Kevin McMahon, August 1, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 1, 2004

Weather Data from the Bridge
Lat. 42 deg 56.49 N
Lon. 70 deg 33.31 W
Heading 235 deg
Speed 8.2 kts
Barometer 1015.4 mb
Rel Humidity 90.2%
Temp. 18.2C

0740 hours. We spent most of the past evening in a stationary position very near the Isle of Shoals. A very beautiful moonlit evening. We now are on a heading almost due east of the Isle of Shoals, again looking for the NYC, Boston plume.

It is a continual quest, not quite like Ahab and his search for the white whale but a quest none the less. The scientists aboard the RONALD H. BROWN have embarked upon a continual search. Someone once said that one of the great joys in life is getting nature to give up one of her secrets. Meaning that the fun and excitement in science is learning how things work. Each in his or her way is really trying to gain an understanding of how the world works.

Today I spoke with Hans Osthoff. He is a young man with an intense desire to learn about the chemistry of our atmosphere. Hans works for NOAA at the Aeronomy Laboratory in Boulder, Colorado. As a young boy he developed a love for chemistry and stayed with it. He now has advanced degrees in Analytical and Physical Chemistry.

Aboard the ship he runs a piece of equipment which is extremely sophisticated. It is called a Cavity Ringdown Spectrometer. It can measure the diffusion of light as it is passed through a sample of air which is contained in a copper tube. At each end of the copper tube there are parabolic mirrors. As a beam of laser light enters the tube, it bounces back and forth many times before exiting at the other end. The time the beam of light spends in the tube is measured and allows scientists to measure concentrations of:

NO2 NO3 N2O5

Once the concentrations have been found, the scientist can then calculate the reactions rates and the products which will be introduced to our atmosphere.

In the end, we will all gain a better understanding of our atmosphere and hopefully learn how to better maintain our environment.

Question

Can you name the three compounds above?

Kirk Beckendorf, July 31, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 31, 2004

Daily Log

This will be my last day in New England with NEAQS-ITCT. Tomorrow morning I leave my hotel at 3:00 AM to drive to the airport to fly home to Oregon. The past month has been an amazing experience. I have been continually amazed at the complexity, cooperation and coordination involved in this massive air quality study. I have seen that the scientists are an extremely intelligent and hardworking group of men and women. They are truly committed to obtaining a thorough and accurate understanding of our global society’s air pollution problem so that solutions can be obtained.

Today Fred took me onto the WP-3, another of NOAA’s planes being used in NEAQS. Unlike the DC-3 which only has a LIDAR on board, the P3 is packed with many different scientific instruments. To be able to make as many measurements as possible, equipment is also attached underneath the wings, under the fuselage and even sticking out from the tail is a special cloud radar. The windows and body have been modified so that specially designed tubes stick out and suck air from the outside and feed it to the instruments inside the plane. Once we have climbed up the ladder and are inside, we can barely get passed the door.

In a couple of hours the P3 will take off for a night flight, but right now the plane is not only packed with the equipment, it is also packed with scientists making last minute adjustments to their instruments. Because there are so many air quality measurement instruments on board, there is very little room for people during the flight. Therefore the instruments need to be ready to run on their own with very little supervision.

Much of the equipment is similar to that found on the BROWN, but the plane will obviously be taking measurements higher in the atmosphere and over a larger area in a shorter amount of time, than can the BROWN. Also, because the plane is traveling a lot faster than the BROWN, if a measurement is made every 30 seconds and the P3 passes through a narrow plume of pollution the plume may not even be measured. It is therefore important for the measurements to be made very quickly and often.

The flight is intentionally leaving late in the day so that most of the flight will be after sunset. Sunlight is necessary for a lot of the chemical reactions that cause pollutants to change once they are in the air. Tonight’s flight is designed largely around a single instrument measuring the specific chemicals that are more likely to be in the atmosphere at night. During the day the sunlight breaks these chemicals down, yet they are a very important part of the pollution problem.

Since the beginning of July until about the end of August, for almost two months, the men and women involved in NEAQS will be making measurements from airplanes, from the BROWN, from satellites, from the top of Mt. Washington and other spots on land. But when I asked Fred what is the one thing my students should know about this project, he said that they need to realize that the real work starts after everyone is out of the field. The “Ah-ha” moments will occur over the next 8 -12 months as the data is being analyzed, that is when the real learning and understanding will happen.

Finally I would like to thank all of the scientists who were so generous, cooperative and patient with my many questions.

Kirk Beckendorf, July 30, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 30, 2004

Daily Log

Besides the BROWN, the satellites, and the Airmap sites, there are thirteen different airplanes being used to collect air quality data for NEAQS. Several of these planes are currently flying out of Pease. Today, while the scientists and pilots were prepping the plane and the science instruments, I went on board the DC-3. The DC-3 is an airplane that is about 50 years old. The inside has been gutted and now there are just three seats, besides the two in the cockpit, and a LIDAR. The LIDAR is like the one that is on the BROWN but this one looks down, not up. It sends out a laser which can be used to determine the amount of ozone in the atmosphere below the plane. A large square hole, about 2 feet by two feet, has been cut through the bottom of the plane for the laser to shine down through and then for the light to bounce back into the instrument. The plane does not have a pressurized cabin so it is limited on how high it can fly. Most of the time during this flight, it will be at about 8000 ft. The DC-3 will also be flying slowly, about 100 miles per hour. This flight will take the crew and plane south and east and then out over the Atlantic, close to the BROWN.

This morning I talked to Fred . After we visited for a bit he recommended that I attend this afternoon’s planning meeting for tomorrow’s WP-3 flight. The meeting started at 5:30 with a brief discussion of the flight planned for tomorrow. Following that, in turn three of the scientists each explained to the rest of those attending the meeting what exactly each is studying and why. Remember the big elephant (from previous logs) that is being observed. Each scientist specializes on one very specific part of the pollution problem. To get a complete understanding of the problem all of these observations must be pieced together to a get a complete picture, which is the point of these science show and tells.

Kirk Beckendorf, July 29, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 29, 2004

Daily Log

How can you map air?

Air moves and so does pollution. Some areas of the country which produce very little pollution may actually record high levels of pollution, because pollution from somewhere else moves there. A program called Airmap is a joint program of NOAA and the University of New Hampshire is seeking to look at some of that pollution. Check out their website at http://www.airmap.unh.edu. The goal of Airmap is to learn as much as they can to try and understand New England’s changing climate and air quality. Airmap has a number of year round monitoring stations, which this summer are also part of NEAQS. Their stations measure the normal weather data as well as a number of pollutants such as ozone.

Today I visited one of those sites in northern New Hampshire, at the top of Mt. Washington, the highest mountain in New England. The mountains are a lot larger than I had expected and are very densely forested. Mt. Washington is known to have some of the worst weather in the world and the monitoring station that I visited recorded the strongest winds ever recorded on Earth, 231 miles per hour. http://www.mountwashington.org/bigwind/. The buildings at the summit are specially designed to keep from them from blowing off of the mountain. One is even chained down. The observatory building is designed to survive winds of 300 mile per hour.The monitoring station at the top of the mountain is manned by a staff of about 8 during the summer and 4-5 during the winter. Every hour the observers go outside and take weather measurements, this takes them about 15 minutes. Most of the observers are college students or recent graduates. One of those who showed me around will be a freshman in college this next year. In addition to the weather data being collected, a bank of Airmap instruments also measure pollution. Some of the instruments are the same as those I saw on the Brown. The instruments are making constant automatic measurements.

I have become well aware that pollution can travel to unpolluted areas but today, here at the top of Mt. Washington, it really struck home. I drove three hours through fairly remote forest to get to the top of this mountain in northern New Hampshire. Looking out from the top, when the fog is not blowing through, one sees very little except for forest. But at this remote spot, several times a year, ozone reaches levels higher than the amount allowed by the EPA. I ask where it comes from, the answer I receive is that a lot of the pollution seems to from the Midwest, (the Chicago and Detroit area) some also comes from Boston and New York. Part of the goal of NEAQS is to learn more about the pollution as it travels from the areas which produce the pollution, to the areas that receive it.

Questions of the Day

How far would the pollution have to travel from Detroit to Mt. Washington?

Where are the rest of the Airmap monitoring sites?

Kirk Beckendorf, July 28, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 28, 2004

Daily Log

How do you decide where to fly to find and measure pollution?

I spent today at the NEAQS Operation Center at Pease International Tradeport in Portsmouth. The Op Center is the temporary “headquarters” for the air quality study. It is located in a college campus. About 15 large classrooms are being used as group offices for the approximately 100 scientists. I arrived just in time for the morning DC-8 briefing. The DC-8 is a NASA research plane which is loaded with equipment similar to what is on the RON BROWN. This morning about 20 scientists are planning tomorrow’s flight.

To begin the meeting several meteorologists showed some current weather movements and their predictions for tomorrow. Then the modelers who predict pollution motion and chemical changes explain what they expect to be happening to some pollution tomorrow. What this group plans to study tomorrow is a large bunch of pollution moving out of the New England and out across the Atlantic Ocean. About half way to Europe the pollution makes a large loop to the south and then loops back north. They want to fly through all of the pollution and see how the chemicals change as the pollution ages. There are three satellites that will be passing overhead at specific times and they want to be under them. So they have to time their flight schedule accordingly. Once everyone is on the same page of the general plan, they start planning the actual flight. The main idea is to fly out over the Atlantic following the looping band of pollution. At several points they want to spiral up and down to take measurements close to the ocean surface all of the way to the top of the pollution.

With a computer image of the NE US and the N. Atlantic being projected onto a screen, one of the scientists begins to type in a flight plan, as he types in latitudes and longitudes the route shows up on the map. As the route is being plotted, there continues to be discussion about where they should go to get the best measurements. Because of the points brought up in the discussion, the route and where they will spiral up and down are changed a number of times. Finally they have a flight plan. However, it is about an hour longer than they should be in the air. So the route is modified and remodified a number of times, until everyone feels that they will be able to make the measurements needed, and still have enough fuel to get back.

Question of the Day

What is your latitude and longitude?

The pollution being sampled by the DC-8 is also being measured in the Azores? Where and what are the Azores?

 

Kirk Beckendorf, July 22, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 22, 2004

Weather Data from the Bridge
Time 4:50 PM ET
Latitude- 42 49.88 N
Longitude- 70 15.46 W
Air Temperature 20 degrees C
Water Temperature 17 degrees C
Air Pressure 1011 Millibars
Wind Direction at surface Southwest
Wind Speed at surface 15 MPH
Cloud cover and type clear but hazy

Daily Log

Last night at sunset we were just out from Boston when we launched the radiosonde. The pollution levels were up and we had to look through a haze to see the downtown skyline. A sea breeze began blowing cleaner air to us from the east. Late last night we headed east to meet up with a couple of the airplanes this morning. The goal was to have us and two of NOAA’s research planes all under a satellite which will be orbiting overhead. Pollution measurements could be made at many different levels of the atmosphere plus instrument comparisons could be made.

Of course it was foggy again. Wayne Angevine, a meteorologist back on shore was looking at live weather satellite images and got word to us that close by was a clear spot in the fog. The flight crew in the airplanes confirmed what Wayne said. When we got to the latitude and longitude they had directed us to, we found clear skies. The plan worked. The planes flew by making their measurements, several satellites passed over head, the ozonesonde was launched, all of the instruments on the Brown were continuing to collect data and Drew and I did Sunops.

Later today the rest of the fog burnt off, but there was still a haze as we slowly made our way back to the west. We need to be in the vicinity of Portsmouth so that we can meet up with the harbor pilot tomorrow morning. The pilot will direct the ship back into Portsmouth at about noon. The timing is actually important because we need to go in at high tide. Tonight the plan is to continue back and forth through the urban pollution. Before we get to port tomorrow, a couple of the crew will be diving under the ship to do some maintenance that should be interesting to watch.

Today is my last full day at sea on the BROWN. This next week I will be visiting some of the land based scientists, facilities and activities involved in NEAQS. We get into port about noon tomorrow.

I asked some of the scientist what is the one thing my students should know about this research project on air pollution. Some of the statements were:

We are studying a very complicated situation with no simple answers.

To study something very complicated takes lots of coordination and cooperation from numerous organizations and a lot of people.

Air pollution is a global problem not a local problem. Even people in areas, like Redmond, OR, with little pollution should be concerned. Air pollution doesn’t stay where it is made. North America gets pollution from Asia, Europe gets pollution from N. America, Asia gets pollution from Europe.

Each one of us needs to realize that we are part of the problem.

Question of the Day

How can you be part of the solution not just part of the air pollution problem?

Kirk Beckendorf, July 19, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 19, 2004

Weather Data from the Bridge
Time Noon ET
Latitude- 44 8.76 N
Longitude- 66 42.03 W
Air Temperature 12 degrees C
Water Temperature 9 degrees C
Air Pressure 1007 Millibars
Wind Direction at surface South
Wind Speed at surface 11 MPH
Cloud cover and type FOG!!!

Daily Log

Ozone can be a major pollutant but we don’t release it into the atmosphere, so where does it come from?

More fog!!! We are all getting tired of the fog. I wonder what the Nova Scotia coast looks like. We have been along the coast for awhile, but I only got a glimpse through the fog for a few minutes.

We followed the Boston pollution up here but now we are in clean air. It has been very interesting, for both the scientists and myself, to see how the kinds and amounts of the gases has changed as the pollution gets older. Leave a glass of milk in the sun on the kitchen counter for a few days and it will change. Air pollution floating in the air and cooking in the sun also changes.

Paul Goldan points out some of today’s data which shows that the air is coming from a pine forest. Every thirty minutes Paul’s equipment samples the air and measures the concentration of 150 different VOC’s (volatile organic compounds). Some VOC’s can be man made and others are natural. This morning’s data shows very low levels of human pollution but there are spikes in the graph for two chemicals that are released into the atmosphere by pine trees (the pine scent). We look at the wind profiler and see that the wind is blowing from Nova Scotia.

Avery Bell emailed and asked which pollutant is most potent. As I have mentioned, the two parts of air pollution are the gasses and the particles. According to several of the scientist on board, ozone and the very tiny particles are the two of most concern from a health standpoint. Small particles and ozone can both damage your lungs. For people who already have breathing problems (such as asthma or emphysema), it can make matters even worse. Ozone also damages plants, both wild and agricultural crops, reducing crop yields. The cost of agricultural losses was one of the first reasons that ozone became a concern.

Every day I spend time talking with some of the scientists who are here from NOAA’s Aeronomy Lab. They are studying ozone and many other gases in the atmosphere. To decrease ozone pollution is much more complicated than just saying let’s reduce the amount of ozone we release. We don’t release ozone into the atmosphere as a pollutant!!! It is made in the atmosphere when other gases combine in the presence of light.

Imagine you live in the desert and you plant a tree in your back yard. It of course needs water, air, nutrients from the soil and light to survive and grow. In your backyard it gets all of the light, air and nutrients that it needs; but imagine that you never water the tree. The tree survives because it gets a little rain, but it doesn’t grow much. Water is limiting its growth. If you water it a lot, the tree grows a lot.

High ozone levels occur in a similar way. For ozone to form, certain gases and sunlight have to be present. If there is only a small amount of those gases, only a small amount of ozone can form. But if there are a lot of those gases, a lot of ozone will form. In the unpolluted atmosphere, there are low amounts of the gases that are needed to make ozone. Guess what happens when we burn fuels to run our vehicles, to make electricity, to heat and cool our homes, and to make the products that we use every day. You guessed it; we release a lot of the gases that are needed to make ozone. Ozone can then reach the high levels necessary to become a health risk. It does not take that much ozone to be at a dangerous level. A level of 80 PPB (parts per billion) for 8 hours is considered too high.

It is very difficult to try and understand what 80 parts per billion really means but I’ll try to help. It takes about 31.7 years to have 1 billion seconds. Imagine how much air you would have if you took a breath every second for 31.7 years and blew all of the air into one balloon. Now imagine that 80 of those 1 billion breaths were ozone. The concentration of ozone in the balloon would be 80 PPB.

Questions of the Day

What are three activities that you do everyday that can add to the atmosphere the gases that help form ozone?

What can you do to reduce the amount of those gases that you are responsible for producing?

Based on the example in the last paragraph how many breaths of ozone could you have in the balloon if there was 1 PPB?

Kirk Beckendorf, July 17, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 17, 2004

Weather Data from the Bridge
Time 6:20 PM ET
Latitude- 43 20.33 N
Longitude- 68 18.92 W
Air Temperature 17 degrees C
Water Temperature 14 degrees C
Air Pressure 1009 Millibars
Wind Direction at surface Southwest
Wind Speed at surface 7 MPH
Cloud cover and type Clear

Daily Log

How is it possible to tell if we are in pollution when we can’t even see it?

This morning I went through the normal routine of helping launch the ozonesonde at 10:00. Because it was a sunny day Drew Hamilton could make Sunop measurements throughout the afternoon so I helped with that. We specifically timed the Sunops so that we were taking measurements at the same times that three satellites were crossing overhead. The satellites were taking similar measurements looking down, while we were taking them looking up. Later, our measurements will be compared with those of the satellites.

In general, air pollution is a combination of particles and gases. I have discussed the particles in previous logs, but not much about the gases. A large number of the scientists involved in NEAQS-ITCT are studying these gases. I have spent a large amount of time talking with Eric Williams, Brian Lerner, Sallie Whitlow, Paul Goldan, Bill Kuster, Hans Osthoff and Paul Murphy. They have instruments on board which measure many of the different gases related to air pollution. But not all air pollution is the same.

The cause of the pollution determines what gases and particles are in the pollution. Gasoline powered automobiles release one combination of gas and particles. Diesel engines produce another combination. Coal burning power plants release yet a different combination. Natural gas power plants release (Yep, you guessed it) yet a different combination. In a city these get mixed together, so individual cities have there own unique pollution depending on the number of automobiles, power plants and factories. To make things more complicated, once these chemicals are released into the atmosphere and start mixing together, in the presence of sunlight they react with one another making additional gases and destroying others. What eventually happens to these pollutants and where they go, are two of the questions these scientists are seeking to answer. But answering these questions is very difficult, in part because things get extremely complicated very quickly. As Paul Goldan told me, part of the reason we need to make so many different kinds of measurements is because we are not even sure exactly what we are looking for.

Today as we criss-crossed back and forth through two plumes of pollution Eric showed me some of today’s data. As always, his instruments were measuring and recording some of the gases in the air. The quantities and kinds of gases changed as we went back and forth, helping to map where the pollution was located and how it has changed. Nothing looked different outside, but from the measurements he was taking he could tell that one of the plumes was younger than the other.

During the nightly meeting, Paul Goldan and Tim Bates presented completely different kinds of measurements that agreed with what Eric’s data showed. This comparing of daily observations will help confirm the accuracy of the observations and what they actually mean.

Questions of the Day

Where is the electricity in your house produced?

What kind of fuel is used to make your electricity?

What kind of fuel is burnt to make your automobiles run?

Who should be responsible for the pollution produced to make the electricity you use?

Kirk Beckendorf, July 15, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 15, 2004

Weather Data from the Bridge
Time 8:00 AM ET
Latitude- 45 53.18 N
Longitude- 70 36.48 W
Air Temperature 14 degrees C
Air Pressure 1000 Millibars
Wind Direction at surface Northeast
Wind Speed at surface 3 MPH

Daily Log

Yeah!!! The sun is trying to come out, the rains have stopped and the sea has calmed down. No I didn’t get sea sick, but it is hard to sleep when your bed is swaying back and forth and up and down. The winds have shifted and the scientists are hoping that the winds may be blowing some pollution our way. Seems like a strange thing to hope for, but of course they are here to study pollution and the wind has been blowing it away from us.

Why should anybody care if we add microscopic particles to the air?

Yesterday, I discussed one of the techniques used to study the microscopic particles that are in the atmosphere. But so what, why does anyone care about these tiny specks? Air pollution made by automobiles, power plants, factories and ships all contain both gases and particles. To be able to predict the changes resulting from air pollution, we have to learn all we can about the gases and the particles being released.

When the pollution is released into the atmosphere, the gases and particles start traveling with the air. (Just like pouring a quart of motor oil into a river.) Gradually the gases and particles spread out into the surrounding atmosphere. The gases can recombine and may start changing into other chemicals, but that’s another story I will get to soon.

The particles are not all the same. They come in different sizes and are made of a variety of chemicals. There are two main concerns about these little chunks floating along in the sea of gas; health hazards and climate change. If you take a breath, not only do you inhale the gas, but also all of the particles floating in the gas. Some of these particles may have a negative effect on a person’s health.

The main interest in the particles here on the BROWN is the effect they have on climate change. The Earth is of course warmed by the energy (light) coming from the sun. The more energy (light) the Earth gets and keeps, the warmer our temperatures. The less energy (light) the Earth gets and keeps, the cooler the temperatures. Pretty simple stuff? Not at all.

When sunlight shines down through the atmosphere and hits a particle the sunlight can either bounce off of the particle or be absorbed into the particle. If the light bounces back out of the atmosphere the Earth does not keep the light’s energy and there is a cooling effect. When light is absorbed into the particle, the energy (heat) will now be in the atmosphere and so there is a heating effect. Some particles absorb more light than others, so some have a cooling effect on the Earth’s atmosphere and others have a heating effect. One of the questions being asked is, overall do the particles cool the atmosphere or heat the atmosphere? This is not as simple of a question as it sounds, because there are also a lot of indirect effects that are not yet understood.

These microscopic chunks also affect clouds and cloud formation, but how much of an effect is not completely understood. The particles may cause clouds to be less likely to rain or at least, not rain as often. These microscopic particles in air pollution could have an effect on where and when it rains. So the scientists, here on the BROWN, are gathering data to help them try and understand the impact that particles will play in changing the Earth’s climate. Part of their task, is to determine where the particles are from, the numbers, sizes, and chemistry of the particles.

If I lost you in all of that, maybe it will help to put it all in a nutshell. These scientists are studying the type and number of particles in air pollution, to try and understand what effect these little chunks may be having on the Earth’s temperature and water cycle.

As Tim Bates said, we are trying to put together a large jigsaw puzzle and we don’t know what picture is on the puzzle. First we have to find all of the pieces. Then we have to put together the puzzle. We are now at the point that we think we have found most of the pieces and now we are trying to put them together. As you can see from the picture I sent in today there is some relaxation time, in the middle of all the data analysis.

Questions of the Day

The smaller particles are measured in nanometers how much of a meter is 1 nanometer?

If the wind is blowing 5 meters/second and we are 50 miles from Boston how long will it take Boston’s pollution to reach us?

Typical unpolluted air will have about 1000 particles in every cubic centimeter of air. What is something that has a volume of about 1 cubic centimeter?

Kirk Beckendorf, July 14, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 14, 2004

Weather Data from the Bridge
Time 10:20 AM ET
Latitude- 42 22.77 N
Longitude- 70 52.02 W
Air Temperature 16 degrees C
Air Pressure 1004 Millibars
Wind Direction at surface Northeast
Wind Speed at surface 13 MPH
Cloud cover and type Stratus clouds and rainy

Daily Log

Why would anyone care if there are a few pieces of stuff 1000 times smaller than a grain of sand floating around in the air?

I visited one more piece of the elephant the past couple of days. To be more accurate, I have been visiting with some of the people who are studying another piece of the pollution elephant. I’ll call them the particle people. I have been visiting with Dave Covert, Tim Onasch, Tim Bates, Patricia Quinn, Theresa Miller, Kristen Schulz, Anders Petterson and Tahllee Baynard and Derek Coffman. These scientists are studying the particles that float in the air. Some particles are from human pollution and some are from natural sources. These chunks of stuff can be so small that it may take more than 250,000 lined up side by side to be an inch long, about 1000 times smaller than a grain of sand. Those are not even the smallest ones. Even though these particles are so tiny these scientists can find out what chemicals make up the particles and how many of the particles are in the air.

Amazingly, the scientists can sort out these very tiny chunks by weight. But as Paul Murphy told me the other day none of this is magic. A number of methods are used to sort the particles; here is the idea behind one of them. But you are going to have to use your imagination again. You are in a long narrow L-shaped hall. You look down the hall and at the end it makes a sharp turn to the left. You and a friend are going to have a race to the end of the L. But of course this isn’t a normal race. Each of you has an office chair in front of you. In your buddy’s chair is a very large person, your chair has a mouse. On your mark, get set, go!!! You both start pushing and running as fast as you can. One of the rules in our race is that you cannot slow down until you get to the end. Your friend is a major weight lifter and runner and so even though he is pushing a lot more weight the two of you are neck and neck, flying down the hall. Then you get to the sharp left hand turn. Remember this is a narrow hall and you can’t slow down. You and your mouse make the turn fine. Because of the heavy person in his chair your buddy can’t make the turn and hits the wall. You and the mouse end up at the end of the hall. Your buddy’s chair and passenger end up splattered against the wall.

But we were talking about microscopic particles in the air. The big white air inlet shown in pictures I sent yesterday pulls in air. Inside that large inlet are 21 smaller tubes which separate the air and sends it to different pieces of equipment. Some of the particles are removed from the air and are separated by size in a method similar to our race. A stream of the air, along with any particles that are in the air, quickly moves through a tube called an impacter. (In our race the mouse and person on the chair represent two different sized particles. You and your buddy are the air.) The air and any particles in the air have to make a sharp right hand turn. The largest particles can’t make the turn and they hit and stick to the “wall”. As the air moves through the tube, the air and remaining particles have to make progressively tighter turns. Each turn separates out a different sized particle. Those particles are collected off the wall and can be analyzed to determine what chemicals they are made of as well as weight and numbers of each size. Removing the particles from the impacter (the wall) needs to be done under controlled conditions so that contamination does not occur. Other techniques are then used to analyze the particles that are so small that they get through the “maze”.

While I have been on the ship there have been two main issues that I have been learning about. The first is learning about the techniques which the scientists use to study pollution. The second issue is: why make these observations and what will be done with them. Most of what I have described are the techniques that are being used. I have not written much about why the scientists are doing this and what they hope and expect to learn. More about that soon.

So why would anyone care about a few tiny particles anyway?

When the particles are breathed into a person’s lungs they can cause health problems. The particles may also have an impact on climate change, more about that in the next log.

Today the weather has again been cloudy, cool and rainy. The winds are blowing strong from the northeast which brings us clean air so we have moved south of the shipping lanes going into Boston to try and measure some ship exhaust. The swells are about 5 feet high and so the ship is rocking more than it has been. Everyone seems to be staggering about when they walk.

Questions of the Day

What are some of the main gasses which cause the greenhouse effect on Earth?

Where do the particles come from?

On average how long will they stay in the atmosphere?

Kirk Beckendorf, July 13, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 13, 2004

Weather Data from the Bridge
Time 11:30 AM ET
Latitude- 42 56.92 N
Longitude- 70 36.22 W
Air Temperature 17 degrees C
Wind Direction at surface East
Wind Speed at surface 20 MPH
Cloud cover and type Cloudy- Stratus
Air Pressure
11:30 AM 1014 Millibars
7:15 PM 1009 MB
10:15 PM 1008 MB

Daily Log

Look at what the air pressure has done today. What do you think our weather is like now at 11:00 PM (past my bedtime)?

Keep in mind that we are sitting out in the ocean in a ship, sometimes you can see land, other times you can’t. Rarely can we see any buildings much less a city. How are we supposed to know where to go to find some pollution? Especially if we are looking for particles that are too small to see and gasses that are colorless. Not to mention there may be less than 1 part per billion of that gas mixed in with the air. That is where Wayne Angevine and Jim Koermer come in. They are two meteorologists who are on shore. Twice a day they send us weather forecasts. Wayne works for NOAA and Jim is a professor at Plymouth State University in New Hampshire. (Check out Jim’s website at vortex.plymouth.edu)

Based on their forecast, Wayne also sends recommendations for where we should go to find pollution. Today they are predicting that winds will be from the southeast and east through at least tomorrow. We know that pollution comes from automobiles, power plants, ships and factories. Although some of the chemicals involved in air pollution do also come from trees and other plants. Pollution of course blows with the wind so we want to be down wind of the pollution sources. If you look at a map to see where we are located the only thing east of us for a very long way is water, so easterly winds bring us clean air. There aren’t any cities or automobiles floating out here on the ocean, but there are ships. Wayne’s recommendation today was for us to move to Mass. Bay to get down wind of the shipping lanes and sample ship exhaust as they come by. That is what we have been doing most of the day.

Wayne says that possibly tomorrow afternoon the winds will shift and come from the southwest. If that happens Boston’s pollution will be flowing out over the water again and if that happens he suggest we sample it as we did yesterday, which was to zigzag back and forth across the plume coming from Boston. We couldn’t actually see it but we know where Boston is, we knew which way the wind was blowing and many of the instruments are measuring and recording what is in the air in real time. The captain also has charts that show how deep the water is so we didn’t run aground as we got close to shore.

It has been very interesting switching rolls from my normal job of being the teacher to the roll I am in on the ship which is, being the student. This past year after a particularly hard lesson one of my students said my brain hurts; now I know how he felt. This afternoon I went down to the ship’s gym to try and digest all that I have been learning the past two weeks, by working out physically rather than mentally. Plus I had to work off some of the great food the stewards feed us here on the Brown.

With the drop in air pressure the winds have picked up, it has started raining lightly and the ship is rocking and rolling. Nothing extreme, but it should rock everyone to sleep tonight.

We had another abandon ship drill today.

This afternoon we saw a pirate ship. Well ok it really wasn’t a pirate ship but it kind of looks like one, with its sails down and floating in the mist. It is actually a Mexican Navy training ship.

Questions of the Day

Today we had a low pressure system, what kind of weather can we expect if we have a high pressure system?

What activities do you that would create air pollution?

From which way is the wind blowing today, where you live?

What is up wind of you? What is downwind of you?

Kirk Beckendorf, July 12, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 12, 2004

Weather Data from the Bridge
Time 8:30 AM ET
Latitude- 42 47.28 N
Longitude- 70 42.29 W
Air Temperature 17
Air Pressure 1019 Millibars
Wind Direction at surface Southeast

Daily Log

Why are so many methods used to measure air quality, why not just one or two simple tests?

I received an email from Paige who is a student at Obsidian Middle School where I teach. She asked how air samples are taken and how air quality is measured. Those are two very big and good questions, without simple answers. This is one of the reasons that there are several hundred scientists working on NEAQS. I emailed Paige a fairly short answer but will give a more detailed explanation here. In some of the previous logs that I have written here on the BROWN, I explained some of the techniques somewhat in detail but I haven’t given you an overview, so here we go. Great questions Paige!!!

There are many different ways that the air is sampled and measured. In some cases, such as the LIDARs, samples are not taken at all. The LIDARs shoot light through the atmosphere, some of the light bounces back to the LIDAR, and this helps to measure some of what is in the air. The ozonesonde immediately and constantly measures the amount of ozone as the balloon rises through the atmosphere.

In other cases air is sucked into tubes mounted on towers at the front of the ship and the other end of the tube goes to the scientists’ equipment. (See the pictures, the big white upside down funnel and the smaller pink upside down funnel, are two of the inlets shown.) Sometimes samples are actually stored and in others the air quality is measured immediately.

Some of the instruments measure many chemicals such as one designed, built and run by Paul Goldan and Bill Kuster. It pulls in a sample of air every 30 minutes and in 5 minutes automatically measures about 150 different kinds of chemicals. It can measure the chemicals in parts per trillion. If you made some Kool-Aid that was one part per trillion, you would mix 1 drop of Kool-Aid into 999,999,999,999 drops of water. It certainly wouldn’t taste like Kool-Aid.

Other instruments measure one or just a few of the chemicals that are in the air. Today Hans Osthoff showed me a piece of equipment that he uses to measure air quality. He uses it to measure three specific chemicals in the air. One of Eric Williams’ instruments sucks in air and measures the amount of ozone every second, 24 hours a day.

Tim Bates showed me a number of pieces of equipment which suck in air and can used to find, in real time, the size and chemical composition of the particles that are floating in the air. These particles can be so small that it may take 250,000 or more laid side by side to be an inch long. Dave Covert and Derek Coffman showed me their equipment which removes particles from the air. These particles are then collected by Theresa Miller and Kristen Schulz who will analyze them. Some of the samples will be analyzed here on the ship and other samples will be analyzed once they return to Seattle.

So why not just one or two simple tests? Why so many?

Our atmosphere and the pollution in it are extremely complicated. Even though air is about 99% nitrogen and oxygen it also contains hundreds of other chemicals which are very important. Some are natural, some are man-made and some are both. This soup of chemicals is constantly changing and moving. To be able to understand pollution in the atmosphere we have to understand all of the parts. This goes back to the elephant I mentioned a few days ago. The more parts we observe and the more ways we observe the parts the better we will understand our elephant. If you feel the elephant’s leg you learn a little, if you use your nose and smell the elephant’s leg you learn a bit more, if you use your tongue and lick the elephant’s leg you will learn even more about the elephant. Understanding the pollution in our atmosphere is similar. Each type of measurement has advantages and disadvantages but each tells you more about the pollution and the atmosphere. Combined all together they can eventually give us an understanding of the whole elephant.

We had another abandon ship drill today.

Questions of the Day

What is the ozone level today where you live?

What is the level of particles where you live?

What is the maximum limit of ozone as set by the EPA (Environmental Protection Agency)?

Hint: You can probably find these on the Internet.

Kirk Beckendorf, July 9, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 9, 2004

Weather Data from the Bridge
Time 8:00AM ET
Latitude- 43 43.31N
Longitude- 66 15.13 W
Air Temperature 11 C
Air Pressure 1010 Millibars
Wind Direction at surface SE
Wind Speed at surface <5 MPH
Wind Direction at 1 Kilometer- E
Wind Speed at 1 Kilometer <5 MPH
Wind Direction at 2 Kilometers E
Wind Speed at 2 Kilometer <5 MPH
Cloud cover and type Fog

Daily Log

One of the blind men observed an elephant and said it is like a tree, another said it was like a rope, another said it is like a water hose. Which was correct?

This morning I visited with Christoph Senff and Rich Marchbanks. After lunch I visited with Alan Brewer. All three are here from NOAA’s Environmental Technology Lab in Boulder, Colorado. Chris and Rich are operating a LIDAR, which remotely measures amount of ozone in the atmosphere. Alan has a Doppler LIDAR which remotely measures wind speed and direction. By “remotely,” that means they can measure ozone and wind from 3-4 kilometers away. An amazing thing about many of the instruments on board is that they have been designed and built by the scientists themselves. They can’t just run down to some high-tech store and buy their equipment, what they need isn’t for sale anywhere. They decide what needs to be done, and then they design and build the equipment that will do the job. The LIDARS that are being used here on the BROWN and in the rest of NEAQS project are examples of some of that “homemade” equipment.

In the case here on the ship “homemade” certainly does not mean it is just thrown together, held up with bubble gum, baling wire and duct tape. The LIDARS and the other instruments on board are extremely intricate, sophisticated and complicated devices.

To understand the very basics of how a LIDAR can detect ozone and air movement forget about LIDARS and just think about a normal flashlight. Pretend that you go outside in the middle of a completely dark night, no light from anywhere. Point your flashlight straight up and turn it on. Now imagine that there are a flock of white pigeons circling overhead, you will not see them unless the light from your flashlight hits them and then bounces back into your eye (hopefully it’s just the light that gets in your eye).

Now imagine that several of the pigeons poop and their poop is completely black and is between you and the pigeon. Yeah I know pigeon poop is usually white but for now pretend it is black. Because the poop is completely black when your beam of light hits the poop the light will not bounce off, instead it will be absorbed by the poop. The more poop in the air the more of the light is absorbed and less light bounces back to your eye.

Picture this. You are standing in the dark with your flashlight. The pigeons are circling over your head- between you and them is their poop. Quickly turn your flashlight on and then back off and measure the amount the amount of light that leaves. The light shoots up through the poop (which absorbs some of the light) and hits the pigeons. Some light bounces off the pigeons back through the poop and to your eye. You measure the light that comes back. By figuring out how much light was absorbed by the poop you can get an idea of how much is in the air above you.

Instead of visible light other wavelengths of light, like ultraviolet (UV) and infrared (IR), are used. Christoph, Rich and Alan use a laser rather than a flashlight and their LIDARs can turn the light on and off in nanoseconds. They can also measure many things about the light that leaves the laser and the light that returns.

Let’s take this one step further. Imagine that flashlight, dark night and poop and pigeons over head again. Also imagine that you can measure how long it takes for the beam of light to go out to some pigeons and then bounce back to your eye. If you know how fast the light is going you could calculate how far away they are and where the poop is located. If we put this all together and measure both how much light bounces back and how much time the light has traveled, you could determine the amount of poop at different distances.

Enough pretending and imagining, lets get back to the LIDARs. Light travels approximately 186,000 miles every second (it is about 25,000 miles around the equator) and the LIDARS can measure the time it takes the light to travel just a few hundred yards. Rich and Christoph’s ozone LIDAR is sensitive enough to measure ozone in parts per billion from 2-3 kilometers away and Alan’s LIDAR can measure wind speed and direction 3-4 kilometers away from here. They do this using a principal similar to the flashlight example, but obviously much more complicated. Chris and Rich’s ozone LIDAR uses a UV laser, picked specifically because its light will bounce off particles in the air (the pigeons) and be absorbed by ozone molecules (the pigeon poop). Allan uses an infrared laser that will bounce off particles floating and moving with the air. The particles, which are much too small to be seen would, as Allan said, seem like boulders to the beam of light.

What that all means, is that for the next six weeks along the ship’s path, the LIDAR’s will be measuring the amount of ozone pollution in the atmosphere, the wind speed and the wind direction.

The ozone LIDAR’s will eventually be used to show the amount and location of ozone pollution in the atmosphere from about 50 meters above the ocean surface up to 2-3 kilometers. The Doppler LIDAR data will be used to make a similar map of the wind speed and direction during the 6 weeks at sea. Eventually these and other data can be merged and compared.

What about those blind men examining the elephant? The first had grabbed the leg, the second had grabbed the tail and the third had grabbed the trunk. None of them of course had a complete picture of the elephant. During NEAQS-ITCT, hundreds of people are examining an elephant this summer. Individually they cannot give us a clear picture of the elephant. The elephant is air pollution. The more parts that can be accurately examined the better the picture. Instead of a trunk, tail and leg to observe, the scientist are examining the many kinds of chemicals in the pollution, the particles in the air, the movement of the pollution and the movement of the air. Different methods can be used to insure accuracy. Once each part of the elephant has been thoroughly examined and understood and all of the blind men evaluate their observations maybe they will have at least a partial picture of the elephant.

Question of the Day

What does LIDAR stand for?

How much of a second is a nanosecond?