Sam Northern: From Microscopes to Binoculars—Seeing the Bigger Picture, June 7, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: June 7, 2017

Weather Data from the Bridge:

Latitude: 40°34.8’N

Longitude: -72°57.0’W

Sky: Overcast

Visibility: 10 Nautical Miles

Wind Direction: 050°NE

Wind Speed: 13 Knots

Sea Wave Height: 1-4 Feet

Barometric Pressure: 1006.7 Millibars

Sea Water Temperature: 14.8°C

Air Temperature: 12.8°C

Personal Log

The Eve of Debarkation (Tuesday, June 6)

IMG_6336Today is the eve of my debarkation (exit from NOAA Ship Gordon Gunter). Our estimated time of arrival (ETA) to Pier 2 at the Naval Station Newport is 10 a.m. tomorrow, June 7th. Before I disembark, the sea apparently wants to me remind me of its size and force. Gordon Gunter has been rocked back and forth by the powerful waves that built to around 5 feet overnight. Nonetheless, it is full steam ahead to finish collecting samples from the remaining oceanography stations. All hands on deck, as the saying goes. The navigational team steer the vessel, engineers busy themselves in the engine room, deck hands keep constant watch, scientists plan for the final stations, and the stewards continue to provide the most delicious meals ever. I am determined to not let a bumpy ship ride affect my appetite. It is my last full day aboard Gordon Gunter, and I plan to enjoy every sight, sound, and bite.

Coming into Port (Wednesday, June 7)

IMG_9840.JPGI am concluding my log on board NOAA Ship Gordon Gunter, in port. It seems fitting that my blog finish where it took life 10 days ago. When I first set foot on the gangway a week and a half ago, I had no idea of the adventure that lay in front of me. I have had so many new experiences during the Spring Ecosystem Monitoring (EcoMon) Survey—from sailing the Gulf of Maine to collecting plankton samples, along with many special events in between.

Gordon Gunter Course v2.png

Our entire cruise  [Source — Sailwx.Info]

I have grown accustomed to life on board Gordon Gunter. The constant rattling of the ship and the never-ending blowing of the air-conditioner no longer bother me, they soothe me. It is remarkable what we as humans can do when we just do it. At this time last year I never would have imagined working on a research vessel in the North Atlantic. It is nice proving yourself wrong. There is always a new experience waiting. Why hesitate? The memories I have made from the Teacher at Sea program will be amongst the ones I will cherish for the rest of my life.

IMG_6467.JPGI won’t keep the experience and the memories just for myself either. Back home at Simpson Elementary School, 670 eager 1st, 2nd, and 3rd graders are waiting to experience oceanography and life at sea vicariously through their librarian. Through the knowledge I have gained about the EcoMon Survey, my blog, photographs, and videos, I am prepared to steer my students toward an understanding and appreciation of the work that is being done by NOAA. Gordon Gunter steered us in the right direction throughout the entire mission, and I plan to do the same for students in my library media center.

Seeing the Bigger Picture

IMG_8787 - Copy.JPGMany types of zooplankton and phytoplankton are microscopic, unable to be seen by the naked eye. From 300 plus meters out, birds can appear to be specks blowing in the wind. But with a microscope and a pair of binoculars, we can see ocean life much more clearly. The organisms seem to grow in size when viewed through the lenses of these magnification devices. From the smallest fish larvae to the largest Blue Whale, the ocean is home to millions of species. All the data collected during the EcoMon Survey (plankton samples, wildlife observers, ship’s log of weather conditions, and GPS coordinates) creates a bigger picture of the ocean’s ecosystem. None of the data aboard Gordon Gunter is used in isolation. Science is interconnected amongst several variables.

IMG_6786 - Copy.JPG

Common Tern

Take for instance the avian observers’ data which is most useful when analyzed in terms of the current environmental conditions in which each bird or marine animal was seen: sea temperature, wind speed, and water currents. This kind of data in conjunction with the plankton samples will help scientists create predictive models of the marine environment. Our understanding of the hydrographic and planktonic components of the Northeast U.S. Continental Shelf Ecosystem will help us prepare for a more sustainable future where marine life flourishes.

To explain the purpose behind the the EcoMon Surveys, I would like to share an excerpt written by Chief Scientist, Jerry Prezioso during the 1st Leg of the Spring Ecosystem Monitoring Survey:

IMG_9548My answer would be that we need to do these ecosystem monitoring surveys because we are on the front lines of observing and documenting first hand what’s going on in our coastal and offshore waters. The science staff, aided by the ship’s command and crew, is working 24 / 7 to document as much as they can about the water conditions, not just on the surface but down to 500 meters, by measuring light, chlorophyll, and oxygen levels as well as nutrients available.  Water column temperatures and salinities are profiled and Dissolved Inorganic Carbon (DIC) levels are checked as a way of measuring seawater acidity at the surface, mid-water and bottom depths. What planktonic organisms are present?  Plankton tows across the continental shelf down to 200 meters are made to collect them.  What large marine organisms such as whales, turtles and seabirds are present in different areas and at different times of the year, and are they different from one year to the next?  From one decade to the next? Two seabird observers work throughout the daylight hours to document and photograph large marine organisms encountered along our cruise track.  Without this information being gathered on a regular basis and in a consistent manner over a long period of time, we would have no way of knowing if things are changing at all. [Source — Jerry Prezioso, Chief Scientist]

IMG_8819.JPGJust as the ocean changes, so does the science aboard the ship. So, what’s next for Gordon Gunter? Three days after my debarkation from the vessel, Gunter will be employed on an exploratory survey of Bluefin Tuna. This is quite an iconic survey since scientists could be on the brink of a new discovery. Bluefin Tuna were once thought to only spawn in the Gulf of Mexico and the Mediterranean Sea. That is until researchers began to find Bluefin Tuna larvae in the deep waters between the Gulf Stream and the northeast United States. Fifty years ago fishermen believed Bluefin Tuna were indeed spawning in this part of the Gulf Stream, but it was never thoroughly researched. The next survey aboard Gordon Gunter (June 10-24) will collect zooplankton samples which scientists predict will contain Bluefin Tuna larvae. The North Gulf Stream is not an area regularly surveyed for Bluefin Tuna. It is quite exciting. The data will tell scientists about the life history and genetics of these high-profile fish. NOAA Ship Gordon Gunter has executed countless science missions, each special in its own right. Yes, it is time for me to say farewell to Gordon Gunter, but another group of researchers won’t be far behind to await their turn to come aboard.

360-degree of the most beautiful sunset I have ever seen.

A BIG Thank You!

I would like to extend a heartfelt thank you to the NOAA crew for such an amazing voyage I would like to thank the ship’s stewards, Chief Steward, Margaret Coyle and 2nd Cook, Paul Acob. Their hospitality cannot be matched. From day one, they treated me like family. They prepared each meal with care just like my mother and grandmother do. I cannot imagine enjoying another ship’s food like I have that aboard Gordon Gunter. To the stewards, thank you.

I would like to thank the deck team for their continual hard work throughout the cruise. Chief Boatswain, Jerome Taylor is the definition of leadership. I watched on countless occasions his knack for explaining the most difficult of tasks to others. Jerome knows the ship and all her components like the back of his hand. The deck crew left no stone unturned as they carried out their duties. To the deck crew, thank you.

I would like to thank the engineers. Without the engineering team our cruise would not have been possible. The engineers keep the heart of the ship running, the engine. I am astounded by the engineers’ ability to maintain and repair all of Gordon Gunter’s technical equipment: engines, pumps, electrical wiring, communication systems, and refrigeration equipment. To the engineers, thank you.

I would like to thank the wonderful science team, who patiently taught me the ropes and addressed each of my questions. It is because of their knowledge that I was able to share the research being done during our Ecosystem Monitoring Survey. To the science team, thank you.

I would like to thank the NOAA Corps officers who welcomed me and my questions at all times. These technically skilled officers are what make scientific projects like the EcoMon successful. They remained steadfast in the way of any challenge. They ensured the successful completion of our mission. To the NOAA Corps officers, thank you.

NOAA Commissioned Officer Corps (NOAA Corps): “Stewards of the Sea”

NOAA Corps is one of the nation’s seven uniformed services. With 321 officers, the NOAA Corps serves throughout the agency to support nearly all of NOAA’s programs and missions. Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA. The combination of commissioned service and scientific expertise makes these officers uniquely capable of leading some of NOAA’s most important initiatives. [Source — NOAA Corps]

IMG_6699.JPG

Great Black-backed Gull

All officer candidates must attend an initial 19-week Basic Officer Training Class (BOTC). The curriculum is challenging, with on board ship-handling exercises coupled with classroom instruction in leadership, officer bearing, NOAA mission and history, ship handling, basic seamanship, firefighting, navigation, and first aid. BOTC is held at the U.S. Coast Guard Academy in New London, Connecticut, where new NOAA Corps recruits train alongside Coast Guard officer candidates before receiving their first assignment to a NOAA ship for up to 3 years of sea duty. [Source — NOAA Corps] The NOAA Commissioned Officer Corps is built on honor, respect, and commitment.

Meet Gordon Gunter’s NOAA Corps Officers

Meet Lieutenant Commander, Lindsay Kurelja!

IMG_9773

Lieutenant Commander, Lindsay Kurelja

What is your position on NOAA Ship Gordon GunterAs Commanding Officer (CO) I am wholly responsible for everything that happens on board. I’m the captain of the boat. I am in charge of all people and actions that happen on board.

Have you had much experience working at sea? I started going to sea when I was 18. That’s 20 years.

Where do you do most of your work aboard the ship? I stay on a four hour watch on the bridge where I am in charge of the navigational chart and maneuvering of the vessel. I also disperse myself amongst managing the four departments on board to concentrate on the engineering and maintenance side of things.

What is your educational background? I graduated from Texas Maritime Academy with a degree in Marine Biology and a minor in Marine Transportation which gave me a third mate unlimited license with the U.S. Coast Guard. I then came straight to work for NOAA.

What tool do you use in your work that you could not live without? Our navigational equipment. Nothing is more important to a navigational officer than a pair of dividers and a set of triangles.

What is your favorite marine animal? My favorite marine animal are Ctenophoras. Ctenophoras are little jellyfish that are unique in the evolutionary scale because of their abilities despite the lack of brains.

Meet Lieutenant Commander, Chad Meckley!

IMG_9775

Lieutenant Commander, Chad Meckley

What is your position on NOAA Ship Gordon GunterI am the Executive Officer (XO) aboard NOAA Ship Gordon Gunter. I am second in command after the Commanding Officer.

Have you had much experience working at sea? Yes. This is my third sea assignment. My first sea assignment was for two years on the Albatross IV. I also sailed aboard the McArthur II for a year, I did six months on the Henry Bigelow, and I was certified while sailing on the Coast Guard Cutter EAGLE. I have had quite a bit of sea time so far in my career.

Where do you do most of your work aboard the ship? If I am not on the bridge on watch, you can find me in my office. As XO one of my primary responsibilities is administrative work—from time and attendance to purchasing.

What is your educational background? I earned a bachelor’s degree at Shippensburg State University in Shippensburg, Pennsylvania. I studied Geography and Environmental Science.

What tool do you use in your work that you could not live without? The biggest tool we have aboard the ship that we use more than anything are the nautical charts. Without our nautical charts, we wouldn’t be going anywhere. We could not get safely from point A to point B and accomplish our mission of science and service aboard these vessels.

What is your favorite marine animal? That’s a tough one because there’s so many cool animals in the sea and on top of the sea. I am really fascinated by Moray eels. The way they move through the water and their freaky, beady eyes make them really neat animals.

Meet Lieutenant Junior Grade, Libby Mackie!

IMG_9767

Lieutenant Junior Grade, Libby Mackie

What is your position on NOAA Ship Gordon GunterI am the Operations Officer on board. One step below the Executive Officer. I do the coordination of the scientists.

Have you had much experience working at sea? I had some experience at sea when I was in the NAVY. Even though I never went underway in the NAVY, but I did have a second job on some of the dive boats in Hawaii. After I got out of the NAVY and went to school I got some small boat time there. Other ships I have sailed on with NOAA are the Oscar Dyson, the Reuben Lasker, and the Bell M. Shimada.

Where do you do most of your work aboard the ship? On the bridge and in the dry lab with the scientists.

What is your educational background? I have a bachelor’s of science in Marine Biology and an associate’s degree in Mandarin.

What tool do you use in your work that you could not live without? The coffee machine!

What is your favorite marine animal? Octopus.

Meet Ensign, Alyssa Thompson!

IMG_9756

Ensign, Alyssa Thompson

What is your position on NOAA Ship Gordon GunterI am a Junior Officer. I reported here May 20th of last year. I am the Navigation Officer and Safety Officer. I am an ensign, so I do all of the navigational planning. I also drive the ship. 

Have you had much experience working at sea? I have been at sea with the NOAA Corps for over a year now.

Where do you do most of your work aboard the ship? On the bridge, driving the ship.

What is your educational background? I went to Virginia Tech. I earned my undergraduate degree in Biology/Animal Sciences. I took a lot of Fisheries classes, too. I interned in Florida researching stingrays and general marine biology with the University of Florida.

What tool do you use in your work that you could not live without? Probably radar. I could not live without the radar. It shows you all of your contacts, your targets, especially in the fog up here in the Northeast. Radar is a wonderful tool because there are times you can’t see anything. Sometimes we have only a half mile visibility, and so the radar will pick up contacts to help you maneuver best.

What is your favorite marine animal? Dolphins. I love dolphins, always have.

Meet ENS, Lola Ajilore!

IMG_9144

ENS, Lola Ajilore

What is your position on NOAA Ship Gordon Gunter?

I am a NOAA Corps Junior Officer. I joined NOAA in July of 2016. I work with navigation, and I am the secondary Environmental Compliance Officer.

Have you had much experience working at sea? Not yet. I have only been at sea for one month.

What is your educational background? I earned my undergraduate degree in Environmental Policy from Virginia Commonwealth University. I have a master’s in Environmental Science from John Hopkins University.

What is most challenging about your work? It is a challenge learning to drive a ship. It is much different from a car, especially because there are no brakes. I also miss being around my family. You miss out on a lot of special events like birthdays when you work at sea.

What is your favorite marine animal? Dolphins!

Meet Ensign, Mike Fuller!

IMG_9759

Ensign, Mike Fuller

What is your position on NOAA Ship Gordon GunterI am an Augmenting Junior Officer on Gordon Gunter for the time being until I head off to my permanent duty station.

Have you had much experience working at sea? Not in this position. I did have some research experience when I was at the University of Miami.

Where do you do most of your work aboard the ship? Most of my work is on the bridge standing watch and operating the actual ship itself—general ship driving and operations.

What is your educational/training background? Those who decide to do the NOAA Corps are required to have a science background. My background is in Marine Science and Biology. I studied a lot of invertebrates in university. After university I went to a 19-week training course where the NOAA Corps trains alongside the Coast Guard learning about different maritime regulations and standard operating procedures.

What tool do you use in your work that you could not live without? From a very broad standpoint the tool we use regularly are our navigational charts. You can’t do anything without those. That’s how we setup the entire cruise. It gives us all the information we need to know for safe sailing.

What is your favorite marine animal? There’s so many, it’s hard to pick. My favorite would have to be a species of crinoid that you find in really old rocks. They are a really cool invertebrate.

Meet Ensign, Mary Claire Youpel!

IMG_9763

Ensign, Mary Claire Youpel

What is your position on NOAA Ship Gordon GunterI am the newest Junior Officer aboard the Gordon Gunter. I just reported; this is my first sea assignment.

Have you had much experience working at sea? Limited. I did research at Louisiana State University during grad school. My lab worked on Red Snapper research in the Gulf of Mexico. This is my first time going out to sea with NOAA.

Where do you do most of your work aboard the ship? I work in the bridge or the pilot house. This is where we drive the ship.

What is your educational background? I have a bachelor’s of science from the University of Illinois-Champaign in Environmental Science. I have a master’s of science in Oceanography and Coastal Studies from Louisiana State University. I also have a master’s of Public Administration from Louisiana State University.

What tool do you use in your work that you could not live without? Radar, because it helps us navigate safely on our track lines.

What is your favorite marine animal? The Great White Shark.

Animals Seen

 

 

New Terms/Phrases

For my final glossary of new terms and phrases, I would like to share ways to say goodbye. It has been difficult for me to find parting words for all of those I have worked with and got to know the past 10 days. If you cannot think of one way to say goodbye, try 10!

  1. Goodbye.
  2. ‘Bye.
  3. Farewell.
  4. Take care.
  5. See you later.
  6. So long.
  7. Adios.
  8. Ciao.
  9. Au revoir.
  10. Sayonara.

Did You Know?

The NOAA Corps traces its roots to the former U.S. Coast and Geodetic Survey, which dates back to 1807 and President Thomas Jefferson. In 1970, NOAA was created to develop a coordinated approach to oceanographic and atmospheric research and subsequent legislation converted the commissioned officer corps to the NOAA Corps. [Source — NOAA Corps] https://www.omao.noaa.gov/learn/noaa-corps/about

Photoblog

 

This slideshow requires JavaScript.

Sam Northern: 3… 2… 1… Deploy the Drifting Buoy!, June 5, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

 Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: June 5, 2017

Weather Data from the Bridge:

Latitude: 42°22.4’N

Longitude: -70°38.2W

Sky: Foggy

Visibility: ≥ 1 Nautical Mile

Wind Direction: 090°E

Wind Speed: 20 Knots

Sea Wave Height: 2-4 Feet

Barometric Pressure: 1008.3 Millibars

Sea Water Temperature: 13.3°C

Air Temperature: 12.1°C

Science and Technology Log

Drifting Buoy

IMG_6642.JPG

Seconds away from deploying the drifting buoy.

3… 2… 1… deploy the drifting buoy! The NOAA Office of Climate Observation established the Adopt a Drifter Program in 2004 for K-16 teachers. The program’s mission is “to establish scientific partnerships between schools around the world and engage students in activities and communication about ocean climate science.” By adopting a drifter I am provided the unique opportunity of infusing ocean observing system data into my library media curriculum. A drifter, or drifting buoy, is a floating ocean buoy that collects data on the ocean’s surface. They tend to last approximately 400 days in the water. Drifters allow scientists to track ocean currents, changes in temperature, salinity, and other important components of the ocean’s surface as they float freely and transmit information.

IMG_9223

Decorating the drifter with stickers.

The buoy is equipped with a thermistor, a drogue and a transmitter so that it can send out daily surface water temperatures and its position to an Argos satellite while it is being moved by surface currents pulling on the drogue. Soon I will receive the WMO number of my drifting buoy to access data online from the drifter. My students and I will receive a drifter tracking chart to plot the coordinates of the drifter as it moves freely in the surface ocean currents. Students will be able to make connections between the data accessed online and other maps showing currents, winds, and surface conditions.

 

How to Deploy a Drifter:

IMG_9349

  1. Remove the plastic covering (shrink-wrapped) from the buoy on the ship.
  2. Record the five-digit ID number of the drifter inscribed on the surface float.
  3. A magnet is then removed from the buoy, which starts a transmitter (located in the upper dome) to allow data from the buoy to be sent to a satellite and then to a ground-based station so we can retrieve the data.
  4. Throw the unpacked drifter from the lowest possible deck of the ship into the sea. The tether (cable) and drogue (long tail that is 15 meters long) will unwrap and extend below the sea surface where it will allow the drifter to float and move in the ocean currents.
  5. Record the date, time, and location of the deployment as well as the five-digit ID.

GoPro footage of the drifter’s deployment

My drifter buoy was launched at 8:01 PM (20:01) on June 3rd, 2017. Its official position is 43 degrees 32.9 minutes North, 067 degrees 40.5 minutes West.

Buoy Trajectory.png

This image shows where we deployed the buoy in the Gulf of Maine. The red and blue symbols are the buoy’s trajectory, confirming that the drifter is being tracked via satellite in real-time.

 

IMG_6640

Chief Scientist, David Richardson and I on the ship’s stern ready to deploy the drifter.

The WMO # associated with my drifter is 44907. To track the buoy and view data, please visit the GDP Drifter Data Assembly Center website. There, you will find instructions on how to access data via the NOAA Observing System Monitoring Center (OSMC) webpage or Quality Control Tools Buoy Location and Trajectory website.  My students will have full access to our drifting buoy data (e.g., latitude/longitude coordinates, time, date) in near real-time for their adopted drifting buoy as well as all drifting buoys deployed as part of the Global Drifter Program. Students can access, retrieve, and plot various subsets of data as a time series for specified time periods for any drifting buoy and track and map their adopted drifting buoy for short and long time periods (e.g., one day, one month, one year). My students are going to be thrilled when learn they get to be active participants in NOAA’s oceanography research.

drifter_annimation

Drifter Diagram [Source — NOAA/AOML/PhOD]

Below is a 2-minute video from NOAA’s National Ocean Service to learn more about drifting buoys. 

Deploying my drifting buoy in 360-degress

Nautical Navigation

IMG_9080

NOAA Ship Gordon Gunter’s Navigational Bridge

Understanding where you are on the grid is essential when navigating a ship of any size. NOAA Ship Gordon Gunter houses a major operation with 30 personnel on board. The safety of each individual is a primary concern for Commanding Officer, Lindsay Kurelja. She knows all there it is to know about navigating a marine vessel. Early mariners heavily relied on the stars and landmarks to determine their position in the sea. While celestial and terrestrial navigation techniques are still effective and used often by contemporary sailors, modern ships have GPS. GPS stands for Global Positioning System, and it lets us know where we are and where we are going anywhere on Earth. GPS is quickly becoming an integrative part of our society. It is a worldwide radio-navigation system formed from a constellation of 24 satellites and their ground stations.

IMG_6618

GPS Receiver in the Navigational Bridge

Commanding Officer Kurelja and her crew use a GPS receiver to chart Gordon Gunter’s position in the ocean. The ship receives signals from 10 satellites that are in lower orbit. Once the ship’s receiver calculates its distance from four or more satellites, it knows exactly where we are.

IMG_9075

Nautical Chat

Within seconds, from thousands of miles up in space, our location can be determined with incredible precision, often within a few yards of your actual location. [Source — NOAA] The satellites’ signals give NOAA officers the ship’s positioning. Then, using a nautical chart of the area in which we are cruising, the Navigation bridge team plots the latitude position and the longitude position to determine the ship’s exact location.

 

Ship’s Internet

IMG_9693.JPGSince my expedition began you might have wondered, “How is he even sending these blog posts from so far out at sea?” That is a legitimate question. One I had been asking myself. So, I went to Tony VanCampen, Gordon Gunter’s Chief Electronics Technician for the answer. You may have guessed it; the answer has something to do with Earth’s satellites. Providing internet on ships is different than on land because, well, there is no land. We are surrounded by water; there are no towers or cables.

IMG_6600

Gordon Gunter’s Satellite Antenna

On the deck of the ship is a fixed installation antenna that provides broadband capability. It looks like a mini water tower. The antenna sends signals about the ship’s positioning to a geostationary satellite. A geostationary satellite is placed directly over the equator and revolves in the same direction the earth rotates (west to east). The ship’s computers use the connection made between the antenna and the satellite to transfer data which the satellite in turn sends to a ground site in Holmdel, New Jersey. The site in New Jersey connects the ship to the Internet.

IMG_8525

Electronics Technician, Tony VanCampen

Chief Electronics Technician, Tony VanCampen not only understands, installs, maintains, and repairs all the technology on board Gordon Gunter, he is an expert on all things nautical. Tony has been an asset to my Teacher at Sea experience. He takes the time to not only explain how equipment works, but he shows me where things are and then demonstrates their capabilities. Aboard Gordon Gunter, Tony runs all of the mission electronics, navigational electronics, and the Global Maritime Distress and Safety System. Tony has been working at sea since 1986 when he joined the NAVY and reported on board the USS Berkeley. He took a short break from work at sea when he became a physical security specialist for the NAVY at a weapons station. Tony has held several roles in the NAVY and with NOAA, all have given him a wealth of knowledge about ship operations. He is dedicated to the needs of the crew, scientists, and as of late, one Teacher at Sea. I owe Tony a debt of gratitude for his assistance and kindness.

Personal Log

Out to Sea (Saturday, June 3)

IMG_9132

Bongo Nets Plankton Sampling

As I entered the dry lab this morning to report for duty, there was a lot of exciting chatter going on. I presumed a whale had been seen nearby or an unusual fish was caught in one of the bongo nets. While either of these situations would generate excitement, the lab’s enthusiasm was on the drifting buoy that was to be deployed today. I love how the scientists and volunteers get overwhelmed with joy for all things “science”. I had strong feelings after learning the news, as well. My emotions steered more toward worry than elation because I was the one to deploy the buoy! What if I deployed the drifting buoy incorrectly? What if it gets sucked under the ship? What if a whale eats it? Questions like these kept running through my mind all afternoon. Luckily, time spent rinsing bongo nets and preserving plankton samples kept my mind off the matter. But a voice in the back of my brain kept repeating, “What if…”

IMG_6631

My drifting buoy

I finally laid my worries to rest. At sunset I deployed the drifting buoy without incident! The entire event was extremely special. My buoy is now floating atop the waves of the Gulf of Maine and soon to other parts of the sea. Yes, it will be all alone on the surface, but underneath and above will be a plethora of wildlife. Even when no one is there to witness it, ocean life carries on. For my students and me, we do not have to be with the drifting buoy physically to experience its journey. The transmitting equipment will give us the opportunity to go on the same adventure as the buoy while learning new things along the way.

A New Week (Sunday, June 4)

IMG_6696It has been one week, seven days since I first arrived on board NOAA Ship Gordon Gunter. Like the virga (an observable streak of precipitation falling from a cloud but evaporates or before reaching the surface) we experienced this morning, my time aboard the ship is fleeting, too. As the days dwindle until we disembark, I find myself attempting to soak in as much of the experience as I can. Suddenly, I am looking at the horizon a little longer; I pay closer attention to the sounds made by the ship; and I pause to think about how each sample will tell us more about the Earth’s mysterious oceans. Yes, a week has passed, but now it is the first day of a new week. With two days and a “wakeup” remaining, I intend to embrace each moment to its fullest.

Just Another Manic Monday (Monday, June 5)

IMG_9728No matter the day or time, NOAA Ship Gordon Gunter runs like clockwork. Today, however, the ship seemed to be buzzing with a different kind of energy. NOAA Corps Officers and the crew have been moving around the ship with an ever greater sense of purpose. Believe me, there is never an idle hand aboard Gordon Gunter. One major factor that heavily influences the ship’s operations is the weather. The National Weather Service has issued a gale warning for the Gulf of Maine. Gale warnings mean maritime locations are expected to experience winds of Gale Force on the Beaufort scale.

Position Map June 5

Gordon Gunter’s position at mid-morning of June 5th

Tonight’s weather forecast are winds reaching 20-30 Knots with seas building to 4 to 6 feet. Tuesday’s forecast is even grimmer: winds between 25-35 Knots and waves reaching 7-12 feet. [Source — National Weather Service] Even though the weather forecast is ominous, I fear not! Having witnessed the professionalism and expertise of every crew member on board the ship, I have full confidence in Gordon Gunter.

IMG_9750.JPG

Cape Cod Canal

Chief Scientist and the Commanding Officer adjusted our course due to the imminent weather. We passed through the Cape Cod Canal, an artificial waterway in the state of Massachusetts connecting Cape Cod Bay in the north to Buzzards Bay in the south. The canal is used extensively by recreational and commercial vessels and people often just sit and watch ships and boats transiting the waterway. It was indeed a joyous occasion seeing land on the starboard and port sides of the ship. The passage provided many more sites to see compared to the open ocean. I thoroughly enjoyed the cruise through the Cape Cod Canal, but inside me was the desire to one day return to the deep, blue sea.

Animals Seen

IMG_6483As you can tell, this blog post’s theme revolves around positioning and tracking. So, I decided to ask the seabird and marine mammal observers about the technology and methods they use to identify the positioning of animals out on the open ocean. Our wildlife observers, Glen and Nicholas, have a military-grade cased computer they keep with them on the flying bridge while looking for signs of birds and whales. The GPS keeps track of the ship’s position every five minutes so that a log of their course exists for reference later. When Glen or Nicholas identify a bird or marine mammal, they enter the data into the computer system which records the time and their exact GPS position. To know how many meters out an animal is, observers use a range finder.

IMG_9176

Range Finder

This pencil has been carefully designed according to their location above sea level which is 13.7 meters from the ship’s flying bridge where the observers keep a sharp lookout. The observers place the top of the pencil on the horizon to get accurate distances. If the bird falls between each carved line on the pencil, they know approximately how many meters away the animal is. Wildlife observers’ rule of thumb for tracking animals is called a strip transect. Strip transects are where observers define a strip of a certain width, and count all creatures within that strip. Glen and Nicholas input data on any animal they see that is within 300 meters of the ship. Providing as much information as possible about the positioning of each observed living thing helps researchers understand what is happening and where.

New Terms/Phrases

[Source — Marine Insight]

  • RADAR (RAdio Detection And Ranging): It is used to determine the distance and direction of the ship from land, other ships, or any floating object out at sea.
  • Gyro Compass: It is used for finding true direction. It is used to find correct North Position, which is also the earth’s rotational axis.
  • Auto Pilot: It is a combination of hydraulic, mechanical, and electrical system and is used to control the ship’s steering system from a remote location (Navigation Bridge).
  • Echo Sounder: This instrument is used to measure the depth of the water below the ship’s bottom using sound waves.
  • Speed & Distance Log Device: The device is used to measure the speed and the distance traveled by a ship from a set point.
  • Automatic Radar Plotting Aid: The radar displays the position of the ships in the vicinity and selects the course for the vessel by avoiding any kind of collision.
  • GPS Receiver: A Global Positioning System (GPS) receiver is a display system used to show the ship’s location with the help of Global positioning satellite in the earth’s orbit.
  • Record of Navigation Activities: All the navigational activities must be recorded and kept on board for ready reference. This is a mandatory and the most important log book.

Did You Know?

GPS satellites fly in medium Earth orbit at an altitude of approximately 12,550 miles. Each satellite circles the Earth twice a day. The satellites in the GPS constellation are arranged so that users can view at least four satellites from virtually any point on the planet. [Source — NOAA]

gps

GPS Block IIR(M) Satellite [Source — NOAA]

 

Sam Northern: Catching Plankton and Catching On, June 3, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: June 3, 2017

Weather Data from the Bridge:

Latitude: 42°29.9’N

Longitude: -67°44.8’W

Sky: Scattered Clouds

Visibility: 12 Nautical Miles

Wind Direction: 270°W

Wind Speed: 8 Knots

Sea Wave Height: 2-3 Feet

Swell Wave: 1-3 Feet

Barometric Pressure: 1009.5 Millibars

Sea Water Temperature: 10.2°C

Air Temperature: 11°C

Science and Technology Log

Plankton Samples

IMG_8984

Here I am with a canister of plankton we collected from the bongo nets.

You may have begun to notice that there are several methods of sampling plankton. Each technique is used several times a day at the sampling stations. The baby bongo nets collect the same type plankton as the large bongos. The primary difference is that the samples from the baby bongos are preserved in ethanol, rather than formalin. Chief Scientist, David Richardson explained that ethanol is being used more and more as a preservative because the solution allows scientists to test specimens’ genetics. Studying the genetics of plankton samples gives researchers a greater understanding of the ocean’s biodiversity. Genetics seeks to understand the process of trait inheritance from parents to offspring, including the molecular structure and function of genes, gene behavior in the context of a cell or organism, gene distribution, and variation and change in populations.

IMG_8833

Jars and jars of plankton samples ready to be studied.

The big bongos use formalin to preserve plankton samples. Formalin has been used by scientists for decades, mainly because the preservative makes it easier for labs to study the samples. Today’s scientists continue to use formalin because it lets them compare their most recent sampling data to that from years ago. This presents a clearer picture of how marine environments have or have not changed.

IMG_8861.JPGEvery so often, we use smaller mesh nets for the baby bongos which can catch the smallest of zooplanktons. The specimens from these special bongo nets are sent to CMarZ which stands for Census of Marine Zooplankton. CMarZ are scientists and students interested in zooplankton from around the world who are working toward a taxonomically comprehensive assessment of biodiversity of animal plankton throughout the world ocean. CMarZ samples are also preserved in ethanol. The goal of this organization is to produce a global assessment of marine zooplankton biodiversity, including accurate and complete information on species diversity, biomass, biogeographical distribution, and genetic diversity. [Source — Census of Marine Zooplankton]. Their website is incredible! They have images galleries of living plankton and new species that have been discovered by CMarZ scientists.

Another interesting project that Chief Scientist, David Richardson shared with me is the Census of Marine Life. The Census of Marine Life was a 10-year international effort that assessed the diversity (how many different kinds), distribution (where they live), and abundance (how many) of marine life—a task never before attempted on this scale. During their 10 years of discovery, Census scientists found and formally described more than 1,200 new marine species. [Source —Census of Marine Life] The census has a webpage devoted to resources for educators and the public. Contents include: videos and images galleries, maps and visualizations, a global marine life database, and links to many other resources.

IMG_8940

Plankton samples are preserved in jars with water and formalin.

It is incredibly important that we have institutes like CMarZ, the Census of Marin Life, and the Sea Fisheries Institute in Poland where samples from our EcoMon Survey are sent. Most plankton are so small that you see them best through a microscope. At the lab in Poland, scientists remove the fish and eggs from all samples, as well as select invertebrates. These specimens are sent back to U.S. where the data is entered into models. The information is used to help form fishing regulations. This division of NOAA is called the National Marine Fisheries Service, or NOAA Fisheries. NOAA Fisheries is responsible for the stewardship of the nation’s ocean resources and their habitat. The organization provide vital services for the nation: productive and sustainable fisheries, safe sources of seafood, the recovery and conservation of protected resources, and healthy ecosystems—all backed by sound science and an ecosystem-based approach to management. [Source —NOAA Fisheries]

Vertical CTD Cast

In addition to collecting plankton samples, we periodically conduct vertical CTD casts. This is a standard oceanographic sampling technique that tells scientists about dissolved inorganic carbon, ocean water nutrients, the levels of chlorophyll, and other biological and chemical parameters.

IMG_8731

The CTD’s Niskin bottles trap water at different depths in the ocean for a wide-range of data.

The instrument is a cluster of sensors which measure conductivity, temperature, and pressure. Depth measurements are derived from measurement of hydrostatic pressure, and salinity is measured from electrical conductivity. Sensors are arranged inside a metal or resin housing, the material used for the housing determining the depth to which the CTD can be lowered. From the information gathered during CTD casts, researchers can investigate how factors of the ocean are related as well as the variation of organisms that live in the ocean.

Here’s how a vertical CTD cast works. First, the scientists select a location of interest (one of the stations for the leg of the survey). The ship travels to that position and stays as close to the same spot as possible depending on the weather as the CTD rosette is lowered through the water, usually to within a few meters of the bottom, then raised back to the ship. By lowering the CTD close to the bottom, then moving the ship while cycling the package up and down only through the bottom few hundred meters, a far greater density of data can be obtained. This technique was dubbed a CTD cast and has proven to be an efficient and effective method for mapping and sampling hydrothermal plumes. [Source —NOAA]

IMG_8741

Survey Tech, LeAnn Conlon helps recover the CTD.

During the vertical CTD cast, I am in charge of collecting water samples from specified Niskin bottles on the rosette. The Niskin bottles collected water at different levels: surface water, maximum depth, and the chlorophyll maximum where the greatest amount of plankton are usually found. I take the collected seawater to the lab where a mechanism filters the water, leaving only the remainder plankton. The plankton from the water contains chlorophyll which a lab back on land tests to determine the amount of chlorophyll at different water depths. This gives researchers insight about the marine environment in certain geographic locations at certain times of the year.

Meet the Science Party

Meet Chief Scientist, David Richardson!

IMG_8520

David Richardson planning our cruise with Operations Officer, Libby Mackie.

What is your position on NOAA Ship Gordon GunterI am the Chief Scientist for this 10 day cruise.  A large part of the Chief Scientist’s role is to prioritize the research that will happen on a cruise within the designated time period.  Adverse weather, mechanical difficulties, and many other factors can alter the original plans for a cruise requiring that decisions be made about what can be accomplished and what is a lower priority.  One part of doing this effectively is to ensure that there is good communication among the different people working on the ship.

What is your educational/working background? I went to college at Cornell University with a major in Natural Resources.  After that I had a number of different jobs before enrolling in Graduate School at the University of Miami. For my graduate research I focused on the spawning environment of sailfish and marlin in the Straits of Florida.  I then came up to Rhode Island in 2008, and for the last 10 years have been working as a Fisheries Biologist at the National Marine Fisheries Service.

What is the general purpose of the EcoMon Survey? The goal of the Ecosystem Monitoring (EcoMon) surveys is to collect oceanographic measurements and information on the distribution and abundance of lower trophic level species including zooplankton.  The collections also include fish eggs and larvae which can be used to evaluate where and when fish are spawning.  Over the years additional measurements and collections have been included on the EcoMon surveys to more fully utilize ship time. Seabirds and Marine Mammals are being identified and counted on our ship transits, phytoplankton is also being imaged during the cruise.  Finally, the EcoMon cruises serve as a means to monitor ocean acidification off the northeast United States.

What do you enjoy most about your work? I really enjoy pursuing scientific studies in which I can integrate field work, lab work and analytical work.  As I have progressed in my career the balance of the work I do has shifted much more towards computer driven analysis and writing.  These days, I really enjoy time spent in the lab or the field.

What is most challenging about your job? I imagine the challenge I face is the similar to what many scientists face.  There are many possible scientific studies we can do in our region that affect the scientific advise used to manage fisheries.  The challenge is prioritizing and making time for those studies that are most important, while deprioritizing some personally interesting work that may be less critical.

When did you know you wanted to pursue a career in science? By the end of high school I was pretty certain that I wanted to pursue a career in science.  Early in college I settled on the idea of pursuing marine science and ecology, but it was not until the end of college that I decided I wanted to focus my work on issues related to fish and fisheries.

What is your favorite marine animal? Sailfish, which I did much of my graduate work on, remains one of my favorite marine animals.  I have worked on them at all life stages from capturing the early life stages smaller than an inch to tagging the adults. They are really fascinating and beautiful animals to see.  However, now that I live in Rhode Island I have little opportunity to work on sailfish which tend to occupy more southern waters. 

In terms of local animals, one of my favorites is sand lance which can be found very near to shore throughout New England.  These small fish are a critical part of the food web, and also have a really unique behavior of burying in the sand when disturbed, or even for extended periods over the course of the year.  In many respects sand lance have received far less scientific attention than they deserve in our region.

Meet CTD Specialist, Tamara Holzwarth-Davis!

IMG_8515

CTD Specialist, Tamara Holzwarth-Davis

What is your position on NOAA Ship Gordon GunterCTD Specialist which means I install, maintain, and operate the CTD. The CTD is an electronic oceanographic instrument. We have two versions of the CTD on board the ship. We have larger instrument with a lot more sensors on it. It has water bottles called Niskin water samplers, and they collect water samples that we use on the ship to run tests.

How long have you been working at sea? I worked for six months at sea when I was in college for NOAA Fisheries on the Georges Bank. That was 30 years ago.

What is your educational background? I have a Marine Science degree with a concentration in Biology.

What is your favorite part about your work? I definitely love going out to sea and being on the ship with my co-workers. I also get to meet a lot of new people with what I do.

What is most challenging about your work? My instruments are electronic, and we are always near the sea which can cause corrosion and malfunctions. When things go wrong you have to troubleshoot. Sometimes it is an easy fix and sometimes you have to call the Electronic Technician for support.

What is your favorite marine animal? My favorite animal is when we bring up the plankton nets and we catch sea angels or sea butterflies. They are tiny, swimming sea slugs that look gummy and glow fluorescent orange. 

Meet Seabird and Marine Mammal Observer, Glen Davis!

IMG_8505

Seabird and Marine Mammal Observer, Glen Davis

What is your position on NOAA Ship Gordon GunterI am on the science team. I am an avian and marine mammal observer.

What is your educational/working background? I have a bachelor’s in science. I have spent much of my 20-year career doing field work with birds and marine mammals all around the world.

Do you have much experience working at sea? Yes. I have put in about 8,000 hours at sea. Going out to sea is a real adventure, but you are always on duty or on call. It’s exciting, but at the same time there are responsibilities. Spending time at sea is really special work.

What is most challenging about your work? Keeping your focus at times. You are committing yourself to a lifestyle as an animal observer. You have to provide as much data to the project as you can.

Where do you do most of your work on board NOAA Ship Gordon Gunter? I am going to be up on the bridge level where the crew who pilots the vessel resides or above that which is called the flying bridge. On Gordon Gunter that is 13.7 meters above sea level which is a good vantage point to see birds and marine mammals.

What tool do you use in your work that you could not live without? My binoculars. It is always around my neck. It is an eight power magnification and it helps me identify the birds and sea life that I see from the flying bridge. I also have to record my information in the computer immediately after I see them, so the software knows the exact place and time I saw each animal.

What is your favorite bird? Albatrosses are my favorite birds. The largest albatross is called a Wandering/Snowy Albatross. The Snowy Albatross has the longest wingspan of any bird and its the longest lived bird. This bird mates for life and raises one chick every 3-5 years which they care for much like people care for their own babies.

Meet Seabird and Marine Mammal Observer, Nicholas Metheny!

IMG_8799

Seabird and Marine Mammal Observer, Nicholas Metheny

What is your position on NOAA Ship Gordon GunterPrimary seabird/marine mammal observer.

What is your educational background? I have my bachelor’s degree in Environmental Science with a minor in Marine Biology from the University of New England in Maine.

What has been your best working experience? That’s a tough one because I have had so many different experiences where I have learned a lot over the years. I have been doing field work for the past 11 years. Each has taught me something that has led me to the next position. The job I cherish the most is the trip I took down to Antarctica on a research cruise for six weeks. That was an amazing experience and something I would advocate for people to see for themselves.

What do you enjoy most about being a bird/marine mammal observer? The excitement of never knowing what you are going to see next. Things can pop up anywhere. You get to ask the questions of, “how did this animal get here,” “why is this animal here,” and correlate that to different environmental conditions.

What is most challenging about your work? You are looking at birds from a distance and you are not always able to get a positive ID. Sometimes you’re just not seeing enough detail or it disappears out of view from your binoculars as it moves behind a wave or dives down into the water. For marine mammals all you see is the blow and that’s it. So, it is a little frustrating not being able to get an ID on everything, but you do the best you can.

What is your favorite bird? That’s like choosing your favorite child! I have a favorite order of bird. It’s the Procellariiformes which are the tube-nosed birds. This includes albatross, shearwater, storm petrels, and the fulmars.

Meet Survey Tech, LeAnn Conlon!

IMG_9046

Survey Tech, LeAnn Conlon

What is your position on NOAA Ship Gordon GunterI am a student volunteer. I help deploy the equipment and collect the samples.

Do you have much experience working at sea? This is my second 10-day trip. I did the second leg of the EcoMon Survey last year as well.

What is your educational background? I am currently a PhD candidate at the University of Maine where I am studying ocean currents and how water moves. I also have my master’s degree in Marine Science, and my undergraduate degree is in Physics.

When did you realize you wanted to pursue a career in science? I have always wanted to study the oceans. I think I was at least in first grade when I was telling people I wanted to be a marine scientist.

What do you enjoy most about your work on board NOAA Ship Gordon GunterMy favorite thing is being at sea, working hard, and enjoying the ocean.

Where will you be doing most of your work? Most of the work is going to be working with the equipment deploying. I will be on the aft end of the ship.

What is your favorite marine animal? Humpback whale, but it is really hard to pick just one.

Meet Survey Tech, Emily Markowitz!

IMG_8620

Survey Tech, Emily Markowitz

What is your position on NOAA Ship Gordon GunterI am a volunteer. I did my undergraduate and graduate work in Marine Science at Stony Brook University in Long Island, New York. My graduate work is in Fisheries Research.

Where will you be doing most of your work on the ship? I will be doing the night shift. That is from midnight to noon every day. I will be doing the nutrients test which helps the scientists figure out what is in the water that might attract different creatures.

Do you have much experience working at sea? Yes, actually. When I was 19, I spent two weeks on a similar trip off the coast of Oregon. We were looking for Humboldt Squid. I also worked on the university’s research vessel as a crew member on one of their ocean trawl surveys.

What are your hobbies? I love being outside. I enjoy hiking and being on the water sailing.

What is your favorite marine animal? The Humboldt Squid.

Meet Survey Tech, Maira Gomes!

IMG_8751

Survey Tech, Maira Gomes

What is your position on NOAA Ship Gordon GunterMy position on Gordon Gunter is a volunteer. I got this opportunity from Suffolk County Community College (SCCC) where I have recently just graduated in January 2017 with my associates in Liberal Arts. Professor McNamara (Marianne McNamara) one of my professors at SCCC, forwarded me the email that was sent from Harvey Walsh looking for volunteers to work on Gordon Gunter for the Ecosystem Monitoring Survey. They had Leg 1 which was May 16th May -May 26th and Leg 2 May 29th-June 7th. I never had been out to sea! I got super excited and signed up for both legs!

Where do you do most of your work aboard the ship? On the ship I do mostly taking care of the Bongo Nets, CTD, and CTD Rosette. With the Bongo baby and large nets I help the crew to hook them up on a cable to set out to the ocean to retrieve the data from the CTD and all kinds of plankton that get caught in the nets. Once it comes back to the boat we hose the nets down and collect all the plankton and put them in jars filled with chemicals to preserve them so we can send them back to different labs. The Rosette is my favorite! We send out the Rosette with 12 Niskin bottles empty into the water. They come back up filled with water. We use this machine to collect data for nutrients, Chlorophyll, and certain types of Carbon. We run tests in the dry lab and preserve the samples to be shipped out to other labs for more tests.

What is your educational/working background? I just finished my associates in Liberal Arts at SCCC in January. In the Fall 2017 I will be attending University of New Haven as a junior working towards my bachelor degree in their Marine Affairs Program.

Have you had much experience at sea? Nope, zero experience out at sea! Which was one of the reasons why I was kind of nervous after I realized I signed up for both legs of the trip. I am glad I did. I am gaining so much experience on this trip!

What do you enjoy most about your work? It would be the experience I am gaining and the amazing views of the ocean!

What is most challenging about your job? The most challenging part of working on the ship would be the one-hour gap between some of the stations we encounter on our watch. It is not enough time to take a nap but enough time to get some reading in. It can be kind of hard to stay awake.

What tool do you use in your work that you could not live without? Tool I could not live without working on the ship would probably be the chart that has all our stations located.

When did you know you wanted to pursue a career in science or an ocean career? Ha! This is a great question! So it all started, as I was a little girl. I always wanted to be a veterinarian and work with animals. Once I was in fifth grade my teacher inspired me to be a teacher like herself, a Special Education teacher. I felt strongly with wanting to pursue a career in that field. It was not until my second year in college when I had to take a Lab course to fulfill my requirements for the lab credits, that I took a Marine Biology Lab. Once I was influenced and aware of this side of the world more in depth, I had a change of heart. Not only that but my professor, Professor Lynch (Pamala Lynch) also influenced me on changing my major to Marine Biology. I knew from the start I always wanted to be involved with animals but never knew exactly how, but once I took her class I knew exactly what I wanted to do with my career. With that being said, my goal is to be able to work with sharks someday and help to protect them and teach everyone the real truth behind their way of life and prove you cannot always believe what you see on TV.

What are your hobbies? I really love to line dance! I line dance about at least three times a week! I absolutely love it! I have made so many friends and learned so many really cool dances! I have been doing it about two years and through the experience of getting out of my shell I gain a whole new family from the country scene back at home! I also, love catching UFC fights on TV with my friends!

What is your favorite marine animal? I have multiple favorite marine animals. My top two picks would be sharks and sea turtles!

Personal Log

The Work Continues (Thursday, June 1)

IMG_9007After lunch the fog began to dissipate, letting in rays of sunshine. I could see the horizon once again! You do not realize the benefits of visibility until it is gone. Yet, even with the ability to see all of my surroundings, my eyes were met with same object in every direction—water! Despite the fact that the ocean consists of wave swells, ripples, and beautiful hues of blue, I longed to see something new. Finally, I spotted something on the horizon. In the distance, I could faintly make out the silhouette of two fishing boats. I was relieved to set eyes on these vessels. It might not seem like anything special to most people but when you are more than 100 miles from land, it is a relief to know that you are not alone.

IMG_9033Work during my shift is a distraction from the isolation I sometimes feel out at sea. When it is time for a bongo or CTD station, my mind becomes preoccupied with the process. My brain blocks all worries during those 30 minutes. Nonetheless, as quickly as a station begins, it ends even faster. Then we are left waiting for the next station which sometimes is only 20 minutes and other times is more than two hours away. The waiting is not so bad. In between stations I am able to speak with crew members and the science team on a variety of issues: research, ship operations, and life back on land. Every person on board Gordon Gunter is an expert at what they do. They take their work very seriously, and do it exceptionally well. Still, we like a good laugh every now and then.

TGIF! (Friday, June 2)

IMG_6549.JPG

Members of the Science Party stay busy collecting samples from the bongo nets.

At home, Friday means it is practically the weekend! The weekend is when I get to spend time with family, run errands, go shopping, or just hang around the house. For those who work at sea like NOAA Corps and NOAA scientists, the weekend is just like any other day. The crew works diligently day and night, during holidays, and yes, on the weekends. I can tell from first-hand experience that all personnel on NOAA Ship Gordon Gunter are dedicated and high-spirited people. Even when the weather is clear and sunny like it was today, they continue their duties work without wavering. NOAA crew are much like the waves of the sea. The waves in the Northeast Atlantic are relentless. They don’t quit—no matter the conditions. Waves are created by energy passing through water, causing it to move in a circular motion [Source —NOAA]. NOAA crew also have an energy passing through them. Whether it be the science, life at sea, adventure, love for their trade, or obligations back home, personnel aboard Gordon Gunter do not stop.

IMG_8995Today, we left Georges Bank and entered the Gulf of Maine where we will stay for the remainder of the cruise. The seabird and marine mammal observers had a productive day spotting a variety of wildlife. There have been sightings of Atlantic Spotted Dolphins, Ocean Sunfish, and Right Whales to name a few. Even though I did not get photographs of all that was seen, I am optimistic about observing new and exciting marine wildlife in the days to come.

Animals Seen

New Terms/Phrases

  • Plankton: the passively floating or weakly swimming usually minute animal and plant life of a body of water
  • Phytoplankton: planktonic plant life
  • Zooplankton: plankton composed of animals
  • Larval Fish: part of the zooplankton that eat smaller plankton. Larval fish are themselves eaten by larger animals
  • Crustacean: any of a large group of mostly water animals (as crabs, lobsters, and shrimps) with a body made of segments, a tough outer shell, two pairs of antennae, and limbs that are jointed
  • Biodiversity: biological diversity in an environment as indicated by numbers of different species of plants and animals
  • Genetics: the scientific study of how genes control the characteristics of plants and animals

Did You Know?

IMG_8760

Phytoplankton samples from the bongo nets.

Through photosynthesis, phytoplankton use sunlight, nutrients, carbon dioxide, and water to produce oxygen and nutrients for other organisms. With 71% of the Earth covered by the ocean, phytoplankton are responsible for producing up to 50% of the oxygen we breathe. These microscopic organisms also cycle most of the Earth’s carbon dioxide between the ocean and atmosphere. [Source — National Geographic].

Sam Northern: Finding My Sea Legs, June 1, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: June 1, 2017

Weather Data from the Bridge:

Latitude: 40°58’N

Longitude: -67°03.9’W

Sky: Patchy Fog

Visibility: 2-5 Nautical Miles

Wind Direction: 215°SW

Wind Speed: 6 Knots

Sea Wave Height: 1-2 Feet

Swell Wave: 2-5 Feet

Barometric Pressure: 1012.5 Millibars

Sea Water Temperature: 11.2°C

Air Temperature: 11.2°C

Science and Technology Log

Marine Traffic May30_2

Approximate location of our first oceanography station [Source — Marine Traffic]

IMG_8622

The J-Frame is used to deploy equipment into the water.

En route to our first oceanography station just past Nantucket, Electronics Technician Tony VanCampen and my fellow day watch scientist Leann Conlon gave me an overview on how each sampling is conducted. This is where the pieces of equipment I described in my previous blog post (bongo nets and CTD) come into play.

Science is very much a team effort. I learned that a deck crew will be in charge of maneuvering the winch and the J-frame. Attached to the cable will be the bongo nets and the CTD which are carefully lowered into the ocean.

Bongo nets allow scientists to strain plankton and other samples from the water using the bongo’s mesh net. At each station the bongo will be sent down to within 5 meters of the bottom or no more than 200 meters. After the bongo has reached its maximum depth for a particular station, the net is methodically brought back to the surface—all the while collecting plankton and sometimes other small organisms like tiny shrimp. It usually takes about 20 minutes for the bongo nets to be cast out and returned on board with the samples.

IMG_8665.JPG

Here I am in my gear preparing to launch the first bongo nets.

Once the bongo nets have returned from the water to the aft (back) deck, our work begins. As a part of the Science Party, it is my job to rinse the entire sample into containers, place the plankton into jars, add formalin to jars that came from the big bongos and ethanol to jars that came from the small bongos. These substances help preserve the specimens for further analysis.

At the conclusion of the cruise, our plankton samples will be sent to the Sea Fisheries Institute in Poland where scientists and lab crew sort and identify the plankton samples which gives NOAA scientist an idea of the marine environment in the areas in which we collected samples.

IMG_8763.JPG

Flowmeter

Our Chief Scientist is David Richardson. Dave has been with NOAA since 2008. He keeps track of the digits on the flowmeter (resembles a small propeller) inside the bongo. The beginning and ending numbers are input into the computer which factors in the ship’s towing speed to give us the total volume of water sampled and the distance the bongo net traveled.

 

IMG_8629.JPG

CTD (Conductivity, Temperature, & Depth)

At various oceanography stations we perform a CTD cast which determines the conductivity, temperature, and depth of the ocean. The CTD is attached to the bongo nets or the CTD is mounted within a frame, which also holds several bottles for sampling seawater along with a mechanism that allows scientists on board the ship to control when individual bottles are closed. The CTD is connected to the ship by means of a conducting cable and data are sent electronically through this cable, in real-time, to the scientists on the ship. The scientists closely monitor the data, looking for temperature and particle anomalies that identify hydrothermal plumes. As the CTD is sinking to the desired depth (usually 5-10 meters from the bottom), the device measures the ocean’s density, chlorophyll presence, salinity (the amount of salt in the water), temperature, and several other variables. The CTD’s computer system is able to determine the depth of the water by measuring the atmospheric pressure as the device descends from the surface by a certain number of meters. There is a great deal scientists can learn from launching a CTD in the sea. The data tells us about dissolved inorganic carbon, ocean water nutrients, the levels of chlorophyll, and more. From the information gathered during CTD casts, researchers can investigate how factors of the ocean are related as well as the variation of organisms that live in the ocean.

Map of Leg 2 Stations

The highlighted lines are stations completed in the first leg. The circle indicates the stations for my leg of the survey.

It is fascinating to see the communication between the scientists and the NOAA Corps crew who operate the ship. For instance, NOAA officers inform the scientists about the expected time of arrival for each station and scientists will often call the bridge to inquire about Gordon Gunter’s current speed and the weather conditions. Even computer programs are connected and shared between NOAA Corps crew and the scientists. There is a navigation chart on the monitor in the bridge which is also displayed in the science lab so everyone knows exactly where we are and how close we are to the next station. The bridge must always approve the deployments and recovery of all equipment. There are closed circuit video cameras in various places around the ship that can be viewed on any of the monitors. The scientists and crew can see everything that is going on as equipment gets deployed over the side. Everyone on Gordon Gunter is very much in sync.

Personal Log

First Day at Sea (Tuesday, May 30)

img_8539.jpgToday, my shift began at 12 noon. It probably was not the best idea to have awakened at 6:00 a.m., but I am not yet adjusted to my new work schedule and I did not want to miss one of Margaret’s hearty breakfasts.

We cast out from the Naval Station Newport mid-morning. It was a clearer and warmer day compared to the day before—perfect for capturing pictures of the scenic harbor. I spent much of the morning videoing, photographing, and listening to the sounds of waves as they moved around the ship. I like to spend a lot of time on the bow as well as the flying bridge (the area at the top of the ship above the bridge where the captain operates the vessel). Before lunch, I was beginning to feel a little sea sick from the gentle swaying of the ship. I could only hope that I would find my sea legs during my first watch.IMG_8549.JPG

Gordon Gunter gracefully made its way alongside Martha’s Vineyard and Nantucket—two islands off the coast of Cape Cod. Standing on the flying bridge and looking out at the horizon alleviated my sea sickness. At this position I was able to observe and photograph an abundance of wildlife. Seeing the sea birds in their natural habitat is a reminder that I am just a visitor on this vast ocean which so many animals call home. Watching birds fly seamlessly above the waves and rest atop the water gives me a yearning to discover all I can about this unique ecosystem and ways in which we can protect it.

Scroll around the video to see the view from the ship’s bow in all 360-degrees. 

The phrase, “to find one’s sea legs” has a meaning much deeper than freedom from seasickness. Finding your sea legs is the ability to adjust to a new situation or difficult conditions. Everything on board Gordon Gunter was new and sometimes difficult for me. Luckily, I have help from the best group of scientists and NOAA Corps crew a Teacher at Sea could ask for.

At 8:00 p.m. I was part of the leg’s first oceanography station operation. I watched closely as the bongo nets were tied tightly at the end then raised into the air by the winch and J-Frame for deployments into the sea. While the bongo nets and CTD were sinking port side, I looked out at the horizon and much to my amazement, saw two humpback whales surfacing to the water. The mist from their blows lingered even after they descended into the water’s depths.

IMG_8680

Phytoplankton

Once the bongo nets where recovered from the ocean, the crew and I worked quickly but with poise. We used a hose to spray the nets so that all the plankton would reach the bottom of the net when we dumped them into a container. I observed fellow scientist Leann pour each bongo’s sample into a jar, which she filled with water and then a small portion of formalin to preserve the samples. It began and was over so quickly that what took about an hour felt like ten minutes.

An hour later we reached our second station, and this time I was ready! Instead of mostly observing as I did during the first time, this time I was an active participant. Yes, I have a lot left to learn, but after my first day at sea and three stations under my belt, I feel like my sea legs are growing stronger.

Scroll around the 360-degree video to see the Science Party retrieve samples from bongo nets.

Becoming a Scientist (Wednesday, May 31)

I am not yet used to working until midnight. After all, the school where I teach dismisses students by 3:30 p.m. when the sun is still shining. Not to worry, I will adjust. It is actually exciting having a new schedule. I get to experience deploying the CTD and bongo nets during day light hours and a night time. The ocean is as mysterious as it is wide no matter the time of day.

You never quite know what the weather is going to be from one day to the next out at sea. Since my arrival at the ship in Newport, Rhode Island I have experiences overcast skies, sunshine, rain, and now dense fog. But that’s not all! The forecast expects a cold front will approach from the northwest Friday. Today’s fog made it difficult for the animal observers to spot many birds of whales in the area. Despite low visibility, there is still a lot to do on the ship. After our first bongo station in the early afternoon, we had a fire and abandon ship drills. Carrying out of these drills make all passengers acquainted with various procedures to be followed during emergency situations.

I thoroughly enjoy doing the work at each station. Our sampling is interesting, meaningful, and keeps my mind off being sea sick. So far, I am doing much better than expected. The excitement generated by the science team is contagious. I now long for the ship to reach each oceanography station so I can help with the research.

Marine Traffic May31.png

Approximate position of our last station on May 31 in Georges Bank.

Animals Seen

So far the animals seen have been mostly birds. I am grateful to the mammal and seabird observers, Glen Davis and Nicholas Metheny. These two are experts in their field and can ID a bird from a kilometer away with long distance viewing binoculars.

IMG_6472

Glen and Nicholas on the lookout.

 

New Terms/Phrases

[Source — Merriam-Webster Dictionary]

  • Barometer: an instrument for determining the pressure of the atmosphere and hence for assisting in forecasting weather and for determining altitude.
  • Altimeter: an instrument for measuring altitude; especially an aneroid barometer designed to register changes in atmospheric pressure accompanying changes in altitude.
  • Flowmeter: an instrument for measuring one or more properties (such as velocity or pressure) of a flow (as of a liquid in a pipe).
  • Salinity: consisting of or containing salt.
  • Conductivity: the quality or power of conducting or transmitting.
  • Chlorophyll Maximum: a subsurface maximum in the concentration of chlorophyll in the ocean or a lake which is where you usually find an abundance of phytoplankton.
  • Ethanol: a colorless flammable easily evaporated liquid that is used to dissolve things
  • Formalin: a clear, water like solution of formaldehyde and methanol used especially as a preservative.

Did You Know?

The average depth of the ocean is about 12,100 feet. The deepest part of the ocean is called the Challenger Deep and is located beneath the western Pacific Ocean in the southern end of the Mariana Trench. Challenger Deep is approximately 36,200 feet deep. It is named after the HMS Challenger, whose crew first sounded the depths of the trench in 1875. [Source — NOAA Official Website].

This slideshow requires JavaScript.

Sam Northern: Ready, Set, Sail the Atlantic! May 5, 2017

NOAA Teacher at Sea
Sam Northern
will be aboard NOAA ship Gordon Gunter
May 28 –  June 7, 2017

Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)
Geographic Area of Cruise: Atlantic Ocean
Date: May 5, 2017

Introduction

Greetings from south-central Kentucky! My name is Sam Northern, and I am the teacher-librarian at Simpson Elementary School in Franklin, Kentucky. I am beyond exited for this opportunity NOAA has given me. Yet, even more excited than me are my students. I don’t think anyone is more interested in learning about the ocean and its marine ecosystems than my first, second, and third graders. Each week I get to instruct each of the school’s 680 students at least once during Library Media Special Area class. My students do way more than check out library books. They conduct independent research, interact with digital resources, solve problems during hands-on (makerspace) activities, and construct new knowledge through multimedia software.

My participation in the Teacher at Sea program will not only further students’ understanding of the planet, it will empower them to generate solutions for a healthier future. This one-of-a-kind field experience will provide me with new and thrilling knowledge to bring back to my school and community. I am as excited and nervous as my first day of teaching eight years ago. Let the adventure begin!

IMG_9038

In 2015 I married my best friend, Kara, who is also a teacher. We enjoy collecting books, watching movies, and doing CrossFit.

About NOAA
The National Oceanic and Atmospheric Administration (NOAA) is a scientific agency of the United States government whose mission focuses on monitoring the conditions of the ocean and the atmosphere. NOAA aims to understand and predict changes in climate, weather, oceans, and coasts. Sharing this information with others will help conserve and manage coastal and marine ecosystems and resources. NOAA’s vision of the future focuses on healthy ecosystems, communities, and economies that are resilient in the face of change [Source — NOAA Official Website].

Teacher at Sea
The Teacher at Sea Program (TAS) is a NOAA program which provides teachers a “hands-on, real-world research experience working at sea with world-renowned NOAA scientists, thereby giving them unique insight into oceanic and atmospheric research crucial to the nation” [Source — NOAA TAS Official Website]. NOAA TAS participants return from their time at sea with increased knowledge regarding the world’s oceans and atmosphere, marine biology and biodiversity, and how real governmental field science is conducted. This experience helps teachers enhance their curriculum by incorporating their work at sea into project-based learning activities for students. Teachers at Sea share their experience with their local community to increase awareness and knowledge of the world’s oceans and atmosphere.

Science and Technology Log
I will be participating in the second leg of the 2017 Spring Ecosystem Monitoring (EcoMon) Survey in the Atlantic Ocean, aboard the NOAA Ship Gordon Gunter. The survey will span 10 days, from May 28 – June 7, 2017, embarking from and returning to the Newport Naval Station in Newport, Rhode Island.

Nashville to Rhode Island_Flight Diary Pic

Gordon Gunter Pic NOAA

NOAA Ship Gordon Gunter. Photo courtesy of NOAA.

The NOAA Ship Gordon Gunter is a 224-foot, multi-use research vessel. Gordon Gunter is well outfitted for a wide range of oceanographic research and fisheries assessments, from surveys on the health and abundance of commercial and recreational fish to observing the distribution of marine mammals. The Gordon Gunter carries four NOAA Corps officers, 11 crew members, and up to 15 scientists, and one Teacher at Sea.

My Mission
The principal objective of the Spring Ecosystem Monitoring (EcoMon) Survey is to assess the hydrographic and planktonic components of the Northeast U.S. Continental Shelf Ecosystem. According to Encyclopedia Britannica, plankton are countless tiny living things that float and drift in the world’s oceans and other bodies of water.

Plankton image

An almost transparent zooplankton is seen in an enlarged view.
Robert Arnold—Taxi/Getty Images

While on the Gordon Gunter, I can expect to collect zooplankton and ichthyoplankton throughout the water column (to a maximum depth of 200 meters) using paired 61-cm Bongo samplers equipped with 333 micron mesh nets. Scientists will preserve the plankton samples in formalin for further laboratory study. It is estimated that the Shelf-Wide Plankton Surveys will result in 300 types of plankton being sorted and identified by staff at the Sea Fisheries Institute in Poland through a joint studies program.

The National Ocean Service defines hydrography as the science that measures and describes the physical features of bodies of water. Aboard the Gordon Gunter, we will use traditional and novel techniques and instruments to collect information. Our research will calculate the spatial distribution of the following factors: water currents, water properties, phytoplankton, microzooplankton, mesozooplankton, sea turtles, and marine mammals. In fact, marine mammal and seabird observers will be stationed on the bridge or flying bridge making continual observations during daylight hours.

The survey consists of 155 Oceanography stations in the Middle Atlantic Bight, Southern New England, Georges Bank and the Gulf of Maine. These stations are randomly distributed at varying distances. The progress of the survey will depend on transit time, sea state, and water depth of the stations, with deeper stations requiring more time to complete operations.

Gordon Gunter’s Scientific Computer System is a PC-based server, which continuously collects and distributes scientific data from various navigational, oceanographic, meteorological, and sampling sensors throughout the cruise. The information collected during the survey will enrich our understanding of the ocean.

Personal Log
Since the Teacher at Sea program began in 1990, more than 700 teachers have worked on NOAA Research cruises. I am both honored and humbled to add to this statistic. My teaching philosophy can be summed up in just two words: “Embrace Wonder.”

Working with Students

I believe that students’ exploration of authentic topics nurtures a global perspective and community mindedness. I cannot think of anything more authentic than real-world research experience aboard a NOAA vessel alongside world-renowned scientists.

I am looking forward to gaining clearer insights into our ocean planet, a greater understanding of maritime work and studies, and increasing my level of environmental literacy. I will bring all that I learn back to my students, colleagues, and community. I hope that my classroom action plans will inspire students to pursue careers in research as they deepen their understanding of marine biology. Without a doubt, the Teacher at Sea program will impact my roles as teacher and library media specialist.

My Goals
Through this program, I hope to accomplish the following:

  • Learn as much as I can about NOAA careers, life at sea, and the biology I encounter. These topics will be infused in my library media instructional design projects.
  • Capture and share my experience at sea via photographs, videos, 360-degree images, interviews, journaling, and real-time data of the EcoMon survey.
  • Understand the methods by which NOAA scientists conduct oceanic research. I would like to parallel the process by which scientists collect, analyze, and present information to the research my students conduct in the library.
  • Create a project-based learning activity based on the research I conduct aboard the ship. Students will use the real-time data from my leg of the survey to draw their own conclusions regarding the biologic and environmental profile of the Atlantic Ocean. Students will also collect data from their local environment to learn about the ecosystems in their very own community. I plan to use the project-based learning activities as a spring board for the design and implementation of student-led conservation efforts.
  • Present my research experiences and resulting project-based curriculum to the faculty of Simpson Elementary and members of the Kentucky Association of School Librarians. My classroom action plan and outreach activities will be shared with teachers from far and wide via my professional blog: www.misterlibrarian.com

Did You Know?
In 2016, NOAA sent 12 teachers to sea for a total of 182 days. Combined, these teachers engaged in 4,184 hours of research!

My next post will be from the NOAA Ship Gordon Gunter in the Atlantic Ocean. In the meantime, please let me know if you have any questions, or would like me to highlight anything in particular. I will look for your comments below or through my Twitter accounts, @Sam_Northern and @sesmediacenter.

Barney Peterson: Spreads Like A Ripple, July 1, 2016

NOAA Teacher at Sea

Barney Peterson

(Soon to be) Aboard NOAA Ship Oregon II

August 13-28, 2016

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 1, 2016

Spreads Like a Ripple

“Yep, sounds exciting, but you teach about Pacific Salmon, so how useful is learning about Hammerhead Sharks in the Gulf of Mexico really going to be?” my friend asked.

Her reaction was not unusual. I am a 4th grade teacher with 26 years of experience in the Everett Public Schools in Washington State. I have put some serious thought into using my Teacher At Sea experiences to open eyes and minds to the world around us. I think the possibilities are endless.

My first Teacher at Sea assignment was summer 2006 aboard NOAA ship, RAINIER, on a hydrographic survey mission in the Shumagin Islands, Gulf of Alaska. From this I developed lessons on making contour maps using sticks and a sounding box. I grew my understanding of how weather systems that develop in the Gulf of Alaska influence our weather in Puget Sound. I used that knowledge to help students understand relationships between geography, weather and climate. I learned about birds, mammals and fish in the ocean food chain and inserted that learning into helping students understand the life cycle of the salmon we raise in our classroom.

In 2008 I had the opportunity to share a Teacher in the Air experience with fellow TASA Dana Tomlinson from San Diego, California. We flew with a winter storm research crew from Portland, Oregon; traveling 1800 miles out over the Pacific Ocean and back tracking developing weather systems. We created lessons that helped students understand the importance of using accurate global positioning information to follow low pressure systems as they moved across the ocean toward the west coast of North America. We put together a unit to help them understand how air pressure, relative humidity, and wind speed and direction are measured and how that data is used to understand and predict weather patterns. My students still use those lessons as we participate in the GLOBE program, sending data in every day of the school year.

That was then, and this is now:

Field studies of salmon habitat with 4th grade students

Field studies of salmon habitat with 4th grade students

At school, I have students use globes and inflatable Earth Balls to track from the Arctic Ocean through every other ocean and back to the Arctic without taking their pointer-fingers off ocean surface. Then they start to get it… the connections: there is really just one big ocean! We learn about the water cycle and I challenge them to explain “where the water comes from.” We learn about food webs and energy flow. Our salmon studies teach them about producers, consumers and decomposers. They get the idea of cycles and systems and how all parts must work together. They learn to consider what happens when one step of a cycle fails or one part of a system is missing. We learn about organisms labeled “indicator species” that help scientists track changes in the health of ecosystems.

True, all of this is presented with a focus on where we live in the Pacific Northwest. But…that is just one place on the edge of our one ocean. Time comes to broaden the view. There are many life cycles depending upon the continual efficient functioning of Earth’s systems. Since there is just one ocean, nothing really happens in isolation. The same kinds of events that disrupt life cycles in one place will certainly disrupt them in another.

In August I will be aboard the NOAA ship, OREGON II, in the Gulf of Mexico. Our mission is to investigate and gather data about Scalloped Hammerhead Sharks and Red Snapper. They share an ecosystem and participate in the same food web. They are subject to consequences of the same environmental changes and catastrophes that happen in other parts of our ocean.

Drop a pebble into the water anywhere and ripples spread until they reach the outermost boundaries. We all share one ocean. Where does the ripple stop?

Spencer Cody: Farewell Fairweather, June 18, 2016

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 18, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 18, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 20.643′ N

Longitude: 131˚ 37.505′ W

Air Temp: 20˚C (68˚F)

Water Temp: 13˚C (55˚F)

Ocean Depth: 30 m (100 ft.)

Relative Humidity: 65%

Wind Speed: 9 kts (11 mph)

Barometer: 1,022 hPa (1,022 mbar)

Science and Technology Log:.

111_0798 (2)

In order to check whether the tide gauge is working or not, a tidal observation needs to take place.  Over the course of several hours, the tide is measured as it rises or falls on graduated staffs and is recorded and compared to our tidal gauge data.  Credit Brian Glunz for the photo.

While horizontal control base stations are used to improve the accuracy of the positions of all points on a surface by providing a fixed known location to compare to GPS coordinates, constantly changing tides present another challenge in of its own.  With tides in the survey area ranging 3 to 6 meters (10 to 20 ft.), depths can vary widely for various shallow-water hazards depending on the strength of the tide.  Consequently, accurate tide data must be recorded during the survey and in close proximity of the survey site since tides vary widely depending on topography, weather systems, and other factors.  This is where tide stations come into play and are necessary to accurately gauge the vertical level of water throughout the survey area.

111_0930 (2)

Surveying equipment is used to check benchmarks near the tide station in the upper left for any movement.  Hydrographic Assistant Survey Technician Hannah Marshburn is recording data from the leveling process with Ensign Matthew Sharr sighting a staff held in place by Ensign Mason Carroll and Hydrographic Senior Survey Technician Clint Marcus.

Before a survey is started in an area, a tide station can be set up within the survey area to measure local tides. The tide stations use solar cells to generate electricity to power a small compressor on land that sends air through a hose that is attached to the ocean bottom in a near-shore environment.  The tide gauge can measure how much pressure is needed to generate a bubble out the end of the hose, the greater the pressure, the deeper the water.  These pressure gradients correlate to a certain depth of water while the depth of the water is tied to a nearby benchmark of surveyed elevation.  This information is then transmitted out to tide reporting sites online.  For additional data on tide patterns, the information on tide levels can be downloaded from the gauge in refining survey data.  In order to ensure that a tide gauge is working correctly, manual tide observations are periodically made at the same location. Additionally, the benchmarks near the tide gauge go through a process called “leveling.” This is survey work that compares all of the secondary benchmarks in the area to the primary benchmark.  If none of the benchmarks have moved relative to each other, it is safer to assume that the benchmarks still represent the elevation that they were originally surveyed.  Once the survey in the area is completed, the tidal gauge is packed up to be used at another location.  Since the portion of the tidal gauge that releases the pressurized bubble is under the entire tidal water column, a dive team is required to remove the remaining equipment.  The entire tidal gauge site is returned to how it looked before the station was set up.  Only the survey benchmarks remain for future use.

Personal Log:

107_0553 (2).JPG

From left to right Ensign Tyler Fifield charts our course while Able Seaman Godfrey Gittens has the helm with Ensign Lander Van Hoef controlling the power to propulsion.  Bridge usually has at least one officer and one deck member on watch at all times.  Ensign Fifield has been in NOAA and on the Fairweather for two years and has a background in marine safety and environmental protection.  AB Gittens spent 4 years in the Navy, 20 years on commercial and military marine contracted vessels, and has now worked for NOAA for a couple of months.  Ensign Van Hoef has a background in mathematics and has been on the Fairweather for six months.

Dear Mr. Cody,

On our cruise ship there are officers that wear uniforms who run the ship.  They also look out for the safety of everyone onboard.  They are very nice and know a lot about how to keep the ship running and get the cruise ship to each stop on our vacation.  They work with each department on the ship to make sure everything runs properly and people stay safe.  It has been a great trip to Alaska, and now we are at our last stop.  Goodbye Alaska!  (Dillion is one of my science students who went on an Alaska cruise with his family in May and has been corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The Fairweather also has officers, the NOAA Corps, to help run the ship and carry out NOAA’s mission by utilizing NOAA’s fleet of ships and aircraft and by staffing key land-based positions throughout the organization.  The NOAA Corps ensures that trained personnel are always available to carry out NOAA’s missions using cutting-edge science and technology.  This gives NOAA the flexibility it needs to complete many types of varied research since officers are trained to fulfill many types of missions.  This gives NOAA the ability to respond quickly to scientific and technological needs and helps retain a continuity of operations and protocol throughout the vast fleet and area of operations.  In order to be considered for acceptance into the NOAA Corp, applicants must have at least a four year degree in a field of study relating to NOAA’s scientific and technological interests.  Once accepted into the program, they go through five months of training at the United States Coast Guard Academy where they develop an understanding of NOAA’s mission, maritime and nautical skills, and general ship and boat operation skills.  After successful completion of the training, NOAA officers are placed on a ship in the fleet for three years of sea duty to begin their new career.

109_0606 (2)

Chief Electronics Technician Sean Donovan performs his daily check of communications systems on the bridge.  CET Donovan served as a naval service ground electronic technician for 11 years in the Navy and has been in NOAA for 8 months.

On the Fairweather NOAA Corp officers help run and manage the ship and launch boats.  They navigate the ship and stand watch on the bridge.  They work with the other departments to ensure that the mission is accomplished and everyone remains safe during the mission.  On a hydrographic survey ship such as the Fairweather, Corps officers commonly have the position of sheet manager for hydrographic survey regions as collateral duties allowing them the opportunity to plan the logistics of hydrographic survey areas and learn how to use software associated with hydrographic data collection and analysis. Additionally, officers will be assigned to other scientific missions as they arise since the Fairweather will participate in a variety of scientific projects throughout the year.

109_0599 (2)

Able Seaman Carl Coonce controls the hydraulic system that is picking up a launch boat from a survey mission.  AB Coonce has been in NOAA for 12 years.  He was also on the NOAA ships Albatross and Bigalow.  He has been on the Fairweather for five years.  He started out in NOAA as a second cook and then a chief steward, but he wanted to learn more about ships; so, he made the move to the deck department commenting, “When you go out on deck, all differences are set aside.  We lookout for each other.”

A hydrographic ship such as the Fairweather requires many departments to work together  including the NOAA Corps officers to accomplish the mission.  There is the deck department and engineering department and the steward department as I have discussed their role in previous posts.  However, there are also electronic technicians that assist the survey in all of its technological aspects including the ship’s servers, electronics, radar, and communication systems.  Since technology plays a critical role in the collection and analysis of data, a hydrographic ship depends on these systems to carry out its scientific research.

109_0601 (2)

Acting Chief Hydrographic Survey Technician John Doroba prepares a boat launch for another portion of the hydrographic survey.  ACHST Doroba is the lead survey technician for this leg.  He has a background in geography, physical science, and information systems with a decade of work experience in and out of NOAA relating to surveying and related technology.

The survey department does the bulk of the collection and analysis of hydrographic data.  Depending on experience and education background, someone in survey may start out as a junior survey technician or assistant survey technician and advance up to a survey technician, senior survey technician, and possibly a chief survey technician.  With each step more years of experience is required because a greater amount of responsibility comes with each position concerning that survey.  Survey technicians generally need to have a background in the physical sciences or in computer science.  Technology and physical science go hand-in-hand in hydrographic survey work by applying and analyzing scientific data through the lens of advanced technology and software.  One needs to be capable in both areas in order to be proficient in the survey department.

104_0414 (2)

Hydrographic Assistant Survey Technician Steve Eykelhoff collects hydrographic data during a launch.  HAST Eykelhoff has a background in geology and hydrology.  He has worked on many mapping projects including mapping the Erie Canal and the Hudson River.

It really comes down to people working together as a team to get something done.  In the case of the Fairweather, all of this talent and dedication has been brought together in a team of NOAA Corps, engineers, deck, survey, technicians, and stewards to carry out a remarkable array of scientific work safely and efficiently.  This team is always ready for that next big mission because they work together and help each other.  Yes, Dillion, my time here on the Fairweather is also drawing to a close.  I have enjoyed the three weeks onboard and have learned a lot from a very friendly and informative and driven crew.  I thank all of those who were willing to show me what their job in NOAA is like and the underlying concepts that are important to their careers.  I learned a great deal concerning NOAA careers and the science that is carried out onboard a NOAA hydrographic ship.  Thank you!

Did You Know?

The NOAA Commissioned Officer Corps is one of seven uniformed services of the United States consisting of more than 300 officers that operate NOAA’s fleet of 16 ships and 9 aircraft.

Can You Guess What This Is?111_0918 (2)

A. a ship  B. a hydrographic survey  C. a NOAA vessel  D. a final farewell to an amazing ship and crew

You should already know the answer if you have been following this blog!

(The answer to the question in the last post was C. an azimuth circle.  The Fairweather has an azimuth circle onboard.  While it is not typically used for navigation, it is yet another technology that remains as a holdover from earlier seafaring times and as a potential navigation tool available when all modern equipment has failed.  The azimuth circle can be used to measure the position of a celestial body for navigation purposes or to get a bearing on an object visible from the ship.)