Mary Cook, January 7, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 7, 2005

Quote of the Day

“You cannot stay on the summit forever. You have to come down again. So, why bother in the first place? Just this … one climbs, one sees, one descends. One sees no longer but one has seen. There is an art of conducting oneself in the lower region by the memory of what one saw higher up. When one can no longer see, one can at least still know.” Rene Dumaul

Final Log Entry

This morning as I stirred from a restful night’s slumber, I lay in my bunk all warm and toasty, snuggled under two wool blankets. Among my first ponderings were “This is it. It’s over.” As I emerged from my cocoon to stretch and yawn, the thought struck me, “I am not the same as before.” Like a metamorphosis. Did you know that back in November I had no inkling of the wonders awaiting me in the very near future? I had no idea. Even though I have traveled to many places in this world, living at sea was as foreign to me as going to the Mars. And I must share with you that in the days before I left home, I had an almost overwhelming fear about this journey. And the people who know me, know that I embrace a journey like a drowning person clings to a lifeline. I love to travel more than I like to eat. And that’s saying a lot! I love to see the beauty and uniqueness of Earth’s places. I love to learn and be challenged and be thrust into situations that test my ability and endurance and communication skills. But for some unfathomable reason, the notion of living at sea scared me. My dread was that the RONALD H. BROWN would become like a prison. That I would feel trapped, unable to escape. The idea of being three weeks at sea with no way to get off that boat, cast a shadow of doubt in me that struck at the very foundation of my self. But deep down, this one thing I knew, I was going to go to sea. In the words of Luke Skywalker as he fought the enemy, “I’m going in!” I would face my fear and either be broken by the experience or come out stronger and renewed. In my opinion, I had no choice. I had to find out. Shrinking from this daunting challenge was not an option.

Ironically, after we were out to sea for a few days, I realized that I felt free. Free! Who would’ve guessed it? When I looked out to where the sky meets the ocean it was like looking into infinity. Never-ending. I felt liberated. There were miles of water beneath me and miles of air above me and no stable place to put my feet, but I felt as though I was standing on a firm foundation. Now I know.

Well, if you’ve read my logs you know all the science and seafaring knowledge that I’ve gained since December 1st. I’m not going to recap that because it’s all in there. But I will say that this “Teacher at Sea” experience has nourished me on a multitude of levels: intellectually, professionally, interpersonally, emotionally, and spiritually. And as you know, nourishment brings about change.

This chapter of my life as “Teacher at Sea” has come to a close.

Now I will return to my family, my friends, my students, my co-workers, and my Arkansas. Throughout this journey, I’ve affectionately carried them with me in my thoughts. It is an honor to have them in my life.

THANK YOU.

Thank you NOAA, and Southside School, and Diane, and Jennifer, and the RHB crew and officers, and the WHOI scientists, and the people of Chile, and everybody back home. Thank you.

My next challenge: Live vibrantly as “Teacher on Land”.

Farewell,

Mary

Mary Cook, January 6, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 6, 2005

Location: Latitude 53°10.14’S, Longitude 70°54.40’W

Sunrise 0525
Sunset 2212

Question of the Day

How do penguins feed their young?

Quote of the Day

“To every thing there is a season, and a time to every purpose under the heaven.” Ecclesiastes 3:1

Science and Personal Log

Today has been a wonderful day. Vickie, Jackie and I traveled about one hour northwest of Punta Arenas to the Otway Fjord where a colony of about 10,000 Magellanic penguins are busily tending their young. These little black and white flightless birds are amazing! I found out that penguins live 25-30 years and always come back to the place where they were born for the mating season. They usually have one or two offspring. Males and females take turns watching and feeding the little ones. They swim for food every eight hours and dive 30 to 35 meters deep. Couples are always the same and they come back to the colony only for the reproduction season. They arrive at this site in mid-September to court and prepare their nests. Before courting they go through a period of fasting. (These birds are serious about family life! Maybe we could learn something from them.) The first days of October, they mate and lay their eggs. In November, they incubate their eggs and nearing the first of December the eggs hatch. They dig holes called burrows for their babies in the soft grassy plains just off the beach. In January and February the young ones lose their fuzzy gray down and develop feathers. This is when they make their first trips to the sea and begin to swim. In mid-March and April, they leave and move to the coast of Brazil and the Atlantic Islands.

This morning it was cold and blustery as we followed the winding trails through the grassy plains right in amongst the penguin burrows. Believe it or not, it sleeted while we were out there. A parent was always nearby and usually standing guard at the entrance of the burrow as the fat little baby was lazily stretched out with its head peeking through the hole. At this time in their development the babies are almost as large as the adults. A few of the males were standing tall with their wings outstretched and braying like donkeys. The Magellanic penguins sound remarkably like donkeys! Near the beach we stood behind a “penguin blind” and watched them marching single file toward the ocean and diving into the waves. If it hadn’t been so bone-chilling cold, I could’ve stood there and just watched those penguins for hours on end. While on land the penguins are cumbersome but in water they are agile and great swimmers. It looked like some of them where trying to catch a wave! South American surfer dudes.

Other than the penguins, we saw wild rheas, sheep, gulls, geese, ducks, and a few UFBs (unidentified flying birds).

After our incredible visit to the penguins, we returned to Punta Arenas. Punta Arenas has a population of 110,000 and is the capital of the Magellanic and Antarctic Region XII. According to the guide book, Punta Arenas is Patagonia’s most important city and makes a living from coal mining, wool production, petroleum, fishing, and serves as a center for cargo ships. I’ve seen all of these industries in just the short time I’ve been here. My favorite place to visit in the city of Punta Arenas has been the very charming Plaza Muñoz Gamero with its huge, gnarled cedar trees surrounding the bronze statue of Magellan. Another intriguing gadget is the 1913 German clock near the waterfront that has a complete meteorological instrumentation and hands showing the moon’s phases and a zodiac calendar.

Well, I’ve put it off as long as possible but it’s time to go pack. Tomorrow morning I’ll bid farewell to the RONALD H. BROWN.

What a grand finale today has been for this “Teacher at Sea”!

Until tomorrow,

Mary

Mary Cook, January 5, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 5, 2005

Location: Latitude 53°49.76’S, Longitude 71°39.22’W
Time:
0900

Weather Data from the Bridge
Air Temperature (Celsius) 7.66
Water Temperature (Celsius) 8.94
Relative Humidity (percent) 87.33
Air Pressure (millibars) 987.72
Wind Direction (degrees) 270.59
Wind Speed (knots) 6.27
Cloud Cover 8/8 Stratus
Sunrise 0526
Sunset 2218

Question of the Day

What is the ozone layer?

Quote of the Day

“A smooth sea never made a skilled mariner.” English proverb

Science and Personal Log

Today, I interviewed Victoria Carpenter. Vickie is an Able Bodied (AB) Seaman and she has a variety of duties aboard this ship. These duties include watch-stander, deckhand, winch operator, securing the ship for departure and darkening the ship. Darkening the ship means that she makes sure all portholes on the ship are closed at night so that the light from inside the ship’s rooms doesn’t shine out and reflect off the water which blinds the bridge crew. We all want the bridge crew to be able to see because they’re driving the ship! Vickie grew up in southern California with three brothers. She now resides in Vancouver, Washington. Vickie has traveled around the world. Really. She’s been to Asia, Africa, Europe, North and South America, and Australia. And she’s ridden a bicycle from coast to coast in the United States. It seems to me that she has done just about everything from being a Girl Scout Leader, to a berry picker, to a camp director, to an Outward Bound leader, and even a tour guide!

She will be attending the AB to Mate School for 19 weeks later this year. Besides getting a raise, becoming a Mate will enable her to plot charts and steer the ship.

Vickie says she loves the sea and the seagoing life. She considers Ernest Shackleton, the great explorer of Antarctica, to be her inspiration. Vickie is a true adventurer and I’ve loved listening to her stories.

For some reason, I awoke at 0430 this morning. I’m not sure why I stirred at such an early hour but it could have something to do with the fact that we have been in the famed Straits of Magellan since 0200. I most certainly did not want to sleep through it. So I was out at first light. Reggie, the watch-stander called me and said that the seals were putting on a show, so up I headed to the bridge. There were seals frolicking all about! These remind me of dolphins in the way they come up out of the water. We were passing through the Tortuoso Passage. According to the Chilean pilot Luis Holley, Tortuoso means “very difficult” in Spanish. To me it sounds like torturous. A torturous passage. This is the place where the Atlantic Ocean currents meet the Pacific Ocean currents. All this water converging in a narrow canal makes for a difficult place to transit. At this junction back in early navigation days the current actually pushed ships aground. That would definitely be torturous in my book. I was intrigued that we could really see the current. It was a place of choppy waters called the “the cross tide” and when the ship encountered the current, it slid sideways a little bit! Whoa!

One of the bays on this route is called Seno Ballena which means whale fjord. The pilot explained this to be a place where whales come to have their babies. A whale nursery! We saw two whales that flipped their flukes (tails) up in the air. It’s a nice feeling to watch whales just living their lives.

Shortly thereafter, the RONALD H. BROWN with all its inhabitants rounded the southern-most tip of the continent! It’s called Cape Froward and has a huge steel cross perched on the point which is covered with gnarly looking trees.

We’ve just arrived in Punta Arenas and Captain Wright called an “all hands” meeting. At the meeting the Chilean pilots awarded us certificates documenting our passage through the Straits of Magellan! It has a map tracing our route and says that I am a “certified explorer of the Straits of Magellan”. ? Signed and sealed by the Chilean pilots!

Les Cruise, the medic reminded everyone to wear sunscreen, long sleeves, and hats because we are under the “hole” in the ozone layer. Punta Arenas has one of the highest occurrences of skin cancer per capita than any city in the world.

This is a very attractive small city. It is situated on the coast with only a few tall buildings and has low, rounded mountains as a backdrop. The main square is a tree-lined park with a central statue of Ferdinand Magellan. The statue also has a native South American on it whose foot is projecting from the base. It is said that if you rub his big toe then you’ll return to Punta Arenas someday. That big toe is shiny smooth! Well, here’s a question for you. Do you think I rubbed the colossal toe? You know the answer to that question. The Punta Arenas downtown is European quaint and bustling with people shopping, relaxing, and going somewhere. Ice cream must be a popular treat. It seems that everyone has a cone. I even saw a sign in a store window that said “Do not enter with ice cream.” I love ice cream, but when I’m wearing three layers and a muffler scarf, I prefer hot chocolate. There are tour offices that offer excursions to penguin colonies, trekking in Patagonia or boat rides to glaciers. Tomorrow morning will be my last full day here, and I’ve decided to check out the penguins. I’ll let you know how they’re doing in my next log installment!

Until tomorrow,

Mary

Mary Cook, January 4, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 4, 2005

Location: Latitude 49°28.60’S, Longitude 74°26.42’W
Time: 0835

Weather Data from the Bridge
Air Temperature (Celsius) 10.34
Water Temperature (Celsius) 11.83
Relative Humidity (percent) 74.17
Air Pressure (millibars) 997.56
Wind Direction (degrees) 226.45
Wind Speed (knots) 6.89
Cloud Cover: 8/8 Low Stratus
Precipitation: Steady rain
Sunrise 0559
Sunset 2205

Question of the Day

What does NOAA stand for?

Quote of the Day

“Midwesterners make some of the best sailors.” Tim Wright, Captain of the RONALD H. BROWN.

Science Log

Today I’ve conducted several interviews of the ship’s officers, merchant marines, and Chilean channel pilots. I’d like to thank each person for giving their time and for being enthusiastic and open in sharing about themselves and their work.

Interview: Captain Tim Wright

Captain Wright shares with us that growing up as a boy in land-locked Kirkwood, Missouri he loved to read about the ocean and romanticized about becoming a sea-faring man. He joined the Navy at 18 and served in the Vietnam War. After his time in the service he went to the University of Washington and obtained a degree in Physical Oceanography. Captain Wright achieved this rank in October of 2003 and has been the Captain of the RONALD H. BROWN since February, 2004. Captain Wright says that his most important duties are the safety and security of the crew and ship. His responsibility is a 24 hour a day job for navigation and safe overside operations. Captain Wright shares that his most enjoyable time with NOAA was when he worked three years in Paris for the Intergovernmental Oceanographic Commission. It was a time when he could have his family living with him. Another very enjoyable time was his stint as the Captain of the KA’IMIMOANA, a NOAA ship stationed in Pearl Harbor. They deployed buoys along the equatorial Pacific. Captain Wright says he loves his work and wouldn’t dream of having any other career. He highly recommends oceanography and the seafaring life for the person who enjoys the outdoors, adventures, and challenges.

Interview: Navigator Jeffery Shoup

Navigator and Bridge Officer Jeffery Shoup grew up with two older sisters in Oak Park, Illinois. He obtained a Chemistry/Chemistry and Physics Education degree from “Miami of Ohio” in Oxford, Ohio. He considers his responsibilities to be standing watch, driving the ship and laying out the trackline for the scientists. After the scientists turn in a statement telling him where they want to go to do their projects, Mr. Shoup maps out a safe and efficient course for the ship. He has been with NOAA for three years and considers this cruise to be the highlight. Since he left Charleston, he has traveled through the Panama Canal and the Straits of Magellan will be great place to get off the ship. He has also been to the Canary Islands and Iceland. Mr. Shoup says that persons who aspire to the seafaring lifestyle should be independent, self sufficient and able to get along well with others. He says the only negative thing about going to sea is that the family relationships suffer because of your absence for long periods of time. This is Jeffery Shoup’s last cruise. He’s taking a new position in Maryland to work for Search and Rescue Satellite (SarSat). This is where they receive messages from beacons on ships and aircraft in distress. The SarSat beacons use GPS to locate the needy vessel and then personnel proceed with the rescue.

Interview: Ensign Silas Ayers

Junior Officer Silas Ayers grew up in Pennsylvania as one of five children. He has been with NOAA for one year. Before that, he served three years in the Army and attended school for eight years at Westchester University in Pennsylvania where he obtained a Bachelor’s Degree in Earth and Space Education and a Master’s Degree in Physical Science.

Ensign Ayers says that he chose this career and way of life to gain real world experiences to become better equipped for a teaching career. He considers his responsibilities on the ship to be ship safety, damage control, and property accountability. Mr. Ayers says the most fascinating experience for him has been the personalities aboard the ship. “I’m a ‘people’ person not a ‘place’ person.” The human dynamics involved in living aboard a seagoing vessel are fascinating to him.

Interview: Jim Melton

Mr. Jim Melton is a pilot, a lookout and a deckhand. He is a merchant marine and works under the Department of Commerce. Mr. Melton grew up in Florida and has been going out to sea since he was about three years old. He graduated from the University of Florida in 1970. Mr. Melton has a colorful and exciting life of doing all sorts of work such as pipefitting, welding, grooming ski resort slopes, farming, being a real working cowboy, and of course all kinds ship work. He shares that his most fascinating experiences have been at sea. He loves it. But he also shares that it’s not the life for everyone. It’s lonely and hard on relationships. The sad part for a father at sea is not being there to raise your kids. He considers his father to be his inspiration because he was a hard worker, a jack-of-all-trades, and an adventurer.

Interview: Chilean Pilot Luis Holley

Mr. Luis Holley of Reñaca, Chile has been a Patagonian Channels and Magellan Straits pilot for 4.5 years. Before that he was in the Chilean Navy for 33 years and retired at the rank of Captain. Mr. Holley shared with me that before one becomes a pilot he must have certain credentials. These credentials include being an advanced Captain in the Chilean Navy or the Chilean Merchant Navy. He said that they often use the channels for navigation and military exercises. If one has the credentials then that person may apply to the Chilean Coast Guard for the position of pilot. The Coast Guard puts them through a three week course of simulations and real navigation through the passages. There are only 88 channel pilots.

Interview: Chilean Pilot Alex Waghorn

Mr. Alex Waghorn has been a pilot for the Patagonian Channels and the Magellan Straits for three years. He makes 18-20 passes through here per year. Mr. Waghorn shared with me that to become a pilot for these channels you must be ever vigilant, memorize charts and become very familiar with the passageways. He said overconfidence is dangerous and he treats every trip just as if it were his first time.

Personal Log

I awoke at 0530 in eager anticipation of passing through the English Narrows. It is a cold, foggy, rainy morning. I can see my breath. It’s cold enough that even the “die-hards” have to come in to warm up and get a cup of hot chocolate. The English Narrows are narrow. We were so close to the land, I could see the individual leaves of the trees! Just this morning in the span of one hour, I saw more waterfalls cascading down the mountains and plunging into the sea than I’ve ever seen in my entire life! I started to count them, but as the ship rounded every bend, there were more and more of them, so I just gave up on the count and enjoyed the view. I’ve never been anywhere like this before.

There’s something I’ve come realize about the RONALD H. BROWN: this is a boatload full of map-lovers! I’ve never been so surrounded with people, like myself, who love to read maps. They are magnetically attracted to maps. And when they’re reading a map, it’s like they’re being transported to that place and can visualize it as though they are really there.

It’s ironically funny that yesterday, I was on the bridge and I spied a new and different kind of map. So I strolled over to get a closer look. It was a detailed chart of the Patagonian Channels and the Straits of Magellan! I smiled and said, “I want a map like that!” Ensign Ayers said, “You and everyone else on this ship.” I realized I wasn’t the only person who had an interest in that map. I soon discovered that these maps are printed especially for the Chilean pilots who guide ships safely through these passageways. Hopefully, there’s a way to get my hands on a copy.

Now, wouldn’t that be something? ?

This evening as I sit here and ponder all the day’s happenings, I think about the remoteness of this place. How we’re one little ship seemingly in the middle of nowhere. The land and water and sky are beautiful and cold and cloudy and ………….. empty of people. I look at those massive, worn, eroded mountains with snow and blue-hued glaciers and realize that I can’t even fathom the magnitude of the powers that have formed them. It causes me to recognize my place. The reality is I’m weak and small and made of dust. And that I have absolutely no jurisdiction over the driving forces behind the natural cycle of Earth. The Earth is essential for my fleshly existence but I’m not at all essential for Earth’s existence.

Until tomorrow,

Mary

Mary Cook, January 3, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 3, 2005

Location: Latitude 45°49.53’S, Longitude 75°03.22’W
Time: 0930

Weather Data from the Bridge
Air Temperature (Celsius) 11.90
Water Temperature (Celsius) 13.55
Wind Direction (degrees) 343.52
Wind Speed (knots) 5.85
Relative Humidity (percent) 66.50
Air Pressure (millibars) 1016.06
Cloud Cover 6/8 Altocumulus
Sunrise 0615
Sunset 2152

Question of the Day

What is phytoplankton?

Quote of the Day

“Dream no small dreams for they have no power to move men.” Johann Wolfgang von Goethe

Science Log

This afternoon I interviewed Co-chief Scientist, Julio Sepúlveda, an oceanography graduate student from the University of Concepción. Julio did his Master’s thesis work for eight months at Woods Hole Oceanographic Institution in Massachusetts. In April, he’s leaving for Germany to spend three years continuing his education toward a PhD. in marine organic geochemistry. Julio has been kind enough to further explain the work they’ve been doing onboard the RONALD H. BROWN. The Chilean group of scientists include Pamela Rossel, Sergio Contreras, Rodrigo Castro, Alejandro Avila, and Luis Bravo. He says that their work has two parts: the water column process and the sedimentary record. The water samples and the sediment traps give a “picture of the moment”. They conducted the transect of samples starting at the shallow coastal waters and moving into the deeper offshore waters. These samples will provide a gradient of the nutrient concentrations at the Bay of Concepción which is part of an active upwelling location. To put it simply, they are looking at how the phytoplankton (plant-like microscopic organisms) uses the nutrients in the water. In particular they are looking at the nitrogen stable isotopes (nitrogen atoms with different masses) and their concentrations. They are trying to see how this is related to El Niño which greatly affects Chile and many places around the world. Julio explained that normally the upwelling brings cooler water containing nutrient-rich materials up to the surface. During El Niño events, the upwelling brings warmer, less nutrient-rich waters to the surface. This changes many things including the weather. The causes of El Niño are multi-varied air-sea fluxes that are not fully understood. In the last ten years the scientific community has been especially interested in knowing the possible influence of global warming in the El Niño variability. It seems that its frequency is changing and several articles indicate that El Niño is occurring more often. So their research provides a few “pixels” for capturing the entire “picture” of El Niño.

The second part of their research involves the core samples. The purpose of the core sampling is to collect the layers of sediments on the ocean floor. Julio described the layers to be like pages in a history book. Each layer tells the “story” of what was going on in the water at that location during that time. They are also looking at the degradation of the organic matter in the core samples. So, Julio says the water samples tell us about the present and the core samples tell us about the past. Using these methods of research, it is their intention to better understand the history of El Niño and better predict future El Niño events.

Personal Log

This morning we entered the fjords! Several of us were up and outside on the deck at 0630, “ooohing” and “aaahing”, taking pictures even though it’s very cold and windy out there. It is an irresistible attraction. We’re passing by the peninsula Tres Montes and we’re headed for the Bay of Tarn. All morning we’ve been sailing by emerald forest-covered mountains and black craggy rocks that have been eroded into peculiar shapes by the waves relentlessly smashing against them. The clouds are ominous and hanging low. The albatross are soaring with wings spread wide. An occasional whale sends a plume of spray into the air. I want these scenes to be indelibly saturated into my mind’s eye. I never want to forget this. No dwellings. No other ships. It’s just us. Just us and the birds and the whales. It’s good. It’s all good.

Until tomorrow,

Mary

Mary Cook, January 2, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 2, 2005

Location: Latitude 41°47.12’S, Longitude 73°33.42’W
Time: 0830

Weather Data from the Bridge
Air Pressure (millibars) 1012.81
Relative Humidity (percent) 93.61
Wind Direction (degrees) 354.55
Wind Speed (knots) 7.03
Air Temperature (Celsius) 14.46
Water Temperature (Celsius) 11.62
Sunrise 0624
Sunset 2132

Question of the Day

What is a fjord?

Quote of the Day

“Withhold not good from them to whom it is due, when it is in the power of thine hand to do it.” King Solomon

Science Log

It’s raining! I haven’t seen rain since last year. The sky is thick with dark, billowing clouds and gray mist. Occasionally a patch of bright blue breaks through. But it only takes a few minutes until it’s eclipsed by a rain cloud. The land on both sides of the channel is shrouded in the mist and looks mysteriously enchanting. Only a few people onboard have ever been this way before and everyone is excited. Even these salty sailors are energized. Seals are popping up and playing all around. It looks like they’re chasing each other. We’ve passed a couple of small fishing villages and there are some ferryboats in the channel. The Chilean pilot told me that we’re in a very interesting place because of the strong current. Our ship is traveling against a three knot current at this time and they’ve brought more engines online just in case we need them. He said the current can get as high as eight knots! I heard Captain Wright say that the last time he was through here the ship was going with the current and traveling at 21 knots!

Bruce, the boatswain is now on constant anchor alert. There are many potential hazards when traveling the narrow channels so all hands must be prepared for anything.

I’ve been standing outside in a sheltered place under the ladderways for about an hour. At first it didn’t seem cold but as time went by I felt the chilly dampness in my muscles and had to zip up my jacket and put on my hood.

Something I’ve learned about this ship is that even when the scientists aren’t actively conducting research projects, science is always going on aboard the RONALD H. BROWN. At the top of every hour they always record the weather data, which includes about 50 entries, and then send it in to the National Weather Service every six hours. If the ship is within 200 miles of the coast of the United States or Canada or within 300 miles of a named tropical storm or hurricane they report every three hours. They record the ship’s location and speed, plus wind factors, temperatures, pressure, clouds, precipitation, wave size and directions, swells, and presence of ice. It seems to me that everything is written in code. They have the “Ship’s Synoptic Code Ready Reference” lying nearby and make use of it when filling out the charts. This information is entered into the National Weather Service computers and used for weather forecasting.

Personal Log

There’s a festive atmosphere throughout the entire ship. Everyone’s smiling and walking with a little extra spring in their step. These seasoned sailors are like little kids on Christmas morning, their eyes sparkling with anticipation. They’re out on the deck with their binoculars looking over the pastoral scenes of green rolling hills dotted with colorful houses and farms and churches connected by winding dirt roads. One of them said, “Just give me ten acres with a little house and I could settle down and live right here.” Several nodded in agreement. Then they spotted the big snow-capped mountains in the distance! Their dreams of settling down seemed to evaporate into thin air as their attention had been captured by the majestic and forbidding.

Our course is taking us through the Gulf of Corcovado and we’re just now passing the volcanic mountain for which the gulf is named. The pointy, snow-capped mountain is Mt. Corcovado and it stands 2300 meters in elevation which is about 7000 feet high.

The water is so smooth in this gulf that I can barely tell the ship is moving. It’s great! Seasickness is but a distance memory.

Officer Ayers just told me that I missed a fabulous display of bioluminescence last night about 0200. I said that I’d just stay up all night tonight so I could see that for myself. Then watch-stander Melton says, “Oh, now you want to be awake and out at 0600 tomorrow because we’ll be entering an extremely narrow channel. You can’t be sleeping through that.”

Decisions. Decisions.

Whales on the starboard bow! I ran out and saw three waterspouts and one tail. Pretty cool.

Tomorrow, my students and co-workers will be returning to school from their Christmas break. I hope they’ve all had a good vacation and come back with renewed energy and smiles. I can’t help thinking about them and wishing they could be out here in this never-ending, ever-unfolding story of exploration.

Until tomorrow,

Mary

Mary Cook, January 1, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 1, 2005

Happy New Year!!
Feliz Años Nuevos!!!!

Location: Latitude 37°47.97’S, Longitude 74°02.84 W
Time: 1000

Weather Data from the Bridge
Relative Humidity (percent) 91.44
Air Pressure (millibars) 1015.72
Air Temperature (Celsius) 17.28
Water Temperature (Celsius) 17.58
Wind Direction (degrees) 212.20
Wind Speed (knots) 12.20
Cloud Cover 8/8 Stratus
Sunrise 0638
Sunset 2120

Question of the Day

What causes seasickness?

Quote of the Day

“The best portion of a good man’s life is the little, nameless, unremembered acts of kindness and love.” William Wordsworth

Science Log

All the Chilean scientists plus Jordan Watson from Scripps and the ship’s wage crew are all sleeping soundly after their 48 hour marathon project of collecting water and sediments. They will continue collecting surface water every 30 minutes of latitude but the ship will not stop for these collections.

Sometime tonight we will meet up with the pilots who will safely guide the RONALD H. BROWN through the inside passages. There will be two pilots so that one will be on the bridge at all times.

Today, Les Cruise shared with me that it is a seafaring tradition that the first log entry of the year for the ship should rhyme. So I want to share with you the first log entry of 2005 for the NOAA ship the RONALD H. BROWN.

Underway in the South Pacific 2004 was terrific.
Collecting mud on station six, all three thrusters in the mix.
Punta Tumbes, bearing 119º, at 34 nautical miles away is the closest point of land, in accordance with the Ronald Brown science plan.
All our lights are burning fine and our bow thruster is on line.
Main Power Diesel Generator Two keeps us going through and through.
Ship Service Diesel Generator Five gives us power to survive.
Auto-Positioning is how she sits, on a heading of 206°.
The sky is clear, I will not lie, Watch-Stander Melton is standing by.
Engineer-on-Watch Jacobson is down below, making sure the engines go.
Maneuvering various courses and speeds for sediment trap recovery, maybe there will be a new discovery!
Multiple personnel working in accord have brought the sediment trap aboard. Main Power Diesel Generator Three on line to help us make good time.
Increase speed 700 rpm, Auto track mode now as then.
190° is the way we go. Bow thruster power taken to zero.
Security round complete. That Jim Melton, he’s pretty neat.
Lt. Jones has the deck and conn ensuring the ship carry on.
13.3 nautical miles is our distance run. Hope 2005 will be fun! ”

Personal Log

This evening, my seasick queasiness is much better. I took the medics advice which was, “Stop looking at the computer and go to bed in a dark room. And stay there!” He was right.

But as a consequence of taking his advice my personal log is severely lacking. Most of the time, I’ve been in my stateroom, snuggled under a blanket looking at the backside of my eyelids.

Until tomorrow,

Mary

 

Mary Cook, December 31, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 31, 2004

Location: Latitude 36°13.8’S, Longitude 73°31.25’W
Time: 0830

Weather Data from the Bridge
Wind Direction (degrees) 206.36
Wind Speed (knots) 3.94
Air Temperature (Celsius) 15.50
Water Temperature (Celsius) 14.58
Relative Humidity (percent) 96.10
Air Pressure (millibars) 1015.21
Cloud Cover 3/8 Altocumulus and Cirrus
Sunrise 0639
Sunset 2114

Question of the Day

Why are the daylight hours getting longer as we travel southward?

Quote of the Day

“Information is the commodity of science.” Kevin Sullivan

Science and Technology Log

No stargazing last night due to cloudiness. So I’ll try again some other night.

Today we’ve been hovering in one place for six hours waiting on the drifting sediment trap to do its thing, which is to trap sediment.

We’re farther from land and in deeper water so it takes longer for the trap to collect a sufficient amount of sediment. They’ve just gotten it out of the water so now we’ll transit for about two hours to the next station and hover there for about eight hours. At this station they will deploy the bigger, heavier core sampler that looks like a 4 meter-long hollow rocket. It will go down to about 1000 meters depth and gravity will ram it into the mud. The layers of sediment will fill the hollow tube then it will close under the pressure as it is brought back to the surface by the winch.

This afternoon as we hovered in one place, the seagulls gathered around the ship for a siesta. There were hundreds of them just sitting in the water like ducks. It was almost like they were waiting to see what we were up to. It was interesting to watch them take to flight from the water. They’d spread their wings and begin flapping. But that wasn’t providing enough lift so they’d start paddling with their feet. It looked they were walking on water!

Finally, up they’d go, soaring through the air and then swooping down, gliding just above the water’s surface.

Personal Log

Today, I’ve been moderately seasick. I think it was the 10-12 feet swells passing under the ship as we hovered at station. The seasick medicine made me drowsy so I’ve spent time lying down in my stateroom off and on all day.

At 0230 in the morning we are supposed to make the turn due south and steam toward the inside passages! I’m ready to move on.

I eagerly anticipate traveling the same paths as the great explorers of Ferdinand Magellan and Sir Francis Drake. We’ll meet up with the pilot who will board the ship and take us safely through the narrow straits.

This is the last day of 2004. As I reflect back on my life during the past year I can’t help but know I’m blessed. With a wonderful family and circle of friends that love me, a good job and great co-workers, good health and great opportunities to live life abundantly. And for all this I am deeply thankful. Of course, we all know that life isn’t always smooth sailing. We all have struggles. Some are life and death struggles, some are relational struggles, some are financial struggles, and some are spiritual struggles. This journey in the Pacific has been more than an adventure for me. Being removed from my comfort zone has compelled me to contemplate. Contemplate just about everything. There’s one phrase that keeps coming to my thoughts over and over again. “It is more blessed to give than to receive.” And I don’t think this means money or other material possessions. I think it means giving of self. This is a much greater challenge, for me anyway. I want to absorb this into my life philosophy for the coming year and for always. I fully realize that I do not know the depth to which I may be called upon to live out this truth, but I have confidence that the future is brighter with this mind set.

Happy New Year!!

Until tomorrow,

Mary

p.s. Happy Birthday, Diane!

Mary Cook, December 30, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 30, 2004

Location: Latitude 36°21.31’S, Longitude 72°59.65’W
Time: 9:15

Weather Data from the Bridge
Air Temperature (Celsius) 14.33
Water Temperature (Celsius) 14.81
Air Pressure (millibars) 1015.24
Cloud Cover 3/8
Cloud Type: Stratus
Wind Direction (degrees) 325.6
True Wind Speed (knots) 1.26
Sunrise 636
Sunset 2112

Question of the Day

What is a light year?

Positive Quote of the Day

“The influence of each human being on others in this life is a kind of immortality.” John Quincy Adams

Science Log

Last night I went up to the bridge at about 2300 hours. Vickie, Jeff, and Jackie were stargazing in search of the Southern Cross. There it was, almost directly in front of the ship! It had just risen over the horizon and looked more like a baseball diamond than a cross. We also spotted Alpha and Beta Centauri. At about 4.3 light years away, these are among the closest stars to Earth other than our Sun. Vickie also pointed out Orion with his belt of stars and the seven sisters called Pleiades. I’m going to get out my textbook and read up on the Magellanic Clouds because I’m wondering if we can see those from here. Then Jackie looked over the edge of the ship in the wake and caught a glimpse of some momentary flashes of light! Bioluminescence! I stood there pressing my face against the window staring at the darkened waters waiting patiently for some more microorganisms to glow. Sure enough it happened. They looked like little sparks of lightening in a cloud. It happened several times. I’ll definitely be back on the bridge again in search of more wonders of the sea at night.

For this leg of the journey, I’ve been moved to a different stateroom. I’m now down below in the science quarters. The sounds are different down here. I can hear the water splashing up against the ship’s hull. It sounds like I’m in a perpetual carwash!

It’s a soothing sound, though. I slept like a bear in hibernation.

Today begins the science operations. Right now, the scientists are on the fantail preparing the drifting sediment trap with its radar-reflector, floaters and nighttime strobe light. We’ll deploy the instrument then leave it while we make a short transit to the next station for CTD casts and core sampling. Afterwards, we’ll return and retrieve the sediment trap. According to the work plan, we’ll do this same thing at six different locations across the continental shelf and slope off Concepción, Chile. Most of the CTD casts are in fairly shallow water with the deepest one going down to 980 meters. These scientists will be working 48 hours non-stop.

It’s beautiful here in the Bay of Concepción. The water is so smooth and glistening in the sunshine. We’re nearly surrounded by a crescent-shaped coastline and we can see houses, forests, and other ships. This afternoon, we saw several ghostly-white jellyfish pumping their way through the water. Jim pointed out little anchovies swimming nearby. Yum!

I spoke with Kevin Sullivan of the NOAA research branch in Miami and Jordan Watson from the Scripps Institution of Oceanography. They patiently explained some of the science to me. And I really appreciate that.

This is how the drifting sediment trap works. After the instrument collects the sediments from the water near the surface and is retrieved, it will be set aside for a few hours to allow the sediments to settle to the bottom of the tubes. Then a lever is turned that empties the sediments into bottles containing a preservative. Sediments can be particles from the air like dust or particles from the ocean such as little deceased sea creatures called diatoms.

The Rhumor gravity core sampler is basically a one meter long hollow tube with heavy weights attached to the top. After being lifted by the winch, it is slowly lowered into the water. When the tube gets about 10 meters from the ocean floor it is lowered very quickly and gravity rams it into the mud. In this process, the mud layers fill the hollow tube and as the core sampler is raised the pressure closes a valve that keeps the mud from coming out.

I’ve noticed on the SeaBeam readout that the depth here is only about 100 meters. That’s a huge contrast to a couple of weeks ago when we were in waters with a depth of 5000 meters!

It is my understanding that the rationale for their research is to explore the effects of nitrogen distribution and how that affects the marine algae nutrient usage in the present day water column. They are conducting the sampling in this location because of the upwelling that occurs which brings nutrients to the surface and because there are algae present that utilize the nutrients in these upwelling plumes. Likewise, they are interested in evaluating the amount of nitrogen left in the sedimentary record. This will help scientists better understand the history of the oceans.

Personal Log

Today has been a quiet but interesting day. All the science was new to me so I had to pay attention and ask lots of questions. It’s very rewarding to have people around who are eager to share with me what they are doing and the significance of it all in the whole scheme of things. I’ve learned a tremendous lot and my brain is kind of tired. Plus, I miss my mentor. She’s got enough energy for two people! I did take some time to go to the ship’s bow and watch the water skim by and look around for animals. I saw lots of birds and jellyfish. I like watching jellyfish because I never see jellyfish in Arkansas. To me they are intriguing critters because they are transparent. I can see right through them!

Well, I’m headed for the exercise room to rest my brain and work off that cake with chocolate icing that I ate for dessert. Then, after dark, up to the bridge for more stargazing in the Southern Hemisphere!

Until tomorrow,

Mary

p.s. Congratulations Brandon and Becky!

Mary Cook, December 29, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 29, 2004

Question of the Day

What is sediment?

Quote of the Day

“Rust never sleeps.” Dan Wolfe

Special Edition Log: Part 2

We’ve just left the port of Valparaiso and we’re underway, headed for the inside passages and the Straits of Magellan!!! I’ve looked on the ship’s course chart and it’s going to be a great voyage!! We’ll be sailing between islands and there’ll be land on both side of the ship. I expect to see lots of wildlife-hopefully penguins and an albatross or two.

Bruce, the boatswain and Jeff, the chief computer technician have set me up in the science office with a desk, Internet, a big, comfy chair and a phone. And I’ve just found someone’s secret stash of Dr. Pepper’s under my desk. Yep, things are looking good.

I wanted to share with you about the Easter Island Museum that we went to yesterday. This will be my personal interpretation of what I saw since most of the museum’s information was in Spanish.

Easter Island is a volcanic island situated in the Pacific Ocean several hundred miles off the coast of Chile. The indigenous people or Rapi Nui made huge monolithic statues called maori and placed them all around the island. These gods are thought have been put in place for protection and worship. The native people had four quarries from which they extracted the stones and carved the features. Then they slid them into place with wooden rails and ropes. There are only four of these statues outside of Easter Island and one of them stands in front this museum. The Rapi Nui had a complex and organized society led by a chief. They made pottery, arrowheads, harpoon heads, and jewelry. They were great fishermen. It appears as though they had a sophisticated system of ocean navigation with bamboo and seashell “maps” that indicated currents and islands. (I love maps. So seeing this was “way cool”!) Sometime during the 1700’s the first white man arrived. Some of the Rapi Nui were taken as slaves. Different diseases were introduced that spread rapidly throughout the island. And so this was the beginning of the end for their culture. Today, Easter Island is part of the country of Chile and the maori are being restored and preserved as a world heritage site. So, that’s my take on the fascinating museum of Easter Island loaded with its artifacts of history, mystery and intrigue.

Tonight, my plans are to stay up late and go hang out on the ship’s bridge and search the dark waters for bioluminescence. Wow, that’s a big word. Bioluminescence refers to microorganisms that emit light when disturbed. I’ve heard about bioluminescence in the ocean but I’ve never witnessed it. Silas says it’s there almost every night so, hopefully, tonight we’ll see the ocean glow!!!! In Arkansas, we have lightning bugs that flash a glowing, neon green light. When I was a kid I loved catching them and holding them gently in my fist to watch the rays of green light shine between my fingers. It was fascinating, but they smelled like, I don’t know, lightning bugs. Anyway, I’ve heard that the bioluminescence in the ocean can be red or blue or green! I can’t wait. If I don’t see any tonight, I’ll go back every night until those little rascals get disturbed enough to emit a sparkle.

Tomorrow, we begin the scientific work with the University of Concepcion. According to the plan, a drifting sediment trap will be deployed, a CTD rosette cast will be conducted, and a sediment core sample will be taken.

The sediment core sampler looks like a rocket. It’s a long narrow metal cylinder with fins on the bottom. But instead of going up into space, it’s going down into the ocean floor. Co-chief scientist, Julio says it will collect sediments that were laid down thousands of years ago. This will enable them to better understand the history of the ocean.

Before I sign off for the day, I’d like to thank Alvaro Vera of the Chilean Navy for his thoughtfulness and generosity extended toward us during our stay in Viña del Mar. Alvaro invited all the Stratus 5 scientific crew over to his house for a barbeque in celebration of a job well done and the good working partnership between the Chilean scientists and the American scientists. It was great food and great fun-another fine example of Chilean hospitality.

Until tomorrow,

Mary

Mary Cook, December 28, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 28, 2004

Question of the Day

What type of mountains are the Andes mountains?

Positive Quote of the Day

“I not only use the brains that I have, but all that I can borrow.” Woodrow Wilson

A Special Edition Log

This afternoon concluded my shore leave for Christmas. I have returned to the NOAA ship, RONALD H. BROWN. It felt good to walk across the gangplank-almost like home. Well, maybe not as good as home, but still I’m happy to be back. It’s going to be different because my mentor, Diane and all the scientists that I worked with have returned home. I already miss them. But the ship’s crew welcomed me aboard with smiles and inquiries about what I did on shore leave. I’ve met the co-chief scientists of the new science crew onboard, Kevin and Julio. They’ll be conducting CTD casts, sediment core samples and water sediment samples. I look forward to observing and helping out with these new science research projects.

My days in Valparaiso and Viña del Mar were wonderful. What an interesting and beautiful place. The cities are wedged in between the mountains and the ocean. The colorfully painted homes are built on the steep slopes and seemed to be stacked on top of each other. The streets are very steep and narrow. Every nook and cranny has something built in it-a doorway, a walkway, a stairway, a little garden or maybe a parking place. It’s seems that there is no space left unused. And I must say, the canine population is alive and well here, too. Everyone has a dog or two or three. Valparaiso and Viña del Mar have funiculars that carry pedestrians up and down the steep hillsides. The Chileans call them ascensors. A funicular is like a short railway that keeps the passengers in an upright position as it moves up or down the slope. The arrangement is two parallel tracks with a rail-car on each track. The two cars are connected by a cable and when one ascends the other descends. These funiculars are old. I saw 1887 engraved on the entrance of the Concepción funicular. They are also small with a maximum capacity of seven passengers! We searched out and rode three different funiculars, each being brightly painted with its own special design. The ride takes about three minutes. These really are short railways!

At night, it’s amazing to see all those city lights twinkling across the slopes and frankly, it’s mind-boggling to me to think about how many people live in such a congested area.

But the Valparaisians do it with finesse and great style. I’ve come to discover that the Chileans are very proud of their country, both their diverse culture and beautiful landscapes. As a result, they are a hospitable and courteous people who love to share and help others experience the depth of Chile’s wonders.

Christmas Day was a special day for me. It was definitely not the traditional Christmas with family, turkey and dressing, pumpkin pie, and gift-giving. For which, I have to admit, I felt a little reminiscent. I’ve realized that one of my favorite Christmas memories is seeing the pleasure in my mother’s face as she hugs all her kids, grandkids, great-grandkids, and the one great-great! Plus, I missed her famous fruit and nut roll made with vanilla wafers. (Mom, save some back for me until I get home.)

Well, on to my Christmas Day. It was very special to me because Diane, Jeff, Jason and I went hiking in the Andes Mountains across the border into Argentina. At over 10,000 feet, it was breathtaking in more ways than one. Having spent most of my life at about 200 feet elevation, hiking in these mountains was a shock to my system, to put it mildly. I was sucking in air like a vacuum cleaner! But I loved every minute of it. I think the sky is bluer, the snow is whiter and the mountains are more magnificent when the oxygen is thinner. We were following a dirt road up Santa Elena Mount (approx. 12,000 feet) in hopes of reaching the top where the “Christo Redentor” statue of Jesus with outstretched arms is overlooking the two countries of Chile and Argentina. We were just about to abandon our quest due the lateness of the day, when Diane rounded the corner of a switchback and gasped. There it was! We cheered and hugged and wished each “Merry Christmas”. Diane burst forth into song. Even though my body was relentlessly demanding more air, my fatigue had mysteriously left me. It was great to be on top and look out across the mighty expanse of the Andean mountains and valleys. We even caught a glimpse of Acongagua, the highest mountain outside of the Himalayas. Beautiful. Magnificent. Glorious. You know, sometimes there just isn’t a word to convey the feeling. As I reflected on what Christmas means to me, I thought how appropriate to be on a journey on Christmas Day in search of the symbol of peace and goodwill to all men.

As we began our descent, a beautiful blue-eyed, thick-furred dog took up with us. We thought he was hungry so we fed him some beef jerky sticks. That sealed our friendship and he was our constant companion for the next six miles to the border crossing. We tried to get him to go back but he was persistent and wouldn’t leave our side. I named him “Balto” after the famous sled dog from Alaska. “Balto” was a pleasure. When we sat down to rest, he’d sit down to rest and snuggle right up next to one of us with this look of contentment on his face. Sometimes he’d put his wet nose right up to ours. When we came to a waterfall he detoured to get a quick drink and then ran to catch up with us.

We knew “Balto” was someone’s pet because he was well-fed and such a gentle creature.

When we got to the border crossing and presented our papers to the officials, “Balto” was also met by the obviously self-appointed “canine border patrol” – a band of five not-so-friendly dogs. Did he back down? No way. “Balto” is definitely an alpha-male. Before we knew it “Balto” had trotted into the customs building like he owned the place!

We stopped in a nearby hostel for something warm to drink and then loaded into the car and headed back for the Hotel O’Higgins in Viña del Mar. As the full moon continued its path across the darkened sky, we trudged into the hotel, dusty, sunburned and exhausted, ready for a peaceful sleep on that Christmas night in central Chile.

Happy Holidays!

Until tomorrow,

Mary

Mary Cook, December 22, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 22, 2004

Location: Latitude 31º58.92’S, Longitude 73º01.21’W

Weather Data from the Bridge
Relative Humidity (percent) 88.87
Air Pressure (millibars) 1012.32
Air Temperature (Celsius) 16.59
Wind Direction (degrees) 228.6
Wind Speed (knots) 16.9
Wind Speed (meters/sec) 8.66
Sunrise 0643
Sunset 2058

Question of the Day

What is the highest mountain outside of the Himalayas?

Positive Quote of the Day

“The air doesn’t even know its own temperature.” L.F. Richardson

Science and Technology Log

Actually, not much science happened on the ship today because everyone’s packing up and getting ready to off load tomorrow morning. The last radiosonde was released at 1600. We had an All Hands meeting with Captain Wright in the library. We were given instructions about disembarking and when to return to the ship.

It has been very sunny today. I think we have finally left the stratus cloud layer!!!! Bob Weller told me that today’s sunset was a good opportunity to see the green flash. I have never seen a green flash! I can’t wait!

Personal Log

This morning, out on the fantail, Diane videotaped me recapping the last three weeks of my life at sea. It’s hard to recap something of such magnitude. I’ve been putting it off for a couple of days because I just didn’t want to think about it being over. Besides, how do I condense it? Diane recommended that I focus on the highlights. It’s funny because everything has been a highlight. Of course, recovery and deployment of big buoys would be on everyone’s highlight list. And that was amazing. Just to think about being with the world’s best oceanic and atmospheric scientists who are deploying the world’s most sophisticated instrument for studying air-sea interactions is both humbling and exciting. The coordination of scientists, crew, and officers was really something to see. But what nobody knows is, that for me, just finding out how an acoustic release works was a highlight. And watching the SeaBeam as we passed over the Nazca Ridge. And holding the miniature cups for the first time. I’ve never touched anything that’s been 9000 feet down in the ocean. And watching the graph develop on the computer as the radiosonde flew up into the clouds. Having all those squiggly lines explained to me in a fashion where they now have meaning and substance was enlightening. When they deployed the Chilean Tsunami Buoy, I couldn’t help but think about how many lives this obscure little buoy could help save. Just gazing out over the ocean and letting my spirit soar has been wonderful, inhaling some of the cleanest air on Earth. There are so many monumental things that have happened to me in the last three weeks. My heart swells with gratitude to be given this opportunity. I have to say that the absolute most meaningful occurrence in the scientific realm to me was tossing the drifting buoy that my students have adopted. Our school’s logo and all their signatures are out there somewhere on that little drifter. Our little drifter. When I tossed it into the ocean I felt as though I was giving all my students a gift. A gift of opportunity and challenge. I’ve decided to name the little drifter Bob, for two reasons, the drifter is bobbing around at the ocean’s surface plus the Chief Scientist who requested a Teacher at Sea is named Bob. We’re going to put a big map up in the hallway at Southside Middle School entitled “Where’s Bob?” Each morning Bob’s latitude and longitude will be announced and plotted on the map. Bob Weller has been so helpful and willing to answer all my questions and helped ensure that I got involved in every scientific work done on the ship. Dr. Bob Weller is a big reason why the opportunity was opened up for a Teacher at Sea to participate in the Stratus 2004 cruise. Had he not requested that a Teacher at Sea be onboard then I would still be back in Arkansas eating Christmas candy, watching football, and hoping for a snowflake.

Of course, I’ll never forget those rip-roaring RHIB rides!

And still, I’ve yet to mention the human side of this experience. I’ve loved meeting all these people, each with their own special qualities that make ship life such a dynamic process. There’s not enough space to mention everyone’s name but each person on this ship contributes in a vital way. It may be washing the dishes or mopping the floor or operating the winch or taking pictures of clouds or standing watch. It’s all important and the people doing those jobs are valuable. The officers, marine crew and scientists all have my respect and admiration. Something I’ve noticed about everyone on the ship is that they have a refreshing spirit of exploration.

There’s no way I can recap this cruise without mentioning my mentor, Diane Stanitski. Not long after we met and the very first day onboard, she said (in her excited and bubbly way) “We’re going to write a book about this cruise! You’ll write it. Bruce will illustrate it. I’ll edit it.” I thought to myself, “Lady, you’ve got to be kidding.” But I smiled and said, “Sure, that sounds great.”

Now looking back, I can see that was a foreshadowing of things to come. Not just the book but everything else, too. Diane has helped me get the most out of being here. I mean, squeeze every bit of information, joy, and opportunity out of this experi

ence. “Redeem the time” must be her motto. She made sure that I knew what was going on and helped me understand the science behind it. Just like a good teacher, she showed me, told me, modeled proper technique for me, then, let me go on my own.

I knew that I liked Diane before I ever met her. On the NOAA Teacher at Sea website I had read her logs from a couple years back while she was in Hawaii. There was one scenario that conveyed her personality in such a way that I knew she would be a great person to work with. She wrote in her log about taking a RHIB ride to the buoy. The buoy needed repairs. Someone had to climb up on the buoy while it was bobbing in the ocean and fix it. A dangerous feat, I’d say. Anyway, Diane volunteered. In her log entry when she was writing about it she said, “Mom, don’t read this part.” I instantly admired her for considering her mother’s feelings even though it had been an exciting adventure for herself.

Diane has been a great mentor and I’m glad to say that, in her, I have found a new friend with a kindred spirit of adventure and yearning to live life to its fullest.

I have been truly blessed to have been a part of this whole operation.

After tomorrow, all the scientists will have left the ship and be going back home. I will spend a few days ashore then I will re-board the RONALD H. BROWN and continue on to Punte Arenas! I’d like to thank my school, the ship’s captain, and NOAA’s offices for given me this extended opportunity of a lifetime. This is my last log for about 5 days. When I return to the ship I’ll resume sending pics and logs once again. So tune in next week, same time, same station!

Until next week,

Mary

Mary Cook, December 21, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 21, 2004

Location: Latitude 26º56.06’ S, Longitude 72º17.13’ W

Weather Data from the Bridge
Relative Humidity (percent) 75.05
Air Temperature (Celsius) 17.08
Water Temperature (Celsius) 17.88
Air Pressure (millibars) 1015.65
Wind Direction (degrees) 205.79
Wind Speed (knots) 13.98
Wind Speed (meters/sec) 7.01
Sunrise 0652
Sunset 2042

Question of the Day

What does RADAR stand for?

Wayne’s Question of the Day

Are we there yet?

Positive Quote of the Day

Excellence is an art won by training and habituation. We do not act rightly because we have virtue or excellence, but rather we have those because we have acted rightly. We are what we repeatedly do. Excellence, then, is not an act but a habit.” Aristotle

Science and Technology Log

Today is both the longest and shortest day of the year! How can that be, you might ask? Today, December 21st has the longest daylight hours in the Southern Hemisphere and the shortest daylight hours in the Northern Hemisphere. This day is called the Solstice-the summer solstice down here and the winter solstice up there. The sun reaches its highest point in the sky for the southern hemisphere and its lowest point in the sky for the northern hemisphere. It’s the first day of summer here in Chile and the first day of winter back home in the United States! Today, the sun is almost directly overhead here at 26º S. But as Frank Bradley said, “It would really be nice if we could see it, wouldn’t it?” We’re still under the consistent stratus cloud deck so we haven’t even gotten a glimpse of the sun today.

Diane and I completed our first draft of the “Teacher at Sea” book and the special reading in the library went fabulously!

Personal Log

I have to tell you that the “Teacher at Sea” book has been a cathartic process for me. The book features Miss Cook, NOAA’s Teacher at Sea. It begins at Southside Middle School with Miss Cook and her students getting the good news of being selected for the Teacher at Sea program. Then the story follows her as she has all the wonderful experiences with the scientific work being done aboard the RONALD H. BROWN over a three week period. So during all this writing and rewriting and rewriting and rewriting we’ve had to review and analyze many things. On the last page we wanted to convey Miss Cook’s feelings as she returned home to her students. So how do you do that? How do you convey satisfaction and happiness and exhaustion and feeling blessed? How do you convey that your cerebrum has been inundated with fascinating, cutting edge science? My brain is so full of new information I wonder how long it will take for me to process it into my knowledge base as though it had always been there. Have you ever heard this saying? “The more you know, the more you realize what you don’t know.” I’m constantly saying, “Wow, I didn’t know that.” And I’m constantly thinking how can I make a good lesson plan from this scientific event? I’ve learned all this cool scientific “stuff” and all about ship life and it makes me realize how much more I need to know. I want to know more. And how do you convey that you want to be a teacher that leads her students to achieve their best; a teacher who inspires and guides her students into a higher plane of knowledge and experience?

Tomorrow is the last full day of this cruise. Everyone will be going their own separate ways. This particular group will never be together again. Never.

Until tomorrow,

Mary

Mary Cook, December 20, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 20, 2004

Location: Latitude 26º19.99’S, Longitude 77º07.65’W
Time: 0810

Weather Data from the Bridge
Air Temperature (Celsius) 17.88
Water Temperature (Celsius) 18.41
Relative Humidity (percent) 64.16
Air Pressure (millibars) 1016.86
Wind Direction (degrees) 183.76
Wind Speed (knots) 12.37
Wind Speed (meters/sec) 6.41
Sunrise 0714
Sunset 2101

Question of the Day

What is reverse osmosis?

Positive Quote of the Day

“Never spit into the wind.” Anonymous

Science and Technology Log

The last Argo float was deployed today. Bob Weller gave me the honor of waking it up! Waking up an Argo float is pretty simple. I passed a magnet across the “reset zone”. This triggers the float to inflate. The float is “awakened” a couple of hours before it is deployed.

Diane, Bruce and I continued working on the book. Bruce just has a few touch ups to do on the paintings. Diane and I are almost finished with the text and we’ve completed the scans of the original paintings. We must get finished soon because we’re doing a reading and presentation for everyone onboard tomorrow night at 7:30!

Mike Gowan, the Chief Engineer for the RONALD H. BROWN, gave us a tour of the engine room this afternoon. He said the ship’s engines are diesel/electric. We started in the control room which has a wall of computer screens, buttons and joysticks. They can drive the ship with joysticks from the engine room. But I wondered how they’d see where they’re going from deep inside the ship? There are huge computers and automated compartments through the engine room. I didn’t know the “engine room” was going to be numerous rooms located at different places throughout the ship. Our tour was like a hike from one end to the other going up and down several ladderways. After the control room we went into the engine room. It’s really LOUD in there. We were required to wear earplugs. The ship has six engines and one emergency engine. They provide electricity for propulsion and ship service needs. He showed us some huge canisters of carbon dioxide that are standing ready to be used to smother a fire in the engine room should one occur. Mike told us about the marine sewage device which works on a vacuum principal. When we push the flush button on the head (toilet) there is a great suction sound and all the “stuff” is whisked away! Mike also explained to us how they make water. There are two ways: reverse osmosis and evaporation. The reverse osmosis forces water through a semi-permeable membrane that separates the water molecules from everything else. The evaporation technique uses the excess heat from the ship’s generators to cause the water to evaporate and then the fresh water vapor is condensed and collected for use.

This afternoon was sunny and gorgeous! Diane and I took some time soaking in the warmth, enjoying the fresh air while gazing out across the glistening water. It can be mesmerizing.

This evening we interviewed Bruce Cowden, Chief Boatswain and artist-in-residence of the RONALD H. BROWN. Wow! Bruce has led an interesting life. He’s been working on ships since he was a teenager and started working for NOAA about 15 years ago. He has worked his way up to the boatswain position and he supervises seven people who keep the ship in good working order. They clean and paint all the time. Bruce also oversees the large machinery operations and conducts the buoy deployments. His main job is to make sure that everyone is safe and the equipment is kept in good condition. He has had “Captain Nemo” adventures like driving a one-man submarine at the bottom of the Caribbean in search of ancient fossils! The life of a seaman is not an easy life. He spends about ten months a year out to sea. He also shared with us his artistic hobbies. Bruce is a painter and carver. He showed us the carvings from the Taigwa nut. The Taigwa nut grows in Central America and looks like a small coconut. When carved and polished it looks like ivory. Bruce makes jewelry and whatnots. He is planning to have a craft show when he gets back to South Carolina.

This has been another great day at sea!

Until tomorrow,

Mary

Mary Cook, December 19, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 19, 2004

Location: Latitude 25°07.83’S, Longitude 81°54.62’W
Time: 0830

Weather Data from the Bridge
Air Temperature (Celsius) 19.04
Water Temperature (Celsius) 19.42
Relative Humidity (percent) 56.95
Air Pressure (millibars) 1018.17
Wind Direction (degrees) 155.6
Wind Speed (knots) 15.91
Wind Speed (meters/sec) 7.99
Sunrise 0734
Sunset 2116 (9:16 pm)

Questions of the Day

Why is the sunset so late in the day?

Positive Quote for the Day

“The world of achievement has always belonged to the optimist.” J. Harold Wilkins

Science and Technology Log

We tossed the last of fifteen drifting buoys this morning! It’s not the end, but the beginning of a wonderful new program. I’d say the Adopt-a-Drifter program got underway with a big splash! Teachers and their students around the world can adopt a drifting buoy just like my students at Southside Middle School in Batesville, Arkansas. They can map its path as it goes with the flow of the ocean currents. These drifting buoys also provide sea surface temperature and air pressure. This information can be utilized to gain a better understanding of the global oceans. I watched as Jeff and Bob deployed another Argo float. These floats are lowered over the back of the ship and when the quick-release mechanism comes in contact with the water, the powder in a small device dissolves and this releases a spring that unhinges the float from the straps. The straps are pulled back onboard as the ship leaves the Argo float in its wake.

I sat down and had a conversation with Chief Scientist Dr. Robert Weller of Woods Hole Oceanographic Institution about the importance of oceanic/atmospheric studies. He made some very good points that highlighted the fact that when just 1ºC of heat energy is released from the ocean water into the atmosphere it affects the air flows for thousands of miles. This then can be like a domino effect and continue around the globe influencing weather patterns for people everywhere.

At 2:00 we interviewed Richard Whitehead, Chief Steward. Richard is over the food preparation in the galley. Richard shared that he has been working on ships for over 40 years and has had several trainings for the position he now holds. He said that the menus were developed based on nutritional guidelines and availability of produce. Richard shared with us that they keep the produce fresh for weeks by keeping it very cool and placing it in special bags that slows the deterioration. He also said that there are many safety issues that concern food preparation on a moving ship. All the pots and pans are deep, there are railings on the stovetop, and special care must be taken with knives. The countertops must be covered with anti-slip cloths to keep everything from sliding around. He also said that they consider the weather when deciding what to prepare because you wouldn’t want to bake a cake while the ship was moving through rough waters.

We changed “6:00 Science on the Fantail” to “6:00 Science in the Van on the Bow” because we wanted to interview Jason Tomlinson of Texas A & M about his work with aerosols. First of all, Jason explained that an aerosol is not a spray can. It is a small particle in the air. Jason showed us the Tandem Differential Mobility Analyzer (TDMA). It looks like a mad scientist’s invention with wires, tubes, canisters, and radioactive components! It is one of the best devices in the world for analyzing small particles in the air. It draws in air from outside then dries the air. It then separates the particles according to size. Jason said that these particles are too small to see with the naked eye but they have a great influence on cloud formation and cloud life length. The TDMA can determine what the particles are made of by adding moisture or by adding heat. The TDMA costs about $70,000! He also showed us the Aerodynamic Particle Sizer (APS) which analyzes larger particles. They mostly get sea salt and dust out here in the ocean. Jason said that there’s a mystery about the sea salt and its influence on clouds. The APS costs about $35,000. He also said that occasionally they take in the ship’s exhaust and that destroys their data for that particular time. He concluded by saying that it all gets back to climate change and using these data to make better models for predictions.

After our interview with Jason, we ran outside to glimpse San Felix and San Ambrosio Islands! Our first land sighting in over two weeks! These small islands, located about 300 nautical miles from Chile, are volcanic in origin. They are basically huge, desolate rocks protruding up from the ocean floor. As far as I could tell nothing is growing on them. Seafaring birds do nest on the cliffs. Since 1975 the Chilean Navy has had an installation on San Felix Island where they operate a short airstrip, a weather station and a tide station.

Personal Log

I’m just beginning to realize that this trip is nearly over. We only have four days left. I knew it wouldn’t go on forever but as the old saying goes “time flies when you’re having fun”. What a superb voyage this has been for me-a voyage that is continuing my personal quest to search out the majesty of Earth. In doing so it is my heart’s desire to absorb the inexplicable magnificence of our Earth. I want to be permeated with awe for the splendor as I soak it in with my eyes and ears and nose and skin. I am amazed. How can I take it all in? Where was I when the Earth was formed and hung in the nothingness of space? From where did this splendor come? Clouds and rain and snow and hail are amazing! Mountains and valleys and canyons and caves are amazing! Oceans and rivers and glaciers and springs are amazing! Rocks and minerals and soil and sand are amazing! People and animals and languages and ideas are amazing! And they all work together in a symphony of overwhelming magnitude. I believe that we’re all an inextricable part of this grand masterpiece. Traveling is not the essential element in a voyage. Life is a voyage no matter where you are. Our voyage is how we perceive our surroundings, how we face our challenges, and how we come to Truth. Actually, none of us ask for this voyage called life. We’ve been thrust into it by forces greater than ourselves. So here we are. We do have some choices, though. Will we make the most of this journey or will we let it sweep us along without ever wondering, and questioning and being amazed?

Until tomorrow,

Mary

Mary Cook, December 18, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 18, 2004

Location: Latitude 22°16.32’S, Longitude 86°10.94’W
Time: 8:30 am

Weather Data from the Bridge
Air Temperature (Celsius) 19.46
Water Temperature (Celsius) 19.81
Relative Humidity (percent) 69.46
Air Pressure (millibars) 1016.99
Wind Direction (degrees) 123.54
Wind Speed (knots) 15.73
Wind Speed (meters/sec) 7.20
Sunrise 07:57
Sunset 21:27 (9:27 pm)

Question of the Day

What does a psychrometer measure?

Positive Quote of the Day

For where your treasure is, there will your heart be also. Jesus Christ

Science and Technology Log

Today Diane and I journeyed up to the bridge struggling against the strong winds and the lurching of the ship. We interviewed Ensign Silas Ayers and “Pirate” Jim Melton. Silas gave us instruction on ship safety and navigation. He said the two most important things in navigation are: don’t hit anything and don’t run aground. Silas showed us how they plot the ship’s course on a map/chart and all the navigational instrumentation. The RONALD H. BROWN has radar that ranges up to 96 miles but it is set for 24 miles at this time. The radar is used to detect other ships that might be in our path. He also showed us the autopilot computer and controls. They can set the coordinates and the ship will drive itself!!! Of course someone has to stay on the bridge at all times, because as everyone knows computers have glitches that could cause a malfunction. That could be a disaster. Something that I find fascinating is that this ship can hover in one place! It’s officially called dynamic auto positioning. They set all the thrusters at a specific setting and the ship stays in one place. He then explained the ship’s lights. The ship has a red light on the port side and a green light on the starboard side. These lights reveal our ship’s location to other ships and enable them to ascertain our heading by watching the movement of our lights.

There’s another series of light signals that communicate the ship’s condition. For example, when we hover to do a CTD cast, the ship displays a set of red/white/red lights that tell other ships we are unable to make quick maneuvers. There’s also a set of lights that means man overboard. Another cool thing on the bridge was the spinning window. Yep. I said spinning window. It wasn’t spinning today but it can spin. (I hope they weren’t pulling my leg.) The purpose of the spinning window is to reduce ice buildup on the glass.

“ Pirate” Jim Melton shared with us the lookout duties. He keeps a watch that scans the horizon constantly. Jim uses an alidade. An alidade is a telescopic instrument that has a special swiveling balance that can compensate when the ship rolls, pitches, or yaws.

I looked through the alidade and saw a line across my field of vision. Jim said that they use that line as a reference point and they can determine the size of the ocean swells. Everyone working on the bridge must also report the complete weather data to NOAA every hour.

Before we finished, I sat in the captain’s chair and scanned the horizon for whales and other ships at sea!

Late this afternoon, Diane and I continued working on the children’s book. Bruce Cowden, the illustrator, is producing artwork faster than we’re writing the story! So we’re feverishly trying to catch up. It’s fun writing with Diane. She has a bright mind and she has a genuine excitement for atmospheric and oceanic science.

Tonight at “6:00 Science on the Fantail”, we interviewed meteorologist Dan Wolfe of the Environmental Technologies Laboratory in Boulder, Colorado and Frank Bradley physicist/ meteorologist of Australia’s Commonwealth Scientific and Industrial Research Organization. They have been studying clouds, precipitation and humidity, as well as launching radiosondes (weather balloons) 4-6 times a day. Dan explained how the radiosondes work. The instrument package records temperature, pressure, and humidity as the helium-filled balloon ascends into the sky. The radiosondes have a GPS antenna that transmits its location and another transmitter that communicates the data being collected back to the computer in the lab. All of this information is compiled to help develop a “picture” of the atmosphere in this region which has never been thoroughly studied. This information can then be used in making models for more accurate weather prediction.

Frank Bradley shared with us his work which has been in collaboration with Dr. Bob Weller and Dr. Chris Fairall for the past 20 years. Frank showed us the somewhat “old fashioned” Assman psychrometer that he uses to take the wet bulb and dry bulb temperature readings several times a day. A psychrometer’s temperature readings can be used to determine relative humidity. Frank says that he uses this low-tech instrument because nothing can go wrong. This psychrometer’s readings are then used as a validation of the high tech instruments on board. Frank said that he has studied air-sea interaction, the interface of the ocean and the atmosphere, for many years and considers it a very important area for developing better models to predict the weather.

Personal Log

Wow! I really liked the bridge! It is cool. I don’t know why they wouldn’t let me drive the ship. I mean, come on, we’re out in the middle of the biggest ocean on Earth. What could I run into? And there’s no ground in sight. Actually, there’s nothing in sight. So I’d be satisfying the two most important rules of ship navigation and safety: don’t hit anything and don’t run aground. It seems though, that I remember something about needing a license to drive. I’m not sure.

While on the bridge, I saw that our planned course will take us right by the San Felix islands. It’ll be the first land I’ve seen since December 5! I wonder what that will feel like?

As we near the end of the cruise and it seems almost all the work is done, everyone is reading guidebooks about Valparaiso and planning some excursions. Even though I’m not ready to get off the ship, I am feeling a little excited about seeing a new place. I just love to go to new places and I’ve heard that Valparaiso is one of Chile’s most beautiful cities. Diane and I are deciding what to do during our two days there. One day we want to see the city and another day we want to drive toward the Andes Mountains and get glimpse of Aconcagua, the highest mountain in all of the Americas!

Yeah! Another adventure awaits!

Until tomorrow,

Mary

Mary Cook, December 17, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 17, 2004

Location: Latitude 19°40.26’S, Longitude 89°46.38’W

Weather Data from the Bridge
Air Temperature (Celsius) 19.59
Water Temperature (Celsius) 20.13
Relative Humidity (percent) 73.07
Air Pressure (millibars) 1017.14
Wind Direction (degrees) 101.42
Wind Speed (knots) 15.44
Wind Speed (meters/sec) 7.67

Question of the Day

What are the ship’s three types of motion?

Positive Quote of the Day

“Never say “No” to opportunity.” Melvin G. Marcus

Science and Technology Log

Today, we made the big turn toward the San Felix islands and we’re heading southeastward at 12 knots. We did our last CTD cast of the cruise! Several of us decorated more Styrofoam cups to send down for compression by the pressure of the ocean water at 1000 meters depth. This afternoon and for the remainder of the cruise we will be tossing drifting buoys and Argo floats over board from the fantail. The Argo float has a bladder that inflates and deflates to allow it to go down to 2000 meters, drift in the current for about 10 days, and then record temperature and salinity as it comes back to the surface. It then transmits the data to a satellite where it is then sent to a ground station. The Argo float goes up and down over and over until the battery runs out. These floats are never recovered. It is hoped that there will be 3,000 of them in the oceans by 2006.

As we toss the drifters we are doing a promotional video segment to describe what a drifter measures and encourage teachers and their students to adopt a drifting buoy. This is a great way to get real science in the classroom. The Adopt a Drifter Program is sponsored by NOAA’s Office of Climate Observation and can be accessed online at http://osmc.noaa.gov/OSMC/adopt_a_drifter.html.

This afternoon Diane and I toured the ship and recorded it with the video camera. We went to the galley, mess hall, our stateroom and toilet room, the ship’s bow and the bridge. The bridge is where the ship is driven. While on the bridge, we spoke with NOAA Corps officer Silas Ayers and he explained how they record and report the weather observations to the National Oceanic and Atmospheric Administration (NOAA) offices located back in the United States. Tomorrow, he will give us a complete tour of the bridge.

In “6:00 Science on the Fantail”, we interviewed Chris Fairall, a physicist/mathematician who works for the NOAA Environmental Technology Lab (ETL) based in Colorado. Chris explained some of their instrumentation for measuring clouds and precipitation. He said that some of their instruments can individually measure the smallest of mist droplets! They have worked closely with the Woods Hole Oceanographic Institution over the past few years to compile data for the stratus cloud deck over this part of the Pacific Ocean. Chris said that the main reason this particular location was selected for the study was lack of data because it had never been thoroughly studied.

This evening, Diane and I continued the writing of the children’s book documenting this Stratus 2004 cruise.

Personal Log

Today has been another good day at sea. I’ve gotten emails from students, family and friends. I’ve had good food to eat and good conversation and laughter with new friends. I spent some quiet, alone time to ponder and count my blessings. The sun momentarily broke through the stratus clouds like a smile from up above! We tossed some Argo floats and drifters overboard. We’re steaming ahead to new and exciting places! What more could I ask for?

An observation: the Argo float is tossed in the water without removing the biodegradable cardboard box, so it looked to me like a casket as it floated away in the wake of the ship. I guess it really is a burial at sea because the Argo floats are never recovered.

Paul and I are about to deploy another Argo float shortly. This will be my first Argo float where I actually get to do the hands-on tossing! I’ve just been observing up until now. We’ll lower it by a rope over the back of the fantail then release it into the water.

Another observation: As the ship steams along it is rolling and pitching. All that motion causes stuff to shift and creak and rattle. Even if I’m in a room all alone, I still feel like someone else is there, too. It’s an odd sensation to hear a noise, turn expecting to see someone and nobody is there!

I look forward to tomorrow. We have a couple of interviews and will continue working on the book plus tossing a few more drifting buoys and floats along the way.

Until tomorrow,

Mary

Mary Cook, December 16, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 16, 2004

Location: Latitude 19°44.39’S, Longitude 86°20.07’ W
Time: 8:00 am

Weather Data from the Bridge
Relative Humidity (percent) 72.50
Air Temperature (Celsius) 19.34
Water Temperature (Celsius) 19.78
Air Pressure (Millibars) 1016.06
Wind Direction (degrees) 97.86
Wind Speed (knots) 20.90
Wind Speed (meters/sec) 10.31

Question of the Day

When is the first day of summer in the Southern Hemisphere?

Positive Quote of the Day

“Most of us miss out on life’s big prizes. The Pulitzer. The Nobel. Oscars. Tonys. Emmys. But we’re all eligible for life’s small pleasures. A pat on the back. A kiss behind the ear. A four-pound bass. A full moon. An empty parking space. A crackling fire. A great meal. Hot soup. A glorious sunset” -Anonymous

Science and Technology Log

Yesterday was probably the last RHIB ride I’ll ever get to go on and last night at midnight, we left the Stratus 5 buoy all alone moored to the Pacific Ocean floor. I felt a little wistful.

So far today has been a quiet day. We’re steaming toward the San Felix islands. We’ve started watch duty again. Alvaro Vera and I have watch duty together from 8:00 am to noon and from 8:00 pm to midnight. This evening we’ll do another CTD cast. All the WHOI guys are dismantling the old buoy and packing up all the components to be sent back to Woods Hole. I finally got tons of email from my students and many of them are tracking the adopted drifting buoy which makes me proud of them. It seems I’ve spent half the day answering them. I’ve enjoyed it though. It’s good to have connection across the miles. We came out from under the stratus cloud deck and what a beautiful day! People are sitting out on the fantail soaking in the sun and warmth.

Personal Log

I’ve just been out on the ship’s bow peering over the edge to watch the ship slice through the water. It’s mesmerizing and clears my mind of thoughts. I think it’s like meditating. It’s especially calming to just look and listen and forget everything else. I see the many hues of blue in the water. I hear the waves splashing and the hum of the ship’s engine. The salty air feels clean in my lungs. Even the greens of the slimy algae growth just below the water line add another dimension to the sights and sounds of life at sea.

With a clear mind and clean lungs,

Until tomorrow,

Mary

Mary Cook, December 15, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 15, 2004

Location: Latitude 19°43.66’S, Longitude 85°33.13’W
Time: 10:00 am

Weather Data from the Bridge
Wind Direction (degrees) 132.47
Relative Humidity (percent) 66.35
Air Temperature (Celsius) 19.44
Water Temperature (Celsius) 19.41
Air Pressure (Millibars) 1016.60
Wind Speed (knots) 15.05
Wind Speed (meters/sec) 7.54

Question of the Day

For what purpose are the lights in the hallways colored red at night?

Positive Quote for the Day

“The life that conquers is the life that moves with a steady resolution and persistence toward a predetermined goal. Those who succeed are those who have thoroughly learned the immense importance of plan in life, and the tragic brevity of time.” W.J. Davison

Science and Technology Log

We had another early morning RHIB ride! The purpose was to visually inspect the newly deployed Stratus 5 buoy. It looked so small out there in the choppy ocean water. The buoy was found to be in good working condition with a minor break in a railing that surrounds the weather instruments that sit atop the buoy. The break will have no bearing on the workings of the instruments so all was approved by Jeff Lord, the WHOI engineering technician. Then we took another wild ride back to the mother ship!

I think today is a good day to show you pictures of the inside of the ship and talk about ship life. Here are some of my impressions of the ship interior. The hallways are narrow and if two people meet, one must step aside. The doors seem to weigh two tons and if one slammed on your fingers it would crush them off.

You must step up and over as you cross the threshold of a doorway. It’s built up to prevent water from getting into every room if there’s a flood. In the stateroom (bedroom), the bunk beds are comfortable but there’s no room to sit up in bed. The round windows are called portholes. The toilet (called the head) has no lid. The toilet is flushed by pressing a button then a powerful vacuum suctions everything down! There are handles to hold on to in the shower. The shower room doors have huge, strong magnets that hold them open. All the drawers and cabinets have latches so they won’t swing open when the ship moves around. Everything is tied down or secured in some fashion. There are no wheels on the office chairs. At night the hallway lights are turned to red instead of white. The food is outstanding. We eat three meals a day plus snacks are available 24 hours a day. There’s an exercise room and a laundry room and a TV room where two movies are shown each evening. There’s a library, too. It seems that computers are in every nook and cranny. There’s lots of equipment onboard like scientific instruments and big machinery. They make water on the ship. I’ll explain that on another day.

Diane, Bruce and I collaborated on the children’s book again today. Things are coming together nicely.

At “6:00 Science on the Fantail” we interview the Chief Scientist, Dr. Robert Weller of Woods Hole Oceanographic Institution. He gave us the reasons for placing the Stratus 5 buoy at this particular location in the Pacific Ocean. Bob said that there needs to be greater understanding of air-sea interactions for scientists to make better models and predictions of weather and climate patterns. The area just off the coast of Chile is one that has had minimal data collected in past years. Plus, it is an area that has a constant stratus cloud deck which isn’t clearly understood. That’s why the Woods Hole Oceanographic Institution and the Office of Climate Observation have partnered to fund the Stratus program for, possibly, as long as 15 years. Now, in its fifth year, the Stratus program has collected very useful data that has helped in better understanding the eastern Pacific Ocean and the weather that originates there. Dr. Weller was also very pleased with the work effort and cooperation between the WHOI scientists, the crew, and the Chilean scientists and students. It took a well organized work effort to get it all done. Now the WHOI scientists and engineers are taking the data collected from last year’s buoy and beginning the evaluation process.

Personal Log

I have to tell you about the exercise room. Last night, Diane invited me to go down for a workout. Diane’s a runner and so she goes to workout every evening. I’d never really taken a good look in there, except to see several pieces of equipment because I hadn’t brought any clothes or shoes appropriate for working out. So, I thought, why not? I need to exercise. So I put on my trusty, old clunky hiking boots and headed down to the exercise room. When I opened the door there was a red and black stairway leading down toward a yellow grate. Most of the exercise equipment was sitting on the grate. The room was dimly lit and the air was cool. I could hear the humming of fans. There was one gray door that had a claxon sounding off from within. I considered opening it but changed my mind. I saw a red “Danger High Voltage” sign and about ten huge carbon dioxide tanks sitting upright in the corner. There were some blinking lights coming from a partially opened doorway leading into another room. Running along the ceiling and walls were cables and pipes. I knew I was alone so I looked around to survey which machine I’d try first. Over in the far corner were rows of orange-colored coveralls hanging from the ceiling by their hoods with their arms outstretched. All the orange suits were moving with the swaying of the ship. It appeared as though people were inside the suits and just hanging in mid-air! I stopped, and looked around with an eerie thought. I felt like I was in an episode of Star Trek where they have rooms filled with extra worker-drones waiting to be activated during times of crisis. OK. Maybe I have been on this ship too long. But it’s a great place for the imagination to run wild. Don’t you think?

Until tomorrow,

Mary

Mary Cook, December 14, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 14, 2004

Location: Latitude 19°45.13’S, Longitude 85°30.82’W

Weather Data from the Bridge
Wind Direction (degrees) 164.30
Relative Humidity (percent) 75.74
Temperature (Celsius) 18.60
Air Pressure (Millibars) 1016.02
Wind Speed (knots) 15.33
Wind Speed (meters/sec) 8.40

Question of the Day

Why do you think the floaters are made of glass?

Positive Quote for the Day

“Patience is passion tamed.” Lyman Abbott

Science and Technology Log

At about 5:30 this morning the WHOI guys are up early and ready to go! This is the day that the new and improved Stratus 5 surface mooring is deployed! It’s what everyone has been working toward. My understanding is that first, the mooring line and upper 50 meters of instruments will be put in the water and attached to the buoy. Second, the buoy will be deployed with a quick release hook off the port side. Then the ship will move ahead to bring the buoy behind it. Next, the ship will slow down and move ahead as needed to keep the buoy aft while the crew attaches the remaining instruments. The last things to be put on the mooring line are the glass ball floaters, the acoustic release, and then the 9000 pound anchor. We’ll wait around for a couple of hours for the anchor to sink and settle, then, they’ll take a Seabeam (echo-sounding) survey of the ocean floor where the anchor is located. After the survey, we’ll move downwind of the buoy and tomorrow inter-comparison testing will begin.

Now, it’s 5:30 in the afternoon, and all the hard work is completed. Everything went off without a hitch. Well, almost. There were a couple of tense moments throughout the day, but all in all it went very well. The planning and orchestration of the whole process is quite amazing with several people communicating with radios and hand signals, all getting it done just right.

At “6:00 Science on the Fantail”, we interviewed Keir Colbo who works for Woods Hole Oceanographic Institution. He shared with us his duties for the day. According to Keir, his job is to stay out of the way and record everything in a logbook. I mean everything. Keir wrote down the deployment time, serial number and order of every instrument that went into the water. He counted every glass ball floater (total 90). He recorded the Global Positioning System (GPS) reading of the anchor as it was dumped into the ocean. GPS uses a receiver to locate an object by detecting a series of satellites. Keir also explained the glass ball floaters. They are 5/8 inch thick glass domes with a diameter of 17 inches. The glass balls are put into bright yellow plastic hulls that protect from breakage and enable them to be chained together. Keir’s job is very important even though at times it may seem monotonous. When the scientists return next, his records will be the first thing they pull for references to make sense of the science.

Personal Log

It’s 5:30 Tuesday morning and I am sitting at my desk thinking about the day that’s before us. The ship is constantly moving with the ocean motions. There’s no way to get away from it – it’s always a presence with me. I can’t help thinking that we’re atop something alive and breathing. Every time there’s a swell it feels like the ocean is taking a deep breath and then slowly exhaling. It reminds me of the rhythmic breathing of someone who is asleep. I must admit, I can more easily understand why some ancient cultures worshipped the ocean or devised amulets for protection from the spirits of the ocean. Well, I don’t worship the ocean but everyday I gain a deeper respect and appreciation for it – for its vastness, and power and how much all of life on Earth is so intricately dependent upon its wellbeing. Even living things that are a long way from the ocean like in Arkansas, or south central Siberia, depend on the ocean.

I enjoyed today. We watched all the guys working in unison to get the work done which has danger lurking around every corner. These guys are safety-minded, too. They do things right and they watch out for each other. It’s also cool to see the Chileans and Americas working together. It’s like it should be. My least favorite part of the day was waiting for all the cable to reel out. I took a nap. My most favorite part of the day was when the 9000 pound anchor was dumped overboard! What a BIG splash! It sounded like someone doing a cannonball at the city swimming pool. Everybody was smiling.

Happy Birthday, Deano.

Until tomorrow…..

Mary

Mary Cook, December 13, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 13, 2004

Location: Latitude 19°45.88’S, Longitude 85°30.36’W

Weather Data from the Bridge
Wind Direction (degrees) 147
Relative Humidity (percent) 72.19
Air Temperature (celsius) 19.34
Water Temperature (celsius) 19.36
Air Pressure (millibars) 1015.75
Wind Speed (knots) 15.71
Wind Speed meters/sec 8.08

Question of the Day

Why aren’t light waves or radio waves used for ocean exploration?

What is a nautical mile?

Positive Quote for the Day

“The Earth is given as common stock for man to labor and live on.” Thomas Jefferson, letter to James Madison, 1785

Science and Technology Log

Today the Woods Hole scientists are making preparations for the new Stratus 5 mooring deployment. Early this morning Paul and Jason were placing the CTD units in ice water to spike the temperature sensors and set the clocks on each unit. Using cranes, winches and ropes, the boatswain and his crew in conjunction with the WHOI scientists moved the old Stratus 4 away from the launch site and put the new Stratus 5 in position for tomorrow. All the instruments are being readied and the ship is making a horseshoe-shaped transit as the Seabeam records echo soundings from the ocean floor. Echo sounding is when sound waves are sent to the bottom and then bounced back to a receiver. This can then be used to show the depth of the ocean at that location. The Seabeam can make an 8 kilometer-wide reading as the ship moves along. The computer display of the ocean floor looks like several parallel ridges. Bob Weller says the ship is also running parallel to those ridges which will aid in the placement of the anchor. If we were going perpendicular to the ridges the anchor deployment would be more difficult and hampered by the ship going against the trade winds.

We had our weekly fire and abandon ship drills and they announced that we are over 800 nautical miles from Chile. The San Felix islands are about 300 nautical miles from here. All of the WHOI guys have turned in early because tomorrow is an even bigger day than yesterday!

Personal Log

OK. I know I wimped out last night. Sorry. So today I’ll try to do better. Besides being really tired last night, it was windy and the ship’s motion tossed me back and forth in the bed. All night long I had the instinctive feeling that I needed to hang on tight to the railing. Even when I was asleep, there was a persistent apprehension in the back of my mind that I was about to be thrown from my bed!

Yesterday, everyone worked outside so much that today we’re all sunburned and have red noses. It doesn’t seem to matter how much sunscreen I use, the sunrays still penetrate and zap me.

I’ve been working on my lesson plans and, boy, do I have some of the greatest resources! Chris and Dan, the meteorologists sat down with me and we brainstormed some radiosonde lesson plan ideas. Diane has given me some great input and is helping it all come together. I want these lesson plans to be useful, practical and interesting all the while meeting or exceeding our state and national education standards.

It’s a beautiful sunshiny day (which is rare here) and the white capped waves skipped across the indigo-colored waters as far as the eye could see. Very picturesque. I wanted to go out to the ship’s bow but the wind was whipping around too strongly. I enjoyed watching the guys move the two buoys into position. It’s fascinating to watch big machinery work. My stomach got a little tense when the buoy was suspended by ropes in midair and the ship’s motion caused it to swing. There’s just not much room for error on the fantail because there’s equipment stored everywhere. But the guys did a great job and made it look easy. “All in a day’s work” is what they say. I’m still impressed.

“Chester”, one of the young men in the Chilean navy, just showed us his CD photos of Antarctica, when he was there for research and training. His research was with whales. He said that he took biopsies of whales. That sounds dangerous to me, but the photos were so cool! (pun intended)

I got more emails today from school and family. It always makes me smile to open the messages and read what’s happening back home. It’s an encouragement to know that out of sight doesn’t mean out of mind. I have to say, I’m missing my students. I’ve never realized how much energy they give me. I think about them often. I’ll be glad to see them again in January.

Well, this has been another great day for this Teacher at Sea!

Until tomorrow…

Mary

Mary Cook, December 12, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 12, 2004

Location: Latitude 19°46.24’S, Longitude 85°30.89’W
Time:
7:00 am

Weather Data from the Bridge
Wind Direction (degrees) 145.06
Relative Humidity (percent) 80.68
Air Temperature (Celsius) 19.22
Water Temperature (Celsius) 19.32
Air Pressure (Millibars) 1014.64
Wind (knots) 13.76
Wind Speed (meters/sec) 6.53

Question of the Day

Why are the water and the air temperatures nearly the same?

Positive Quote for the Day

Physical concepts are free creations of the human mind, and are not, however it may seem, uniquely determined by the external world. Albert Einstein, Evolution of Physics

Science and Technology Log

Today’s the big day! The Woods Hole Oceanographic Institution scientists will begin bringing the old Stratus 4 buoy onboard the RONALD H. BROWN. They’ve enlisted the help of just about everyone on the ship. At 6:00 this morning, the sky was dark blue and overcast. As daylight began to creep in, we all gathered in the main lab to prepare for the day’s work. First of all, the scientists triggered the acoustic release at the bottom of the ocean which is about 4400 meters deep. This released the buoy and array of instruments underneath it from the anchor. The 9000 pound anchor was left on the ocean floor. Then we waited.

And waited. And waited some more. It was about 45 minutes in all. We were waiting for the floats to come to the surface. The floats are big glass balls covered in yellow plastic hulls. They’re about the size of a medicine ball. And they are heavy, too. Wouldn’t you think a float would be lightweight? After the floats popped up out of the water, David, Phil, Jason and I went out on the RHIB to hook onto them and tow them to the ship. Once again the RHIB ride was awesome!

Pulling the floats onto the ship began the whole process of reeling in the old Stratus 4 mooring. This took all day. First they reeled in all the cable connecting the surface buoy to the anchor. At the beginning the buoy was a little speck near the horizon but as the cable got shorter, the buoy got closer and bigger until it was just behind the ship. That alone took several hours. When the instruments began coming in, we had to log and photograph each one. Then another RHIB ride was in order!

This was the RHIB ride of my life! Jeff, Diane, Jason, Phil and I went barreling across the swells and hit a wave that bounced Jason into midair for a second or two! I was hanging on with all my might and waves came over the edge right into my face. When we arrived at the buoy the guys hooked onto it and we towed it back to the ship. Then the crew on the ship hauled it aboard with a crane. While they were hauling it in we stayed out in the RHIB and pitched and rolled. That’s when I started to feel a little bit green. Fortunately, we were soon retrieved but on the starboard side of the ship…home, sweet home. We then watched the final removal of subsurface instrumentation. Wow! The Stratus 4 buoy was covered in amazing barnacles! Big ones and little ones. Long-necked barnacles are bizarre looking creatures. They attach themselves to anything in the water, just like suction cups. It’s like they’re stuck on with Super Glue. Once everything and everyone was safely onboard we had a barnacle scraping party. All available hands scraped those little rascals off and threw them back into the ocean. It was a mess but with everyone pitching in things got nicely cleaned. Tomorrow, we get everything ready for the deployment of the new and improved Stratus 5 buoy!

Personal Log

I am so tired.

Until tomorrow,

Mary

Mary Cook, December 11, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 11, 2004

Location: Latitude 19°44.43’ S, Longitude 85°32.17’ W
Time:
9:30 pm

Weather Data from the Bridge
Wind Direction (degree) 134.18
Relative Humidity (percent) 74.66
Temperature (Celsius) 19.46
Air Pressure (Millibars) 1014.06
Wind Speed (knots) 15.04
Wind Speed (meters/sec) 8.14

Question of the Day

When we send the Styrofoam cups down to 3000 meters in the ocean, what will happen to them and why?

Positive Thought of the Day

“I think laughter may be a form of courage. As humans we sometimes stand tall and look into the sun and laugh, and I think we are never more brave than when we do that.” Linda Ellerbee

Science and Technology Log

This morning we arrived at the Stratus 4 buoy site! The buoy looked so small bobbing out there all alone on the ocean. David Owen took Jeff Lord, Phil Pokorski and I for a boat ride in the RHIB (rigid hull inflatable boat). The RHIB is an orange raft-looking motor boat. The RHIB is raised and lowered into the water on a lever lifting device called a small boat launch. We went out to make a quick inspection and to see if the temperature sensors were working. Jeff said it all looked pretty good and there weren’t as many barnacles as he’d expected. He took pictures then we returned to the ship. Today, all the scientists are quietly working on inter-comparison testing with the ship’s sensors and the buoy.

At “6:00 Science in the Main Lab”, we interviewed Jason Smith, an engineering technician for Woods Hole Oceanographic Institution. Jason explained the instrumentation that will be attached to the bottom of the Stratus 5 moored buoy. The first instrument is a temperature sensor, which is an electronic device. It has a resistance that changes with temperature and that resistance can be measured with an electronic circuit. These instruments can also measure conductivity which is an indicator of salinity. In addition, there are various styles of current meters used. Some are mechanical and some use acoustics. All these instruments will be suspended at different depths with most of them concentrated from the surface down to 300 meters. One problem that they encounter is marine animals adhering to the instruments and fouling up their functions. Different types and colors of anti-fouling paints are being tested to see which one inhibits the marine life from sticking to the machinery. Jason emphasized that it was very important to develop an anti-fouling paint that is both environmentally safe and keeps the marine life from setting up housekeeping on the instruments.

This evening, Diane and I sat down to begin writing the children’s book about the cruise. Don’t let anyone ever tell you this is easy. But we’re progressing nicely and I can see an interesting book emerging.

Personal Log

Well, the last thing my mentor, Diane, said to me last night was “Tomorrow will be a more relaxing day”. So I thought, “I’ll sleep in and take my sweet time getting out and about in the morning.” You know, do some of those personal hygiene things we often take for granted like blowing our hair dry and trimming our toenails.

And so there I am peacefully sleeping like a baby being rocked when Diane comes in and says, “Mary, Bob said the RHIB is leaving in about 30 minutes!” At first, I thought I was dreaming, but then I realized, “This is for real!” Anyway, I jumped up and threw on some clothes and ran out to the small boat launch deck. Sure enough, they were getting ready to leave. I made it in just the nick of time! Yeah! Diane and Bob had my life vest, hard hat and radio ready. I grabbed them and climbed in.

The RHIB ride was awesome! It’s funny how the ocean swells look a whole lot bigger when you’re in a little boat than from the ship’s deck. As the boat zipped up and down across the surface, I was hanging on for dear life and ocean spray was splashing me in the face and running down my back to make a puddle right where I was seated. The buoy would disappear then reappear time and again.

Even in all this excitement and adrenaline rush, my mind was thinking about those early explorers like the Polynesians who launched out in small thatched boats. For a moment, I felt a cosmic connection across time and cultures. And then it hit me, “What were they thinking? This is nuts!” I mean they had to be daring and bold of personage to cast their lives onto the rolling, endless waters in search of the unknown. Then, I gazed back on the RONALD H. BROWN, my temporary home, floating like a little toy ship in a great big tub. I like that ship. It’s like my whole universe for the next 2.5 weeks. Then what happens? My universe will disappear and everyone will go to their own real world lives. I’m still trying to wrap my mind around that thought.

After we did a visual inspection of the buoy, we posed for pictures and zoomed back to the mother ship. As David pulled alongside the ship, Phil and Jeff grabbed the ropes and hooked us up to the small boat launch, then, the operator lifted the RHIB aboard. We banged against the boat launch so hard it knocked my hat off! It went tumbling around in the bottom of the RHIB. I felt like one of those persons who loses their hat in the wind and keeps chasing after it.

We were all wet but with great big smiles on our faces. Riding the RHIB was as good as the Zippin’ Pippin’ rollercoaster in Libertyland! I’m ready to go again!

Until tomorrow,

Mary

Mary Cook, December 10, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 10, 2004

Location: Latitude 19°39.97’ S, Longitude 83°40.08’ W
Time: 9:30 a.m.

Weather Data from the Bridge
Wind Direction (degrees) 118.48
Relative Humidity (percent) 70.62
Temperature (Celsius) 18.99
Air Pressure (Millibars) 1015.61
Wind Speed (knots) 12.97
Wind Speed (meters/sec) 7.21
Cloud Type Stratus

Questions of the Day

What does CTD stand for? (answer is found in the previous logs)

What season is it right now in the southern hemisphere?

Positive Thought for the Day

“Life leaps like a geyser for those willing to drill the rock of inertia” Alexis Carrel

Science and Technology Log

Today Bob Weller and Jeff Lord of Woods Hole Oceanographic Institution (WHOI) helped me deploy two more adopted drifting buoys for Viviana Zamorano’s class at the Escuela America in Arica, Chile and Debra Brice’s class at San Marcos Middle School in San Diego, California! Their classes will be able to electronically access the drifter’s location along with the sea surface temperature and pressure. They can then use this information to study the ocean currents.

Late tonight and early tomorrow we will arrive at 19º45.91’S 85º30.41W , the location very near the Stratus 4 moored buoy that has been in the water for over a year. We will hover here for a day and conduct inter-comparison tests of the old buoy’s instruments with the instruments onboard the ship. This is a very important part of the research and data collection because they must prove that the information gathered is accurate. Accuracy of the data is of the utmost importance. After the testing is complete, they will begin the process of reeling in the old Stratus 4. This will take quite a while because there’s about 3 miles of cable to bring onto the ship. Then the old Stratus 4 will be hoisted onboard. I’ll give more details about the new Stratus 5 deployment as the time draws near.

This evening we interviewed Jeff Lord for “6:00 Science on the Fantail”. Jeff is a senior engineering tech for WHOI. He’s intricately involved in the new design of the Stratus 5. Jeff said that two really big changes in this new design are the construction materials and the modular-style architecture. The buoy is made of Surlyn foam, a tough but soft and buoyant substance. It can withstand wear and tear of whatever the ocean environment throws at it. Also, when taking it in and out of the water, if it bangs into the side of the ship, no problem! The other new design aspect is that the Stratus 5 can be taken apart and shipped in closed containers. The old Stratus design has a big aluminum hull that is one solid piece. It is too big to fit in a closed container, therefore the end of it sticks out about two feet. Jeff said that nowadays, transporting in open containers is very difficult because it limits the stackability and transportation companies find it difficult to deal with. Jeff also told us about the cables and ropes attaching the buoy to the 9000 pound anchor. The upper section is made of strong cable wire that can support the instrument packages and resist being bitten in two by fierce sea creatures. Then there’s lighter nylon rope that goes down nearly to the bottom and the last portion is made of a buoyant material so it doesn’t drag on the seafloor and get tangled. Jeff said to just wait until the old buoy is reeled in and new one deployed because it’s an impressive operation!

Personal Log

Today has been a good day. I like throwing the drifter buoys overboard. It only takes a few seconds but it makes me feel part of something important, something important on a global scale. This evening the sky is overcast but beautiful nonetheless. It’s cool and fresh out on the deck. I smiled to see that Phil has donned his reindeer antlers to set the holiday mood. Diane has been taking pictures of everyone and posting them on the doors. Bruce completed another great illustration for our book. It’s been approved for me to tour the engine room! The WHOI guys are getting excited because time is drawing near for the big buoy.

This afternoon I worked on developing lesson plans based upon the science work being done on the ship. I’m very excited about coming up with some practical and interesting lessons. Tonight during my watch, I am operating the radio as the Chilean university students perform a 3000 meter CTD cast. It takes about 3 hours to complete. Several of us have decorated Styrofoam cups and sent them down with the CTD rosette. Many people put Christmas greetings on them. Some of the Chileans put an American flag and a Chilean flag on their cups. I drew the Ron Brown ship with a “Christmas star” overhead. We are anxiously awaiting their return from the depths of the deep blue sea. I just found out that watch duty is suspended for the next five or six days! My watch times are good because they’re during waking hours but some people have the night shift plus an afternoon shift. So they’ll get a much needed break and get to sleep the night through instead of catching a nap here and there. Like I said, today has been a good day.

Until tomorrow….

Mary

Mary Cook, December 9, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 9, 2004

Location: Latitude 19°39.99’ S, Longitude 80°16.85’ W
Time: 8:30 am

Weather Data from the Bridge
Wind Direction (degrees) 138.27
Relative Humidity (percent) 84.01
Temperature (Celsius) 18.65
Air Pressure (Millibars) 1014.24
Wind Speed (knots) 12.00
Wind Speed (meters/sec) 5.10

Thought for the Day

“No man who has once heartily and wholly laughed can not be altogether irreclaimably bad.”
Thomas Carlyle (1795-1881) Scottish writer

Science Log

This morning we are passing over a significant underwater ridge called the Nazca Ridge. The ridge is a series of mountains rising from the ocean floor. Yesterday, the ocean bottom was 5,000 meters down. This morning it was just 960 meters deep. We dropped CTD’s over this shallow area and we had to be very careful not to let them hit the bottom. When I was operating the radio for the CTD commands to the winch, I accidentally said “Bring it up at 600 meters per minute” (It was supposed to be 60 meters per minute). Thankfully, that speed is an impossible one for the winch to do! Because it would have shot out of the water like an Olympic sprinter!

Congratulations to Mary Castleman, an eighth grader at Southside Middle School in Batesville, Arkansas! She correctly answered the “Question of the Day”. Mary said, “A muster station is a place where people get together before going to a lifeboat loading station.” Thanks, Mary, for your extra effort!

At “6:00 Science on the Fantail” tonight, we interviewed Paul Bouchard, the senior engineering assistant for Woods Hole Oceanographic Institution. Paul is a hard worker with a good sense of humor. His job is to prepare, maintain, and repair all the various units of instrumentation on the Stratus 5 mooring so the scientists can analyze the data retrieved. Paul explained all the instruments mounted atop the buoy. There are instruments that measure temperature, relative humidity, precipitation, air pressure, short and long wave radiation, wind speed and direction, Also, there are several units that extend underneath the buoy for a few hundred meters that record temperature, conductivity, depth, and water current. These instruments take readings every minute and send the data via satellite every hour. The Stratus 5 mooring is the most sophisticated array of instrumentation for the collection air-sea interaction data in the world! Another amazing fact is that there’s five miles of rope and chains connecting the buoy to the anchor at the bottom of the ocean floor. Paul said that all the instruments are battery powered. Three thousand “D” cell batteries are used to keep it going for over a year! The buoy has a “bleeper” on it to alert ships so they won’t run into it. The Stratus 5 will be deployed in three days! It’ll be a big moment. For the last year, lots of hard work, problem-solving, dreams and money have gone into the Stratus 5 and soon it will finally be a reality.

Personal Log

This afternoon, I had to find the laundry room because well, I didn’t have any clean clothes left to wear for tomorrow. So I ventured into the bowels of the ship in search of the laundry room. It’s five decks from my stateroom. That’s a lot of stairs to climb up and down. Actually I need the exercise. Anyway, while my clothes were washing, I ran back upstairs to help Frank Bradley do the 2:00 radiosonde launch. With that completed, I then ran back down the stairs to put the clothes in the dryer. Then, I walked back up to the main lab and answered a few emails. After about 20 minutes, (you know the drill) I went back down to fold my clothes then carried them up five flights to my room. So I sat down on my bed to rest for just a minute and woke up an hour later!

After interviewing Paul, Diane and I decided we wanted our picture taken on the most sophisticated mooring instrument in the world. So we climbed around on it and had an impromptu photo session.

I’d like to say that I’m enjoying all the emails from students, friends, and family. You make me smile. I’m happy that you’re interested enough to send me a message. And too, it makes me feel connected even though I’m way out here in Pacific. So keep ‘em coming!

Until tomorrow,

Mary

Mary Cook, December 8, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 8, 2004

Location: Latitude 19°39.99’S, Longitude 77°07.27’W
Time: 8:30 am

Weather Data from the Bridge
Wind Direction (degrees) 126.27
Relative Humidity (percent) 72.01
Temperature (Celsius) 18.87
Air Pressure (millibars)
Wind Speed (meters/sec) 7.30
Cloud Type Stratus at 2810 feet

TODAY’S BIG NEWS!

I tossed the first adopted drifting buoy overboard with the help of Dr. Bob Weller of Woods Hole Oceanographic Institution! My eighth graders and I at Southside Middle School in Batesville are proud to be the first school to adopt a drifting buoy. We will periodically access the buoy’s coordinates online and track it as it moves with the ocean currents. It’s a great feeling to be a part of this important scientific endeavor!

Question of the Day

How do you think I can determine the exact elevation of the clouds?

Positive Quote for the Day

To be capable of steady friendship or lasting love, are the two greatest proofs, not only of goodness of heart, but of strength of mind. William Hazlitt (1778-1830) English essayist

Science Log

Yesterday evening, we had our first interview with a scientist. We’re going to try and schedule one every evening and call the session “6:00 Science on the Fantail”. The fantail is the back of the ship. It’s flat and open with an A-frame used to hoist and guide objects off of the ship. Alvaro Vera is an engineer with a Master’s degree in oceanography and is from the Chilean Armada (Navy). Alvaro and his team have been working for over a year preparing to deploy the first tsunami buoy in the Southern Hemisphere. They have trained in Seattle and gotten the buoy ready for this moment. A tsunami is a wave generated by an undersea earthquake. The instruments for this buoy can detect changes in pressure at the bottom of the ocean as small as 2 centimeters and will give the coastal areas about one hour warning. He said that about 100 years ago a tsunami devastated Arica on the coast of Chile. For this reason and continued threat, it is important that the Chilean population living along the coastal areas have ample warning of an impending tsunami.

Today, we sent several Styrofoam cups down to 1500 meters depth in the ocean. We decorated the cups with drawings, the date and location, then put them in mesh bags. When the cups were brought back to the surface they were miniatures! Styrofoam has air between the particles and as the water pressure builds during the descent the air is forced out and the cup is compressed.

This afternoon, two acoustic releases were tested. An acoustic release is used to release the buoy from the anchor at the bottom of the ocean by using a signal from the surface. One worked. The other did not. The working acoustic release will be used with the Stratus 5 moored buoy that is scheduled to be deployed this weekend. The acoustic release will sit at the bottom of the ocean with the anchor until this time next year. When the scientists come back to replace the Stratus 5 buoy with the Stratus 6 buoy, they’ll signal the release and it will separate the anchor from the buoy. The anchor is then left on the ocean floor.

Personal Log

This evening I went out on the ship’s bow and took a deep breath. My, the ocean is big. And blue. And deep. And always moving. Who can comprehend it? I know I’m just a little speck floating along the surface, but for some reason I don’t feel insignificant. I feel satisfied. And curious. I wonder how the early seafaring explorers felt? It doesn’t seem to matter whether I’m working in the lab, answering emails, wearing a hard hat and life vest on the fantail, or just sitting on the bow looking over the shimmering water, I really like what I’m doing. I’m getting to know some of the other people on board. As we waited for the acoustic releases to be pulled up from a depth of 1500 meters, I had the opportunity to just hang out with Bruce, Bob, and Paul. Bruce did his pirate’s “Aarrrgh” and told a bit about the true story of Moby Dick. Bruce Cowden is the ship’s boatswain. He and his crew keep the ship in working order. He’s also an artist and is illustrating a book about our cruise. His artistic talent is impressive. Everyday, I eagerly await his next illustration. Bruce designed the tattoos around his ankles which resemble Tahitian tiki idols. He said there’s one for each of his two sons. Bruce let me operate the A-frame hoist on the back of the ship as they were lowering the acoustic releases into the water. I felt like “Bob the Builder”! I have to say it is fun operating big machinery!

Today, I learned that both Jonathan Shannahoff who is the man in charge of all the CTD launches, and I have been to Lake Baikal near Irkutsk, Russia. I enjoyed sharing and looking at the pictures of his trip.

It seems to me that the people on this ship have been everywhere in the world. They’re just amazingly intelligent and adventurous individuals.

Until tomorrow,

Mary

Mary Cook, December 7, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 7, 2004

Location: Latitude 19°41.54 S, Longitude 74°55.66 W
Time: 10:00 am

Weather Data from the Bridge
Wind Direction 156.10
Relative Humidity (percent) 70.98
Temperature (Celsius) 19.07
Barometric Pressure (Millibars) 1014.09
Wind Speed (Knots) 12.46
Wind Speed (Meters/sec) 6.51
Cloud type: Stratus at 2950 feet

Question of Day

What is a muster station?

Personal Log

It’s another great start for this seafaring teacher! A pod of about 12 pilot whales are hovering around the ship. They’re black with a crescent-shaped dorsal fin that breaks the water surface like a shark’s fin. It looks like they are about 10 feet long and I can hear a swoosh as a spray of water shoots up into the air when they exhale. As I was standing on the deck scanning the ocean for the whales, the cool breeze in my face, I was thinking how blessed I am to be here and my heart swells with gratitude for the grandness of it all. I just love to look out over the horizon where the sky meets the water and I wonder what other magnificent creatures are lurking below!

Today, I will be working a small part of the CTD deployment in conjunction with the Chilean Armada (Navy) team. CTD stands for conductivity, temperature, and depth. The CTD array contains a series of canisters that are opened at various depths to collect water for gas and nutrient sampling. As the data are collected and displayed, they will locate the ocean’s thermocline in this area. The depth of the thermocline can be used as a component to better understand El Nino which can affect worldwide climate changes. My job as part of the CTD deployment is to be the English speaking person on the radio to relay information to the winch operator as the CTD rosette is being lowered into the water and then brought back on the ship. We had an extensive meeting with all people involved and ran a practice deployment to make sure responsibilities and communications were clearly understood. Everything must run smoothly like clockwork or expensive equipment could get damaged or even worse someone could get injured. A lot of prior research time, effort, and money have gone into these projects and it would be a shame to botch a deployment.

Frank Bradley and I just successfully launched another radiosonde (weather balloon). After we launched it, we went back into the computer room to check the data being transmitted. Dan Wolfe explained that according to the data the thick, overcast stratus cloud layer was thinning. Shortly thereafter, the sun popped out and it was a gorgeous, bright sunshiny day!

Jeff Lord helped me get our drifter buoy out of storage and I placed the stickers of the Southerner man and all the 8th graders’ signatures on it. Southside School is the first school to ever adopt a drifting buoy. We are excited to be one of the first schools involved in the “Adopt a Drifter” program.

At 6:30 this evening, Diane and I will conduct “Science on the Fantail” with Alvaro Vera, leader of the Chilean Armada group that deployed the tsunami warning buoy. I will report on his interview tomorrow. I have watch duty from 20:00-24:00. During nighttime watches, I may have to go outside in the DARK. It’s really, really dark out here, too! All the ship’s outside lights are turned off. Anyway, if they deploy buoys at night I have to go out and help do whatever they need. While working on the deck at night everyone must attach a strobe beacon to themselves so if they fall overboard someone will be able to see them in the dark ocean waters. “Hey, who’s afraid of the dark?”

Until tomorrow, I’m signing off.

Mary

Mary Cook, December 6, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 6, 2004

Location: Latitude 19° 50.49` S, Longitude 73° 22.51`W
Time:
8:30 am

Weather Data from the Bridge
Wind Direction (degrees) 144.45
Relative Humidity (percent) 68.72
Temperature (Celsius) 18.65
Barometric Pressure (Millibars) 1012.77
Wind Speed (knots) 11.36
Wind Speed (meters/sec) 5.51

Question of Day

Based on the name, what do you think a thermosalinograph measures?

Personal Log

Good morning, everyone! Wow! What a great way to get a good night’s sleep, in a gently rocking ship. It’s like sleeping on a waterbed. The morning shower was a challenge, though. Being wet and soapy even on a gently rocking ship could be very dangerous. After breakfast, we met with Dan Wolfe and Chris Fairall for radiosonde deployment training. A radiosonde is a really cool giant helium filled balloon with instruments attached to a cord dangling beneath it. The radiosonde must be assembled and calibrated before launching. As the instruments detect the relative humidity, wind speed, wind direction, and temperature readings they transmit these data back to the computer onboard the ship. A radiosonde lasts for about one and a half hours and goes about 20 kilometers (12.4 miles) high. Dan actually deployed a radiosonde and we watched it go up, up and away! Then we went back into the lab and observed the data coming into the computer. I can’t wait until it is mine turn to deploy a radiosonde!

Our next training session was led by Jeff Lord and he showed us how to deploy the drifter buoys and the Argo floats. These are fairly simple to get into the water. Just record their identification numbers, fill in the log sheet for time, date, GMT, latitude and longitude, then toss them overboard. The drifting buoys are small and they measure surface temperature and pressure. The drifters have a long caterpillar-shaped drogue extending far down into the water that ensures the buoy will drift with the ocean currents and not the wind. In a few days we will deploy the first of fifteen drifter buoys and my students at Southside School will adopt this one and keep track of it online. I am amazed at the designs of all these instruments. It’s almost unbelievable what ingenuity has gone into these designs. Some are high-tech and some are low-tech but they all work together to obtain the necessary data for the scientists.

The Argo floats sink down to 2000 meters then float to the surface. On their way up they measure temperature and salinity. When the float reaches the surface, it then sends the information to a satellite. The float has a bladder that deflates and it sinks again to repeat the process. The Argo floats can keep on going for two to four years depending on their battery life.

After our training sessions, Diane and I sat down with Bruce Cowden, the ship’s boatswain, who’s also an artist, to brainstorm for a children’s book about the science work of this cruise.

At 1415, we had our “surprise” safety drills: a fire drill and an abandon ship drill. The fire drill was pretty simple. Upon hearing the alarm, we reported to our muster stations. Then the chief scientist called the bridge and said that all persons were present.

The abandon ship drill was quite another story. When we heard the alarm, we had to go to our staterooms to get our life vests and emergency bag containing the big red “gumby suit”. Then we went to our lifeboat station and put on the suit. Its purpose is to keep you dry and afloat in the event you were forced to abandon the ship.

Diane and I are taking water surface temperature readings every thirty minutes. This is really kind of fun. There’s a thermometer in a tube-shaped “bucket”. The bucket is attached to a long cord. We then swing it over the edge of the ship into the water until the bucket fills up. We raise the bucket and read the temperature immediately. This is compared to the temperature reading on an instrument mounted underneath the ship called a thermosalinograph.

Later this afternoon, we finally arrived at the deployment site for the Chilean Armada tsunami buoy. We are about 200 miles off the coast of Chile. The ship hovered over the location while the buoy was hoisted by a crane then swung over the edge and lowered into the water. At this time the men are unrolling over 5000 meters of cable to attach to the anchors which happen to old railroad wheels. It will take about one hour for the anchors to sink to the bottom of the ocean. The bottom pressure recorder will then be lowered. It detects the slightest changes in pressure as small as two centimeters and sends messages back to the surface buoy which then relays that to a satellite which has direct ground communications. The ship will stay in this position for a few hours to make sure the tsunami buoy and ground pressure recorder are communicating with each other. A RHIB ride is in the near future!

And I hope I’m on it. RHIB stands for rigid hull inflatable boat and they go really fast! Some of the workers will be riding out to the tsumani buoy to check everything out before we leave it.

I’ve just found out that I will have morning watch each day from 0800 until 1200. Everyone on board is assigned a daily four hour watch duty. My duty will be in the main lab and I will stay in contact with the bridge and help out when needed.

So tune tomorrow for more on our exciting adventure!

Mary.

Mary Cook, December 5, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 2-5, 2004

Personal Log

This afternoon we will board the NOAA Research Vessel RONALD H. BROWN and depart from Arica, Chile and steam westward for the Stratus buoy. I look forward to this adventure with great anticipation and a little trepidation. I’ve never been out to sea for three weeks and can’t help wondering how I will react to this challenging environment. I’ve already met several of the crew and scientists, all of whom have been very cordial and hospitable. I look forward to interviewing them, working with them and just getting to know these incredible people who’ve dedicated themselves to this research effort that will help us better understand the Earth’s systems and benefit mankind in so many ways.

As I reflect upon the last few days since we’ve arrived in Chile, I am overwhelmed by all the wonderful experiences that have been bestowed upon me. First of all, I must mention my mentor Dr. Diane Stanitski. She is a great teacher and a sincere encourager. She is patient yet exudes an energy that’s contagious. Diane has already gained my trust and I look forward to her continued mentoring. Another person with whom I have worked closely is Dr. John Kermond. Dr. Kermond’s the movie-maker. He makes documentaries for NOAA. He’s a very good coach for a novice like me, and a fine tour guide, too. Both he and Diane have put me at ease, modeled proper on-camera techniques and given me advice that’s helped me considerably. I like being their student because I’ve witnessed their expertise and I know they genuinely have a love for this work. What more could a student ask for?

Well, let me tell about some of the sights we’ve seen in the last couple of days while waiting for the cruise to begin. We’re staying at the Hotel Arica. It’s a resort situated right on the beach. I can hear the big waves crashing on the rocks and smell the salty air from my room. It’s a very comforting sensation. The first morning here as I walked along the beach and out on the rocks looking at the ocean, I couldn’t wipe the smile off my face! There’s just something about it that causes my spirit to soar. It’s so mysterious and grandly beautiful.

Then Diane and I went to the ship to participate in a tour for school children from the Escuela America. The mayor of Arica and the local television station were there, too. The kids were great, well-behaved and asked interesting questions! They were third graders and eighth graders. This tour is part of the education efforts of the NOAA.

After the tour, we went to the top of El Morro, a hill that looks like a giant mound of sand. It stands guard over Arica with a statue of an open-armed Jesus overlooking the city and the harbor. We shot a movie clip of Diane and me giving a brief history of Arica.

The next day we journeyed into the Atacama Desert and Andes mountains to have a look. But first we stopped to get water and food because we were going into such a remote area. Wow! The Atacama Desert is one of the driest places on the Earth. It’s a stark yet breathtaking sight to behold. Even though this is a desert there’s abundant evidence of water erosion where a multitude of rounded rocks have been carried into gullies.

As we were driving we suddenly began to see some interesting cacti. These were the Candelabro cacti which grow only between 2500-2800 meters elevation. They have a narrow life zone and are fragile for that reason alone. We were told by a local Chilean woman that they grow very slowly and only after about 30 years will the cactus begin to grow the branches at the top. Diane and I also collected a few rocks to take back to my classes.

As we continued along the main highway that connects Bolivia to the ocean, we stopped at Pueblo de Mallku. This is a village of six! Actually, it’s a homesteaded property of a very interesting family who are conducting the Center for Renewable Energy Resources in conjunction with the university in Arica. They live out in the middle of the desert in a nearly subsistence lifestyle with their closest neighbors being several miles away. They were eager to show us their setup which was quite amazing. They have a solar oven, solar water heater, and a high-tech electrical generator. They have built their dwelling from hand-mixed adobe and cactus logs. They home school their children who’ve compiled a book of local plants and animals along with traditional indigenous Chilean instructional songs on cultivation and medical uses of the plants. During our visit they served us tea with bread and jam. It was quite tasty. The tea was a concoction of leaves and boiling water that will help a body adjust to the extreme altitude.

After we said our goodbyes, we continued to ascend toward the Chungara Lake area. As we went higher and higher on the winding road, two snow-capped volcanoes came into view! I noticed the air started to get very chilly and it was windy. We saw llamas and alpacas grazing in the mountain meadows along the snow-melt streams from the mountaintops. These animals are curious critters! When we stopped for a photo op, they’d perk up their ears, take a long look at us, chew for awhile as though they were thinking about us, then move away occasionally looking back to see if we were looking back. We were fortunate to get to meet a pet alpaca named Cookie. Cookie likes to eat cookies. She was owned by some merchants who had a craft stand near the border stop. John dug out the last of the coconut cookies and shared them with Cookie. She was a true blue friend after that! Cookie’s fur is thick wool and can sell for a high dollar in the U.S.

At this point we were at about 14,000 feet elevation and I was really feeling it. I had a headache, dizziness, and my leg muscles were quivering from fatigue only after a short walk. I didn’t drink enough tea back at Pueblo de Mallku! So we got back in our trusty Puegot and descended to a village called Putre. Putre is a town that caters to tourists. They were happy to see us and very outgoing. Everyone we saw said “Hola” and waved with a smile. We went into a tiny grocery store and purchased supper. We had meat, egg, and olive stuffed empanadas followed by a delicious fig and coconut pastry.

We then took the long and winding road in total darkness back to Arica.

Now I am aboard the NOAA Ship RONALD H. BROWN and we’ve been sailing for six hours. No land in sight. We’ve had two meetings and a delicious supper in the galley. They have an interesting sign in the eating area that says, “Eat it and beat it” There aren’t enough chairs to seat all 45 people at once so when we finish eating we must get up and go elsewhere. It seems everyone has lots of work to do anyway.

Our first meeting was about ship rules and regulations with a focus on safety. We will have our surprise fire drill tomorrow at 2:15 pm promptly! Our science meeting was about the several scientific endeavors and the logistical problems to solve. Our chief scientist Dr. Bob Weller of Woods Hole Oceanographic Institution, encouraged us all to be helpful and considerate.

Some members of the Chilean Navy and Concepcion University are on board to deploy a tsunami detecting buoy which will get underway tomorrow afternoon. We will be deploying CTDs (conductivity, temperature, and depth sensors), and ARGO floats which go down 2000 meters then float to the surface measuring salinity and temperature. Once they break the surface then they send the information to a satellite. These floats then go back down and do it all over again. We’ll also be sending up radiosondes (weather-balloons) and tossing out drifting buoys which measure temperature, pressure, and ocean current pathways. Then the “biggie” is the Stratus 5 buoy! We’ll be out into the Pacific Ocean about 800 miles off the coast of Chile when we do this work which will take about six days. All this stuff is so cool I can’t believe I actually get to witness and participate in even a small way! I’m amazed. I’ll be giving you more information as the time comes so stay in touch and don’t forget to look at the pictures.

Mary

Jillian Worssam, August 9, 2004

NOAA Teacher at Sea
Jillian Worssam
Aboard NOAA Ship Miller Freeman
July 5 – August 1, 2004

Jillian Worssam aboard the Miller Freeman
Jillian Worssam aboard the Miller Freeman

Hello All, This will be my final visit from Alaska, The voyage on the ship is over, but I am far from done with this journey. It is amazing how much life can be packed into a month, and I feel ever so fortunate to have had this opportunity. My heart is full, my mind has been challenged. I am a bit sad as I miss the camaraderie and new friendships, thank goodness for e-mail. Thank you all for your support this past month, my goodness has it ONLY been a month!….hope you enjoy this last entry. Jillian I have attached a photo, hope it works….Also one of my last poems! As the humpback breaches I see a splash, a tail and then nothing. In the blink of an eye this mighty creature has defied gravity. I am in awe! Again and again the aerobatics continue for what reason I do not know, only that as witness I have been given a gift. A tufted puffin paddles by and I am inspired, so glad to have this moment, and so aware of the fragility of life. Seals lay upon floating pieces of ice, their guards down as they relax in pure abandon. I too am relaxed, enjoying the breeze as it plays against my skin. Loving the boats motion, as swell upon swell try to breach our hull. My heart beats to a new rhythm and I am humbled by the grandeur of this place!

Never in my life has a month passed so quickly, literally in the blink of an eye I have had the experience of a lifetime. So much has happened and I am a different woman. Thirty days ago I was prepared to walk in the shoes of another, to taste a different career and learn. Now that time has passed, and the shoes fit so well that I am tempted, so tempted to change the patterns of a life time. NOAA provides an amazing opportunity for teachers and I urge all educators to take advantage of their generosity, for they have enhanced my world beyond merewords.

One week ago I caught my first Halibut, over 50 pounds, and it was quite a challenge to land. I was then taught how to bleed the fish to improve the quality of the meat prior to my lesson on how to fillet. The tender pieces of flesh have been vacuumed packed and will be sent to me for shared consumption. Two weeks ago I hung from the gantry, thirty feet above the deck removing the cotter pin from the block holding the third wire (scientific equipment that sent data back to the ship while we were fishing).My safety was in the hands of men whom I had not previously known, and I had no fear. The pin was tricky, the pliers slippery in my hand, failure was not an option. I was trusted with a job, so there was no hesitation, I would succeed.

Three weeks ago I gutted my first fish, checked its gender, and measured it for scientific purposes. The stomach contents were preserved for further study and the otoliths removed so that the age could be determined. I saw thousands of pollock, and many other species, and have learned to truly appreciate a new ecosystem.

Four weeks ago I stood in Dutch Harbor, Alaska about to board a 215 foot NOAA research vessel with no idea of what was about to unfold. Here I was a teacher from Arizona, about to spend thirty days on the Bering Sea, to study walleye pollock, a fish I had never previously heard of.

Today I am a new person, I have an enhanced understanding of life, of career and the dedication these men and women have to both. I was the student, eager to learn and wanted to be a part of everything.

I was denied nothing for 30 days.  You want to paint Jillian, here are the brushes. What, you really want to clean the heads, go for it.  Ok, I will explain it to you one more time, the line needs to be taught, then you bring the left over the right, through the hole and there is the lover’s knot. (I never did master any knots, but that doesn’t mean I wasn’t an eager study) Once the data is recorded and analyzed, fishing quotas can be established and the Bering Sea can continue to be a viable and healthy ecosystem.

This was my life, and with some melancholy I am sorry to leave. I have made friends expanded my mind, and had an amazing adventure. For many, their days hold no passion, no daily happiness. I have been reminded that life is tenuous, and not to be taken for granted. I want to get up every morning and be pleased with all that I have, and all that I can gain. I want to work with my peers and realize that the little things are not important, the big picture, the smile on my face, the spirit I hold, these are what count.

NOAA, the seventh branch, and least recognized of our military system, has given me a present beyond words, and it is with my every breath that I hope to share this gift with others. Little do my students know what is in store for them this year…as for me the adventure will surely continue!

Kevin McMahon, August 7, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 7, 2004

Weather Data from the Bridge
Lat. 42 deg 33.05 N
Lon. 68 deg 23.03 W
Heading 349 deg
Speed 0 kts
Barometer 1007.91 mb
Rel Humidity 83.96 %
Temp. 16.68 C

Daily Log

0800 hours. The past evening was spent steaming to this point where we are on station. The ship will remain here for all of the morning and part of the afternoon. We will await a fly over by the J31 as well as the NASA DC8. Many of the scientists onboard will also set their equipment with the use of a satellite due to pass overhead in the early afternoon.

My morning was spent helping Dan Wolfe, one of the NOAA meteorologists repair an electrical problem which had disabled the sensors that relay air temperature and relative humidity to computers aboard ship. As you can see from the photos, this was not something you would find in the job description for meteorologists. To solve the problem Dan had to climb up to a crows nest like platform on the masthead near the bow of the ship and then perform a diagnostic test on the electrical circuitry for the systems.

It was finally discovered that a switch box had allowed moisture to enter through leaky gasket. In all, the task it took several hours to complete.

During the time we were engaged with the repair we started to notice a small school of dolphins moving closer to the ship. At first they seemed to keep a distance of about 100 yards but after time, small pods of four or five would move in closer to the ship and investigate our presence in their world. I believe that this type of dolphin is known as the Atlantic White Sided Dolphin. As we were stationary in the water, a flock of shearwaters could be seen loitering off our stern and starboard side. They are a wonderful seabird to watch as they seem to effortlessly propel themselves through the air with a continuous glide, using a ground effect air flow created by an updraft of the sea waves. The dolphins would at times glide under the floating shearwaters and make them alight from the water. They seemed to enjoy this form of teasing as they repeated the act over and over.

During the afternoon I helped Drew Hamilton take more sun readings with his Sunphotometer. As I stated in yesterdays log, the sunphotometer measure the intensity of the suns direct radiation. Because we had a couple of aircraft fly over us today, the J31 and the DC8, and because those platforms contain the same equipment as that aboard the ship, we were able to validate our readings.

Question

Why is it important to have standardized equipment when conducting the same types of experiments by different people in different locations?

Kevin McMahon, August 5, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 5, 2004

Weather Data from the Bridge
Lat. 44 deg 03.77 N
Lon. 68 deg 18.53 W
Heading 210 deg
Speed 8.7 kts
Barometer 1005.7 mb
Rel Humidity 79.8%
Temp. 15.4 C

Daily Log

0800 hours. We have left behind the protective cove in the shadow of Mt. Desert Island and are now in the Gulf of Maine of 235 degrees along the Maine coast. The skies ahead look more threatening than the skies we are leaving behind.

1130 hours and we are just off Matinicus Rock Lighthouse. I spent about one hour in the engine room with Keegan Plaskon who is the ships 3rd engineer. A very sophisticated propulsion system not to mention electrical systems, HVAC, and desalinization systems for the ship.

The RONALD H. BROWN is known in the trade as a diesel electric ship. It propulsion system is somewhat unique in that it uses diesel engines to generate electricity which in turn is used to power the motors turning the propellers. On most vessels of this size, there is a direct connection between the diesel engines and the propellers.

The propeller system is also unique in that there is no rudder system to steer by. With the propellers connected to what is known as a thruster, the two aft propellers can be rotated independently of each other a full 360 degrees. When the two aft thrusters are synchronized with the bow thruster and tied in with the ships GPS system, it allows the team of scientist onboard to remain on station in one place for an extended period of time. Wind, tide and currents can be overcome. Last evening we stayed in one position in a small bay near Bass Harbor, ME with the ships bow pointed into the wind. Although the wind was only about 4 knots out of the northeast, the tidal flow was running about seven knots at its peak.

There are three large diesel engines onboard whose primary use is propulsion. Each is a 16 cylinder Caterpillar (Cat 3500). A single Cat can propel the ship along at about 7 knots. As more speed is needed, the other two Cats are brought on line. The top speed of the ship is about 14 knots. But the ship also uses it diesel engines for other needs. There are three other Cats onboard. They are smaller engines with 8 cylinders each. These engines are used to provide the ship with the needed electricity for everyday use, and the BROWN uses a lot of electricity. Besides the need the scientists have for electricity, there scientific equipment runs on 110 AC just like in your TV and refrigerator home. The ship uses its generators to make fresh water, provide climate control, refrigerate its food supplies, and run the sewage treatment system, its navigational system and what seems like an endless list of other needs.

What is the fuel consumption like? I am told that the ship consumes between 5 & 6 thousand gallons of fuel per day.

Question

If there are about 75 scientists and crew aboard, how many gallons are needed per hour per day for each person per day?

The vessel is also capable of producing 4,000 gallons of water per day but that on a normal day the people onboard consume about 3,000 gallons per day for consumption, personal hygiene, toilets and industrial uses.

Question

How many gallons is this per person per hour per day?

Kevin McMahon, August 4, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 4, 2004

Weather Data from the Bridge
Lat. 44 deg 07.58 N
Lon. 68 deg 01.74 W
Heading 035 deg
Speed 7.6 kts
Barometer 1005.17 mb
Rel Humidity 98.3%
Temp. 15.5 C

Daily Log

0700 hours and we are off Mount Desert Island. The air is cool with a light fog over the water and partly cloudy skies above.

The morning was spent on a heading of 035 degrees as we continue our move to the Northeast. I am told that we will just make it to the boundary area between the U.S. and Canadian border. Then we will reverse our course. It is hoped that by being close to the coastline and with the winds cooperating that the ships scientist will be able to measure some of the organic biogenics being produces by the forests of Maine. The relationship between the Volatile Organic Compounds (VOC) which are natural in nature, and man made pollutants produced by the combustion of hydrocarbon products is one of the areas that scientist are working to understand.

0930 hours. I have been spending some time on the bridge transferring the Ships Sighting Log to an Excel Spreadsheet File and then putting the file on the ships website so that some of the scientist can compare their pollution data with various ships we have encountered.

I had a brief tour of the LIDAR (Light Radar) operation today. But we needed to cut it short as they were in the middle of a software problem. I plan to return tomorrow when the equipment is functioning more reliably.

1600 hours.

Weather Data from the Bridge
Lat. 44 deg 06.37 N
Lon. 68 deg 12.10 W
Heading 220 deg
Speed 7.4 kts
Barometer 1003.89 mb
Rel Humidity 88.96%
Temp. 15.35 C

We seem to be charting a course to enter one of the many fiords around Mt. Desert Island, ME.

2030 hours. We are in a fjord near Mt. Desert Island off the town of Bass Harbor. Instead of setting the anchor, the ship will hold position with its bow into the wind using its thrusters which are controlled by the GPS system. The plan is for the atmospheric sensors to measure the organic biogenic compounds which are produced by the forests of the surrounding area.

Kevin McMahon, August 3, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 3, 2004

Weather Data from the Bridge
Lat. 43 deg 38.65 N
Lon. 69 deg 43.93 W
Heading 096.4 deg
Speed 7.9 kts
Barometer 1009.84 mb
Rel Humidity 99.47%
Temp. 16.5 C

Daily Log

0635 hours and we are in dense pea soup fog.

1120 hours. We have been delayed by the fog but are now underway at a very slow speed, fog horn sounding every minute. The ship need to travel about 10 miles to the entrance to Boothbay harbor so that we can put ashore by launch one of the scientist and bring back to the ship another of the NOAA scientist who has been working at Pease.

I am starting to hear other fog horns in the distance. I spent some time on the bridge. The radar’s give a very accurate view of what’s around us, shoreline as well as vessels large and small in the area, but still it is not perfect and hence the need to proceed slowly.

We made it in very close to the entrance to Boothbay Harbor. I was hoping to get some pictures of the area but we were entirely fogbound. One scientist was sent ashore at approximately 1330 hours but then the return of the launch with the replacement took longer than anticipated. Apparently they became lost in the fog on their return to the ship.

We spent most of afternoon south of the Boothbay area traveling in an east west pattern taking air and water samples. We seem to slide into and out of dense fog…

I spent about an hour today on the bridge. The ability to track and identify an object at sea is so common now that it is taken as a guarantee of safety. The personnel on the bridge made it abundantly clear that it is not.

It is amazing to me that the same technology which is used to see and identify ships at sea is in a way the same technology that allows many of the scientists onboard to identify and measure many different species of chemical compounds.

Question

What size are the smallest particles we can measure in our Chemistry lab at Grady H.S.?

Kevin McMahon, August 1, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 1, 2004

Weather Data from the Bridge
Lat. 42 deg 56.49 N
Lon. 70 deg 33.31 W
Heading 235 deg
Speed 8.2 kts
Barometer 1015.4 mb
Rel Humidity 90.2%
Temp. 18.2C

0740 hours. We spent most of the past evening in a stationary position very near the Isle of Shoals. A very beautiful moonlit evening. We now are on a heading almost due east of the Isle of Shoals, again looking for the NYC, Boston plume.

It is a continual quest, not quite like Ahab and his search for the white whale but a quest none the less. The scientists aboard the RONALD H. BROWN have embarked upon a continual search. Someone once said that one of the great joys in life is getting nature to give up one of her secrets. Meaning that the fun and excitement in science is learning how things work. Each in his or her way is really trying to gain an understanding of how the world works.

Today I spoke with Hans Osthoff. He is a young man with an intense desire to learn about the chemistry of our atmosphere. Hans works for NOAA at the Aeronomy Laboratory in Boulder, Colorado. As a young boy he developed a love for chemistry and stayed with it. He now has advanced degrees in Analytical and Physical Chemistry.

Aboard the ship he runs a piece of equipment which is extremely sophisticated. It is called a Cavity Ringdown Spectrometer. It can measure the diffusion of light as it is passed through a sample of air which is contained in a copper tube. At each end of the copper tube there are parabolic mirrors. As a beam of laser light enters the tube, it bounces back and forth many times before exiting at the other end. The time the beam of light spends in the tube is measured and allows scientists to measure concentrations of:

NO2 NO3 N2O5

Once the concentrations have been found, the scientist can then calculate the reactions rates and the products which will be introduced to our atmosphere.

In the end, we will all gain a better understanding of our atmosphere and hopefully learn how to better maintain our environment.

Question

Can you name the three compounds above?

Kirk Beckendorf, July 31, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 31, 2004

Daily Log

This will be my last day in New England with NEAQS-ITCT. Tomorrow morning I leave my hotel at 3:00 AM to drive to the airport to fly home to Oregon. The past month has been an amazing experience. I have been continually amazed at the complexity, cooperation and coordination involved in this massive air quality study. I have seen that the scientists are an extremely intelligent and hardworking group of men and women. They are truly committed to obtaining a thorough and accurate understanding of our global society’s air pollution problem so that solutions can be obtained.

Today Fred took me onto the WP-3, another of NOAA’s planes being used in NEAQS. Unlike the DC-3 which only has a LIDAR on board, the P3 is packed with many different scientific instruments. To be able to make as many measurements as possible, equipment is also attached underneath the wings, under the fuselage and even sticking out from the tail is a special cloud radar. The windows and body have been modified so that specially designed tubes stick out and suck air from the outside and feed it to the instruments inside the plane. Once we have climbed up the ladder and are inside, we can barely get passed the door.

In a couple of hours the P3 will take off for a night flight, but right now the plane is not only packed with the equipment, it is also packed with scientists making last minute adjustments to their instruments. Because there are so many air quality measurement instruments on board, there is very little room for people during the flight. Therefore the instruments need to be ready to run on their own with very little supervision.

Much of the equipment is similar to that found on the BROWN, but the plane will obviously be taking measurements higher in the atmosphere and over a larger area in a shorter amount of time, than can the BROWN. Also, because the plane is traveling a lot faster than the BROWN, if a measurement is made every 30 seconds and the P3 passes through a narrow plume of pollution the plume may not even be measured. It is therefore important for the measurements to be made very quickly and often.

The flight is intentionally leaving late in the day so that most of the flight will be after sunset. Sunlight is necessary for a lot of the chemical reactions that cause pollutants to change once they are in the air. Tonight’s flight is designed largely around a single instrument measuring the specific chemicals that are more likely to be in the atmosphere at night. During the day the sunlight breaks these chemicals down, yet they are a very important part of the pollution problem.

Since the beginning of July until about the end of August, for almost two months, the men and women involved in NEAQS will be making measurements from airplanes, from the BROWN, from satellites, from the top of Mt. Washington and other spots on land. But when I asked Fred what is the one thing my students should know about this project, he said that they need to realize that the real work starts after everyone is out of the field. The “Ah-ha” moments will occur over the next 8 -12 months as the data is being analyzed, that is when the real learning and understanding will happen.

Finally I would like to thank all of the scientists who were so generous, cooperative and patient with my many questions.

Kevin McMahon, July 31, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 31, 2004

Weather Data from the Bridge
Lat. 43 deg 38.20 N
Lon. 69 deg 57.97 W
Speed 8.9 kts
Barometer 1016.68 mb
Rel Humidity 97.27%
Temp. 18.16 C

Daily Log

0835 hours. The wind speed has increased and is now at about 16 kts which lend a slight roll the ship.

We came within a couple of miles of Fletcher Point, ME. Before turning around, at present we are heading in an easterly direction.

Helped to launch an ozonesonde at 1000. The winds had kicked up to about 20 kts out of the southwest which made it somewhat tricky. In all though it was a successful launch.

I learned later that the ozonesonde made it to an altitude of 39.9 kilometers, not the record but pretty close.

I’ve been up on the bridge. The views of the Maine coastline are spectacular.

Talking to some of the men and women who operate the ship I am amazed at the complexity of the vessel. Aside form the scientific aspect, the bridge alone seems to have more in common with a Boeing 747 than it does with a ship on the sea. Gone are the ships wheel and binnacle and the entire nautical flavor as described by Melville.

The RONALD H. BROWN is as modern a ship as you will find on the ocean.

She is 274 feet in length with a beam of 52.5 feet and a draft of 19 feet.

Its diesel engines do not drive the propellers directly, rather they produce electricity which intern powers electric motors that drive the ships twin aft thrusters and single bow thruster. The ship does not have rudders but is instead maneuvered by the thrusters which have the ability to rotate 360 degrees.

The ships wheel has been replaced by a joystick type apparatus which allows for minute movement in all direction. The GPS navigational system allows the ship to maintain a fixed course over an extended period of time or, hold a steady fixed position within one meter of a desired location.

Questions

How does a GPS system work?

Does the GPS system on the ship differ from the one we use for class fieldwork?

Kirk Beckendorf, July 30, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 30, 2004

Daily Log

Besides the BROWN, the satellites, and the Airmap sites, there are thirteen different airplanes being used to collect air quality data for NEAQS. Several of these planes are currently flying out of Pease. Today, while the scientists and pilots were prepping the plane and the science instruments, I went on board the DC-3. The DC-3 is an airplane that is about 50 years old. The inside has been gutted and now there are just three seats, besides the two in the cockpit, and a LIDAR. The LIDAR is like the one that is on the BROWN but this one looks down, not up. It sends out a laser which can be used to determine the amount of ozone in the atmosphere below the plane. A large square hole, about 2 feet by two feet, has been cut through the bottom of the plane for the laser to shine down through and then for the light to bounce back into the instrument. The plane does not have a pressurized cabin so it is limited on how high it can fly. Most of the time during this flight, it will be at about 8000 ft. The DC-3 will also be flying slowly, about 100 miles per hour. This flight will take the crew and plane south and east and then out over the Atlantic, close to the BROWN.

This morning I talked to Fred . After we visited for a bit he recommended that I attend this afternoon’s planning meeting for tomorrow’s WP-3 flight. The meeting started at 5:30 with a brief discussion of the flight planned for tomorrow. Following that, in turn three of the scientists each explained to the rest of those attending the meeting what exactly each is studying and why. Remember the big elephant (from previous logs) that is being observed. Each scientist specializes on one very specific part of the pollution problem. To get a complete understanding of the problem all of these observations must be pieced together to a get a complete picture, which is the point of these science show and tells.

Kevin McMahon, July 30, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 30, 2004

Weather Data from the Bridge
Lat. 42 deg 37.86 N
Lon. 70 deg 12.37 W
Speed 8.6 kts
Barometer 1018.96 mb
Rel Humidity 93.16%
Temp. 18.9 C

The seas are calm. The skies have a distant haze. The New England atmosphere so common at this time of year. As is usual for the day, at 0700 we sent aloft a radiosonde, and then at 1000 an ozonesonde.

I was lucky enough to see a couple of finback whales; but unfortunately I had left my camera on my bunk, before beginning a discussion with Drew Hamilton about alternative power generation. Many of the scientists lead very diverse lives. Drew has a house in Seattle and wants to get off the electrical grid. He has worked for NOAA for 25 years and has seen much of the world. Thirty years ago he started out at the University of Miami, never in a thousand years dreaming he’d be involved in the kind of research he’s doing.

Ever hear of di-methyl sulfide DMS? As chemistry teacher I’d heard the name but never understood its significance to the atmospheric work the scientist aboard the ship are undertaking. It turns out that di-methyl sulfide is produced by plankton and is part of a planktons waste process. DMS is one of the major contributors of atmospheric sulfur. Overly high levels in the atmosphere can act as a reflective unit not allowing enough sunlight through our atmosphere. As a result, in certain areas the Earth does not receive the needed heat for some of the biological processes to take place.

Weather Data from the Bridge
Lat. 43 deg 17.84 N
Lon. 69 deg 33.83 W
Speed 9.3 kts
Barometer 1018.3 mb
Rel Humidity 86.16%
Temp. 20.65 C

1530 hours and there seems to be a flurry of activity among many of the scientist. A radiosonde is being rapidly readied to be sent aloft. It seems that the ship has reached a position somewhat east of Portland, ME and we have found a plume of ozone. The initial spike on the instrumentation showed 80-85 ppb (parts per billion) but then it jumped again to 101 ppb. This spike in the ozone was enough to request that another ozonesonde be readied and sent aloft. They have also requested a fly over by the DC3 out of Pease. Onboard the DC3 is a LIDAR (Light Radar) which measures atmospheric ozone. I am told that the cost of one ozonesonde is approximately one thousand dollars, so I assume that the readings on the instrumentation are justifying the expense. It will be interesting to see what they all have to say at the evening science meeting which is held each evening at 1930 hours.

We seemed to have found a large plume of ozone. It is as everyone, the science staff at least, had assumed. We have indeed found a large plume of ozone.

1930 hours. We are now heading in a westerly direction for Cape Elizabeth, ME.

Kirk Beckendorf, July 29, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 29, 2004

Daily Log

How can you map air?

Air moves and so does pollution. Some areas of the country which produce very little pollution may actually record high levels of pollution, because pollution from somewhere else moves there. A program called Airmap is a joint program of NOAA and the University of New Hampshire is seeking to look at some of that pollution. Check out their website at http://www.airmap.unh.edu. The goal of Airmap is to learn as much as they can to try and understand New England’s changing climate and air quality. Airmap has a number of year round monitoring stations, which this summer are also part of NEAQS. Their stations measure the normal weather data as well as a number of pollutants such as ozone.

Today I visited one of those sites in northern New Hampshire, at the top of Mt. Washington, the highest mountain in New England. The mountains are a lot larger than I had expected and are very densely forested. Mt. Washington is known to have some of the worst weather in the world and the monitoring station that I visited recorded the strongest winds ever recorded on Earth, 231 miles per hour. http://www.mountwashington.org/bigwind/. The buildings at the summit are specially designed to keep from them from blowing off of the mountain. One is even chained down. The observatory building is designed to survive winds of 300 mile per hour.The monitoring station at the top of the mountain is manned by a staff of about 8 during the summer and 4-5 during the winter. Every hour the observers go outside and take weather measurements, this takes them about 15 minutes. Most of the observers are college students or recent graduates. One of those who showed me around will be a freshman in college this next year. In addition to the weather data being collected, a bank of Airmap instruments also measure pollution. Some of the instruments are the same as those I saw on the Brown. The instruments are making constant automatic measurements.

I have become well aware that pollution can travel to unpolluted areas but today, here at the top of Mt. Washington, it really struck home. I drove three hours through fairly remote forest to get to the top of this mountain in northern New Hampshire. Looking out from the top, when the fog is not blowing through, one sees very little except for forest. But at this remote spot, several times a year, ozone reaches levels higher than the amount allowed by the EPA. I ask where it comes from, the answer I receive is that a lot of the pollution seems to from the Midwest, (the Chicago and Detroit area) some also comes from Boston and New York. Part of the goal of NEAQS is to learn more about the pollution as it travels from the areas which produce the pollution, to the areas that receive it.

Questions of the Day

How far would the pollution have to travel from Detroit to Mt. Washington?

Where are the rest of the Airmap monitoring sites?

Kevin McMahon, July 29, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 29, 2004

Weather Data from the Bridge
Lat. 42 deg 43.99
Lon. 70deg 02.99
Barometer 1015.71 mb
Rel Humidity 94.6%
Temp. 17.1 C
Radiosond aloft at 0710.

Daily Log

Science meeting at 0800. It has been decided that we will try to rendezvous with the J31 out of Pease at approximately 1130 and if all goes well send another radiosonde aloft.

Since I came onboard the RONALD H. BROWN on the 26th of July I have been completely amazed at how sophisticated life onboard a modern research vessel has become. On the first day waiting in line for lunch I inquired as to how long we can expect to have the fresh fruits and vegetables? Mr. Whitehead, the chief steward answered me that, “we always serve up fresh salads, very little of our produce is frozen.” When I inquired as to how they do it, I was informed that the ships refrigeration system was equipped with a device which filters out the Ethylene, a compound which causes produce to rot. As a result we can expect to have fresh salads on a daily basis.

This little tidbit of information got me to thinking about the possibility of a lesson plan which would incorporate some chemistry and some biology.

Questions

1. Can you draw the molecular structure of Ethylene?

2. What bacteria are involved in the spoilage of food and how does the elimination of ethylene play a part in this process?

Most of my time over the last 3 days has been spent getting to know the ship, the crew, and the scientific staff. It is odd in that I am being drawn more towards the operation of the vessel than I am to the scientific community. But both aspects are keeping me busy.

I have been working with Dan Wolfe, one of the main meteorologists onboard. I had thought that because I teach Earth Science, I knew something about weather forecasting. I have a long way to go. It has been an education. We have been sending aloft four radiosonde balloons per day. One every six hours. Each device is carried aloft by a balloon filled with helium. The radiosonde sends back to the ship its location, direction of travel, velocity, and altitude as a result of the barometric pressure.

Question

Which gas law equation does one use to calculate the relationship between pressure and volume?

1400 hours and I have just been informed that my hands are needed to assist with the preparation and launch of an ozonesonde. 1500 hours and we have been informed that a DC3 out of Pease will rendezvous with us in about 30 minutes. An ozonesonde has many of the characteristics of the radiosonde but also has the capability to measure ozone levels at various altitudes. It also has a longer life span and stays aloft about 2 hours and 45 minutes. The DC3 is really an aerial platform which has equipment onboard to measure ozone. I have been informed that the DC3 is nearing our location so it is time to fill the balloon.

Kathy Virdin, July 28, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 28, 2004

Latitude:58 degrees 01.110 N.
Longitude: 153 degrees 16.529 W.
Visibility: Less than 1 nautical mile
Wind direction: Light
Wind speed: Airs
Sea wave height: 0 ft.
Swell wave height: 0 ft.
Sea water temperature: 9.4 C.
Sea level pressure: 1003.9 mb.
Cloud cover: Cloudy/ foggy

Science and Technology Log

Today we have the exciting assignment of surveying the site of an 1860’s wreck of a Russian vessel. We’ll be making black and white images of the site of the wreck, giving archaeologists the depths of the whole area of wreckage. What makes this find so unusual, according to the Kodiak News, July 16, 2004, is that divers have already found a cylinder that spells out the name of the vessel “Kad’yak”. It is so rare to find an identifying object, that it happens in only about one out of a hundred sunken wreck findings. The Maritime Studies Program of Eastern Carolina University has a permit form the Alaska Department of Natural Resources, the National Science Foundation, and NOAA to do research on the site. They have sent down divers through the month of July and they have found a cannon, deck braces, a ballast pile, and three anchors. This has been identified as the oldest wreck ever found in Alaska waters. These samples all help to identify and date the wreck. After careful cleaning and preservation treatments, they will be put on display in various museums. Our survey will be a multi-beam swath survey, made from several of our launches, that will take several hours. We may not know much immediately from our survey, because all the data will need to be processed, cleaned and sent to the cartographers for charting. Perhaps we’ll read more about it in days to come in the newspapers or scientific journals.

Virdin 7-28-04 image1

Personal Log

I was excited to know that we were traveling through Whale Pass today and when I went out to the flying bridge to get a good look at the area, I saw a whale, quite near the ship. It was the first time I’ve seen a whale that close and it stayed on the surface for several minutes. When a whale is spotted, they make an announcement to all hands that a whale is spotted on port side or starboard side. Everyone grabs their cameras to try and get a good picture. I tried too, but I don’t know if it’ll turn out, as they are notoriously hard to film. They move through the water so gracefully and quickly that photographs are hard to come by. As we are moving through an area of straits, the weather is cloudy and foggy, but when the fog lifts, it brings a lovely view of the mountains. I’ll be headed to Homer, Alaska tomorrow for a few days of sightseeing, then home and back to the classroom. What an adventure this has been! Thank you NOAA!!

Virdin 7-28-04 image2

Kirk Beckendorf, July 28, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 28, 2004

Daily Log

How do you decide where to fly to find and measure pollution?

I spent today at the NEAQS Operation Center at Pease International Tradeport in Portsmouth. The Op Center is the temporary “headquarters” for the air quality study. It is located in a college campus. About 15 large classrooms are being used as group offices for the approximately 100 scientists. I arrived just in time for the morning DC-8 briefing. The DC-8 is a NASA research plane which is loaded with equipment similar to what is on the RON BROWN. This morning about 20 scientists are planning tomorrow’s flight.

To begin the meeting several meteorologists showed some current weather movements and their predictions for tomorrow. Then the modelers who predict pollution motion and chemical changes explain what they expect to be happening to some pollution tomorrow. What this group plans to study tomorrow is a large bunch of pollution moving out of the New England and out across the Atlantic Ocean. About half way to Europe the pollution makes a large loop to the south and then loops back north. They want to fly through all of the pollution and see how the chemicals change as the pollution ages. There are three satellites that will be passing overhead at specific times and they want to be under them. So they have to time their flight schedule accordingly. Once everyone is on the same page of the general plan, they start planning the actual flight. The main idea is to fly out over the Atlantic following the looping band of pollution. At several points they want to spiral up and down to take measurements close to the ocean surface all of the way to the top of the pollution.

With a computer image of the NE US and the N. Atlantic being projected onto a screen, one of the scientists begins to type in a flight plan, as he types in latitudes and longitudes the route shows up on the map. As the route is being plotted, there continues to be discussion about where they should go to get the best measurements. Because of the points brought up in the discussion, the route and where they will spiral up and down are changed a number of times. Finally they have a flight plan. However, it is about an hour longer than they should be in the air. So the route is modified and remodified a number of times, until everyone feels that they will be able to make the measurements needed, and still have enough fuel to get back.

Question of the Day

What is your latitude and longitude?

The pollution being sampled by the DC-8 is also being measured in the Azores? Where and what are the Azores?

 

Kirk Beckendorf, July 27, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 27, 2004

Daily Log

Jim Koermer invited me to come up today and “work” a session with him. Jim is a Professor of Meteorology at Plymouth State in Plymouth, New Hampshire. During NEAQS he is responsible for providing the scientist on the BROWN twice daily forecast of the weather conditions. Yesterday evening I drove the 2 hours to Plymouth and went to Jim’s house. After a short visit with Jim and his wife it was about 9:00 PM. It was time for a nap, only a nap because his work session today started at midnight.

One of Jim’s students had worked the previous session. After we arrived he gave Jim a brief summary of what he had been doing. Rachel, another of Jim’s students soon joined us and she went to work immediately gathering some of the data necessary to make the forecast.

Along one wall of the long room, where they build the forecast, is a bank of 34 displays each continually updating satellite images, radars, computer models, webcams and other global and local weather information. On the desk are four computers which are used to gather other weather data and computer models which give real time, delayed time and computer models which predict general weather patterns.

Rachel and Jim are writing a very specific forecast for the area of the Gulf of Maine in the location of the BROWN. Their predictions give details such as wind speed and direction, air temperature, rainfall, cloud cover and where pollution will be starting from and then will move to. Even though they send the BROWN these predictions twice a day the forecast are for the next 48 hours, at six hour intervals. Until 6:00AM the two of them analyze the information from all of the different sources and then they hand draw some of the predictions on maps and type the rest. The drawn maps are scanned and merged with the typed predictions and the entire file is loaded to a website for the BROWN to access when it connects to the web by satellite at 7:00. You can see one of the hand drawn predictions in one of the pictures I sent in earlier from the BROWN.

The scientists on the BROWN will then use the predictions to determine what will be the best place for them to sample pollution. The BROWN does not travel very fast so plans have to be made ahead of time to catch certain pollution events.

You can also use a lot of the tools that Jim uses. His website is at http://vortex.plymouth.edu/

Question of the Day

What is a vortex?

Kathy Virdin, July 26, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 26, 2004

Latitude:55 degrees 17.192 minutes N.
Longitude: 160degrees 32.214 minutes W.
Visibility: 6 nautical miles
Wind direction: Light
Wind speed: Airs
Sea wave height: 0-1 ft.
Swell wave height: 0-1 ft.
Sea water temperature:10.6 C.
Sea level pressure:998.9 mb.
Cloud cover: Cloudy

Science and Technology Log

Today I interviewed Nicola Samuelson, who is an ensign. Her job on the RAINIER is multi-faceted. She is responsible for the ship’s safety, must represent the Captain when he is not here, drive the ship from point A to B as assistant navigation officer, preparing the ship’s sail plan, and is also a morale officer, who plans activities for the crew when they are in port. She has an undergraduate degree and a master’s degree in ocean engineering. She works in four hour shifts and as an officer, may be on 24-hr. duty when the ship is in port. She chose this job because she enjoys the beautiful scenery, likes the important survey work they do, and enjoys working in a setting where you must bring a camera. She also has an interesting background that steered her in the direction of working for NOAA. She grew up on a sailing vessel as her parents sailed around the world. She was home schooled on the boat and sailed around the South Pacific from the time she was three years old until she was twelve years old. They would stop in various ports, such as New Caledonia, Fiji Islands, Samoa, New Zealand, Singapore, Malaysia, New Guinea, and Thailand when they needed to pick up supplies or work for a while. She only lived on land for the first time when she was 17 years old. She grew up speaking English and French as her parents spoke both languages. Because of her upbringing, she knew she wanted a job where she would be on the ocean. After graduate school, she received three months of NOAA officer training, where she learned firefighting skills, first aid, navigation, and how to drive a ship. She feels that her job is extremely significant, since some of the waters in Alaska have never been surveyed.

Virdin 7-26-04 map

An area that the RAINIER just surveyed, that covered 30 miles by 50 miles only had about 5 depth soundings. Ships would have to go around that area, because it’s just too dangerous to navigate through without the true depth measurements on the charts. A ship needs 40 feet of water clearance below deck level in order to successfully navigate the waters. Lack of accurate charts means that cruise and cargo ships are limited in where they can sail in the Alaskan waters. Opening up new areas, because of their surveys, means NOAA is contributing toward improvement of safety, commerce and tourism.

Personal Log

We have learned today, that because of an oil leak, the RAINIER will go into port early. We’ll have an all hands on deck meeting this afternoon to find out the exact plans. It will be interesting to find our how a ship this size will handle repairs. The weather has turned off pretty this afternoon, so those of the crew who are not working have gone on deck to fish. They will pack their catches in ice to mail back to their families. Fishing in Alaska is some of the best in the world!

Kirk Beckendorf, July 26, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 26, 2004

Daily Log

This morning there was a big press conference at the BROWN. A lot of very important people were here. I got to meet the head of NOAA, Admiral Lautenbacher. I found out his wife is a middle school science teacher. Senator Judd Gregg from New Hampshire was also here. Since the BROWN is sailing out today everyone who will be out on the second leg of the research cruise had to be on board at 1:00. I took some pictures of Kevin as he boarded. This time as the BROWN pulled away from the docks, went under the drawbridge and headed out of port I was standing on shore taking pictures and waving to those on the ship. Three weeks ago I was the one standing on the ship deck waving to those still on shore. I’ll sure miss being out there. I just hope they don’t have fog all of the time.

Kathy Virdin, July 25, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 25, 2004

Latitude:55degrees 17.215 N.
Longitude: 160 degrees 32.231 W.
Visibility:1 nautical mile
Wind direction:140 degrees
Wind speed: 10 kts.
Sea wave height: 0-1 ft.
Swell wave height: 2-3 ft.
Sea water temperature:10 degrees C.
Sea level pressure: 997.4 mb.
Cloud cover:Cloudy, light rain

Science and Technology Log

Today we had a visitor from Tenix Lads, Inc. named Mark Sinclair who does LiDAR depth readings for NOAA. LiDAR means light detection and ranging. It is done from a small aircraft, flying at an altitude of 1800-2200 ft. They over fly an area with two laser beams that measure the surface of the water and the depth of the water. They get the difference in these heights, with geometric corrections for tides and other factors, to give them the ocean floor depths. They are able to take an incredible 324 million soundings in an hour! Their information is used for nautical charting, coastal zone management, coastal engineering, oil and gas development, military applications and research and development. They will identify depths, buoys, beacons, lighthouses, kelp areas on digital display (via computers) and on spreadsheets. The benefits of the LiDAR technology is that it is very cost effective, has amazing speed, and greater safety. They do 200% coverage of an area by measuring lines and then taking new lines in between the first lines. They run a swath beam that is 192 meters, which is larger than the ones that the RAINIER does. Each beam of pulsar light is 15 meters with 4 meters in between.

They are finding changes that need to be made on maps that date back to the 1940s. NOAA contracts with this company to do soundings for them and NOAA picks small segments of these areas to do spot checks with the ship to compare accuracy. So far, they have been extremely accurate. At this point in time, they are not comfortable with the greater depth measurements that the RAINIER does, but expect that to change in the future. Various crew members that I’ve spoken with foresee this becoming the depth measurement instrument of the future. Eventually, all depth readings may be done from satellites, which could become very accurate, as well as safe. Right now, NOAA will continue to use both methods.

Personal Log

I spent the day working on the computer, listening to the LiDAR presentation and reading the information about this new system. It’s very interesting to predict how useful this will become in the next 10-20 years. I’d love to see some of my students flying the airplanes that will send back this newer technology. Right now, the RAINIER is anchored while launches go out to do shallow survey each day. It’s fascinating to watch them lower the launches and bring them back onto the boat. They use hydraulic winches that raise and lower the boats. Everyone has to be very careful at this point, wearing hard hats, because it’s a time when equipment failure could bring a dangerous situation. Generally three or four people go out on each day’s launch. They have several more days of launches scheduled, then they must go to the Kodiak Coast Guard base to refuel.

Virdin 7-25-04 screenshot

Kirk Beckendorf, July 25, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 25, 2004

Daily Log

There was a big open house on the BROWN, so I went back to the ship for that. This evening for dinner Kevin and I meet with a group of teachers who were interested to know what it is like to be a Teacher at Sea. I will be visiting some of the land based parts of NEAQS this week so I met and visited with some of the people that I will be seeing. I scheduled a time with Jim Koermer a meteorologist at Plymouth State University. He is the scientist in charge of developing weather predictions received twice daily by the BROWN. I will go to Plymouth, New Hampshire on Monday evening. From midnight until 6:00 AM I will be watch how he makes his predictions.

Kathy Virdin, July 24, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 24, 2004

Latitude: 55 degrees 17.194 N.
Longitude: 160 degrees 32.23 W.
Visibility: 3 nautical miles
Wind direction: 100 degrees
Wind speed: 10 kts.
Sea wave height: 1-2 ft.
Swell wave height: 2-3 ft.
Sea water temperature: 10 degrees C.
Sea level pressure: 1002.0
Cloud cover: Cloudy with rain

Science and Technology Log

Today we went out on a launch (my first in the Shumagin Islands). We traveled near the area of Simeon Bight to run lines to check depth measurement. An example of why this is so important is that in one of their launches, they found after an earthquake, a 30 meter drop-off near a fault line. This wasn’t on any charts because it had been caused by the earthquake itself. Before they begin the depth measurements, it’s vital that they take a cast with the salinity, pressure and temperature instrument. This information is then hooked directly into the computer to be calculated into the depth findings, so that the depth can be corrected by these factors. We ran cross lines (lines that cris-crossed each other) as a quality check to be sure that no area had been missed. The transducer (which sends out a multi-beam swath of sound) is lowered into the water by a mechanical arm. This is high-tech stuff! The computers are also recording the GPS (global position system) location of our boat at all times. When we learn the depths of the waters we pass over, we have to know exactly where we are in order to record this on nautical charts. Out of 24 satellites, we need at least 5-7 within range plotting our location to ensure accuracy. The computers divide the screen into sections which show our depth reading, a picture of the ocean floor by sonar calculations and the range our instruments will accurately reflect. We have traveled a range of 88 meters in depth to 6.7 meters in depth. Interestingly, one possible technology that is being tested and may be the best method of the future is called Lidar, which means sonar transmitted from an airplane, which flies over coastal areas and can give a depth reading on land and in the ocean. The RAINIER is testing one area that has been measured by Lidar to compare our measurements with theirs to check their accuracy. This would be a safer method, since lowering the launch boats and retrieving them has a certain amount of risk.

We’ve just seen some lazy puffins that are swimming on top of the water, which makes them look like sitting ducks. As we return to the RAINIER in the late afternoon, we bring back a lot of data that the survey technicians will assess and correct to be submitted to the cartographers.

Personal Log

We had a rainy, foggy afternoon on the water while we were surveying, with clouds that hovered over the green, craggy cliffs. It makes a beautiful sight. We felt we got a lot accomplished and returned with some good data. In talking with various members of the crew, I’ve gotten some good ideas to use in my lesson plans as they help me think of ways to explain their operations that will simplify it, such as flashlights taped together to represent a multi-beam sonar swath. I’m going to catch up tonight on correspondence, and refine my lesson plan ideas tomorrow. I can’t wait to take all these ideas back to the classroom!

Kirk Beckendorf, July 24, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 24, 2004

Daily Log

I actually moved off the ship today and got a hotel room. All day there was a big meeting at the University of New Hampshire about 30 minutes from here. Scientists from the BROWN, from the airplanes, the land based measurement systems, those in charge of the satellite data, weather forecasting, and the computer models all gave short presentations. This was a big version of our nightly show and tell that we had on the BROWN. Because NEAQS-ITCT is such a huge research project, this meeting was necessary to help everyone know what has been happening in each part of the project and what should be done the next few weeks. It is kind of like a football team gathering in a huddle between plays.

Kevin will be the new teacher on the ship for the second leg of the research cruise. I showed him around the BROWN and introduced him to a number of the scientist. I also bought a new t-shirt. The BROWN helped re-explore the Titanic a few months ago and the Titanic shirts they ordered were delivered today.

Kirk Beckendorf, July 23, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 23, 2004

Daily Log

Today was my last day and night on the BROWN. We spent last night off the coast of New Hampshire. We were scheduled to meet the pilot at 11:00 AM. The pilot is a person very familiar with the local port and he or she comes on board large ships and drives them into and out of the port. Since they know the harbor very well they can make sure the ship doesn’t run aground in what may be a very narrow channel. It was pretty cool to watch him jump from a small boat onto the rope hanging from the side of the BROWN while we were moving. Everyone was out on deck as we came up through the channel into Portsmouth. As we got to the dock the crew had the ropes out and ready. Tanker trucks of fuel were lined up ready to refuel the ship, which can hold about five tanker trucks worth of diesel. It was a bittersweet feeling to dock and be back ashore. It is good to be back but I am sure going to miss all of the people on board. I have learned so much from them, plus I enjoyed their company.

This evening we had a big New England style clambake at a beach. They fed us steamed calms and whole lobsters.

I finally met Jennifer Hammond. She is the person in charge of the Teacher at Sea Program and who got me on the BROWN and who gets the logs and pictures onto the web.

Kathy Virdin, July 23, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 23, 2004

Latitude:55 degrees 43.34’N
Longitude: 159 degrees 10.967’ W
Visibility: 10 nautical miles
Wind direction: 175 degrees
Wind speed: 8 kts.
Sea wave height: 0-1 ft.
Swell wave height: 0-1 ft.
Sea water temperature: 11.7 C.
Sea level pressure: 1016.2 mb.
Cloud cover: Cloudy

Science and Technology Log

Today we have been in transit to the Shumagin Islands. Two launches were sent out to do Reson (shallow to mid-depth) measurements and one launch did the Elac (mid-depth to deep waters). This area really needs accurate depth measurement, since it’s an area where fishermen come frequently. The information that is received and processed on board the RAINIER is then sent to the Nautical Data Branch of NOAA where it is interpreted and made into the hydrographic sheets with added interpretative data. Then it next goes to a production team who apply it to charts. The next step for the information is to go to the Update Service branch which combines all data and puts it in the final form of nautical charts that is used by the Navy, cargo ships, tanker ships and all mariners (such as fishermen). So the RAINIER plays a vital role in getting critical information to those who use it daily to ensure their safety.

I was able to catch several of the crew for an interview. I interviewed Megan Palmer, who is a survey technician. To prepare for her job, Megan received a degree in geography and received additional training in computer systems, including the complex GIS system. She explained that NOAA is moving toward electronic nautical charts that will allow you to set your scale close or far away on the computer, depending on what you need. Alarms will go off if you get into shallow water. However, there will always be a need for nautical charts and that’s where NOAA excels. Megan enjoys her job as it gives her the opportunity to see Alaska while being on the water, and the chance to look for the unexpected in surveys. Often, she is part of the team that is charting waters that have very few depth soundings. She also enjoys the fact that NOAA tests software to see how well it works and then make recommendations to companies to improve features that the survey technicians need. She notes that there is definitely a need for more survey technicians and that it’s a rewarding and exciting career for any student who loves the ocean and wants to travel.

Personal Log

Today we had the thrill of seeing a whale swimming in the distance while we all tried to take a picture (very difficult since it moves in the water so quickly). We dropped anchor tonight in the Shumagin Is. We’ll stay here several days while the survey launches run lines in different areas. We’ve entered into an area of heavy fog and it was neat to hear the fog horn being sounded every few minutes as we move through the water. I enjoyed looking a computer file of pictures that show all the places the RAINIER has been in Alaska. Beautiful scenery!

Kirk Beckendorf, July 22, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 22, 2004

Weather Data from the Bridge
Time 4:50 PM ET
Latitude- 42 49.88 N
Longitude- 70 15.46 W
Air Temperature 20 degrees C
Water Temperature 17 degrees C
Air Pressure 1011 Millibars
Wind Direction at surface Southwest
Wind Speed at surface 15 MPH
Cloud cover and type clear but hazy

Daily Log

Last night at sunset we were just out from Boston when we launched the radiosonde. The pollution levels were up and we had to look through a haze to see the downtown skyline. A sea breeze began blowing cleaner air to us from the east. Late last night we headed east to meet up with a couple of the airplanes this morning. The goal was to have us and two of NOAA’s research planes all under a satellite which will be orbiting overhead. Pollution measurements could be made at many different levels of the atmosphere plus instrument comparisons could be made.

Of course it was foggy again. Wayne Angevine, a meteorologist back on shore was looking at live weather satellite images and got word to us that close by was a clear spot in the fog. The flight crew in the airplanes confirmed what Wayne said. When we got to the latitude and longitude they had directed us to, we found clear skies. The plan worked. The planes flew by making their measurements, several satellites passed over head, the ozonesonde was launched, all of the instruments on the Brown were continuing to collect data and Drew and I did Sunops.

Later today the rest of the fog burnt off, but there was still a haze as we slowly made our way back to the west. We need to be in the vicinity of Portsmouth so that we can meet up with the harbor pilot tomorrow morning. The pilot will direct the ship back into Portsmouth at about noon. The timing is actually important because we need to go in at high tide. Tonight the plan is to continue back and forth through the urban pollution. Before we get to port tomorrow, a couple of the crew will be diving under the ship to do some maintenance that should be interesting to watch.

Today is my last full day at sea on the BROWN. This next week I will be visiting some of the land based scientists, facilities and activities involved in NEAQS. We get into port about noon tomorrow.

I asked some of the scientist what is the one thing my students should know about this research project on air pollution. Some of the statements were:

We are studying a very complicated situation with no simple answers.

To study something very complicated takes lots of coordination and cooperation from numerous organizations and a lot of people.

Air pollution is a global problem not a local problem. Even people in areas, like Redmond, OR, with little pollution should be concerned. Air pollution doesn’t stay where it is made. North America gets pollution from Asia, Europe gets pollution from N. America, Asia gets pollution from Europe.

Each one of us needs to realize that we are part of the problem.

Question of the Day

How can you be part of the solution not just part of the air pollution problem?

Kathy Virdin, July 22, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 22, 2004

Latitude: 55 degrees 39’N.
Longitude: 157 degrees 54’W.
Visibility: 10 nautical miles
Wind direction: 270 degrees W.
Wind speed: 6 kts.
Sea wave height: 0-1 ft.
Swell wave height: 2-3 ft.
Sea water temperature: 12.8 C.
Sea level pressure: 1013.0 mb.
Cloud cover: Partly cloudy

Science and Technology Log

Today I interviewed several crew members, which gave me a much better perspective of the extent of work that is being conducted on the RAINIER. I first spoke with Jeremy Taylor, who is a survey technician whose job is to collect data on the ocean floor depths for the purpose of updating nautical charts. The RAINIER is dedicated to survey work that can enable all maritime vessels to successfully maneuver the ocean waters. As a survey technician, Jeremy is considered a scientist on board since the data he gathers is used by the scientific community. He collects the data from the multi-beam swaths and cleans it by deleting invalid or weak information, then sends it to other branches of NOAA (such as the cartographers) who review it, compare it to current nautical charts and then update those charts based on the new data. What is amazing to me is that the RAINIER does survey work in areas which may not have been surveyed since the 1800’s and have only had a few soundings listed. Their work is vital to commerce, fisheries management and the fishing industry. Jeremy said what he enjoys most about his job is being in Alaska, having the opportunity to go out in launches and receiving good data. He feels his job is extremely important since scientists need this data to find the habitats of various marine species. One example he gave was the fact that they can chart seamounts which are an area that contain a lot of marine life. This gives data that could help scientists discover new habitats for various species. Jeremy recommends a degree in hydrography to best prepare for this work, but also maintains that a degree in any area of science would be good basic preparation and on-the-job training would be supplied.

Next, I interviewed Briana Welton who is a Junior Officer, an Ensign in the Corps. She has a degree in math which has helped her greatly in her work. She is undergoing training to be an Officer of the Deck who will drive the ship. She also participates in the hydrographic surveys. She recommends students applying to the Maritime Marine Academy which is in New York. Briana loves the experience of being a hydrographic pioneer, as they are often charting unmeasured waters. She also loves being at sea and says it’s exciting to drive the ship. There are several divisions of ships that NOAA operates, such as the oceanographic studies, hydrographic and fisheries. The information gained by a hydrographic ship is first and foremost to be used for nautical charts, which are used by all mariners, from small fishing boats to large Navy vessels. The RAINIER also takes bottom samples that they can process in their lab to determine content and physical features of the ocean floor. The CDTs that they lower give temperature, salinity and density information to scientists that enable them to look for variations in the ocean climate that will affect marine habitats. Briana loves working on a ship and being part of a close-knit community.

Personal Log

This morning I thoroughly enjoyed talking with several crew members about their work and getting new information about all the facets of ship life. This afternoon I plan to work on lesson plans and tonight I’ll watch the survey technicians scan and clean up the data that comes in from the two launches that went out today. I also hope for some time to do more research on the complexities of the mission of NOAA and study some nautical charts. It’s amazing to me that I can walk out on deck at 10:30 at night and it will still be light. In Alaska in the summer there are about 19 hours of daylight.

Wow!

Kathy Virdin, July 21, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 21, 2004

Time: 6:00p.m.
Latitude: 55 degrees 49.65 N
Longitude: 157 degrees 56 W
Visibility: 11 nautical miles
Wind direction: 350 degrees NW
Wind speed: 7 kts
Sea wave height: 0-1 ft.
Swell wave height:2-3 ft.
Sea water temperature: 12.2 C.
Sea level pressure: 1013.0 mb.
Cloud cover: Partly cloudy

Science and Technology Log

Today I was able to go out on a launch (small boat) that did survey lines for eight hours. After the launch got underway, we lowered the transducer into the water where it will send out a spray of sound (approximately 131 pings) that will be measured on the launch’s computers. We also did a Reson line measurement which can accurately measure depths of 40 meters. We drove the launch in a line that was approximately 4-5 miles long, then turned and went back on the next line. Each line took about 40 minutes and we were able to cover 7 lines today. So in all, we were able to chart an area of 4-5 square miles. We stopped every four hours to put down a CDT which checks salinity, density and temperature. This information was immediately fed into the computers so that it can adjust the speed of sound through the waters by these factors. This launch also has a motion sensor that can measure the pitch and roll of the boat and that is factored into the speed the sound travels, which gives the calculated distance to the ocean floor.

NOAA has about 8 or 9 ships that do hydrography work which is extremely important to scientific research, as well as commerce. About 90-95% of all goods used in the U.S. are brought to us by ships! So it’s vital that they have accurate information to chart their path through our waters. The RAINIER is the only ship in the world that can do all the hydrographic survey work that it does. It’s an honor to work on a NOAA vessel and all members of the NOAA corps must have a degree in one of the sciences. The swath or path of the sonar beam that our launch is sending out covers about 200 meters. We’re seeing the data that tells us that the depths in this area are 100 meters. We have successfully measured our plot of the chart today with multi-beam swaths that intersect at the outskirts with one another. This is another measure taken to ensure accuracy.

Personal Log

I asked a lot of questions today while we were surveying, as the field operations officer with us had time to answer them. The work was mostly being done by the computers, so we were watching and checking them periodically. I learned that the launches are expensive boats because of all the high-tech equipment they carry (all of it necessary to get the job done). When we came back to the RAINIER, the sun came out and we went up on the deck to enjoy the view. I saw puffins flying over the water, and one of them flapped its wings across the water as it skimmed along the surface. This was a treat to watch the puffins as they entertained us with their antics. Tomorrow, I’m looking forward to following up on the data that was gathered from the two launches that went out today. It will be scrutinized and evaluated by the survey technicians and then stored in the folder for the day.

Kathy Virdin, July 20, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 20, 2004

Time: 2:20 p.m.
Latitude: 55 degrees 39.4 N
Longitude: 158 degrees 00.3 W
Visibility: 10 nautical miles (nm)
Wind direction: Northwest
Wind speed: 7 kts
Sea wave height: 0-1 ft.
Swell wave height:2-3 ft.
Sea water temperature:13.3 degrees Celsius
Sea level pressure:1010.1mb.
Cloud cover:3/8 partly cloudy

Science and Technology Log

Today we reached the point where we would begin our surveys. I watched the survey technicians lower a Seabird (sound velocity profile unit) into the water, then raise it back up and hook it into a computer, where they could download the information. This will give them the salinity (salt content), temperature and pressure of the water. They lowered the Seabird 117 meters down into the water, before retrieval. At the same time, from the hull of the ship, a transducer sound wave emitter is sending sound waves to the bottom and measuring the time it takes for their return. From this information, they will calculate the distance to the floor of the ocean. They use this data from the Seabird to help them make corrections in the sound wave speeds from the transducer. The salinity, temperature and pressure will cause variations in the speed of sound, so they need to correct for this effect to gain an accurate depth measurement.

This information is being processed and viewed by cartographers (map designers) who will take what data the RAINIER gives them to update old maps or develop new maps and charts. These maps are used by fishermen, geologists or anyone who navigates through these Alaskan waters. We are headed for the Shumagin Islands where we will send out launches (smaller boats) to measure depths in places where the Rainier might not otherwise go. I found it interesting to note that environmentalists would also use this information, since they know where certain species of fish are likely to live, and they can decide how best to protect them if they are endangered. We will go back and forth three times in one plotted line to make sure our data is accurate and complete. When we send out a launch in more shallow water, they will use a different sonar device, called a Reson. It emits higher sound waves which will give a more accurate reading. For middle to deep depth measurement, they will use the Elac sonar and a vertical beam echo sounder which goes straight down that can be used for shoreline measurements. Because Alaska has such rough terrain, it’s important to get accurate measurements for those who use her waters.

Personal Log

I am amazed by how specific the data is that the survey technicians collect and how well everyone knows their job. This is truly a finely tuned, professional organization. Everyone has been so kind to answer my many questions even though I’m sure I’ve gotten in their way. I’ve spent a lot of time in the Plot room, where the data is logged into the computers and then interpreted by the technicians. Outside, it’s a beautiful, sunny day, which is the first pretty weather we’ve had. We saw a pod of whales, recognizable by the blow of water coming from their nostrils. I could see them really well through the high-powered binoculars that belong to the ship. I am working on a list of questions that I will use to interview different members of the crew, as well as the scientists so I can take this information back to my students, as they learn what the roles are on a NOAA vessel. Someday, I want my students to be the next generation of scientists that use the knowledge we are gaining today to frame the discoveries they will make in the future.

Kirk Beckendorf, July 19, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 19, 2004

Weather Data from the Bridge
Time Noon ET
Latitude- 44 8.76 N
Longitude- 66 42.03 W
Air Temperature 12 degrees C
Water Temperature 9 degrees C
Air Pressure 1007 Millibars
Wind Direction at surface South
Wind Speed at surface 11 MPH
Cloud cover and type FOG!!!

Daily Log

Ozone can be a major pollutant but we don’t release it into the atmosphere, so where does it come from?

More fog!!! We are all getting tired of the fog. I wonder what the Nova Scotia coast looks like. We have been along the coast for awhile, but I only got a glimpse through the fog for a few minutes.

We followed the Boston pollution up here but now we are in clean air. It has been very interesting, for both the scientists and myself, to see how the kinds and amounts of the gases has changed as the pollution gets older. Leave a glass of milk in the sun on the kitchen counter for a few days and it will change. Air pollution floating in the air and cooking in the sun also changes.

Paul Goldan points out some of today’s data which shows that the air is coming from a pine forest. Every thirty minutes Paul’s equipment samples the air and measures the concentration of 150 different VOC’s (volatile organic compounds). Some VOC’s can be man made and others are natural. This morning’s data shows very low levels of human pollution but there are spikes in the graph for two chemicals that are released into the atmosphere by pine trees (the pine scent). We look at the wind profiler and see that the wind is blowing from Nova Scotia.

Avery Bell emailed and asked which pollutant is most potent. As I have mentioned, the two parts of air pollution are the gasses and the particles. According to several of the scientist on board, ozone and the very tiny particles are the two of most concern from a health standpoint. Small particles and ozone can both damage your lungs. For people who already have breathing problems (such as asthma or emphysema), it can make matters even worse. Ozone also damages plants, both wild and agricultural crops, reducing crop yields. The cost of agricultural losses was one of the first reasons that ozone became a concern.

Every day I spend time talking with some of the scientists who are here from NOAA’s Aeronomy Lab. They are studying ozone and many other gases in the atmosphere. To decrease ozone pollution is much more complicated than just saying let’s reduce the amount of ozone we release. We don’t release ozone into the atmosphere as a pollutant!!! It is made in the atmosphere when other gases combine in the presence of light.

Imagine you live in the desert and you plant a tree in your back yard. It of course needs water, air, nutrients from the soil and light to survive and grow. In your backyard it gets all of the light, air and nutrients that it needs; but imagine that you never water the tree. The tree survives because it gets a little rain, but it doesn’t grow much. Water is limiting its growth. If you water it a lot, the tree grows a lot.

High ozone levels occur in a similar way. For ozone to form, certain gases and sunlight have to be present. If there is only a small amount of those gases, only a small amount of ozone can form. But if there are a lot of those gases, a lot of ozone will form. In the unpolluted atmosphere, there are low amounts of the gases that are needed to make ozone. Guess what happens when we burn fuels to run our vehicles, to make electricity, to heat and cool our homes, and to make the products that we use every day. You guessed it; we release a lot of the gases that are needed to make ozone. Ozone can then reach the high levels necessary to become a health risk. It does not take that much ozone to be at a dangerous level. A level of 80 PPB (parts per billion) for 8 hours is considered too high.

It is very difficult to try and understand what 80 parts per billion really means but I’ll try to help. It takes about 31.7 years to have 1 billion seconds. Imagine how much air you would have if you took a breath every second for 31.7 years and blew all of the air into one balloon. Now imagine that 80 of those 1 billion breaths were ozone. The concentration of ozone in the balloon would be 80 PPB.

Questions of the Day

What are three activities that you do everyday that can add to the atmosphere the gases that help form ozone?

What can you do to reduce the amount of those gases that you are responsible for producing?

Based on the example in the last paragraph how many breaths of ozone could you have in the balloon if there was 1 PPB?

Kirk Beckendorf, July 18, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 18, 2004

Weather Data from the Bridge
Time 9:15 ET
Latitude- 44 01.29 N
Longitude- 67 13.5 W
Air Temperature 14 degrees C
Water Temperature 13 degrees C
Air Pressure 1015 Millibars
Wind Direction at surface Southeast
Wind Speed at surface 10 MPH
Clouds Cloudy

Daily Log

What do you do if the weather gets rough? (Besides get seasick and throw up.)

The weather forecast for tonight calls for strong winds and 15 foot waves (the ceiling in your bedroom is probably 8 feet high). The crew has been making sure that nothing is loose on the ship. Everything needs to be strapped, tied or chained down. If the ship is pitching and rolling a lot, you don’t want things flying around, otherwise someone could get hurt or something could get broken. We have also been instructed to make sure none of our own supplies are loose.

I spent some time visiting with Chris, a member of the deck crew. He has been on the BROWN for a little over two years. Before that he was working on commercial ships. He said the roughest seas he has sailed in weren’t that big, only about 20 foot waves. When the waves are closer together, he says it isn’t as rough as compared to when they are further apart. Chris said, as the ship climbs up a wave and then beaks over the top, if there is not another wave to land on, the ship drops down into the trough below. This makes for a lot rougher ride than when the waves are close together, and the ship can land on the next wave. After this cruise, he will be transferring to a higher position on another NOAA ship. Eventually, he would like to work back on shore for a fire department. A lot of the safety training he has received from being a deck hand on the ship would fit right into a fire department. As part of the deck crew’s training, he has received EMT (Emergency Medical Technician); fast boat and other rescue training and firefighting training. When your ship is at sea for a month or so at a time, 300 days a year, the crew really needs to be self sufficient. You are your on fire department and medical team; there may not be anyone close by to call.

Drew Hamilton now works at NOAA’s Pacific Marine Environmental Lab in Seattle, but before that he worked on NOAA ships for 15 years. He said his first cruise with NOAA was in the middle of the Sargasso Sea in hurricane with 30 foot seas. Ten years ago he was on a ship delivering supplies to scientists working in Antarctica. For 4 days the ship fought its way through high winds and 30 foot waves. Almost everyone was sea sick, even the experienced sailors. It was a rough way to start his sailing career.

Sallie Whitlow, a scientist from the University of New Hampshire, has her instruments on top of a large container van on the bow of the ship. Once during a storm she was working on the equipment. When the waves started breaking over the bow, she decided it was time to go inside.

At this evening’s science meeting the new weather report shows that the storm is not going to be as intense as was previously thought. The rough seas probably won’t happen. Bummer, I was looking forward to an exciting ride.

Questions of the Day

What town and state was the ship from, that was lost in “The Perfect Storm”?

Where are we located compared to where that storm occurred?

Where is the Sargasso Sea?

Kirk Beckendorf, July 17, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 17, 2004

Weather Data from the Bridge
Time 6:20 PM ET
Latitude- 43 20.33 N
Longitude- 68 18.92 W
Air Temperature 17 degrees C
Water Temperature 14 degrees C
Air Pressure 1009 Millibars
Wind Direction at surface Southwest
Wind Speed at surface 7 MPH
Cloud cover and type Clear

Daily Log

How is it possible to tell if we are in pollution when we can’t even see it?

This morning I went through the normal routine of helping launch the ozonesonde at 10:00. Because it was a sunny day Drew Hamilton could make Sunop measurements throughout the afternoon so I helped with that. We specifically timed the Sunops so that we were taking measurements at the same times that three satellites were crossing overhead. The satellites were taking similar measurements looking down, while we were taking them looking up. Later, our measurements will be compared with those of the satellites.

In general, air pollution is a combination of particles and gases. I have discussed the particles in previous logs, but not much about the gases. A large number of the scientists involved in NEAQS-ITCT are studying these gases. I have spent a large amount of time talking with Eric Williams, Brian Lerner, Sallie Whitlow, Paul Goldan, Bill Kuster, Hans Osthoff and Paul Murphy. They have instruments on board which measure many of the different gases related to air pollution. But not all air pollution is the same.

The cause of the pollution determines what gases and particles are in the pollution. Gasoline powered automobiles release one combination of gas and particles. Diesel engines produce another combination. Coal burning power plants release yet a different combination. Natural gas power plants release (Yep, you guessed it) yet a different combination. In a city these get mixed together, so individual cities have there own unique pollution depending on the number of automobiles, power plants and factories. To make things more complicated, once these chemicals are released into the atmosphere and start mixing together, in the presence of sunlight they react with one another making additional gases and destroying others. What eventually happens to these pollutants and where they go, are two of the questions these scientists are seeking to answer. But answering these questions is very difficult, in part because things get extremely complicated very quickly. As Paul Goldan told me, part of the reason we need to make so many different kinds of measurements is because we are not even sure exactly what we are looking for.

Today as we criss-crossed back and forth through two plumes of pollution Eric showed me some of today’s data. As always, his instruments were measuring and recording some of the gases in the air. The quantities and kinds of gases changed as we went back and forth, helping to map where the pollution was located and how it has changed. Nothing looked different outside, but from the measurements he was taking he could tell that one of the plumes was younger than the other.

During the nightly meeting, Paul Goldan and Tim Bates presented completely different kinds of measurements that agreed with what Eric’s data showed. This comparing of daily observations will help confirm the accuracy of the observations and what they actually mean.

Questions of the Day

Where is the electricity in your house produced?

What kind of fuel is used to make your electricity?

What kind of fuel is burnt to make your automobiles run?

Who should be responsible for the pollution produced to make the electricity you use?

Kirk Beckendorf, July 16, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 16, 2004

Weather Data from the Bridge
Time 8:00 AM ET
Latitude- 42 44.24 N
Longitude- 70 41.99 W
Air Temperature 19 degrees C
Water Temperature 15 degrees C
Air Pressure 1002.6 Millibars
Wind Direction at surface Southwest
Wind Speed at surface 7 MPH
Cloud cover and type Partly cloudy

Personal Log

What do I do all day?

I received an email asking what life is like on the ship, and what my daily schedule is. The schedule revolves around breakfast, lunch and dinner. There is an hour for each and if you want to eat you had better be there at the correct time. Actually, the stewards do have snack foods out for us 24 hours a day, they feed us very well. There are always a lot of vegetables available and at least two main items to select from. For lunch today the main entrees were shrimp and hamburgers. (Check out the pictures.)

So my schedule: Keep in mind that nothing is very far away here on the ship so you don’t have to give yourself much travel time, everything is literally down the hall. In the morning I roll out of my bunk and walk the 5-10 feet to the shower. See the pictures of my stateroom. After a shower, shave (I skip that part), and brushing of teeth it is time for breakfast. Down the hall, up the stairs and through another hall. On the way to the mess hall I usually go outside to the railing, on deck to get some fresh air and to check the weather. Today it is a beautiful sunny day at sea.

Other than the rocking of the ship there is no way to tell what the weather is like while in the ship’s lower levels. There are no windows in the lower levels of the ship (that would be really dumb), and only small ones on the middle levels. At night, all windows are covered by metal plates, except for the windows on the bridge. The crew on watch, in the bridge, should not have their night vision compromised by light from the windows. In their around the clock observations, they need to be able to see out into the darkness. But back to my daily schedule.

Breakfast is served from 7:00 – 8:00 AM Eastern Time every morning. At 8:00 AM Tim Bates, the chief scientist, holds a morning science meeting to discuss the day’s plans and the weather forecast. This is usually a pretty short meeting. After the meeting, I usually try to finish typing up the previous day’s log. Around 10:00 AM Ann Thompson launches an ozonesonde which I generally help with. By the time we are through with the sonde, it is almost time for lunch which is served from 11:00 – 12:00. It is that time right now and I obviously haven’t completed the log.

After lunch I visit with one or more of the scientist about their research topic, data collection and measurements. On sunny days, I often help Drew make sun photometer measurements. By then it is time for dinner which is served from 4:30 – 5:00. (I told you the meals drive the schedule.) Afterward dinner and dessert I start typing the day’s log and also visit with the scientists some more.

At 7:30 PM there is another science meeting. It is a science version of show and tell, longer than the morning meeting. There is a discussion of what happened during the day in terms of where we went and what pollution was seen. Some of the data collected is reviewed and discussed. Usually someone will also discuss their specific research. Possible plans for the following day are debated. Following the meeting, I will sometimes visit the BROWN’s gym for a ride on the exercise bike. Eventually I find my way back down the halls to my stateroom and bunk.

This evening there was a very nice sunset so many of us enjoyed the view from the BROWN’s fantail.

So there you have, a day in the life of a teacher at sea.

Questions of the Day

What time do our breakfast, lunch and dinner start in Pacific Time?

What color of light can be used at night so you do not lose you night vision?

What can you do with your flashlight so that you can use it at night without losing your night vision?

Leyf Peirce, July 15, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 15, 2004

Time: 18:00
Latitude: N 56°22.60
Longitude: W 152°56.70 Visibility: 10 nm

Wind direction: 115
Wind speed: 8 knots
Sea wave height: 0 – 1 ft
Swell wave height: 2 – 3 feet
Sea water temperature: 12.2 °C
Sea level pressure: 1013.5 mb
Air temperature: 13.3 °C
Cloud cover: 5/8

Science and Technology Log

We are still in transit today to Kodiak, with a planned stop for some “biological testing”, a.k.a. fishing. About two hours before we were going to stop to fish, we heard the bridge announce, “Whales breaching off the port bow!” This is the call for everyone to rush to the portside to see the whales. And what an incredible sight! I was atop the fly deck with TAS Norton and ENS Slover, and none of us could believe the symphony of spray that lay 150 meters ahead of us. It seemed choreographed, almost, with one humpback whale to the right blowing spray into the air at the same time as a whale on the left side. The finale consisted of at least 3 whales breaching so far out of the water you could see their entire underside! Just when we thought the show was over, two whales came within 20 meters of the portside of the boat and breached, waving hello as they went under. Luckily, we had slowed the boat down, so the chances of hitting these whales were small. For such massive and mysterious creatures, these animals completed their whale ballet show gracefully!

We later started fishing, and this sight was yet another of awe at the creatures that inhabit this part of the world. After only 10 minutes, there were about 12 fish on the fantail, 3 of which were halibut that were over 125 pounds, one which was at least 5 feet! After another 10 minutes, the fantail was covered with fish and blood and guts, promising a feast for weeks to come. The birds circled above waiting in anticipation, arguing when a piece of fresh fish was thrown overboard. Again a new image to me, the albatross intimidated the other gulls with its large wing span and threatening call. This day was certainly full of wildlife!

Personal Log

I have never seen whales breach in the wild before, and it truly was an amazing spectacle! Parallel to that, I have never caught a fish any bigger than a 20 inch rainbow trout. Catching a 25 pound black rockfish was extremely exciting, as well as seeing all of the halibut caught! I will say that while fly fishing takes a lot more patience and technique, the fishing that occurred today required more strength and team work. There were at least 4 people helping lug the largest of the fish onto the ship!

We are almost to Kodiak, should be there by morning, and I find myself sad to leave this boat. It has truly been an amazing experience, one in which I learned a lot about the wildlife, research, crew, and myself. I realize now that two weeks at sea really does allow for a lot of self-contemplation and growth. I am very thankful to have had this experience.

Question of the Day:

How big is the biggest humpback whale recorded? How big is the biggest whale recorded? How does this compare to the average sized person?

Sena Norton, July 15, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 15, 2004

Location: In transit to Kodiak
Latitude: 55 deg 50.440’ N
Longitude: 154 deg 13.187’W
Visibility: 10+ nm
Direction: 060
Wind Speed: 11 kts
Sea wave height: 1-2 ft
Swell wave height: 2-3 ft
Seawater temperature: 12.2 deg C
Sea level pressure: 1011.9 mb
Cloud Cover: 6/8
Weather: Partly cloudy with spots of rain and fog.
Temp 12.8 deg C

Plan of the Day:
Transit to Kodiak, arrival Friday morning 0900 hours.

Science and Technology Log

There is not much science going on during a transit except for cleaning the data that was recovered and doing some analysis. Most everyone is either on watch or in their rack catching up on sleep before or after their watches.

Fresh water is made on board from salt water when the fresh water tanks get low. It is an easy process but like all desalination it takes a large amount of energy. There are not really deep-set conservation issues on board, but they ask for people to use good judgment. Wash full loads of laundry, take quick showers and not waste water in other forms. The water is filtered and the salt is removed, bromide is added to sterilize it and finally it is then run through processors that measure its purity. I have not personally seen a difference in water quality from the water that was pumped on-board and the desalinated water that the ship made. However, I am even more conscious of the water that I use because it is a limiting factor out at sea.

Personal Log

Last night during our transit there was a call from the bridge of whales on the starboard bow. Sure enough 180 degrees and as far as you could see were whales. You could see their blow mist and then ever so often see them breech or dive down and show their flukes. Anytime I see a whale my heart races, I was jumping like a kid during Christmas to see that many whales all collected together. What an experience!

SW region: takes in Kodiak Island, the AK peninsula and the Aleutian Islands. Kodiak was the first Russian capital city and home to many brown bear. Many of the Aleutian Island communities are isolated. The environment is very harsh and limits the plant and animal production. Some of the Aleutian Islands cross the 180 meridian, making AK the most eastern state in the union. They are closer to Tokyo than to Anchorage.

Question of the Day:

How many days could the ship go without making its water?

According to the Chief Engineer, with this many people on-board the storage capacity of the water tanks the RAINIER would be out of water in 5 days. That is why it is important for fresh water to be made from salt water.

Kirk Beckendorf, July 15, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 15, 2004

Weather Data from the Bridge
Time 8:00 AM ET
Latitude- 45 53.18 N
Longitude- 70 36.48 W
Air Temperature 14 degrees C
Air Pressure 1000 Millibars
Wind Direction at surface Northeast
Wind Speed at surface 3 MPH

Daily Log

Yeah!!! The sun is trying to come out, the rains have stopped and the sea has calmed down. No I didn’t get sea sick, but it is hard to sleep when your bed is swaying back and forth and up and down. The winds have shifted and the scientists are hoping that the winds may be blowing some pollution our way. Seems like a strange thing to hope for, but of course they are here to study pollution and the wind has been blowing it away from us.

Why should anybody care if we add microscopic particles to the air?

Yesterday, I discussed one of the techniques used to study the microscopic particles that are in the atmosphere. But so what, why does anyone care about these tiny specks? Air pollution made by automobiles, power plants, factories and ships all contain both gases and particles. To be able to predict the changes resulting from air pollution, we have to learn all we can about the gases and the particles being released.

When the pollution is released into the atmosphere, the gases and particles start traveling with the air. (Just like pouring a quart of motor oil into a river.) Gradually the gases and particles spread out into the surrounding atmosphere. The gases can recombine and may start changing into other chemicals, but that’s another story I will get to soon.

The particles are not all the same. They come in different sizes and are made of a variety of chemicals. There are two main concerns about these little chunks floating along in the sea of gas; health hazards and climate change. If you take a breath, not only do you inhale the gas, but also all of the particles floating in the gas. Some of these particles may have a negative effect on a person’s health.

The main interest in the particles here on the BROWN is the effect they have on climate change. The Earth is of course warmed by the energy (light) coming from the sun. The more energy (light) the Earth gets and keeps, the warmer our temperatures. The less energy (light) the Earth gets and keeps, the cooler the temperatures. Pretty simple stuff? Not at all.

When sunlight shines down through the atmosphere and hits a particle the sunlight can either bounce off of the particle or be absorbed into the particle. If the light bounces back out of the atmosphere the Earth does not keep the light’s energy and there is a cooling effect. When light is absorbed into the particle, the energy (heat) will now be in the atmosphere and so there is a heating effect. Some particles absorb more light than others, so some have a cooling effect on the Earth’s atmosphere and others have a heating effect. One of the questions being asked is, overall do the particles cool the atmosphere or heat the atmosphere? This is not as simple of a question as it sounds, because there are also a lot of indirect effects that are not yet understood.

These microscopic chunks also affect clouds and cloud formation, but how much of an effect is not completely understood. The particles may cause clouds to be less likely to rain or at least, not rain as often. These microscopic particles in air pollution could have an effect on where and when it rains. So the scientists, here on the BROWN, are gathering data to help them try and understand the impact that particles will play in changing the Earth’s climate. Part of their task, is to determine where the particles are from, the numbers, sizes, and chemistry of the particles.

If I lost you in all of that, maybe it will help to put it all in a nutshell. These scientists are studying the type and number of particles in air pollution, to try and understand what effect these little chunks may be having on the Earth’s temperature and water cycle.

As Tim Bates said, we are trying to put together a large jigsaw puzzle and we don’t know what picture is on the puzzle. First we have to find all of the pieces. Then we have to put together the puzzle. We are now at the point that we think we have found most of the pieces and now we are trying to put them together. As you can see from the picture I sent in today there is some relaxation time, in the middle of all the data analysis.

Questions of the Day

The smaller particles are measured in nanometers how much of a meter is 1 nanometer?

If the wind is blowing 5 meters/second and we are 50 miles from Boston how long will it take Boston’s pollution to reach us?

Typical unpolluted air will have about 1000 particles in every cubic centimeter of air. What is something that has a volume of about 1 cubic centimeter?

Leyf Peirce, July 14, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 14, 2004

Time: 10:00
Latitude: N 55°17.24
Longitude: W 160°32.17
Visibility: 6 nm

Wind direction: 060
Wind speed: 1 knots
Sea wave height: 0 – 1 foot
Swell wave height: —
Sea water temperature: 10.0 °C
Sea level pressure: 1009.3 mb
Air temperature: 11.7 °C
Cloud cover: 7/8

Science and Technology Log

This morning I went out on launch boat 1 to conduct shoreline hydrography. Shoreline research differs very much from the other research I have seen so far, for it does not require “mowing the lawn” lines. Instead, it is a technique that is used to check the data collected from the LIDAR (airplane) labs. As I learned earlier this week, the data collected using a laser from the airplane primarily focuses on the shoreline and depths up to 30 meters. Today, we went along the shoreline checking questionable data points such as rocks and shoals that may have been confused with kelp or other variances in data collection. In order to do this checking, the survey technicians and officers conducting the research look at the LIDAR chart the day before launching and determine where rocks might be misplaced or not including at all. During surveying, which is what we did today, the researchers take a boat with a single beam echo sounding system and go to the places of concern. With some one on the bow to look out for uncharted rocks, the captain then drives over the areas where there might or might not be a rock. Because all of this is done very close to shore, it is very important to drive slowly. There is also a lot of kelp that can get in the way. Once the boat has past over the area a few times, the true depth is recorded as well as the position and a note is made on the chart where any changes need to be made to the chart. A relatively simple procedure, this type of shoreline research is critical for anyone planning to go on shore on any of these islands. Once again I was able to see how important this work is!

Personal Log

My morning was spent on the launch boat doing shoreline surveying. While the technology used was fascinating, I still did not hesitate to wonder at the naturally beauty of these islands. Almost completely uninhabited, these islands host wildflowers, puffin, gulls, and an occasional seal basking on a sandy or rocky beach. The green slopes are sharply cut by dramatic cliffs, creating a feeling of comfort and adventure at the same time. With the clouds dancing across these islands, I almost felt like I was about to see a dinosaur emerge from one of the cliffs—this looks very much like Hollywood’s rendition of “Jurassic Park”! This afternoon I plan on working on more lesson plans as well as a possible journey on another shoreline survey boat.

Sena Norton, July 14, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 14, 2004

Location: At anchor, Popof Strait, Shumagin Islands, AK
Latitude: 55 deg 17.24’ N
Longitude: 160 deg 32.17’ N
Visibility: 6 nm
Direction: 060
Wind Speed: 6 kts
Sea wave height: 1 ft
Swell wave height: n/a
Seawater temperature: 10.0 deg C
Sea level pressure: 1009.3 mb
Cloud Cover: 8/8
Weather: Temp: 12.2 deg C, showers, some fog in higher elevations

Plan of Day:
Five launches out for shoreline, multi-beam and visitors tour. I was on RA 1 for shoreline verification and LIDAR disproval.

Science and Technology Log

RA 1 is a jet boat, which means it can get into shallow waters to take readings and not worry about ripping a prop or high centering…both are not good ideas! I was out with Megan Palmer, Brie Welton, KC Longly and the other TAS Leyf Peirce. It was a cozy ride. There were a handful of targets that we set out to visually verify. The nice addition to this launch was that the computer had the updated LIDAR data from a fly over a few days earlier to use, so the launch did not have to take its own shoreline readings, cutting down on the time needed for the mission goals. There was one islet that was misplaced on the chart and so we had to take a picture of where it really was and then disprove its old location by taking depth readings and marking the bearing. This way the rock feature can be moved when the charts are updated.

There was also a shoal that was mis-assigned as to its depth. The LIDAR computers got a reading but were unsure and wanted field verification. We drove a star pattern over the shoal and logged readings, marked the area and took visual cues. Palmer will then work with the sheet and update from our field verifications and re-work the depths.

I was able to help run the logging computer. I marked the targets on the cue from the coxswain and then filled in the bearing, notes and depth or height of the target with the survey tech. I was also able to take digital pictures of some of the targets that we wanted to disprove or assign different locations.

Personal Log

Shoreline was much faster paced because the coxswain has to look out for kelp, watch his depth meter, and stay on target and read bearings/heading and depths to the survey tech. The launch itself is much more maneuverable because of the jet and has more room on deck to move around. Both of the TAS’s were on board this launch today so we were able to talk a little more about our plans for using the science we have learned and linking our classrooms in the future for some investigations.

We are pulling up the anchor and steaming for Kodiak this evening after dinner to arrive early on Friday morning. I am going to miss the crew on aboard. I feel that I have been here long enough to begin really getting to know people and they have added me into their daily schedules and have been patient with my questions or my getting in the way. I feel very safe and know that there are people who are looking out for me. I hope to keep in contact with some of the people on-board and maybe have them become part of my classroom as a resident scientist for the kids to interact with over the course of a season. The possibilities are endless.

Question of the Day:

Can the cartographers change locations of rocks when they make the final charts?

It all depends on the scale of the chart. If the chart is a small scale the cartographer might not worry about the exact location of rocks and might add in that there is a “rocky area”. If the chart is more specific to this area, the exact locations of rocks, shoals and other hazards are important.

Kirk Beckendorf, July 14, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 14, 2004

Weather Data from the Bridge
Time 10:20 AM ET
Latitude- 42 22.77 N
Longitude- 70 52.02 W
Air Temperature 16 degrees C
Air Pressure 1004 Millibars
Wind Direction at surface Northeast
Wind Speed at surface 13 MPH
Cloud cover and type Stratus clouds and rainy

Daily Log

Why would anyone care if there are a few pieces of stuff 1000 times smaller than a grain of sand floating around in the air?

I visited one more piece of the elephant the past couple of days. To be more accurate, I have been visiting with some of the people who are studying another piece of the pollution elephant. I’ll call them the particle people. I have been visiting with Dave Covert, Tim Onasch, Tim Bates, Patricia Quinn, Theresa Miller, Kristen Schulz, Anders Petterson and Tahllee Baynard and Derek Coffman. These scientists are studying the particles that float in the air. Some particles are from human pollution and some are from natural sources. These chunks of stuff can be so small that it may take more than 250,000 lined up side by side to be an inch long, about 1000 times smaller than a grain of sand. Those are not even the smallest ones. Even though these particles are so tiny these scientists can find out what chemicals make up the particles and how many of the particles are in the air.

Amazingly, the scientists can sort out these very tiny chunks by weight. But as Paul Murphy told me the other day none of this is magic. A number of methods are used to sort the particles; here is the idea behind one of them. But you are going to have to use your imagination again. You are in a long narrow L-shaped hall. You look down the hall and at the end it makes a sharp turn to the left. You and a friend are going to have a race to the end of the L. But of course this isn’t a normal race. Each of you has an office chair in front of you. In your buddy’s chair is a very large person, your chair has a mouse. On your mark, get set, go!!! You both start pushing and running as fast as you can. One of the rules in our race is that you cannot slow down until you get to the end. Your friend is a major weight lifter and runner and so even though he is pushing a lot more weight the two of you are neck and neck, flying down the hall. Then you get to the sharp left hand turn. Remember this is a narrow hall and you can’t slow down. You and your mouse make the turn fine. Because of the heavy person in his chair your buddy can’t make the turn and hits the wall. You and the mouse end up at the end of the hall. Your buddy’s chair and passenger end up splattered against the wall.

But we were talking about microscopic particles in the air. The big white air inlet shown in pictures I sent yesterday pulls in air. Inside that large inlet are 21 smaller tubes which separate the air and sends it to different pieces of equipment. Some of the particles are removed from the air and are separated by size in a method similar to our race. A stream of the air, along with any particles that are in the air, quickly moves through a tube called an impacter. (In our race the mouse and person on the chair represent two different sized particles. You and your buddy are the air.) The air and any particles in the air have to make a sharp right hand turn. The largest particles can’t make the turn and they hit and stick to the “wall”. As the air moves through the tube, the air and remaining particles have to make progressively tighter turns. Each turn separates out a different sized particle. Those particles are collected off the wall and can be analyzed to determine what chemicals they are made of as well as weight and numbers of each size. Removing the particles from the impacter (the wall) needs to be done under controlled conditions so that contamination does not occur. Other techniques are then used to analyze the particles that are so small that they get through the “maze”.

While I have been on the ship there have been two main issues that I have been learning about. The first is learning about the techniques which the scientists use to study pollution. The second issue is: why make these observations and what will be done with them. Most of what I have described are the techniques that are being used. I have not written much about why the scientists are doing this and what they hope and expect to learn. More about that soon.

So why would anyone care about a few tiny particles anyway?

When the particles are breathed into a person’s lungs they can cause health problems. The particles may also have an impact on climate change, more about that in the next log.

Today the weather has again been cloudy, cool and rainy. The winds are blowing strong from the northeast which brings us clean air so we have moved south of the shipping lanes going into Boston to try and measure some ship exhaust. The swells are about 5 feet high and so the ship is rocking more than it has been. Everyone seems to be staggering about when they walk.

Questions of the Day

What are some of the main gasses which cause the greenhouse effect on Earth?

Where do the particles come from?

On average how long will they stay in the atmosphere?

Leyf Peirce, July 13, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 13, 2004

Time: 15:00
Latitude: N 55°17.29
Longitude: W 160°32.14
Visibility: 4 nm

Wind direction: 140
Wind speed: 6 knots
Sea wave height: 0 – 1 foot
Swell wave height: —
Sea water temperature: 10.0 °C
Sea level pressure: 1007.8 mb
Air temperature: 12.2 °C
Cloud cover: 8/8

Science and Technology Log

I awoke today to an announcement over the ships intercom saying, “Attention all hands, attention all hands, divers are in the water, please make sure all equipment is stored and locked”. I first checked to make sure it wasn’t me in the water, as exciting as that would have been, and then I raced out of bed to see what was going on. Apparently, since we have been anchored off the coast of Egg Island, we have had a very small oil leak. It was believed to have fixed itself after the first few hours of anchoring; however, yesterday many of the crew noticed that there was still a slick on the water off the port stern. To investigate, three NOAA certified divers dove down about 15 feet and inspected the hull of the ship. They saw that the oil was in fact coming from the left propeller, yet they could not directly identify the source of the problem, but speculate that there is a small leak in one of the o-rings. The only way to truly fix this problem is to dry-dock the boat. The closest dry-dock is in Seward, but we are scheduled to go to Kodiak first. Therefore, the plan is to see if the problem takes care of itself and if it is not better by the end of the stay in Kodiak, then take the boat to Seward. The amount of oil that is leaving the ship is very small and is escaping at an extremely slow rate. However, if this problem persists, it could become very serious.

I talked with ENS Lominkey about his dive this morning and about other dives he has made recently. He informed me that once you are NOAA certified, the equivalent of becoming a PADI or NAUI dive master, you will be allowed to help with dives that involve ship repair, tide gauge installation, or wreck surveying. In fact, only two weeks ago the RAINIER was performing hydrographic research and identified the fishing boat CONQUEST which sunk in 1994. ENS Lominkey and other certified divers dove the wreck to gather information about the wreck including its minimum depth which happened to be about 90 feet. To do this, they used a very sensitive depth gauge that relies on pressure changes. They would place this gauge at different locations on the wreck and record the various readings. ENS Lominkey also told me that they found another fishing boat wreck near the CONQUEST, but were unable to identify it. As I have developed my passion for diving over the past few years, I become more amazed at the opportunity to dive and explore uncharted waters knowing that the research you are conducting is contributing greatly to society. And, as technological advancements are made for both safer diving and better navigational charting, I can’t help but wonder how these will be further combined in years to come—a very interesting engineering design problem!

Personal Log

Today was mostly spent writing more lesson plans for my 6th, 7th, and 8th grade science classes as well as planning my 8th grade pre-algebra course. I also spent a lot of time talking with several officers about the amazing act of diving and how wonderful it would be to be paid to do something so adventuresome everyday. When sharing experiences, I did notice that the excitement of diving somewhat parallels the excitement of teaching; you never know what you are going to see, there are some dangers, but overall the experience is extremely rewarding. In both, you not only learn about other animals, or students as the case may be, but you also learn a lot about yourself, your goals and dreams, and your limits. While I am greatly enjoying my experience aboard the RAINIER, the more I think about my different classes and the students that I will see in the fall, the more excited I get about returning to the classroom!

Question of the Day:

How much oil would have to be in the water before it drastically starts harming marine life?

Sena Norton, July 13, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 13, 2004

Location: At anchor, Popof Strait, Shumagin Is. AK
Latitude: 55 deg 17.9’ N
Longitude: 160 deg 32.13’W
Visibility: 1nm
Direction: 116 deg
Wind Speed: 10 kts
Sea wave height: n/a
Swell wave height: 0-1 ft
Seawater temperature: 10.1 deg C
Sea level pressure: 1011.0 mb
Cloud Cover: 8/8 Fog
Weather: Foggy with drizzle and areas of rain 12.1 deg C (air temp)

Plan of the Day:
Four launches for shoreline verification and continuation of hydro in deeper water.

Science and Technology Log

I learned the process and background concerning shoreline verification. This process ties in nicely with my new understanding of the process of Laser Airborne Bathymetry and how the two connect together. Shoreline verification is a process where a launch surveys to the 4-meter line and in the process correctly locates any targets found close to shore. The launch actually touches the target, at times from multiple sides so that a true GPS tag can be attached to the feature. This process helps the survey crew make better sense of wide swath readings and discern between sonar “fluff” and true features. Sometimes kelp or other objects block the sonar from capturing an accurate image and in the case of larger objects they are required to be “eye ball” verified for all survey areas. Shoreline is also used to double check location of known targets for drift or geologic movement. In the case of these Alaskan waters, the bottom changes yearly and the same can be said for the shoreline. Rocks move, and sand drifts cause sediment build-ups in different areas and underwater features might not have been placed accurately on the chart in the first place. All these factors add in to the need for physical shoreline verification of the survey swaths.

The jet boat launches are able to go almost all the way into shore but are not used until a prop motor launch has already done a through evaluation of the grid. According to the coxswains, shoreline is one of the more nerve-racking operations that they conduct. They are in shallow water trying to find hazards to navigation and they are still asked to safely navigate themselves. At times they are going into pockets almost blind because of the initial survey information being a tad sketchy. After of day of shoreline the coxswain is mentally and physically worn out.

Personal Log

Last night was a fun night on board, a group of crew and corps officers played some board games and let off some steam. This really is a fun crew to be around they are ready to have a good time and I believe they genuinely enjoy each other’s company. (Even if at times I know they drive each other crazy!) I am feeling more a part of the ship now as ever before, everyone is a friendly face and people are interested in what I am doing and what I do on dry land. They are very supportive of teachers and education and that is a boost to my morale because I feel supported in what I am doing here.

I have also enjoyed the time made available by being on board to work with the other TAS and collaborate with lesson ideas and simply “talk” to each other. Many times the one thing that teachers starve for is a chance to really get down and work with their colleagues. We are already planning on linking our classrooms, like Sister Classes for projects, pen pal and even to track the weather on opposite sides of the U.S. An added benefit is that she also just finished her first year of teaching and teaches at the same middle school level and I do. We have our careers in common and seem to have similar ideas on the direction of science education and its benefit to our students. We have completely different experiences as an educator because I teach in public school and she teaches in a small private school, but hearing the experience of the other has put a perspective not only on education but also on my professional/personal goals for the future of my career.

Question of the Day:
What is a “gyro” and why is it used on a ship?

A “gyro” or gyroscopic compass is the ships compass that is always pointed at the North/South axis no matter what the ship is doing in the water. It can be compared to a child’s top in the way that it works. It is important for a ships compass to be oriented in the N/S axis to accurately navigate and find the exact lat/long point. A compass will always point toward magnetic North which is about 1,600 km south of the North Pole (where all the meridians of longitude converge).

Kirk Beckendorf, July 13, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 13, 2004

Weather Data from the Bridge
Time 11:30 AM ET
Latitude- 42 56.92 N
Longitude- 70 36.22 W
Air Temperature 17 degrees C
Wind Direction at surface East
Wind Speed at surface 20 MPH
Cloud cover and type Cloudy- Stratus
Air Pressure
11:30 AM 1014 Millibars
7:15 PM 1009 MB
10:15 PM 1008 MB

Daily Log

Look at what the air pressure has done today. What do you think our weather is like now at 11:00 PM (past my bedtime)?

Keep in mind that we are sitting out in the ocean in a ship, sometimes you can see land, other times you can’t. Rarely can we see any buildings much less a city. How are we supposed to know where to go to find some pollution? Especially if we are looking for particles that are too small to see and gasses that are colorless. Not to mention there may be less than 1 part per billion of that gas mixed in with the air. That is where Wayne Angevine and Jim Koermer come in. They are two meteorologists who are on shore. Twice a day they send us weather forecasts. Wayne works for NOAA and Jim is a professor at Plymouth State University in New Hampshire. (Check out Jim’s website at vortex.plymouth.edu)

Based on their forecast, Wayne also sends recommendations for where we should go to find pollution. Today they are predicting that winds will be from the southeast and east through at least tomorrow. We know that pollution comes from automobiles, power plants, ships and factories. Although some of the chemicals involved in air pollution do also come from trees and other plants. Pollution of course blows with the wind so we want to be down wind of the pollution sources. If you look at a map to see where we are located the only thing east of us for a very long way is water, so easterly winds bring us clean air. There aren’t any cities or automobiles floating out here on the ocean, but there are ships. Wayne’s recommendation today was for us to move to Mass. Bay to get down wind of the shipping lanes and sample ship exhaust as they come by. That is what we have been doing most of the day.

Wayne says that possibly tomorrow afternoon the winds will shift and come from the southwest. If that happens Boston’s pollution will be flowing out over the water again and if that happens he suggest we sample it as we did yesterday, which was to zigzag back and forth across the plume coming from Boston. We couldn’t actually see it but we know where Boston is, we knew which way the wind was blowing and many of the instruments are measuring and recording what is in the air in real time. The captain also has charts that show how deep the water is so we didn’t run aground as we got close to shore.

It has been very interesting switching rolls from my normal job of being the teacher to the roll I am in on the ship which is, being the student. This past year after a particularly hard lesson one of my students said my brain hurts; now I know how he felt. This afternoon I went down to the ship’s gym to try and digest all that I have been learning the past two weeks, by working out physically rather than mentally. Plus I had to work off some of the great food the stewards feed us here on the Brown.

With the drop in air pressure the winds have picked up, it has started raining lightly and the ship is rocking and rolling. Nothing extreme, but it should rock everyone to sleep tonight.

We had another abandon ship drill today.

This afternoon we saw a pirate ship. Well ok it really wasn’t a pirate ship but it kind of looks like one, with its sails down and floating in the mist. It is actually a Mexican Navy training ship.

Questions of the Day

Today we had a low pressure system, what kind of weather can we expect if we have a high pressure system?

What activities do you that would create air pollution?

From which way is the wind blowing today, where you live?

What is up wind of you? What is downwind of you?

Leyf Peirce, July 12, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 12, 2004

Time: 18:00
Latitude: N 55°17.29
Longitude: W 160°32.13
Visibility: 2 nm
Wind direction: 115
Wind speed: 12 knots
Sea wave height: 0 – 1 foot
Swell wave height: 1 foot
Sea water temperature: 10.0 °C
Sea level pressure: 1011.0 mb
Air temperature: 12.2 °C
Cloud cover: 8/8

Science and Technology Log

Today we took a field trip to Sand Point, AK, a small fishing town on Popof Island. It also happens to be a base for the TEXIX LADS, Inc. which is a research facility for airborne laser bathymetry. The goal of this research facility is the same as the RAINIER’s: to chart the ocean floor. However, this group gathers data using a laser attached to the bottom of an airplane as opposed to a boat. The advantage of this type of data collection is that coast line depths can be easily taken without the risk of a boat crashing into uncharted rocks. The technology used aboard the plane is similar to the multibeam sonar systems used on the RAINIER, however instead of a multibeam sonar system, a laser is used. This laser has a pulse rate of 990 pulses per second, a depth range of 70 meters dependent on water clarity, a topographic range of 50 meters above sea level and a swath width that can range from 240 meters to 100 meters depending on flight velocity. And, to acquire the data, the plane travels at between 150 and 175 knots!

While this mode of data acquisition is faster than that aboard the RAINIER, it can only accurately acquire data in shallower waters because of light refractions at deeper depths. Therefore, NOAA works in conjunction with this group to survey the ocean bottom in and around Alaska. While the Tenix LADS, Inc. surveys the coast line, and will warn NOAA ships of any bottom features that might protrude in deeper water, the RAINIER charts the deeper waters (between 30 meters and 400 meters). The data will then be collaborated to produce accurate nautical charts.

We also went to the office where the data collected aboard the plane is processed. While I did not get to study the software used, I did notice that the data processing was very similar to that on the RAINIER; both require data processors to go through the data and filter any outlying points before the data can be applied to the nautical charts. The data is also collected according to “mowing the lawn” lines, similar to the RAINIER. However, these lines are along the shore line as well as going about 250 meters onto the coast itself.

Personal Log

Learning about data acquisition aboard a plane was very interesting today! It was also nice to go to land, where we got an excellent coffee at the only café in Sand Point. We also went on a tour of the town, seeing its one school, one restaurant, and one store. The small homes reminded me of those that sprinkle the south-west Swedish coast line— simple homes that beacon stories and the occasional wonderer. I am amazed at the amount of mystery such towns hold while also giving off such a welcoming, cozy feel. The weather today was the opposite, with the first rain we saw bringing larger swells and more fog. I really can’t complain too much, though, for we have been here for almost a week and still hadn’t seen rain until today. It did make for a very interesting small vessel ride to and from the shore!

I spent a lot of time today talking with Sena Norton, the other Teacher At Sea, about lesson plans and ideas for next year. We have both agreed it would be great for our students to establish a line of communication between our classes. In doing this, we can share various projects, such as an on-going weather project that we are planning to start in January—it will be very interesting to gather data in our own regions and then share and compare weather in Oregon and weather in North Carolina. We are also thinking about conducting a lab involving charting, navigation, and depth measurements where we have our classes work together to complete the final navigational chart of a large section. This is such a great opportunity to not only use the data and information gathered aboard the RAINIER, but to also start establishing a connection with another class in another school! I can’t wait to work on these ideas more tomorrow!

Question of the Day:

Given a different type of laser, could accurate data be collected from a plane at depths greater than 30 meters? Would this be a better way to conduct hydrographic research other than using boats?

Kirk Beckendorf, July 12, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 12, 2004

Weather Data from the Bridge
Time 8:30 AM ET
Latitude- 42 47.28 N
Longitude- 70 42.29 W
Air Temperature 17
Air Pressure 1019 Millibars
Wind Direction at surface Southeast

Daily Log

Why are so many methods used to measure air quality, why not just one or two simple tests?

I received an email from Paige who is a student at Obsidian Middle School where I teach. She asked how air samples are taken and how air quality is measured. Those are two very big and good questions, without simple answers. This is one of the reasons that there are several hundred scientists working on NEAQS. I emailed Paige a fairly short answer but will give a more detailed explanation here. In some of the previous logs that I have written here on the BROWN, I explained some of the techniques somewhat in detail but I haven’t given you an overview, so here we go. Great questions Paige!!!

There are many different ways that the air is sampled and measured. In some cases, such as the LIDARs, samples are not taken at all. The LIDARs shoot light through the atmosphere, some of the light bounces back to the LIDAR, and this helps to measure some of what is in the air. The ozonesonde immediately and constantly measures the amount of ozone as the balloon rises through the atmosphere.

In other cases air is sucked into tubes mounted on towers at the front of the ship and the other end of the tube goes to the scientists’ equipment. (See the pictures, the big white upside down funnel and the smaller pink upside down funnel, are two of the inlets shown.) Sometimes samples are actually stored and in others the air quality is measured immediately.

Some of the instruments measure many chemicals such as one designed, built and run by Paul Goldan and Bill Kuster. It pulls in a sample of air every 30 minutes and in 5 minutes automatically measures about 150 different kinds of chemicals. It can measure the chemicals in parts per trillion. If you made some Kool-Aid that was one part per trillion, you would mix 1 drop of Kool-Aid into 999,999,999,999 drops of water. It certainly wouldn’t taste like Kool-Aid.

Other instruments measure one or just a few of the chemicals that are in the air. Today Hans Osthoff showed me a piece of equipment that he uses to measure air quality. He uses it to measure three specific chemicals in the air. One of Eric Williams’ instruments sucks in air and measures the amount of ozone every second, 24 hours a day.

Tim Bates showed me a number of pieces of equipment which suck in air and can used to find, in real time, the size and chemical composition of the particles that are floating in the air. These particles can be so small that it may take 250,000 or more laid side by side to be an inch long. Dave Covert and Derek Coffman showed me their equipment which removes particles from the air. These particles are then collected by Theresa Miller and Kristen Schulz who will analyze them. Some of the samples will be analyzed here on the ship and other samples will be analyzed once they return to Seattle.

So why not just one or two simple tests? Why so many?

Our atmosphere and the pollution in it are extremely complicated. Even though air is about 99% nitrogen and oxygen it also contains hundreds of other chemicals which are very important. Some are natural, some are man-made and some are both. This soup of chemicals is constantly changing and moving. To be able to understand pollution in the atmosphere we have to understand all of the parts. This goes back to the elephant I mentioned a few days ago. The more parts we observe and the more ways we observe the parts the better we will understand our elephant. If you feel the elephant’s leg you learn a little, if you use your nose and smell the elephant’s leg you learn a bit more, if you use your tongue and lick the elephant’s leg you will learn even more about the elephant. Understanding the pollution in our atmosphere is similar. Each type of measurement has advantages and disadvantages but each tells you more about the pollution and the atmosphere. Combined all together they can eventually give us an understanding of the whole elephant.

We had another abandon ship drill today.

Questions of the Day

What is the ozone level today where you live?

What is the level of particles where you live?

What is the maximum limit of ozone as set by the EPA (Environmental Protection Agency)?

Hint: You can probably find these on the Internet.

Jillian Worssam, July 11, 2004

NOAA Teacher at Sea
Jillian Worssam
Aboard NOAA Ship Miller Freeman
July 5 – August 1, 2004

Day: Six
Sunday July 11th, 2004 23:52

Longitude: 59° 32 Sea Wave Height: 2′
Latitude: 173° 51 Swell Wave Height: 2-4′

Visibility: 1.5miles fog Sea Water Temperature: 9.9C
Wind Direction: 221. Barometric Pressure: 1012 high pressure
Wind Speed: 9.1 kts Cloud Cover: complete 100%

Haul Data: CTD (conductivity / Temperature / Depth)
Depth of haul: 90 meters
Temperature at depth: 10° C surface – 2° C at bottom
Species breakdown: Informational gathering / no species collection

Science and Technology Log:

The CTD is a device that is hard to explain. Scientific in nature similar to an inverted cone that has a six inch diameter at the top. Today we will look at the condition of the water, the liquid habitat for this ecosystem. Conductivity will give the scientists, with some calculations, the percent of salt in solution. This is important information as the salinity affects the density of the water which in turn affects the speed of sound. Knowing the speed of sound is vital in acoustic fisheries surveys as the scientists use back scatter data in determining fish location and density. The density of water is also affected by the salinity and temperature of the water.

Today’s temperature at 90 meters was 2°C, at the surface it was a balmy 10°C. Ocean water like our atmosphere is in layers, each a distinct unit. The thermo cline was at 35 meters, with a graphic representation showing a distinct differentiation between the two water masses.

The CTD data is used in looking at correlations between where fish populations are found and if their placement is not only affected by the condition of the water, but if there are conditions that they prefer.

Personal Log:

Understanding the CTD has been difficult for me. This ecosystem is literally poles apart from a ponderosa pine type forest. I am learning an amazing amount of information and at the same time realizing how much I do not know. Oceanography is an amazing science, and phenomenally diverse.

Once again I spent an hour on the bridge, 2400-0100, standing watch. I did not realize that this nautical term is in fact correct as there are no seats on the bridge except the CO’s chair which is off limits. I was told that there is a common yarn that the captain’s chair is directly above his stateroom, and attached to a bell. If someone sits in the chair the bell will ring indicating that sacred territory has been breached. When a person stands watch for four hours, they stand watch. There are some counters with cushions to brace against, but that is it. While standing watch last night I got my first glimpse of a dall’s porpoise. The pictures that are commonly seen of porpoises show the entire animal usually gliding gracefully with a wave. Our view last night was a glimpse, a peak into the life of a marine mammal. It was Mark, the field operations officer who first spotted the sign, a brief splash within the bow wave of the boat. The porpoises travel the wave of a boat, literally catching rides. At one time there was the splash of three heads effortlessly coming up for air, a brief splash and again they were lost in the wave only to be seen moments later literally in the same place even though we were all moving forward.

There is a calmness here when the fog moves in, a sense of peace. We are out of touch with time, yes there are news briefs, but one does not need to read what is going on in other places. I am ok with the solitude, the sound of the engine the gentle rocking of the boat. This is a serene place to be, in summer!

Leyf Peirce, July 11, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 11, 2004

Time: 21:00
Latitude: N 55°17.27
Longitude: W 160°32.16
Visibility: 4 nm
Wind direction: 095
Wind speed: 10 knots
Sea wave height: 0 – 1 foot
Swell wave height: —
Sea water temperature: 10.6 °C
Sea level pressure: 1017.0 mb
Air temperature: 12.8 °C
Cloud cover: 4/8

Science and Technology Log

Today was my second day aboard a launch boat. With SS Foye, ST Taylor, and ENS Samuelson, we continued to follow lines to chart the ocean floor just south of Egg Island. Today we were on launch boat 5, and luckily everything was working great! We were working with the Reson 8101 again. It should be noted that in previous journal entries I have been misnaming some of the equipment used. Today, I finally got the nomenclature correct. Here are the basics:

  1. ELAC multibeam system is used for deep water, with best resolution over 30 meters
  2. There are two shallow water mulitbeam (SWMB) systems:
    1. Reson 8125 is used with a higher frequency and has better resolution in depths of 0 – 30 meters
    2. Reson 8101 is used for “middle depths” of 0 –120 meters (mostly 30 –120 meters)

I also learned a lot more about how to use the software aboard the ship while we are taking data. For the Reson 8125 and Reson 8101, there are three computers aboard the ship that can talk to each other. Two are located in the cabin and one is located on the deck. One computer in the cabin is used primarily to navigate; the old charts are downloaded onto this computer and the lines on which we need to steer the boat (the lines for mowing the lawn) are superimposed on this chart. This computer is not only hooked up to the computer that gathers data, but is also connected to a computer that is mounted on the console so the captain can see where he or she needs to go. The navigational computer in the cabin is also directly hooked up to the other computer in the cabin. This second cabin computer is connected to the actual multibeam echo scanner system that is mounted to the hull of the ship. When instructed to do so, the second cabin computer can record the data from this system. One of the researchers uses the navigational computer to tell the second computer when to start and stop recording the data. Because the second computer is hooked up to the multibeam system, it also is used to control the parameters of this system, including filters, range, frequency of “pings”, and power. There are several different screens within the program used to control all of this, including a profile screen, which actually shows the profile of the ocean floor, a pitch/roll/heave screen to record that the POS/MV (the positioning device also hooked up to this computer that integrates with the data correcting for the gyration of the ship and it’s position), and a control screen. There are several other screens which can be displayed on this computer, however these listed here are the most important to monitor while gathering data. The power of the multibeam system can be monitored and altered according to depth and profile of the floor; if you want the device to “listen to the pings better”, you increase the power, and however, this also decreases resolution. You would want to do this in greater depths. You can also manually control the depth filter for the data. In order to do this, you change the range of the depths the multibeam system is looking for. This in turn changes the width of the footprint left by the data and thus the resolution. By doing this as you gather data, you are eliminating possible outlying points before ever having them recorded and you are allowing for better resolution at shallower depths. This makes the data processing and cleansing easier, yet it requires constant attention and anticipation while gathering data.

While this technology works relatively well in the field, it is still very expensive and time consuming. A possible design project for my students would be to analyze the existing system and brainstorm ideas for improvement. This would even include researching other systems used internationally.

Personal Log

Today was yet another beautiful day once the fog lifted by mid morning. I am still enchanted by the concept of conducting research on a boat all day—it seems like a job I would love to pursue! Not only are you contributing to society, but you get to see wonderful sights—today we saw a bald eagle, lots of puffin, and two sea lions! I cannot help but laugh at the puffin, though. They eat so much and have such little wings and huge hearts that they try with all their might to fly, but they only become air born with the nudge of a wave. And even then they only maintain an altitude of about 6 inches before they crash into another wave. They are both very amusing and very inspiring. I keep thinking that they are thinking “I think I can, I think I can, Never give up!” With so many sights and things going on both on and off the research vessel, I was not at all disappointed when we were radioed that we were going to spend an extra hour collecting data because the weather was so good (slightly chilly, but the sun was out). When we returned I learned how to download the data to the computers aboard the RAINIER, and then I saw the beginning steps for processing this data. I can’t wait to learn more tomorrow!

Question of the Day: A design problem: a gyrocompass is used to determine bearing and relies on electricity (it has an internal electromagnet). The gyrocompass on the bridge looks like this:

Peirce 7-11-04 gyrocompass

Notice that the angles visible here are 70 ° and 90 °, a difference of 20 °. However, this 20 ° difference is spread over what is actually about 100 °. How, then, does the gyrocompass span the full 360 °?

Sena Norton, July 11, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 11, 2004

Location: At anchor Popof Strait, Shumagin Islands, AK
Latitude: 55 deg 17.30’ N
Longitude: 160 deg 32.14’ W
Visibility: 5 nm

15:00

Direction: 110 deg
Wind Speed: 10 kts
Sea wave height: 0-1 ft
Swell wave height: n/a
Seawater temperature: 10.0 deg C
Sea level pressure: 1018.2 mb
Cloud Cover: 5/8
Weather: Fair to Partly cloudy, spots of fog dissipating. 12.12 deg C

Plan of the Day:
Continue the launch survey with 2 boats. In house data cleaning and processing. Meeting with LIDAR tech stationed in Sandpoint.

Science and Technology Log

I personally spoke with a survey technician, Amanda McKinney on board to gather more information on hydrography and the process behind it. There were two main topics that we discussed: Application and history of marine survey, and the math/science behind the techniques.

Application/History

The technology used for marine survey has been improving by leaps and bounds and we are currently using a collection of old and new technology to gather data. Many nautical charts have not been charted for almost 80 years or more and some areas have never been accurately charted at all. The old process was to drag a lead line behind a transiting ship. This process was full of errors because you could never accurately know your depth, even if the length of the line was known; it was drug and therefore skewed the data. Very often a charted depth from these old processes are found to be dangerous wrong. Another mode of survey is the wire drag, where multiple ships drag a wire through the water column. Once a target has been hit, the depth of that underwater target is calculated, but never truly charted accurately. Side scan sonar came around and improved the survey capability, but it too has its drawbacks. Because the “fish” is towed there are many more mathematical corrections that must be made in order to get a reading that is close to the actual target. It does produce wonderfully clear pictures of what is around the “fish” but those images lack depth of field and the sonar cannot read directly below the transmitter. Quite often with side scan images, divers are needed to dive the sight of a possible target to get accurate readings. Multi-beam sonar can be used in conjunction with side scan to better improve the over all picture of the underwater area. Because multi-beam is able to give more accurate readings and the data is complied in 3-D images, surveyors can have both a clear image and precise depth reading all together. It is hoped in the future that there will be new sonar systems that can scan at 480 beams over .25 x .25 deg per beam with 40+ pings per second. The highest level of technology currently used by NOAA is the Reson 8125 (this system is attached to two boats currently) and it sends out 240 beams over 0.5 x 1 deg / beam at 15 pings per second and runs with 455kHz. Remember, that a short pulse (wavelength) will give better vertical resolution and higher frequencies give shorter pulses or wavelengths.

The math required to figure the depth is not very difficult, however in the case of the ocean, the computers must adjust all readings for depth, salinity, temperature and density, which in a way makes the math more difficult if done by hand.

Depth=Speed+ Time/2

Personal Log

I was able to spend some time with the survey tech’s today and got through some of the PowerPoint presentations that are available here on the intranet to educate myself more on the technology and process. I was pleased to see that I can apply some of the simple ideas to my classroom. When I teach certain science skills I will have real life data sets and examples for the kids to analyze. I also hope to get some of the kids excited in the field of sonar and survey, much needs to be done to improve the accuracy and reliability of these systems and the product they produce.

Sunday equals fishing off the fantail in between shifts. We have a resident pack of gulls that have found it much to their benefit to hang out for the halibut leftovers that get tossed overboard or that slip from bait hooks.

I found a whale bone yesterday on Egg Island and had the boat shop guys saw it in half so that both of us TAS’s could bring something back for the classroom. It is not a large chunk, but authentic to say the least. I also gathered some sea sponge that had washed up and a very unique white rock.

I was very surprised to see the people working on a Sunday. No one should ever question the dedication of the folks on board or say that this is an easy job. One of the engineers has not had a day off in two months or more. The ship is something that has to be tended too by her crew and command 24 hours a day 7 days a week. Self-sufficiency comes with some responsibilities!

Question of the Day

Which is better: side scan or multi-beam sonar?

There is not one that is better than the other so much as they can compliment each other to produce and more detailed and accurate product, namely the nautical charts and other products that use the information gathered via the sonar medium.

Kirk Beckendorf, July 11, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 11, 2004

Weather Data from the Bridge
Time 8:00 PM ET
Latitude- 42 37.71 N
Longitude- 70 22.9 W
Air Temperature 17 C
Air Pressure 1018 Millibars
Wind Direction at surface Southeast
Cloud cover Partly cloudy

Daily Log

What famous event happen at Boston harbor?

It was a very eventful day today. The computer program that manages the wind profiler showed that there was a problem because one entire section was being shown in red instead of green. Dan Law asked if I would help him find out what was wrong. I jumped at the opportunity knowing that he really needed my expertise. I was very good at holding the wrench for him. As I was taking pictures of him and the inside of the profiler we were sailing into Boston Harbor. As we came into town our decks looked like those of a cruise ship. Most of the scientists were out on deck taking pictures and enjoying the view. Now everyone is back inside of their lab facilities which are mostly big shipping crates.

We spent most of the day in Boston Harbor near the end of Boston Logan Airport sampling the air in Boston. It was a beautiful weekend day and there were hundreds of sail and motorboats all around us. I didn’t see any tea floating in the water though. While soaking up the sun and enjoying the view of the harbor I helped Drew Hamilton, from NOAA’s Pacific Marine Environmental Lab in Seattle, Washington take some measurements with an instrument call a sunphotometer which measures the total amount of particles in the column of air above the instrument.

In the afternoon we left Boston and specifically to follow a cruise ship. Its exhaust was visible in the air and we criss-crossed back and forth across the plume to see what chemicals were being released by the ship. After we left the cruise ship’s exhaust plume our ship stopped so that we could do the daily launch of the ozonesonde. A little while before sunset one of NOAA’s WP-3 airplanes circled us several times. It is also sampling and measuring the chemicals in the air as part of NEAQS. Comparisons can then be made of the plane’s measurements with those made here on the ship.

The weather report is for winds to be blowing from the southwest through tomorrow so the plan is for us to travel tonight to the northwest so that we will be in the pollution blowing from Boston.

Questions of the Day

What does NEAQS-ITCT stand for?

What will our bearing be tonight if we are going northwest?

How many kinds of planes are being used in NEAQS-ITCT?

Jillian Worssam, July 10, 2004

NOAA Teacher at Sea
Jillian Worssam
Aboard NOAA Ship Miller Freeman
July 5 – August 1, 2004

Day: Five
Saturday July 10th, 2004 1:20

Longitude: 59° 50 Sea Wave Height: 1-2′
Latitude: 173° 14 Swell Wave Height: 0′

Visibility: 2.1miles fog Sea Water Temperature: 9.4C
Wind Direction: 121.6 Barometric Pressure: 1019 high pressure
Wind Speed: 11.3 kts Cloud Cover: complete 100%

Haul Data – Methot
Depth of haul: 20 meters
Temperature at depth: 7° C approximate
Species breakdown: walleye pollock year 0, Amphipod- type of crustacean, Chrysora jellyfish

Science and Technology Log:

The Methot haul is when the nets are set out, but at the end there is a cylindrical tube of PVC. It is this tube in which the sample will be taken. Holes are drilled in the side to let the water run through, but there is a mesh screen which prevents the specimens from escape. The purpose of the Methot trawl is to collect younger samples of fish, and as the younger pollock tend to stay higher in the water, and this device is perfect for sampling. Most of the pollock were year zero meaning that they spawned this past April. There is also a relationship between the juvenile pollock and the jellyfish as the Jellies (common term) provide shelter for the young fish. Walleye pollock are cannibalistic and will eat younger smaller fish that could well be their own children.

One of the scientists on board Taina Honkalehton has just returned from Tasmania where she was contracted by the Australian government to study orange roughy, a species that has been over harvested that they are now trying to save as a viable harvest species. Pollock on the other had is a well managed species, where at this time approximately 20% of the population is being utilized for commercial ventures. Pollock are the fish of fish sticks, a very important economic product on a global scale, with pollock as the largest single species fishery in the world making oceanic ecosystem management very important. Approximately 1.8 million tons of Pollock are harvested annually. Part of the management plan for pollock is based in part to their relationship to the stellar sea lion. As an endangered species management needs to look at fish harvesting and see if there is a relationship between the decline of the sea lion and changes in fish numbers.

Personal Log:

Running late tonight, having too much fun gutting fish, measuring jelly fish and cleaning. I have often wondered the purpose of jelly fish. As an Easterner by birth my only experience has been the Portuguese Man of War, the stinging variety that invariably closed our local beach. The jellyfish we have been seeing not only provide habitat for many other aquatic species, but that are also a nutritious food source. Monterey Bay Aquarium has a wonderful display of jelly fish. An amazing species, so beautiful in their basic simplicity.

I promised I would talk about the spinner, which no one has been able to give me a scientific designation for. This amazing piece of technology is a circular window approximately two feet in diameter, the ships windshield. During winter months the entire window of the bridge often freezes up, and this device, through the use of centrifugal motion, manages to keep an area clear for viewing. The glass of the spinner, you guessed it, spins at a very fast rate thus keeping the viewing surface clear.  It is a funky tool, and so far my favorite on the bridge.

Leyf Peirce, July 10, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 10, 2004

Time: 18:00
Latitude: N 55°17.29
Longitude: W 160°32.13
Visibility: 6 nm
Wind direction: 110
Wind speed: 12 knots
Sea wave height: 0 – 1 foot
Swell wave height: —
Sea water temperature: 10.6 °C
Sea level pressure: 1016.3 mb
Air temperature: 13.3 °C
Cloud cover: 3/8

Science and Technology Log

Today was the first day we launched the survey boats. I was assigned to a boat with SS Foye, ENS Welton, and ENS Samuelson. A very interesting and eventful day, the best way to describe it is with a timeline:

08:00 board 5 boat with SS Foye, ENS Welton, and ENS Samuelson; Lt. Slover (the FOO—Fieldwork Operations Officer) came aboard for about 20 minutes to run tests on the Reson 80101 multibeam echo sounding equipment we are using (soon dropped Lt. Slover back at the Rainier); NOTE: Reson 80101 is used primarily for shallower water, for it has better resolution at depths less than 75 meters

08:45 arrived at our first way point near Halfway Rock; took first cast with the CTD (testing for conductivity, temperature and depth—all things that factor into velocity speed profile) and found an average depth of about 65 meters

09:00 started doing lines (mowing the lawn pattern) around Halfway Rock; after about 3 lines, Lt. Slover called us back in because the data he had taken did not process correctly—the new programs aboard the ship were not working as well as they had thought

11:25 board the RAINIER while FOO checked our equipment; turned out we had to switch to 6 boat—including downloading new maps and figuring out a new system

11:45 board launches 6 boats and sets out for new set of lines at deeper water than the morning; this boat uses the ELAC multibeam systems which are better for deeper waters (up to 400 meters)

12:00 arrived at new line destination (lat: N 55/14/54, long: W 160/27/43) and ate lunch before doing our CTD cast

12:30 conducted first CTD cast, but computer messed up, so had to repeat the cast and got a better reading (average depth = 150 meters) began line pattern

** After a few lines of learning the computer program, SS Foye allowed me to drive the boat for almost the rest of the time—my experience on boats made this part so much fun—especially using the computer imaging as a navigational chart**

17:30 arrived back at RAINIER for dinner

I was truly impressed with the amount of different technology aboard these ships: 5 computer screens, 2 key boards, and a lot of different software programs used to immediately process the information we were gathering. This was also a great change from being on the big ship all day!

Personal Log

This was definitely my favorite day on the ship so far! The fog lifted early this morning to reveal beautiful islands, puffin, sea gulls, kelp, and even a whale! I was able to experience what it is like to have to make computer programs do what you want them to do (any researcher knows this isn’t always easy), and I had to do this on a rocking boat (for all of you “land researchers”, I suggest you trying it once!). SS Foye, ENS Welton, and ENS Samuelson were all extremely helpful and very good at explaining the technology and theory behind what we were doing. I was extremely impressed with how everyone handled various problematic situations. Computers and technology can be very frustrating sometimes, and the crew aboard the boat handled everything optimistically and professionally. SS Foye asked if I ever would consider giving up teaching and join NOAA—after my experience today, I said I would definitely consider it!

Question of the Day:

What is the effect of different densities of water on sound waves?

Kirk Beckendorf, July 10, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 10, 2004

Weather Data from the Bridge
Latitude- 42 26.72 N
Longitude- 70 01.99 W
Air Temperature 16.5 C
Air Pressure 1013 Millibars
Wind Direction at surface- Northeast

Daily Log

How can you become an officer on a NOAA ship?

The RONALD H. BROWN is run by a crew of 24. The stewards make sure we are well fed, the engineers keep the ship’s generators running, the deck hands manage the deck equipment, the survey tech runs the science monitoring equipment and the officers run the ship. The BROWN is fairly new– it was launched in 1996. Specifically built for ocean going research, it can work in the deep ocean and in shallower water along the coast. It is well suited to be used to study either the ocean or the atmosphere. About 9 months out of the year it can be found out on the ocean doing research. After our NEAQS research cruise ends in August, the BROWN and its crew will still be out at sea doing other research until next March. That is a long time away from home for the crew.

To get a job as an officer on one of NOAA’s ships, a person needs to have at least a Bachelors degree with specific requirements in math and science. There are physical fitness requirements as well. Once accepted a person must then attend a special mariner’s training school. Of course once you become an officer on a ship there is still lots of on the job training.

Today Lt. Liz Jones gave me a tour of the bridge. The ship does not have a propeller like many ships and it does not have a big wheel to steer the ship like you see in the movies. Instead of a propeller it has three thrusters. Each is kind of like a funnel turned sideways where the water goes in the big end and gets forced out the little end pushing the ship in the opposite direction. The three thrusters can be rotated individually and in a complete circle to push the ship in any direction. Even in an ocean current it can stay in one spot by using the thrusters. They can also be loud. The bow thruster is next to my stateroom. Sometimes it keeps me awake when it is turned on an off during the night. Instead of the big wheel, there are a couple of ways to maneuver the ship. On the bridge are three levers, one for each thruster. In some situations when you don’t want to worry about three different levers there is a joy stick that can be used to control the ship.

Lt. Jones said one of the main jobs a person has when on the bridge is to constantly be aware of the surroundings. Looking for other ships, keeping an eye on the weather and watching the charts to know the water depth are all extremely important. The BROWN can run on autopilot to make sure it maintains its course or position even if winds, waves or currents are pushing it in another direction. Even though the bridge is loaded with state of the art electronic equipment like GPS, radars, autopilot and depth finders the crew on watch still uses paper charts and binoculars so that they are not dependant on the electronics.

Questions of the Day

What is the NOAA Corps?

Which side of the ship is starboard and which side is port?

Which end of the ship is the bow and which is aft?

Jillian Worssam, July 9, 2004

NOAA Teacher at Sea
Jillian Worssam
Aboard NOAA Ship Miller Freeman
July 5 – August 1, 2004

Day: Four
Friday July 9th, 2004 21:15

Longitude: 57° Sea Wave Height: 0-1′
Latitude: 172° 44 Swell Wave Height: 0-1′

Visibility: 25 yrds fog Sea Water Temperature: 9.3C
Wind Direction: 69.6 Barometric Pressure: 1022 strong high pressure
Wind Speed: 14.1kts Cloud Cover: complete 100%

Haul Data
Depth of haul: 89 meters
Temperature at depth: 4.1° C
Species breakdown: walleye pollock, chum salmon, smooth lumpsucker, unidentified jellyfish

Science and Technology Log:

First haul of the evening and to our surprise pulled up a smooth lumpsucker (Aptocyclus ventricosus). What an amazing fish quite large in girth, but relatively short( approximately 10 inches). A large globe shaped body with the ventral sucking disk. We placed the fish in water and released it back into the Bering.

As for the rest of the catch, quite a few chum salmon this time, so I anticipate some smoked snacks tomorrow. I am becoming more and more comfortable with the process of slicing the fish to determine gender. Tomorrow will attempt the removal of the otoliths. Amazing the data that can be removed for the preservation of an ecosystem. We are off to complete another haul right now, so I am off to don my rain gear: thick rubber pants, rubber boots, and rubber jacket. I must also wear a hard hat and life jacket when on deck while the cranes are in motion and the ramp is down. With the ramp down it is easy access to the ever cold Bering Sea.

Personal Log:

Well I did it, finally tackled the treadmill, what a treat. My body had wanted to jog for days so in thirty minutes this morning I completed three miles, and for the first time ever I was jogging below sea level as the workout room is toward the bottom of the boat. Amazing the difference between 7000 feet and sea level. The way the treadmill is situated it rocks back and forth not side to side, it is similar to walking rises, with an uphill climb every now and then.

I also spent some more time in the bridge today. I would like to learn all the equipment so tonight I was taught about the EOT (Engine Order Telegraph) The one instrument on the bridge that actually looks familiar as it has probably been in every old war sea movie ever made. You know the big round brass machine with a level and an arrow, and the person on deck moves the arrow to face the command they would like sent to the engine room. The commands vary from full ahead to slow, half even stand by. Now with modern technology this apparatus is obsolete, but still on board in case of emergency and the electronics fail.

I was also introduced to an amazing centrifugal force windshield washer, but those details will have to wait until tomorrow.

Leyf Peirce, July 9, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 9, 2004

Time: 16:00
Latitude: N 55°26.60
Longitude: W 159°33.97
Visibility: < 1 foot
Wind direction: 221
Wind speed: 13 knots
Sea wave height: 0 – 1 foot
Swell wave height: 1 –2 feet
Sea water temperature: 10.6 °C
Sea level pressure: 1016.0 mb
Air temperature: 11.7 °C
Cloud cover: fog

Science and Technology Log

Most of my day was spent exploring the pages within Nathaniel Bowditch’s The American Practical Navigator: An Epitome of Navigation. I took notes mostly from a chapter titled “The Oceans”. It primarily discussed oceanography and the branches that are studied as a part of oceanography: geography, geology, chemistry, physics, and biology, “with their many subdivisions, such as sedimentation, ecology, bacteriology, biochemistry, hydrodynamics, acoustics, and optics” (427). With the main focus on the physical characteristics of the ocean, this chapter further detailed the importance of understanding salinity, density, temperature, and pressure—the main factors that affect most of the oceans’ behavior. There are several concepts within this chapter that can be watered down for my sixth, seventh, and eighth graders, however the one most applicable to hydrographic research is the study of the speed of sound waves within salt water. Because echo sounding is used to chart the ocean floor, the speed of sound within saltwater is essential to ultimately creating nautical charts. According to Bowditch, the speed of sound within a given fluid can be calculated using the following equation:

U = 1449 + 4.6T – 0.055T2 + 0.0003T3 + 1.39(S – 35) + 0.017D

In this equation:

U = sound of speed (m/s)
T = temperature (°C)
S = salinity (psu)
D = depth (m)

Using this information, one can calculate the speed of sound given different parameters. These measurements are determined using a CTD test (conductivity—which correlates with salinity, temperature, depth test) and a depth probe about every 4 hours that we are conducting hydrographic research. This information is then accounted for when employing the echo sounding devices. This equation can also easily be used by 7th and 8th graders. I plan on gathering real data and using these concepts in my classes along with graphing the data and outcomes.

While I read a lot today, I also got to tour the engine room. I have seen many engines and know the basics of how they work, thanks to my Mechanical Engineering degree, but I have never seen one so powerful! The twin 1200 horsepower engines can have up to 210 RPM. There are also two generators aboard the ship. What amazed me most on my tour was the control room where the control board looked like ones I have seen in museums—I thought that they would have moved to computers by now! One of the engineers assured me that this switch would be made in the near future.

Personal Log

I woke up this morning to what seemed like even thicker fog—this is the third foggy day in a row! Feeling a new energy from sleeping so well, I decided to try to work out on the treadmill in the ships workout room. I was told about there being a TV and VCR, and knowing that the workout room is on the same level as the engine room, I decided to take a movie with me and play it very loud. While the movie and TV worked great, the treadmill was a whole new experience. In all my years of exercising and training, I have never been on a treadmill that pitches and rolls with a boat! I felt as if my running counted as twice the exercise since I was not only running forward on the treadmill, but I was also adjusting every step with the motion of the ship—a very odd experience! After 45 minutes of exercise, I decided I had enough. The rest of the day was spent reading Nathaniel Bowditch’s The American Practical Navigator: An Epitome of Navigation, thinking of ideas for incorporating the concepts into next year’s curriculum, and playing cribbage, a card game the other Teacher at Sea, Sena Norton, taught me. Lt. Slover also informed me that I will be going on one of the launches tomorrow to help conduct research! While he was reviewing the small boat safety, the fog lifted to reveal beautiful snow covered mountains and islands—we had stopped the hydro research with the Rainier and were headed to our anchor point near Egg Island. We are expected to anchor around 21:00, with a possible stop for fishing along the way. Just finished dinner, I am now sitting in the chart room, looking out the window at dramatic cliffs plummeting into the sea—a reminder that these islands are, in fact, formed from a volcanic chain. I can’t believe how green these islands are—I must be sure to take plenty of pictures. As I day dream at these islands that are reminiscent of the islands in the BVI’s, the fog horn goes off again—the first time in a few hours. I guess this is the changing weather of the Alaska coast line; I just hope that tomorrow there is no fog when we are out on the launches.

Question of the Day:

My sister, Dr. Shayn Peirce at the University of Virginia, emailed me some interesting questions. P.S. Shyla Allen was a great source for these answers:

Dr. Peirce’s questions:

“My questions for you…can the echo scanner detect a whale on the bottom of the ocean? If so, how do they know it’s a whale and not a rock bump in the ocean floor or something else.

2nd question: what is the difference in echo scanning that you’re doing on the boat and ultrasound that they use in biomedical diagnostics…(to image babies in the womb or ovarian cysts?) Both involve acoustic imaging…is the frequency or wavelength of the sound emitted and detected different? Obviously the biomedical application requires a much smaller resolution with less depth penetration while the ocean application requires large penetration depth and not as much resolution…by the way what is the resolution of the echo signal…a few square feet of the ocean floor? Could you pick up the signal of that 1 foot long wench you dropped in the BVIs at 150 ft ocean depth?”

Answers:

1) Yes, the equipment here can detect a whale at the bottom of the ocean. In fact, it can even detect a wreck very well! I saw an image yesterday of a wreck and you could see the mast and bowsprit and everything—very detailed! I am trying to get a copy of that picture. Usually the whale will be moving, so that motion will also be picked up and cause more “static” in the data that needs to be cleaned. This rarely happens though.

2a) The echo sounding aboard the Rainier and ultrasound that they use for biomedical diagnostics are actually the same process, just with different frequencies!

2b) The resolution of what is done aboard this ship depends on water depth and the size of the footprint left by the scanner; the deeper the water, the larger the footprint, and the less resolution. However, they are required to have a resolution of 3 pings per 2 square meters in a depth of 40 meters or less (given the equipment used, there are up to 240 pings in a 160 degree swath). 40 meters is chosen because that is the maximum draft of a tanker vessel. P.S. Allen told me that, unfortunately, the 1 foot wench I lost somewhere in the BVI’s is probably long gone and undetectable by the equipment used aboard this ship. However, in shallow water, she has been able to see not only lobster pots, but their mooring lines as well. Their mooring lines have about the same diameter as the mooring line we descended in the Caymans on our dive trip. I also asked if the equipment could pick up a diver. P.S. Allen said yes, but that it is VERY bad for your body—so much power!

Sena Norton, July 9, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 9, 2004

Location: In transit to Shumagin Island collection, due to anchor at NW Egg Island Date: Friday, July 09, 2004
Latitude: N 55 degrees 26.60’
Longitude: W 159 degrees 33.97’
Visibility: <1 mile
Direction: 221 degrees
Wind Speed: 13 kts
Sea wave height: 0-1 ft
Swell wave height: 1-2 ft
Seawater temperature: 10.6 deg C
Sea level pressure: 1016.0 mb
Cloud Cover: 8/8
Weather: 11.7 deg C, fog cover most of the day, some clearing into high cloud cover.

Plan of Day:

1200 stop ship hydro and begin transit to Shumagin Is, specifically Egg Island for anchorage. Anchor set for 2100 or earlier.

Science and Technology Log

The local patch that was being surveyed is too large to finish in one pass. The RAINIER had already done a few lines during their previous legs and on this pass we got about 10- 12 lines surveyed. They will steam back by here to finish the patch at a later date. Tomorrow is set for the first of 5 days of small boat launches and survey. Because I will be aboard a launch I was run through some basic boat safety this afternoon. I was also given an engine room tour and simple explanation and spoke with some crewmembers about standing watch. The XO showed me some books that might be of interest for my curriculum planning and also my general knowledge.

Small Boat Safety and Etiquette

The launches are put in the water around 0800 and will stay out doing survey work till 1600 or so. There will be a complement of people aboard: the coxswain who drives the boat and in charge of safety, three officers from the ship who will run the program and collect data and myself. The launches are stored on the gravity davits along the ship. The boats will be lowered to deck level where the crew will get on board and then the boat is lowered to the water and unhooked. Getting on board the launch you must wear the Mustang survival coat and a hard hat. Nothing is to be in your hands while you board, so all other material need to be near the rail and will be handed over once you are onboard. One of the most dangerous times on the ship are launching and taking up the smaller boats. You are required to wear positive flotation at all times and since the Mustang jacket is bulky and warm, I was issued a float vest. We are launching number 5 and number 3 boats tomorrow.

Standing Watch

While underway there is a rotating watch schedule 4 on, 8 off, 4 on is its most simple explanation. An example watch schedule would be 0800 – 1200 on watch 1200 – 2000 off, 2000 – 2400 on again. So you work 8-12 on both sides of am and pm. Even though the routine is easy to remember it is very difficult on your body and your sleep schedule. The added hardship is the constant light this far north and the pitch black of your berth. For a visitor who has kept a normal sleeping routine you have a different perspective on just what is required for this ship to keep going 24 hours a day. There is a lot more upkeep then I expected and the watch standers are those people. While anchored most people go back to a normal 8 hour work shift, although some of those work shifts are at night there isn’t the constant change.

Engine Room Tour

The engine room tour was loud, even through earplugs and head phone like muffs that roar is amazing. You hear it throughout the ship but nothing compares to the pure sound when you are right next to it. The control room looks out over the two main engines. Each engine turns the port or starboard screw. Control over the engines can be given to the bridge but ultimately if the engineers need to control anything that comes from that area they are all powerful. There is fuel to keep moving to balance out the ships list, fresh water to make, generators to watch so as not to over load any of their out-puts. In a sense the engine room is the heart of the ship. Being self contained completely means that everything has to be running well. This ship even in port generates its own power and while out at sea is capable of making fresh water from salt water. I felt very much at home seeing as I have been in many engine rooms in my life with my father, I plan on going down there a few more times during my time on board.

Question of Day:

How long would it take to survey the entire patch? 8 days going 24 hours/day.

Personal Log

I did a lot of research today from the resources made available to me from the XO. Today was also a day I collaborated with my fellow TAS, something educators rarely get enough time to do. We bounced off a few adaptations of what we have already learned from our time on board. I hope to continue this process throughout my time onboard. No more seasick patch, I think that I am doing well and can handle the rolls. There is some crazy weather on the way too! If it chooses to run up into the Bering Strait we are okay but according to the XO, if the low pressure rides on the south side of the Aleutians it might get sketchy. The RAINIER would have to find a place to hole up and wait for the storm to pass because she is such a small, top-heavy ship. So I might just get a wild Alaskan ship ride after all.

Kirk Beckendorf, July 9, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 9, 2004

Weather Data from the Bridge
Time 8:00AM ET
Latitude- 43 43.31N
Longitude- 66 15.13 W
Air Temperature 11 C
Air Pressure 1010 Millibars
Wind Direction at surface SE
Wind Speed at surface <5 MPH
Wind Direction at 1 Kilometer- E
Wind Speed at 1 Kilometer <5 MPH
Wind Direction at 2 Kilometers E
Wind Speed at 2 Kilometer <5 MPH
Cloud cover and type Fog

Daily Log

One of the blind men observed an elephant and said it is like a tree, another said it was like a rope, another said it is like a water hose. Which was correct?

This morning I visited with Christoph Senff and Rich Marchbanks. After lunch I visited with Alan Brewer. All three are here from NOAA’s Environmental Technology Lab in Boulder, Colorado. Chris and Rich are operating a LIDAR, which remotely measures amount of ozone in the atmosphere. Alan has a Doppler LIDAR which remotely measures wind speed and direction. By “remotely,” that means they can measure ozone and wind from 3-4 kilometers away. An amazing thing about many of the instruments on board is that they have been designed and built by the scientists themselves. They can’t just run down to some high-tech store and buy their equipment, what they need isn’t for sale anywhere. They decide what needs to be done, and then they design and build the equipment that will do the job. The LIDARS that are being used here on the BROWN and in the rest of NEAQS project are examples of some of that “homemade” equipment.

In the case here on the ship “homemade” certainly does not mean it is just thrown together, held up with bubble gum, baling wire and duct tape. The LIDARS and the other instruments on board are extremely intricate, sophisticated and complicated devices.

To understand the very basics of how a LIDAR can detect ozone and air movement forget about LIDARS and just think about a normal flashlight. Pretend that you go outside in the middle of a completely dark night, no light from anywhere. Point your flashlight straight up and turn it on. Now imagine that there are a flock of white pigeons circling overhead, you will not see them unless the light from your flashlight hits them and then bounces back into your eye (hopefully it’s just the light that gets in your eye).

Now imagine that several of the pigeons poop and their poop is completely black and is between you and the pigeon. Yeah I know pigeon poop is usually white but for now pretend it is black. Because the poop is completely black when your beam of light hits the poop the light will not bounce off, instead it will be absorbed by the poop. The more poop in the air the more of the light is absorbed and less light bounces back to your eye.

Picture this. You are standing in the dark with your flashlight. The pigeons are circling over your head- between you and them is their poop. Quickly turn your flashlight on and then back off and measure the amount the amount of light that leaves. The light shoots up through the poop (which absorbs some of the light) and hits the pigeons. Some light bounces off the pigeons back through the poop and to your eye. You measure the light that comes back. By figuring out how much light was absorbed by the poop you can get an idea of how much is in the air above you.

Instead of visible light other wavelengths of light, like ultraviolet (UV) and infrared (IR), are used. Christoph, Rich and Alan use a laser rather than a flashlight and their LIDARs can turn the light on and off in nanoseconds. They can also measure many things about the light that leaves the laser and the light that returns.

Let’s take this one step further. Imagine that flashlight, dark night and poop and pigeons over head again. Also imagine that you can measure how long it takes for the beam of light to go out to some pigeons and then bounce back to your eye. If you know how fast the light is going you could calculate how far away they are and where the poop is located. If we put this all together and measure both how much light bounces back and how much time the light has traveled, you could determine the amount of poop at different distances.

Enough pretending and imagining, lets get back to the LIDARs. Light travels approximately 186,000 miles every second (it is about 25,000 miles around the equator) and the LIDARS can measure the time it takes the light to travel just a few hundred yards. Rich and Christoph’s ozone LIDAR is sensitive enough to measure ozone in parts per billion from 2-3 kilometers away and Alan’s LIDAR can measure wind speed and direction 3-4 kilometers away from here. They do this using a principal similar to the flashlight example, but obviously much more complicated. Chris and Rich’s ozone LIDAR uses a UV laser, picked specifically because its light will bounce off particles in the air (the pigeons) and be absorbed by ozone molecules (the pigeon poop). Allan uses an infrared laser that will bounce off particles floating and moving with the air. The particles, which are much too small to be seen would, as Allan said, seem like boulders to the beam of light.

What that all means, is that for the next six weeks along the ship’s path, the LIDAR’s will be measuring the amount of ozone pollution in the atmosphere, the wind speed and the wind direction.

The ozone LIDAR’s will eventually be used to show the amount and location of ozone pollution in the atmosphere from about 50 meters above the ocean surface up to 2-3 kilometers. The Doppler LIDAR data will be used to make a similar map of the wind speed and direction during the 6 weeks at sea. Eventually these and other data can be merged and compared.

What about those blind men examining the elephant? The first had grabbed the leg, the second had grabbed the tail and the third had grabbed the trunk. None of them of course had a complete picture of the elephant. During NEAQS-ITCT, hundreds of people are examining an elephant this summer. Individually they cannot give us a clear picture of the elephant. The elephant is air pollution. The more parts that can be accurately examined the better the picture. Instead of a trunk, tail and leg to observe, the scientist are examining the many kinds of chemicals in the pollution, the particles in the air, the movement of the pollution and the movement of the air. Different methods can be used to insure accuracy. Once each part of the elephant has been thoroughly examined and understood and all of the blind men evaluate their observations maybe they will have at least a partial picture of the elephant.

Question of the Day

What does LIDAR stand for?

How much of a second is a nanosecond?

Leyf Peirce, July 8, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 8, 2004

Time: 09:00
Latitude: N 55°41.71
Longitude: W 158°03.81
Visibility: < 1 foot
Wind direction: 230
Wind speed: 10 knots
Sea wave height: 0 – 1 feet
Swell wave height: 0 – 2 feet
Sea water temperature: 10.0 °C
Sea level pressure: 1021.3 mb
Air temperature: 10.0 °C
Cloud cover: fog

Science and Technology Log

As I am typing my journal entry, I learn there are several good pictures on the network server of the RAINIER and its crew. Here is just one that I found:

Peirce 7-8-04 Rainier
NOAA Ship RAINIER underway. Credit: NOAA.

From this picture, I can see that the aft most launch ship has been launched for survey, for there are 3 launch boats on either side of the ship. I talked further with the crew today about interesting characteristics of this ship, including a “field trip” with Lt. Kevin Slover to inspect the hulls of the launch boats to see the echo sounding devices. I learned that there are actually 3 different types of these devices: one with low resolution for very deep water, one for a little higher resolution of deep water, and one with high resolution for shallower water. These devices cost up to $25,000! I was able to get pictures of the three types; however I am not able to download them onto the computer yet. Lt. Slover also showed me more of the Caris program, the most recent computer program used to collect and analyze the data. I say most recent used, because these programs are constantly being changed and updated to be more accurate, user-friendlier, and display better graphics. One of the most interesting features of this program is not only its accuracy, but also the ability to look at the computer created images of the ocean floor from any angle. One of the images pulled up as an example showed a shipwreck off of the coast of Seward in about 38 meters of water. The details of this sunken ship were almost crystal clear! Of course, this is after the data has been corrected and cleaned. I hope to work more with this program as we start the launches tomorrow and Saturday.

I also spent some time on the bridge again today. There, I learned a few interesting trivia facts about this ship:

  • The RAINIER was built in 1968 along with 2 other identical ships, the MT. MITCHELL and the FAIRWEATHER, all specifically for NOAA; these three were commissioned in 1969
  • There are 2 main engines aboard this ship, both have 1200 Horsepower and they are the same type of diesel engines as those used in locomotives
  • To figure out the cloud height, one can apply the equation: (wet bulb temp – dry bulb temp)*126.3; there was some dispute on how accurate this is, but for today it works since the wet bulb temperature = dry bulb temperature, so the cloud cover, according to this equation, is at 0 feet which is true since we are in a cloud today with all of this fog
  • The boat was originally built to support 4 launch boats and 2 life rafts, however it was recently modified to have 6 launch boats on it; to counteract this weight up top, more ballast had to be added to the bottom

A launch boat also left today at 08:00 to conduct further hydrographic research, and the RAINIER maintains her course, “mowing the lawn” in a section of uncharted waters between Kodiak and the Shumagin Islands. Once this area is completed, we will head to the Shumagin Islands to anchor and send more launch boats throughout the next week before we return to Kodiak. This is such an adventure!

Personal Log

The foghorn blows every 2 minutes on this ship, and it acts as a great wake up call. This morning, the horn reminds me that we are sailing in a sea of uncharted and now seemingly invisible territory. I feel like an explorer thrown into the time of Captain Cook, half expecting to see a pirate ship emerge from the eerie blanket that surrounds us. However, the multitude of technology aboard this ship flaunts the modern times in which we live and, in doing so, destroys any hope of true exploration of the unknown. Still an explorer at heart, I also still find adventure in what we are doing. We are still conducting hydro research aboard the RAINIER, “mowing the lawn” across uncharted territory, so we are only moving at about 7 knots. A launch boat was also sent out today to investigate near by waters. As I sit here responding to emails and learning even more about how this ship works, I am anxious to see the data that is collected now be processed.

Question for the Day:

In talking with P.S. Shyla Allen and Lt. Kevin Slover, we discussed the rewards of this job—how does this work help society? Both agreed that one of the most rewarding, but somewhat scary, aspects of this job is being able to accurately chart and re-chart high traffic waters. They both said that there are often calls from local fisherman demanding more detailed and more accurate charts. P.S. Allen informed me that there is a group of retired U.S. Coast Guard members that will conduct their own charting research in order to expedite the charting process. While helpful, this is not always the most accurate information. However, I did begin thinking about ways to include local fisherman in the research; to ensure the data that they collect is more accurate. My question for the day is more of an engineering design problem and proposed solution defined:

Problem: Local fishermen travel the coastal waters along Alaska to make a living. However, these waters are poorly charted, if charted at all. As of now, fishermen use a “Hummingbird” device to measure the depth of water where they travel, but there is no electronic device that can record this data accurately, correct this data for margins of error, and combine this data to produce an accurate nautical chart aboard these fishing vessels. While boats such as the RAINIER have this capability, expanding the number of vessels capable of collecting and analyzing such data would expedite the nautical chart updating process.

Proposed Solution: Design, test, and implement a device that abides by the following parameters: not very expensive, accurate, maintains the same abilities as the multibeam echo sounding devices aboard the RAINIER, has the capability of communicating with the computers aboard the RAINIER to share information collected, and can be mounted on the fishing vessels in such a way that it will not alter steering or speed.

I asked Lt. Slover if there is much government funding for such engineering projects, and he assured me there is—most of the U.S.’s imported goods arrive by ship, so more accurate and up to date nautical charts are a large priority.

Sena Norton, July 8, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 8, 2004

Location: Sonar Patch cruise, SE of Devils Bay on AK peninsula
Latitude: 55 46.163 N
Longitude: 158 03.557 W
Visibility: < 1 nm
Direction: 229 degrees
Wind Speed: 16 kt
Sea wave height: 1-2 ft
Swell wave height: 1.2 ft
Seawater temperature: 8.9 deg C
Sea level pressure: 1021.1 mb
Cloud Cover: n/a fog
Weather: Fair and foggy, 8.9 deg C dry / 9.4 deg C wet

Plan of Day: 1.5 days of sonar readings in patch with lines of 2.5 hours each. Launch #5 boat for survey north of ship around a possible rock pinnacle.

Science and Technology Log

Sonar Systems on board RAINIER: How they work.

What is Sonar?

In its most basic sonar are sound waves that are produced and then bounced back off of an object and recorded. Since the speed of sound is a known figure, the amount of time it takes for the sound wave to return to the transmitter/receiver gives a collectable image of that object. The deeper objects are the longer the sound wave takes to bounce back. Two types of sonar are single beam and multi-beam. Single beam is able to give high detail to an object but only shows a narrow swath, while multi-beam has a large footprint and can show a larger over all area. There are limits to the depth sonar can go because of the density of the water column. If the water is very dense the sound waves are slowed down and do not transmit the correct timing, therefore the image will be distorted. All images created must be analyzed after the density, temperature and salinity of the water column is taken into consideration.

Sonar is a very powerful sound wave and it can be dangerous, although it is at a frequency that humans or marine mammals cannot hear. If a diver were scanned they would be susceptible to a high-level concussive power. The emitter itself requires a large volume of power and if a human were to be near it during an emission it would do a great deal of damage. Think of the concussion from a bomb or firework, sonar is many, many more times as powerful.

RAINIER’s Sonar:

The ship is equipped with a deep sonar transmitter; it is attached to the hull and is used for scanning deep water where resolution is not a large issue. The boat “mows the lawn” in a patch of ocean. Each pass is numbered and the data collected. The lines are about 2 hours at 7-8 knots long. For more detailed work or a smaller area the ship will use one of its 6 launches that are also equipped with various sonar transmitters. These small boats will conduct and similar pattern of lines and collect the data right on board. The data is then transferred to the computers on board to go through technician cleaning and final analysis.

Sonar Types:
Single-beam – one beam sent and received.

Multi-beam – up to 240 beams per 180 degrees sent and received. As depth increases the foot print widens.

Analysis of data:

When the soundings are collected they are run through a Carris computer program where the technicians can manually scan each line. There are techs assigned to each “sheet” or area. Each line is cleaned, meaning outliers are removed or other “noise” is deleted. Once the data is clean a complete 3-D image of the patch can be looked at with all the data points represented. Once an entire area has been scanned objects become very clear, as if you were looking at them. From outlines of sunken ships from the side to large monolithic rocks protruding from the ocean floor, the detail and accuracy of the image is amazing. Once there is enough data the sounds can be turned into color-coded overlays that fit right on top of the fathom charts, so as to give a 3-D view of what those fathom readings represent. Red and orange or shallow and the colors move through yellow, green and finally blues, which are the deepest readings. Mountain ridges, lava floes, old wrecks, valleys and monoliths all come to life on the chart.

Personal Log

Steve Foye gave me a quick training with another new member of the crew on the job of Lookout on the flying bridge last night. He reviewed the 32-point compass and the difference between saying North relative to the ship verses trying to figure out the “real” compass coordinate. He explained you could use directions (NW or SE) or give the coordinates (90 or 270). Dead ahead would be 000, north relative to the ship or 360, all are correct for locating something directly off the bow of the ship.

Question of the Day:

When is the ship required to sound foghorn and place lookouts on the Bow/Flying Bridge?

When the visibility gets below 1 nm the ship is required to blow the foghorn or ring a bell every 2 minutes. A lookout is placed on the flying bridge during hours of darkness or low visibility. They move to the bow when the foghorn is turned on so they do not damage their ears.

Kirk Beckendorf, July 8, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 8, 2004

Weather Data from the Bridge
Time 9:08 AM ET
Latitude- 42 28.14 N
Longitude- 67 47.02 W
Water Temperature 7 C
Wind Direction at surface East
Wind Speed at surface <5 MPH
Wind Direction at 1 Kilometer- West
Wind Speed at 1 Kilometer <5 MPH
Wind Direction at 2 Kilometers West
Wind Speed at 2 Kilometer 5 MPH
Cloud cover and type Fog

Daily Log

What should we do if someone fell overboard or if we had to abandon ship?

Today we are just off the southern coast of Nova Scotia, Canada. It has been foggy all day so we cannot see very far past the ship’s railing. If anyone fell overboard it would be extremely difficult to find them. With the water temperature at 7 degrees C a person would be hypothermic very soon if they were in the water.

I helped Anne again with today’s ozonesonde. The launch did not go as smoothly as yesterday’s. Before releasing the balloon the computer was not receiving a signal from the sonde. After Anne checked out a number of things that could be wrong we attached a different radiosonde, which is the part that sends the signal to the computer. With that change the problem was immediately solved. The sonde detected three layers of ozone pollution and of course the good ozone layer.

The ship’s crew keeps a written record of all ships sighted from the bridge. Today I typed the information into a computer spreadsheet. The scientists will then be able to compare these contacts to their pollution data.

Safety is a major concern on the ship. At school we have fire drills, here on the BROWN we have Abandon Ship and Man Overboard drills. Today when we heard the Abandon Ship alarm (6 short blasts from the whistle followed by one long blast), we rushed to our stateroom (bedroom), grabbed our life jacket, long pants, long sleeve shirt, hat and survival suit. If this were a real emergency we need to have clothes that will protect us from the weather and sun while we are floating in a life raft. We then rushed to our preassigned meeting areas on deck. One of the ship’s crew called roll. Afterwards we practiced putting on our bright red survival suits. The suits are designed to help keep us warm, floating and easy to see.

When the Man Overboard alarm was sounded (three long blasts from the ships whistle) the scientists and myself met in the main science lab to get a head count. Meanwhile as part of the drill, the crew had thrown a “dummy” overboard. They quickly launched one of the small boats and sped away to rescue the “man overboard”. The dummy was rescued quickly. If someone were to fall overboard while the ship is moving and no one realized they were missing, it would be very difficult to find and rescue them since we would not know how far away to look.

Questions of the Day

What is the maximum amount of ozone pollution an area can have without being in violation of the Environmental Protection Agency (EPA) standards?

What is the temperature of the water in degrees F here off the coast of Nova Scotia?

What is the bridge of a ship?

What does hypothermic mean?

Jilliam Worssam, July 7, 2004

NOAA Teacher at Sea
Jillian Worssam
Aboard NOAA Ship Miller Freeman
July 5 – August 1, 2004

Day: Two
Wednesday July 7th, 2004 20:05

Longitude: 60° Sea Wave Height: 3′
Latitude: 172° 18 Swell Wave Height: 0-1′

Visibility: closing 5-8 nm fog Sea Water Temperature: 7.9C
Wind Direction: 214 Barometric Pressure: 1028 strong high pressure
Wind Speed: 5 kts Cloud Cover: complete

Science and Technology Log:

The plan for tonight is to run a MOCC trawl to test the equipment prior to live sampling, but lets back up a moment and look at the device used for this fish collecting experiment. Originally known as the KMOCC (Karp Multiple Opening and Closing Codend), the MOCC as it is commonly known is a scientific piece of equipment designed to allow scientists to selectively sample specific layers in the ocean. MOCC has the ability to collect fish samplings from a maximum of three different stratum, allowing the scientists choice. Pollock of different sizes tend to congregate at different oceanic layers and through the use of equipment like the MOCC scientists can look at sonar and choose from which population they would like to sample, without contaminating the haul with fish from different size groups. This form of selective sampling will aid the researchers in observing specific fish (pollock) populations.

Today there have been no fish trawls as according to the sonar data the ships transects have not passed any significant fish populations.

Personal Log:

I am on a 215 foot research vessel, touring the Bering Sea looking for walleye pollock, and can sit at this computer for an hour, watching the sonar all alone. With over thirty individuals living on this floating community it never ceases to amaze me that the schedules can be so well devised as to allow people their individual space. With a spare moment one might even be seen sitting in their stateroom relaxing. This amazing personal space is a person’s home away from home and usually has two residents. Each individual will work mirror hours so that while one person is sleeping, the other is working. Why is this fact so important? Well let me explain to you how many staterooms on the Miller Freeman are designed.

As you enter a stateroom there is on one side a set of berths, similar to a bunk bed, but Spartan by necessity. Each berth is approximately three feet wide and two feet high. Not a lot of room for movement, but functional in the processing of sleep. After the berth there is a spartan sink, a small desk, and two built in closets, all in a space that is eleven feet long and approximately five and a half feet wide. (Please realize that the 5.5’ included the beds, closets everything, so walking space is at its best at 2.5’ in the very middle.) The closets are not standard sized actually they are miniature and already contain your personalized life jacket and survival suit. Once inside the survival suit though you might have more room than in your berth. Space aside the rooms are functional, and a little cozy. I have slept in my berth for a few nights, and with the rocking of the boat and the lull of the engine it is as comfortable as an old porch hammock, on a warm summer evening as the breeze lulls you to sleep.

Leyf Peirce, July 7, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 7, 2004

Time: 10:15
Latitude: N 57°31.730
Longitude: W 154°58.325
Visibility: 10 + m
Wind direction: 250
Wind speed: 18 knots
Sea wave height: 2 – 3 feet
Swell wave height: 2 – 4 feet
Sea water temperature: 10.6 °C
Sea level pressure: 1020.1 mb
Air temperature: 12.2 °C
Cloud cover: 2/8

Science and Technology Log

I talked more with P.S. Shyla Allen about how the multibeam echo sounders work on the ship to gather data about the depths of the ocean. Both the RAINIER and the launch ships use the following method to gather data. All of these vessels use echo sounders with anywhere from 120 to 240 beams that scan the ocean floor. The following diagram illustrates how this is done:

Peirce 7-7-04 Fig1
Figure 1: Multibeam Echo Sounding

Here, “z” is an echo sounding two-way travel time beam, and the multibeams are spread over the footprint distance of “f”. The size of the sound footprint, “f”, depends on the depth at which the measurement is taken, “z”. The greater the depth is, the greater the footprint is. However, the greater the footprint is also means less accuracy on the outer edges of the footprint. Therefore, the ship will run a “mowing the lawn” pattern across the given section to get desired overlapping of data:

Peirce 7-7-04 Fig2
Figure 2: Mowing the Lawn pattern

The width of these lines is determined by: width of x = 3 * z. By using this rough equation, the ship will be able to overlap the areas of least accuracy, i.e. the areas on the outer range of the footprint:

Figure 3: Ship running mowing the lawn pattern so the footprints overlap.

From this data, the depth and contours of the ocean floor can be determined. I also asked P.S. Shyla Allen about the problems and sources of error associated with this data collection. She responded by detailing three main issues that must be corrected when cleaning the data, i.e. the data must undergo three main correction factors before accurate readings can be analyzed. These three factors include: a) tide changes, b) sound velocity, c) the motion of the ship and GPS positioning. To correct for tide changes, the researchers must have accurate readings of the tides. Tide gauges are installed along the coastline at various points, and all readings are reduced to Mean Lower Low Water (MLLW). This basically gives the average of the lowest possible depth at a given location. To correct for sound velocity changes, which is the most important correction factor dealt with, researchers take measurements of water temperature and salinity level at the given depth reading. For every change of 1 ppm in salinity, there is a change of 3 m/s in sound velocity. Therefore, salinity is perhaps one of the most important factors. Finally, the motion of the ship and GPS position need to be corrected for. This includes correcting for the pitch, roll, and gyration of the ship as well as error in the GPS system. Because the ship uses Differential GPS (DGPS), this error is already accounted for. However, for the pitch, roll, and gyration of the ship, two antennas are used to on the port and starboard sides. These antennas, often referred to as Motion Reference Units (MRU), are very stable feed into the same computers that process the data. Therefore, the computer takes into account the readings from these antennas and combines this information with the corrections made for the tidal changes, sound velocity factors, and positioning of the ship. After cleaning the static from the data, a nautical chart can be produced. This method of charting the ocean floor is definitely more efficient than when researchers used lead lines—long ropes with lead that would be dropped down and then measured to determine the depth!

Personal Log

I woke up this morning after sleeping for about 12 hours—I think the seasickness medicine I took last night made me very sleepy. Luckily, however, all traces of seasickness are gone; I can even sit here at the computer and type without noticing the pitching of the ship very much at all. I think all of my muscles must be getting stronger as a result of reacting to the changing ground and all of the stairs I go up and down every day. I spent some time on the bridge this morning mostly asking questions about the tools used there and what various measurements mean. I find it very interesting that simply reading tiny numbers and using small switches and knobs will run this 231 foot ship. However, my experience aboard ships tells me that it is not even close to impossible. I know that even the slightest adjustment at the helm on a sailboat can change the course of the boat. I am reminded of sailing in the British Virgin Islands and the dispute over if it was more important to maintain the way point or try to make the boat go very fast. However, that is not an issue on this boat. We are supposed to reach the Shumagin Islands tonight, and tomorrow we will start the launches—I can’t wait!

Question for the Day

How many sets of data points must be filtered out before the data is considered clean? On what does this number depend? How does one determine if a data point is an outlier or and actual reading?

Sena Norton, July 7, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 7, 2004

Location: In transit to Shumagin Is. Via Shelikof Strait
Latitude: 57 43.2 N
Longitude: 154 58.4 W
Visibility: 10+
Wind Direction: 280 degrees
Wind Speed: 18 kt
Sea wave height: 2-4 ft
Swell wave height: 2-4 ft at 210 degrees
Seawater temperature: 10.6 C
Sea level pressure: 1020.1 mb
Cloud cover: PC 2/8
Weather: 12.2 C, sunny with moon visible straight off bow

Science and Technology Log

I learned about the NOAA Nautical Charting Program today. A nautical chart shows the marine environment in a visual format for navigation purposes primarily. Any mariner needs to have an ability to use fixed points to plot a course and know/avoid any underwater or other hazards along the way. Most charts show hazards, natural and dredged channels, water depth and other features that are needed for safe navigation. The National Ocean Services marine Chart Division is in charge of 1,000s of charts. Most mariners use these charts along with the U.S. Coast Pilot when ever they are out. When changes are charted a new chart is made. From the time the NOAA Ship RAINIER makes their readings it takes between 3-5 years to be produced in chart format and readily made available. New charts are asked to be made for uncharted, poorly charted or changed areas. The three hydrographic ships that NOAA maintains do on average 50 charting runs a season for updates. However, with the current backlog of changes only 200-300 items are updated a year. The cycle of a update goes as follows: first chart users relay needs, second the Hydrographic Surveys Division prioritizes the resources and produces survey instructions, third, a NOAA field unit travels to the location and conducts the hydro survey, fourthly, the data is examined at a on shore branch and prepared for application on new chart and finally the Marine Chart Division is complied and printed. NOAA is not the only team member on this mission; other important organizations provide data for new charts. U.S. Army Corps of Engineers provide dredge and channels depths, U.S. Coast Guard maintains navigational aids, GPS beacons and other communication sources, while the Photogrammetry unit of NOAA complies aerial photos for shoreline and landmark additions.

The bridge is an important part of the overall ship function. The ship is driven from this location, the progress made is plotted and recorded and hourly logs are kept with various location and condition data. I take my condition and location directly from the ships log when I write these logs. Today there were a few ships on the radar and the officers wanted to make visual contact with them. I got to keep a lookout for the one off the port/south side of the ship with binoculars. The helm is where the ship is driven from and is kept on course with direction relation to the nautical chart and heading. Small adjustments have to be made from time to time to keep the correct bearing due to changed in sea swell and wind direction. The bridge is always manned 24 hours a day because of the importance of what is done there. We are making about 13 knots today with a friendly wind and hope to be anchored in the Shumagin Is. by tomorrow. We will commence the ships hydro at 0300 tomorrow morning to begin the surveying of the area.

Question of the Day:

How far is a fathom? 6 feet
How many people are on board? 74 crew/officers 5 visitors / 79 total

Day Activities:

  • Interviewed Chief Yeoman Paul and discussed his role/responsibilities on the ship. He in charge of bills, keeping track of expenses, ordering fuel and stores, personnel changes and promotions, a liaison between crew and command and manages expenses overall.
  • Visited the bridge and interviewed various officers and crew about bridge processes and equipment.
  • Wrote down some possible classroom curriculum options.
  • Discussed curriculum with fellow TAS, read some NOAA research and PR.
  • Downloaded some important pictures for use in curriculum/reports from ships computer network.
Personal Log
The night was a little rough with the swell height and wind direction and speed. They call my room the anti-gravity chamber and every once in awhile I could tell why. Today the rocking and rolling is much better and at times I think that I have my sea legs back. It is still unique to walk around on a ship that is bobbing; you get a different feeling when the deck is not where your foot thought it should be. I have put much thought into what I can turn this experience into as far as curriculum goes and my fellow TAS and I have been bouncing some ideas off of each other. There is much to say about the value of sharing this experience with a colleague as well as having the chance to discuss in general with that same colleague. I think that there is a professional connection being made thanks to the NOAA Teacher At Sea program! The science behind the survey process with help and that is a main goal to learn about, however there is something more to this experience that I haven’t put my finger on yet…give it some time…something that the sea is very well trained at allowing you to have.

For now,
S.

Kirk Beckendorf, July 7, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 7, 2004

Weather Data from the Bridge
Latitude- 42 30.79 N
Longitude- 70 33.32 W
Air Pressure 1011.28 Millibars
Wind Direction at surface NW
Wind Speed at surface <10 MPH
Wind Direction at 1 Kilometer- WNW
Wind Speed at 1 Kilometer <10 MPH
Wind Direction at 2 Kilometers W
Wind Speed at 2 Kilometer 10 MPH
Cloud cover and type Clear

Science and Technology Log

We hear a lot about the hole in the ozone layer and that the ozone layer is being destroyed, however, in a lot of areas we also hear that the ozone levels are often too high. How can we have too little and too much at the same time?

A number of the scientists on board are studying ozone. I spent a large part of today with one of them, Anne Thompson. Anne is a chemist who works for NASA’s Goddard Space Flight Center in Greenbelt, Maryland. While on the BROWN she plans to launch an ozonesonde once a day. Like the radiosondes they are carried high into the atmosphere by a helium balloon. However, the balloon has to be a lot larger because it lifts a bigger package. Anne has a radiosonde and a GPS riding piggy back on the ozonesonde. All three instruments will be packaged and duct taped together. Preparing the sonde is a tedious and time consuming task. Many steps must be performed to insure that the device runs correctly and measures accurately. It will need to detect the amount of ozone in parts per billion. The steps must be completed on a set time table; some must occur a few days and others a few hours before release. Filling and launching the balloon is the fun and easy part (it also makes the best pictures) but it must be done correctly to protect the balloon and to make sure that the balloon is filled enough, but not too much.

Today’s launch, ascent and data collection went flawlessly. The ozonesonde was released at 10:05 AM ET. It was really cool because the computer was immediately receiving signals from the sonde. In real time we watched as the ozone levels were instantly graphed by the computer as the balloon ascended. It rose at a rate of 4-5 meters/second. At first the amount of ozone was at an acceptable level but once the balloon reach about 3 kms, ozone levels increased and but then dropped. This was a layer of ozone pollution. Another layer of pollution was detected at about 6 kms. Once the instruments reached about 17 km, the graph showed a major increase in the amount of ozone. This was the good ozone layer. About 2.5 hours after launch when it was 38.6 kms (about 23 miles) high, the balloon popped and everything fell back to Earth still collecting data.

As part of this study five other sondes were released on land. The data from all 6 launches have already been used by the computer modelers. They have made their predictions of where the ozone polluted layers of air will be three days from now.

So how can there be both too much and not enough ozone? The simple answer is: when the ozone is way above the Earth’s surface, like that measured at 17 +kms, by today’s ozonesonde, the ozone will block some of the sun’s UV rays which can be harmful to life on Earth. If there is not enough ozone in that layer, too much of the harmful UV rays get to the Earth’s surface.

However, too much ozone can be harmful for people to breathe, especially for those people who have asthma or other breathing problems. If there is too much ozone close to the Earth’s surface, like the layers measured at 3 and 6 kilometers today, the ozone gas can threaten people’s health.

Questions of the Day

What is the speed of the ozonesonde in miles per hour?

At what altitude do airliners generally fly?

In which layer of the atmosphere is the “good” ozone?

In which layer is the “bad” ozone?

Jilliam Worssam, July 6, 2004

NOAA Teacher at Sea
Jillian Worssam
Aboard NOAA Ship Miller Freeman
July 5 – August 1, 2004

Day: One
Tuesday July 6th, 2004 20:15

Longitude: 171° 25 Sea Wave Height: 0-1′
Latitude: 57° 11 Swell Wave Height: 0-1′

Visibility: 12 (nm) Sea Water Temperature: 9°C
Wind Direction: 177° Barometric Pressure: 1026.1
Wind Speed: 8.1 kts Cloud Cover: 100% stratus

Haul Data
Depth of haul: 78m
Temperature at depth: 4°C
Species breakdown: Walleye Pollock / Chum Salmon / Jellyfish

Science and Technology Log:

Our first haul for this second leg of the Bering Sea MACE (mid-water assessment and conservation engineering) survey (July 5 – August 1, 2004) was completed at 20:00 with the predominantly walleye catch having been measured for length and the otolith ( ear bone) removed. At this point a data base was established to facilitate in the maintenance and establishment of quotas for fisheries management.

Fisheries Biologist Kresimir Williams recorded the data from the haul; fish length, weight, and maturity status. This is very critical information as the Bering Sea pollock fishery is one of the most successful and healthy fisheries in the world. It is this data that is used to determine how large a catch a commercial vessel can remove for each fishing season. Kresimir has been a fisheries biologist for almost six years researching pollock and developing data streams to assist the North Pacific Fisheries Management Council in determining catch limits.

Personal Log:

I am working the four to four shift; four in the afternoon to four in the morning, heck of a schedule for a summer vacation. The best part of this phase is that with the northern summer daylight, you never feel tired; it is light all the time.

This is an amazing experience, an opportunity to see how others live. I have managed to meet everyone on the boat from the Captain CO, to the Chief Scientist, and find it amazing the lives they have chosen to lead. Thrust into this diverse world I am able, ever so briefly; to see how others live, how they earn a living, make daily contributions to society, find happiness.

The Miller Freeman, as I have been told has one of the most rigorous schedules within the NOAA task force, with approximately 260 days a year at sea. Many of the crew considers this vessel the workhorse of the fleet, managing to collect data that is vital in fisheries management. It is also amazing to observe the crew and officers on board as they have super attitudes, considering they spend approximately nine months away from their families. I have though been told that as the days get longer (actually shorter) and we get closer to our thirty day mark that the moral officer has to work a bit harder to keep spirits elevated. All I know is that I have been welcomed into all aspects of this vessel, from the engine room to the galley, the scientific labs to the weight room. Today I learned how to sex a fish, ever so basically; I mean can anyone think of a better way to spend a vacation?

Leyf Peirce, July 6, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 6, 2004

Time: 20:00
Latitude: N 59°03.205
Longitude: W 150°41.139
Visibility: 10 + mi
Wind direction: 280
Wind speed: 11 knots
Sea wave height: 0 – 1 foot
Swell wave height: 3 – 4 feet
Sea water temperature: 12.2 °C
Sea level pressure: 1016.0 mb
Cloud cover: 4/8

Science and Technology Log

We left Seward today and are headed toward the Shumagin Islands to conduct hydrographic surveys to map the ocean floor and the coastline. The overall goal of this research is to update existing nautical charts. Most of the charts that are currently used have not been updated since the early 1930’s. After talking with ENS Brent Pounds, ENS Nicole Manning and P.S. Shyla Allen, I learned more about the tools and techniques used to map the ocean floor. Steve Foyd also provided me with an excellent pamphlet titled “Nautical Chart Programming”. From these sources, I learned the following information about data acquisition and analysis. The RAINIER will first be positioned using the Differential Global Positioning System (DGPS) near the desired area to be mapped. Then, the RAINIER launches up to 6 research vessels, each equipped with two main measuring devices. One device, the ELAC C-Beam 1180, is basically a side scanner that can scan a swath of the bottom of the ocean up to 200 meters using 180 individual sound beams. Any depth change will appear to be different shades on the sonogram. The heights of different points can then be calculated from this sonogram. In conjunction to the ELAC C-Beam 1180, the launch boats use an echo sounder mounted to the ship’s hull. While this can retrieve more accurate data, data with only a 0.1 m margin of error, it can also only scan an area up to 5 meters. However, using these two systems combined produces the most accurate data. The RAINIER also installs tide gauges that produce accurate data that can be added to the resulting nautical charts. Researchers aboard the RAINIER take this data, “clean it”, and eventually send it to the mainland to be used to create the new updated charts.

Personal Log

This day has been full of excitement as we are finally underway! The scenery is absolutely beautiful here, and the wild life is truly fascinating. The snow covered mountains dip into the water with an awesome power as sea otters and puffins play in that same water below. We have also seen several porpoises and one crewmember claimed he saw a whale. I am overcome with awe at how this ecosystem is filled with so much wonder and unknown as the mountain goats and moose mirror the whales and sea lions only to be separated by where the land and water meet. Life aboard ship is similarly full of excitement. It is like a finely tuned machine how well everyone works together to make this boat maneuver. As much as I am enjoying the sight seeing, I can’t wait for the research to begin. I am excited to have my engineering background meet my teacher profession!

Question for the Day:

It is summer here, and the tilt of the Earth causes the “sun to never go down”. One could even read a book in the middle of the night with no flashlight! As I was thinking about navigational techniques and the history of navigation, I couldn’t help but reflect on the importance of using the stars for guidance at night. The question for the day is: What did sailors use, before all of the GPS technology we have now, to navigate at night in these upper latitudes when it never got dark enough to see the stars at night?

Sena Norton, July 6, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 6, 2004

Location: In transit to Shumagin Islands, outside of Seward inlet.
Latitude: 59.31 N
Longitude: 149.41 W
Visibility: To horizon
Wind Direction: NW
Wind Speed: 20 kt
Swell wave height: 6ft
Sea level pressure:
Cloud cover: High sparse cloud cover

Personal Log

Day Activities

  • Ship paper work
  • Assign and don Survival Suit (communally called Gumby suit)
  • Took part in Abandon ship and fire drill. Got to my muster stations with ease and with all the required equipment and needs. Aided in hose management and stow.
  • Issued Mustang jacket and flotation vest for use on launches and skiffs.
  • Observed getting underway from the flying wing.
  • Took nature sightings: whale in distance, porpoise pod of 12+, puffin and gulls/seabirds.
We are in transit to our survey location and will be for the next 24-36 hours. Most personnel are on 4-hour watches and shifts. I watched the deck crew take care of the lines and stow all the equipment in its correct areas, which took longer than I first would have expected.
The “Gumby suit” was interesting to put on and try to get back into its bag. I could not believe how snuggly it fit around the wrist and neck…of course to be water proof that is the requirement. I feel very safe in knowing that I could survive if the need arouse.

I am a little queasy with the boat today…there isn’t much of a sea but just getting used to the motion is going to be interesting. I have my patch on but many people have told me my berth is nicknamed the ANTI-GRAVITY CHAMBER…not very good words for a land lover like myself.

It is proper etiquette to keep your rack light on at all times unless you are trying to sleep. That is a cue to your roommate to be quiet. If the light is on all clear…if the light is off “shhhhhh”. I didn’t know that even with my prior experience.

The weather is going to be very nice for the next 6 days according to the weather report I received via email from the XO today. We are to expect light winds and the 3-6 foot sea swell. That is cause for good science and nice observations. We are scheduled to begin the hydro survey on Thursday.

Kirk Beckendorf, July 6, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 6, 2004

Daily Log

If you are standing on the ground, or in our case floating on the ocean, looking up into clear skies how could you tell the speed and direction of the wind a mile or two above you?

I spent the morning with Dan and Michelle who are from NOAA’s Environmental Technology Lab in Boulder, Colorado. Dan spent most of the morning showing me how the wind profiler he designed, can determine the wind speed and direction at any point above the ship, up to 6 kilometers in altitude. Dan was the chief engineer in designing NOAA’s wind profiler network, which has facilities strategically located across the United States. One of the phased-array radar wind-profilers is also installed on the BROWN. The profiler uses radar to remotely detect wind speed and direction in the column of air above our location. Five radar beams are aimed upwards from the ship, one looks straight up and the other four look upwards but at a slight angle. The radar signals bounce off turbulence in the air (kind of like air bubbles in a flowing river) and are then picked up by an antenna back at the profiler. The instrument then combines the signals from the five beams and determines the wind speed and direction at any point above the ship, up to about 6 kilometers (km). The computer monitor on the profiler gives a constant readout of the air’s movement. The chart this morning is showing that the air from the surface to about 3 km has shifted considerably both in speed and direction during the past 24 hours as a weak cold front passed through. However, the air above 3 km did not change its speed and direction much at all.

Dan and Michelle will also be launching radiosondes (commonly called weather balloons) four times a day. The radiosonde is attached to a large helium balloon. As it is rises through the atmosphere it measures relative humidity, air temperature, air pressure, wind speed and wind direction. Normally the sonde will rise to a height of 50,000 – 60,000 feet before the balloon burst and the radiosonde falls back to Earth. So this afternoon we went to the aft (back) of the ship. There Dan filled the balloon with helium until the balloon was about four feet in diameter. He then attached the radiosonde, which is smaller than a paperback novel, so that it was hanging from the bottom of the balloon. Once the computer had a good signal from the radiosonde’s Global Positioning System (GPS) he released the balloon. We all went back inside to the computer monitor that was graphing the relative humidity, air temperature, air pressure, wind speed and wind direction as the balloon ascended.

In the evenings after dinner the scientists have show and tell time. Different research groups showed some of the data that was collected today and gave a status report of how their equipment is working.

Questions of the Day

Why would the helium balloon burst as it reaches high altitudes?

How many MILES high can Dan and Michelle’s wind profiler determine wind speed and direction?

What is a GPS used for?

Kirk Beckendorf, July 5, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 5, 2004

Personal Log

I woke this morning in my bunk, which is a good thing since it is a long way to the floor from my top bunk. It may be a long way to the floor but it is not very far to the ceiling. I cannot sit up in bed without hitting the ceiling.

I talked to Wayne, one of the engineers on the BROWN, who helps keep the ship’s engines running. He and some of the crew needed to work on one of the small boats kept on the ship for excursions off the BROWN. It had to be lowered down to the water from about two stories high where it is kept secured in place. Wayne has had his job with NOAA on the BROWN for about 2 years. Before that he was a guide on fishing and scuba boats in Florida and the Cayman Islands. He loves working on the BROWN since he gets to travel all over the world. One of his favorite places to visit is Brazil because the people are so friendly.

Tim, the chief scientist, called a science meeting at 10:00 this morning. The meeting was to answer any final questions before we leave port this afternoon. He also wanted to make sure everyone has settled into their staterooms and have what they needed. Someone asked him where they could get soap. He explained where we could find soap, toilet paper and other similar items. One of the scientist mentioned that if we used toilet paper we wouldn’t need so much soap.

During the day I visited with Graham Feingold. He will be one of the many scientists working on shore throughout the project, he hopes to be analyzing data on aerosols and clouds. Aerosols are very fine particles that are suspended in the atmosphere. They have major effects on climate change. Graham hopes to learn more about the effect the aerosols have on clouds and water droplets. Water droplets can form around these particles. If there are more of the particles for moisture to attach to, fewer but smaller drops may form. Since the drops may not get very large they may not be heavy enough to fall out of the cloud. What effect that will have on precipitation patterns and climate is unknown?

The warm sunny days left today. This morning began with cloudy skies which have persisted throughout the day. We were scheduled to depart Portsmouth at 4:00 PM but were delayed because of a large ship which came into port. There was not room in the channel or under the bridge for both of us. Even though there was a cold drizzle when we left the dock, everyone was still out on the decks watching as we pulled away. The bridge was raised so that we could get underneath and the BROWN headed out the river channel into a misty gray sea. Once away from land we turned south down the coast towards Boston.

The plan is to stop just north of the shipping lane, the “two lane highway” large ships must use to enter Boston Harbor. The forecast is for the winds to be blowing relatively clean air towards us from the shipping lane. As the wind blows the passing ship’s exhaust across the BROWN, our instruments will measure the specific chemicals in the pollution. By comparing the polluted air to the clean air, the instruments on board can be used to determine the chemical makeup of each ship’s pollution. It is critical that the bow of our ship is pointed into the wind, otherwise the BROWN’s exhaust would blow into the scientists’ instruments.

Sena Norton, July 4, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 4, 2004

Inport Seward, AK, Cruise Ship dock
Weather: Partly Cloudy, occasional fog, calm wind

Personal Log

I was met at the train depot by two of the Junior Officers from the RAINIER and brought on-board. After a quick tour of the common areas I was shown to my berth and allowed to get settled in. I will be sharing the room with one of the survey techs on board in a 4 person room. I met two more of my berth area mates while I was unpacking and settling in.

Kirk Beckendorf, July 4, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 4, 2004

Science and Technology Log

Imagine a chunk of polluted air over a city or an individual power plant. How could you find that same air in 2, 3 or 4 days?

This morning in Portsmouth, I ate breakfast with Wayne Angevine who works at NOAA’s Aeronomy Lab in Boulder, Colorado. It will be his job during this air quality study to predict where that polluted air will be in the next few days. He and the other meteorologist working with him, will not only be predicting how far and in which direction the air has gone, but also how high it is.

These predictions can then be used to direct the airplanes and the ship being used in the NEAQS study to that “chunk” of air so it can be sampled and measured to determine how the pollutants have changed from day to day.

Although 31 scientists and I will be on NOAA’s RONALD H. BROWN, the ship is just one part of NEAQS. Wayne and dozens of other modelers and scientist will be coordinating the project from Pease International Trade Center in New Hampshire. Approximately one dozen aircraft from Europe to the Midwestern US will be collecting data. A number of land based sites will also be collecting weather and air quality data. All of this information will help the project managers determine their next move on a daily basis and what happens to New England’s pollution once it has been released it into the atmosphere.

Personal Log

This afternoon at my hotel I loaded my duffel bag of clothes, my laptop and cameras into a cab and set off for the BROWN. When I arrived, the gate in the chain link fence surrounding the port area was locked and I didn’t know the combination. I unloaded all my bags on the ground, paid the cab and waited. Eventually, someone leaving the ship came through the gate and I was able to get in. A Lieutenant on board took me to my stateroom and gave me another quick tour of the ship. The rest of the afternoon I spent visiting with some of the scientists. I will give a more detail explanation of what they do once we get under way but Bill Kuster showed me his two instruments which measure specific kinds of molecules in the atmosphere. One measures in real time and the other takes samples every 30 minutes. The samples are later analyzed. I then visited with Anne Thompson who studies ozone and will be launching ozonesondes once a day.

Question of the Day

What is an ozonesonde?

Geoff Goodenow, May 24, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 24, 2004

Time: 1615

Lat: 20 09 N
Long: 156 15 W
Sky: Bright and sunny
Air temp: 26.5 C
Barometer: 1014.3
Relative humidity: 57%
Wind: 60 degrees at 28 knots gusting to 35
Sea temp: 26.3 C
Depth: 1227.6 m
Sea: Its really rocking at the moment!

Science and Technology Log

This was the last roundup — and a rather disappointing finish. Four barracuda came up, an escolar and half of an escolar cleanly bitten in half by a shark. A blue shark and a blue marlin were on the line also but, unfortunately, dead. Trolling through early afternoon brought in a yellowfin tuna and a wahoo.

The main mission for the rest of the day is to make way for Honolulu.

In case some of you might be thinking about a Teacher at Sea experience, but wondering if longlining is for you, I thought I’d give you a bit of info related to other missions of the SETTE. Perhaps one of those operations would be of more interest to you. (Of course, there are other ships in other places doing other things for different lengths of time.)

The next cruise for the SETTE is a Protected Species Investigations cruise which takes the crew to the northwestern Hawaiian Islands. These are primarily resupply trips to take scientists and materials to and from temporary camps set up on these remote islands for the study of monk seals and bird populations. I read about these camps and found them quite interesting. For example, in an effort to prevent invasion of (more) exotics to these islands items going assure are placed in a freezer for a time to kill hitchhiking critters.

Debris cruises are another NOAA mission. Yep, that’s right, picking up trash from the island beaches and off of coral reefs. A crewman, John, related to me that the stomach contents of dead chicks are often clogged with plastics fed to them by their parents. He has even found plastic lighters, which to the birds might look like squids, in the stomach remains of these birds. It’s nice to know an effort is being made to reduce the hazards, but sad to note that the negative impact of humans strikes even in the most remote places.

Coral reef surveys are done to monitor health of those systems. Studies of benthic habitats are conducted as well as investigations of planktonic life. Later this year the SETTE will do a lobster cruise to assess those populations. John, our electronics technician, described to me that overharvesting of spiny lobsters which like relatively shallow water opened up their habitat to invasion by the slipper lobster. Slippers typically stayed deep to avoid the spiny, but now that the species are encountering each other a hybrid has developed.

John also pointed out that regardless of the mission of the science teams aboard, the SETTE is constantly collecting and filing data. Wherever the ship is, it is recording weather information and physical characteristics of the seawater and the seafloor. Perhaps you get the idea that this is a busy little platform sailing out here in the big blue sea.

Personal Log

At the time of my weather report we were passing through the channel between Hawaii and Maui. This is where we got blasted by heavy (much more so than today) seas on our first night out. I’m handling this well and would like to boast that I am now seaworthy enough to handle with ease forces as encountered on day 1. But then I don’t want to tempt the sea gods to challenge me with a new test of my endurance. The sea is very pretty in this state (something I was in no condition to say 3 weeks ago). White-capped waves, snow white on a navy blue backdrop and fleeting rainbows of color as wind blown spray catches the light just right fill the gap between the island masses.

The sea calms dramatically as we pass between Maui and islands to its west. We are close enough now to Maui to see the green of the land with its black lava scars and the observatories perched atop 10,000 foot Haleakala glistening white in the late afternoon sun. To our southwest the surf crashes against the shear walls of the neighboring island, Kanoolaweu. Lenai and Molokai lie ahead and frame a beautiful sunset for our last night at sea as several of us enjoy it from the bow.

I will be doing my last edition of the log tomorrow (Tuesday). I think I lose my NOAA address as of tomorrow also. If you have any questions perhaps they will be forwarded to me through the Teacher at Sea website. I look forward to hearing from you.

Geoff

Geoff Goodenow, May 23, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 23, 2004

Time: 1600

Lat: 19 35 N
Long: 156 08 W
Sky: Hazy, bright sunshine; mostly cloudy by evening. No green flash or stars tonight.
Air temp: 26.8 C
Barometer: 1014.4
Relative humidity: 53.7%
Wind: 282 degrees at 6 knots
Sea temp: 27.3 C
Depth: 2611.9 m
Sea: Very gentle today. Not quite glassy but quite smooth.

Science and Technology Log

Eight fish on the longline this morning including a striped marlin (Tetrapturus audax) which was tagged and released. We had 2 representatives of a species, crocodile shark (Pseudocharcharius kamoharai) not previously caught. Also on the line were an oceanic white tip, a large barracuda, a mahi mahi, a swordfish and (you guessed it) an escolar.

Here are a few facts related to some species new since I reported on fish types previously. My source is the same. Please note that it was published in the 1980’s and that some info could be out of date, but it’s the best I have for you.

Crocodile sharks: There is only one genus and one species in the family. These are not very large sharks attaining about 110cm. Their teeth are long, curved and slender, very sharp (and, I thought, very impressive).

Striped marlin attain 2.9 m.

Blue marlin (Makaira mazara): Males reach about 150 kg but females can grow to 5 meters and weigh over 800 kg.

Tonight is out last set of the longline. Again we are off the coast of Kona.

I asked our electronics technician, John, to tells me about some of the safety systems on the ship. This would have been good to report first thing so as to put my mother’s mind at ease. Anyway, here’s a bit about how we are protected in case our ship encounters some sort of distress. These are all part of the global Maritime Distress Signal System.

We are capable of sending radio distress signals indicating our position. A VHF signal has a range of about 50 miles, and HF signal up to 1500 miles. A satellite connection for the “All Pacific Region” alerts stations from northern Alaska to the tip of South Anmerica and east to west across the Pacific.

Emergency Position Indicating Radio Beacon (EPIRB): This can be activated manually, but is activated automatically if it contacts saltwater. It sends a keycode to a satellite which alerts NOAA where the ship can be identified, its most recent position marked, and direct nearby ships to assist.

Search and Rescue Transponders (SARTs): Our ship as well as others are constantly sending out a signal at a certain frequency. Assume we have lost the ship and are in a boat/raft with our SART. When it detects the signal from a ship in the area it lights up. We would then turn on our SART which sends a signal to that ship’s radar indicating our direction and distance.

I feel pretty confident that someone always knows where we are! John also showed a couple of other pieces of gear on the ship. One is an Accoustic Doppler Current Profiler used to determine current speed and direction at various depths. In another, transducers on the bottom of the ship “ping” the bottom at low and high frequencies. Lower frequency signals travel farther and can give us a profile of the bottom. Higher frequency signals can actually detect schools of fish or concentrations of plankton.

Personal Log

Still on the finger soaks and antibiotics, but finger infection is clearing up. The crocodile shark teeth were so impressive to me and make a great contrast to the blue shark’s jaw that I decided to risk further pain, discomfort and more infection in another jaw cleaning exercise. Small size and previous experience combined to make this a much shorter effort than that with the blue, but nonetheless painful as those needle sharp teeth penetrated gloved hand and found their mark in human epidermis.

Then it was to work on a eye cup from the blue marlin pulled in yesterday. Kylie made the official presentation to me last evening as Kerstin and Eva listened on. I had to finish the cleaning job then apply Kerstin’s newly found hot water bath treatment to complete the removal of the flesh. I feel like a real, official Junior Eye Scientist Club member now that I’ve been awarded my first “medal”.

Questions:

I’m drained; I can’t think of any.

Geoff

Geoff Goodenow, May 22, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 22, 2004

Time: 1600

Lat: 19 24 N
Long: 156 53 W
Sky: Sunny this morning, but brightly overcast at the moment. Clear this evening.
Air temp: 26.5 C
Barometer: 1015.1
Relative humidity: 59.9%
Wind: 144 degrees at 6 knots
Sea temp: 26.7 C
Depth: 3810.4 m
Sea:

Science and Technology Log

Even with our normal start time today we were able to get to our one broadbill swordfish in time to tag and release it. we had a new species on — a 176 cm blue marlin (   ). It looked as though it had been attacked by sharks while on the line. We were also able to tag an oceanic whitetip shark. Also for the first time on the longline we had a shortbill spearfish. The rest of the catch was rounded out by the regular cast of characters: 3 escolar, a snake mackeral, one great barracuda and one mahi mahi.

We trolled lines up to 40 miles away from the big island today but nothing grabbed the lures. Tonight we are setting again offshore of Kona, perhaps 25 miles out (not sure).

A chapter in Wilson’s book and some comments made by Kirsten and Mike a couple days ago are the motivation for this part of today’s log. Should we be looking for ways of expanding aquaculture and reducing our dependence on wild stocks to provide fish protein? Wilson in Diversity of Life (1992) states that 90% of fish consumed worldwide is taken from wild stocks. He further states that while about 300 finfish species are cultured throughout the world, 85% of the yield comes from just a few species, talapias, for example.

Kerstin told me of the southern blue fin tuna, a highly prized species, whose numbers crashed due to overfishing in the 1950’s and 60’s. A moratorium on taking the species was imposed and resulted in an increase in the wild stocks. Now quotas are set to protect the species. Australia meets its quota by capturing animals then towing them live to ocean pens at Port Lincoln. The pens are roughly 40 meters in diameter and 15-20 meters deep with about 2000 fish per enclosure. There the animals are fed a diet of fish over 3-4 months that brings their flesh to a desired quality. Of course, this demands harvesting many tons of feeder fish (from the wild) to support the pen raised stock.

In America and elsewhere we have turned from wild stocks of animals to support our numbers. We raise chickens, pigs, cattle and sheep to provide most of our meat. Hunting of wild game is reduced to controlled recreational seasons designed to protect those resources. Should we be doing much the same for more species of ocean fishes, that is, develop methods to economically raise several desired species and greatly reduce our take from wild stocks? Should some receive total protection?

Check out the question section below for some reading about certain aspects of the issues then decide what you think about the concerns raised.

Personal Log

The doc lanced my finger today and I’m still on the antibiotic and hot water soak routine. Feeling kind of sluggish today and appetite is not quite up to my norm; probably effects of antibiotic.

Sky cleared nicely before sunset providing a clear horizon and our first green flash in many days.

Hope to sit out the line set tonight and perhaps just take in a movie.

Question:

In the June 9, 2003 issue of U.S. News and World Report is an article titled “Fished Out” in which the state of oceanic fish populations is discussed. What is you reaction to the article?

On page 40, there is a reference to a report by scientists Myers and Worm. Rich and Mike have told me that there have been several rebuttals to the Myers and Worm report noting flaws in their methods and conclusions. Find such an article then rethink your attitude toward the US news and World Report article and issues raised above.

Geoff

Geoff Goodenow, May 21, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 21, 2004

Time: 1600

Lat: 19 25 N
Long: 156 54 W
Sky: Overcast today. A bright unthreatening sky but clouds thick enough to prevent casting of shadows.
Air temp: 26.3 C
Relative humidity: 70%
Barometer: 1015.7
Wind: 146 degrees at 14 knots
Sea temp: 26.5 C
Depth: 4738 m (at 1645 hrs)
Sea: Rolling today with 3-5 foot swells but not uncomfortable. Much calmer this evening now that we are nearer the Kona coast.

Science and Technology Log

We began our retrieval of the longline at 0600 today; usually we begin at 0800. This change was made in light of the fact that we have been catching swordfish in this area and that they are dead when we get to them. These are animals (when alive) that we would like to tag. The thought is that if we get to them sooner we will have live animals to work with. I hate to see any of them dead, but it was especially hard to accept the loss of that big guy yesterday.

Did it work? Well, we didn’t lose any swordfish today, but then we didn’t catch any either. It was a very poor catch — several escolar (apparently the most abundant fish in the sea), one snakemackeral, and, the only thing worth getting up for (personal commentary), a bigeye thresher shark. This one was tagged by Rich who harpooned the pop up into its back with one swift and well aimed lunge. He was then cut free of the line — another mobile laboratory.

Tonight we are again off the Kona coast for the line set. I don’t know why the decision was made to come here as opposed to staying over one of the seamounts.

Yesterday I had a tour of the engine room. I thought I’d mention a couple things going on below deck and perhaps a few other tidbits about our floating city of 30-40 people. In an earlier log, I think I mentioned that we make our own fresh water. Waste heat from the engine cooling water heats sea water held in a partial vacuum where it can boil at less than 100 degrees C. then be recondensed to yield our water supply.

Our waste water treatment system is a Class 2 type according to chief engineer, Frank. All human waste and gray water goes to a holding tank. From there it is pumped through a unit to macerated solids. The slurry then passes through an electrical cell that completes the purification process before discharge to the sea.

Our little city generates its share of trash as well. Bins around the ship are marked as to the specific kinds of refuse we may put into each. Here’s is what I understand concerning disposal of sewage and trash. Within 3 miles of shore everything must be held although I think if sewage is treated, as ours is, it is OK to let it go even there. Plastics are never to be dumped. From 3-12 miles out, we can dump trash and food waste ground to less than an inch, but no packaging and such that floats. At 12-25 miles, food wastes can go but again the floating debris is prohibited. Beyond 25 miles, I think all can go but the plastics. Cardboard boxes and paper trash go over the side out here and untreated sewage can be flushed.

And, of course, we have to eat. Todd and Susan are our stewards. Todd insisted that I write that “the second cook (in this case Susan) has the hardest job on the ship.” Susan agrees. For a typical 24 day cruise, Todd (chief steward) spends $5000-$6000. To mention just a few of his purchases for this trip he packed on 48 gallons of milk, six cases of juices, a case being containing 4 three-liter bottles of 4-1 concentrate, and over 80 loaves of bread. Whatever he buys is supplemented by our catch. He noted too that in different areas, crews have different likes. For example, in Hawaii he packs on lots of fruits. In cold Alaska, crews like to have soup everyday whereas here it’s not as welcome because of the heat.

Well, that diversion got me (and you) away from fish science for today. Sorry if anyone is disappointed.

Personal Log

I think the early start jolted everyone’s biorhythms or perhaps just mine. I liked being done with the line by 0830, but I did feel kind of lazy all day afterwards. Perhaps that along with the humid, overcast sky and an antibiotic the doc gave me for an infected finger combined to make napping the desired task of the day for me. So aside doing this log, soaking my finger and a bit of reading that’s about all that happened for me today.

Questions:

Perhaps this should have preceded yesterday’s questions. The Hawaiian Islands are some of the most remote island in the world. How did they originally (before the hands of humans) become inhabited by plants, animals, fungi? What are some of the mechanisms that permit dispersal of life to such isolated places as these?

Geoff

Geoff Goodenow, May 20, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 20, 2004

Time: 1600

Lat: 19 15 N
Long: 157 06 W
Sky: Beautiful day; lots of sunshine with scattered cumulus clouds
Air temp: 26.6 C
Barometer: 1015.2
Wind: 132 degrees at 15 knots
Relative humidity: 62%
Sea temp: 26.7 C
Depth: 3116.6 m
Sea: Swells less than a meter offering up a very smooth and pleasant ride.

Science and Technology Log

Several escolar, 2 snake mackeral, 2 sharks and 2 swordfish on the line today. The sharks were both silky sharks. One was tagged and released. The same treatment was intended for the other but it broke free of the hook before we got it on board. Both swordfish were dead.

The last of the swordfish was the biggest we have seen: 185 cm plus a sword of over 60cm and weighing in at 90kg. A couple skipjack tunas were landed with troll lines.

We are staying in the same area for the longline set tonight. We didn’t even bother to check Cross seamount as things are pretty good here and we would probably have had to turn away from there out of respect for others’ presence.

In reviewing Kylie’s presentation (see personal log), Rich commented that we know what the movements of the animals are, but we don’t know so well why they make various vertical movements nor how they are able to deal with the stresses imposed by those movements. The temperature/cardiac function relationship described yesterday adds a bit to the puzzle as do studies of tolerance to oxygen reduction. I found this quite interesting and hope I can condense the story to something meaningful for you.

At depths reached by bigeye tuna oxygen levels are far lower than levels experienced by skipjack and yellowfin tunas at the depths they are normally found. Tunas characteristically have high metabolic rates which might seem impossible to maintain at low ambient oxygen levels experienced by the bigeye. Fishes tolerant of low oxygen levels are typically very sluggish, have low metabolic rates and have blood with a higher affinity for oxygen than less tolerant species. In exchange for that high oxygen affinity (a benefit at the gills), they sacrifice maximum delivery of that oxygen to their tissues; their blood just doesn’t want to let go of it.

Bigeyes then, as you would expect, have blood that grabs oxygen more readily than blood of skipjacks and yellowfin. So how are bigeyes able to remain so active when their fellow fishes with high oxygen affinities just can’t keep the pace? Recall those heat exchange units we’ve mentioned before??? Bigeyes’ blood loses much of its grasp on the vital gas as it is warmed by those heat exchange units. And remember that at the gills the blood is “cold” again. What a great system — readily grab and hold oxygen at the gills even in low ambient oxygen environments, and readily release it in the muscles. Pretty cool, I think.

To conclude, I quote from the summary section of my source as to the value of these studies. I presume that what is stated here specifically with respect to bigeye applies more broadly. “Understanding the vertical movements and depth distribution of bigeye tuna, as well as the physiological abilities/tolerances and oceanographic conditions controlling them, has been shown to be critical to improve longline catch-per-unit effort analysis and long term population assessments in the Pacific.”

Goodenow 5-20-04 oceanic white tip
Geoff with a small oceanic white tip shark

Personal Log

Following the line retrieval, I managed to get some time on the upper deck in my favorite shady spot with my book. Reading, snoozing and enjoying the view passed the afternoon along with an interruption to assist with a troll line catch. This was very nice after such a gloomy yesterday that was topped off with another late night at the movies (Pirates of the Caribbean).

Just before supper Kylie did a rehearsal of a presentation she will be making in Australia about her vision studies. Rich and Kerstin made comments and suggestions to help her polish the presentation. It was interesting to hear them address content and presentation issues much as I do with my own students.

Kerstin asked me today if it is getting tough coming up with material for the log. I suggested that indeed it is becoming more of a challenge. Perhaps out of sympathy, she called me to her lab early this evening to share with me some details related to the eye socket of a swordfish. Thanks, Kerstin, and keep ’em coming!

Questions:

Many native plants and animals of the Hawaiian Islands have suffered due to the introduction of non-native species to their environment. The green cover of the islands is very different in most places than what Polynesian settlers saw. Mongooses and ginger are two introduced species. See if you can find out how they got here, why they were introduced and specific impacts they have had on native species. (There are others for which you could do the same investigation including many in your home area).

Geoff

Geoff Goodenow, May 19, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 19, 2004

Time: 1615

Lat: 19 15 N
Long: 157 14 W
Sky: Cloudy all day with light to moderate rain showers throughout the day after longline retrieval. Ended by supper time, but the sky remained overcast.

Air temp: 23.6 C
Barometer: 1012.5
Wind: 106 degrees 16 at knots
Relative humidity: 73.4%
Sea temp: 26.2 C
Depth: 3959.8 m
Sea: Swells less than a meter.

Science and Technology Log

Not a big catch today, but everything we did catch came at once resulting in a flurry of activity for a short time. A blue shark was kept, and our largest swordfish so far came up dead. Too bad as it would have been an excellent one to tag.

For today’s in depth science report, I will refer to a couple of papers both coauthored by our chief scientist, Rich, relating to vertical movements of some of the species we have seen. Some fish tend to stay within particular vertical realms while others traverse them. What factors influence the animals’ movements?

One seems to be temperature. In a study of yellowfin tuna, blue marlin and striped marlins, all three were found to descend to depths where water is no more than 8C below surface temperature. Where oxygen levels in the water are not a factor, all three of these species seem to be restricted by the effects of water temperature on cardiac muscle function.

Bigeye tuna as you will recall stay deep (500m) by day and rise to the surface waters at night. At depth the animals are exposing themselves to ambient temperatures that are up to 20C colder and oxygen levels much lower than in the upper layers. Swordfish and bigeye thresher sharks exhibit patterns similar to those of the bigeye tuna.

What about those heat exchange mechanisms described in earlier issues of my log? Shouldn’t they, if present, allow a fish to tolerate a wide temperature range? While indeed they are present in some species, they are not working to keep blood warm as it goes to and through the heart. Any heat left in the blood on its return to the heart is lost as it passes through the gills. Since the heart is “downstream” of the gills, cardiac muscle remains within 1C of ambient temp. Studies show that temp. reductions cause heart rate and output to decrease.

Yellowfin tuna and the marlins seem to have no ability to increase heart rate or cardiac output following sudden temperature reductions. Consequently, they stay within that 8C window of surface temp.

So how do the bigeye tunas and others manage to negotiate these temperature realms with apparent ease? The question remains, the full story unknown so untold. Perhaps by the time you are here as a teacher at sea you can fill us in with the details. I’ll be waiting!

I’ll complete this look at physiology tomorrow with a bit more to relay about the oxygen issue.

Goodenow 5-19-04 bite marks
This was taken to show countershading and nuptial bites. The large bite is obvious but also note the smaller teeth marks below. The bites are made by the males on the females.

Personal Log

I usually have a good start on the log by supper time but not today. In the quiet following the period of intense longline activity, I began the process of securing the jaws of the blue shark for display. This was a female of good size (165cm, 45kg) and with a nice set of choppers. I was being pelted with rain as I worked through lunch and beyond. I thought if I stopped I wouldn’t go back out to deal with it any more so I just kept peeling away the flesh to expose the teeth and reduce future odor issues. Had it pretty well done as chill started to get to me. I headed for the warmth of a stairwell over the engine room pausing momentarily to enjoy the (usually) stifling heat before finishing my route to room and warm shower. I did return to inspect my work. In comparing it to Eva’s similar effort I felt more had to be done to match her high standard. But now it’s done and jaws are held wide apart with crossed chopsticks as nature tends to the final phase.

No longline duties at the start of tonight’s set which I think is in last night’s neighborhood. Perhaps I will be in there as a reliever a bit later.

Question:

For something completely different and to address the history buffs among you:

How long ago is it estimated that Polynesians discovered and settled in the Hawaiian Islands?   When were the islands discovered by European explorers? Why was captain Cook first welcomed by the native people, but not received so well (and eventually killed) when he returned shortly after his departure?

Any subject areas I’ve not touched on yet?

Geoff

Geoff Goodenow, May 17, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 17, 2004

Time: 1600

Lat: 18 24 N
Long: 157 47 W
Sky: Stratus cloud layer shielded us from the sun until longline was in then it started to break up by 1030. Sun for awhile then clouded over again by midafternoon. Thinning by evening but still a good blanket on us.

Air temp: 27.3 C
Barometer: 1011.24
Wind: 35 degrees at 7 knots
Relative humidity: 54.5%
Sea temp: 26.8 C
Depth: 4489.2 m

Sea: 2-3 foot swells; no problems

Science and Technical Log

Yesterday after picking up the line we began a westward passage toward Swordfish Seamount. It was a long way off and there was no hope of getting there last night. The line was set along our course at 18 34 N and 156 47 W at no particular oceanographic feature that I am aware of. Perhaps that is why out haul today was none too exciting — a couple escolar, a snake mackeral and two blue sharks. Only one of the blues was brought on board. We will be at Swordfish to set tonight and look forward to a more interesting catch tomorrow.

I have covered each of the areas of research going on by the science teams aboard for this cruise. Today, my focus will be on sharks. We have caught 4 species so far and that has aroused my interest in these animals. I’ll provide some general info as well as some specifics for the species we have caught. For those of you interested in more, my information comes from two sources: Smiths’ Sea Fishes by Margaret Smith and Phillip Heemstra, and Diversity of Life by E.O. Wilson.

Sharks along with skates and rays are among 700-800 species in the subclass Elasmobranchii of the Class Chondrichthyes. Like all members of the class, their skeletons are entirely cartilaginous, but Elasmobranchs are distinguished by an upper jaw that is not fused to the skull and 5-7 pairs of gill slits.

There are about 350 species of sharks ranging in adult size from the 23 cm green lanternshark to whale sharks, the largest of all fishes, which reach 13 meters. Sharks lack a swim bladder, but produce large amounts of lipids which are stored as oils in the liver for buoyancy. The liver can account for up to 25% of the animal’s total weight. Sharks maintain osmotic (water) balance by maintaining a high concentration of urea (so high as to be deadly to most fishes) in their blood and tissues thereby reducing water loss to their salty environment.

All sharks we have caught (except the bigeye thresher, Order Lamniform) belong to the Order Carchariniform. This is the largest group of sharks; it includes about 200 species. These two orders are distinguished from one another in the following ways:

Carchariniforms: purse-like egg cases or live bearing; a movable nictitating membrane (eye covering).

Lamniforms: bear live young with uterine cannibalism (now there’s an interesting bit) evident in some; no movable nictitating membrane. There are also differences between the orders in the internal structure of their intestines — very interesting but I won’t go into description.

Specifics about each species of shark we have taken follow.

Blue sharks: the most fecund of all sharks; viviparous and bear 35-135 pups per litter; 50 cm at birth; attain 3.5 m; widespread in all oceans; favor water 12-16 C.

Oceanic white tip: in all oceans; away from continental shelves; viviparous bearing 6-8 pups usually; 60-65 cm at birth; up to 3 m; abundant in tropical seas.

Silky: widespread, prefer warm water; feeds inshore and in deep water; viviparous bearing 9-14 pups; 80-85 cm at birth; up to 3 m.

Bigeye thresher: widespread in warm ocean waters; ovoviviporous (provides embyo with no nourishment beyond the original yolk); 2 pups per litter; 100-130 cm at birth; attain 4.5 meters.

Personal Log

Well, I guess you can tell what I did today, and I might have a few more tidbits about sharks to add tomorrow. I am completing the log before the line set tonight so as to take in a movie afterwards. Don’t know what’s playing tonight, but it will be free and relaxing.

Tomorrow begins our last week at sea. Little time remains for you to file your questions with me. I’m looking too for suggestions for topics to try to address so if you have ideas, please suggest. I have asked for a tour of the engine room which is a possibility for Tuesday if tickets aren’t sold out. That might give me some interesting goodies to pass along.

Question:

We have seen fish that are rather uniformly dark in color and some that are brightly colored. What are some of the roles of coloration in fishes (as well as other animals)? Describe countershading and how it serves an animal like the blue shark.

Geoff

Geoff Goodenow, May 16, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 16, 2004

Time: 1615

Lat: 18 25 N
Long: 156 13 W
Sky: A dreary morning with gray stratus clouds all around and an occasional misting of precipitation. Much brighter sky by 1300 — enough to cast shadows, but remained mostly cloudy throughout the day. A pleasent evening with clearing skies.

Air temp: 25.7 C
Barometer: 1011.61
Wind: 352 degrees at 13 knots
Relative humidity: 71.5%
Sea temp: 26.4 C
Depth: 5012.1 m
Sea: 2-3 foot swells

Scientific and Technical Log

Longline retrieval started on a bad note this morning as the line went under the ship. It caused only a short delay as maneuvers were quickly and successfully made to keep it out of the propellers. We brought up an escolar, 2 snake mackeral, and a broadbill swordfish head. A large, angry silky shark came in also. The shark was released after being tagged and “kindly” relinquishing a remora. And finally, a new species for the record, a lancetfish (Alepisaurus ferox). These guys look much like the snake mackeral, a long thin body up to 200cm, nearly cylindrical with a tall uneven dorsal fin (sail)standing perhaps 5 body widths high over nearly 2/3 of its back. The snake mackeral’s dorsal fin does not rise nearly so much. The lancet’s skin was very smooth, scaleless in fact, iridescent and rather pale. They have narrow snout with long sharp teeth.

For those interested in the studies of pelagic fishes, the Pelagic Fisheries Research Program (PFRP) publishes a newsletter which can be viewed online (I think) at http://wwwsoest.hawaii.edu/PFRP . For more on the eye work being done by Kerstin and others see Vol. 6 Number 3 (July-September 2001).

Other studies aboard the SETTE:

Melissa is a master’s program student at Virginia Institute of Marine Sciences (VIMS). She did her undergraduate study at UC San Diego. She has been collecting remoras, larvae from our plankton tows and stomach contents from some fishes, and fin clips from sharks. Here’s what it’s all about:

The remoras are being collected as a favor for her labmate’s work at VIMS. That person is looking at the phylogenetics of remoras and also that of their hosts which include sharks, billfishes, and the occasional baitfish or float. She is also collecting fin clippings from sharks of the genus Carcharhinus (e.g. oceanic white tips, silky sharks) for another labmate working on the sandbar sharks (also in the Carcharhinus genus) off of Virginia, looking at natal homing patterns.

From the plankton tows, Melissa is interested in larvae of the fish family Scombridae which incldes tunas, wahoo, bonitos, and mackeral. Can we find ways to identify them based on their genetics? Samples from all will be sequenced using their mitochondrial DNA in an attempt to find unique interspecific (between species) genetic markers. The value of this is that it would allow easier identification of larval types than does morphological identification. We might more readily then identify where and when particular species spawn and thereby attain a better understanding of their life histories. Are the genetics of a species uniform throughout the range of the fish? If there are significant genetic differences in populations then perhaps it is wise to manage fisheries of that species by area as opposed to globally (one size fits all approach) so as to preserve gene pool diversity. Answers to these questions could lead to management practices that better protect these resources.

This work also has applications in forensic studies. Fish that have been taken illegally and already filleted can be identified by genetic markers enabling better enforcement of regulations. Also, morphological identification of degraded tissue, as in stomach contents where enzymes have done their deed, is impossible.  Stomach contents collected here will be screened using genetic markers for the tuna larvae to see if the larvae are part of that particular fish’s diet.  Applications from this work could potentially aid studies of trophic levels and predator/prey relationships.

Goodenow 5-16-04 shark on cradle
Shark being lifted aboard

Personal Log

Suffered my first injury in shark wrestling today with a slight abrasion to left knee — not enough to scare me away from the next match. Nothing too news worthy to report about the day. It was a rather slow day. Not much sun, humidity was above the norm — a bit uncomfortable outside. Continued reading Wilson’s book, did wash and stewards offered a linen change today which I took advantage of.

There was a moment of excitement this afternoon when a marlin took off with a troll line. It was out of control and our two champion fisherman couldn’t handle it. Gears were stripped in the reel which actually smoked from the heat generated as line spinned off. That rod is out of action for the duration; the fish won that round.

This evening our electronics technician, John, gave me a pictorial introduction to other research cruises of the SETTE which I will share with you another time. And, relieved of longline duties tonight, I spoke with Mike and science in general and some specific regarding his work in fisheries research.

To all of my ’02-’03 Advanced Biology students, I am sorry to report that I was not able to make use of my Secchi disk nor did I even see one on the ship.

Question:

What does the term upwelling mean? Identify several general locations in the oceans where upwelling occurs. What is the biological impact of upwelling in those areas?

Geoff

Geoff Goodenow, May 15, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 15, 2004

Time: 1550

Lat: 18 52 N
Long: 155 47 W
Sky: Bright and sunny over us but the island has a layer of stratus obscuring views to top
Air temp: 26.3 C
Barometer: 1012.72
Wind: 202 degrees at 12 knots
Relative humidity: 62.4
Sea temp: 26.2 C
Depth: 2015.4 m

Sea: Rolling along with 2-3 foot swells; no big deal.

Scientific and Technical Log

Scientific name for the pomfret we caught yesterday is Brama brama and for the silky shark (caught a week or so ago) it is Carcharhinus falciformis.

Today as we trolled just off the Hawaii shoreline as we steamed south to our longline set position. Mike and Chris teamed up again to land a shortbilled spearfish (Tetraturus angustirostris) 161 cm and 17 kg, silvery body with a deep blue dorsal fin — beautiful fish. This one was kept for eye studies and other tissue samples. We pulled a nearly intact fish about 20 cm long from its stomach. The 2 man team of Chris and Mike is working smoothly and efficiently; no fish has a chance against them now.

We will set the longline tonight southeast of the southern tip of Hawaii at Apuupuu Seamount, 929 m below. (18 31N, 155.24 W). Following the set we will be doing a plankton tow.

Vision (one more time):

Another aspect of the vision studies is trying to assess the animal’s speed of vision. Electroretinography measures the response of an eye to light pulses from a flickering source. So called flicker fusion (FF) is reached when the eye loses its ability to perceive individual pulses of light. A relatively high FF value is characteristic of shallow living species compared to deeper dwellers. In the dim light the speed of light gathering is slowed similar to the need to slow a camera’s shutter speed to gather sufficient light.

In concluding this abbreviated look at the vision studies, I’ll try to draw some of the pieces together. Pop up tags show where these animals spend their time in terms of depth, light and temperature realms. We can tell how sensitive an eye is to light and how fast it works. As you will recall, some of these fishes deep dwelling fishes have heat a exchange system located in the eye which keep it warm. It has been shown that speed of vision is affected by temperature change — a warm (above ambient) eye functions more effectively. Much more goes on, but perhaps you get a sense of how different areas of study contribute to a better picture of this function in these pelagic fishes.

To other (non-vision) studies tomorrow.

Personal Log

We steamed toward Kona through the night so that we could ferry Steven to shore and flights to other places. It was great to have met him; I’m sorry he had to jump ship. I got up at 5:30 to experience sunrise (around 6 o’clock). I thought it would be nice to see it rise over the island, but didn’t count on the clouds hanging over the mountains to obscure anything that might have been spectacular; it wasn’t even good from our perspective. But it was nice to see a color that I haven’t seen (except as a flash) in over a week — green. We have been wrapped in a beautiful blue and white world (which I am sure would excite fans of the Penn State Nittany Lions and the Mifflinburg HS Wildcats), but I tend to favor green fields and forests in the mix.

Unfortunately, we didn’t get to touch the green or for that matter the briny deep as snorkeling was denied us. So it was a day of leisure on board. I spent time reading (Diversity of Life), making some journal entries and enjoying the sight of land — perhaps the last for another 9 days (not complaining). I tried to ignore the typical signatures of human presence at Kona: autos, the Big K-Mart and Lowes perched to give exiting customers a grand view across the sea, a cruise ship at anchor, shore front hotels and homes dotting the mountainside. I directed my focus on the crashing surf, blankets of exposed black lava rock interrupting the predominant green, and shear black cliffs dropping to the sea — the natural stuff. It got better the further south we moved along the coast.

Dan guided Kylie and me through filleting of the spearfish this afternoon. Between the three of us (and the catch team, of course) we secured a good bit of food for the crew. This evening I split spool duty with Kerstin then took a chair from which to watch the rest of the set, read and talk with super fisherman Chris.

It’s a great night back in the world of blue and white.

Question:

Can you find the point on the sea where you would be most distant in any direction from land?

Geoff Goodenow, May 14, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 14, 2004

Time: 1600

Lat: 18 40 N
Long: 158 14 W
Sky: Sunnny with widely scattered cumulus
Air temp: 26.4 C
Barometer: 1011.26
Wind: 172 degrees at 12 knots
Relative humidity: 61.4%
Sea temp: 26.4 C
Depth: 888.5 m

Sea: A few white caps out there; swells in 1-3 foot range — easy going today.

Science and Technology Log

A fairly exciting morning on the longline. Several escolar, a barracuda, and a pomfret (a laterally flattened fish about 30cm long but only 2-3 cm in width with a fine set of sharp teeth). Samples taken from all. We also had a blue shark from which samples were taken and an oceanic white tip shark which was tagged and released. I got to wrestle both. Picked up a few remoras from the sharks. We think we have at least two species of remoras.

This afternoon we passed over Cross Seamount and traversed it several times as we trolled but to no avail. There will be no longline set tonight since we have a date in Kona to drop off one of the current scientific party.

I want to fill in with more of the vision story this evening if I can stay coherent long enough to convey it sensibly. I will touch on the work of Steven, Kerstin, and Rickard.

I have been collecting samples of fish lenses. They vary in size, as you would expect, among different sized fishes. What makes the lenses different from those of most vertebrates is that they are spherical rather than oval in cross section. The cornea of fish is also optically non-functional. Since it has the same refractive index as water, focusing is done by moving the lens back and forth in the eye rather than by changing the shape of the lens as our eye muscles do.

Steven uses laser light to determine the focal point for different colors of light. He suspends lenses in a fluid medium then turns on a laser beam that makes two vertical passes through the diameter of the lens. You can watch light’s path change as the beam migrates. Computer analysis then determines focal point.

Kerstin and Rickard must have live cells from the retina for their studies. Among other things, they are looking at the sensitivity of these cells to different light intensities. Live retina cells convert light to electrical signals which travel via the optical nerve to the brain to produce an image. By attaching electrodes to tissue samples about 1 cm square in size and subjecting the cells to different intensities of light electrical responses of different strengths can be detected and measured. They appear as a wave pattern on a screen. As light intensity is increased, the amplitude of the wave pattern increases. So a flat line (no response) becomes one with small amplitude waves which grow as light intensity increases to a point where more light produces no greater effect.

Lets compare two species, mahi mahi, which stay nearer well lit surface and bigeye tuna which like deeper environs. Which eye would you expect to be more light sensitive? The bigeye. Their cells are stimulated by much lower intensities of light than the mahi’s. They (bigeye) have to be able to detect their prey under minimal light conditions and need the more sensitive eye to do that. Big eyes, big pupils (fish pupil size is fixed) and a “super” sensitive set of retinal cells are adaptations of these fish to their deep environment.

I’ve had enough (as I suppose you have too). I will wrap up the vision story tomorrow or Sunday.

Personal Log

We are headed for Kona. Although we probably will not get any shore time, it has been suggested that there might be an excursion to a place where we can swim/snorkel for awhile. I am hoping very much this it true as are others. A plunge into this element (I guess I should say compound) that we have bobbed around on top of for the past 13 days would be a pleasant change in the routine and scenery.

Reading E.O. Wilson’s The Diversity of Life.

I would like to thank, Ron, a fellow teacher from Michigan who I have never met, for writing a note to tell me that he has been enjoying the logs and also to pose a question. Much appreciated!

Questions:

Sunrise here today is at 6AM and the great yellow ball sets here at 7PM. What time is it rising and setting in your area at this time of year? Find out sunrise and sunset times for the solstices for Honolulu and your area. From that determine A) how much longer the sun is above the horizon for each place in summer vs winter B) which place, Honolulu or your home has more sun time at each solstice? If you find that there are differences explain why they exist.

Geoff

Geoff Goodenow, May 12, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 12, 2004

Time: 1745 (Later than usual due to busy late afternoon fishing)

Lat: 18 33N
Long: 158 20 W
Sky: Somewhat overcast this morning but a nice sunny day overall.
Air temp: 26.5 C
Barometer: 1013.5
Wind: 90 degrees at 10 knots
Relative humidity: 63.5%
Sea temp: 26.3 C
Depth: (forgot to check)
Sea condition: Good sized swells today kept us rocking and rolling pretty good throughout the afternoon and evening. But it wasn’t discomforting at all.

Scientific and Technical Log

Brought up 3 escolar and one wahoo on the longline this morning — not a very exciting time. The set was about 30 miles NE of Cross seamount. After retrieval we steamed south again through/over Cross and back to the area of success around Swordfish seamount to set the line tonight. Along the way we encountered several so called “bird piles”, congregations of birds on the water, indicative of fish below.   Passing over Cross we pulled in 5 mahi mahi, a small yellowfin tuna, and 4 bigeye tunas. It was a busy late afternoon. There’s lots of fish on ice for upcoming meals!

Returning now to the vision studies:

This afternoon Eva gave me the tools and an escolar eye and had me go through the procedures she follows to get what she needs for her studies. (Kylie basically does the same procedure but uses skipjack tunas). I’m not ready for microsurgery yet, but she gave my effort a thumbs up as I successfully secured the materials she needs for later study.

As the eye is taken from the animal marks are made on it with a scalpel to mark its orientation in the animal. After measuring eye cup and pupil size, the cornea and lens are removed and a bit more scraping and cleaning eventually leaves her with optic nerve, retina and vitreous to be preserved. This took me about 45 minutes to do.

Back at her university lab, the retina alone will be used. Sections of the retina will be mounted for microscopic examination. With it she can answer questions such as 1) what do the photoreceptor cells look like? 2) Is there a variety of types of receptors in their eye? 3) What is the density/distribution of receptors across the retina? In another study she makes other preps for microscopic examination to observe density of ganglia in the retina.

Personal Log

I had some ideas for tonight’s entry in this section, but this boat is rocking pretty hard right now and sitting in front of the computer is not particularly pleasant. I’m cutting things short tonight.

Geoff

Geoff Goodenow, May 11, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 11, 2004

Time: 1600

Lat: 18 49 N
Long: 158 03 W
Sky: A gray overcast morning with a couple of showers. Brightened through the late morning and stayed mostly(thin)overcast but enough sun to cast shadows and feel pretty intense. 90% cloud cover through most of daylight hours. Tonight the sky is star-filled — beautiful.

Air temp: 26.3 C
Barometer: 1011.9
Wind: 100 degrees at 8 knots
Relative humidity: 66.9%
Sea temp: 26.7 C
Depth: 3333 m

Sea: A bit of chop especially this morning when wind seemed stronger. There were a couple of splashes onto the deck as we brought in the line this morning. Still some whitecaps this afternoon; well settled this evening.

Salinity: 34.4 (I thought some might be wondering; it has been consistent throughout.)

Scientific and Technical Log

This morning we brought in several escolar (none scoring better than 4 as they belly flopped to the surface), a yellowfin tuna which was tagged and released, and three blue sharks (one was kept and two were returned after blood samples and a couple remoras were secured). Shark wrestling is getting to be routine. Since then we have been steaming northeast beyond Cross Seamount. At 2000 we are at Lat 19 10N and Long 157 45 W as we begin the set.

On minor correction: sharks and other big fish brought on board are hoisted by human muscle using a block and tackle (not a mechanical winch as stated previously)

Kerstin Fritsches from the University of Queensland in Brisbane, Australia is working on vision studies of the fish. Her husband, Steven Evill (often affectionately referred to as Dr. Evil) assists as do three graduate students, Rickard and Eva from Sweden, and Kylie, also from Brisbane. It is for these studies that the eyes are taken from the animals. I will attempt to explain some practical applications of their studies and give you a sense of the kinds of work being done on board. I will do this in several editions of the log — not all at once. So to start —

Fishes, depending on species may use a variety of senses to know their environment. Scent, for example, may allow them to home in on prey.   While research goes on by others to analyze other sensory structures and abilities, Kerstin’s work is about vision. The attempt is being made to find out just what these different fishes are able to see. Do they see differently and, if so, how so? The practical application for longline fisheries, a very indiscriminate practice, is to eliminate by-catch. This can help protect endangered species and make longlining more cost and time efficient by finding ways to attract only economically valued species.

The water column is visually quite a varied environment. Longer wavelengths of red light are essentially filtered out and gone within the first 50 meters below the surface while shorter wavelengths in the blue range penetrate the depths. But imagine hanging out, living, and hunting at 600 meters as some of these fish do, in daytime light levels the equivalent of a starry night at the surface. Some such as swordfish and bigeye tuna come toward the surface at night keeping their exposure to light levels constant. Imagine your life spent in light levels no greater than that of a starlit night. What adaptations do these animals have to accommodate such a lifestyle? What are different parts of the visual apparatus doing in these animals? In order to help uncover answers to these and other questions, three kinds of projects are going on here.

When a live fish of desired species comes aboard, it is first killed then its eyes are taken. Kerstin and Rickard must have living tissue from the retina for their studies. They have about 20 minutes in which to get the tissue they need into a special oxygen-rich solution in which the tissues will be good for 6-8 hours. Steven works with lenses which do tend to cloud over time, but he is able to easily accomplish his work before that happens. For Eva and Kylie there is no rush as their samples, retinas and eyes with only lenses removed, are destined to be preserved for later study at home. I’ll pick up from here tomorrow with details about specific aspects of the work on vision. In preparation you might look up what the retina and lens of the eye do.

Personal Log

I observed our hitchhiking birds in a new feeding maneuver this morning. A bunch of flying fish took to the air and were happily gliding along. Our friends took after them and approaching from the rear snatched them out of the air.

Filling in the non-fishing time gaps: Last night I interviewed Eva about her part of the vision studies and this afternoon Rickard took me through his experiments. At home in Sweden he does vision studies on insects, moths and butterflies in particular. I am also reading Adam’s Navel which I can recommend to those with an interest in human biology written in an interesting non-technical and often humorous style. And it is often nice to find some shade, a comfortable deck chair and with a beverage in hand stare across that wide, blue expanse of water.

The days pass quickly.

Goodenow 5-11-04 sunset
Sunset from NOAA Ship OSCAR ELTON SETTE.

Questions:

I am happy to report that we are eating quite well on our voyage, but that was not the case for early voyagers across the seas. At times they might have had plenty to fill their stomachs, but at the same time lack a balanced diet. Because of this, one condition the mariners suffered was scurvy. What are the symptoms/problems associated with that condition? What can be done to prevent it? See if you can find out when and how the solution to the problem was discovered.

Geoff

Geoff Goodenow, May 10, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 10, 2004

Time: 1600

Lat: 18 41 N
Long: 158 19 W
Sky: Sunshine with scattered cumulus; beautiful day.
Air temp: 27.3 C
Barometer: 1010.92
Wind: 68 degrees at 8 Knots
Relative humidity: 47.9%
Sea temp: 27.1 C
Depth: 1674m (at 1800 hours, Lat 18 25N, Long 158 27W)
Sea: A few white caps tonight. What might they foretell?

Science and Technology Log

Pretty good day on the line. We tagged a yellowfin tuna (on board) and a broadbill swordfish (in the water). In the latter case, the tag was attached by sort of harpooning it into the animal from deck. We also pulled in a snakefish (head only), a big eye tuna, 2 escolar, a barracuda (of no interest so simply cut off the line) and 3 blue sharks. One was too large to safely bring aboard; it was cut loose. The two others were brought on board. From one we took blood and fin clips after which it was released. One fish was brought in by trolling today.

As you have noticed water temperature here would be quite comfortable for us (but we are not taking afternoon swims). Rich explained to me that here there is mixing of the surface layers such that the surface temps. I have been reporting would apply to a depth of about 100 meters. Then between there and 400 meters we would see about a 10 degree C drop. While some fish stay in the upper layers others hang in the depths or make regular vertical transgressions across these zones.

Fish are generally regarded as having body temperature at or very near ambient. Any heat produced in the muscles by aerobic respiration is picked up by the blood and circulated through the gills where that heat is dumped efficiently to the environment. Some saltwater fish (no freshwater ones) including tunas and some sharks have developed a kind of heat exchange system. Heat from venous blood is passed to arterial flow in order to keep certain muscles and organs above ambient temp. by as much as 20 degrees C in large fish. This allows body tissues and organs to work more efficiently.

Billfish such as swordfish also have a heat exchange system but it is located only around the eye and brain. Here certain eye muscle is reduced to little more than a container for mitochondria which generate lots of heat. The heat exchange system then only serves this region of the body keeping it above water temp. Still busy at Cross Seamount. The fishermen must be having a big time up there. We are setting at Swordfish again tonight. (Lat 18 17N Long 158 22W at finish of set)

Personal Log

Those oily escolar are not being kept for consumption. This morning we took one’s eyes and made a short incision along the belly just to take some muscle tissue In returning the escolar bodies to the sea I have scored their diving entries 1-10 as in competitive events. Most have been dropped straight in, but this morning I thought of trying something with a higher difficulty factor — a one and half back flip with tail entry. But on its first rotation, a bit of the entrails was ejected shipward striking me on the shoulder before falling to the deck. Unfortunately, this was not captured on film for replay tonight on “Funniest Ship Videos”, but for those present, it provided a good bit of humor to start the morning. Hereafter, we might just stay with the less ambitious dives. Spectators were glad it was I and not they.

Later I made my debut as a shark wrestler. As a rookie I was given the tail end. Even though the blues are comparatively tame once on board, the strength in the animal’s body was very evident as it tried to move – – not so sure I care to deal with the other end of these babies!

Goodenow 5-10-04 blue shark
TAS Geoff Goodenow and a blue shark.

Questions:

This question relates to paragraph two of the science log. What is the thermocline within a body of water? How would you expect a temperature profile to change through the seasons in a deep lake in central Pennsylvania?

Any questions from you folks???

Geoff

Geoff Goodenow, May 9, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 9, 2004

Time: 1600

Lat: 18 39 N
Long: 158 17 W
Sky: A few more cumulus clouds around today (40% cover) but they didn’t seem to get in the way of the sun too often. Some thin stratus and cirrus around too.
Air temp: 26 C
Barometer: 1011.5
Wind: 120 degrees at 3.5 Knots
Relative humidity: 56 %
Sea temp: 27.1 C
Depth: 959.3 m

The sea was very,very smooth throughout the day.

Science and Technology Log

The line last night was put out at Swordfish Seamount (500 meters deep), about 35 miles south of Cross. It was a bit longer than usual. Longline retrieval began 0800 and was not complete until 1130. Both the length and our better fortune accounted for the longer effort. We brought in 7 on the line today including 4 sharks. Species included the following: 1 snakefish (Gempylus serpens – 104 cm long and about 7 cm wide with a big eye, pointy snout and lined with very sharp teeth– dead), oceanic white tipped shark (Carcharhinus longimanus) alive, 157 cm and nasty; a blue shark (Prionace glauca), alive, 132 cm and 32.5 kg, rather docile onboard, very pretty coloration — grayish belly softly blending to a blue dorsally; a big eye thresher shark (Alopias superciliosus — love that name) a bit of life in him but not much, 136 cm + tailfin, 51 kg, its curved tail fin nearly the length of his body; a silky shark (   ?   ) alive; an ono or wahoo, a dolphinfish and an escolar. I took some samples of blue shark and thresher shark teeth. A pretty exciting and busy morning. For most of these fish their fate in our hands was the same as usual.   But the real excitement was bringing on the live sharks. As they are drawn near the ship, netting held in place on a 3 foot by 6 foot rectangular metal frame is lower to the water by a winch. The fish is brought onto it and hoisted aboard. There are a few seconds of near terror as this thrashing animal hits the deck wielding danger at both ends of its body. A mattress like cover is thrown over each end and weighted down by human bodies (mine was not one of them today, but I’ll take my turn eventually; how many people do you know who have ridden a shark?).

The oceanic white and the silky were tagged with the pop ups. To do this a hole is drilled through the base of the dorsal fin. Line looped through that hole attaches the pop up to the animal. Fin clips and blood samples (if possible) are taken as are any remoras attached to the sharks. Then another moment of fear — restraints are withdrawn and animal is sent overboard as quickly as possible. Description of the satellite pop up tags: Each is about 12 inches tall. At the base is a light sensor, above that a cylindrical housing about 1 inch diameter, next a swollen area about 1.75 inch diameter (the pressure sensor) above which is an antenna about 6 inches long.   Each costs about $4000.00 including about $300 satellite time to upload data. Since a signal cannot be sent through seawater to the satellite, the units acquire and store data until a preset pop up date (8 months is about max given battery power of the unit). Then they are released automatically, pop to the surface, find a satellite and dump info to it. The system allows us to track fishes vertical movements (by pressure changes) and horizontal movements by measuring ambient light levels. The latter tells us daylength which can be used to estimate latitude to perhaps within a degree and time of dusk and dawn, which when compared to Greenwich can indicate longitude.

But what if the animal dies before the 8 months are passed? If the animal is headed to the depths, at 1200 meters pressure causes release of the pop up. If no vertical change is detected over 4 days (animal has died in shallow water), they release. Other things can happen that disable the pop ups. They might get broken or eaten by other animals. Only about i in 3 tagged swordfish and big eye thresher sharks are heard from if tagged. Those animals go surface to 600 meters often and rapidly subjecting tags to quick temperature and pressure changes that might disrupt operation of the device. In spite of the obstacles, data is gathered from about 60% of the pop up tags deployed. An alternative is small archival tags that get implanted right onto the animal. These cost only $800 and have much greater storage capacity than pop ups so can provide much more data. However, these must be recovered — the fish have to be recaught in order to get the info from the tag. That’s a tough order in this big ocean and recovery rate is indeed low. Setting longline again tonight in same area. At 2042 we are at lat 18 16 N and long 158 27 W.

Personal Log

Last night was spectacular. Brilliant stars horizon to horizon — a star show above, including the Southern Cross, that was equaled in beauty and wonder by the light show in the water. Bioluminescent organisms were ablaze off stern. It looked like the Milky Way in the water but with the stars turning on and off and swirling about in a frenzy. Some were mere points of light, sometimes things flashed as a light bulb going quickly on and off, and once in a while a ghostly basketball sized sphere tumbled through the view. It was hard to know whether to look up or down for fear of missing the next dazzling event.

And yes, there was a small crowd at the bow to admire the moonrise at about 2345. The ship as always held its position near the longline set. As such we are sort of at the mercy of the sea, just rocking and rolling as it moves beneath us. It is to me a very pleasant motion, one that just rocks you gently to sleep. I have never been on a cruise ship, but friends who have tell me there is no (or little) sense of motion to the ship. Perhaps this is comforting to some, but I like the total experience (within reasonable limits, of course) and these last two nights have been perfect in all respects. I am handing off my duties as brake and bait man to others this evening so that I might digest and organize some of the info passed to me by Kerstin and others in the last couple days.

Questions:

Here are a couple relating to ocean currents. Look at a chart that shows ocean currents along the US east coast (southern and mid-Atlantic states) and for the US west coast (Washington to California). What is the general direction of the flow along each coast? Along which coast, especially in summer, would you expect ocean water to be warmer? Why?

I have given you daily temperature readings for the sea water here at about 18 degrees north. The Galapagos Islands straddle the equator far to the east of here off the west coast of South America. You would most likely expect the water there to be warmer on average than around the Hawaiian Islands. Is it? If not, what accounts for the difference?

Happy Mother’s Day,

Geoff

Geoff Goodenow, May 8, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 8, 2004

Time: 1820 (I’m late today)

Lat: 18 12 N
Long: 158 26 W
Sky: beautiful day; blue sky with scattered cumulus
Air temp: 25.9 C
Barometer: 1011.9
Wind: 70 degrees at 6 knots
Relative humidity: 52%
Sea temp: 27 C
Depth: 3571 m

Scientific and Technical Log

The longline brought in just two escolar (Lepidocybium flavobrunneum), an oily tuna (not ones we keep for eating) that tends to live rather deep. It is a dark colored fish unlike the shallower water tunas and mahi we have brought up which are nicely (sometimes brilliantly) colored. Its eye is very large and reflective like a cat’s eye though silvery. It is quite striking. So anyway, a bit of excitement there, and I got to see a species new to me. I don’t think I gave any description of the longline retrieval yet.   The ship maintains a course to keep the line perhaps 30-40 degrees off port side. The line comes up midship over a pulley at the spool and is wound onto the spool. As leaders come up they are unclipped at the pulley and passed to others who remove bait and return hooks, leaders and clips to storage barrel. If a fish comes on, the spool is stopped until it is landed and removed from the retrieval area. It is a challenge for crew on the bridge to maintain the proper course for the ship with respect to the line. Because the ship is moving slowly during the process and the process must be stopped for fish or entanglements, recovery of the line takes much longer than the set. I don’t think we’ve done it in less than 2 hours. Nothing came up by trolling today and no plankton tows were done.   Tonight we are south of Cross Seamount (at 2000 we are at 18 08 N, 158 27 W) to set the line. Again we are not at Cross because of another boat’s presence. I’m the starter on the bait box tonight. I hope I can fulfill the duties, after all I’m a rookie and used to coming in only as the closer so far. I guess they’ll try anything to change our luck.

Personal Log

After completing my log last night at about 2030 I went to an upper deck where we have strung a hammock. I was a beautiful starry night — the clearest we have had. A warm gentle wind blew over a sea rolling under us as one foot swells. The bright orange waning gibbous moon rose 20 minutes later a cast its long shimmering light across the water as it rose higher. The Big Dipper was easily apparent pointing toward Polaris only 18 degrees or so above the horizon. As new constellations took their place above the eastern horizon a couple of meteors streaked by. I was reluctant to leave the scene for my cabin. I made the mistake of telling folks about it today; there could be some competition for that hammock tonight!

In preparation for upcoming editions of the log I spent an hour or so with Kerstin discussing her work with vision in these pelagic fishes. Wow! I’ll be sorting that out for awhile — very interesting stuff. I finished a book, The Great Biologists, written in 1932. Obviously many more recent greats are not included, but I enjoyed reading about the men included from a 1932 perspective. It is of interest to me to learn more of the impact of particular work at its time in history and of the personalities of the men themselves. It adds some new dimensions to teaching of biology that might captivate a few students as bits and pieces can be appropriately included.   We had a small group of dolphins leaping high as they passed the boat.   Flying fish are a common sight; crewmen report that often they are found on deck in the morning. We have a pair of birds, a type of booby I believe, hitching a ride with us. They are leaving their mark all over the bow which is not pleasing the crew and have thus been dubbed “John’s nemesis”. But for those of us who don’t have to swab the deck, it is neat to have them around and to watch them feed. From their perch they seem to spot a fish leap from the water and take off. They follow the fish 10-20 feet over the water as it swims and at an instant make a fast dive for it and quickly take flight again. Many of us had our supper on the deck tonight — my first mid-ocean picnic. A clear horizon at sunset gave me another view of the green flash. Venus (I think) set about 2135 just as set of the longline finished. And as predicted, there is a crowd gathering on the bow for moonrise.

Question:

There is no “south pole star” as we think of Polaris as our “north pole star”. How can you use the Southern Cross to point you in the direction of the south pole?

Off to join the bow party,

Geoff

Geoff Goodenow, May 7, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 7, 2004

Time: 1615
Lat: 18 41N
Long: 158 34W
Sky: scattered cumulus clouds; bright and sunny
Air temp: 26.6 C
Barometer: 1012.04
Wind: 87 degrees at knots 6.7 knots
Relative humidity: 50%
Sea temp: 26 C
Depth: 4558 m

Scientific and Technical Log

We left the shelter of the Kona coast and steamed all night toward Cross seamount arriving there between 0900 and 1000 hours. We trolled a couple lines across it for several hours but pulled in no fish. This is where we wanted to lay the line tonight, but in communicating with a fishing vessel in the area, that crew indicated they have 30 miles of line in the water now. Protocol, I presume, says it’s their place for now so we will respect that and go elsewhere.

Elsewhere is another seamount about 45 miles west and slightly north of Cross. But why are we hanging out at these things called seamounts? Rich (remember, chief scientist) explained to me that above seamounts are local currents called Taylor Columns that sort of swirl around above these features. Small fish tend to concentrate within these and, of course, that attracts the big boys. Cross is well known for that effect due to its shallowness (182 fathoms). The one we are going to is much deeper and consequently does not have as dramatic an impact as Cross.

Here is a bit about a couple tools that we are not using on this ship for this mission. One is called the Acoustic Doppler Current Profiler. It sends out a high frequency signal and allows determination of current direction and speed under the ship. Another is the CTD (conductivity, temperature and depth). This circular array of water sampling bottles is lowered into the water. Temperature and conductivity are monitored and recorded continuously as it moves through the water. On ascent, bottles can be triggered to close at specific depths thereby bringing water samples from different levels in the water column for further testing on board.

Personal Log

More about life on the ship:

There will be no shore time during this trip, but there are several forms of entertainment aboard. Just listening to crew members speak of other places and projects around the globe they have participated in on NOAA vessels is fascinating. There is a small work out room and a couple rooms where we can view videos/cds or watch TV. There is quite a library of viewing materials and books available. Some crew members have their own TVs and stereo equipment in their cabins. On the more mundane side, there is a laundry to do personal items and once a week stewards give us a change of linens and towels.

Communication with home:

We download and upload email three times per day: 0700, 1300, and 1900 hours. Phone calls can be made but they are expensive and generally reserved for emergencies. The ship’s total communications bill can run up to $10,000 per month. So far, a typical day for me has been something like this after breakfast (0700-0800): collect samples from longline catch, assist cleanup, cleanup self, lunch (1100-1200). Check emails, enter some notes to log until tiring of that, R&R (reading, snoozing on shaded deck, interview someone or observe their work) and help with any fish coming in on troll lines. Dinner (1630-1730), R&R, input to log, help set longline (2000 -2130), finish the day’s log and send to Washington (that makes me sound pretty important doesn’t it?), R&R, and to bed 2300-2400 hours.

Since we did not set a line last night and no fish came on by trolling today was kind of slow. I used the time to have a tour of the bridge by executive officer Sarah and electrical technician, John. It was very interesting to learn more about the ship’s scientific monitoring abilities (as briefly and incompletely described above), navigation and safety features for times of distress.

Crew assisted me to string my swordfish bills so to drag along behind us. This is done to get some of the flesh and oils out of them. I am told that this will take a week or more to accomplish.

Questions:

Estimate the distance in miles between yesterday’s and today’s position (today at 2018 hours we are at Lat 18 53 N and Long 158.59 W).

What is a seamount?

Looking at the nautical chart on the bridge I can see the top of Cross seamount is at (a shallow) 182 fathoms. We are headed to one that is 406 fathoms. Between the two the chart shows a maximum depth of 2585 fathoms. What is the depth of the water over the seamounts and the deepest point between them in feet?

Geoff

Geoff Goodenow, May 6, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 6, 2004

Local Time: 1600
Lat: 19 19 N
Long: 155 57 W
Sky: thin overcast
Air temp: 25.5 C
Barometer: 1011.28
Wind: 348 degrees at 9 knots
Relative humidity: 59.9
Sea temp: 26.6 C
Depth: 1997 m

Technical and Scientific Log

Longline retrieval began as usual at 800 hours (Can you tell I’m getting more than just my sea legs?). Everyone was feeling optimistic as various (secret) measures were employed through the night to ward off another disappointing haul. We did begin with a bit of bad luck as the line somehow got under the hull. (Obviously we have a few kinks to work out of the rituals.) Rich indicated that we had lost a couple big ones because of that. But we did land 4 fish – 2 dophinfish, alive, and 2 broadbill swordfish (Xiphias gladius) both dead on arrival. The latter were young fish just over 100 cm and each with a bill of about 52 cm which I collected. Hoping to get them home, but airline security might have something to say about that. We also brought on a couple yellowfin and a skipjack tuna while trolling through the afternoon and evening.

Yesterday I gave you an idea as to how Michele will use the blood, liver and tissue samples she is collecting. I am gathering muscle tissue samples for Brittany who is a grad student at Univ. of Hawaii, I believe. Those samples are to be used for stable isotope analysis of these pelagic fishes. I cannot recall enough about this and no one on board can help me give you an explanation of that work, but I will get details eventually. Let it be enough for now to say that the data collected should provide info on the trophic history and possible migration patterns of these fishes.

Some pilot whales and dolphins swam with us briefly today. No day time plankton tows today.

The depth of our longline sets the past couple nights has been about 40 meters. Depth of set depends on what you are trying to catch and the lunar cycle. Rich suggests that perhaps we should have been deeper. On full moon, for example, you would set deeper than at new moon. The fish tend to adjust their depth to maintain a rather constant level of light.

We are not setting the longline tonight. Winds have calmed outside of this area so we are going to head away through the night in search of happier hunting grounds (or should I say “fishing waters?”)

Personal Log

Given “gentle” seas, life on this vessel is very comfortable. Of course, gentle is a relative term and one that I hope in short time comes to be useful to me in situations that currently bring on thoughts like “why did I ever decide to do this?” (That only happened Sunday into early Monday; I’m having a great time since then.) Today I want to tell a bit what it’s like on board.

Most interior space in the ship is air conditioned; only stairwells are not. This contrasts quite favorably to the first research ship I went on. I remember very well the mens’ quarters — hot, hot, hot as it was just forward of the engine room, always smelling of diesel, “bunks” 3 high with about a foot of head room, and only a red lamp for lighting.

Here,I share a room about midship just above the main deck with Rickard, a Swedish graduate student working with Kerstin on the vision studies. Our stateroom is about 10X15 feet. It is carpeted, we have bunk beds, a desk, sink, closet and a window. We share a toilet and shower with one other person, a crew member, in the adjoining room. I think all of the science personnel are on this deck.

Meals/food service are excellent. The galley is always open and we may help ourselves to a variety of treats, snacks and real food at any time of day. For breakfast, cold cereals, bread, fruits, hot drinks and juices are available and the galley staff will prepare eggs, pancakes, meats, hot cereals as to your order.

Lunch and supper always include a salad bar and your choice of 2 entrees and a variety of side dishes. Not that we are on a strictly fish diet, but all of the fish that we have taken for specimens are immediately iced down and saved for the cooks who have many ways of making them a treat for the palate. Tonight featured freshly caught ahi cooked on a grill on deck.

Last night’s sunset was a beauty. I saw for the first time, the “green flash”.

Questions

Lets turn to the atmosphere for a few questions. If you are keeping up with answering the questions (or just look above), you have an idea of the latitude of the islands. What is the name, including direction, of the global wind belt the Hawaiian islands lie within?

The ship has been sailing along the west coast of the big island, Hawaii. Is this the windward or the leeward side of the island? The heights of Maui and Hawaii help create the weather observed on different parts of the islands. Look at a map of Hawaii and find the towns, Hilo and Kona. Which of the two would you predict to have the drier climate? Why? Check some other sources for precipitation records to find out if you are correct.

You can try the same for Maui. Hana is on the east side and Lahaina is on the west. Make some predictions as to the relative climates of each town then check other sources of climate data to see if you are correct.

If you have any questions, please send them my way.

Geoff

Geoff Goodenow, May 5, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 5, 2004

These data noted at about 1600 hours:

Lat: 19 27
Long: 156 02
Sky: Sunshine; clouds hanging over coastline
Air temp: 26C
Barometer: 1011.0
Wind: 290 at 11 knots
Relative humidity: 55%
Sea temp: 26.7C
Depth: 2392 m

Science and Technology Log

Retrieving the longline takes about 2.5 hours. This morning it brought in one mahi mahi (dolphinfish) alive, and one bigeye tuna that had died on the line. Trolling afterwards brought in 3 more fish including one big eye and two yellowfin tunas. Samples were collected as yesterday.

I will give you a better idea over the next few reports as to how different samples are going to be used. I’ll start with the blood serum, liver and muscle tissue samples being taken by Michele who is from Virginia Institute of Marine Sciences (VIMS).

The blood serum contains a compound called vitellogenin. It is a precursor to a protein needed for egg yolk production. It is typically in relatively high levels in females. Environmental stresses such as persistent organic pollutants (POPs) which include PCBs, pesticides such as DDT and chemical flame retardants among others, can elevate vitellogenin levels noticeably in males. A heightened level suggests that their immune system is compromised. Serum will be analyzed for levels of that compound.

Liver, muscle tissue and serum will be analyzed by gas chromatography and mass spectrometry for the presence of POPs. From all of this it might become possible to determine if there is a correlation between level of POP and presence of vitellogenin and therefore stress on the immune system.

Surface plankton tows were done this afternoon, and tows at depth (60 meters)will take place tonight after longline is set. Tonight’s set of the longline will be north to south just a few miles west of where the first two were set. Both of those were set along a north to south line which overlapped by about 1/3. (They were not 20 miles apart as I stated yesterday) I learned that the line was intentionally cut last night probably by some fishermen who felt this line intruded upon their territory. We did recover all of our gear.

Personal Log

It was not until nearly the end of the longline recovery that the two fish were hauled in. Consequently, it was a long morning and as it was looking totally unproductive, Chris, our physician assistant/medical officer, suggested that the Teacher at Sea program was really a way to get people on board in case a sacrifice is needed to make the waters more productive. No wonder my students were encouraging me to participate. But later I heard that it was bad luck for our fishing to eat bananas on deck so eyes turned toward several who were in violation and ignoring that doctrine. I wonder what it will be tomorrow.

The big eye which came aboard was not identified with certainty until opened. Striations on its liver, I presume not present in other tuna species (certainly not in all) confirmed it to be big eye. I asked chief scientist, Rich Brill, the significance of those and he explained in some detail that they are part of a mechanism for keeping the liver warm. I will attempt to explain that mechanism another time. It is a neat piece of plumbing for sure.

I also observed Steve as he used a laser to determine the focal point of a big eye’s lens for each color of light. This, too, is something I will try to explain at another time. The big eye tuna’s lens was nearly spherical and about 3 cm diameter.

For a change of pace, here are a few bits about the ship that the captain shared with me yesterday. This was built for the navy in the 1980s as a listening ship for submarines. It was refitted for research in Jacksonville, FL then brought here through the Panama Canal. It can store about 30 days of food and enough fuel (160,000 gallons of diesel) to stay out comfortably for about 50 days. We can make our own fresh water at a rate of approximately 3000 gal/day.

Questions:

How do eruptions of Hawaiian volcanoes compare to those like Mount St. Helens, for example?

The height of these volcanic islands affects wind speeds and sea conditions as noted yesterday. How much above sea level is the highest point on Maui? on Hawaii? If you consider its base on the ocean floor as part of its overall height, how tall is the highest peak on Hawaii? Is that taller than Mt. Everest?

It’s nice to be hearing from some of you; thanks for writing. That’s all for now.

Geoff

Geoff Goodenow, May 4, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 4, 2004

Latitude: 19 19
Longitude 156 05
Sunny with scattered clouds
Air temp 26C
Barometer 1013.75
Wind 130 degrees at 9 knots
Relative humidity 59%
Sea temp 26.5
Ocean depth 2770 meters

Scientific and Technical Log

This morning we hauled in the longline. This is the first time this team has used the larger hooks and herring (as opposed to squid) for bait as a means of avoiding taking of turtles. In that sense, we had tremendous success — no turtles. But on the downside, we caught only two fish — a mahi mahi (Coryphaena hippurus),still alive, and a wahoo (Acanthocybium solandri) which had died on the line. Eyes, liver, blood, and muscle tissue were taken from both. For the experiments on vision that Kerstin is doing only live eyes are useful.

Some surface plankton tows were conducted over a couple hours this afternoon. Several eggs were gathered and preserved. More tows will be conducted after the longline is set.

When nothing else was going on, two lines were trolled off the stern.   This method yielded 4 fish including bigeye tuna (Thunnus obesus), skipjack tuna (Katsuwanus pelamis) and yellowfin tuna (T. albacares). These were sampled as above and in addition we kept stomachs for later study of contents. So 400 hooks sitting in the longline for 12 hours so far isn’t looking nearly as effective as a good old fishing line and a lure.

Tonight at 8PM we again set the longline, this one about 20 miles north of last night’s set. Because the winds are still very strong outside the shelter of the big island we are a bit restricted as to where we can go to fish right now. Winds are to becomes calmer over the next 48 hours.

Here is the longline set up in more detail than before. A spool holding about 40 miles of line sits parallel to length of ship on port side approx. mid-ship. Line feeds off to a pully along side of ship which directs line 90 degrees to stern. Via a couple more pullies the line goes to starboard side of stern. A team on the stern takes care of it from here. At center is person with basket of hooks attached to metal or monofilament leads with a clip on the other end. He withdraws the hook and clip, passing the hook to his right and the clip to his left while pulling the leader from the basket. The hook is baited, while the clip is passed to the next man to the left. On a signal about every 12 seconds, the leader is clipped to the line as it pours off the stern and the baited hook is tossed. A light stick goes on every fourth leader or so to attract fish. Better luck to us tonight!

Personal Log

My role this morning as line was retrieved was to record information (catch location, length, weight, sex) about each fish brought aboard and to assist in gathering muscle tissue samples for Brittany who is not present on this cruise as well as for others. Again I was brake man and bait boy on the longline tonight.

The afternoon hours seem to be those of least to do unless the troll lines are hot. Today I felt settled enough in the stomach to dare to enter a very confined space and enjoy my first shower at sea. Then I sought out a shady spot on the upper deck where I parked myself for a bit of reading. The wind was light and sea calm; I had a nice view of the west side of Hawaii. The lush, green slopes were interrupted in several places by lava flows. I had the opportunity to talk with the captain about many aspects of the ship, weather, ocean currents much of which I will try to incorporate into upcoming reports. But I was particularly interested in our rough weather of Sunday and he explained it as follows. As we crossed open water we were encountering winds of 20-25 knots, but as we entered the channel between Maui and Hawaii wind speeds were 35-40 knots. The reason for the increase is that both islands have very high mountains so the air is being funneled through a rather narrow slot and speeding up. This produced 10-12 foot waves with very short periods, and the ability to create a lot of discomfort in those at sea.

Tonight as we work, the light of a full (?) moon dances on the water.

Question:

One more (easy) location question for the astronomy buffs: Our latitude today is about 19 degrees north. What is the altitude of the North star (Polaris) as we view it from here? What is its altitude at your latitude?

OK, so we know where we are, but how did the Hawaiian islands get here? All of these islands are of volcanic origin. The Hotspot theory explains how the islands formed here. Briefly describe this theory.

Which of the islands (easternmost or westernmost) are the oldest in the Hawaiian Island chain? How long ago are the oldest islands estimated to have formed?

The Galapagos Islands also formed according to the hotspot theory. Which islands in that chain are oldest (eastern or western islands)? How old are the oldest of those islands?

For those who are wondering, yes, I do expect to be able to post some pictures, but we are not quite set up yet at this end to do so. That’s all for now,

Geoff

Geoff Goodenow, May 3, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 3, 2004

Technical and Scientific Log

Due to the rough sea all work scheduled for last night as well as a troll (net) for 6AM was cancelled. As we steamed eastward a couple of lines were trolled and did bring in two fish, a mahi mahi and ono . Both fish were kept. Their eyes were dissected for lens and retina and muscle samples were taken.

Goodenow mahi mahi
TAS Geoff Goodenow shows off a mahi mahi.

I learned more of the eye studies today from Kerstin. Longlining has taken a toll on sea turtle populations. Recently a judge ordered the practice stopped in Hawaiian waters due to the turtle by-catch. One way to avoid turtles is to utilize larger hooks and bait that turtles don’t like. As we set lines on this cruise we are employing those techniques. But Kerstin’s work with eyes is an attempt to learn of different sensory abilities in the different animals to see if those differences can be used to make catch by longline more selective. A web search under longlining will lead you to some articles about the by-catch issues.

Plankton tow — We did one at surface for an hour then one at depth for another hour. It is preferred to tow through visible surface “slicks” where target larvae (those of billfish) like to gather. No slicks were found as they were probably broken up in last night’s rough water.

These samples are being gathered (1) for the eye studies and (2) to be used to see if a genetic marker can be found that will be useful in identifying species in the larval stage. If found, identification will be much easier than doing so morphologically and will make reproductive studies easier.

Tonight at 8PM we set our first baited longline. I started at the spool with “brake shoe” in hand poised for trouble that never came. After an hour or so of that I was “promoted” to bait boy–in the heart of the action! I kept the bait box full for Bruce as he attached the herring through the eyes to hooks. We set 180 pounds of fish on 400 hooks along 9 miles of line. Our leaders were metal tonight as our targets, sharks, can’t bite through the metal. Monofilament is used when the target is billfish because the metal leaders damage those animals in ways that monofilament does not. Every so often a temperature/depth recorder is attached to the line. About every 4th hook also gets a light stick attached as an attractant for fish. Buoys go over at regular intervals to help hold the line at desired depth and of course to mark its position. We will pick up the line after breakfast and see how well our efforts are rewarded.

Personal Log

I was none too excited about getting out of bed this morning and leaving the prone position which had proved to be the most effective at preventing unpleasantries. But I had to make the move. The sea was still rough and sure enough that memorable sensation returned and put me on my knees before the toilet bowl once again. A couple of dry gags settled me, but I immediately headed to our physician assistant for appropriate meds. We found much calmer water on the west side of Hawaii and those of us who were quite unsettled this morning found our comfort growing through the day. Someone said swells/waves last night were 10-12 feet and coming from various directions. No wonder I felt as though I had been in a washing machine.

Question:

How does the altitude of the sun (its angle above the horizon) at noon at 18 degrees north latitude compare with its altitude at 42 degrees north over the course of a year? To find out, use an analemma to find out the sun’s position with respect to the equator. Graph altitude (0-90 degrees) on the y axis and the 21st of each month on the x axis. Describe similarities and differences in the patterns.

Geoff Goodenow, May 2, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 2, 2004

Science and Technology Log

This morning we set sail at 10AM. After lunch and drills, the crew set out a longline of about 2 miles of un-baited hooks which were immediately retrieved. This was done as a test of equipment and to help crew get the rhythm of the procedure. I was asked to stand by the spool as line was fed to the stern. My role was to watch for any slackin the line, brake the spool to take up any slack or stop the spool if it tangled (bird nested). All went well on the test.

Scientists and their teams were busy setting up their respective labs and preparing for the work ahead. One team will be doing vision studies using retinas removed from selected animals. Muscle tissue and blood samples will be taken for other studies. Plankton tows will be done at daylight and night to collect specific types present at those different times of the day.

Some fish will be tagged and released. The pop up archival tags record an animal’s depth, latitude and longitudes and other data as it moves through the ocean over a specified period, perhaps 8 months. After that time, the tag automatically is released from the fish, pops to the surface and transmits its data to a satellite.

The longline was set to be deployed at 8PM, but due to rough seas that effort was cancelled. So as you can tell, this was a day of preparation, with the real science soon to come.

Personal Log

I arrived Friday, April 30 after nearly 23 waking hours, 5000 air miles and 10.5 air hours from Harrisburg, PA. It was not difficult to find comfort in my upper berth aboard the SETTE. On Saturday, I was up by 8AM, walked about Honolulu most of the day. I had brief tour of the ship with chief scientist Rich Brill. By Sunday, I felt well rested and comfortable at sea until after supper. By then things were a bit rough and most of supper and perhaps a bit of lunch came back up. But I slept well — horizontal felt best.

Question for Today:

Locaction, location, location:

Determine the change in latitude and longitude from your home to Honolulu. How many time zones are crossed? State the westernmost and easternmost longitudes of the entire Hawaiian Island chain. State the northernmost and southernmost latitudes of the Hawaiian Island chain.

Dr. Laura Brezinsky, April 20, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day12: Tuesday, April 20, 2004

Latitude: 52.47.97N
Longitude: 168 55.95

Weather: continuous clear
Visibility: 29.5-49.5 ft (Very High)
Wind direction: 109 degrees
Wind speed: 16 (m/s)
Sea wave height: up to 8 feet
Sea water temperature: 4.1 Degrees
Sea level pressure:97 mb

Science and Technology Log

Yesterday we tried to retrieve 2 moorings in the Alaska Stream but we couldn’t get a signal on the second one. Today we went back and tried again but still no signal. This could be do to a missing or damaged mooring. We will proceed to the next site and pick up another mooring and continue taking CTD readings on our way back to Dutch harbor. Projected arrival time is April 22 8:00 am.

Personal Log

The waves were up again last night and I am seriously looking forward to sleeping in a bed that doesn’t move. Tomorrow will be spent doing laundry, packing up equipment and generally getting ready to go into port. This is my last log for the trip.

Question of the Day: What is the Alaska Stream and how does it effect weather patterns?

Laura

Dr. Lauren Brezinsky, April 19, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day10: Monday, April 19, 2004

Latitude: 52.10.107N
Longitude: 168 11.925

Weather: continuous clear
Visibility: 29.5-49.5 ft (Very High)
Wind direction: 391 degrees
Wind speed: 16 (m/s)
Sea wave height :approximately 5-6 feet
Sea water temperature: 4.1 Degrees

Science and Technology Log

We successfully retrieved the 4 buoys in Amukta pass. Today we will pick up 2 of the 4 buoys in the Alaska stream and do before and after CTD readings. Normally we could do all 4 data points in a day but the ocean is so deep that it will take excessive time to do the CTDs. Tomorrow we will get the other 2 buoys and from there we have buoys in

Samulga pass and then into port in Dutch Harbor. Currently the predicted arrival is the night of the 21st

Personal log

Last night we all tossed in our bunks looking forward to a bed that doesn’t move. So far I have been fortunate not to have sea sickness, but others have not been as fortunate.

Question of the Day: Describe the physiology of motion sickness including a detailed description of the inner ear. What is the structure of the inner ear that connects directly with the central nervous system? What are some possible causes of congenital deafness, what new technologies are being used to treat deafness and what defects can be treated with these technologies?

Laura

Dr. Laura Brezinsky, April 18, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day 8: Sunday, April 18, 2004

Latitude: 52.28.03N
Longitude: 171 10.7

Weather: continuous clear
Visibility: 29.5-49.5 ft (Very High)
Wind direction: 285 degrees
Wind speed: 35 (m/s)
Sea wave height :up to 16 feet
Sea water temperature: 4.1 Degrees
Sea level pressure: 1007.5

Science and Technology Log

The above data is from 0800 this morning. Last night the weather came up but we continued out to Amukta pass to try and recover 4 buoys. Unfortunately the waves and wind were too big for operations. This morning we are hiding on the lee of a small Aleutian island tucked in between 3 volcanoes (see attached photo) waiting to see if the weather subsides. We are scheduled to arrive in Dutch Harbor on April 21 or 22 so we can wait here for a couple days in the hopes we can grab those buoys because that is our priority at this point. So, no CTD’s were done and no buoys recovered

Personal Log

Right before bed last night I made my nightly visit up to the bridge. The waves were pretty big and it was fun riding them way up high on the bridge with the knowledge that this boat has been in much worse conditions during is decades of service. After I left the bridge the captain did report seeing “green” water which happens when the waves get so big that they hit the windshield of the bridge so far down from the peak that you see green water.

OLYMPUS DIGITAL CAMERA

Laura

Dr. Laura Brezinsky, April 17, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day 9: Saturday, April 17, 2004

Latitude: 54.58.615
Longitude: 162.27.117

Weather: continuous clouds with drizzle
Visibility: 29.5-49.5 ft (Very High)
Wind direction: 181ees
Wind speed: 30m/s
Sea wave height: up to 20 feet
Sea level pressure: 996

Science and Technology Log

Last night we spent the entire night steaming south west down the Aleutian island chain, through the Unimak pass to the western side of the islands and past Dutch Harbor. Tonight we plan on picking up 4 moorings at Amukta pass and no new buoys will be deployed. The decision to move to the west side of the chain was made due to a small storm with 5 knot winds on the east side of the chain. If the weather improves we will move back over to the east side of the chain in a day or 2.

Personal Log

Last night I was awoken at 2:00 AM by some large waves that were tossing the boat (and me) back and forth. I kept thinking…”this boat has no centerboard” and “should I wake

up my roommate?” In the morning I discovered that my roommate was already awake and…this boat can take a lot more than what we saw last night. All of the tests are done with the centerboard up so we are still well within the limits of this boat. This journey has been an invaluable experience but I am very much looking forward to arriving in Dutch Harbor and seeing the wild horses that live there.

Question of the day: What are the factors that effect the formation of waves? How do the weather patterns differ between the Gulf of Alaska and the Bearing Sea

Laura

Dr. Laura Brezinsky, April 16, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day 7: Friday, April 16, 2004

Latitude: 55.11.03N
Longitude: 161 41.70

Weather: continuous clear
Visibility: 29.5-49.5 ft (Very High)
Wind direction: 125 degrees
Wind speed: 10 (m/s)
Sea level pressure: 24

Science and Technology Log

Last night we spent the entire night steaming south/west and this morning we are at Pavlov Bay where we will deploy a mooring. The weather report predicts 50 know winds which are too much for this boat to handle. The plan was to continue down the Aleutian island chain and pick up several moorings but if the weather turns out to be as predicted, we will come up with an alternative plan.

Personal Log

Last night we were in open water and the waves tossed us around all night. Both myself and my roommate got little sleep. Apparently though, the crew slept right through it. Today we are in very calm protected waters and it’s a sunny day with good visibility. We are working right in between Pavlov Volcano and some Aleutian islands and the contrast between the snow covered volcanoes on the starboard side and the relatively barren rock covered Aleutian islands on the port side creates a striking contrast.

Question of the day: Compare the formation process of the Aleutian volcanoes with that of the Hawaiian Volcanoes.

The larger volcano is Pavlov Volcano and the smaller one is Pavlov’s sister

This picture is an aleutian island across the straight from pavlov volcano
This picture is an aleutian island across the straight from pavlov volcano

Laura

Dr. Laura Brezinsky, April 15, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004 

Day 7: Thursday, April 15, 2004

Latitude: 57.40.47N
Longitude: 155 12.38

Weather: continuous clouds
Visibility: 29.5-49.5 ft (Very High)
Wind direction: 220 degrees
Wind speed: 11 (m/s)
Sea level pressure: 26

Science and Technology Log:

Yesterday afternoon we began to collect data on “line 8” which is a line that goes across the Shelikof Straight from Kodiak Island to the Aleutian Peninsula. This is a line of moorings that has been in place for many years. After servicing the moorings, we began transiting back and forth taking CTD readings. This operation will take approximately 24 hours at which time we will begin moving South/West down the Aleutian Island Chain. As part of “The Ring of Fire” The Aleutian Islands are volcanically active and they continue to erupt on a regular basis. According to one of the ship’s crew who has been on this ship for many years and has seen them erupt, these volcanoes are explosive unlike our Hawaiian Volcanoes. Personal log Last night the ship had a couple hours of down time and I got a chance to go fishing. No one actually caught anything, but I suppose that’s why they call it fishing. Although thousands of tourists and commercial fishers flock to Alaska every year to catch the many different species of Salmon, the fishery remains one of the most healthy and prolific in the country. This is probably due to the relative inaccessibility of much of the state in combination with strict regulations. Recently the practice of farming Atlantic Salmon

has increased, much to the dismay of conservation Biologists.

Question of the day: Describe how Atlantic Salmon are farmed and processed? What are the negative impacts related to the farming of Atlantic Salmon? Discuss potential impacts to wild populations as well as local impacts due to pollution.

Picture of bumper sticker.
Picture of bumper sticker.

Laura

Dr. Laura Brezinsky, April 14, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day 6: Wednesday, April 14, 2004

Latitude: 57.40.47N
Longitude: 155 12.38

Weather: continuous clouds
Visibility: 29.5-49.5 ft (Very High)
Wind direction: 220 degrees
Wind speed: 11 (m/s)
Sea level pressure: 26

Science and Technology Log

Last night we sailed south/west and this morning we are off the coast of the Alaska Peninsula in the vicinity of Katmai National Park. According to Carol Dewitt, one of the supervisors on this leg of the project, there have been an inordinate number of lost moorings on the GLOBEC line as compared to other moorings in this area. It has been suggested that this could possibly be due to long-line fishing interference but no definitive cause has been determined as of yet. Today we will recover and deploy another buoy and continue in a south westerly direction.

Personal log

Last night during my nightly visit to the bridge I discovered that the crew was closely observing 2 lights that were directly in our path. The concern was that they could possible be marker buoys for a long line and if we were to cross the line it could become entangled in our propeller. Fortunately the lights turned out to be a small boat and a marker for some rocks called “latex rocks”. There is only one captain (John Herring) on this boat and he cannot be on watch 24 hours a day. Often the driving of the boat is turned over to the other crew members including the XO (Executive office) as well as other less senior personnel such as the ensigns. After watching them all work I have complete confidence in their abilities, dedication and attention to detail.

Question of the day: What is long-line fishing and how is it impacting our fisheries? What regulations have been put in place to try and reduce negative impacts of long-liners?

Laura

Dr. Laura Brezinsky, April 13, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day 5: Tuesday, April 13, 2004

Latitude: 59.05.72N
Longitude: 151 00.14

Weather: continuous clouds
Wind direction: 60 degrees
Wind speed: 19m/s)
Sea wave height: less than 2 feet
Sea level pressure: 13mb
Cloud cover: Cumulus

Science and Technology Log

Yesterday we failed to retrieve the buoy that had lost its floaters but we did successfully deploy a new buoy. During the night the boat sailed south west to our present position off the coast of the southern end of the Kenai Peninsula. This morning we deployed another buoy and took CTD readings. We have one or2 more buoys to recover and deploy and they we will be picking up several buoys that will not be replaced because their projects have completed.

Personal Log

Last night at around midnight, the ship finally got an hour of down time and I got to fish. No one else was much interested so I was out there on the stern of the boat in the middle of the night watching the sea birds and hoping for a bite. I got to thinking about all the different types of birds out here and all their different strategies. Some stay here year round while others migrate to warmer waters and return.

Question of the day: What species of Plover migrates between Hawai`i and Alaska. Illustrate the migration patterns and summarize how those patterns have been elucidated.

Laura

Dr. Laura Brezinsky, April 12, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day 4: Monday, April 12, 2004

Latitude: 59.31.830N
Longitude: 149 10.28’W

Weather: clear Visibility: 29.5-49.5 ft (very high)
Wind direction: 355 degrees
Wind speed: 6 (m/s)
Sea wave height: virtually flat
Sea level pressure: 143mb
Cloud cover: Nimbostratus

Science and Technology Log

This morning we are off the coast of Seward. We have been having difficulty retrieving a mooring because it is not vertical in the water. At the base of the mooring there is a switch that releases the mooring from the anchor by remote control. The switch also has a sensor that tells the ship what the position of the mooring is. Apparently the mooring is horizontal in the water rather than vertical and that is likely the reason why we cannot
find it. The boat will return with a remote rover that will find and retrieve the mooring.

For now, we will continue on and get the next mooring which is closer in to the coast.

Laura waiting for a mooring.
Laura waiting for a mooring.

Personal Log

The seas are flat, the sun is shining and the coast is stunningly beautiful. We are close enough to land that I can see individual features. There is a very large coastal glacier directly inshore from us. I will try and look up the name of that glacier and report tomorrow on that.

Question of the day: What is the definition of a glacier? How are glaciers being used to track global change over geologic time?

Laura

Dr. Laura Brezinsky, April 10, 2004

NOAA Teacher at Sea
Laura Brezinsky
Aboard NOAA Ship Miller Freeman
April 8 – April 22, 2004

Day 1: Saturday, April 10, 2004
Foci Cruise, Leaving Kodiak Alaska on 4/08 and arriving in Dutch Harbor on 4/22

Latitude: 58.41.1690N
Longitude: 148 50.929’W
Cloud cover: partially sunny

Science and Technology log

This morning we are off the coast of the Kenai Peninsula near Seward Alaska. We retrieved and deployed a buoy at approximately 8 AM and will retrieve the next buoy in approximately 3 hours from that time. I interviewed my bunk mate Jennifer Key who is here conducting research on global circulation patterns. Her primary interest is the distribution of the dust from the Gobi desert and its effects on marine organisms. This is especially interesting to me because it is well known that dust from the Gobi Desert also provides significant levels of nutrients to the forests of Hawai’i.

Sunset at Kenai
Sunset at Kenai

Personal Log

Last night I learned how to not fall out of my bunk in 30 foot seas. Lets just say that it’s not very restful. This morning I learned what the crew does, they wedge a survival suit under the outside edge of the mattress. The waves have come down quite a bit making it a lot easier to get around. Question of the day: What air currents distribute dust from the Gobi Desert around the world and where is that dust likely to end up? Until tomorrow… Laura

Picture of the crew retrieving a mooring buoy
Picture of the crew retrieving a mooring buoy