting on a survival suit
After the Methot net is retrieved and secured on deck, we leave the collected jellies for a few minutes to go deploy the next net, called a Multi-net. The Multi-net is a steel box about the size of a dishwasher with a funnel entrance and five separate fine-mesh nets hanging off of the back. The net also has a heavy “fish fin” that acts to drag it down and keep it moving straight. The four of us work the net to the edge of the boat, open the back gate, and use two winches to lower it overboard. Once in the water and if the bottom depth allows it, the Multi-net gets dropped to a depth of two hundred meters and the first net is opened. The Multi-net allows you to “carve up the water column.” Each net can be triggered remotely to open and collect a horizontal sample of zooplankton at a specific depth. The electronics also allow you to measure how much water volume flows through the net. Each net is about two meters long, made of a fine mesh that funnels plankton into a soft sieve or “cod end”. While the Multi-net is “fishing,” we sort, classify, and measure the jellies collected in the Methot net tow.
A Methot Net Tow
The Seward Line Transect is made up of fifteen stops or stations. Each one designated as GAK1, GAK2, etc. Once we finish sampling a station, the boat speeds up and drives us ten nautical miles to the next station. Last night we managed to sample four stations, finishing the last one just as the sun rose around 7:00 AM. When daylight comes, the Tiglax makes its way back to the place the night shift began. All of the day-time sampling has to be done at each of the stations we sampled the night before. The day-time sampling uses different tools, the main tool being the CTD Rosette Sampler. The Rosette is a steel cage with water collecting “Niskin Bottles” and lots of other instrumentation strapped into the cage. There are fifteen bottles and each is triggered by computer to close at a specific depth. This allows the scientists on board to measure a variety of physical and chemical properties of the water at depth.
Personal Log
The night shift was surprisingly dark. That may sound obvious, but after a long Alaskan summer, with campfires and hikes that often went past midnight in perfect daylight, dark is an adjustment. The night was beautiful and warm, but the work of deploying and retrieving nets was tedious and physical. By morning I was exhausted, but I was reminded repeatedly that there are no cutting corners. No matter how tired you get, each sample needs to be meticulously cared for.
After the sun came up, I forced myself to eat some breakfast and then I fell in bed for a hard sleep. I could only stay there for a couple hours before my well-trained, morning-self wanted to greet the day. The day was flawless, picture-perfect, sunny and calm, the kind of days you don’t often seen in the stormy Gulf of Alaska.
Animals Seen Today
Dall Porpoise
Lots of seabirds, including black-legged kittiwakes, pelagic cormorants, and sooty and flesh-footed shearwaters.
Mission: Long-Term Ecological Research in the North Gulf of Alaska, aka The Seward Line Transects
Geographic Area of Cruise: North Gulf of Alaska
Date: September 5, 2018
Latitude: 61.3293° N Longitude: 149.5680° W Air Temperature: 60° F Sky: Clear
Logistics Log
When I read the instructions for my application to NOAA Teacher at Sea, they emphasized the necessity for flexibility. Alaskans, in my mind, epitomize flexibility. The climate demands it. When the weather changes, you have to adjust to it. Not doing so can put you or others at risk.
My original cruise should have departed this weekend into the Bering Sea, but NOAA Ship Oscar Dyson developed problems with its propulsion system. Rather than sailing this research cruise, she will be in Kodiak under repair. I was pretty bummed when I got the news, but I really feel for all of those PhD students whose thesis projects needed the data from that trip.
RV Tiglax
The wonderful folks at NOAA told me that they were working on a new assignment, most likely in Southeastern US. I tried to wait patiently, but I was thinking about how much I wanted to teach Alaskan kids about the ocean just a few miles from them. Meanwhile, I had to cancel my substitute teacher. My sub has done some biological fieldwork, and when I talked to him he was very understanding. The funny thing was I got an email from his wife the next day, saying that she might have a berth for me. It turns out she works for the North Pacific Research Board and was familiar with most of the fisheries and ecological research going on in coastal Alaska. The berth was on the R/V Tiglax (TEKH-lah – Aleut for eagle). The Tiglax is not a NOAA vessel. It is owned by U.S. Fish and Wildlife Service and operated jointly by the National Science Foundation. NOAA Teacher at Sea does occasionally partner with other organizations. After a few days of waiting, I was told that this cruise met the NOAA Teacher at Sea criteria.
Bringing an end to my long logistical story, I leave Monday on a trip into the Gulf of Alaska for seventeen days aboard the Tiglax.
Science Log
The science behind my new project is pretty exciting. The Seward Line Transects have been run every summer since 1997 – every May and every September. Weather permitting, we will repeat the Seward Line Transect (seen below in black) along with four other transects. Each transect begins at a near shore location and makes it past the edge of the continental shelf into the deep waters of the Pacific. At each transect station, water is collected using a CTD to test the physical and chemical properties of the water at that location. A variety of plankton collection nets will be also be deployed. One of these sampling stations (GAK-1) has been sampled continuously for plankton and water chemistry for forty-eight years, representing an incredible wealth of long term ecological data.
Here is Caitlin Smoot (who will be on board with me) talking about how Zooplankton is collected aboard the R/V Sikuliaq, another vessel that operates in the Gulf of Alaska.
Personal Log
The transect lines that make the North Gulf of Alaska Long Term Ecological Research Project
My job will be working the night shift, helping to collect plankton. I go out of my way in all of my classes to look at plankton. I even wrote a lab using diatoms to investigate a suspicious drowning death for my forensic science class. I’ve been collecting and examining freshwater plankton around my home in Eagle River, Alaska with my science classes for years, but rarely have I gotten to look at marine plankton. I’m excited to learning how plankton is collected at sea and how those collections are used to calculate relative abundance of plankton in the Gulf of Alaska from these samples.
In my classroom, I am always on the look out for how to better connect students to the science I am teaching. I’ve taught Oceanography for fifteen years but never been on an oceanographic cruise. I am hopeful this trip gives me a depth of experience that my students will benefit from.
As I get closer, I am not without some anxieties. I’m the very definition of a morning person, so working the night shift is going to be an adjustment. Just being aboard the Tiglax is going to be an adjustment. At a length of 120 feet, the Tiglax is a small research vessel with pretty limited facilities and no Internet connection. I’ve been in a lot of boats, but I don’t recall ever being beyond the sight of land. Those transect lines go way out into the ocean, and I wonder what it will feel like to be 150 miles from shore.
Did You Know?
The average depth of the ocean approaches 3,700 meters (12,000 feet.) The Seward Line transect begins in water only 100 meters deep and moves into water greater than 4000 meters in depth.
Geographic Area of Cruise: Point Hope, northwest Alaska
Date: August 23, 2018
Weather Data from the Bridge
Latitude 87 43.9 N
Longitude – 152 28.3 W
Air temperature: 12 C
Dry bulb 12 C
Wet bulb 11 C
Visibility: 10 Nautical Miles
Wind speed: 2 knots
Wind direction: east
Barometer: 1011.4 millibars
Cloud Height: 2000 K feet
Waves: 0 feet
Sunrise: 6:33 am
Sunset: 11:45 pm
Science and Technology Log
Today we deployed the drifter buoy off the stern of the Fairweather off the southeast coast of Kodiak Island Alaska, at 3:30 pm Alaskan time zone. The buoy will be transmitting its location for approximately one year. During this time, students will be have the opportunity to logon and track its progress.
This project is very exciting for many of my students at the Henderson County Early College and elementary students at Atkinson Elementary (Mills River, NC) and Hillandale Elementary (Henderson County, NC) that have participated in my “Young Scientists” program. Prior to my journey to Alaska, I visited those elementary schools introducing them to the mapping that we were going to collect and the important mission of NOAA. As part of this outreach, students designed stickers that I placed on the buoy prior to deployment yesterday. In addition, Ms. Sarah Hills, a middle school science teacher from the country of Turkey, is also going to track its progress.
An interesting note: my “Young Scientists” program was inspired in 2015 after participating in my first Teacher at Sea trip on board NOAA Ship Henry Bigelow. I would like to thank the NOAA Teacher at Sea Alumni coordinator Jenn Annetta and Emily Susko for supporting this effort!
Deploying the drifter buoy off the stern of the Fairweather – Photo by NOAA
All schools are welcome to track its current location. Visit the following site http://osmc.noaa.gov/Monitor/OSMC/OSMC.html. In the upper left hand corner enter the WMO ID# 2101601 and then click the refresh map in the right hand corner.
The last day at sea, crew members had the opportunity to fish from the ship in a region called the “Eight Ball,” which is a shoal just of to the southwest of Kodiak Island. Within ten minutes, the reels were active hauling in Halibut. I have never seen fish this big before and Eric reeled in the biggest catch weighing around 50 lbs! Alaska is a big state with big fish!
Eric hauling in his catch! Photo by Tom
Personal Log
This is my last day on board the Fairweather. For three weeks I witnessed a young NOAA Corps crew orchestrate an amazing level of professionalism and responsibilities to ensure a productive mission. While on board and I met new friends and I have learned so much and will be bringing home new lessons and activities for years to come. The crew on board the ship has been very warm, patient and very happy to help answer questions. I am very honored to be selected for a second cruise and have enjoyed every minute; thank you so much! As we sailed into Kodiak Island, witnessed an eye catching sunrise, wow!
Sunrise, Kodiak Island – photo by Tom
I wish the crew of the Fairweather, Fair winds and happy seas.
Latitude: 61.3293° N Longitude: 149.5680° W Air Temperature: 56° F Sky: Rain (typical weather for August in AK)
Me standing in front of the rapidly melting Cascade Glacier, Harriman Fjord, Prince William Sound.
Personal Introduction
My name is Mark Van Arsdale. I am a high school teacher in Eagle River, Alaska. Eagle River is a bedroom community just outside of Anchorage. At ERHS, I teach AP Biology, Forensic Science, Oceanography, and Marine Biology. I will be aboard the NOAA Ship Oscar Dyson as a participant in the 2018 NOAA Teacher at Sea program.
It’s raining right now, and I am sitting in my kitchen contemplating the start of the new school year next week and the start of a new adventure next month. In three weeks I will fly from Anchorage to Dutch Harbor, Alaska to join the scientists and crew of the NOAA Ship Oscar Dyson. Even though I will never leave the state, I will fly 796 miles, the same distance as flying from New York to Chicago. Alaska is an incredibly large state, almost 600,000 square miles of land and 34,000 miles of coastline. My adventure will take me into the Bering Sea. Although I have never been there, I have a connection to the Bering Sea. Like many other Alaskans’, much of the salmon and other seafood my family eats spends all or part of its lifecycle traveling through the rich waters of the Bering Sea.
At 591,000 square miles, Alaska is as wide as the lower 48 states and larger than Texas, California, and Montana combined. Copyright Alaska Sea Adventures.
Alaska and Alaskans are highly dependent on the oceans. Commercial fishing in the Gulf of Alaska and Bering Sea produces more groundfish (pollock, cod, rockfish, sablefish, and flatfish) than any other place in the country, close to 2 million metric tons per year. In 2013 that was valued at over $2 billion. Fishing is consistently Alaska’s top non-government employer and after oil, seafood represents our largest export. Thousands of residents participate every year in subsistence fishing, and hundreds of thousands of tourists visit Alaska each year, many with the hopes of catching a wild salmon or halibut (facts from the Alaska Sea Grant).
My classroom is less than five miles from the ocean (Cook Inlet Estuary), yet many of the students I teach have never seen the ocean. They may not know the importance of the ocean to our state. When I teach Oceanography and Marine Biology, I work very hard to connect my students to both the science and industry of the oceans. Not just so that my students can understand what kind of work that scientist and fishermen do, but also so that they will understand the value of the work do.
I have been in the classroom for twenty years, and in the last few years I have seen more and more students entering my classroom who see no value in science. Science matters! The oceans and our relationship to the oceans matter! I am hopeful that working on board the Oscar Dyson with a team of scientists is going to help me make those connections better.
Have I mentioned yet that I love fish? I love to study fish, teach about fish, catch fish, cook fish, eat fish, watch fish. So I am pretty excited about spending two weeks on a research cruise dedicated to fish research, and working with some of the Scientists from the Alaska Fisheries Science Center.
A Quillback rockfish caught in Prince William Sound.
All of the science party arrived in Nome and gathered for a science briefing before departure. In the evening there was a public presentation by Jackie Grebmeier the missions Co-Chief Scientist and Primary Investigator of the Arctic Distributed Biological Observatory – Northern Chukchi Integrated Study (DBO-NCIS). Jackie presented on what researchers have found. In brief, there is a shift northwards of the bottom dwelling Arctic ecosystems in the Bering Sea. This is due to the lack of winter ice in the southern Bering Sea causing a lack of a deep-sea cold pool of water during the rest of the year. This colder water is needed for some bottom dwelling organisms such as clams. Those clams are the favorite food choice of the Spectacled Eider Duck. When the bottom of the food chain moves north the higher in the food chain organisms such as the Spectacled Eider Duck need to adapt to a different food source or in this case move with north with it. The reason for the lacking cold pool of seawater is the lack ice being created at the surface during the winter, this process creates cold saltier water. Colder water that is also higher in salinity sinks and settles to the bottom of the ocean. So essentially the effects of less southern sea ice are from the bottom of the ocean to the top of the ocean. Grebmeier will be leading the DBO-NCS science team during this expedition so look for a future blogs focused on this research.
August 7th Evening:
We are currently anchored off the Nome Alaska Harbor and have only been on the ship for a few hours. Scientists are preparing their instruments for deployment. These instruments will measure a wide range of non-living and living members of the ecosystem. These scientific measurements will be taken from the sea floor into the atmosphere, the measurements will use a wide range of equipment. Stay tuned to future blogs with focus on different research groups, their data, specialized equipment, and their findings. We are off!
There is no place like Nome, Where the Land Meets the Sea
We are departing from Nome, Alaska. Here are some pictures around the city of Nome. Roadways to the rest of Alaska and beyond do not connect Nome. You must get here by boat or plane.
Nome from Anvil Mountain
The USCG Healy is anchored off the coast of Nome.
Another view of USCGC Healy anchored off of Nome
The Chum salmon were running in the Nome River, they leave the ocean and go up the river to spawn.
Chum Salmon jumping up the Nome River
I found someone who traveled farther to get here than me: Arctic Terns who travel from the Antarctic to Arctic every year. In this picture, an Arctic Tern is seen with this year’s offspring. The juvenile here can now fly and will stay with its parent for the first 2 to 3 months.
Arctic Tern and its new offspring
This is the same variety of seagull that you see in New England, but in Alaska, this one was not so nice. As I was walking on busy road way, this gull caught me off guard and dive-bombed me, almost knocking me into incoming traffic. After several more passes, the gull decided I was not a threat to its offspring. This nest was over 200ft away. Many seabirds use the coast of Alaska to breed and raise the next generation. The common seagull, or Glaucous Gull, and Arctic Tern are only just two.
“When am I ever going to use this?” This is the query of many students who are required to take mathematics courses. However, scientists aboard the NOAA Ship Oscar Dyson use mathematics every day as part of their job. As discussed in a previous blog post, underwater acoustic data are collected as the NOAA Ship Oscar Dyson navigates along the transects. These backscatter data are relied upon to decide when to take trawling net samples as well as to estimate the number and biomass of pollock in the area.
How do these underwater acoustics work? The answer can be found in mathematics and physics. As previously discussed, echosounders affixed to a centerboard below the hull of the ship send an audible ping down into the water and measure how long it takes to bounce off of an object (like a pollock) and return to the surface. The echosounders know the transmitted signal power (denoted Pt) and measure the received signal power (denoted Pr). Measuring the time between the signal transmission and reception and multiplying by the speed of sound (approximately 1450 m/s, given local water salinity and temperature conditions) will allow the calculation of distance of an object below the surface (or range denoted r). Using acoustics properties combined with known properties of pollock, we can get the equation for backscattering strength at a point as , where β is a constant and C(r) is a constant that is dependent on range.
However, since sound is measured in decibels which are arranged on a log scale, 10 times the log of both sides of the backscattering strength equation is desired. Using logarithm rules, this becomes
The value on the left-hand side of this equation is commonly referred to as target strength (TS) and is an important value to complete the survey.
The target strength is the amount of energy returned from a fish of a certain length. Since the echosounders are transmitting through the water column below the ship, the TS values are converted to backscatter strength per volume unit of water, referred to in the literature as Sv. The Sv values are graphed on the EK60 scientific echosounder, giving a picture similar to the one below. Different colors in the output are matched to various ranges of Sv values. An experienced fisheries scientist, like the ones aboard the NOAA Ship Oscar Dyson, can use the echosign data to determine a possible picture of the ocean life below the ship. While the EK60 scientific echosounder can transmit at five different frequencies (18 kHz, 38 kHz, 70 kHz, 120 kHz, and 200 kHz), the 38-kilohertz transmission frequency is the best frequency to detect pollock. Other transmission frequencies are shown to help delineate adult pollock from baby pollock and from other types of fish and smaller crustaceans called euphausiids.
Screenshot of an EK60 reading of the water column below the ship with identifying features notated.
The target strength is related to the length of the fish. The age of pollock is strongly correlated to their length until they are about 4 years old, so length can help the scientists determine how many of each year class are in the ocean below. Once again, logarithms come in handy, as the equation that relates the fork length in centimeters, l, of the pollock to the recorded target strength is TS = 20 log l – 66. This allows the scientists to use the echosounder data to get an approximate measure of the fish below without having to catch them.
Personal Log:
Today we will be going on a partial tour of NOAA Ship Oscar Dyson so you can see where I spend most of my time while aboard. The first stop is my stateroom, where I sleep and relax when not on shift. The top bunk is mine and the bottom bunk belongs to my roommate, NOAA scientist Abigail McCarthy. Our stateroom has one window where we can check on the weather and sea conditions. The picture below shows our view most of the time: cloudy!
My stateroom
Ocean from my window
Next stop is the mess hall where three meals a day are served. The stewards do a great job of cooking creative meals for everyone aboard. Before I boarded the ship, I bought a lot of snacks because I was worried about not getting enough to eat, but boy was I wrong. There is always plenty to eat at every meal, snacks that are out if you get hungry in between, and lots of dessert!
The mess hall.
Finally, we come to the fish lab where the trawling net samples referred to in my last blog post are processed. Before processing, we go to the ready room and put on our gear. This includes work boots as well as waterproof coveralls and jacket. Measuring the length of the pollock can get messy so we have to have the right gear. Once in the fish lab, we grab our gloves and get to measuring!
The fish lab where samples from the trawling net and methot are processed.
Did You Know?
Scientists aboard the NOAA Ship Oscar Dyson are part of the National Marine Fisheries Service (NMFS), which is one of the six major line offices of NOAA.
Geographic Area of Cruise: Point Hope, Alaska and vicinity
Date: July 25, 2018 at 10:25am
Weather Data from the Bridge
Latitude: 33.4146° N
Longitude: 82.3126° W
Wind: 1 mph N
Barometer: 759.968 mmHg
Temperature: 26.1° C
Weather: Mostly cloudy, no precipitation
Science and Technology Log
I’m going to take you back in time to July 13, a day when a once-in-a-leg event took place. We awoke that morning to a strong breeze blowing NOAA Ship Fairweather towards the dock in Nome. Normally a breeze blowing a docked ship is fine, but that day was the start of our long awaited departure to Point Hope! 0900 was quickly approaching, and Ensign Abbott was excited for his first opportunity as conn during an undocking process! With XO Gonsalves at his side for support, he stepped up to the control center outside the bridge on the starboard side.
Ensign Abbott takes the conn during undocking with XO Gonsalves by his side
As you may or may not know, taking the conn is no small feat. “Conn” is an old name for the conning officer, or controller of the ship’s movement. The conning officer used to stand on the conning tower, an elevated platform where the ship’s movement could be monitored. Although the conn no longer stands on a conning tower, the name and role remain the same. The conn makes commands to the rest of the ship and, during docking and undocking, controls the two engines, two rudders, bow thruster, and the lines attaching the ship to the dock. Each part causes the ship to move in specific way and has a very important function in undocking.
ENS Abbott did a great job deciding which parts of the ship to maneuver which way and when. The process was so technical that I cannot begin to describe it. However, the persistent westerly wind just kept drifting the ship back into its docking station. Every time we got the ship positioned the way we wanted, it would push right back into its starting place. The situation turned hazardous because we had a giant barge docked in front of us, a fishing vessel docked behind us, and the wall of the dock to our starboard side. The only direction we could go without danger of crashing into something was to the left. Unfortunately you cannot move a ship side to side very far without forward or backward movement, so there are strategies for moving the ship in a forward to backward motion while simultaneously moving left or right.
In our situation, the best thing to do was to slowly back the ship out while swinging the stern end into the harbor. Once out enough to account for the westerly wind, the engines could push forward and the ship could safely exit the harbor. Unfortunately all did not go as planned and when the engines went forward, the wind pushed the ship so far towards the dock in a short amount of time that the stern narrowly missed a collision with the wall of the dock! It was a close call! The conn was unlucky in the fact that he was assigned control of the ship during weather conditions no sailor would elect, but he did his best and it was a great learning lesson for everyone!
Fast forward to July 19. The members of the NOAA Corps new to ship docking and undocking had a brief in the conference room. They discussed all of the physics involved in the undocking from the week prior, debriefed the challenge the wind posed, and reviewed the different types of maneuvers for undocking. Then they shifted the conversation to planning for the next day’s docking maneuver. XO Gonsalves, with a vast array of unique skills in his toolbox, turned on a PlayStation game that he created for his crew to practice docking and undocking! Docking a ship is a skill with the unique problem that you cannot simply practice it whenever you want to. The only attempt offered to the crew during this leg was on the morning of July 20. It was a “one and done” attempt. Lucky for them, XO thought outside the box! With the video game, they could practice as often as they wanted to and for as long as necessary to get the skill down.
XO’s video game for practicing the docking process
The NOAA Corps getting ready to practice docking
The challenge presented to the crew was to dock and then undock the boat seen in the photo above eight different times with varying obstacles to work through. Examples of obstacles were having a small docking space, turning the boat around, and wind adding a new force to the boat. Three controllers were needed for the job. The first controller, and the little tiny person at the front of the boat, controlled the bow thruster. The bow thruster could push the boat left or right in a jet propulsion-like manner. Using the bow thruster on the port side pushed the boat right, and using the bow thruster on the starboard side pushed the boat left. The XO also assigned this person the roll of the conn, so they had to call out directions to everyone playing the game. The next person controlled the engines. This was a difficult task because there is a port and a starboard engine, and each engine can go forward or backward. The conn could give a simple order like “all ahead” or a more difficult order like “port ahead, starboard back” (trust me, that one is not easy). The last person controlled the rudders. The rudders worked in unison and could be turned right or left. The rudders can be fine-tuned in reality but in the game, due to the controller’s limitations, we used the commands of “half rudder” and “full rudder” to choose how significantly the rudders should be turned. You can see a small clip of the game in action below. Turn up the volume to hear the conn. As a reminder, the Corps members participating are learning the process, so you may hear a variety of commands as they fine tune their vocabulary to use more specific language.
On the morning of July 20, the docking process was smooth with no surprise forces at play on the ship. The NOAA Corps did an excellent job with the maneuver. As soon as we thought we would get a chance to relax, a food order arrived with 2,700 lbs of food that needed to be hauled from the top deck of the ship down to the bottom. Horizontal forces affecting the ship were no comparison to the vertical force of gravity pulling all those boxes down towards Earth, but we used an assembly line of 20 people passing boxes down the stairwell and we all ended the day with a good workout!
Personal Log
It seems fitting to begin my last blog with the story of undocking the Fairweather in Nome at the start of the leg. This is not the end of my Teacher at Sea journey but the start of my work, integrating my personal experience into something relevant for my students in a physical science classroom. Since returning home, I completed my first media interview about my time at sea. Ironically teaching others about myself led to my own epiphanies, namely refining my “why” to becoming an educator. I told Amanda, my interviewer, how I spent my childhood soaking my shoes in ponds trying to catch frogs, harvesting new rocks for my shoe box collection under my bed, and following the streams of water every April when snow melted away. I grew up with a curiosity for all things natural and scientific. Science classes were simply an outlet for my inquisitive mind, so it was easy to be engaged in school. Below are a few photos of me in high school, memories of times that inspired my love for the ocean. That natural wonder, excitement, curiosity I had for the world around me as a child and young adult…that’s what I want to instill in my students. My experience on the Fairweather helped me find new tools for my “teaching toolbox” and new ideas for my curriculum that I hope will inspire more students to become curious about their worlds. You’re never too old to discover the intrigue of the natural world. When you begin to understand that the purpose of science is to explain what we observe, your desire to uncover the secrets will grow!
During a dogfish shark dissection, I discovered that my shark had been pregnant
A horseshoe crab that appeared on a rocky shore in Connecticut
Measuring the length of marine organisms with calipers
The ability of a ship to make 3,000,000 lbs of weight float on water, that is intriguing. The idea of using sound waves, something we interact with constantly on land, under the water to map what we cannot see, that is amazing. Collecting an array of data that, to the untrained mind seem unrelated, and putting them together into a chart used by mariners all over the world, that is revolutionary. NOAA hydrographic ships connect science and the economy in a way not dissimilar to how I hope to connect education and career for my students. This experience inspired me in ways beyond my expectations, and I cannot wait to share my new knowledge and ideas in my classroom!
Did You Know?
The Multibeam Echosounder on the ship obtains ocean depths accurate to 10 centimeters. The average depth of the ocean is 3,700 meters, or 370,000 centimeters, according to NOAA. That is an average percent accuracy of 99.997%!
Geographic Area of Cruise: Point Hope, Alaska and vicinity
Date: July 20, 2018 at 10:14am
Weather Data from the Bridge
Latitude: 64° 29.691′ N
Longitude: 165° 26.275′ W
Wind: 4 knots S
Barometer: 767.31 mmHg
Visibility: 10 nautical miles
Temperature: 11.8° C
Sea Surface: n/a
Weather: Overcast, no precipitation
Science and Technology Log
Despite a few setbacks, the crew of NOAA Ship Fairweather worked diligently to complete as much surveying as possible around Point Hope during this leg of the mission. Three small boats were sent out last Saturday, July 14th to each survey part of a “sheet”. A sheet is an area of ocean assigned to a hydrographer to survey and process into a bathymetric map. A bathymetric map is the colorful map produced from survey data that shows ocean depth using colors of the rainbow from red (shallow) to blue (deep). Ultimately, that sheet will be added to a nautical chart. Hydrographer Toshi Wozumi kindly showed me the progress that the ship has made towards the Point Hope survey mission below. The soundings were conducted with “set line spacing” of between 100m and 1,000m between each line in order to cover a satisfactory amount of ground in a feasible timeframe. When a more detailed map is necessary, there will be no empty space between lines and this is known as “full coverage”.
Point Hope survey progress from Leg II
Point Hope is such a unique little piece of land. All of the light blue you see on the map above is actually fresh water from inland. Skinny slices of land separate the salty Arctic water from the fresh water. Hydrographer Christina Belton told me that this area experiences a lot of erosion. In the area we surveyed, you can see an unusually straight line between the deep blue-colored seafloor and the relatively shoal yellow- to green-colored seafloor (shoal is a synonym for shallow, but of the two it is the more common word used by hydrographers). This distinct line is a sand bar where sediment collects from erosion and water currents. I am really interested to see how the bathymetric map develops as the season goes on! Hydrographers are expecting this survey to be very flat and unexciting, but you never know what will show up!
2018 proposed Point Hope survey sheets
The tiny little polygon at the bottom left of the picture above is a section of a PARS corridor. PARS is an acronym that stands for Port Access Route Studies, and these studies are initiated by the US Coast Guard when an area may be in need of routing changes or new designated routes for a number of different reasons. According to the US Coast Guard, the Eastern Bering Sea is a relatively shallow sea with depths ranging from 20 – 250 feet. This in combination with outdated nautical charts containing sparse data points can make for dangerous conditions for mariners trying to navigate in and around the Bering Sea. In addition Arctic sea ice is retreating more and more each year, and there is a growing interest in travel through the Northwest Passage, formerly covered in sea ice year round. I have heard that a cruise ship will soon travel the Northwest Passage, and tickets start at $37,000 per person. Any takers?
Notice the difference in the soundings to the right of the map (north of Point Hope) and to the left of the map (west of Point Hope). The points to the north were conducted in the 1800s by Russia, and the points to the west were conducted in the mid-1900s by the US. This section shows why more surveying is needed in northern Alaska. Photo source: http://www.charts.noaa.gov/PDFs/16123.pdf
NOAA Ship Fairweather was tasked with surveying a small section of the PARS corridor. We worked on this project during our return trip to Nome. A bathymetric map was not prepared by the time I left the ship, so I was not able to see the data. However, this data will be a very important addition to the US Coast Guard’s maps. You may notice on the map of the proposed survey sheets that the northern border of the polygon follows a longer line. This is the International Date Line and also the border between the US and Russia. NOAA Ship Fairweather had to take special precautions to ensure we did not enter international waters without permission, so we ran a couple of soundings the short way on the edge of the polygon before changing our lines to go the long way. The short lines gave us room to turn the ship around without entering Russian waters. If you have ever mowed your lawn, running lines on the ship is just like mowing lines on your grass. When you get to the end of your yard, you need room to turn the lawn mower around before mowing in the opposite direction. In fact, hydrographers informally refer to the act of collecting data with the MBES as “mowing the lawn”!
NOAA Ship Fairweather will continue to collect data in the Point Hope region for a couple more months. The ship is projected to use 53 days at sea to finish the project. However, this time of year can be difficult for navigating the Bering Sea due to frequent storms. This work requires patience and flexibility, as I witnessed during my time on the ship. In the end, the maps and nautical charts they create will be increasingly valuable as more marine traffic will use the Arctic Ocean during the months when there is no sea ice.
Personal Log
This morning we docked the ship in Nome. It was a bittersweet feeling to step on land once again. I grew to enjoy waking up each morning with water in all directions. The light rocking motion in the evening helped me sleep like a baby! I learned a lot of new information in a short period of time. I also made some new friends among the Fairweather crew and the visitors. Together we endured the 12′ seas of Tuesday’s storm in addition to the Blue Nose initiation! The initiation will forever remain a Navy (and NOAA Corps) secret, but I suppose I can show you the after picture! The ceremony itself was quite a messy ordeal, so we had to rinse off before going back inside the ship. What’s the best way to rinse off at sea? You guessed it! Ice cold Arctic sea water! Not to worry though; safety was the first priority and there were no cases of hypothermia onboard. Upon completing the initiation, the 24 crew members below metamorphosed from slimy wogs to polar bears! The remaining 20 or so crew members had previously earned the name of polar bear.
24 soaking wet but proud Polar Bears!
One thing I learned while aboard NOAA Ship Fairweather is that living and working in the same place with the same people is a unique experience. Your work time and off time are confined to the same spaces. You are always around the same 40 – 50 people. In addition, working in remote areas means fewer modern conveniences like TV and cell phone service. You can’t go out to eat or go shopping until you arrive back in port. It’s not for everyone. What I can say though is that not a single person aboard the ship complained about any of these things! Everyone onboard has learned to adapt to the unique challenges and benefits of their workplace. There are many things to enjoy too! It was so nice not having to cook or do dishes for two weeks! You get to live more simply, which means fewer things to worry about day to day, like getting to work on time and getting to the gym/grocery store/post office/anywhere before it closes or gets too crowded. It’s also a fun place to be! Events like the blue nose initiation boost morale and give everyone fun things to plan and look forward to. I thoroughly enjoyed the mindset shift and gained an appreciation for this kind of work. I will also miss it!
Did You Know?
The most recent soundings for the coastal area north of Point Hope were taken in the 1800s when Russia owned Alaska. They were measured with lead lines, and as you can see in the Point Hope nautical chart, there was a large distance between each measurement.
Answer to Last Question of the Day
What are the eligibility requirements to be in the NOAA Commissioned Officer Corps?
To be eligible for appointment into the NOAA Corps, you must
be a US citizen of good moral character
be able to complete 20 years of active commissioned service before you turn 62
have a baccalaureate degree from an institution accredited by the US Department of Education
have at least 48 semester hours in science, math, or engineering related to NOAA’s missions
pass a mental and physical examination
be able to maintain a “secret” security clearance
be able to pass a test for illegal drug use.
Sources:
US Coast Guard (2017). Appendix B – Hydrographic Quality Analysis. Bering Sea PARS. https://www.navcen.uscg.gov/pdf/PARS/Bering_Strait_PARS_Appendix_B.pdf.
Hello! My name is Emily Cilli-Turner and I will be aboard the NOAA Ship Oscar Dyson as a participant in the 2018 NOAA Teacher at Sea program. I am Assistant Professor of Mathematics at the University of La Verne in La Verne, California where I teach the entire undergraduate curriculum in mathematics. This will be my sixth year teaching full-time. My bachelor’s degree in mathematics is from Colorado State University and I received my doctorate from University of Illinois at Chicago, where I specialized in undergraduate mathematics education. I am especially interest in the transition students make when they enter a proof-based course and how to best acclimate them to the abstract and non-formulaic nature of proving.
I am passionate about math and science education and excited to use the data collected from my time on the ship to create real-world applications problems for my students. I will be teaching Calculus I and II next semester and I plan to use the data gained from my experience to teach my students about concepts such as rates of change and statistical techniques.
I have a strong love for the ocean and so I am excited to be on the water for so long. I am transitioning to California after living in Washington, where I co-owned a 23-foot sailboat with some friends. We often would sail to different islands and ports on Puget Sound, which was always a blast. When I am not teaching or sailing, I enjoy walking my dog, hiking and reading!
TAS Emily Cilli-Turner on her boat in the Puget Sound
Personal Log
In about a week, I will fly to Dutch Harbor, Alaska to board the NOAA Ship Oscar Dyson and participate in the Alaska Pollock counting survey. Before receiving this placement, I have never really heard of Pollock, but after researching it I realized it is an amazing fish! Pollock can easily taste like other fish and is often used for imitation crab amongst other things.
I am also really excited to meet the scientists and the crew. The reason I know about the Teacher at Sea program is that I have a friend that works at NOAA in Seattle. I mentioned offhandedly that I would love to go out on a NOAA cruise and she said, “Well…they do have the Teacher at Sea program.” I was immediately intrigued and I wrote my application as soon as it was available. As a person who is passionate about education and the ocean, the Teacher at Sea program is a great fit for me and I know I will learn a lot that I can take back to my students. Hopefully, I can also inspire them to seek out a career with NOAA.
Weather Data from the Bridge
Latitude: 66° 24.440′ N
Longitude: 163° 22.281′ W
Wind: 17 knots SW, gusts up to 38 knots
Barometer: 758.31 mmHg
Visibility: 5 nautical miles
Temperature: 12.2° C
Sea Surface 9.6° C
Weather: Overcast, no precipitation
Science and Technology Log
NOAA Ship Fairweather has a variety of assignments in different parts of the west coast each year, mostly in Alaska. They also work with many different organizations. In April of 2018, the US Geological Survey, or USGS, hired the ship to complete the last part of the survey of a fault line, the Queen Charlotte Fault, which lies west of Prince of Wales Island, Alaska. This was a joint venture between the US and Canada because it is the source of frequent and sometimes hazardous earthquakes. The Queen Charlotte Fault lies between the North American Plate and the Pacific Plate. The North American Plate is made of continental crust, and the Pacific Plate is made of oceanic crust. The two plates slide past one another, so the plate boundary is known as a transform, or strike slip, fault.
This image is from the USGS, who have been surveying the Queen Charlotte Fault area for many years. Photo Source: https://soundwaves.usgs.gov/2016/01/
The image to the right came from the USGS. Notice the two black arrows showing the directions of the North American and Pacific plates. Strike slip faults, such as this one, have the potential to produce damaging earthquakes. The San Andreas Fault in California is another example of a strike slip fault. The Queen Charlotte Fault moves relatively fast, with an average rate of 50 mm/year as shown in the photo. The USGS explains the Queen Charlotte fault beautifully in this article.
The image below was created after hydrographers on NOAA Ship Fairweather processed the data from their survey in April. The colors show relative depth across the fault, with red being the shoalest areas and blue being the deepest areas. In the top right section, you can see Noyes Canyon. There are many finger-shaped projections, which are result from sediment runoff. Notice that the color scheme in this area does not have much orange or yellow; it basically goes from red to green. If you were to look at this map in 3-D, you would see in those areas that the sea floor dramatically drops hundreds of meters in a very short distance.
Queen Charlotte Fault and Noyes Canyon. Photo Courtesty of HST Ali Johnson
It is also worth noting what can be found in the remainder of this image. When NOAA finishes their survey, two different products are formed. The first is the colored map, which you see to the far left of the image. This is useful for anyone interested in the scientific components of the area. Mariners need the information as well, but a colored schematic is less useful for marine navigation, so nautical charts are produced (or updated) for their use. A nautical chart looks just like the remainder of this image. Small numbers scattered all over the white part of the map (ie – the water) show the depth in that area. The depth can be given in fathoms, meters, or feet, so it is important to find the map’s key. The purpose of the charts is to communicate to mariners the most navigable areas and the places or obstacles that should be avoided. The nautical charts usually have contour lines as well, which give a better picture of the slope of the sea floor and group areas of similar depth together.
Lower half of Queen Charlotte Fault, photo courtesy of HST Ali Johnson
The photo above is a closer view of the Queen Charlotte Fault. Can you see the fault? If you cannot see it, look at the line that begins in the bottom center of the photo and reaches up and to the left. Do you see it now? On the left side of the fault lies the Pacific Plate, and on the right side lies the North American Plate. If you look even closer, you might find evidence of the plates sliding past each other. The areas that resemble rivers are actually places where sediment runoff imprinted the sea floor. If you observe closely, you can see that some of these runoff areas are shifted at the location of the fault. Scientists can measure the distance between each segment to determine that average rate of movement at this fault line.
I also wanted to briefly mention another small side project we took on during this leg. A tide buoy was installed near Cape Lisburne, which is north of Point Hope. The buoys are equipped with technology to read and communicate the tidal wave heights. This helps hydrographers accurately determine the distance from the sea surface to the sea floor. The buoy will remain at its station until the end of the survey season, at which time it will be returned to the ship.
The Fairweather team works together to launch a tide buoy in the Arctic Ocean
The Fairweather team works together to launch a tide buoy in the Arctic Ocean
The tide buoy was successfully released and will remain in the Arctic Ocean until late summer or early fall.
Tide Buoy near Cape Lisburne, AK
Personal Log
Northwest Alaska may not be a breathtaking as Southeast Alaska, but it has sure been an interesting trip! It amazes me that small communities of people inhabit towns such as Nome, Point Hope, and Barrow (which is about as far north as one can travel in Alaska) and endure bone-chilling winter temperatures, overpriced groceries, and little to no ground transportation to other cities. Groceries and restaurant meals are expensive because of the efforts that take place to transport the food. During my first day in Nome, I went to a restaurant called the Polar Cafe and paid $16 for an omelette! Although the omelette was delicious, I will not be eating another during my last day in Nome on Friday. It is simply too expensive to justify paying that much money. I also ventured to the local grocery store in hopes of buying some Ginger Ale for the trip. Consuming ginger in almost any form can help soothe stomach aches and relieve seasickness. Unfortunately ginger ale was only available in a 12-pack that happened to be on sale for $11.99. I decided to leave it on the shelf. Luckily the ship store has ginger ale available for purchase! The ship store is also a great place to go when your sweet tooth is calling!
The Ship Store opens most nights for personnel to buy soda, candy, or even t-shirts!
Did You Know? The Queen Charlotte fault was the source of Canada’s largest recorded earthquake! The earthquake occurred in 1949 and had a magnitude of 8.1!
Question of the Day As mentioned above, northern Alaska reaches temperatures colder than most people can even imagine! Nome’s record low temperature occurred on January 27, 1989. Without using the internet, how cold do you think Nome got on that day?
Answer to Last Question of the Day:
How does a personal flotation device (PFD) keep a person from sinking?
When something is less dense than water it floats, and when it is more dense than water it sinks. Something with the same density as water will sit at the surface so that it lies about equal to the water line (picture yourself laying flat on the surface of a lake). Your body is over 50% water, so the density of your body is very close to the density of water and you naturally “half float”. A PFD, on the other hand, is made up of materials which have a lower density than water and they always float completely above water. When you wear a PFD, your body’s total density is a combination of your density and the PFD’s density. Therefore, the total density becomes less than the density of water, and you float!
Sources: Danny, et al. (2016). Investigating the Offshore Queen Charlotte-Fairweather Fault System in Southeastern Alaska and its Potential to Produce Earthquakes, Tsunamis, and Submarine Landslides. USGS Soundwaves Monthly Newsletter. https://soundwaves.usgs.gov/2016/01/.
Weather Data from the Bridge
Latitude: 68° 22.310′ N
Longitude: 167° 07.398′ W
Wind: 3 knots W, gusts up to 20 knots
Barometer: 753.06 mmHg
Visibility: 5 nautical miles
Temperature: 10.8° C
Sea Surface 9° C
Weather: Overcast, light rain
Science and Technology Log I was in my stateroom on Friday afternoon when I heard one continuous alarm sound, followed by an announcement that white smoke had been detected on board. My first thought was Oh no! What’s wrong with the engine now??? As I walked out of my room, I noticed smoke permeating through the halls near the ceiling. My muster station was the forward mess, so I walked there to meet up with my group. Two PICs (people in charge) had already laid out a map of the ship, and they were assigning pairs of people to search different sections of the ship looking for smoke and/or hot spots on doors or walls. Each “runner” group took a radio and reported their findings, and the results were written on the map. I was runner group 4 with an intern named Paul, and we were assigned the E level just below the bridge. We saw a small amount of smoke but no hot spots. One runner group opened an escape hatch to the fan room to find smoke EVERYWHERE. After finding the source of the fire, it was put out as quickly as possible and the smoke ventilated out of the ship. If you haven’t guessed it yet, this was our first fire drill.
Safety is always the first priority on all NOAA vessels. Working on a ship is much different than working on land. In the event of an emergency, everyone on board has to be prepared to be a first responder. If one serious accident happens, it could affect all 45 people on board. To ensure emergency preparedness, drills take place on a regular basis. Each drill is treated as though the emergency were happening in real life. Fire drills and abandon ship drills take place weekly, and man overboard drills and hazardous materials drills take place every three months.
An announcement to abandon ship happens as a last resort if there is no possible way to save the ship. If this were to happen, we would hear seven or more bursts of the alarm followed by an announcement. We would then grab our immersion suit and PFD (personal flotation device) as quickly as possible and meet at our muster stations. My muster station is on the port (left) side of the ship at fire station 24. There are life rafts on each side of the ship that can be deployed into the water. Right now, the water in the Arctic Ocean is a chilly 9° C. To protect ourselves from hypothermia, we must don an immersion suit within 60 seconds of arriving at our station. New people to the ship must practice this during our first few days on board.
The immersion suits would be used to keep warm in the event we had to abandon ship
In addition to drills, an operational risk assessment (or GAR score) is calculated for the mission each day. GAR stands for Green, Amber, or Red, and it determines whether the mission is safe to pursue that day. The GAR score consists of the following sections: resources, environment, team selection, fitness, weather, and complexity. Each section is given a rating of 1 – 10, with 1 being the best and 10 being the worst. Many of the sections are variable depending on the day, so sometimes a mission will be delayed until the weather improves, and other times assigning different personnel to the task may be enough to make the mission safe. The total score is the sum of the six sections. If the score is 45 or above (red zone), then the mission will not happen that day. If the score is between 24 and 44 (amber zone), it means extra caution is advised, and a low GAR score of 0 – 23 is green. The best case scenario is for the mission to be in the green zone.
Some other examples of safe practices on board NOAA Ship Fairweather are detailed below.
LT Manda gives a safety brief before deploying the small boats for the day. Everyone participating in the boat deployment must wear hard hats and a PFD
Many hands are needed to safely deploy a small boat
The small boats are equipped with life jackets, immersion suits, first aid kids, and other safety equipment
Personal Log I’m learning what it truly means to be flexible during my time with NOAA Ship Fairweather. Weather can make or break a day of surveying on the sea. The water experiences surface waves from both the wind and swell. Swells are the large waves that originate elsewhere and have a definite direction whereas the surface waves are caused by wind and are much smaller. The surface waves in combination with the swell produce a total wave height, and the NOAA Corps looks at the total wave height when deciding the plan of the day. Unfortunately, waves of up to 14′ are predicted in the Point Hope region this week, which will make it incredibly difficult to launch the small boats. Not only do the large waves create hazardous conditions on the boat, they make it harder to acquire good soundings with the MBES. If the data collected will be of poor quality, it is better to delay the mission and wait for better conditions. The poor weather in combination with the mechanical delay we experienced during the first week of the leg has made it difficult to collect very much data around Point Hope.
Not only do the large waves slow down the ship’s data collection, they make me queasy! I felt lucky coming in to the Arctic Ocean on Friday because the sea was calm and beautiful! It was almost eerily quiet. The most amazing part was that the horizon seemed to disappear as the sky and the ocean gently blurred into one. The serenity was short-lived however, and taking the small boats out Saturday morning was quite the adventure! I am so glad I brought motion sickness medication with me!
The Arctic Water was calm and beautiful Saturday morning
Did You Know? Did you know NOAA Ship Fairweather weights 1,591 tons? Since one ton is the same as 2,000 pounds, the ship weighs 3,182,000 pounds! The ship stays afloat, so that means the buoyant force it experiences is equal and opposite to its weight. If the buoyant force were any less, the ship would sink!
Question of the Day How does a personal flotation device (PFD) keep a person from sinking?
Answer to Last Question of the Day:
How many nautical names can you think of for rooms/locations on the ship, and what would their equivalent name be on land?
These are the ones I have learned so far:
Stateroom = Dorm or bedroom
Galley = Kitchen
Mess = Dining room
Scullery = Dish washing room
Head = Bathroom
Gangway = ramp (to get off boat)
Sick Bay = doctor’s office/patient room
Do you know of any that I missed? Feel free to answer in the comments!
Weather Data from the Bridge Latitude: 64° 29.690′ N
Longitude: 165° 26.276′ W
Wind: 15 knots SW, gusts up to 25 knots
Barometer: 761.31 mmHg
Visibility: 10+ nautical miles
Temperature: 14.4° C
Sea Surface Temperature: 15° C
Weather: Cloudy, no precipitation
Science and Technology Log As you may or may not know, NOAA stands for National Oceanic and Atmospheric Administration. NOAA is a branch of the Chamber of Commerce and gets funded by the federal government to undergo many important tasks. Their mission is “to understand and predict changes in climate, weather, oceans, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources.” (http://www.noaa.gov/about-our-agency) NOAA Ship Fairweather’s role in that mission is to measure and understand changes in the sea floor to allow for safe navigation in our world’s oceans and seas.
Two NOAA Corps Members (LT Moulton top, ENS Siegenthaler bottom) prepare to dive under the ship to clean sound-measuring instruments.
Many different career specialties are required to keep the ship running smoothly. The NOAA Commissioned Officer Corps operates ships, conducts dive operations, and manages the hydrographic research projects assigned to the ship. They make up one of the seven uniformed services of the United States: Army, Navy, Marine Corps, Airforce, Coast Guard, NOAA Commissioned Officer Corps, and Public Health Service. All NOAA Corps members have a bachelors degree or higher in a STEM field; some of the degrees earned by Corps members on NOAA Ship Fairweather are marine biology, environmental science, wildlife ecology, chemistry, physics, and math.
The Survey Department is comprised of scientists who exclusively focus on the hydrographic mission. They operate and monitor instruments, collect and process data, and deploy and recover survey equipment. Data collection sometimes takes place on the ship and sometimes on small boats. They have to be proficient with advanced hydrographic software and with combining multiple sources of data into one. I have even seen members of the Survey Team conducting dive operations, so being dive-certified is very useful for the job. The Survey team makes nautical charts used by many different industries worldwide.
Fresh fruits and vegetables are served at every meal, and there is always a new kind of meat to try! This was my first time trying lamb!
The Deck Crew consists of Able-Bodied Seamen (ABs) and General Vessel Assistants (GVAs). ABs and GVAs must be knowledgeable and capable of completing many types of work. They perform general maintenance, infrastructure repair, sanitation, and upkeep of the ship. They also assist in emergency operations and the launch and recovery of small boats. Another department is the Steward Team who cook our food, clean the mess (dining area) and galley (kitchen), and wash dishes in the scullery (dish room). They often work 12 hour days, and their work is needed 7 days a week. So far, they have planned nothing but delicious meals for us all to enjoy (especially the desserts!).
EU Meissner cuts a gasket to fit in between the engine and exhaust manifold
Engineers keep the ship functioning well by inspecting, maintaining, and repairing all of the ship systems (water, sewage, power, heating, etc.). They must be familiar with a vast array of equipment in order to do their job well! We also have one medical professional, a Physician’s Assistant, who works in the sick bay to treat anyone who may be ill or injured and assist with emergency operations. Visitors frequent the ship as well. Currently, there is a meteorologist from the National Weather Service and an intern from Loyola University Chicago on board. Specialists may come aboard for a few days or a whole trip depending on what kind of work they are doing. As you can see, working aboard a ship is not limited to ocean-related careers. You can find positions for many different interests, and all of these people get to work in an environment that most others don’t get to experience!
In my previous blog, I promised to include a picture of a nautical chart developed by the multibeam echosounder (MBES) on NOAA Ship Fairweather and its small boats. The photo below shows progress on a survey that began in April 2018. As you can see by the colored boxes that not all of the surveying is yet complete. NOAA Ship Fairweather has experienced a fairly difficult season with some mechanical setbacks, but they use every minute possible when underway, sometimes working 24 hours per day in designated shifts to finish a job. Every team on this ship does a great job working together and adjusting to the unexpected!
This sketch was completed by staff on NOAA Ship Fairweather in May 2018 to replace surveys that were last updated as long ago as 1916.
The numbers around the chart show depth in fathoms from previous surveys (the survey is in meters). Before echosounding technology was developed, surveys were often completed using lead lines. Lead lines are exactly what they sound like; there is a long rope with a block of lead attached to the end. It is slowly lowered through the water column until it hits the sea floor. The line is then pulled back up and the water depth is measured. This form of surveying gives mariners some idea of what the sea floor looks like, but you can see that current technology allows for a fuller coverage map of the area. This is helpful because fishing and transportation ships need to know what obstacles they may encounter below the surface of the water while traveling.
Personal Log
Two whale ribs at the entrance of the Carrie McLain Museum in downtown Nome
Our ship is very close to Nome’s town center, and there are a few interesting things to do and see! Nome is the ending point of the famous Iditarod Sled Dog Race. You can find photos all over town of previous competitors in addition to standing under the arc of the finish line in the middle of town. There is a museum in town, the Carrie McLain Museum, that showcases the beautiful history of Nome and has over 15,000 artifacts.
Tropospheric Antennas build in the 1950s from the White Alice Communications (WACs) System
It’s also very easy to access some beautiful hiking. I hiked Anvil Mountain yesterday with a couple other friends on the ship. During our hike, we encountered two separate herd of Muskox. They are large, gentle creatures that call the Arctic regions their home. You can learn more information on this National Geographic website. We made sure to keep a safe distance away because both herds had young, and we did not want them to feel threatened in our presence.
A herd of Muskox on Anvil Mountain
After a few extra days in Nome, I am happy to announce that we began our 22 hour journey to Point Hope at 10:00 this morning! The survey work will start once we reach our final destination. If all goes well, we will cross the Arctic Circle tonight. There is a history in the Navy of awarding sailors unofficial certificates for crossing navigation lines at sea. For example, sailors earn the “Shellback” when they cross the Equator by boat. When we cross the Arctic Circle, many of us onboard will earn the “Blue Nose”. You can see other unofficial certificates that are offered around the globe on this Navy website.
I took this picture at 4:30am on July 13. Sunrise was at 5:03am. Even though the sun technically “sets”, it doesn’t get dark at night during this time of year.
Did You Know? In January of 1925, the Nome hospital realized their treatment serum for the deadly diptheria infection was expired, and the winter weather was too harsh to send a replacement via plane. People began to get infected, and they were in a state of emergency! If treatment didn’t arrive soon, the entire town could acquire the disease. Luckily, over twenty sled dog mushers volunteered to take part in a relay on the Iditarod Trail, spanning over 650 miles of wilderness. The final sled dog team was led by 3-year old Balto, a siberian husky. Does this story sound familiar? In 1995, a cartoon movie was made and given the name “Balto” in honor of the brave, rookie sled dog who led his team into Nome on February 2, 1925 to save the town!
Question of the Day How many nautical names can you think of for rooms/locations on the ship, and what would their equivalent name be on land? (For example: the “scullery” = “dish washer”). Hint: reread the “Science and Technology” section of this blog for a few answers! Feel free to leave your answer as a comment!
Answer to Last Question of the Day: If a CTD determined that the speed of sound in an area was 1,504 m/s and the time it took for the sound wave to travel from the ship’s transmitter to receiver was 0.08 seconds, how deep was the water in that specific area?
The time must be divided in half to find the time it took for the sound to travel one way: 0.08 seconds x 0.5 = 0.04 seconds
Plug your known values into the equation: distance = rate x time rate = 1,504 m/s time = 0.04 seconds distance = (1,504 m/s) x (0.04 seconds) distance = 60.16 meters deep
Geographic Area of Cruise: Point Hope, Alaska and Vicinity
Date: July 10, 2018 at 5:30pm
Weather Data from the Bridge Latitude: 64° 29.691′ N
Longitude: 165° 26.276′ W
Wind: 5 knots SW, gusts up to 12 knots
Barometer: 749.31 mmHg
Visibility: 10+ nautical miles
Temperature: 16.0° C
Sea Surface Temperature: 11.9° C
Weather: Cloudy, no precipitation
Science and Technology Log
The City of Nome from NOAA Ship Fairweather
The center of town features a sculpture of a gold pan because Nome is historically known for gold panning and dredging.
I arrived in Nome on Saturday, July 7th around 7:30pm. The weather was a beautiful 65° F with just a few clouds in the sky! By the time I settled in my stateroom (bedroom) and unpacked my belongings, it was raining! According to the Western Regional Climate Center (WRCC), Nome receives and average of 16″ of rainfall each year and 60″ of snow. Despite this fairly low rainfall total, precipitation is a frequent
occurrence in Nome. Usually, the precipitation falls as more of a light drizzle in the summer, so the accumulation over the course of a year is very small.
I am here in Nome to join NOAA Ship Fairweather on a Hydrographic Survey of the vicinity of Point Hope, Alaska. Nome is the northernmost city in Alaska with a deep enough draft dock and facilities (such as sewage disposal and fresh water) for a ship. Therefore, we will start and end our trip in Nome. The ship has been experiencing some technical difficulties, so we were not able to go underway on our scheduled day of July 9. Over the weekend, engineers discovered a leak in the exhaust from one of the ship’s engines. Left untreated, black smoke could escape into the ship and personnel could be exposed to the unhealthy fumes. As of today, the exhaust pipe has been fixed, but there are a few parts that need to be shipped to Nome to finish the job. Hopefully NOAA Ship Fairweather will be underway later this week.
Here I am aboard one of the small boats with NOAA Ship Fairweather in Background at the Nome Harbor.
Once we are underway, the trip to Point Hope will take approximately 22 hours. That means we must reserve a full day on each end of the leg (another name for the trip) for travel. In order to maximize our limited time near Point Hope, NOAA Ship Fairweather will deploy up to four 28′ boats to work at the same time. There are also enough personnel onboard to allow data to be collected on the small boats for up to 24 hours per day. Two of the four 28′ boats are shown below.
Two 28′ boats with hydrographic instruments can be found on each side of NOAA Ship Fairweather.
So what are these boats all doing anyways? As previously mentioned, NOAA Ship Fairweather and its small boats are designed for hydrographic research. “Hydro” is a prefix meaning “water”, and “graph” is a root word meaning “to write”. The boats will map the sea floor (i.e. – “write” about what is under the water) and any of its contents with sonar devices. Sonar is an acronym that stands for SOund Navigation And Ranging. The main sonar device used on this ship is a multibeam echosounder (MBES for short), which can be found on the underside of the ship as seen below. Sound waves are emitted from the front of the device, known as the transmitter. The sound waves travel through the water column, bounce off the sea floor, and then get picked up by a receiver adjacent to the transmitter.
Multibeam Echosounder on NOAA research vessel (Photo courtesy: NOAA)
Conductivity, temperature, and depth sensor (CTD)
There is a lot of math involved both before and after sound wave data is collected! The photo below is a CTD instrument, which stands for conductivity, temperature, and depth. Conductivity is a measure of how well an object conducts electricity. This instrument is lowered through the water column, collecting data on all three parameters listed above. The speed of sound varies based on conductivity and temperature, so the sonar data can be adjusted based on the results. For each individual data point collected along the sea floor, the actual speed of sound is multiplied by half of the time it took the sound wave to travel from transmitter to receiver. Using the equation distance = rate x time, one can find the distance (i.e. – depth) of each point along the sea floor. Put a bunch of those results together, and you begin to see a map!
Many screens are needed to put all of the data together into an accurate sea floor map.
Sea floor maps use color to show different depths. The most shallow areas are colored with red, while the deepest areas are colored with blue. The remaining colors of the rainbow form a spectrum that allows us to see slopes. Today, we took a small boat out and surveyed the harbor where NOAA Ship Fairweather is docked. The harbor was very shallow, so every large rock in the harbor showed up as red on the map. The deeper areas showed up as blue. Hence my blog title! In my next blog, I will include pictures of maps that have recently been completed! Stay tuned!
Personal Log
Sea glass and rock treasures from the Bering Sea
Living on a ship that is docked in a tiny town with little to no cell phone service is fairly challenging. However, everyone on the ship finds creative solutions to keep themselves and others entertained. It is not uncommon for groups to form in the conference room to watch a movie on the big projector screen or to host a game night. There is also a fitness room onboard with plenty of exercise options! The Bering Sea and a long beach are a short, five minute walk from the ship. We had a campfire with marshmallows the first night that everyone returned to the ship from their time off. One person in our group found a whale bone on the beach! See the picture below. I spent some time walking the water line looking for sea glass. I actually found a few pieces, in
This is a whale bone that was found on the beach near NOAA Ship Fairweather
addition to a couple of rocks I thought were quite pretty! Sea glass is made from containers, bottles, and other glass objects that end up in the ocean. Over time, these objects break into smaller pieces, and the sandy and/or rocky sea floor erodes them. By the time they reach the beach, the pieces of glass have smooth edges and a translucent color. They are fun to collect as they come in many different colors, shapes, and sizes!
Did You Know? Ocean water has a high conductivity, or ability to conduct electricity, because of all of the dissolved salts in sea water. The ions that form from dissolved salts cause ocean water to be about 1,000,000 times more conductive than fresh water!
Question of the Day If a CTD determined that the speed of sound in an area was 1,504 m/s and the time it took for the sound wave to travel from the ship’s transmitter to receiver was 0.08 seconds, how deep was the water in that specific area? Make sure to use proper units, and remember that the total time is two ways and not just one way! (Answer in the next blog post)
My last few days at sea were rather exciting. Wednesday, I got to attend some medical training necessary at sea in the morning, and then in the afternoon we practiced safety drills. The whole crew ran through what to do in the case of three different ship emergencies: Fire, Abandon Ship and Man Overboard. These drills were pretty life-like, they had a fog machine which they use to simulate smoke for the fire drill. Once the alarm was triggered people gather in their assigned areas; roll was taken, firemen and women suited up and headed to the location where smoke was detected, and from there teams are sent out to assess damage or spreading of the fire, while medical personnel stood prepared for any assistance needed. The abandon ship drill required all men and women on board to acquire their life preserver and full immersion suit, and head to their lifeboat loading locations. Roll is then taken and an appointed recorder jots down the last location of the ship. Once this is done, men and women would have deployed the life rafts and boarded (luckily we did not have to). And for the man overboard drill they threw their beloved mannequin Oscar overboard in a life vest and had everyone aboard practice getting in their look out positions. Once Oscar was spotted, they turned the ship around, deployed an emergency boat and had a rescue swimmer retrieve him.
Deployed emergency boat for rescue of the beloved mannequin, Oscar.
These drills are necessary so that everyone on board knows what to do in these situations. While no one hopes these emergencies will happen, knowing what to do is incredibly important for everyone’s safety.
Thursday was maybe my favorite day on board. Due to the fact that there are a handful of new personnel on board, practice launching and recovering the survey launch boats was necessary. There are 4 launch boats on top of NOAA Ship Fairweather, each equipped with their own sonar equipment. These boats sit in cradles and can be lowered and raised from the sea using davits (recall the video from the “Safety First blog a few days ago). These four boats can be deployed in an area to allow for faster mapping of a region and to allow for shallower areas to be mapped, which the NOAA Ship Fairweather may not be able to access. Since this is a big operation, and one which is done frequently, practice is needed so everyone can do this safely and efficiently.
Launch boat on a davit
Davit lowering a launch boat
Ali Johnson inside one of the launch boats
With the aid of Ali Johnson as my line coach, I got to help launch and recover two of the survey launch boats from the davits on the top of the ship into the Bering Sea. This is an important job for all personnel to learn, as it is a key part of most survey missions. Learning line handling helps to make sure the survey launches are securely held close to the ship to prevent damage and to safely allow people on and off the launch boats as they are placed in the sea. From learning how to handle the bow and aft lines, to releasing and attaching the davit hooks, and throwing lines from the launches to the ship (which I do poorly with my left hand), all is done in a specific manner. While the practice was done for the new staff on board, it was fun to be involved for the day and I got to see the beauty of the NOAA Ship Fairweather from the Bering Sea.
And I truly enjoyed being on the small launch boats. I then understood what many of the officers mentioned when they told me they enjoyed the small boat work. It’s just fun!
Me on a launch boat, taken by AB Colin Hogan
NOAA Ship Fairweather from a launch
My trip ended in Nome, Alaska, which was in and of itself an experience. Students, you will see pictures later. I am extremely thankful for the crew on board NOAA Ship Fairweather, they are a wonderful mix of passionate, fun professionals. I learned so much!
Personal Log
Being a Teacher at Sea is a strange, yet wonderful experience. Being a teacher, I normally spend the vast majority of my day at work being in charge of my classroom and beautiful students; leading lesson and activities, checking-in with those who need extra help and setting up/tearing down labs all day, as well as hopefully getting some papers graded. However during this experience, I was the student, learning from others about their expertise, experience and passions, as well as their challenges; being in charge of nothing. And given that I had no prior knowledge of hydrography, other than its definition, I was increasingly impressed with the level of knowledge and enthusiasm those on board had for this type of work. It drove my interest and desire to learn all I could from the crew. In fact, I often thought those on board were older than they were, as they are wiser beyond their years in many area of science, technology, maritime studies, NOAA Ship Fairweather specifics and Alaskan wildlife.
Crew of NOAA Ship Fairweather
NOAA offers teachers the opportunities to take part in different research done by their ships throughout the research season as a Teacher at Sea. The 3 main types of cruises offered to teachers include (taken from the NOAA Teacher at Sea website):
Fisheries research cruises perform biological and physical surveys to ensure sustainable fisheries and healthy marine habitats.
Oceanographic research cruises perform physical science studies to increase our understanding of the world’s oceans and climate.
Hydrographic survey cruises scan the coastal sea floor to locate submerged obstructions and navigational hazards for the creation and update of the nation’s nautical charts.
I was excited to be placed on a Hydrographic Survey boat, as this is an area in my curriculum I can develop with my students, and one which I think they are going to enjoy learning about!
While I was sad to leave, and half way through had a “I wish I would have known about this type of work when I was first looking at jobs” moment (which I realize was not the goal of this fellowship or of my schools for sending me), I am super excited to both teach my students about this important work and also be a representative of this awesome opportunity for teachers. I will wear my NOAA Teacher at Sea swag with pride!
NOAA Teacher at Sea Eric Koser Aboard Ship Rainier June 22-July 9 Mission: Lisianski Strait Survey, AK July 4, 2018: 1000 HRS
Weather Data From the Bridge Lat: 55°57.7’ Long: 133°55.7’
Skies: Clear
Wind Light and variable
Visibility 10+ miles
Seas: <1 ft
Water temp: 7.2°C
Air Temp: 14.1°C Dry Bulb, 12.5°C Wet Bulb
The harbor at Pelican, Alaska.
The Impact of the Work “We’re a part of history!” This notion, shared by a colleague on a launch yesterday, brings home the importance of the work of this team and NOAA’s Hydrographic Branch. Lisianski Inlet was last surveyed in 1917 by lead line! The charts of the inlet were old and not likely accurate. This week – fresh data has been collected by Ship Rainier and her launches to bring the next century of mapping tools below their shores.
Pelican Harbor in the town of Pelican, Alaska was last surveyed between 1970 and 1989.–until we surveyed it yesterday with Rainier Launch RA-3. Our team drove in and out between each of the docks in the harbor, carefully pinging sound waves off of the floor of the harbor to construct a new digital map of the bottom.
Guys on a mission…walking to pickup the HorCon.
This is the Horizontal Control station, or HorCon, setup on the breakwater at Pelican before we took it down.
Part of our task yesterday, in addition to conducting MBES survey from our launch, was to dock in Pelican and retrieve our HorCon (a GPS reference radio setup on land that we have used there all week). As we walked through the very small town carrying two car batteries in backpacks, a pair of antennas, tripods, and other gear back to the launch – surely people were interested in what we were up to. Several people stopped to chat as we made our way from the pier, along the boardwalk, and down to the docks to go back to our launch. People asked who we were – and if we were the NOAA team that was in town. There was much appreciation expressed to NOAA for the work being done in the inlet to update the nautical charts. Here in Pelican, the water is the primary mode of transport. Accurate nautical charts provide security and safety.
Here is a bit of history on the city!
Main Street, Pelican, Alaska
It’s a comfortable place, here in Pelican!
There are no roads to Pelican. A few cars are in town – to pull trailers and move equipment. But the primary mode of land transport is four-wheelers. The ‘main street’ is really a raised boardwalk that runs along the rocky shore – and is the heartbeat of the community. Folks that live up or down the inlet from the town get there in small launches – there are no roads. A ferry comes to Pelican twice a month and is how cars and trucks come and go here. A seaplane comes through a few times a week—often bringing tourists in and out – and the mail. It’s a beautiful spot centered in a small inlet on the edge of the Pacific Ocean.
The fastest transportation in many parts of Alaska.
A house up the shoreline from Pelican.
Science and Technology Log
It’s mission accomplished for Lisianski Inlet!
Nautical charts are broken up into sheets. And within each sheet, areas are broken down into smaller polygons for data collection. Each launch (small boat), as well as the ship itself, can bring in multibeam data with the equipment mounted on each hull to complete plotting polygons and eventually complete sheets.
The hydrographic survey team is working away today in the plot room and on “the holodeck” of Ship Rainier (an office area on the top of the ship behind the plot room) processing the data we have collected the past several days. A combination of ship and launch multibeam data in addition to bottom samples and shoreline updates have been collected. Now the work of the scientists continues and becomes data processing.
Part of the hydrographic team on the holodeck.
As the data is combined, it is reviewed and refined to make a complete picture of the survey area. Once the team on the ship has completed their work, the data goes to the Pacific Hydrographic Branch of the Office of Coast Survey of NOAA. Here, the PHB team reviews that data again and assures it meets the specifications and standards needed to become finalized for use.
From PHB, the data is passed to two places. One is the NCEI (National Center for Environmental Information) office. They archive all of the raw and processed data including the digital surfaces themselves and the descriptive reports written by the hydrographers here.
The data also goes to the Marine Chart Division, an office of NOAA Coast Survey. Here is where the nautical charts are produced in both ENC and RNC (electronic and paper versions). It is this branch that publishes the data for use by mariners and the general public. Anyone can see the charts at nauticalcharts.noaa.gov (try the “Chart Locator”).
Here is a finished chart we are using to navigate today. Notice the two buoys in purple and green on the chart, and the narrow space between them.
This is the view from the flybridge as we approach these same two buoys that are indicated on the chart.
Who is on board?
Tyanne Faulkes is a hydrographic scientist with NOAA.
During this leg of the trip, we have a visiting scientist from NOAA’s is here on board. Tyanne Faulkes works as a physical scientist for the Pacific Hydrographic Branch of NOAA. She is a part of the team that processes the data from the hydro teams on NOAA Ship Rainier and NOAA Ship Fairweather. Her job is to assure that the data meets NOAA’s specifications–so that they can provide evidence of dangers of navigation and accurate depth information for all mariners.
Tyanne loves to be involved in making maps of the sea floor – and getting to see things others have not seen before! She loves that NOAA provides data for free to scientists around the world. Her job includes not only desk work, but also opportunities to make many mapping trips to understand where the hydro data comes from. Ms Faulkes has a bachelors degree in geography and GIS. It was a paid internship just out of college with NOAA that initially brought her to this work. And – she has a ton of fun with what she does. As a kid, Tyanne loved oceanography. Her GIS education tied well with the internship – and it all came together to take her where she is today!
When she’s not chasing the bottom of the oceans, Tyanne also loves to climb mountains!
She some advice to students – “Learn how to code!”
“Building Python scripts is a very powerful tool to allow us to automate the data review process. Being able to write the code – or at least understand the basic concepts that put it together – allows one to be much more efficient in your work!”
Understanding the concept of an algorithm that can save one hours of work is a very good asset. “I wish in college someone would have taught me how to do this!” One easy example is a bulk file renaming tool that the launch teams use. After collecting 50 some separate files of data in a day, this tool will take the individual file names and append any number of things to the filenames – all automatically.
Want to get involved? Next week, Tyanne and her team at NOAA’s Western Regional Center at Sand Point in Seattle, WA are hosting an annual camp for middle school and high school students! Students from across the US can apply to come to this camp each summer and have great experiences learning all about oceans and hydrography! Check it out on the web: NOAA Science Camp – Washington Sea Grant.
Weather Data from the Bridge of the California-based whale watching boat Islander on 7/2/18 at 08:29
Latitude: 34° 13.557 N
Longitude: 119° 20.775 W
Sea Wave Height: 2 ft
Wind Speed: 5-10 knots
Wind Direction: NW
Visibility: 15 miles (seems a little off to me, but that is what I was told)
Air Temperature: 65° F (ish)
Water Temperature: not recorded
Barometric Pressure: not recorded
Sky: Grey and cloudy
View from the plane leaving Dutch Harbor, Alaska
Personal Reflection
Wow! What an incredible experience! When I was first accepted into this program I knew that it would be great and I knew that I was going to be working on research, but I feel like I ended up getting way more than I had expected. While filling out my application for the NOAA Teacher at Sea program we were given the opportunity indicate a preference for locations and types of research. I indicated that I would have been happy with any of them, but I was honestly hoping to be on a fisheries cruise, and my first choice of location was Alaska. That’s exactly what I got! I could not have picked a more perfect match for myself.
When I first received my specific cruise offer to join NOAA Ship Oscar Dyson it was pointed out to me that 23 days at sea was a LONG cruise, and I was a little bit worried about being at sea for that long when I had never even slept on a ship like that before. What I didn’t realize, was that the hardest part of this research cruise, would be leaving at the end of it. Saying goodbye to the scientists and friends that I had worked closely with for the past 3+ weeks was pretty tough.
This slideshow requires JavaScript.
The natural beauty of Alaska, and Unalaska specifically, is breathtaking. I kept saying that I can’t believe that places like that existed in the world and people weren’t tripping over themselves to live there. This is a part of Alaska that very few ever see. I loved getting to explore Dutch Harbor and see some of the beaches and do a little hiking while in port, and seeing the different islands and volcanoes while at sea. I also was incredibly excited to see all of the wildlife, especially the foxes, eagles, and of course, whales.
Video of a whale swimming and then diving in the distance.
From the moment that Sarah and Matthew picked me up from the airport, I knew that I was in great company. They immediately took me in and invited me to join the rest of the science team for dinner. Bonding happened quickly and I am so happy that I got to work with and learn each day from Denise, Sarah, Mike, Nate, Darin, Scott, and Matthew every single day. I looked forward to (and now miss) morning coffee chats, and dancing in the fish lab together. I have so many positive memories with each of them, but here are a few: sitting and reviewing and discussing my blogs with Denise, taking photos of a stuffed giraffe with Sarah, go pro fishing (scaring the fish) with Mike, watching Scott identify and solve problems, listening to Darin play the guitar, fishing with Nate on the Bridge, and exploring on land with Matthew. These are just a few of the things that I will remember and cherish about these wonderful people.
I know that it happens in all workplaces eventually, but it’s weird to think that the exact same group of people on the ship will never again be in the same place at the same time because of rotations and leave, and whatnot. I feel very grateful that I was on the ship when I was because I really enjoyed getting to know as many people on the ship as possible, and to have them teach me about what they do, and why they do it.
Not only did I learn about the Scientific work of the MACE (Midwater Assessment and Conservation Engineering) team, I learned so much about the ship and how it functions from everyone else on the ship. Every single time that I asked someone a question or to explain how something works, I was always given the time for it to be answered in a way that was understandable, and meaningful. I learned about: charting and navigation (thanks Aras), ship controls (thanks Vanessa), The NOAA Corps (thanks CO and Sony), ship engines and winches (thanks Becca), fancy ship knots (thanks Jay), water data collected by the ship (thanks Phil)… I could go on and on.
After landing back in port in Dutch Harbor, I got off of NOAA Ship Oscar Dyson and turned and looked at it, and my perception of it had changed completely from the beginning of the cruise. It sounds totally cliché, but it wasn’t just a ship anymore, it was somewhere I had called home for a short time. As I looked at the outside of the ship I could identify the rooms behind each window and memories that I had in that space. It was surreal, and honestly pretty emotional for me. On the last day, once we got into port, my name tag was taken off of my stateroom door and it was replaced with the names of the new teachers heading to sea. It was sad to realize that I really was leaving and heading home. It’s weird to think that the ship will continue on without me being a part of it any longer.
NOAA Ship Oscar Dyson in port in Dutch Harbor, AK
A valuable part of the NOAA Teacher at Sea program was me stepping back from being a teacher, and actually being reminded of what it feel like to be a learner again. I was reminded of the frustrations of not understanding things immediately, and also the exciting feeling of finally understanding something and then being able to show and explain it. I loved learning through inquiry and asking questions to lead to newer and better questions. These are the things that I am trying to implement more in my classroom.
While on the ship I was able to come up with 3 new hands on activities that I will be trying out in my classes this year. This is in addition to the one that is directly related to my research. The new labs that I have created will help me to focus my efforts and give my students the skills that they will benefit from in the future. I am also even more excited to go and pursue my Master’s Degree in the near future than I was before, even though I am more confused on what to go back to school for.
I love being able to participate in research in addition to teaching. I really feel like it makes me a better teacher in so many ways. It really reminds me what is important to try and teach my students. In the world of Google searches and immediate information, learning a bunch of facts is not as practical as learning skills like how to test out a question, collect data, and share knowledge learned. I am so grateful for this opportunity and I really hope that I am able to continue to find other research experiences for myself in the future. I would love to be able to further my research experiences with MACE by visiting them in Seattle, and I would be happy to hop back on the Oscar Dyson, or another NOAA ship, at any time (hint, hint, wink,wink). Thanks for the memories.
Video of TAS Lacee Sherman on the deck of NOAA Ship Oscar Dyson.
[Transcript: Ok so right now it is 9 o’clock at night and the sun is still way up in the sky. It will not go down until like almost midnight. And that’s why they call it the midnight sun!]
TAS Lacee Sherman with her dog, Chloe after getting back home
Weather Data From the Bridge Lat: 58°06.8’ Long: 136°32.0’
Skies: Broken
Wind 10 kts at 220°
Visibility 10+ miles
Seas: 1 ft
Water temp: 7.2°C
Air Temp: 11.6°C Dry Bulb, 10.9°C Wet Bulb
Science and Technology Log
Aboard NOAA Ship Rainier, it takes a team to manipulate this ship. But first, much planning must occur to prepare for each day!
The FOO (Field Operations Officer) creates the plan for each day. Each evening, around dinner time, the FOO publishes the POD (Plan of the day) for the next day for everyone aboard. Here is a portion of July 1’s POD developed by FOO Ops Officer Scott Broo:
The “Plan of the Day” for July 1, 2018. Notice the shoreline window indicates the best time for the launches to work.
Today at 0515 was M/E Online. This is when the Engineering Department starts both 12 cylinder diesel locomotive engines–after being prepped and inspected ahead of time.
Next the Deck Department “weighed the anchor” at 0600 to get underway. Note – this term refers to when the ship holds the weight of the anchor – as it is pulled OUT of the water so we can get underway.
The principal work of Ship Rainier is hydrographic mapping. All operations here focus on creating the best charts possible of the ocean floor. As we are logging (using the MBES to take data from the ship), the plot department communicates to the bridge to indicate where they need the ship to go. The bridge can view a computer display showing the current plots the hydro team is working on – and uses this and the guidance of the hydrographic team to direct the ship. Over time, the ship covers the area of the current sheet while the hydro team captures the data from the MBES. As the process proceeds, the whole sheet gets ‘painted’ by the MBES so we have a complete chart of the bottom.
This display in the plot room shows the hydrographers the incoming MBES data in real time. Note the line of travel of the ship in the center pointing WestSouthWest as this sheet is ‘painted.’ Various colors represent different relative depths.
It really takes a team on the bridge to control the ship when underway. The bridge is the control room of the ship.
The bridge is the room with all the windows (in the blue box) just below the fly bridge.
Imagine standing on the bridge (the room where the driving happens) and noticing who is there. From port (left) to starboard (right) we have: Navigator, Lee Helm, Helm, Lookout, and OOD.
Here the lookout, the JOOD (junior officer on deck), the OOD, and the helmsman (left to right) are on the bridge.
This snippet from the ship’s plans illustrates locations of tools on the bridge.
The navigator’s job is to always be aware of where the ship is and where she is to be heading. The lee helmsperson operates the controls for the engine speed and the pitch of the props [forward or backwards]. The helmsperson turns the wheel to control the rudders or sets the helm in autopilot to steer a fixed bearing. The lookout maintains awareness of all other vessels around the ship and any potential obstacles in the ship’s path. The OOD orchestrates the whole team and is directly responsible for the motion of the ship. The OOD gives commands for any changes that are to happen to the course of the ship – and also communicates with Plot to know where they need the ship to go to create the charts.
The lee helm is the control panel for the engines located on the bridge. The propeller pitch is controlled by the levers at the center. The bow thruster is controlled by the lever on the right.
The helm is the ship’s steering control. The current bearing is show at the top and bottom and the auto pilot bearing is on the display at the center.
The radar displays what is around us. The yellow indicates land (we were anchored in a bay at the time of this photo). Radar also senses other vessels in the water. Two radar units run at two different ranges all the time.
Personal Log
This is a shoreline view from launch RA-7 as we were charting features along Lisianski Inlet.
The wildlife in this part of Alaska is great and easy to find. We’ve seen humpback whales, orcas, sea otters, eagles, gulls, deer, and bears. Last night as we were anchored at the end of the inlet I watched a grizzly bear on shore. I was able to use the large mounted binoculars on the flybridge affectionately called “big eyes” to take photos. I watched the bear move along the shore as a pair of eagles flew overhead.
Here are a few of the wildlife photos I’ve taken the past several days!