Kate Trimlett: What a Difference 3 Days at Sea Makes, July 25, 2013

NOAA Teacher at Sea
Kate Trimlett
Aboard R/V Fulmar
July 23–29, 2013

Mission: ACCESS (Applied California Current Ecosystem Studies) to monitor ecosystem health in the national marine sanctuaries off the central and northern California

Geographical area of cruiseGulf of the Farallones Marine Sanctuary & Cordell Bank National Marine Sanctuary

Date: Friday, July 26, 2013

Weather Data:

  • Wind Speed: 7.8 kts
  • Surface Water Temperature: 58.3 Degrees Fahrenheit
  • Air Temperature: 55.4 Degrees Fahrenheit
  • Relative Humidity: 90%
  • Barometric Pressure: 30.05 in

Science and Technology Log:

ACCESS is a project that contributes to a regional characterization and monitoring of the physical and biological components of the pelagic ecosystem of Cordell Bank, Gulf of the Farallones, and northern Monterey Bay National Marine Sanctuaries.  During our cruise we are collecting data in these sanctuaries. Over the last three days I have observed and helped the ACCESS scientists collect physical, chemical, and biological properties of the water, plankton, marine mammals, and sea birds. Each of these are measured by a different ACCESS team of researchers in a different area of the research vessel, R/V Fulmar.

Plankton and water are collected and measured on the back deck of the ship.  The water is measured in a few ways.  First, a CTD (conductivity, temperature, and depth) and Niskin are lowered into the water between 35- 200 meters depending on the location on the line and depth of the water. The CTD measures the conductivity to calculate salinity, temperature, and relative depth within the water column.  The Niskin collects a water sample at the same location as the CTD.  These water samples are to tested for pH to measure the acidity of the water.  Finally, Dru Devlin and I are collecting a surface water sample for nutrients and a phytoplankton samples for the California Department of Public Health, as part of an early warning program for harmful algal blooms that can impact the shellfish we eat.

This CTD measure conductivity (salinity), temperature, and depth.
This CTD measures conductivity (salinity), temperature, and depth.

There are four different plankton collections.  The first collection is with a small hoop net (0.5 meter diameter) used to sample very small plankton, from where foraminifera will be separated later in the lab.  Foraminifera shell morphology and the oxygen isotopes of the shell are examined to investigate past and present climates and impacts of acidity on shell formation.  Next, a larger hoop net (1 meter diameter) collects samples of plankton in the upper 50 m of the water, which will be used to investigate the abundance, species, reproductive patterns, and locations.  When the research vessel was close to the end of the line and the continental shelf, the Tucker Trawl was released to collect three samples of plankton near the bottom.  When we processed these samples the majority of the organisms were krill.  Finally, Dru Devlin and I collected plankton samples 30 feet below the surface to send to the California Department of Health Services because they are interested in the presence and abundance of species that produce toxins.

Tucker trawl collects krill at depth.
Tucker trawl collects krill at depth.

On the top deck, the ACCESS observers watch for marine mammals and sea birds and call them out to the data recorder  to log the sightings into a waterproof computer.  This data will be used to relate the spatial patterns of bird and mammal distribution with oceanographic patterns and to understand the seasonal changes in the pelagic ecosystem.

These are the ACCESS observers looking for marine mammals and sea birds.
These are the ACCESS observers looking for marine mammals and sea birds.

Personal Log:

My favorite sighting so far was the leatherback sea turtle.  Seven years ago and last summer I took a group of Berkeley High School students to Costa Rica to participate in a sea turtle conservation project with Ecology Project International.  On these trips we saw a female leatherback laying her eggs and a hatchling making its way to the ocean.  It was great to see the next stage of development when the leatherback popped its head out of the water several hundred miles from their breeding grounds.

Dru Devlin's amazing picture of the Leatherback Sea Turtle.
Dru Devlin’s amazing picture of the Leatherback Sea Turtle.

Did you know?

Humpback Whales have bad breath?  Yesterday we got to smell it first hand when two humpback whales decided to circle our boat and were close enough for us to smell their breath.  It’s like rotting fish and sour milk mixed together.

2 Replies to “Kate Trimlett: What a Difference 3 Days at Sea Makes, July 25, 2013”

  1. Great job Kate!! Sounds like the research crew is already scheming ways to get you back out on the water. Love the blog.

  2. I’d really appreciate adding more information on your observation of the endangered leatherback sea turtle to our Leatherback Watch Program database. We coordinate w recreational, commercial, and govt vessels and try to get any and all sightings recorded. Learn more about the project on Facebook (https://www.facebook.com/pages/Leatherback-Watch-Program/238320636189659?ref=br_tf) or at our website http://www.seaturtles.org/leatherbackwatch

    You can contact me directly at chris@seaturtles.org
    Thanks!

    Chris Pincetich, Ph.D.
    Outreach & Education Manager
    Turtle Island Restoration Network

Leave a Reply

Discover more from NOAA Teacher at Sea Blog

Subscribe now to keep reading and get access to the full archive.

Continue reading