Anne Krauss: The Oregon II Trail, August 16, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 16, 2018

Weather Data from the Bridge

Conditions at 1106

Latitude: 25° 17.10’ N

Longitude: 82° 53.58’ W

Barometric Pressure: 1020.17 mbar

Air Temperature: 29.5° C

Sea Temperature: 30.8° C

Wind Speed: 12.98 knots

Relative Humidity: 76%

 

Science and Technology Log

Before getting into the technology that allows the scientific work to be completed, it’s important to mention the science and technology that make daily life on the ship safer, easier, and more convenient. Electricity powers everything from the powerful deck lights used for working at night to the vital navigation equipment on the bridge (main control and navigation center). Whether it makes things safer or more efficient, the work we’re doing would not be possible without power. Just in case, several digital devices have an analog (non-electronic) counterpart as a back-up, particularly those used for navigation, such as the magnetic compass.

 

This slideshow requires JavaScript.

To keep things cool, large freezers are used for storing bait, preserving scientific samples, and even storing ice cream (no chumsicles for dessert—they’re not all stored in the same freezer!). After one particularly sweltering shift, I was able to cool off with some frozen coffee milk (I improvised with cold coffee, ice cream, and milk). More importantly, without the freezers, the scientific samples we’re collecting wouldn’t last long enough to be studied further back at the lab on land.

Electricity also makes life at sea more convenient, comfortable, and even entertaining. We have access to many of the same devices, conveniences, and appliances we have at home: laundry machines, warm showers, air conditioning, home cooked meals, a coffee maker, TVs, computers with Wi-Fi, and special phones that allow calls to and from sea. A large collection of current movies is available in the lounge. During my downtime, I’ve been writing, exploring, enjoying the water, and learning more about the various NOAA careers on board.

To use my computer, I first needed to meet with Roy Toliver, Chief Electronics Technician, and connect to the ship’s Wi-Fi. While meeting with him, I asked about some of the devices I’d seen up on the flying bridge, the top deck of the ship. The modern conveniences on board are connected to several antennae, and Roy explained that I was looking at important navigation and communication equipment such as the ship’s GPS (Global Positioning System), radar, satellite, and weather instrumentation.

I was also intrigued by the net-like item (called a Day Shape) that communicates to other ships that we are deploying fishing equipment. This lets nearby ships know that the Oregon II has restricted maneuverability when the gear is in the water. At night, lights are used to communicate to other ships. Communication is crucial for safety at sea.

When I stopped by, Roy had just finished replacing some oxygen sensors for the CTD (that stands for Conductivity, Temperature, and Depth). For more information about CTDs click here: https://oceanexplorer.noaa.gov/facts/ctd.html

Without accurate sensors, it’s very difficult for the scientists to get the data they need. If the sensors are not working or calibrated correctly, the information collected could be inaccurate or not register at all. The combination of salt water and electronics poses many interesting problems and solutions. I noticed that several electronic devices, such as computers and cameras, are built for outdoor use or housed in durable plastic cases.

On this particular day, the ship sailed closer to an algal bloom (a large collection of tiny organisms in the water) responsible for red tide. Red tide can produce harmful toxins, and the most visible effect was the presence of dead fish drifting by. As I moved throughout the ship, the red tide was a red hot topic of conversation among both the scientists and the deck department. Everyone seemed to be discussing it. One scientist explained that dissolved oxygen levels in the Gulf of Mexico can vary based on temperature and depth, with average readings being higher than about 5 milligrams per milliliter. The algal bloom seemed to impact the readings by depleting the oxygen level, and I was able to see how that algal bloom registered and affected the dissolved oxygen readings on the electronics Roy was working on. It was fascinating to witness a real life example of cause and effect. For more information about red tide in Florida, click here: https://oceanservice.noaa.gov/news/redtide-florida/

Chief Electronics Technician Roy Toliver in his office on the Oregon II.
Chief Electronics Technician Roy Toliver in his office on the Oregon II. The office is like the ship’s computer lab. When he’s not working on the ship’s electronics, Roy enjoys reading out on the stern. It’s a great place for fresh air, beautiful views, and a good book!

Personal Log

Preparing and packing for my time on the Oregon II reminded me of The Oregon Trail video game. How to pack for a lengthy journey to the unfamiliar and unknown?

A video game screenshot
I had a hard time finding bib overalls and deck boots at the general store.

I didn’t want to run out of toiletries or over pack, so before leaving home, I tracked how many uses I could get out of a travel-sized tube of toothpaste, shampoo bottle, and bar of soap, and that helped me to ration out how much to bring for fifteen days (with a few extras, just in case). The scientists and crew of the Oregon II also have to plan, prepare, and pack all of their food, clothing, supplies, tools, and equipment carefully. Unlike The Oregon Trail game, I didn’t need oxen for my journey, but I needed some special gear: deck boots, foul weather gear (rain jacket with a hood and bib overalls), polarized sunglasses (to protect my eyes by reducing the sun’s glare on the water), lots of potent sunscreen, and other items to make my time at sea safe and comfortable.

I was able to anticipate what I might need to make this a more efficient, comfortable experience, and my maritime instincts were accurate. Mesh packing cubes and small plastic baskets help to organize my drawers and shower items, making it easier to find things quickly in an unfamiliar setting.

berths on ship show blue privacy curtains
This is where we sleep in the stateroom. The blue curtains can be closed to darken the room when sleeping during the day. On the left is a sink.
My own shark cradle
Reading and dreaming about sharks!

Dirt, guts, slime, and grime are part of the job. A bar of scrubby lemon soap takes off any leftover sunscreen, grime, or oceanic odors that leaked through my gloves. Little things like that make ship life pleasant. Not worrying about how I look is freeing, and I enjoy moving about the ship, being physically active. It reminds me of the summers I spent as a camp counselor working in the woods. The grubbier and more worn out I was, the more fun we were having.

The NOAA Corps is a uniformed service, so the officers wear their uniforms while on duty. For everyone else, old clothes are the uniform around here because the work is often messy, dirty, and sweaty. With tiny holes, frayed seams, mystery stains, cutoff sleeves, and nautical imagery, I am intrigued by the faded t-shirts from long-ago surveys and previous sailing adventures. Some of the shirts date back several years. The well-worn, faded fabric reveals the owner’s experience at sea and history with the ship. The shirts almost seem to have sea stories to tell of their own.

Sunset over water showing orange, pink, and blue hues.
As we sail, the view is always changing and always interesting!

Being at sea is a very natural feeling for me, and I haven’t experienced any seasickness. One thing I didn’t fully expect: being cold at night. The inside of the ship is air-conditioned, which provides refreshing relief from the scorching sun outside. I expected cooler temperatures at night, so I brought some lightweight sweatshirts and an extra wool blanket from home. On my first night, I didn’t realize that I could control the temperature in my stateroom, so I shivered all night long.

A folded grey hooded sweatshirt
It’s heavy, tough, and grey, but it’s not a shark!

My preparing and packing didn’t end once I embarked (got on) on the ship. Every day, I have to think ahead, plan, and make sure I have everything I need before I start my day. This may seem like the least interesting aspect of my day, but it was the biggest adjustment at first.

To put yourself in my shoes (well, my deck boots), imagine this:

Get a backpack. Transport yourself to completely new and unfamiliar surroundings. Try to adapt to strange new routines and procedures. Prepare to spend the next 12+ hours working, learning, exploring, and conducting daily routines, such as eating meals. Fill your backpack with anything you might possibly need or want for those twelve hours. Plan for the outdoor heat and the indoor chill, as well as rain. If you forgot something, you can’t just go back to your room or run to the store to get it because

  1. Your roommate is sleeping while you’re working (and vice versa), so you need to be quiet and respectful of their sleep schedule. That means you need to gather anything you may need for the day (or night, if you’re assigned to the night watch), and bring it with you. No going back into the room while your roommate is getting some much-needed rest.
  2. Land is not in sight, so everything you need must be on the ship. Going to the store is not an option.

Just some of the items in my backpack: sunscreen, sunglasses, a hat, sweatshirt, a water bottle, my camera, my phone, my computer, chargers for my electronics, an extra shirt, extra socks, snacks, etc.

I am assigned to the day watch, so my work shift is from noon-midnight. During those hours, I am a member of the science team. While on the day watch, the five of us rotate roles and responsibilities, and we work closely with the deck crew to complete our tasks. The deck department is responsible for rigging and handling the heavier equipment needed for fishing and sampling the water: the monofilament (thick, strong fishing line made from plastic), cranes and winches for lifting the CTD, and the cradle used for safely bringing up larger, heavier sharks. In addition to keeping the ship running smoothly and safely, they also deploy and retrieve the longline gear.

A pulley in front of water
Pulleys, winches, and cranes are found throughout the boat.

Another adjustment has been learning the routines, procedures, and equipment. For the first week, it’s been a daily game of What-Am-I-Looking-At? as I try to decipher and comprehend the various monitors displayed throughout the ship. I follow this with a regular round of Now-What-Did-I-Forget? as I attempt to finesse my daily hygiene routine. The showers and bathroom (on a ship, it’s called the head) are down the hall from my shared stateroom, and so far, I’ve managed to forget my socks (day one), towel (day two), and an entire change of clothes (day four). With the unfamiliar setting and routine, it’s easy to forget something, and I’m often showering very late at night after a long day of work.

Showers and changing stalls on ship
I’m more than ready to cool off and clean up after my shift.

One thing I never forget? Water. I am surrounded by glittering, glistening water or pitch-black water; water that churns and swells and soothingly rocks the ship. Swirling water that sometimes looks like ink or teal or indigo or navy, depending on the conditions and time of day.

Another thing I’ll never forget? This experience.

A water bottle in the sun
In case I forget, the heat of the sun reminds me to drink water all day long.

Did You Know?

The Gulf of Mexico is home to five species, or types, or sea turtles: Leatherback, Loggerhead, Green, Hawksbill, and Kemp’s Ridley.

Recommended Reading

Many of my students have never seen or experienced the ocean. To make the ocean more relevant and relatable to their environment, I recommend the picture book Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene. A young girl’s grandfather moves to the city and notices there’s nowhere to fish. She and her grandfather imagine fishing from their high-rise apartment fire escape. The “fish” they catch are inspired by the vibrant ecosystem around them: the citizens and bustling activity in an urban environment. The catch of the day: “Flying Litterfish,” “Laundry Eels,” a “Constructionfish,” and many others, all inspired by the sights and sounds of the busy city around them.

The book could be used to make abstract, geographically far away concepts, such as coral ecosystems, more relatable for students in urban, suburban, and rural settings, or as a way for students in rural settings to learn more about urban communities. The young girl’s observations and imagination could spark a discussion about how prominent traits influence species’ common names, identification, and scientific naming conventions.

The cover of the book Skyfishing
Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene (Abrams Books for Young Readers, 2017)

 

Lee Teevan: The Unexpected Happens, July 13, 2018

NOAA Teacher at Sea

Lee Teevan

Aboard NOAA Ship Oscar Dyson

July 1-10, 2018

Mission: Acoustic Pollock-Trawl

Geographic Area of Cruise: eastern Bering Sea

Date: 13 July 2018

View of the Oscar Dyson on our last morning in Dutch Harbor, AK
View of the Oscar Dyson on our last morning in Dutch Harbor, AK

 

Weather Data from Norfolk, VA

Latitude: 36.8508° N

Longitude: 76.2859° W

Tide Heights: 2.76 ft & 3.35 ft

Wind Speed: 19 km/h

Wind Direction: NE

Air Temperature: 28°C, 82°F

Barometric Pressure: 1028.1 mb

Sky: Clear

Humidity: 76%

“If you’re awake at 6:00 a.m., you’ll get to see the Oculus as I prepare it to glide around in the Bering Sea!”  With this promise from Dr. Chris Bassett, I made sure I was ready at the appointed time on our last day on the ship.

Dr. Chris Bassett preparing the Oculus.
Dr. Chris Bassett preparing the Oculus.

The launching of the Oculus was not on Chris’ schedule for that day beforehand; our expedition was ending earlier than expected.  That setback, however, did not diminish the drive to pursue science.  The resilience and perseverance of the science team to readjust was apparent.  Through the mist of  disappointment, the scientists continued to do as much as possible to continue our mission of the pollock survey.

 

Science and Technology Log

Developed at Pacific Marine Environmental Laboratory in partnership with the University of Washington’s Joint Institute for the Study of the Atmosphere and Ocean and the University of Washington Seaglider Fabrication Lab, the Oculus is an ocean glider which samples abiotic factors in the ocean such as temperature, salinity and dissolved oxygen at different depths.

Inner component of the Oculus which regulates buoyancy.
Inner component of the Oculus which regulates buoyancy.

After setting the Oculus upright, Chris connected it via the Internet to a computer operated by a scientist at the University of Washington.  This scientist is going to be sending coordinates to the Oculus and guiding it at various depths in the Bering Sea.  Chris explained that the Oculus has the ability to adjust its buoyancy quickly and is able to carry out a more reliable survey than other gliders.  Through the data remotely sent by the Oculus, scientists can gather a more accurate picture of ocean dynamics such as water column layers and ocean mixing.

Unfortunately, I was not able to observe the launch of the Oculus as I had to leave for the airport.

Personal Log

View from dock in Dutch Harbor, AK.
View from dock in Dutch Harbor, AK.

The week I spent on the ship was a whirlwind of experiences. I was just hitting my stride being completely awake for my 4:00 a.m. to 4:00 p.m. work shift and efficiently measuring the length of the pollock in each trawl.

Pollock and jellyfish in trawl.
Pollock and jellyfish in trawl.

At the end of the last trawl, I held a pollock, out of its element of water. Its dense, streamlined body shimmered with iridescence.  One eye stared, unfocused on the strange surroundings.   I too would be out of my element were it not for the 208.6 ft. boat on which I was standing.  Being on the boat was a constant reminder that my species is alien to this ocean habitat and that to explore it, we have to use technology such as the Oculus, underwater cameras, and acoustic technology as well as physical trawls.  Together, these different means of exploring combine information so that we can evaluate our interactions with the ocean and its inhabitants.

The view of the horizon from the deck of the Oscar Dyson.
The view of the horizon from the deck of the Oscar Dyson.

At times, the ocean had a disorienting effect.  When on the deck, I looked out from all directions and saw nothing but ocean capped by a dome of stratus clouds.  Under this lid of heavy clouds, the sun gave no clue to discern our direction or time of day.

Marine Careers

Karla Martinez, Junior Unlicensed Engineer, on duty on the Oscar Dyson.
Karla Martinez, Junior Unlicensed Engineer, on duty on the Oscar Dyson.

With her philosophy of focusing on the positive, Karla Martinez enjoys her time on and off duty on the Oscar Dyson.  As a Junior Engineer, Karla is responsible for ship upkeep and repairs.  On our last day of the trip, I spoke to her as she changed air filters in all of the staterooms.  Karla began working as a NOAA Junior Engineer three years ago after seven years in the U.S. Navy.  Since working for NOAA, she has traveled extensively and makes sure she visits each place the Oscar Dyson docks.  Karla is on the ship for at least 7-8 months of the year, and she makes the ship feel like home by getting to know people.

Karla Martinez, Tourist, off duty in field of flowers, Unalaska, AK.
Karla Martinez, Tourist, off duty in field of flowers, Unalaska, AK.

For young people who are interested in a career like Karla’s, she advises asking many questions and studying technology as much as possible. In high school, students should take the ASVAP test before entering the military.  Once admitted to the military, students should get trained. Karla states that students should talk to their counselors and find out all they can.

Jennifer Dean: Extra Operations and Daily Duties, May 19, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 19, 2018

Weather from the Bridge
Latitude: 29°55.8590’ N
Longitude: 80°16.9468’ W
Sea Wave Height: 2-4 feet
Wind Speed:  18.1 knots
Wind Direction: 210.6°
Visibility:  1 nautical mile
Air Temperature: 25.3°C
Sky: Overcast

Science and Technology Log

Extra Operations- Zodiac Hurricane Fast Rescue Boat:
Occasionally these Fast Rescue Boats are used for more than real emergencies and drills, practicing the pick-up of a man-overboard and rescue diver missions, in the case of day 2 of my trip on NOAA Ship Pisces, a camera replacement part became necessary.  When a small crew change is needed or to pick up a repair part for an essential item, instead of bringing the ship to dock, the FRB (Fast Rescue Boat)  is sent in.

coxswain
Lead Fishermen, Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat

The LF or Lead Fishermen,  Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat).  His navigation skills were developed by working in the hydrographic division that performs regular bathymetry readings using these vessels on NOAA Ship Thomas Jefferson, making him a very capable pilot of this small watercraft in the NOAA fleet.  The FRB has seating for 6, with 2 aft of console, 1 forward of engine cover, 2 sitting on foredeck on engine cover and 1 prone on deck by stretcher.

Some other specs on the boat includes the following:
Length overall=6.81 meters including jet
Beam overall=2.59 meters
Fuel capacity=182 litres (48 US Gal)
Bollard Pull ~600 kg/5884 N
Endurance (hours @ 20 knots)~6.75 hours
Max  Horse Power=235kW, 315 hp
At Light Load Operation Displacement = 2150 kg/4750 lbs
Full Speed ~32 knots
Fuel System =48 US gallon tank

 

Engine Room Tour Pictures and Learnings:

Daily Duties: Freshwater NeedsReverse Osmosis and Evaporators
Freshwater is necessary for a variety of reasons beyond drinking water for the crew.  It is used for laundry, cooking, showers and on NOAA Ship Pisces, to fill the ballast water tanks.  Approximately 31 gallons of freshwater is used on average per person per day, with 29 people on board for 12 days, totaling nearly 11,000 gallons by the end of the trip.   One method to supply this freshwater supply is through reverse osmosis.  Osmosis is the diffusion of water across a membrane.

 

Normally water moves, without an energy input from high to low concentrations.  In reverse osmosis, water is moved in the opposite direction of its natural tendency to find equilibrium.  The force at which water wants to move through the membrane is called its osmotic pressure.  To get water to move against the osmotic pressure another force must be applied to counteract and overcome this tendency.  Sea water is found in abundance and can be forced across a semi-permeable membrane leaving the ions on one-side and the freshwater to be collected into containment chambers on the other side.  Technology has impacted this process by discoveries of better semi-permeable membranes that allow for faster and larger amounts of sea-water to be moved through the system.  Pisces uses reverse osmosis and a back-up freshwater system of 2 evaporators.  When the temperatures are high (as they were in the first few days of the cruise) the evaporators are the go-to system and make for tasty drinking water.

Evaporators take in sea water and distill the liquid water using waste heat collected from the engines that raises the temperature of water in the pipes.  This temperature provides the energy that forces the liquid freshwater to vaporize and enter its gaseous phase, then under pressure this vapor is condensed and can be collected and separated from the brine that is removed and discharged.

 

Wastewater:  There are different types of water that can be used for different tasks aboard a ship.  Typically gray water (which is relatively clean wastewater from showers and sinks but may contain soaps, oils, and human hair/skin)  is placed in the MSD (Marine Sanitation Device), which is similar to a septic system.  Black water is wastewater from toilets, or any water that has come into contact with fecal matter and may carry potential disease carrying pathogens. Black water is also treated in the MSD.  This black water sewage is first subjected to a macerator pump that breaks the fecal matter into smaller pieces, enzymes are added to further decompose and before disposal a bit of chlorine is added to ensure no bacteria remain alive.  This water can be disposed of into the ocean if the ship is over 12 miles offshore.  If the ship is within 12 miles the sewage must be either stored in containment system on board the vessel or taken to dock and disposed of by an in-shore treatment facility. For more information on the regulations for wastewater disposal while at sea see the  Ocean Dumping Act.

Valves for ballast water tanks
Valves for ballast water tanks on NOAA Ship Pisces that are filled with freshwater to prevent the spread of nonnative species

Ballast Water and New Regulations:  Ballast water tanks are compartments used to hold water to provide stability for the ship.  This balance is necessary for better maneuverability and improved propulsion through the water.  It can allow the crew to compensate and adjusts for changes in the ships cargo load or fuel/water weight changes over the course of a trip.  Historically this water has been drawn up from the surrounding sea water to fill the tanks.  Unfortunately, in the not so distant past, the ballast water from one location on the globe has been deposited into another area along with it, all of it foreign plants, animals and microbiota.  This act led to the introduction of a host of exotic and non-native species to this new area, some of which became invasive and wreaked havoc on the existing ecosystems.  Today there are a host of case studies in my students’ textbook like the Zebra Mussels (Dreissena polymorpha) and the European Green Crabs (Carcinus maenas) that were introduced in this way that resulted in devastating impacts both environmentally and economically to the invaded area.

The International Maritime Organization (IMO) passed new regulations in September of 2017 calling for better management of this ballast water exchange.  Ballast Water Management Convention 2017.

Another high tech approach to this problem has been the development of a sea-water filtration systems, but these carry a heavy price tag that can range anywhere from  $750,000 to $5 million.

The engine room area is staffed by 7 crew members.  Back-up systems and  the amount of en route repair necessary to keep the ship running and safe was apparent in the engine room.  There were redundancies in the engines, HVAC, hydraulics, and fuel systems.  Spare parts are stored for unexpected breaks or other trouble-shooting needs.  The control panels throughout the tour had screens that not only allowed a check of every level of function on every system on the ship, there was another screen that demonstrated the electrical connections on how all these monitoring sensors were wired, in case a reading needed to be checked back to its source.

Engine 4
One of the 4 NOAA Ship Pisces CAT engines

Pictured here is a diesel engine on NOAA Ship Pisces. Pisces has 4 of these on board: 2 bigger engines that are CAT model 3512 vs. 2 smaller engines that are CAT 3508. When the ship is going at full steam they use 3 of 4 to provide power to turn the shaft, and when they need less power, they can modify their engine choices and power, therefore using less fuel.  CAT engines are models 3512 and 3508 diesel driven at provide 1360 KW and 910 KW, respectively.  There is also an emergency engine (CAT model 3306) on board as well providing 170 kw of power.

Control panels in engine room
Control panel of screens for monitoring and controlling all mechanical and tank/fluid functions

 

hydraulics
Steven Clement, first assistant engineer, is showing me some of the hydraulics in the engine room.

The pressurized fluid in these pipes are used to move devices.  Pisces is in the process of converting certain hydraulic systems to an organic and biodegradable “green” oil called Environmentally Acceptable Lubricants (EALs).

The Bridge

panopic bridge
NOAA Ship Pisces’ Bridge

This area is command central.  I decided to focus on only a few features for this blog from a handful of screens found in this room that monitor a variety of sensors and systems about both the ships conditions and the environmental factors surrounding the ship.   Commanding Officer CDR Nicholas Chrobak, NOAA demonstrated how to determine the difference on the radar screen of rain scatter vs. another vessel.  In the image the rain gives a similar color pattern and directionality, yet the ship appeared more angular and to have a different heading then those directed by wind patterns.  When clicking on the object or vessel another set of calculations began and within minutes a pop-up reading would indicate characteristics such as CPA (closest point of approach) and TCPA (Time of Closest Point Approach) as seen in the image.

 

These safety features let vessels avoid collisions and are constantly being calculated as the ship navigates.  GPS transponders on the ships send signals that allow for these readings to be monitored.    ECDIS (Electronic Chart Display and Information System) charts provide a layered vector chart with  information about the surrounding waters and hazards to navigation.  One screen image displayed information about the dynamic positioning system.

ECDIS
ECDIS (Electronic Chart Display and Information System)

Paths and positions can be typed in that the software then can essentially take the wheel, controlling main propulsion, the bow thruster and rudder to keep the ship on a set heading, and either moving on a desired course or hold in a stationary position.  These computer-based navigation systems integrate GPS (Global Positioning System) information along with electronic navigational charts, radar and other sailing sensors to ensure the ship can navigate safely while effectively carrying out the mission at hand.

The Mess Deck and Galley:

This location serves up delicious and nutritious meals.  Not only do the stewards provide the essential food groups, they provide vegetarian options and make individual plates for those that may miss a meal during shift work.

mess deck
The mess

Dana Reid, who I interviewed below, made me some amazing omelets on the trip and had a positive friendly greeting each time I saw him. I decided a few days into the cruise to start taking pictures of my meals as proof for the nature of how well fed the crew is on these adventures.

 

 

dana and ray
Steward CS Ray Mabanta and 2C Dana Reid in the galley of NOAA Ship Pisces

Each day a new screen of menus appeared on the ship’s monitors, along with other rotating information from quotes, to weather to safety information.

Personal Log

Today a possible shipwreck is evident on the sonar maps from the previous night’s multibeam readings.  If weather permits, the science team plans to check out the unknown structure en route to the next MPA. This scientific study reminds me of one of the reasons I fell in love with science.  There is that sense of discovery.  Unlike pirates and a search for sunken gold, the treasure to be found here is hopefully a diversity of fish species and thriving deep coral communities.  I found myself a bit lost during the discussions of fishing regulations for these areas designated as MPAs (Marine Protected Areas).  I had always thought ‘protected’ would mean prohibitive to fishing.   So I did a little research and will share a little of the basics learned.  And I hope someday these regulations will become more restrictive in these fragile habitats.

The MPA , “marine protected area”  definition according to the implementation of an Executive Order 13158 is “…any area of the marine environment that has been reserved by federal, state, territorial, tribal, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein.” But what that actually means in terms of the size of the area and approach to conservation, or the level protection and the fishing regulations seems to vary from location to location.  The regulations are governed by a variety of factors from the stakeholders, agencies and scientists to the population numbers and resilience of the habitat to distances offshore.
For more information on MPAs visit
https://oceanservice.noaa.gov/facts/mpa.html

Did You Know?
Some species of coral, like Ivory Tree Coral, Oculina varicosa, can live without their zooxanthellae.

Oculina varicosa
Oculina varicosa

Very little is known about how they do this or how their zooxanthellae symbiotic partners return to their coral home after expulsion.

Fact or Fiction?
Oculina varicosa can grow to up to 10 feet high and have a growth rate of ½ inch per year. Check out the scientific validity of this statement at one of the following links:

http://www.sms.si.edu/irlspec/oculin_varico.htm

What’s My Story? Dana Reid
The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

Dana in scullery
Dana Reid pictured here in the scullery, the ship’s kitchen area for cleaning dishes

What is your specific title and job description on this mission?  Second Cook. His job description includes assisting the Chief Steward in preparing meals and maintaining cleanliness of the galley (kitchen), mess deck (tables picture where crew eats), scullery (part of the kitchen where dishes get washed) fridge/freezer and storage areas.

How long have you worked for NOAA?  5th year

What is your favorite and least favorite part of your job? His favorite part of this job is getting a chance to take care of people, putting a smile on people’s faces and making them happy.  His least favorites are tasks that involve standing in the freezer for extended periods of time to stock and rotate foods.  In addition he mentioned that he isn’t too fond of waking up very early in the morning.

When did you first become interested in this career and why?  His initial food as a career-interest started when he was in high school working for Pizza Hut.  He later found himself working for 2 years cooking fried chicken for Popeyes.  His interest in the maritime portion of his career also began right after high school when he joined the Navy.  In the Navy he worked in everything from the galley to a plane captain and jet mechanic.  During his time in the Navy he worked on 5 different carriers and went on 9 different detachments including Desert Storm. After hurricane Katrina in 2006 he found himself interested in finding another job through government service and began working on a variety of NOAA’s vessels.

What is one of the most interesting places you have visited?  He found the culture and terrain of Oahu one of his most interesting.  He enjoys hiking and Hawaii, Alaska and Seattle have been amazing places to visit.

Do you have a typical day? Or tasks and skills that you perform routinely in this job? He spends the majority of his time prepping  (washing and chopping)  vegetables and a majority of his time washing dishes.  In addition he is responsible for keeping beverages and dry goods stocked. 

Questions from students in Environmental Science at Camas High School

  • How is cooking at sea different from cooking on land?
    He said that he needs to spend more effort to keep his balance and if in rough weather the ship rocks. This impacts his meal making if he is trying to cook an omelet and if mixing something in keeping the bowl from sliding across the prep table.  He mentioned that occasionally when baking a cake that it might come out lopsided depending upon the angle of the ship and timing of placement in the oven.
  • What do you have to consider when planning and cooking a meal?
    He plans according to what meal of the day it is, breakfast, lunch or dinner.  The number of people to cook for, number of vegetarians and the part of the world the cruise is happening in are all factored in when planning and making meals. For example, when he has been in Hawaii he’d consider cooking something more tropical – cooking with fish, coconut and pineapple; if in the Southeast they tend to make more southern style cooking, sausage/steak lots of greens; if in the Northeast more food items like lobster and clam chowder make their way onto the menu.
  • What is the best meal you can make on the ship, and what is the worst? He said he makes a pretty good Gumbo. He said one of his weakness is cooking with curry and said that the Chief Steward is more skilled with dishes of that flavor.
  • How many meals do you make in a day? 3; In addition he hosts occasional special events like ice cream socials, banana splits or grilling party with smoker cooking steaks to hamburgers on the back deck.

————————————————————————————————————————————–

 

Staci DeSchryver: When They Go Low, We Go High (Pilot Whales, that Is!): A view of Cetaceans using Drone Technology July 17, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard: Oscar Elton Sette

Cruise Dates: July 6 – Aug 2

Mission:  HICEAS Cetacean Study

Geographic Area:  Northeast of Kauai, headed toward Northwestern Hawaiian Islands (NWHI)

Location:  24 deg 41.9 min N, 170 deg 51.2 min W

Date:  July 17, 2017

Weather Data from the Bridge:

Visibility:  10 Nmi

Scattered Clouds

Wind:  11 kts at 90 deg

Pressure: 1018.2mb

Wave height: 1-3 m

Swell at 50 deg, 2-3 ft

Air Temp: 29 degrees

Wet Bulb Temp: 25 degrees

Dewpoint: 28 degrees

 

Science Log

Technology definitely finds its way into every corner of life, and cetacean studies are certainly no exception.   One of the most recent additions to the Cetacean team’s repertoire of technology is a fleet of UAS, or unmanned aerial systems.  (UAS is a fancy term for a drone, in this case a hexacopter.  Yes, we are definitely using drones on this mission.  This seriously cannot get much cooler.)  HICEAS 2017 is utilizing these UAS systems to capture overhead photos of cetaceans in the water as they surface.  And the best part of all of this?  I was selected to be a part of team UAS!  

 

The UAS can only fly under certain atmospheric conditions.  It can’t be too windy and the seas can’t be too rough.  We had the chance to practice flying the hexacopters on one of the few days we were off the Kona coast of the Big Island, where the wind and seas are typically calmer.  Dr. Amanda Bradford is leading the HICEAS 2017 drone operations.  She is involved in securing air clearance that might be required for a hexacopter flight, as well as all of the operations that take place in preparation for deployment – of which there are many. The UAS is launched preferentially from a small boat, although it can be launched from the ship.  So, in order to do boat-based UAS operations, we must first launch a boat off of the side of the ship.  There are four people involved in the small boat UAS operations – the UAS pilot, the UAS ground station operator (Dr. Bradford and scientist Kym Yano alternate these positions), a coxswain to drive the small boat (NOAA crewmember Mills Dunlap) and a visual observer/data keeper (me!)  for each flight the hexacopter makes.

We all load up our gear and equipment onto the small boat, along with the coxswain and one team member, from the side of the ship.  The ship then lowers the boat to the water, the remaining teams members embark, and we are released to move toward the animals we are trying to photograph.  I don’t have any photographs of us loading on to the ship because the operation is technical and requires focus, so taking photos during that time isn’t the best idea.  I will say that the whole process is really exciting, and once I got the hang of getting on and off the ship, pretty seamless.

 

Our first trip out was just to practice the procedure of getting into the small boat, flying the UAS on some test flights, and returning back to the ship.  The goal was to eventually fly the hexacopter over a group of cetaceans and use the camera docked on the hexacopter to take photogrammetric measurements of the size and condition  of the animals.

Launching a hexacopter from a boat is quite different from launching one on land.  Imagine what would happen if the battery died before you brought it back to the boat!  This is why numerous ground tests and calibrations took place before ever bringing this equipment out over water.  The batteries on the hexacopter are good, but as a security measure, the hexacopter must be brought back well before the batteries die out, otherwise we have a hexacopter in the water, and probably a lot emails from higher ups to answer as a result.  Each time the hexacopter flies and returns back to the small boat, the battery is changed out as a precaution.  Each battery is noted and an initial voltage is taken on the battery before liftoff.  The flights we made lasted around10 minutes.  As soon as the battery voltage hits a certain low level, the pilot brings the hexacopter back toward the boat to be caught.  My job as the note taker was to watch the battery voltage as the hexacopter comes back to the small boat and record the lowest voltage to keep track of battery performance.

 

The UAS has two parts, one for each scientist – the pilot (who directs the hexacopter over the animals), and a ground station operator.  This person watches a computer-like screen from the boat that has two parts – a dashboard with information like altitude, time spent in flight, battery voltage, distance, and GPS coverage.  The bottom portion of the ground station shows a monitor that is linked to the camera on the hexacopter in real time.

The pilot has remote control of the hexacopter and the camera, and the ground station operator is responsible for telling the pilot when to snap a photo (only she can see from the monitor when the animals are in view), watching the battery voltage, and the hand launching and landing of the drone.  As the hexacopter is in flight, it is the coxswain’s and my responsibility to watch for obstacles like other boats, animals, or other obstructions that might interfere with the work or our safety.

 

To start a flight, the hexacopter is hooked up to a battery and the camera settings (things like shutter speed, ISO, and F-stop for the photographers out there) are selected. 

The ground station operator stands up while holding the hexacopter over her head.  The pilot then begins the takeoff procedures.  Once the drone is ready to fly, the ground station operator lets go of the drone and begins monitoring the ground station.  One important criterion that must be met is that the animals must never come within 75 overhead feet of the drone.  This is so that the drone doesn’t interfere with the animals or cause them to change their behavior.  Just imagine how difficult it is to find an animal in a camera frame being held by a drone and flown by someone else while looking on a monitor to take a photo from a minimum of 75 feet from sea level!  But Amanda and Kym accomplished this task multiple times during the course of our flights, and got some great snapshots to show for it.

 

On the first day of UAS testing, we took two trips out – one in the morning, and one in the afternoon.  On our morning trip, Kym and Amanda took 5 practice flights, launching and catching the hexacopter and changing between piloting and ground station monitoring.  In the afternoon, we were just getting ready to pack up and head back to the ship when out of the corner of my eye I saw a series of splashes at the ocean surface.  Team.  I had a sighting of spinner dolphins!   I barely stuttered out the words, “Oh my God, guys!  There are dolphin friends right over there!!!!”  (Side note:  this is probably not how you announce a sighting in a professional marine mammal observer scenario, but I was just too excited to spit anything else out.  I mean, they were Right. There.  And right when we needed some mammals to practice on, too!)  They were headed right past the boat, and we were in a prime position to capture some photos of them.  We launched the hexacopter and had our first trial run of aerial cetacean photography.  

OLYMPUS DIGITAL CAMERA

 

On the second day, we had a pilot whale sighting, and the call came over the radio to launch the small boat.  Things move really fast on a sighting when there is a small boat launch.  One minute I was up on the flying bridge trying to get some snapshots, and the next I was grabbing my camera and my hard hat and making a speedy break for the boat launch.  We spent a good portion of the morning working the pilot whale group, taking photos of the whales using the hexacopter system.  We were lucky in that these whales were very cooperative with us.  Many species of whales are not good candidates for hexacopter operations because they tend to be skittish and will move away from the noise of a small boat (or a large one for that matter).  These little fellas seemed to be willing participants, as if they knew what we were trying to accomplish would be good for them as a species.  They put on quite a show of logging (just hanging out at the surface), spyhopping, and swimming in tight subgroups for us to get some pretty incredible overhead photographs.  I also had the chance to take some great snapshots of dorsal fins up close, as well.

These side-long photos of dorsal fins help the scientific team to identify individuals.  There were times when the whales were less than twenty yards from the boat, not because we went to them, but because they were interested in us.  Or they were interested in swimming in our general direction because they were following a delicious fish, and I’d be happy with either, but I’d like to think they wanted to know what exactly we were up to.

OLYMPUS DIGITAL CAMERA

 

 

While photographing the whales a couple of interesting “other” things happened.  I had a brief reminder that I was definitely not at the top of the food chain when Mills pointed out the presence of two whitetip sharks skimming beneath the surface of the water.  Apparently these sharks know that pilot whales can find delicious fish and sort of hang out around pilot whale groups hoping to capitalize.  I wondered if this was maybe my spirit animal as I am following a group of scientists and capitalizing on their great adventures in the Pacific Ocean, as well.

Another “other” thing that happened was some impromptu outreach.  While working on the small boat, other boats approached the whales hoping to get some up close snapshots and hang out with them for a bit, as well.  Two were commercial operations that appeared to be taking tour groups either snorkeling or whale watching, and one was just a boat of vacationers out enjoying the day.  The scientific team took the opportunity to approach these boats, introduce us, and explain what we were doing over the whale groups.  They also took the opportunity to answer questions and mention the HICEAS 2017 mission to spread the word about our study.  It was a unique opportunity in that fieldwork, apart from internet connections, is done in relative isolation in this particular setting.  Real-time outreach is difficult to accomplish in a face-to-face environment.  In this case, the team made friendly contacts with approximately 45 people right out on the water.  Congenial smiles and waves were passed between the passengers on the boats and the scientific team, and I even saw a few cell phones taking pictures of us.  Imagine the potential impact of one school-aged child seeing us working with the whales on the small boats and thinking, “I want to do that for a career someday.”  What a cool thing to be a part of.

OLYMPUS DIGITAL CAMERA

 

 

Personal Log

Over the last couple of days, the ship was near the coast of the Big Island, Hawai’i.  One morning, we approached on the Hilo side, which is where Mauna Loa is spewing forth her new basaltic earth.  It treks down the side of the volcano, red-hot and caustic, only to be tempered immediately as soon as it strikes the anesthetic waters of the Pacific.  Having never seen real lava before, I was hoping to capitalize on the big eyes and catch a glimpse of it as it splashed into the ocean’s cool recesses, forming solid rock and real estate on the side of the mountain.  Unfortunately, I failed to account for the laws of thermodynamics – forgetting that hot things make water evaporate and re-condense into steam.  I suppose I was just romanticizing the idea that I could possibly see this phenomenon from an angle that not many get to see it from – miles out on the Pacific Ocean. And the truth is, I did, just not in the way I had imagined.   I did get to see large plumes of steam extending up from the shoreline as the lava met its inevitable demise.  While I didn’t get to see actual real lava, there was definitely hard evidence that it was there, hidden underneath the plumes of white-hot condensation.  I took a few photos that turned out horribly, so you’ll just have to take my word for it that I almost sort of saw lava.  (I know, I know.  Cool story, bro.)  If you can’t believe that fish tale, surely you won’t believe what I’m about to tell you next – I didn’t see the lava – but I heard it.

Starting in the wee hours of the morning, the acoustics team deployed the array only to find an unidentified noise – a loud, sharp, almost cracking or popping noise.  They tried to localize the noise only to find out that it was coming from the shores of the big island.  Sure enough, when they figured it out, the acoustics lab was a popular place to be wearing headphones.  The snapping and cracking they were hearing was the lava cooling and cracking just beneath the ocean surface on the lava bench.  So, I didn’t see the lava, but I heard it solidifying and contracting on the acoustics system.  How cool is that?

 

Ship Quiz:

Why do the head stalls (AKA bathroom stalls) lock on both sides of the door?

  1.       So that you can lock your friends in the bathroom as a mean prank
  2.      Extra protection from pirates
  3.       To give yourself one extra step to complete to get to the toilet when you really gotta go
  4.      To keep the doors from slamming with the natural movement of the ship

If you said “D”, you are correct!  The bathrooms lock on both sides because if left to their own devices, they would swing and bang open and shut with the constant motions of the ship.  So, when you use the bathroom, you have to lock it back when you finish.  Now you know!

 

 

Dawn White: Sampling the Pacific, June 24, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 25, 2017

 

Weather Data from the Bridge

 

Date: June 25, 2017                                                         Wind Speed: 22 kts

Time: 4:00 p.m.                                                                 Latitude: 5026.55N

Temperature: 14.3oC                                                      Longitude: 12808.11W

 

Science and Technology Log

 

Although the scientists have not performed any fishing trawls since departing San Diego, there is a survey crew on board that has continuously been monitoring the water column for a variety of factors using acoustics and an instrument called a Conductivity/Temp/Depth (CTD) probe.

Last night I was able to observe the launch and retrieval of a small, handheld CTD probe.  It looks very much like a 2 ft torpedo. The electronics and sensors built into the probe measure such factors as salinity, sound speed, depth, and water temperature.  This smaller probe is launched off the tail of the boat and let out on a line of filament from a reel that appears very similar to a typical fishing reel.  It does not take more than a couple of minutes for the probe to sink to a depth of about 300 meters.  Data is collected from the probe at various depths on the way down.  Once the probe has reached its target depth, it is simple reeled back in using a winch to retrieve it.  This requires quite a bit of energy as the probe is deployed with enough line for it to end up about 3 miles behind the ship.  The data from this probe is then blue-toothed to the program used by those monitoring the water column acoustically.  It help the techs make corrections in their acoustical readings.

 

White_scientists deploying probe_R
Surveyor Jian Liu and scientist Juan Zwolinski deploy the smaller CTD probe off the stern of NOAA Ship Reuben Lasker

 

The Reuben Lasker also carries a larger version of the CTD probe with the additional capabilities such as water collection at various depths.  However, this version requires the ship to be stationary.  Taking measurements with the unit slows down the work of the day as each stop takes about 30 minutes from launch until retrieval.  The launch of the larger CTD can be seen below.

 

White_CTD probe in basket
CTD Probe in steel protected basket

 

The data from the CDT probe is recorded real-time on the survey team’s computers.  Below you can see how this data presents itself on their video screens.

 

On the left video display you can see that there are several variables that are plotted against a depth vs. temperature. The green line tracks fluorescence (a measure of the chlorophyll concentration); the light blue line tracks dissolved oxygen; the red line represents temperature; the blue line is for salinity.

 

Extension question for my students reading this:  What correlations or relationships do you see happening as you observe the change in variables relative to changes in depth?

 

White_Lasker route
Route of NOAA Ship Reuben Lasker

Here is the route taken by the Reuben Lasker during the past 24 hours or so.  As you can see from the chart, the ship has now reached the northern-most end of Vancouver Island.  This is where the CDT recordings, marine mammal watching, deployment of two sets of plankton nets (to be explained later) and fish trawling will begin along the predetermined transect lines.

Note at the base of the screen the other parameters that are continuously recorded as the ship moves from place to place.

 

 

Personal Log

The action on-board is increasing dramatically today.  We have arrived at our outermost destination today, along the northernmost coast of Vancouver Island.  The sights from the bridge are amazing…all this blue water and rugged, pine covered coastline.  I am still waiting for that orca whale sighting!

The waves are up today but I’m holding my own.  Yeay!  Especially as the night fishing will begin in a few hours.

Unique activity of the day – I just finished a load of laundry!  The ship possesses 3 small washer/dryer units so we can redo our towels and whatever else we have used up during the course of this first week.  How serviceable can you get! I’ll retrieve mine as soon as dinner is over.  We have set meal hours and if you miss…it’s leftovers for you!  Best part of this is I am actually ready to eat a normal meal, even with the ship rocking the way it is today.

I have now been assigned deck boots and a heavy duty set of rain gear to cover up with when the fish sorting begins.  I can’t wait to see what all we pull up from these nutrient rich waters!

 

Did You Know?

Much of the data collected by the CTD and acoustic equipment from the Reuben Lasker is entered into a large data set managed by CalCOFI (California Cooperative Oceanic Fisheries Investigation).  Anyone interested in utilizing and analyzing this data can access it via the organization’s website located here.  There is an incredible amount of information regarding the work and research completed by this group found on this site. Check it out!

Helen Haskell: From Raw Data to Processed Data, June 16, 2017

NOAA Teacher at Sea

Helen Haskell

Aboard NOAA Ship Fairweather

June 5 – 26, 2017

 

Mission: Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska – West Prince of Wales Island

Date: June 16, 2017

Weather Data

Wind:  3 knots from the east (272° true)

Visibility: 6 nautical miles

Barometer:  997.6 hPa

Air temperature: 9 °C

Cloud: 100% cover, 1000’

Location

54°54.4’N  132°52.3’W

Science and Technology Log

It would be easy to assume that once the small boat surveys are conducted and data from the larger sonar equipment on Fairweather is also acquired, that the hydrographers’ work is done and the data can be used to create navigational charts. As I have learned, pretty quickly, there are many parameters that affect the raw data, and many checks and balances that need to be conducted before the data can be used to create a chart. There are also a significant amount of hurdles that the crew of Fairweather deals with in order to get to their end goal of having valid, accurate data.  Some of the parameters that affect the data include tides, salinity of the water, temperature of the water, and the density of the data.

Tides:

Tides play a huge role in data accuracy.  But how do tides work and how do they influence navigational chart making? Tides on our planet are the effect on water due to forces exerted by the moon and the sun.  The mass and the distance from the Earth to these celestial bodies play significant roles in tidal forces. While the sun has a much greater mass than the moon, the moon is much closer to the Earth and it is distance that plays a more critical role.  Gravity is the major force responsible for creating tides. The gravitational pull of the moon moves the water towards the moon and creates a ‘bulge’. There is a corresponding bulge on the other side of the Earth at the same time from inertia, the counterbalance to gravity.  The moon travels in an elliptical orbit around the planet and the Earth travels in an elliptical orbit around the sun. As a result, the positions of the moon to the Earth and the Earth to the sun change and as a result, tide height changes.   The tides also work on a lunar day, the time it takes the moon to orbit the Earth, which is 24 hours and 50 minutes. So high tide is not at the same time in one area each solar day (Earth’s 24 hour day). There are three basic tidal patterns on our planet.  Here is southeast Alaska, the tides generally are what is called ‘semi-diurnal’, meaning that there are two high tides a day and two low tides a day of about the same height. Other areas of the world may have ‘mixed semi-diurnal’ tides, where there are differences in height between the two high and two low tides, or ‘diurnal’ tides, meaning there is only one high and one low tide in a lunar day.   The shape of shorelines, local wind and weather patterns and the distance of an area from the equator also affect the tide levels.  How does this affect the hydrographers’ data? If data is being collected about water depth, obviously tide levels need to be factored in.  Hydrographers factor this in when collecting the raw data, using predicted tide tables.  However, later on they receive verified tide tables from NOAA and the new tables will be applied to the data.

IMG_0211
The tide times of the day

Sound Speed Profiles:

Traveling down through the water column from the surface to the seafloor, several factors can change, sometimes significantly.  These factors include temperature, pressure and salinity.  These variables affect the accuracy of the sonar readings of the MBES (Multibeam Echo Sounders), so have to be factored in to account with the raw data analysis.  What complicates matters further is that these factors can vary from location to location, and so one set of readings of salinity, for example, is not be valid for the whole dataset.  Many fresh water streams end up in the waters off the islands of southeast Alaska.  While this introduction of freshwater has effects on the community of organisms that live there, it also has impacts on the hydrographers’ data.  To support accurate data collection the hydrographers conduct sound speed casts in each polygon they visit before they use the MBES.  The data is downloaded on to computers on the boat and factored in to the data acquisition.  The casts are also re-applied in post processing, typically on a nearest distance basis so that multiple casts in an area can be used.  In the picture below, the CTD cast is the device that measures conductivity (for salinity), temperature and depth.  It is suspended in the water for several minutes to calibrate and then lowered down through the water column to collect data. It is then retrieved and the data is downloaded in to the computers on board.

 

 

Data Density:

Hydrographers also need to make sure that they are collecting enough sonar data, something referred to as data density.  There are minimum amounts of data that need to be collected per square meter, dependent on the depth of the sea floor in any given area.  Having a minimum requirement of sonar data allows any submerged features to be identified and not missed. For example, at 0-20 meters, there need to be a minimum of five ‘pings’ per square meter.  The deeper the sea floor, the more the beam will scatter and the ‘pings’ will be further apart, so the minimum of five pings occupy a greater surface area.  Hydrographers need to make sure that the majority of their data meets the data density requirements.

Crossline Acquisition:

After much of the initial raw data has been collected, and many of the polygons ‘filled in’, the hydrographers will also conduct crossline surveys. In these surveys they will drive the small boat at an angle across the tracklines of the original polygon surveys. The goal here is basically quality control. The new crossline data will be checked against the original MBES data to make sure that consistent results are be acquired. CTD casts have to be re-done for the crossline surveys and different boats may be used so that a different MBES is used, to again, assure quality control.  At least 4% of the original data needs to be covered by these crossline surveys.

Shoreline verification:

Low tides are taken advantage of by the hydrographers. If the research is being conducted in an area where the low tide times correlate with the small boat survey times, then a vessel mounted LIDAR system will be used to acquire measurements of the shoreline.  Accurate height readings can be extracted from this data of different rocks that could prove hazardous to navigation.  Notes are made about particular hazards and photos are taken of them.  Data on man-made objects are also often acquired. Below are pictures produced by the laser technology, and the object in real life. (for more on LIDAT: http://oceanservice.noaa.gov/facts/lidar.html)

 

 

 

 

 

 

Night Processing:

Each evening once the launches (the small boats) return, the data from that day has to be ‘cleaned’. This involves a hydrographer taking an initial look at the raw data and seeing if there were any places in the data acquisition that are erroneous.  None of the data collected is deleted but places where the sonar did not register properly will become more apparent.  This process is called night processing as it happens after the survey day. After night processing, the sheet managers will take a look at remaining areas that need to be surveyed and make a plan for the following day.  By 6 a.m. the next day, the Chief Scientist will review the priorities made by the managers and let the HIC (Hydrographer In Charge) know what the plan in for their survey boat that day.

IMG_0281
Night Processing

Personal Log 

Throughout the Science and Technology log in this blog post, I keep referring to technology and computer programs.  What stands out to me more and more each day is the role that technology plays in acquiring accurate data.  It is an essential component of this project in so many ways, and is a constant challenge for all of the crew of Fairweather.  Daily on Fairweather, at mealtimes, in the post survey meetings, or on the survey boats themselves, there is discussion about the technology.  Many different programs are required to collect and verify the data and ‘hiccups’ (or headaches) with making this technology work seamlessly in this aquatic environment are a regular occurrence. I am in awe of the hydrographers’ abilities, not only in knowing how to use all the different programs, but also to problem solve significant issues that come up, seemingly on a regular basis.  Staff turnover and annual updates in software and new equipment on the ship also factor significantly in to technology being constantly in the foreground.  It often eats in to a large amount of an individual’s day as they figure out how to make programs work in less than forgiving circumstances.  Tied to all of this is the fact that there is a colossal amount of data being collected, stored and analyzed each field season.  This data needs to be ‘filed’ in ways that allow it to be found, and so the tremendous ‘filing system’ also needs to be learned and used by everyone.

 

 

Word of the day:   Fathom

Fathom is a nautical unit of measurement, and is the equivalent of 6 feet.  It is used in measuring depth.

Fact of the day:

Prince of Wales Island, west of which this research leg is being conducted is the fourth largest island in the United States. 4,000 people live on the island, that is 2,577sq mi.

What is this? 

fullsizeoutput_178

(Previous post: a zoomed in photo of ‘otter trash’ (Clam shell)

Acronym of the day:  

LIDAR: Light Detecting and Ranging

 

Kimberly Scantlebury: It’s All About the Little Things, May 8, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 8, 2017

Weather Data from the Bridge

Time: 18:00

Latitude: 2755.757 N, Longitude: 9200.0239 W

Wind Speed: 14.21  knots, Barometric Pressure: 1015.3 hPa

Air Temperature: 24.56  C, Water Temperature: 24.4  C

Salinity: 36.37  PSU, Conditions: 50% cloud cover, light wind, seas 2-4 feet

Science and Technology Log

IMG_2969
The CTD

The CTD (conductivity, temperature, depth) array is another important tool. It goes down at each station, which means data is captured ten-twelve times a day. It drops 50 m/min so it only takes minutes to reach the bottom where other winch/device systems can take an hour to do the same. This array scans eight times per second for the following environmental factors:

  • Depth (m)
  • Conductivity (converts to salinity in ppt)
  • Temperature (C)
  • Dissolved oxygen (mg/mL)
  • Transmissivity (%)
  • Fluorescence (mg/m^3)
  • Descent rate (m/sec)
  • Sound velocity (m/sec)
  • Density (kg/m^3)

There are two sensors for most readings and the difference between them is shown in real time and recorded. For example, the dissolved oxygen sensor is most apt to have calibration issues. If the two sensors are off each other by 0.1 mg/L then something needs to be done.

Software programs filter the data to cut out superfluous numbers such as when the CTD is acclimating in the water for three minutes prior to diving. Another program aligns the readings when the water is working through the sensors. Since a portion of water will reach one sensor first, then another, then another, and so on, the data from each exact portion of water is aligned with each environmental factor. There are many other sophisticated software programs that clean up the data for use besides these two.

These readings are uploaded to the Navy every twelve hours, which provides almost real-time data of the Gulf. The military uses this environmental data to determine how sound will travel through sound channels by locating thermoclines as well as identifying submarines. NOAA describes a thermocline as, “the transition layer between warmer mixed water at the ocean’s surface and cooler deep water below.” Sound channels are how whales are able to communicate over long distances.

NOAA Ocean Explorer: Sound in the Sea 2001
This “channeling” of sound occurs because of the properties of sound and the temperature and pressure differences at different depths in the ocean. (NOAA)

The transmissometer measures the optical properties of the water, which allows scientists to track particulates in the water. Many of these are clay particles suspended in the water column. Atmospheric scientists are interested in particulates in the air and measure 400 m. In the water, 0.5 m is recorded since too many particulate affects visibility very quickly. This affects the cameras since light reflecting off the clay can further reduce visibility.   

Fluorescence allows scientists to measure chlorophyll A in the water. The chlorophyll molecule is what absorbs energy in photosynthetic plants, algae, and bacteria. Therefore, it is an indicator of the concentration of organisms that make up the base of food chains. In an ecosystem, it’s all about the little things! Oxygen, salinity, clay particles, photosynthetic organisms, and more (most we can not actually see), create a foundation that affects the fish we catch more than those fish affect the little things.  

The relationship between abiotic (nonliving) and biotic (living) factors is fascinating. Oxygen is a great example. When nitrates and phosphates wash down the Mississippi River from the breadbasket of America, it flows into the Gulf of Mexico. These nutrients can make algae go crazy and lead to algae blooms. The algae then use up the oxygen, creating dead zones. Fish can move higher up the water column or away from the area, but organisms fixed to the substrate (of which there are many in a reef system) can not. Over time, too many algae blooms can affect the productivity of an area.

Salt domes were created millions of years ago when an ancient sea dried up prior to reflooding into what we have today. Some salt domes melted and pressurized into super saline water, which sinks and pools. These areas create unique microclimates suitable to species like some mussels. A microclimate is a small or restricted area with a climate unique to what surrounds it.

IMG_3032
The ship’s sonar revealing a granite spire a camera array was deployed on.

Another great example is how geology affects biology. Some of these salt domes collapsed leaving granite spires 30-35 meters tall and 10 meters across. These solid substrates create a magical biological trickle down effect. The algae and coral attach to the hard rock, and soon bigger and bigger organisms populate this microclimate. Similar microclimates are created in the Gulf of Mexico from oil rigs and other hard surfaces humans add to the water.

Jillian’s net also takes a ride with the CTD. She is a PhD student at Texas A&M University studying the abundance and distribution of zooplankton in the northern Gulf of Mexico because it is the primary food source of some commercially important larval fish species. Her net is sized to capture the hundreds of different zooplankton species that may be populating the area. The term zooplankton comes from the Greek zoo (animal) and planktos (wanderer/drifter). Many are microscopic, but Jillian’s samples reveal some translucent critters you can see with the naked eye. Her work and the work of others like her ensures we will have a deeper understanding of the ocean.   

This slideshow requires JavaScript.

Personal Log

Prior to this I had never been to the Gulf of Mexico other than on a cruise ship (not exactly the place to learn a lot of science). It has been unexpected to see differences and parallels between the Gulf of Mexico and Gulf of Maine, which I am more familiar. NOAA scientist, John, described the Gulf to me as, “a big bathtub.” In both, the geology of the area, which was formed millions of years ago, affects that way these ecosystems run.   

Quote of the Day:
Jillian: “Joey, are we fishing at this station?”
Joey: “I dunno. I haven’t had my coffee yet.”
Jillian: “It’s 3:30 in the afternoon!”

Did You Know?

Zooplankton in the Gulf of Mexico are smaller than zooplankton in the Gulf of Maine. Larger species are found in colder water.  

why_zoo
Zooplankton under microscope (NOAA)

Mark Wolfgang: Up, Up, and Away…, April 20, 2017

NOAA Teacher at Sea

Mark Wolfgang

Aboard NOAA Ship Reuben Lasker

April 11 – April 22, 2017

 

Mission: Spring Coastal Pelagic Species (Anchovy/Sardine) Survey

Geographic Area of Cruise: Pacific Ocean

Date: April 20, 2017

Weather Data from the Bridge:

Lat: 37o 21.1’N         Long: 123o 45.5’W
Air Temperature: 14.7oC (58.46oF)
Ocean Temperature: 13.3oC (56oF)
Wind speed:  17 knots (19.5 mph)
Barometer:   1026.44 mbar
Conditions:  Mostly sunny with wind and moderately choppy seas

Scientific and Technology Log:

4.18 UAS1
The UAS launched from the Reuben Lasker

Over the past few days, a new technology was brought to the Coastal Pelagic Species Survey: the Unmanned Aircraft Systems (UAS).  For NOAA, the drones are a new way to obtain unique views of wildlife and beautiful landscapes.  UAS also offers an innovative method for scientific researchers to obtain important information about marine mammals.  This data will provide data that can further support the conservation of these protected species.

 

According to NOAA Unmanned Aircraft Systems Program website (uas.noaa.gov):

“Unmanned Aircraft Systems (UAS) can revolutionize NOAA’s ability to monitor and understand the global environment. There is a key information gap today between instruments on Earth’s surface and on satellites – UAS can bridge that gap. Operated by remote pilots and ranging in wingspan from less than six feet to more than 115 feet, UAS can also collect data from dangerous or remote areas, such as the poles, oceans, wildlands, volcanic islands, and wildfires. Better data and observations improve understanding and forecasts, save lives, property, and resources, advancing NOAA’s mission goals.”

4.17 UAS14
The drone being launched from a small boat in rainy weather.

On the Reuben Lasker, they are testing to see how the drones can be used to support the Coastal Pelagic Species Survey.  On board for this leg is Jake Barbaro, a NOAA UAS pilot.  Jake’s background is in fisheries biology (focusing on plankton) and he is now a member of the NOAA Corps.  Normally, the UAS is used to watch dolphins, whales, and other marine mammals, but it may provide a way to gain information about coastal pelagic species.  It should allow the NOAA research to collect data closer to the shoreline.

I had the opportunity to watch a couple missions using the UAS drone.  To fly, the conditions have to be just right, which can be challenging during spring in the Pacific.  We had several days where the wind was too high or there was too much fog to allow the drone to take off.

4.18 UAS Landing1
The UAS being launched directly from the ship.

The first test was taking a small boat about 1 mile from the Reuben Lasker and launching the drone into the air.  They were able to complete one flight, but the rain prevented a second one.  They have a limited battery life so they cannot waste time.  The second mission was on a much nicer day and they launched the drone from the forward deck.  These two missions went off very well.  The drone lifted to about 400 feet above the ship, taking pictures and they came to land smoothly back on the deck.
Yesterday, they were able to take the drone out on a small boat and complete two flights with the drone.  One was right above the Reuben Lasker and the other was closer to the shore.  If conditions are right, they would like to do one more mission.  It was very impressive.  It will be interesting to see how they will use this technology to support the Coastal Pelagic Species Survey.

OLYMPUS DIGITAL CAMERA
The Reuben Lasker from about 400 feet in the air.

Personal Log:

It is about time.  I have been seeing pyrosomes in my sleep, but tonight we did not see many pyrosomes.  I had a feeling it was going to be a good night.  The sunset was beautiful and I saw the best star display while I was on mammal watch.  Thirty minutes before every trawl, a couple of the science team goes up to the bridge to watch for marine mammals.  I have not seen any (partly because it is so dark).  They keep the bridge dark, illuminating things with only red light, so that they can have the best visibility into the dark ocean.  The night was dark, so you could see so many stars….just beautiful.  In our first trawl, most of our catch were market squid.  In our second trawl near the Farallon Islands, we caught 5 jacksmelt and market squid.  It was great to see something more than pyrosomes.

DSC00173
Jacksmelt

I have enjoyed getting to know the science team and other volunteers.  It is interesting to hear their stories and how they started working at NOAA.  Some people work 6 pm to 6 am, some work 12 pm to 12 am, and some work 12 am to 12 pm.  I have had the opportunity to get to know all of them and each of them have a unique story about how and why they are here.  They have all be very friendly and welcoming to me.  I have discovered that there are so many different careers out there and so many different pathways to get to those careers.  It is clear to me that these individuals love their job and the ocean.  They may go “to sea” a couple times a year, but the rest of their time is in the lab in San Diego where they sort and classify the collections or work with the data.  Some of them have quite a lot of experience at sea.  I am glad that they have allowed me to tag along.

Did you know?

The Farallon Islands are a breeding ground for Great White Sharks because of the large elephant seal population. The male sharks return to the islands every year, but the larger females visit every other year.  Unfortunately (or fortunately) we did not see any Great White Sharks since they breed in the fall.  Although, I did make the comment that we may need a bigger boat.  I am sure they haven’t heard that joke before.

DSC00186
The Farallon Islands

Mary Cook: Final Day, March 30, 2016

NOAA Teacher at Sea
Mary Cook
Onboard R/V Norseman II
March 18-30, 2016

Mission: Deepwater Ecosystems of Glacier Bay National Park
Geographical Area of Cruise: Glacier Bay, Alaska
Date: Wednesday, March 30, 2016
Time: 8:33 am

Data from the Bridge
Temperature:
40.6°F
Pressure: 1031 millibars
Location: N 58°38.406’, W 136°07.990’

Science and Sea Stories Log

When I heard that this Deep Sea Exploration voyage was going to have a remotely operated vehicle (ROV) working in addition to scuba divers, I was so excited! To be able to watch the operations and meet the people who do the work has been a particular fascination for me on this voyage. I’ve always loved the exploration of the ocean using vessels that can go where humans have limitations.

Kraken2 for the 3-30 blog
The ROV Kraken 2 is owned and operated by the University of Connecticut (UConn)
Crew deploys ROV
Crew deploys the ROV

The big yellow Kraken 2 sits on the stern of the R/V Norseman II. It is a modified ROV that has been customized for special tasks in science research. Kraken 2 is owned and operated by the University of Connecticut. Kraken 2 is usually contracted to do science research for the U.S. government or University clients, but has also done a few jobs of surveying and archaeological work on shipwrecks. Kevin, Matt, Eric, Mike, and Jeff are the members of the ROV team for this voyage. These cool guys have an eclectic background of geography, marine ecology, and engineering coupled with a love of electronics and the computer side of things.

 

The main parts of the 2,400 lb. Kraken 2 are:

-The big yellow top made of syntactic foam that provides 900 lbs. of buoyancy, which helps maintain neutral buoyancy in water.

-Kraken 2 is tethered to the ship by the green umbilical, which provides power and communications between ship and ROV.

-Kraken 2 carries a number of cameras and lights. Big high intensity lights that provide warm light deep underwater.

-Kraken 2 uses a number of High Definition video and digital still cameras – similar to a camera you might have at home. The video camera has been deconstructed and put into a canister that can withstand high water pressure. These are positioned to get various angles and provide different views around the ROV.

-When the visibility is not good the operators rely on sonar. This allows them to “see with sound” what is in front of Kraken 2 up to 100 meters and helps them make maneuvering decisions.

-An altimeter, which measures height off the bottom and a pressure sensor that determines depth.

-The USBL (ultra short baseline) tracking system has a transducer that emits sound pulses and transponder that receives and sends a pulse back. It can track the vehicle in relation to the ship. All these sound devices are important in marine navigation for obstacle avoidance.

Sample Quivers on ROV
Quivers to hold coral samples

-The manipulator arm is sometimes called the claw. It is very important for collecting samples such as pieces of Primnoa pacifica. An acrylic vacuum tube is also attached onto the arm for “sucking” up moving or delicate samples such as fish and jellyfish. The manipulator arm is used to put samples into quivers then drops a heavy rubber stopper on top to seal it until it is brought to the surface for scientific processing.

 

 

 

There are three people working to “drive” Kraken 2 during deployment. The winch driver gently lifts Kraken 2 from the ship’s stern into the water and also keeps the ROV from crashing into the bottom of the ocean. The pilot is working on the finesse of getting into delicate areas. The navigator operates the claw while maintaining a close dialog with the Bridge. The cameras, radar, and sonar monitors along with the remote controls are all house in a metal shipping container called the Van.

ROV Van Door
Door to the ROV “Van”

Matt and Mike drive the ROV from within the van. The Science Leader in the last picture is Cheryl.

 

Kraken 2 is a unique ROV for the niche it occupies. It is a science class ROV.

Most Science Class ROVs are large about the size of a small truck and require a dedicated ship and personnel. The advantages of Kraken 2 are that it doesn’t go as deep (up to 1 km) therefore, isn’t as expensive. Smaller ships can deploy it. It’s an excellent ROV for continental shelf and slope exploration.

One night Qanuk got to go down with Kraken 2! Mike attached him to the frame. He is probably the first bald eagle to ever attempt such a feat. Qanuk was videoed as he explored the depths and even had his photo taken with Primnoa pacifica in situ.

 

Personal Log

Today concludes my voyage as a NOAA Teacher at Sea. Wow! It has been amazing to be a part of the Deepwater Exploration of Glacier Bay. Getting to work alongside scientists, engineers and ship’s crew that are doing adventuresome and cutting-edge work is a dream come true for me. A special “Thank you” to Dr. Rhian Waller, as Lead Scientist for accepting a Teacher at Sea on board to work with her project. I am so thankful that they all welcomed me into their work space and were willing to teach me how to do some helpful things like processing coral for reproductive studies. These people are teachers in their own right. Their enthusiasm for their work and for learning new things is infectious and I plan to carry that attitude back to my students in Scammon Bay, infusing my classroom with awe and excitement to be brave, conscientious, problem-solving citizens of our magnificent Earth!

Alicia Gillean: Strange Ocean Critters and Science at Sea, July 3, 2012

NOAA Teacher at Sea
Alicia Gillean
Aboard R/V Hugh R. Sharp
June 27 – July 7, 2012

 

Mission:  Sea Scallop Survey
Geographical area of cruise: North Atlantic; Georges Bank
Date: Tuesday, July 3, 2012

Weather Data from the Bridge
Latitude: 41 13.20 N
Longitude: 066 35.21 W
Relative Wind Speed: 2.3 Knots
Air Temperature: 18.72 degrees C
Humidity: 78%
Surface Seawater Temperature: 15 degrees C

Science and Technology Log

The HabCam-ing and dredging continue here in the North Atlantic in calm seas and clear skies!

Alicia Star Oddi
Alicia installing sensor on dredge

I learned a new part of the data collection process with the dredge.  Each time the dredge goes out, a sensor that tracks the pitch and roll (side to side and up and down movement) of the dredge on the ocean floor needs to be installed on the dredge.  When the trawl is complete, the sensor is removed and the data is uploaded to the computer.  It is automatically plotted on a line graph that visually tells the story of the dredge’s movement on the ocean floor.  This data is eventually combined with all the other data gathered at each dredge station.  Installing and removing the sensor has been my job for the last couple of shifts.  To do this, I have to climb up on the sorting table when the dredge is first brought to the surface, remove a metal pin and plastic holder that keeps the sensor in place, remove the old sensor and add a new sensor, then reinstall the holder and pin.  This all happens before they dump the dredge. On a funny note, on my way to the sorting table to add the sensor to the dredge earlier today, I managed to trip on a hose that was on deck and turn it on, watering myself and the lab technician that was on the deck with me and entertaining everyone else watching, I’m sure!  Luckily, we were all wearing our foul weather gear, so no one was soaked!!

It’s interesting to experience all the different pieces that make a successful dredge tow.  Before coming to sea, I guess I just assumed that you lowered a big net to the ocean floor and hoped to catch something.  I had no concept of how methodical and detailed each deployment of the dredge really is, from the locations, to the timing, to the number of people involved, to the detailed data collection.  The process is still being refined, even on this third leg of the sea scallop survey.  One of the scientists on my watch is an engineer who helped design and build the latest version of HabCam.  When a part that holds the sensor in the dredge was not working correctly, he was asked to use his engineering skills to create a better way to hold the sensor, so he made the needed modifications right on the ship.

Sorting
Day shift starting to sort a dredge haul

While sorting the haul from dredging stations, I sometimes run across ocean critters that I’ve never seen before.  I usually set these to the side to snap a picture after we finish sorting and to ask a scientist, usually Karen or Sean, to identify it for me.  It turns out that the strange hairy, oval-shaped creature I keep running across is a type of worm called a sea mouse. In my pictures it looks like a grassy ball of mud, but it’s much more interesting in person, I promise!  I consulted a field guide in the dry lab to learn a little more about it.  Its scientific name is Aphrodita hastate and it is usually about 6 inches by 3 inches and can be green, gold, or brown.  There are 15 gills hidden under the bristly fur.  They like muddy areas and often live in the very deep parts of the ocean, so they are only seen when brought up with a dredge or after being tossed ashore in a storm.  I haven’t seen any of them in the HabCam images, so I’m wondering if they tend to burrow in the mud, if their camouflage skills are really impressive, or if we just haven’t flown over any. The HabCam moves so quickly (remember, it takes 6 pictures per second) that it’s impossible to see everything in enough time to figure out what it is.

 

Sea mouse
Belly of a sea mouse

Another item that keeps coming up in the dredge looks like a clump of pasta shells and cheese and it crumbles easily.  My initial guess was that it is some type of sponge, but I was wrong. It turns out these are moon snail egg cases. Once I’m back ashore, I think I’ll have to find out more about these.

moon snail eggs
Moon snail eggs

We’ve seen lots of sea stars, scallops, sand dollars, crabs, clams, hermit crabs, flounder, several species of fish called hake, and skates (relative of the stingray) in the dredge hauls.  We’ve also seen most of these on the ocean floor with the HabCam.  One of the scientists found a whale vertebrae (part of the backbone) while sorting. It’s at least a foot and a half wide and 8 inches high! Can you imagine the size of the whale when it was alive?  Each haul usually has a monkfish or two in it.  I’ve heard that these fish are pretty tasty, but they sure look mean!  I was warned early on to keep my hands away from their mouths unless I want to get bitten!

 

Alicia with monkfish
Alicia with monkfish

Today is supposed to be a day of mainly flying the HabCam, so I’m hoping to be able to interview a few people on the ship about their jobs for use back at school when I’m not flying the HabCam or co-piloting.

Sea stars
Pretty sea stars that came up in the dredge

Personal Log

I ate my first real meal in the galley tonight and it was pretty tasty!  The steward, Paul, has worked on this ship for eight years and seems to have cooking a sea down to a science.  He has to work and sleep some unusual hours to keep everyone aboard well-fed, but he does it with a smile on his face.  Between the meals, snacks, and limited space to exercise, I imagine that keeping fit while at sea for long periods of time can be a challenge. There is a stationary bike next to the washer and dryer, but other than that you have to be creative with getting your exercise.  I saw one crew member on the deck this morning with a yoga mat doing crunches and using a storage container to do tricep dips.  He said that it’s a challenge, but that you can find ways to keep in shape at sea if it’s a priority for you.

I actually slept better the first few days at sea when I was seasick than I do now that I’m feeling better, thanks to the anti-nausea medication, I expect.  I’ve found that earplugs are essential for catching sleep aboard the ship when I’m not medicated!  There is one washer and dryer aboard the ship and I’ve had a bit of trouble finding a time when it’s not in use, so I decided to do my laundry at 5 am a day or so ago when I was having trouble sleeping. I figured I may as well use insomnia to my advantage and it was so nice to use a towel that is finally completely dry for the first time in a week!

There are 22 people aboard this ship; 12 scientists and 10 crew members.   Four of the scientists and two of the crew are women.  Because of watch schedules, most of the time I see only two other women while I’m awake.  All that to say, the ship is a pretty male-dominated arena, with lots of ESPN, toilet seats left up, and guy humor.  I feel very welcome aboard the ship, but I find that I spend most of my down time doing my own thing, like working on this blog or just enjoying the view, since I’m not much of a movie or sports watcher.  With fabulous views of the Atlantic Ocean and beautiful weather, this doesn’t bother me a bit!  In fact, I find that I see the most animals swimming in the ocean during these down times.  Today it was a huge group of jellyfish swimming next to the ship!

I’m still enjoying my time at sea and am looking forward to learning even more in my last few days.

View from science lab
View from the science lab at night

Sena Norton, July 11, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 11, 2004

Location: At anchor Popof Strait, Shumagin Islands, AK
Latitude: 55 deg 17.30’ N
Longitude: 160 deg 32.14’ W
Visibility: 5 nm

15:00

Direction: 110 deg
Wind Speed: 10 kts
Sea wave height: 0-1 ft
Swell wave height: n/a
Seawater temperature: 10.0 deg C
Sea level pressure: 1018.2 mb
Cloud Cover: 5/8
Weather: Fair to Partly cloudy, spots of fog dissipating. 12.12 deg C

Plan of the Day:
Continue the launch survey with 2 boats. In house data cleaning and processing. Meeting with LIDAR tech stationed in Sandpoint.

Science and Technology Log

I personally spoke with a survey technician, Amanda McKinney on board to gather more information on hydrography and the process behind it. There were two main topics that we discussed: Application and history of marine survey, and the math/science behind the techniques.

Application/History

The technology used for marine survey has been improving by leaps and bounds and we are currently using a collection of old and new technology to gather data. Many nautical charts have not been charted for almost 80 years or more and some areas have never been accurately charted at all. The old process was to drag a lead line behind a transiting ship. This process was full of errors because you could never accurately know your depth, even if the length of the line was known; it was drug and therefore skewed the data. Very often a charted depth from these old processes are found to be dangerous wrong. Another mode of survey is the wire drag, where multiple ships drag a wire through the water column. Once a target has been hit, the depth of that underwater target is calculated, but never truly charted accurately. Side scan sonar came around and improved the survey capability, but it too has its drawbacks. Because the “fish” is towed there are many more mathematical corrections that must be made in order to get a reading that is close to the actual target. It does produce wonderfully clear pictures of what is around the “fish” but those images lack depth of field and the sonar cannot read directly below the transmitter. Quite often with side scan images, divers are needed to dive the sight of a possible target to get accurate readings. Multi-beam sonar can be used in conjunction with side scan to better improve the over all picture of the underwater area. Because multi-beam is able to give more accurate readings and the data is complied in 3-D images, surveyors can have both a clear image and precise depth reading all together. It is hoped in the future that there will be new sonar systems that can scan at 480 beams over .25 x .25 deg per beam with 40+ pings per second. The highest level of technology currently used by NOAA is the Reson 8125 (this system is attached to two boats currently) and it sends out 240 beams over 0.5 x 1 deg / beam at 15 pings per second and runs with 455kHz. Remember, that a short pulse (wavelength) will give better vertical resolution and higher frequencies give shorter pulses or wavelengths.

The math required to figure the depth is not very difficult, however in the case of the ocean, the computers must adjust all readings for depth, salinity, temperature and density, which in a way makes the math more difficult if done by hand.

Depth=Speed+ Time/2

Personal Log

I was able to spend some time with the survey tech’s today and got through some of the PowerPoint presentations that are available here on the intranet to educate myself more on the technology and process. I was pleased to see that I can apply some of the simple ideas to my classroom. When I teach certain science skills I will have real life data sets and examples for the kids to analyze. I also hope to get some of the kids excited in the field of sonar and survey, much needs to be done to improve the accuracy and reliability of these systems and the product they produce.

Sunday equals fishing off the fantail in between shifts. We have a resident pack of gulls that have found it much to their benefit to hang out for the halibut leftovers that get tossed overboard or that slip from bait hooks.

I found a whale bone yesterday on Egg Island and had the boat shop guys saw it in half so that both of us TAS’s could bring something back for the classroom. It is not a large chunk, but authentic to say the least. I also gathered some sea sponge that had washed up and a very unique white rock.

I was very surprised to see the people working on a Sunday. No one should ever question the dedication of the folks on board or say that this is an easy job. One of the engineers has not had a day off in two months or more. The ship is something that has to be tended too by her crew and command 24 hours a day 7 days a week. Self-sufficiency comes with some responsibilities!

Question of the Day

Which is better: side scan or multi-beam sonar?

There is not one that is better than the other so much as they can compliment each other to produce and more detailed and accurate product, namely the nautical charts and other products that use the information gathered via the sonar medium.

Leyf Peirce, July 10, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 10, 2004

Time: 18:00
Latitude: N 55°17.29
Longitude: W 160°32.13
Visibility: 6 nm
Wind direction: 110
Wind speed: 12 knots
Sea wave height: 0 – 1 foot
Swell wave height: —
Sea water temperature: 10.6 °C
Sea level pressure: 1016.3 mb
Air temperature: 13.3 °C
Cloud cover: 3/8

Science and Technology Log

Today was the first day we launched the survey boats. I was assigned to a boat with SS Foye, ENS Welton, and ENS Samuelson. A very interesting and eventful day, the best way to describe it is with a timeline:

08:00 board 5 boat with SS Foye, ENS Welton, and ENS Samuelson; Lt. Slover (the FOO—Fieldwork Operations Officer) came aboard for about 20 minutes to run tests on the Reson 80101 multibeam echo sounding equipment we are using (soon dropped Lt. Slover back at the Rainier); NOTE: Reson 80101 is used primarily for shallower water, for it has better resolution at depths less than 75 meters

08:45 arrived at our first way point near Halfway Rock; took first cast with the CTD (testing for conductivity, temperature and depth—all things that factor into velocity speed profile) and found an average depth of about 65 meters

09:00 started doing lines (mowing the lawn pattern) around Halfway Rock; after about 3 lines, Lt. Slover called us back in because the data he had taken did not process correctly—the new programs aboard the ship were not working as well as they had thought

11:25 board the RAINIER while FOO checked our equipment; turned out we had to switch to 6 boat—including downloading new maps and figuring out a new system

11:45 board launches 6 boats and sets out for new set of lines at deeper water than the morning; this boat uses the ELAC multibeam systems which are better for deeper waters (up to 400 meters)

12:00 arrived at new line destination (lat: N 55/14/54, long: W 160/27/43) and ate lunch before doing our CTD cast

12:30 conducted first CTD cast, but computer messed up, so had to repeat the cast and got a better reading (average depth = 150 meters) began line pattern

** After a few lines of learning the computer program, SS Foye allowed me to drive the boat for almost the rest of the time—my experience on boats made this part so much fun—especially using the computer imaging as a navigational chart**

17:30 arrived back at RAINIER for dinner

I was truly impressed with the amount of different technology aboard these ships: 5 computer screens, 2 key boards, and a lot of different software programs used to immediately process the information we were gathering. This was also a great change from being on the big ship all day!

Personal Log

This was definitely my favorite day on the ship so far! The fog lifted early this morning to reveal beautiful islands, puffin, sea gulls, kelp, and even a whale! I was able to experience what it is like to have to make computer programs do what you want them to do (any researcher knows this isn’t always easy), and I had to do this on a rocking boat (for all of you “land researchers”, I suggest you trying it once!). SS Foye, ENS Welton, and ENS Samuelson were all extremely helpful and very good at explaining the technology and theory behind what we were doing. I was extremely impressed with how everyone handled various problematic situations. Computers and technology can be very frustrating sometimes, and the crew aboard the boat handled everything optimistically and professionally. SS Foye asked if I ever would consider giving up teaching and join NOAA—after my experience today, I said I would definitely consider it!

Question of the Day:

What is the effect of different densities of water on sound waves?