NOAA Teacher at Sea
Laura Guertin
Aboard NOAA Ship Oscar Dyson
June 10 – June 22, 2023
Mission: 2023 Summer Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska
Geographic Area of Cruise: Islands of Four Mountains area, to Shumagin Islands area
Location (10:45AM (Alaska Time), June 21): 55o 29.7525′ N, 156o 44.7276′ W
Data from 10:45AM (Alaska Time), June 21, 2023
Air Temperature: 8.4 oC
Water Temperature (mid-hull): 8.2oC
Wind Speed: 8 knots
Wind Direction: 20 degrees
Course Over Ground (COG): 76 degrees
Speed Over Ground (SOG): 11 knots
Date: June 21, 2023
Once the echo sounder has shown us the position of an aggregation of Alaska walleye pollock (we hope they are pollock and not some other fish species), we lower the trawl net and see what we can catch. This is where the trawl sonar and CamTrawl (see previous blog post) come in handy to give us an idea of what is going into the net. It’s an amazing coordination of effort between the acoustics lab (who decides where to trawl), the bridge for navigation, and the deck crew for setting/retrieving the haul.
We aim for trawling at the mid-water level, where the pollock are typically found. Pacific Ocean perch (POP, or rockfish) can also be found in the mid-water level in the Gulf of Alaska, especially just off the shelf break. Bottom trawls can yield pollock and other fish (e.g., POP and other rockfish species, various species of flatfish).
Once the trawl net has been brought back on board, the catch is emptied into a bin called a table. There is a door on the side of the table that opens into the fish lab. Once the table door opens, the fish spill into the laboratory where they travel down a conveyor belt for the initial sorting. Our target species is the pollock. We weigh everything that ends up onto the sorting table, either in bulk (by species) or individually.
A subset of around 250 pollock are set aside to collect length data. The length of these of each individual pollock are measured on an Ichthystick. This is another invention by Rick Towler and Kresimir Williams (remember the CamTrawl? (see previous blog post)). As described in their article An inexpensive millimeter-accuracy electronic length measuring board, these NOAA scientists describe using magnetic measuring technology that, to millimeter resolution, takes a measurement when you placed a magnet on a sensor that runs the length of the board. For our pollock measurements, we were looking to record the fork length, and a quick placement of the red magnet along the fish tail sends the data to a computer program called CLAMS (Catch Logger for Acoustic Midwater Surveys).
Another subset of approximately 50 pollock are set aside for additional data collection on individual specimens – length, weight, sex, maturity, and age. Otoliths (e.g., ear bones) are removed, and sometimes organs are removed and measured (ovaries for maturity development analyses, liver).

What are otoliths, and why remove them? Otoliths are ear stones, or ear bones, found in fish. To give you an idea of why we remove ear bones, let’s start by thinking about trees and corals… trees grow a new ring on their structure each year, and corals have differences in their skeletal density between the seasons (both trees and corals are also used to reconstruct past climate conditions (proxy data for paleoclimatology)). By counting the rings on trees and coral, we can calculate the age of that specimen. It turns out that fish also have a way to record their annual growth – and it occurs in their ear through Fish Otolith Chronologies.
Scientists are very interested in studying otoliths. When otolith data are combined with data on fish size, scientists are able to determine the growth rates of fish, which then combined with the survey work, helps inform annual fish stock assessment reports. We don’t do any of the otolith analyses on the ship, but we do collect the samples with a detailed label and all the corresponding data (fish length, sex, weight, location) that is sent back to the NOAA Fisheries Alaska Fisheries Science Center for analyses and entered into their Fish Otolith Collection Database.
Did you know… More than 30,000 otoliths are read annually by NOAA Fisheries Alaska Fisheries Science Center scientists. So far, the Science Center has collected more than 1.1 million fish otoliths for ageing. (from NOAA Fisheries)
To learn more about the fascinating studies of otoliths and what NOAA Fisheries is doing, check out these websites:
NOAA Fisheries Age and Growth – NOAA Fisheries scientists assess the age and growth rates of fish species and populations to better monitor, assess, and manage stocks. There is also a separate site for Age and Growth Research in Alaska.
NOAA Fisheries Age and Growth Homework: Determining How Old Fish Are
NOAA Fisheries Near-Infrared Technology Identifies Fish Species From Otoliths – NOAA Fisheries scientists are developing ways to use near-infrared spectroscopy (NIRS) analysis of otoliths (fish ear stones) to provide accurate information for sustainable fisheries management faster.
If you are really curious to explore some fish otolith data, check out the Alaska Age And Growth Data Map, an interactive map displays collected specimen information from recent age and growth studies from Alaska Fisheries Science Center.

After I wrote this post, NOAA Fisheries shared on Twitter this great article relating to otoliths, “Innovative Technology Promises Fast, Cost-Efficient Age Data for Fisheries Management” – https://www.fisheries.noaa.gov/feature-story/innovative-technology-promises-fast-cost-efficient-age-data-fisheries-management
I found another great article on otoliths! “Magnuson-Stevens Fishery Conservation And Management Act In Action: Age Data Are Important For Sustainable Fisheries” – https://www.fisheries.noaa.gov/feature-story/magnuson-stevens-fishery-conservation-and-management-act-action-age-data-are-important