Kirk Beckendorf, July 15, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
July 15, 2004

Weather Data from the Bridge
Time 8:00 AM ET
Latitude- 45 53.18 N
Longitude- 70 36.48 W
Air Temperature 14 degrees C
Air Pressure 1000 Millibars
Wind Direction at surface Northeast
Wind Speed at surface 3 MPH

Daily Log

Yeah!!! The sun is trying to come out, the rains have stopped and the sea has calmed down. No I didn’t get sea sick, but it is hard to sleep when your bed is swaying back and forth and up and down. The winds have shifted and the scientists are hoping that the winds may be blowing some pollution our way. Seems like a strange thing to hope for, but of course they are here to study pollution and the wind has been blowing it away from us.

Why should anybody care if we add microscopic particles to the air?

Yesterday, I discussed one of the techniques used to study the microscopic particles that are in the atmosphere. But so what, why does anyone care about these tiny specks? Air pollution made by automobiles, power plants, factories and ships all contain both gases and particles. To be able to predict the changes resulting from air pollution, we have to learn all we can about the gases and the particles being released.

When the pollution is released into the atmosphere, the gases and particles start traveling with the air. (Just like pouring a quart of motor oil into a river.) Gradually the gases and particles spread out into the surrounding atmosphere. The gases can recombine and may start changing into other chemicals, but that’s another story I will get to soon.

The particles are not all the same. They come in different sizes and are made of a variety of chemicals. There are two main concerns about these little chunks floating along in the sea of gas; health hazards and climate change. If you take a breath, not only do you inhale the gas, but also all of the particles floating in the gas. Some of these particles may have a negative effect on a person’s health.

The main interest in the particles here on the BROWN is the effect they have on climate change. The Earth is of course warmed by the energy (light) coming from the sun. The more energy (light) the Earth gets and keeps, the warmer our temperatures. The less energy (light) the Earth gets and keeps, the cooler the temperatures. Pretty simple stuff? Not at all.

When sunlight shines down through the atmosphere and hits a particle the sunlight can either bounce off of the particle or be absorbed into the particle. If the light bounces back out of the atmosphere the Earth does not keep the light’s energy and there is a cooling effect. When light is absorbed into the particle, the energy (heat) will now be in the atmosphere and so there is a heating effect. Some particles absorb more light than others, so some have a cooling effect on the Earth’s atmosphere and others have a heating effect. One of the questions being asked is, overall do the particles cool the atmosphere or heat the atmosphere? This is not as simple of a question as it sounds, because there are also a lot of indirect effects that are not yet understood.

These microscopic chunks also affect clouds and cloud formation, but how much of an effect is not completely understood. The particles may cause clouds to be less likely to rain or at least, not rain as often. These microscopic particles in air pollution could have an effect on where and when it rains. So the scientists, here on the BROWN, are gathering data to help them try and understand the impact that particles will play in changing the Earth’s climate. Part of their task, is to determine where the particles are from, the numbers, sizes, and chemistry of the particles.

If I lost you in all of that, maybe it will help to put it all in a nutshell. These scientists are studying the type and number of particles in air pollution, to try and understand what effect these little chunks may be having on the Earth’s temperature and water cycle.

As Tim Bates said, we are trying to put together a large jigsaw puzzle and we don’t know what picture is on the puzzle. First we have to find all of the pieces. Then we have to put together the puzzle. We are now at the point that we think we have found most of the pieces and now we are trying to put them together. As you can see from the picture I sent in today there is some relaxation time, in the middle of all the data analysis.

Questions of the Day

The smaller particles are measured in nanometers how much of a meter is 1 nanometer?

If the wind is blowing 5 meters/second and we are 50 miles from Boston how long will it take Boston’s pollution to reach us?

Typical unpolluted air will have about 1000 particles in every cubic centimeter of air. What is something that has a volume of about 1 cubic centimeter?


Leave a Reply