Kimberly Scantlebury: NOAA and NASA – Partners in Progress, May 1, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1 – May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 1, 2017

Weather Data from the BridgeIMG_2950

It is beautiful here in Houston and Galveston, Texas: sunny, light wind, pleasant-looking clouds, and around 80 F.

Science and Technology Log

People benefit from collaboration and science is brought further, faster and better because of it. This is true of Federal agencies as well. NOAA and the National Aeronautics and Space Administration (NASA) have been scientific partners for decades.

A place where the important work of these Federal agencies intersects is Earth. Good Earth systems research requires a complement of remote-sensing technology, modeling, and ground truthing. This interagency partnership makes clear the need for specialized expertise in different areas, which complement each other. The results are also cost-saving. A classic example is NOAA and NASA’s work with weather, climate, and other environmental satellites. Without these our nation would not know when to evacuate due to hurricanes or tornadoes, plus so much more. There are many ways NOAA and NASA work together to give us a better “eyes in the sky.”

Satellites and other research result in massive amounts of data. This is where sophisticated computer modeling helps. Despite all of our improvements in technology, at some point you need to put people on the ground…or sea or space.   

Today I visited the NASA Johnson Space Center in Houston, Texas (JSC). It is the famed headquarters of U.S. manned space flight. The facility was purposely built like a college campus to foster collaboration and innovation. Just like my upcoming trip aboard NOAA Ship Pisces, people need to go! They need to be there, whether that be space or sea, to figure out the science. No amount of satellites or computer modeling can replace what is gained by the human experience. We have pretty amazing robots now, but nothing beats good old fashioned people power. 

IMG_2922

The Robonaut 2. Still not as good as the real thing.

For my mission, we are looking at the abundance of fish species. There is remote sensing used as well, but we also need to fish, and get out in open water by ship. This is vital for the ecological and economic health of the Gulf of Mexico. The International Space Station (ISS) puts humans in space. There have been many positive effects from this work in our everyday lives such as Velcro, water recycling technology, MRI machines, cell phones, and fire fighting respirators. Working in microgravity is also bringing us one step closer to ending breast cancer.         

You can interpret the title of this blog post a few different ways. Independently and together, NOAA and NASA work to progress science. These effects have built over decades to benefit humanity and our relationship with Earth in numerous ways. The two agencies are also continuing on this journey. It remains a work in progress. Our future depends on it.

Personal Log

Yesterday was an auspicious start to my trip. The museum itself is a treat for all ages as well as the tram tours. There are two tram tours you can take at Johnson Space Center, the red and blue. A trip to JSC is definitely not complete without a tour! I took both and enjoyed the high quality audio commentary from astronauts of many missions that accompany the drive.

First stop was the Space Vehicle Mockup Facility. I wish I was there during the workweek to see it in action. There are mockups of the International Space Station (ISS) for training, a model Russian Soyuz space capsule (which is how our astronauts now get into space since the last shuttle retired in 2011), tests related to the future of manned space flight with NASA’s Orion spacecraft, manned rovers for future asteroid and Mars missions, and even a robotics playing field where high school teams compete.

This slideshow requires JavaScript.

The other tour took me to the White Flight Control Room. Since 1996, this mission control center has been used for shuttle missions, ISS mission control, and is now used for simulations to train mission controllers. It was noted that the room will become one of deep historical significance when it becomes Orion Mission Control.

Both tours end at Rocket Park. It is awe-inspiring to see a Mercury-Redstone spacecraft-booster like the one that propelled New Hampshire’s own Alan Shepard into space. I stood next to a F-1 rocket engine and then it was time to see, in my opinion, the crown jewel of Rocket Park: The Saturn V (Five). Even in person it is difficult to grasp its size.

NASA Johnson Space Center deftly combines the romantic and sometimes tragic history of manned space flight with the hopes and excitement of current and future missions.

Did You Know?

IMG_2896

Halloween happens to be when I start teaching about space.

We landed on the moon in 1969. The average age of NASA engineers in the Apollo program was 27. This means that when they heard President Kennedy say, “We choose to go to the moon” many were still in school!

This is one I think about every time I fly…We landed on the moon before adding wheels on luggage.

Lynn Kurth: The Ocean and Humans are Inextricably Interconnected, July 1, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude:  58˚03.973 N   Longitude:  153˚34.292 W

Date:  July 4, 2016

Weather Data from the Bridge
Sky:  Cloudy
Visibility: 10+ Nautical Miles
Wind Direction: 010
Wind Speed: 10 Knots
Sea Wave Height: 0-1 ft. (no swell)
Sea Water Temperature: 11.1° C (51.9° F)
Dry Temperature: 12° C (53.6° F)
Barometric (Air) Pressure: 1013.3 mb


Science and Technology Log

Throughout my experience as a Teacher at Sea, it has been evident that the ocean and humans are inextricably interconnected.  This was apparent from my very first evening in Homer when I came across an eagle poised next to its colossal nest assembled in the middle of three rusty pier pilings.  An illustration of nature conforming to our presence on the water and what we deem to be acceptable for our environment.

 

eagle

Eagle with nest located in deep water port of Homer, AK

But, humankind must sometimes accept and conform to nature.   The fishermen of Uganik Bay have built their fishing camps above the tidal line and strung out their nets where the fish traditionally run.  Most of the men and women who live here have chosen to do so because this is where the fish are found.  One such gentlemen is Toby Sullivan, a commercial fisherman, who in 1975 headed to Alaska from Connecticut to work on the Alaskan pipeline.  Instead, he found himself fishing vs. working on the pipeline and to this day is still gill-netting salmon to make a living.  Toby’s fishing camp, East Point, located on the south shore of the Uganik Bay, has had a net on the site for the past 80 years.  And, unfortunately, we drifted into that site when a strong current took us by surprise while we were gathering water quality data over the side of the small sonar vessel.  When this happened, Toby and his crew worked swiftly and diligently to secure their fishing gear while NOAA divers were summoned from the Rainier to safely help our vessel leave the area.

 

enhancedtoby

Toby Sullivan and crew work to install an additional line on their fishing set

A few evenings later, Mr. Sullivan and his crew came on board the Rainier as dinner guests and a rich discussion of hydrographic work and fishing gear followed.  He explained in detail how he sets his fishing gear and offered the idea that a radio channel be utilized between NOAA’s small vessels that are working around fishing gear and the local fisherman, in order to facilitate better communication.

 

discuss

Toby Sullivan and XO (executive officer) Jay Lomincky

As I watched the exchange of ideas between Commanding Officer E.J. Van Den Ameele and Mr. Sullivan it appeared that both men recognized that both parties were interested in Uganik Bay because the ocean and humans are inextricably interconnected.  The Rainier’s primary mission in Uganik Bay is to gather the necessary data to create accurate and detailed charts for navigational use by the local fisherman and other mariners.  As a commercial fisherman, Mr. Sullivan’s primary interest is to keep his gear and crew safe while continuing to make a living from the harvest of local fish.

toby

Toby Sullivan shares information about how he sets his fishing gear

Today the Rainier continues on with its mission of hydrographic work at sea using the multibeam sonar which is located on the hull of the Rainier.  The swath that multibeam sonar on the Rainier covers is similar to the swath of the multibeam sonar on the smaller boats; the coverage area depends on the depth of the water.  For example, at our current water depth of 226 meters, the swath of each pass that the multibeam sonar makes an image of  is 915 meters wide.  This evening, upon the completion of the work with the Rainier’s multibeam sonar we will depart the area and be underway for Kodiak, AK.


All Aboard!

Michael Bloom serves as as survey technician aboard the Rainier and kindly took some time with me to discuss his background and work aboard the Rainier.

DSCN0300

Survey Technician Michael Bloom completes the collection of a bottom sample in Uganik Bay

Tell us a little about yourself:

I grew up in a military family, so I was actually born in England and have lived in Florida, Nebraska, Montana, Oregon and Washington.  I went to college at Oregon State University located in Corvallis, OR and majored in earth systems with a focus on marine science.

How did you discover NOAA?:  

Ever since I was a little kid instead of having posters of bands etc… I had posters of maps.  NOAA Corps participated in career fairs at my university.  I stopped at their booth my sophomore year and again my junior and senior year to learn more about their program.  After learning more about NOAA I also focused on the marine aspect of earth science because I knew I wanted to work with them.  Initially I didn’t know about the civilian side of NOAA, so I applied for the NOAA Corps two times and wasn’t accepted into the program, although I was an alternate candidate once.  At some point, when speaking with an officer he told me to apply for a civilian position with NOAA.  So, I applied and was accepted.

I’m happy to be on the civilian side because I get to work on the science side of the operations all of the time and I get to keep my beard!

 

DSCN0393 (2)

Survey Technician Michael Bloom monitors the settings of the Rainier’s multi beam sonar

What are your primary responsibilities when working on the ship?:

I am survey tech and my primary duties include data acquisition and data processing.  We can work to become the Hydrographer in Charge on the surveys after enough time working in the field and, if after the Field Operations Officer observes us, he feels confident that we are ready. Eventually I’d like to work for NOAA as a physical scientist, a job that would have me going out to sea several times a year but one that is primarily land based.

What do you love about your work with NOAA?:

I get paid to travel!  I go to places that people pay thousands of dollars to visit and I actually get paid thousands of dollars to go there.  I enjoy that I can see the real world application of the work that I do.  Scientists are using our data and ultimately we could be saving lives by creating such accurate charts.


Personal Log

NOAA’s website for the Rainier states that the Rainier is one of the most productive and advanced hydrographic ships in the world.  After spending two weeks working on board the Rainier, I couldn’t agree more.  However, I don’t believe that it is only the cutting-edge technology that makes the Rainier one of the best hydrographic ships in the fleet.  But rather a group of outstanding people at the helm of each of the different technical aspects of hydrography.  Hydrographic surveying has many steps before the end product, a chart, is released.  The people I met on board who are part of that process are teaching each other the subtle nuances of Rainier’s hydrographic mission in order to become even better at what they do.  I am grateful for the time that the crew and Officers have graciously given me while I have been on board.  I felt very welcome from the moment a NOAA Corps member picked me up at the airport throughout my stay on the Rainier as I continued to pepper everybody with questions.  Thank you Rainier!  I am confident that when I return to my classroom your efforts to help me better understand your work of hydrographic surveying will pay off.   You have given me the gift of new knowledge that, when shared with my students has the potential to ignite in them the same excitement and passion for science that so many of you possess.

DSCN0398 (2)

Teacher at Sea Kurth on the middle deck of the ship

Julia Harvey: That’s a Mooring: June 29th, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3rd 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 29th, 2016

 

Weather Data from the Bridge

(June 29th, 2016 at 12:00 pm)

Wind Speed: 12 knots

Temperature: 26.3 C

Humidity: 87.5%

Barometric Pressure: 1017.5 mb

 

Science and Technology Log

Approaching Weather

Approaching Weather

When an anchor is dropped, forces in the ocean will cause this massive object to drift as it falls.  Last year, after the anchor of mooring 12 was dropped, an acoustic message was sent to the release mechanism on the anchor to locate it.  This was repeated in three locations so that the location of the anchor could be triangulated much like how an earthquake epicenter is found.  This was repeated this year for mooring 13 so next year, they will know where it is.  From where we dropped the anchor to where it fell, was a horizontal distance of 3oo meters.  The ocean moved the 9300 pound anchor 300 meters.  What a force!

The next morning as the ship was in position, another acoustic message was sent that triggered the release of the glass floats from the anchor. Not surprisingly, the floats took nearly an hour to travel up the nearly 3 miles to the surface.

Float recovery

A small boat went to retrieve the mooring attached to the floats

Once the floats were located at the surface, a small boat was deployed to secure the end of the mooring to the Hi’ialakai. The glass floats were loaded onto the ship.  17 floats that had imploded when they were deployed last year.  Listen to imploding floats recorded by the hydrophone.  Implosion.

Selfie with an imploded float.

Selfie with an imploded float.

Next, came the lengthy retrieval of the line (3000+ meters). A capstan to apply force to the line was used as the research associates and team arranged the line in the shipping boxes. The colmega and nylon retrieval lasted about 3 hours.

Bringing up the colmega line.

Bringing up the colmega line and packing it for shipping.

Once the wire portion of the mooring was reached, sensors were removed as they rose and stored. Finally the mooring was released, leaving the buoy with about 40 meters of line with sensors attached and hanging below.

Navigating to buoy.

Navigating to buoy.

The NOAA officer on the bridge maneuvered the ship close enough to the buoy so that it could be secured to the ship and eventually lifted by the crane and placed on deck. This was followed by the retrieval of the last sensors.

Buoy onboard

Bringing the buoy on board.

 

 

 

 

 

 

 

 

 

The following day required cleaning sensors to remove biofoul.  And the buoy was dismantled for shipment back to Woods Hole Oceanographic Institution.

Kate scrubbing sensors to remove biofoul.

Kate scrubbing sensors to remove biofoul.

 

Dismantling the buoy.

Dismantling the buoy.

 

 

 

 

 

 

 

 

 

 

Mooring removal was accomplished in seas with 5-6 feet swells at times. From my vantage point, everything seemed to go well in the recovery process. This is not always the case. Imagine what would happen, if the buoy separated from the rest of the mooring before releasing the floats and the mooring is laying on the sea floor? What would happen if the float release was not triggered and you have a mooring attached to the 8000+ pound anchor?  There are plans for when these events occur.  In both cases, a cable with a hook (or many hooks) is snaked down to try and grab the mooring line and bring it to the surface.

Now that the mooring has been recovered, the science team continues to collect data from the CTD (conductivity/temperature/depth) casts.  By the end of tomorrow, the CTDs would have collected data for approximately 25 hours.  The data from the CTDs will enable the alignment of the two moorings.

CTD

CTD

The WHOTS (Woods Hole Oceanographic Institution Hawaii Ocean Time Series Site) mooring project is led by is led by two scientists from Woods Hole Oceanographic Institution;  Al Plueddeman and Robert Weller.  Both scientists have been involved with the project since 2004.  Plueddeman led this year’s operations and next year it will be Weller.  Plueddeman recorded detailed notes of the operation that helped me fill in some blanks in my notes.  He answered my questions.  I am thankful to have been included in this project and am grateful for this experience and excited to share with my students back in Eugene, Oregon.

Al Plueddeman

Al Plueddeman, Senior Scientist

The long term observations (air-sea fluxes) collected by the moorings at Station Aloha will be used to better understand climate variability.  WHOTS is funded by NOAA and NSF and is a joint venture with University of Hawaii.  I will definitely be including real time and archived data from WHOTS in Environmental Science.

Personal Log

I have really enjoyed having the opportunity to talk with the crew of the Hi’ialakai.  There were many pathways taken to get to this point of being aboard this ship.  I learned about schools and programs that I had never even heard about.  My students will learn from this adventure of mine, that there are programs that can lead them to successful oceanic careers.

Brian Kibler

Brian Kibler

I sailed with Brian Kibler in 2013 aboard the Oscar Dyson up in the Gulf of Alaska.  He completed a two year program at Seattle Maritime Academy where he became credentialed to be an Able Bodied Seaman.  After a year as an intern aboard the Oscar Dyson, he was hired.  A few years ago he transferred to the Hi’ialakai and has now been with NOAA for 5 years.  On board, he is responsible for rigging, watch and other tasks that arise.  Brian was one of the stars of the video I made called Sharks on Deck. Watch it here.

Tyler Matta

Tyler Matta, 3rd Engineer

Tyler Matta has been sailing with NOAA for nearly a year.  He sought a hands-on engineering program and enrolled at Cal Maritime (Forbes ranked the school high due to the 95% job placement) and earned a degree in maritime engineering and was licensed as an engineer.  After sailing to the South Pacific on a 500 ft ship, he was hooked.  He was hired by NOAA at a job fair as a 3rd engineer and soon will have enough sea days to move to 2nd engineer.

 

 

There are 6 NOAA Corps members on  the Hi’ialakai.  They all went through an approximately 5 month training program at the Coast Guard Academy in New London, CT.  To apply, a candidate should have a 4 year degree in a NOAA related field such as science, math or engineering.  Our commanding officer, Liz Kretovic, attended Massachusetts Maritime Academy and majored in marine safety and environmental protection.  Other officers graduated with degrees in marine science, marine biology, and environmental studies.

Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.

Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.

ENS Chappelle

NOAA Ensign Nicki Chappelle

Ensign (ENS) Nikki Chappelle is new to the NOAA Corps.  In fact, this is her first cruise aboard the Hi’ialakai and second with NOAA.  She is shadowing ENS Bryan Stephan for on the job training.  She spent most of her schooling just south of where I teach.  I am hoping that when she visits her family in Cottage Grove, Oregon that she might make a stop at my school to talk to my students.  She graduated from Oregon State University with degrees in zoology and communication.  In the past she was a wildfire fighter, a circus worker (caring for the elephants) and a diver at Sea World.

All of the officers have 2 four hour shifts a day on the bridge.  For example ENS Chappelle’s shifts are 8am to 12pm and 8pm to 12am.  The responsibilities of the officers include navigating the ship, recording meteorological information, overseeing safety.  Officers have other tasks to complete when not on the bridge such as correcting navigational maps or safety and damage control. ENS Stephan manages the store on board as a collateral assignment.  After officers finish training they are sent to sea for 2-3 years (usually 2) and then rotate to land for 3 years and then back to sea.  NOAA Officers see the world while at sea as they support ocean and atmospheric science research.

Frank Russo

ET Frank Russo

Electronics technician (ET) seem to be in short supply with NOAA.  There are lots of job opportunities.  According to Larry Wooten (from Newport’s Marine Operation Center of the Pacific), NOAA has hired 7 ETs since November.  Frank Russo III is sailing with NOAA for the first time as an ET.  But this is definitely not his first time at sea.  He spent 24 years in the navy, 10 at Military Sealift Command supporting naval assets and marines around the world.  His responsibilities on the Hi’ialakai include maintaining navigational equipment on the bridge, making sure the radio, radar and NAVTEX (for weather alerts) are functioning properly and maintaining the server so that the scientists have computer access.

I have met so many interesting people on the Hi’ialakai.  I appreciate everyone who took the time to chat with me about their careers or anything else.  I wish I had more time so that I could get to know more of the Hi’ialakai crew.  Thanks.  Special thanks to our XO Amanda Goeller and Senior Scientist Al Plueddeman for reviewing my blog posts.  And for letting me tag along.

 

Did You Know?

The buoy at the top of the mooring becomes a popular hang out for organisms in the area. As we approached mooring 12, there were several red-footed boobies standing their ground. There were also plenty of barnacles and other organisms that are planktonic in some stage of their lives. Fishing line is strung across the center of the buoy to discourage visitors but some still use the buoy as a rest stop. The accumulation of organism that can lead to corrosion and malfunction of the equipment is biofoul.

Boobies to be Evicted

Red-Footed Boobies

Biofoul prevention

Wires and line to prevent biofoul.

 One More Thing

South Eugene biology teacher Christina Drumm (who’s husband was  Ensign Chappelle’s high school math teacher) wanted to see pictures of the food.  So here it is.  Love and Happiness.

Lobster for Dinner

Lobster for Dinner

 

Last supper

Last supper on the Hi’ialakai

 

 

 

 

 

 

 

 

 

Colors of the sea

I love the colors of the sea.

Sea colors

Sea colors

Lynn Kurth: Time and Tide Wait For No Man, June 28, 2016

 

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude:  57˚57.486 N   Longitude:  152˚55.539 W  (Whale Pass)

Date:  June 28, 2016

Weather Data from the Bridge
Sky:  Overcast
Visibility: 15 Nautical Miles
Wind Direction: 164
Wind Speed: 8 Knots
Sea Wave Height: 1 ft. (no swell)
Sea Water Temperature: 8.3° C (46.94° F)
Dry Temperature: 12.° C (53.6° F)
Barometric (Air) Pressure: 1019.6 mb


Science and Technology Log

The ocean supports many ecosystems which contain a diversity of living things ranging in size from tiny microbes to whales as long as 95 feet.  Despite the fact that I am working on a hydrographic ship, when out on a skiff or while in port, I have had the opportunity to view some of these ecosystems and a number of the species found in them.

While the Rainier was in port in Homer, I spent some time at the Kachemak Bay National Estuarine Research Reserve which, like other estuaries, is among the most productive ecosystems in the world.  An estuary, with accompanying wetlands, is where the freshwater from a river meets and mixes with the salt water of the sea.  However, there are some estuaries that are made entirely from freshwater.  These estuaries are special places along the Great Lakes where freshwater from a river, with very different chemical and physical characteristics compared to the water from the lake, mixes with the lake water.

Because estuaries, like the Kachemak Bay Estuary, are extremely fragile ecosystems with so many plants and animals that rely on them, in 1972 Congress created the National Estuarine Research Reserve System which protects more than one million estuarine acres.

ESTRE

Kachemak Bay National Estuarine Research Reserve

All estuaries, including the freshwater estuaries found on the Great Lakes, are affected by the changing tides.  Tides play an important part in the health of an estuary because they mix the water and are therefore are one of several factors that influence the properties (temperature, salinity, turbidity) of the water

Prior to my experience in Alaska, I had never realized what a vital role tides play in the life of living things, in a oceanic region.  Just as tides play an important role in the health and function of estuaries, they play a major role in the plants and animals I have seen and the hydrographic work being completed by the Rainier.  For example, the tides determine when and where the skiffs and multi beam launch boats will be deployed.  Between mean low tide and high tide the water depth can vary by as much as 12 feet and therefore low tide is the perfect time to send the skiffs out in to document the features (rocks, reefs, foul areas) of a specific area.

DSCN0069 (2)

Rock feature in Uganik Bay (actually “the foot” mentioned in previous blog) Notice tidal line, anything below the top of that line would be underwater at high tide!

In addition to being the perfect time to take note of near shore features, low tide also provides the perfect opportunity to see some amazing sea life!  I have seen a variety of species while working aboard the Rainier, including eagles, deer, starfish, dolphins, whales, seals, cormorants, sea gulls, sea otters and puffins.  Unfortunately, it has been difficult to capture quality photos of many of these species, but I have included some of my better photos of marine life in the area and information that the scientists aboard the Rainier have shared with me:

Tufted Puffins:  Tufted Puffins are some of the most common sea birds in Alaska.  They have wings that propel them under water and a large bill which sheds its outer layer in late summer.

puff2

Double Crested Cormorants:  Dark colored birds that dive for and eat fish, crabs, shrimp, aquatic plants, and other marine life.  The birds nest in colonies and can be found in many inland areas in the United States.  The cormorants range extends throughout the Great Lakes and they are frequently considered to be a nuisance because they gorge themselves on fish, possibly decimating local fish populations.

cormor

Cormorant colony with gulls

Pisaster Starfish:  The tidal areas are some of the favorite areas starfish like to inhabit because they have an abundance of clams, which the starfish love to feed on.  To do so, the starfish uses powerful little suction cups to pull open the clam’s shell.

Kurthstar1

Teacher at Sea Kurth with a starfish that was found during a shore lunch break while working on a skiff.

tidestarfish

Starfish found in tidal zone

Glaucous-winged Gull:  The gulls are found along the coasts of Alaska and Washington State.  The average lifespan of Glaucous-winged Gull is approximately 15 years.

birdstheword285

Glaucous-winged Gull watching the multi beam sonar boat

The hydrographic work in Uganik Bay continues even though there are moments to view the wildlife in the area.  I was part of the crew on board a boat equipped with multi beam sonar which returned to scan the “foot feature” meticulously mapped by the skiff.  During this process, the multi beam sonar is driven back and forth around the feature as close as the boat can safely get.  The multi beam does extend out to the sides of the boat which enables the sonar to produce an image to the left and right of the boat.  The sonar beam can reach out four times the depth of the water that the boat is working in.  For example, if we are working in six feet of water the multi beam will reach out a total of 24 feet across. Think of the sonar as if it was a beam coming from a flashlight, if you shine the light on the floor and hold the flashlight close to the floor, the beam will be small and intense.  On the other hand, if you hold the flashlight further from the floor the beam of light will cover a wider area but will not be as intense. The sonar’s coverage is similar, part of why working close to the shore is long and tedious work: in shallow water the multi beam does not cover a very wide area.

foot3

“The foot” feature (as discussed in previous blog) being scanned by multi beam sonar

 

thefoot

Image of “the foot” after processing in lab. The rocks are the black areas that were not scanned by the multi beam sonar.


All Aboard!

I met Angelica on one of the first days aboard the Rainier and later spent some time with her, asking questions as she worked .  Angelica is very friendly, cheerful and a pleasure to talk with!  She graciously sat down with me for an interview when we were off shore of Kodiak, AK before returning to Uganik Bay.

IMG_1835

Assistant Survey Technician Angelica Patyten works on processing data from the multi beam sonar

Tell us a little about yourself:

I’m Angelica Patyten originally from Sacramento, CA and happy to be a part of NOAA’s scientific mission!  I have always been very interested in marine science, especially marine biology, oceanography and somewhat interested in fisheries.  Ever since I was a little kid I’ve always been interested in whales and dolphins.  My cousin said that when I was really young I was always drawing whales on paper and I’d always be going to the library to check out books on marine life.  I remember one of the defining moments was when I was in grade school, we took a trip to see the dolphins and orca whales and I thought they were amazing creatures.

As far as hobbies, I love anything that has to do with water sports, like diving and kayaking.  I also want to learn how to surf or try paddle boarding as well.

How did you discover NOAA?:

I just kind of “stumbled upon” NOAA right after I had graduated from college and knew that I wanted to work in marine science.  I was googling different agencies and saw that NOAA allows you to volunteer on some of their vessels.  So, I ended up volunteering for two weeks aboard the NOAA ship Rueben Lasker and absolutely loved it.  When I returned home, I applied online for employment with NOAA and it was about six months before I heard from back from them.  It was at that point that they asked me if I wanted to work for them on one of their research vessels.  It really was all good timing!

What are your primary responsibilities when working on the ship? 

My responsibilities right now include the processing of the data that comes in from the multi beam sonar.  I basically take the data and use a computer program to apply different settings to produce the best image that I can with the sonar data that I’m given.

What do you love about your work with NOAA?

I love the scenery here in Alaska and the people I work with are awesome!  We become like a family because we spend a lot of time together.  Honestly, working aboard the Rainier is a perfect fit for me because I love to travel, the scenery is amazing and the people I work with are great!


Personal Log:

Geoffrey Chaucer wrote, “time and tide wait for no man.”  Chaucer’s words are so fitting for my time aboard the Rainier which is going so quickly and continues to revolve around the tides.

Lynn Kurth: Goodbye “Toes”, June 26, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude: N 57˚23  Longitude: W 153˚20  (North Coast of Kodiak Island)

Date:  June 26, 2016

Weather Data from the Bridge:
Sky: Fog
Visibility: 1 Nautical Mile
Wind Direction: 085
Wind Speed: 12 Knots
Sea Wave Height: –
Sea Water Temperature: 12.2° C (54° F)
Dry Temperature: 12.6° C (54.7° F)
Barometric (Air) Pressure: 1008.6 mb


Science and Technology Log

As I was looking up at the stars over the ship one evening, I was thinking about the study of space and the 1980’s Teacher in Space program.  It’s difficult to believe that as of this past January it has been thirty years since the Space Shuttle Challenger disaster, which took the life of educator Christa McAuliffe and six other astronauts.  Christa had been selected to become the first teacher in space, which offers such opportunity to learn and grow.  I admire Christa McAuliffe because of this and the fact that she recognized that the study of space offers the opportunity for discovery, innovation and investigation.

kurthblog2

Kurth at Sea (Uganik Bay, Alaska)

I love being a Teacher at Sea because the ocean is similar to space in that it is largely unexplored and offers the chance to discover, innovate and investigate.   In fact, less than 5% of earth’s ocean has been explored even though new technologies have expanded our ability to explore.  Scientists like those I am working with on the Rainier use a variety of this new technology such as satellites, complex computer programs, and multi beam sonar to explore and carry out their hydrographic work.  Over the past week, I have been fortunate to work with these scientists in Uganik Bay and gain a better understanding of how they use these technologies in their work.

DSCN0035 (2)

Out on the skiff with Chief Jim Jacobson and crew

Before the surveying work using the multi beam sonar system can begin, a small crew is sent off the Rainier in a skiff, a shallow flat-bottomed open boat, to complete near shore work.  During this work, the crew on the skiff meticulously examines the features of the coastline while comparing what they see to any available charts and other sources of information about the area.  The depth of Uganik Bay was last surveyed and charted in 1908 but the area does have some additional charting of shoreline features documented throughout the years via aerial photography and information shared by local mariners.  The skiff used for the near shore work is equipped with a GPS (global positioning system) unit and a computer program which continually maps where it travels.  The skiff moves slowly along the shoreline while circling rocks and other features (reefs, islands, kelp beds, fishing gear) in order to accurately determine their size and location.  The scientists record all of their findings on a sheet illustrating the area they are working in and enter the revisions into a computer program when they return to the Rainier.   These revisions frequently include adding features not previously documented, modifying information on existing features or suggesting possible features to be eliminated when they are not found and verified.

DSCN0112

Chief Jim Jacobson enters updated information from near shore work documented while on the skiff.

For example, one of the days while I was working with a crew on a skiff, part of our work involved verifying whether or not a series of rocks existed where they had been previously charted.  Oddly enough, when looking at the chart the formation of rocks looked like a giant left footprint.  This particular feature on the chart, was flagged for us to investigate and verify because each of the rocks that made up “the little toes” seemed to be too equally spaced to be natural features.  When we examined the area we found that there was only one rock, “the big toe”, at the top of the formation vs. a total of five.  The suggested updates to this feature were supported with the documentation of photographs and measurements.  In other words, the scientists suggested that the final revisions completed by NOAA staff in Seattle would include the “amputation” of the four “little toes” from the charts.

footblog1

Sheet used on skiff to document suggested revisions. Notice the “foot” feature?

 


All Aboard!

I have really enjoyed chatting with the people on board the Rainier because they have interesting stories to share and are happy to share them. Erin Earley, member of the engine utility crew, was one of those people who graciously gave me some of her time for an interview.

DSCN0198

Erin Earley (right) discusses ship operations with Ensign Bethany McAcy (left)

Tell us a little about yourself:

I’m Erin Earley from Sacramento, California and was a social worker prior to working for NOAA (National Oceanic Atmospheric Administration).  I enjoy water color painting, creating multi-medium sculptures, and anything to do with designing gardens.  And I love dogs, Shelties in particular.

How did you discover NOAA and what do you love the most about your job with NOAA?:

As a social worker I had a couple of young adults in the child protection system who wanted to find a different career.  When looking at career options for them I came across a maritime program for youth in Sacramento that seemed to meet their needs.  So, I went to a parent night to learn more about the program and when I heard about the rate of pay and opportunity to travel I asked if they were considering an option for adults to join the program. They said that they were and I registered for the program and began with the AB (able bodied seaman) program for deck work but after watching the Deadliest Catch I decided that wasn’t for me.  So, I decided to complete the engineering program to be qualified for engine room work.  The course work included survival work, emergency ship repair work and fire fighting skills.

I love my job with NOAA because for the most part I’m working with a small group of people, we all know our duties, and we all help each other out.  I enjoy seeing jobs get completed and things getting fixed.  And, the most important reason I love my job is that I don’t have to drive to work and dress up.  I come from Sacramento, and here I don’t have to wait for traffic coming across town and wait at Starbucks for an hour.  On a ship you become a minimalist, you learn what is important and what is not.   I love meeting new people, trying new foods and seeing new things!

DSCN0194

Erin Earley takes a sounding of a fuel tank

What are your primary responsibilities when working on the ship?  

My primary responsibilities at sea include monitoring the oil levels of the equipment, making sure that everything is running properly, reporting to the engineer anything that might be a problem, making sure the bow thruster has proper fluids, and making sure there’s no excess water in any of the places.  We’re floating on a huge ocean and we want to make sure none of it’s coming in!

What kind of background and/or education do you need to have this job?

It would help to go to a maritime school and a lot of major coastal cities have these schools that offer these programs.  If you want a four year college education you could go to a maritime academy (San Francisco, New York and Baltimore ) to get a degree in mechanical engineering and then you could work on a ship or on the shore side at a port.  If you don’t want to go to a four year college you can still work in engineering but you would have to take certification courses and work your way up.  I think for a young person the adventure of working for NOAA is fun but you should always have a plan as far as where you might want to go.  Keep your options open!


Did You Know?

DSCN0185 (2)

The Rainier, Uganik Bay

The Rainier:

  • has 26 fuel tanks
  • uses 500 gallons of fuel a day while at anchor
  • uses 100 gallons of fuel each hour while underway (2400 gallons/day)
  • goes through approximately 50 lbs of beef and 30 lbs of chicken each week
  • uses 8 different kinds of milk (lactose free, soy, almond, cashew, 1%, 2%, whole, and skim)

 

 

Lynn Kurth: The Earth has One Big Ocean, June 22, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude: N 57˚50 Longitude: W 153˚20  (North Coast of Kodiak Island)

Date:  June 23, 2016

Weather Data from the Bridge:
Sky: Clear
Visibility: 10 Nautical Miles
Wind Direction: 268
Wind Speed: 14 Knots
Sea Wave Height: 2-3 ft. on average
Sea Water Temperature: 12.2° C (54° F)
Dry Temperature: 16° C (60.8° F)
Barometric (Air) Pressure: 1023 mb


Science and Technology Log

I’m continually searching for ways to connect what I am learning to what is relevant to my students back home in the Midwest.  So, as we left Homer, AK for our survey mission in Kodiak Island’s Uganik Bay, I was already thinking of how I could relate our upcoming survey work to my students’ academic needs and personal interests.  As soon as the Rainier moved away from Homer and more of the ocean came into view, I stood in awe of how much of our planet is covered with water.  It’s fascinating to think of our world as having one big ocean with many basins, such as the North Pacific, South Pacific, North Atlantic, South Atlantic, Indian, Southern and Arctic.  The study of ocean and its basins is one of the most relevant topics that I can teach when considering the following:

  • the ocean covers approximately 70% of our planet’s surface
  • the ocean is connected to all of our major watersheds
  • the ocean plays a significant part in our planet’s water cycle
  • the ocean has a large impact on our weather and climate
  • the majority of my students have not had any firsthand experience with the ocean

 

IMG_1675

Earth’s One Big Ocean as seen from outside of Homer, AK

 

Each of the ocean basins is composed of the sea floor and all of its geological features which vary in size and shape.  The Rainier will be mapping the features of the sea floor of the Uganik Bay in order to produce detailed charts for use by mariners.  The last survey of Uganik Bay was completed in 1908 when surveyors simply deployed a lead weight on a string over the edge of a boat in order to measure the depth of the water.  However, one of the problems with the charts made using the lead line method, is that the lead line was only deployed approximately every 100 meters or more which left large gaps in the data.  Although not in the Uganik Bay, in the 1930s NOAA began using single beam sonar to measure the distance from a ship’s hull to the sea floor which made surveying faster but still left large gaps in the data. Fast forward from approximately 100 years ago when lead lines were being used for surveying to today and you will find the scientists on the Rainier using something called a multibeam sonar system.  A multibeam sonar system sends out sound waves in a fan shape from the bottom of the ship’s hull.  The amount of time it takes for the sound waves to bounce off the seabed and return to a receiver is used to determine water depth.  The multibeam sonar will allow our team on the Rainier to map 100% of the ocean’s floor in the survey area that we have been assigned.

nNTC_Hydro

Evolution of Survey Techniques (Illustration Credit: NOAA)

 

 

DSCN0006

NOAA Ship Rainier June 22, 2016 in Uganik Bay off of Kodiak Island


 All Aboard!

IMG_1814

NOAA Corps Junior Officer Shelley Devereaux

The folks I am working with are some of the most knowledgeable and fascinating people that I have met so far on this voyage and Shelley Devereaux from Virginia is one of those people.  Shelley serves as a junior officer in the NOAA  (National Oceanic and Atmospheric Administration) Corps and has been working aboard the Rainier for the past year.  The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States and trains officers to operate ships, fly aircraft, help with research, conduct dive operations, and serve in other staff positions throughout NOAA.

Here is what Shelley shared with me when I interviewed her one afternoon.

Tell us a little about yourself:  I’m originally from the rural mountains of Appalachia and moved to Washington DC after college.  I lived in DC for about seven years before I joined the NOAA Corps and while in DC I really enjoyed cycling, hiking, cooking, baking and beer brewing.

How did you discover NOAA Corps and what do you love most about your job in the NOAA Corps?

I went to Washington DC after I received my undergraduate degree in math and worked a lot of different jobs in a lot of different fields.  In time, I decided to change careers and went to graduate school for GIS (Geographic Information Systems) because I like the data management side of the degree and the versatility that the degree could offer me.  I was working as a GIS analyst when my Uncle met an officer in the NOAA Corps who talked with my Uncle about the NOAA Corps.  After that, my Uncle told me about NOAA Corps and the more I found out about NOAA Corps the more I liked it.  Especially the hydro side!  In the NOAA Corps each of your assignments really develops on your skill base and you get to be involved in a very hands on way.  Just this morning I was out on a skiff literally looking to determine what level a rock was in the water.  And, later in my career I can serve an operations officer.  So I loved the fact that I could join the NOAA Corps, be out on ship collecting data while getting my hands dirty (or at least wet!), and then progress on to other interesting things.  I love getting to be part of all the aspects of ship life and being a surveyor.   It’s a wonderful feeling knowing that what we do here has a tangible effect on the community and the public because we are making the water safer for the people who use it.

DSCN0011

NOAA Corps Junior Officer Shelley Devereaux manages her sheets during near shore work in Uganik Bay

What are your primary responsibilities when working on the ship?  

I am an ensign junior officer on a survey ship.  Survey ships operate differently than other ships in the NOAA fleet with half of my responsibilities falling on the junior officer side of ship operations which includes driving the ship when we are underway, working towards my officer of the deck certification, working as a medical officer, damage control officer and helping with emergency drills.  The other half of what I get to do is the survey side.  Right now I am in charge of a small section called a sheets and I am in charge of processing the data from the sheets in a descriptive report about the area surveyed.  So, about half science and half ship operations is what I do and that’s a really good mix for me.  As a junior officer we are very fortunate that we have the opportunity to and are expected to learn the entire science of hydrography.

IMG_1819

Junior Officer Shelley Devereaux checks the ship’s radar

What kind of education do you need to have this job and what advice do you have for young people interested in a career like yours?

You need a college degree with a lot of credits in science and/or math.  Knowing the science that is happening on the ship is important to help your understanding of the operations on the ship which helps you be a better ship operator. Realize that there are a lot of opportunities in the world that are not always obvious and you need to be aggressive in pursuing them.


Personal Log

You didn’t think I’d leave out the picture of Teacher at Sea in her “gumby suit” did you?  The immersion suit would be worn if we had to abandon ship and wait to be rescued.

IMG_1760

Teacher at Sea (TAS) Kurth Hi Mom!

 Happy Solstice!  Quirky but fun:  For the past six years I have celebrated the solstice by taking a “hand picture” with the folks I am with on the solstice.  I was thrilled to be aboard the Rainier for 2016’s summer solstice and include some of the folks that I’m with on the ship in my biannual solstice picture.

IMG_0989

Winter Solstice 2015 with Sisu (family pet) and my husband James

IMG_1820

All Hands on Deck! Summer Solstice 2016


Did You Know?

Glass floats or Japanese fishing floats are a popular collectors’ item.  The floats were used on Japanese fishing nets and have traveled hundreds and possibly thousands of miles via ocean currents to reach the Alaskan shoreline. The floats come in many colors and sizes and if you’re not lucky enough to find one while beach combing, authentic floats and/or reproductions can be found in gift shops along the Alaskan coast.

floats(2)

Japanese Fishing Floats


 

Jeff Miller: Fishing for Sharks and Fishes, September 6, 2015

NOAA Teacher at Sea
Jeff Miller
Aboard NOAA Ship Oregon II
August 31 – September 14, 2015

Mission: Shark Longline Survey
Geographical Area: Gulf of Mexico
Date: September 6, 2015

Data from the Bridge
Ship Speed: 9.7 knots
Wind Speed: 5.6 knots
Air Temp: 30.9°C
Sea Temp: 31.1°C
Seas: <1 meter
Sea Depth: 52 meters

GPS Coordinates
Lat:  N 28 06.236
Long:  W 095 15.023

Science and Technology Log
Our first couple days of fishing have been a great learning experience for me despite the fact that the fish count has been relatively low (the last three sets we averaged less than 5 fish per 100 hooks).  There are a number of jobs to do at each survey station and I will rotate through each of them during my cruise. These jobs include baiting the hooks, numbering and setting the hooks on the main line, hauling in the hooks, measuring and weighing the sharks/fish, and processing the shark/fish for biological samples.

Numbering the baited hooks

Each gangion (the baited hook and its associate line) is tagged with a number before being attached to the main line.

 

Number clips

A number clip is attached to each gangion (baited hook and its associated line) to catalog each fish that is caught.

After the line is deployed for one hour, we haul in the catch.  As the gangions come in, one of us will collect empty hooks and place them back in the barrel to be ready for the next station.  Other members of the team will process the fish we catch.  The number of fish caught at each station can vary widely.  Our team (the daytime team) had two stations in a row where we caught fewer than five fish while the night team caught 57 fish at a single station.

Collecting empty hooks

Empty hooks are collected, left over bait is removed, and the gangion is placed back in the bucket to be ready for the next station.

So far we have caught a variety of fishes including golden tilefish, red snapper, sharpnose sharks, blacknose sharks, a scalloped hammerhead, black tip sharks, a spinner shark, and smooth dogfish.  The first set of hooks we deployed was at a deep water station (sea depth was approx. 300 meters or 985 feet) and we hooked 11 golden tilefish, including one that weighed 13 kg (28.6 pounds).

Golden tilefish

On our first set of hooks in deep water, we caught a number of golden tilefish including this fish that weighed nearly 30 pounds.

We collect a number of samples from fishes such as red snapper and golden tilefish.  First we collect otoliths, which are hard calcified structures of the inner ear that are located just behind the brain.  Scientists can read the rings of the otolith to determine the approximate age and growth rate of the fish.

Otolith

Otoliths can be read like tree rings to approximate the age and growth rate of bony fishes.  Photo credit: NOAA Marine Fisheries.

The answer to the poll is at the end of this post.

You can try to age fish like NOAA scientists do by using the Age Reading Demonstration created by the NOAA Alaska Fisheries Science Center.  Click here to visit the site.

When sharks are caught, we collect information about their size, gender, and sexual maturity.  You may be wondering, “how can you determine the sex of a shark?”  It ends up that the answer is actually quite simple.  Male sharks have two claspers along the inner margin of the pelvic fins that are used to insert sperm into the cloaca of a female.  Female sharks lack claspers.

Male female shark

Male and female sharks can be distinguished by the presence of claspers on male sharks.

Personal Log
After arriving at our first survey station on Thursday afternoon (Sep. 3), everyone on the ship is in full work mode.  We work around the clock in two groups: one team, which I belong to, works from noon to midnight, and the other team works from midnight to noon.  The crew and science teams work very well together – everyone has a specific job as we set out hooks, haul the catch, and process the fishes.  It’s a well oiled machine and I am grateful to the crew and my fellow science team members for helping me learn and take an active role the process.  I am not here as a passive observer.  I am truly part of the scientific team.

I have also learned a lot about the fishes we are catching.  For example, I have learned how to handle them on deck, how to process them for samples, and how to filet them for dinner.  I never fished much my life, so pretty much everything I am doing is new to me.

I have also adjusted well to life on the ship.  Before the cruise, I was concerned that I may get seasick since I am prone to motion sickness.  However, so far I have felt great even though we have been in relatively choppy seas (averaging about 1-2 meters or 3 to 6 feet) and the ship rocks constantly.  I have been using a scopolamine patch, an anticholinergic drug that decreases nausea and dizziness, and this likely is playing a role. Whether it’s just me or the medicine, I feel good, I’m sleeping well, and I am eating well.  The cooks are great and the food has been outstanding.  All in all, I am having an amazing experience.

Poll answer:  This fish is approximately nine years old (as determined by members of my science team aboard the Oregon II).