Robert Oddo, August 10, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: August 10, 2009

Weather Data from the Bridge 
Outside Temperature 28.21oC
Relative Humidity 78.32%
Sea Surface Temperature 27.62oC
Barometric Pressure 1019.42 inches
Latitude 23 41.483 N Longitude 80 40.363 W

My last sunset from the Ronald Brown
My last sunset from the Ronald Brown

Personal Log 

I just finished watching my last sunset on the Ronald Brown and it is time that I reflect a little on this entire NOAA Teacher at Sea experience.  The cruise gave me a first-hand look at some of the important work that atmospheric scientists and physical oceanographers examine.  I discovered that the ocean system is huge and scientists around the world are compiling information about the ocean so we can better understand it.  This work is like putting one of those big 1000 piece jigsaw puzzles together. The more pieces that you are able to put together, the better you understand how the pieces fit into the entire picture.  Also because the system is so large, it takes the collaborative effort of many different scientists to really get some sort of understanding about what is happening. This cruise would never have been possible without the crew, the scientist and the NOAA Corp officers working as a team. There was science happening 24 hours and everyone did his or her part.

Sitting at my desk in the computer lab
Sitting at my desk in the computer lab

I feel particularly lucky to be selected as the Teacher at Sea on this cruise and I would like to thank everyone that made it possible.  The crew, the scientists, the NOAA Corp officers were friendly, helpful and always willing to explain things about the ships operation and the science that was happening on the ship. Thank you to the Teacher at Sea support staff that helped with logistics and information pertaining to the cruise.  Special thanks go to than Dr. Rick Lumpkin, the chief scientist, for coordinating the cruise, explaining the science, and reviewing sea logs and Field Operations Officer, Nicole Manning for reviewing sea logs and coordinating things.

Finally thank you to all the people that followed along with this adventure. It was always nice to see how many people were viewing the journal and photos. The questions were great and thanks for all the emails. The impacts that these experiences have on teachers and their students have implications that are far reaching. This has really been a special summer for me and thank you to everyone that made it possible.

Research cruise plan
Research cruise plan

Robert Oddo, August 8, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: August 8, 2009

Weather Data from the Bridge 
Outside Temperature 28.71oC
Relative Humidity 77.91%
Sea Surface Temperature 27.94oC
Barometric Pressure 1020.21 inches
Longitude 70 01.463 W Latitude 19 23.205 N

Everyone anxiously awaiting arriving in San Juan (left) and the Capital Building (right)
Everyone anxiously awaiting arriving in San Juan (left) and the Capital Building (right)

Personal Log 

After being on the ship for 25 days, people were happy to have a day in San Juan, Puerto Rico as the ship refueled. We pulled into the Coast Guard station in Old San Juan around 9:00 am and then had the next 24 hours to explore. I got a chance to roam around town sample the local cuisine and visit a few historic spots.  Visited the capital building, the Castillo San Cristobol, and San Fillipe de Morro Fort.

The narrow streets of Old San Juan (left) and Fillipe de Morro Fort (right)
The narrow streets of Old San Juan (left) and Fillipe de Morro Fort (right)

We pulled out of the harbor at approximately 4:00pm on 8/7 and now are steaming to our final destination Key West.  It is a bit quieter on the ship now since 9 of the scientists departed in Puerto Rico.  The rest of the scientists are staying on to help unload their equipment in Key West.

Research cruise plan
Research cruise plan

Robert Oddo, August 3, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: August 3, 2009

Preparing to haul in a buoy
Preparing to haul in a buoy

Weather Data from the Bridge 
Outside Temperature 28.03oC
Relative Humidity 78.65%
Sea Surface Temperature 28.005oC
Barometric Pressure 1018.02 inches
Latitude 19 23.243 N Longitude 52 34.624 W

Science and Technology Log 

We deployed our last CTD and last buoy a few days ago. Two XBTs are deployed daily but that is nothing compared to the 10-12 we were doing a few weeks ago. The atmospheric group is still sending up radiosondes and ozonesondes but it seems now that most of the scientists are wrapping up their work and trying to take a preliminary look at the data they collected. The analysis will really begin when they get back to their labs once we return to land.  In the meantime, the work of packing things up has begun.

Here I am giving my science seminar
Here I am giving my science seminar

We are now steaming directly toward San Juan, Puerto Rico. The crew has begun to stack all the equipment that will be eventually unloaded on the fantail of the ship.  We will be arriving in Puerto Rico on the August 6th to refuel, and then we will be off to Key West on August 7th for the final leg of this cruise. It was my turn a few days ago to give the nightly science seminar.  I talked about teacher-researcher collaboration, which included the NOAA Teacher at Sea Program and other programs I have participated in.

Everything is packed and ready to go
Everything is packed and ready to go

Personal Log 

I have found it important to get some exercise everyday on the ship.  I try to work out everyday in the ships fitness room.  It has a rowing machine, treadmill, elliptical, bike and some free weights. You usually can find me there in the mornings before I get to work in the lab.

Getting in a morning workout
Getting in a morning workout
Research cruise plan
Research cruise plan

Robert Oddo, July 30, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: July 30, 2009

Deploying a buoy
Deploying a buoy

Weather Data from the Bridge 
Outside Temperature 25.50oC
Relative Humidity 87%
Sea Surface Temperature 25.75oC
Barometric Pressure 1017.3 inches
Latitude 20 09.721 N Longitude 33 34.806 W

Science and Technology Log 

On the 28th of July we did our 34th CTD and changed out our third buoy and started to steam west back towards the states. We have a break now from our 12-hour shifts and only have one more buoy to change out and only one more CTD to deploy. I wanted to write about a couple of things that I have noticed over the last couple weeks when sampling that I thought were noteworthy. The seawater we collect from 1500 feet down in the ocean, even though we are in the tropics, is still very cold. It is about 4 degrees C or 39 degrees F while the sea surface temperature is around 26 degrees C or 79 degrees F.

Nightly Science Seminar
Nightly Science Seminar

Another thing that is really cool is that when we are doing CTDs at night the lights from the ship attract squid and you can watch the squid chasing flying fish at the surface.  The last thing that is strange, is that every once in a while even though we are hundreds of miles away from land, a butterfly or dragonfly darts around the ship. You just wonder where they have come from.  Every night around 8 pm, there is meeting of all the scientists onboard. We usually get a weather briefing and then someone will give a seminar on the work they are doing. There are many links between the work that each scientist is doing on this ship and this is an important way to share ideas, get feedback and create new questions.

Personal Log 

There is down time on the ship and I wrote about the movies earlier.   We have a ping-pong table set up in the main lab where we play in our spare time. Since we are so far from any land, safety is very important on the ship. We have fire drills and abandon ship drills weekly. After the drill there is a briefing and the safety officer discusses some of the safety equipment the ship has and its use.  Today we went out to the fantail and the officers demonstrated how to use flares and smoke signals.

A little ping pong in the main lab (left) and flare demonstration (right)
A little ping pong in the main lab (left) and flare demonstration (right)
Research cruise plan
Research cruise plan

 

Robert Oddo, July 25, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: July 25, 2009

The Brown seen from a small boat
The Brown seen from a small boat

Weather Data from the Bridge 
Outside Temperature 26.94oC
Relative Humidity 81.85%
Sea Temperature 27.84oC
Barometric Pressure 1013.74 inches
Latitude 13o 07.114N Longitude 23o 00.000W

Science and Technology Log 

I have continued to help out on the 11:30 am to 11:30 pm watch with CTDs and XBTs. Why do so many CTDs and XBTs? The scientists on board are developing a subsurface profile of the water temperature, salinity and density. Based on these data, models can be constructed and refined that can help us better understand what is happening in the Tropical Atlantic.

 Removal of radiometer and anemometer from buoy
Removal of radiometer and anemometer from buoy

The Brown arrived at the second buoy that needed to be serviced on July 24th. I was lucky enough to get on the small boat sent out to take some equipment off the buoy before it was pulled up on the boat. Once at the buoy, the radiometer and the anemometer were removed.  An acoustic message is then sent from the Brown to release the anchor on the buoy. The buoy is then attached to a rope from the Brown and pulled up onto the fantail. All the instrumentation and sensors below the buoy are pulled up on the Brown and exchanged. I attached a picture of the buoy to the right so you get an idea of all the instrumentation that is attached to these buoys. I could not believe all the fish that were around the buoy.  Apparently, the buoy creates a small  ecosystem, where all kinds of marine organism congregate.  Algae and small crustaceans attach to the buoy and some of the cables that are underneath. Small fish eat the algae and crustaceans, larger fish eat the smaller fish and before you know it you have a food web.  Some of the fish are huge. Yellow fin tuna, triggerfish and mahi mahi.  This actually causes a big problem.  Fishermen come out to these buoys and damage the buoy instrumentation when they are fishing and we end up losing valuable data.

This figure shows all the instrumentation attached to the buoy.
This figure shows all the instrumentation attached to the buoy.

Personal Log 

Once the buoy is pulled up onto the ship, the fish that were around it looked for a place to go. Sometimes they come under the ship. We threw a few fishing lines in after the buoy was pulled up on the fantail and the tuna were biting like crazy. We caught a few that afternoon and had them for lunch the next day!!

 

 

 

 

Got one!  It’s tuna for lunch!
Got one! It’s tuna for lunch!
Research cruise plan
Research cruise plan

Robert Oddo, July 23, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: July 23, 2009

Weather Data from the Bridge  
Outside Temperature 26.77oC
Relative Humidity 74.89%
Sea Temperature 27.64 oC
Barometric Pressure 1013.98 inches
Latitude 07o 59.993 N Longitude 22o 59.767W

Science and Technology Log 

We arrived at the first buoy two days ago and exchanged the “package” which is kind of like the brains of the buoy. Four people went out with a small boat and exchanged the package.  This is not an easy task since you have to climb off the small boat onto the buoy in what can be pretty rough seas and change instruments. We also deployed the “CTD” for the first time.  After the deployment, we collected seawater from various depths for salinity and dissolved oxygen analysis.  We also are deploying XBTs every 10 nautical miles on a 24 hours schedule as the ship steams along its course.  There are two shifts. I am on the 12 noon to 12 midnight shift.  The XBT (Expendable Bathythermograph) is dropped from a ship and measures the temperature as it falls through the water. Two very small wires transmit the temperature data to the ship.  When it gets to about 1500 meters, the small wire is cut and the operation is over. By plotting temperature as a function of depth, the scientists can get a picture of the temperature profile of the ocean at a particular place.

Preparing to service a buoy (left) and recovered buoy on deck (right)
Preparing to service a buoy (left) and recovered buoy on deck (right)

Yesterday, we got to the second buoy and had to pretty much exchange it with a new package, sensors and an anchor. This took over 8 hours to do and takes a lot of manpower.  The buoy is actually pulled up on the deck as well as the instrumentation below the buoy and then new instruments, buoy and an anchor are deployed. If this is not done exactly right, everything can be destroyed.

Personal Log 

Wow, there is a lot of action right now on the ship.  The atmospheric scientists are releasing sondes, collecting dust and smoke samples, and measuring incoming solar radiation at different wavelengths. There are people getting instrumentation ready for the next buoys we are steaming towards. People are deploying CTDs, XBTs, and drifters.  Behinds the scenes the crew lends all kinds of support, from preparing food, working the winches and cranes, navigating through the ocean and working in the engine room It is really teamwork that makes this all work and not any one person could do all of this work. There are a lot of very dedicated people onboard this ship and all their hard work make this work!!

Here I am deploying an XBT (left) and collecting seawater samples from the CTD (right)
Here I am deploying an XBT (left) and collecting seawater samples from the CTD (right)
Research cruise plan
Research cruise plan

Robert Oddo, July 14, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: July 14, 2009

Deploying a radiosonde
Deploying a radiosonde

Weather Data from the Bridge 
Outside Temperature 26.01oC
Relative Humidity 89.26
Sea Surface Temperature 28.3oC
Barometric Pressure 1015.9 inches
Latitude 8o 53.96 N Longitude 48o 05.43 W

Science and Technology Log 

We released our first radiosonde this morning.  These balloons have instruments attached to them that will measure atmospheric pressure, temperature and relative humidity as they go up into the atmosphere.  As the balloon rises, it expands as the atmospheric pressure outside the balloon decreases. After about 2 hours the balloon bursts and falls back into the ocean. Four of this particular type of radiosonde will be released every day.  This data is used as input for weather prediction models, weather and climate change research, input for air pollution models and ground truth for satellite data.

Radiosonde is off!
Radiosonde is off!

We also deployed our first global drifter this afternoon. A surface drifter consists of a buoy and a sea anchor. The drifters have sensors that can measure sea surface temperature and the ocean current.  Information is collected by the sensors and uploaded to a passing satellite and then transmitted back to Earth where all the information from all the drifters give us a better picture of what is happening out in the ocean. Drifters are deployed from hurricane hunter aircraft so we can better predict and understand hurricanes. Data from drifters was used to determine where floating debris would be found shortly after the disappearance of Air France flight 447 on May 31, 2009.  For more information on the NOAA Global Drifter Program, visit their website.  

Personal Log 

The drifter buoy is deployed.
The drifter buoy is deployed.

I have received a couple of emails asking about the food on the ship.  We have three meals a day and there is quite a selection. For breakfast, you can have pancakes, eggs, sausage, oatmeal, fresh fruit or a selection of dry cereal.  For lunch, it really varies; today there was a salad, hot dogs, hamburgers and french fries.  Dinner also varies, but so far we have had fish, ribs, chicken and a salad. There is also a veggie option for each meal.  Coffee, tea and other beverages as well as some snack items are pretty much available 24 hours.

Our dining hall
Our dining hall
Tracking the cruise plan
Tracking the cruise plan

Robert Oddo, July 13, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: July 13, 2009

Weather Data from the Bridge 
Outside Temperature 27.7oC
Relative Humidity 80.16
Sea Temperature 28.2oC
Barometric Pressure 1013.76 inches
Latitude 10o 21.11 N Longitude 52o 13.67 W

The replacement PIRATA Buoy
The replacement PIRATA Buoy

Science and Technology Log 

We have been steaming at full speed towards our first buoy. To the right you can see a picture of the replacement buoy that is on the back of the ship.  This buoy will be lowered into the water using cranes on the ship and then anchored in place. These buoys are anchored on the bottom of the ocean, which is very deep here in the Tropical Atlantic.  The ocean here right under this ship is 4,990 meters or 16,371 feet deep. That’s a lot of chain to attach to the anchor!!  A picture of the buoy instruments that will be redeployed are on the right.  There are other instruments that extend down into the ocean.

Personal Log 

Anchors for the buoys ATLAS buoy instruments that will be redeployed
Anchors for the buoys

I was wondering how we were going to deal with time as we traveled to the East.  A notice was put up yesterday telling us that we should change our clocks from 4 hours ahead of Greenwich Mean Time to 3 hours ahead of Greenwich Mean Time.  This ship has things going on 24 hours, so it is really easy to lose track of time and the day.

All in all, it is pretty comfortable on board and the people are very friendly. If you need to take a break from your work you can watch a video, read in the library, or sit out on the back deck of the ship.

Anchors for the ATLAS buoy instruments that to redeploy
Anchors for the ATLAS buoy instruments to redeploy
Cruise ship plan
Cruise ship plan
We change our clocks as we move east
We change our clocks as we move east

Robert Oddo, July 12, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: July 12, 2009

Weather Data from the Bridge 
Air Temp 27.5o C(81.5F)
Relative Humidity 76.63
Sea Temp 28.22
Barometric Pressure 1015.15 inches
Latitude 11o42.80 North Longitude 56o 07.33 West
Traveling at 10.7 knots

Setting up the lab
Setting up the lab

Science and Technology Log 

There is a lot of unpacking and setup that has to be done on a scientific cruise like this one. Researchers were busy today getting schedules setup, equipment working and orienting themselves to their workspaces. We are now steaming directly to 0o, 23oW to service a buoy in the PIRATA backbone that has not been transmitting data since 21 June 2009.

Yesterday, I wrote about PIRATA (Prediction and Research Moored Array in the Atlantic). Another project that is also going on simultaneously is the Aerosol and Ocean Science Expedition (AEROSE).  Saharan dust storms are estimated to inject three billion metric tons of mineral aerosols a year into the troposphere. The aerosols impact precipitation, fertilize the ocean, and change the air quality and impact ecosystems in the Caribbean and the US eastern seaboard. Red tides, increased rates of asthma and changes in precipitation in the eastern Atlantic and Caribbean have been associated with this dust from the Sahara. The data collected from this cruise will help us understand better the impact of his Saharan dust on the Caribbean and the US eastern seaboard.

Here I am out on the back deck.
Here I am out on the back deck.

One must be prepared for emergencies at sea and today we had an abandon ship drill and a fire drill. There are 49 people aboard the Ronald H. Brown and it is important to know what do in case of an emergency and make sure everyone is accounted for.

Personal Log 

We got underway from Barbados yesterday afternoon and the seas were described as being a bit “lumpy”.  I noticed little by little people seemed to disappear and was wondering what was going on and then it hit me.  Nausea, cold sweats and not being to get comfortable at all.  I got real sleepy and found a spot in the library and crashed for a couple hours. There is really no place to go. I woke up around dinner, took some seasickness medicine and hung out for the rest of the evening. Believe me, I was not the only one trying to get their sea legs.  There were very few people around. It takes time for the body to adjust to the rocking of the boat and some adjust faster than others.  This morning, I feel much better.

The course we have taken since we departed from Bridgetown
The course we have taken since we departed from Bridgetown
Sunset from the back of the ship
Sunset from the back of the ship

Robert Oddo, July 11, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: July 11, 2009

NOAA Ship Ronald H. Brown docked in Barbados
NOAA Ship Ronald H. Brown docked in Barbados

Weather Data from the Bridge 
Air Temperature 27.6o C (81.7o)
Relative Humidity 82.6%
Sea Surface Temperature 28.4oC (83.1oF)
Atmospheric Pressure 1014.8

Science and Technology Log 

The Prediction and Research Moored Array in the Atlantic (PIRATA) is project that is monitoring the upper ocean and near surface atmosphere of the Tropical Atlantic.  This is done by the deployment and maintenance of moored buoys and meteorological stations across the Atlantic. One of the purposes of this cruise is to do maintenance work on some of the buoys. The last couple of days have been spent loading equipment onto the ship and preparing the ship for this mission.

One of the science labs with equipment ready to be unpacked
One of the science labs with equipment ready to be unpacked

There is an incredible amount of preparation for a cruise such as this one. Scientific equipment must be packed carefully, shipped to the location where the ship is docked, and then unloaded and set up. If you forget something you might not be able to collect some of the data that you hoped to obtain. The data collected from this array of buoys will lead to a better understanding of an area of the Atlantic which is the main development region of tropical cyclones that threaten the United States.

Personal Log 

Arrived in Barbados late on the night of July 9th. Got to the R. H. Brown early on the morning on the 10th. Spent most of the day getting situated and meeting members of the scientific team as well as the crew.  Berths are small but comfortable.  I was surprised at all the amenities on the ship.  There is wireless Internet, a ship store, movies at 5:30pm and 7:30pm, laundry and even an exercise room with free weights, and elliptical and a treadmill. We attended an orientation session this morning regarding ship procedures, safety and general life onboard the R. H. Brown. 

Picture of my berth.  I have the top bunk.
Picture of my berth. I have the top bunk.
 Practicing getting in and out of immersion suits
Practicing getting in and out of immersion suits 

Robert Oddo, July 15-20, 2009

NOAA Teacher at Sea
Robert Oddo
Onboard NOAA Ship Ronald H. Brown 
July 11 – August 10, 2009 

Mission: PIRATA (Prediction and Research Moored Array in the Atlantic)
Geographical area of cruise: Tropical Atlantic
Date: July 15-20, 2009

Weather Data from the Bridge 
Outside Temperature 24.19 oC
Relative Humidity 78.87
Sea Temperature 24.28 oC
Barometric Pressure 1016.0 inches
Latitude 00o 12.5 N Longitude 23o 37.28W

The CTD
The CTD

Science and Technology Log 

We have been steaming at around 10 knots(approx 11.5 mph) 24 hours a day to our first buoy. The scientists on board are preparing equipment for the work that awaits them once we arrive at our first stop, 0 degrees 01.0 South latitude, 22 degrees 59.9 West.  Replacement tubes for the buoys are being readied and the “CTD” is being prepared for deployment.  The “CTD” is the name for a package of instruments that is lowered in the water that includes sensors that measure conductivity, temperature and the depth of the seawater. Conductivity and temperature are important since salinity can be derived from these values.  The CTD is connected to the ship by means of a cable through which real-time data can be sent back to scientists on the ship as the winch lowers and raises the CTD through the water. The metal frame around the CTD has a number of bottles attached to it that collect seawater samples at various depths.  This water then can be analyzed back in the laboratory when the CTD is brought back on board. 

We have deployed a number of drifters as we are making our way to the first stop.  For the last couple of days, we have not been allowed to collect any data as we traveled through the territorial waters of Brazil. On the night of July 19th we launched an ozonesonde. An ozonesonde transmits information to a ground receiving station information on ozone and standard meteorological quantities such as pressure, temperature and humidity. The balloon ascends to altitudes of about 115,000 feet (35 km) before it bursts.

Deployment of the ozonesonde
Deployment of the ozonesonde

Personal Log 

A few days ago, I toured the bridge of the ship. There is always one officer on the bridge and also a person on watch. Unfortunately there is not a big wheel like I imagined up there to steer the ship (I always wanted my picture at one of those big wheels). But there are a number of thrusters that you maneuver the ship with.  There are also a number of radar screens that enable one to see surrounding objects and well as computers that allow the ship to run on different auto pilot modes. Before a radiosonde or a buoy is launched, one needs to inform the bridge and the operation is logged in. You really get a unique perspective of the ship from up on the bridge.

I have spent hours on deck watching for signs of life out in the ocean. We did have a pod of dolphins of our bow one day, flying fish seem to be out there all the time and one day we believe we saw a pod of false killer whales (maybe).  I expected to see some birds, but so far not one.

Here I am at the helm of the Brown.
Here I am at the helm of the Brown.
Research cruise plan
Research cruise plan

 

Dave Grant, November 16, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 16, 2008

Weather Data from the Bridge 
Sunrise: 10:16 UTC Sunset: 23:16 UTC
Wind: AM Slight; PM Slight
Seas: 4’
Precipitation: 0.0
Pressure: 1015

Science and Technology Log 

Flotsam and Jetsam “Never bring anything onto a boat that you can’t afford to lose.” (Nancy Church – Cape Cod Museum of Natural History)

Except for the anchor, there are very few items that go overboard intentionally on a ship. A hat blown off your head by the wind becomes flotsam, but something deliberately discarded is jetsamARGO  is the international program that deploys and monitors a global network of autonomous floats that monitor ocean conditions (“Taking the pulse of the oceans.”). The buoys are deployed from a variety of vessels and one of the main advantages is that a vessel does not have to slow down or stop to launch them. Because of this, a vessel dedicated to research is not required, and commercial and even cruise ships have participated in this world-ocean study.

Drifter currents
Drifter currents

Drifters have been distributed since 1999 and continuously monitor temperature, salinity and currents. They will provide a global network spread out on a 3º by 3º ocean grid (180-miles by 180miles). Data transmitted automatically to satellites is broadcast to the Global Drifter Program and available continuously to researchers.

Stickers on the drifter buoy
Stickers on the drifter buoy

Teachers and students also are involved through the Adopt-a-Drifter Program and we deployed drifters marked with decals from two schools partnered through it: Universite Nancy (France) and Grandview Elementary School – Grades K, 1, 2, 3, 4, 5. Drifters actively transmit data for over a year, but like anything in the sea, can become the home for bio-fouling organisms that can interfere with their operation. We deployed several of them. The simplest are blue-andwhite basket ball-sized floats with a drogue (a large sock-like bag) that acts as a sea anchor or drift sock so that the movement of the drifter is by current, not wind. Once in the water, the packing materials dissolve, the drogue sinks to about 15 meters, and the currents, satellites, scientists and students do the rest. All researchers have to do to explore the oceans is log-on to the drifter website with a computer.  

“After the sea-ship, after the whistling winds… Toward that whirling current, laughing and buoyant, with curves… (After the Sea-Ship – Walt Whitman)

Dave holding the drifter buoy
Dave holding the drifter buoy

Other larger drifters are shipped in sturdy but degradable cardboard cartons. These too are launched off the stern and the shipping boxes rapidly fall apart after the water dissolves the glue. They are rather mysterious since we did not actually see what they look like, but I’ve seen others in the repair shop at WHOI (Woods Hole Oceanographic Institution). They are tube-shaped and designed to automatically sink to as deep as 1000-meters, and then rise periodically to broadcast their data. What a wonderful journey they will have to share with the world when they start reporting their data in dark and stormy seas and on sunny days. Falling away astern of us, floating high and looking coffin-like, I was reminded of Queequeg’s casket and some of the most memorable lines from Moby Dick:  “These are times of dreamy solitude, when beholding the tranquil beauty and brilliancy of the ocean’s skin; one forgets the tiger heart that pants beneath it…”

Drifter array
Drifter array

Screen shot 2013-04-19 at 9.23.30 PM

Personal Log 

Drifter in the water on its way!
Drifter in the water on its way!

We have had a great string of days. I have settled into an interesting work routine with  helpful and interesting scientists and crew. Weather balloons and sondes are released every four hours and the readouts from their fights are very informative. Along with the evening lectures, the week has been like a short semester on meteorology. Hourly water sampling has gone well too, and we are learning more about these peculiar eddies of warm and cold water each day.

My roommate (RW) is very nice and accommodating, and since we work different hours and find the best way to relax is with headphones and a book, the room does not seem crowded at all. There are a few items I am glad I brought, and I suggest they be added to the TAS list: coveralls, ski cap, knee pads and eye drops. The coveralls are great for cool mornings on deck and to quickly pull on for the weekly “abandon ship” drills, since you are required to report to your muster station in long pants and sleeves, and with a hat. My light-weight volleyball knee-pads are good if I have to kneel on the metal deck for a while to take pictures. And eye drops are a relief since we do get wind almost every day, and some very bright days since we are headed into the Austral Summer, and the sun’s position is moving south every day.

Crew holding the Argos drifter
Crew holding the Argos drifter

I have been checking my Almanac, and perhaps as early as tomorrow, our course will cross paths with the sun’s southern movement, and it will be directly overhead at Noon. This can only occur at locations in the “Tropics” (Between the Tropic of Cancer and Tropic of Capricorn) and I have heard sailors refer to it as a “Lahaina Noon.” This term comes from the old sailing days when whalers made port stops at Lahaina on Maui. When it occurs there, fence posts, and for that matter, people, do not cast a shadow. Hopefully the clouds will clear around midday and we will be able to see the phenomenon.

“Thus drifting afar to the dim-vaulted caves Where life and it ventures are laid, The dreamers who gaze while we battle the waves May see us in sunshine and shade.” (Sun and Shadow by Oliver Wendell Holmes – 1857) 

Dave Grant, November 13, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 13, 2008

Gooseneck barnacles and Grapsid crab
Gooseneck barnacles and Grapsid crab

Weather Data from the Bridge 
Wind: AM Calm; PM 5kts
Seas: 5’
Precipitation: 0.0
Pressure: 1016

Science and Technology Log 

Big whirls have little whirls That feed on their velocity, And little whirls have lesser whirls And so on to viscosity. (L.F. Richardson)

This little imitation of Jonathon Swift’s ditty helps illustrate the parallels between the atmosphere and ocean. Just as in the atmosphere, but much slower because of the increased density, turbulence in the water is expressed by meandering currents, and vortices. Good examples of this are observable when an oar is dipped into the water to push a boat, or a spoon is drawn across a bowl of soup. One of the mysteries of the SEP (South East Pacific) region is the presence of large oceanic vortices (Eddies), the mechanisms that generate them, and the length of time they persist as identifiable entities slowly spinning in the surrounding waters.

Dave holding the UTCD
Dave holding the UTCD

In a number of coastal areas fishermen and oceanographers have discovered that some important fish species can be found associated with these so-called mesoscale water structures, like upwelling areas, meandering currents and eddies. Such links are fairly well known and heavily exploited in the vicinity of the boundary currents off eastern North America (Gulf Stream), California (California Current) and Japan (Kuroshio Current); for tuna, swordfish, sardines and anchovies. The coast of Peru and Chile is swept by the northward flowing Humboldt (Peru-Chile) Current and the area is famous for the upwelling that brings deep,  cold, nutrient-rich water to the surface (and every 5-7 years when it doesn’t, El Nino conditions). Exposed to sunlight, phytoplankton utilize the nutrients to form the base of the world’s largest industrial fishery for fish meal and oil. The area also supports a large commercial tuna fishery.

UCTD Data
UCTD Data

Poorly understood is the role of eddies that spin off the major current; vortices averaging about 50-Km (30-miles) wide (i.e. mesoscale). These may be either cold or warm water eddies that may last offshore for months, and move as discrete masses to the west. In general these vortices have more energy that the surrounding waters, circulate faster; and are important because they transport heat, masses of water and nutrients to less productive regions towards the mid-ocean. The eddies also transport marine life and the mechanisms for this are also poorly understood, however the outcome is not. Moored buoys out here collect and support masses of fouling organisms like goose-neck barnacles that must be cleaned off periodically, along with other routine maintenance of the batteries and recording instruments. Servicing these buoys is also part of the mission of the Ron Brown.

Chasing “Eddy”

CTD Data
CTD Data

Tracking these “cyclones in the sea” requires interpreting daily satellite images that measure water temperature and by data collected by the UCTD (Underway Conductivity Temperature Depth) probe. This is a torpedo-shaped device cast off the stern of the Brown while we are underway. It rapidly sinks to several hundred meters. Then, like a big, expensive ($15,000.) fishing lure, it is retrieved with an electric motor that winds back over 600 meters of line. The whole process takes about 20-minutes (including the 2minute plunge of the UCTD).

The information acquired is phenomenal, and if collected any other way, would involve stopping the ship and repeatedly lowering Niskin or Nansen bottles; and adding weeks or months to a cruise schedule. Once back onboard the ship, the data is downloaded and plotted to give us a continuous picture of the upper layers of the ocean along our sailing route. All of this hourly data allows the tracing of water currents. The procedure is not without trials and tribulations. Lines can tangle or break, and there is always the possibility that the probe will bump into something – or something will bump into it down in the deep, dark ocean. However, any data retrieved is invaluable to our studies, and each cast produces a wealth of information.

Teeth marks on a UCTD
Teeth marks on a UCTD

Personal Log 

Today’s weather is fabulous. Most mornings are heavily overcast, but we are still close enough to the coast to enjoy breaks in the clouds. So, everyone is taking their breaks in folding chairs on the foredeck at “Steel Beach” since we are never certain when we’ll again have a sunny moment, or how long it will last.

After lunch there was a bit of excitement; we saw other mariners. In the old days of sailing, ships passing each other at sea would often stop to exchange greetings, information and mail. This practice was known as gamming. We sighted our first ship of the cruise; a cargo carrier heading north and piled high with shipping containers. It was too far off for gamming or even waving (The scientists who are sampling air want to keep their instruments free of exhaust from any nearby sources)  so it would have been out of the question anyway. The bridge gave it a wide berth; so wide that even with binoculars I could not be certain of the ship’s flag, name or registry, other than oversize lettering on containers that spelled JUDPER. Presumably it was carrying agricultural goods from southern Chile or manufactured goods and minerals from the central part of the country. Chile is a major exporter of copper; and the smelters, factories and vehicles in this upscale corner of South America (And the sulfur and particulate matter they spew into the sky) are a interesting land signatures for the atmospheric scientists and their delicate instruments. So the only gamming today is in the narrow passageways throughout the Brown. There is no wasted space on a ship, so in many areas there is “barely enough room to swing a cat.” (The cat being the cat-o-nine-tails once used to flog sailors. “The cat is out of the bag” when someone is to be punished.*)

Group watching a ship on the horizon
Group watching a ship on the horizon

I am still not certain what the proper ship’s etiquette is in passageways and stairways, but I am quick to relinquish the right-of-way to anyone who is carrying something, looks like they are in a hurry or on a mission, or in uniform (obviously) or kitchen staff in particular. Because the ship is always rocking, I’ve found that I tend to lean against the right wall while moving about. By lightly supporting myself leaning with a hand, elbow or shoulder (depending on the how significant the ship is rolling, pitching or yawing) I slide along the wall, and probably look like a clumsy puppy scampering down the hall, but it works…except for a few bruises here and there. Often I come face-to-face with the same shipmates repetitively during the day. (How many times a day can you say “Hello” to someone?) Everyone is polite and considerate, especially when moving about the ship, and in spite of repeatedly passing the same people many times every day. So generally, since everyone is busy for most of their shift, when meeting in the hallways, you resort to awkward routines like: muttered Hey, Hi, Yo or What’s-up; tipping your hat or a dumb half-salute; or a nod…or if from New England, what is known as the reverse nod.

*Flogging: There was a science to this horrible practice, not only with the number of lashes imposed, but what they were administered with: a colt (a single whip) or a cat (They varied in size from “king size” to “boy’s cats”).

Although the U.S. admirals reported that “it would be utterly impossible to have an efficient Navy without this form of punishment” Congress abolished flogging on July 17, 1862. And the last official British Navy flogging was in 1882 – although the captain’s authority remained on the books until 1949. (To politely paraphrase Winston Churchill, the British Navy was bound together by…*#@#&!, rum and the lash.)

One Final Note 

We discovered stowaways onboard…two cattle egrets. Egrets are wading birds that feed in shallow ponds and marshy areas; and the cattle egret regularly feed along roadsides and upland fields where cattle or tractors stir up insects. Even when threatened, they tend to fly only short distances, so it is odd to see them so far from land. However, in the 1950’s a small flock of these African birds crossed the South Atlantic to Brazil and establish a breeding colony. I remember spotting them for the first time on the Mexican border near Yuma in the 1970’s and today they have managed to thrive and spread all the way across the warmer half of North America.

Of ships sailing the seas, each with its special flag or ship-signal, 
Of unnamed heroes in the ships – of waves spreading and spreading  
As far as the eye can reach, 
Of dashing spray, and the winds piping and blowing, 
And out of these a chant for the sailors of all nations… 
(Song for All Seas, All Ships – Walt Whitman)

Stowaways – cattle egrets
Stowaways – cattle egrets

Dave Grant, November 12, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 10, 2008

Weather Data from the Bridge 
Sunrise: 07:12 Sunset: 20:11
Wind: S-SW 8-10 Kts
Seas: S-SW 8-10’
Precipitation: 0.0
Temperature: 18º-C
Pressure: 1015 Mb

Science and Technology Log 

“Send them our latitude and longitude.”
Admiral William Halsey, 1944 (Response to an intercepted Japanese radio message: “Where is the American fleet?)

A Twin Otter plane flying over
A Twin Otter plane flying over

Now that we are out of sight of land and the ocean is featureless except for the waves, so pinpoint navigation becomes crucial. Using the most modern navigation tool – GPS (Global Positioning Satellite system) our navigation officer has put us precisely where we need be to await over-flights from aircraft sampling the atmosphere above us. We are not just near our sampling station – not a mile, a minute, a knot, or a league – we are within a hairsbreadth* of it. We will be here for the day taking water and air measurements, while waiting for the only things we’ll see flying over the Pacific besides birds and balloons; our last connection to the land for several weeks.

“Thanks for the memories.”

The CTD Rosette
The CTD Rosette

The ocean water we test has a memory for the weather and climate conditions today and over the last several months and years. The “code” we need to understand these secrets is hidden in the temperature and salinity of the water, and the keys to unlock them are a number of devices that sink, float and drift. Over the next few weeks we will use all these techniques to see what stories the water has to share. My first introduction to this remote sampling and sensing was a long-necked beverage bottle with a weight, retrieval line, and a cork that could be popped with a string. (And of course, duct tape to hold it all together.) Using it in the local pond and discovering that there were indeed differences between the surface and bottom temperatures was enough to pique my curiosity to move on to bigger things in college. This involved more sophisticated devices, typically named after the oceanographers that perfected them: Secchi, Nansen, Eckmann, Peterson and Niskin. All students of science and oceanography should study these pioneers and their struggles and achievements, but perhaps the foremost is Fridtjof Nansen (1861-1930)…arctic explorer, distinguished scientist and Nobel Laureate.

A storm petrel
A storm petrel

The Nansen bottle has been a standard water collection device since 1910 and when lowered by a strong line, can be signaled to close with a weighted “messenger” sent down the line to “fire” off a release mechanism that closes off a tube of water from any depth. The only limitation is the length of your line. Then that water can be brought to the surface for analysis of its physical features, nutrients and even contaminants washed into the sea or wafted from land. In 1966 Shale Niskin perfected a version of the bottle that today we will lower with eleven others on a circular frame called a rosette. These Niskin bottles can be signaled automatically to capture water at preprogrammed depths as the CTD device on the bottom of the frame records data. The CTD (Conductivity, Temperature, Depth) is one of today’s most important oceanographic tools. It is mounted on the rosette with the Niskin bottles and records the temperature and salinity of the layers of water, which allows oceanographers to trace the origins of the currents. The Brown has enough cable to lower it to 6,000 meters, but here in the Peru Basin, we are limited to less than 4,000 (Still deep enough to swallow any mountain east of the Mississippi, and most of the ones in the west.)

Data from the CTD cast
Data from the CTD cast

The crew does an amazing job holding the Brown on station, and can literally turn on a dime since the ship has fore and aft thrusters. When the seas are high and it is choppy, they maneuver into position by making a slow (right) turn to starboard (Where the rosette is deployed) so it is in the lee of the wind and much calmer. The turning creates a “pond” of flat water that also attracts seabirds, so I try to have my camera ready at all times. The whole process takes several hours and has to be done with great care and constant adjustments from the bridge since anything lowered over the side might become tangled with the rudder or propellers, its own cable, or otherwise be damaged or lost. The water brought up from depth in the Niskin bottle is collected for chemical analysis, salinity, dissolved oxygen and plankton samples. Nutrient bottles are quickly frozen for later analysis in the lab, plankton is preserved for identification under the microscope, and dissolved oxygen must be chemically tested immediately; so there is always a flurry of activity when the CTD finally is retrieved and in deck. Water on the surface is 18º and drops to 5º near the bottom. Salinity ranges between about 35.25 ppt on the surface and as low as 34.5 ppt at depth.

An NSF C-130 sampling information
An NSF C-130 sampling information

Personal Log 

There has been a good roll to the ship about every 10 seconds since we left port and after a few days your body anticipates it and I only notice the movement when I see water in a basin or the shower floor sloshing with it, or when something that is not secured bangs around. This movement approximates the wave period of the largest swells and they are generated by the constant winds drawn towards the Equator – the Trade Winds which merchant sailing vessels could always rely upon. In 1520, these same winds pushed Magellan northwest after crossing into the waters to our south that he called El Pacifico. When on deck, I have noticed a low and longer period swell from the west, which is a clue that there is some far off storm brewing. Or perhaps, since the Pacific is so wide, that like the light from distant stars, it has gone through its entire existence, dissipated, and its energy is just reaching us now…only a faint remembrance in the sea.

Screen shot 2013-04-19 at 9.20.33 PM

I’ll take note of things over the next few days and look for changes like the Polynesians did when watching for storms. Higher, shorter period swells indicate that the storm is approaching. This gives you time to prepare for the large, short period, wind-driven seas that challenge ships and sailors.

“Look not to leeward for fine weather.” J. Heywood, 1546

This sailor’s expression helps illustrate the fact that because winds are generated by the pressure gradient between high and low air masses, tacking into the wind moves you closer to fairer weather than running with it. (In actuality, the high pressure, and hopefully fair weather, is about 90º to the pressure gradient.) That doesn’t always explain waves however. Wave size is determined by wind speed, duration and fetch (the distance over which the wind blows), and over the broad expanse of the Pacific, there can be many storms and wind patterns creating waves simultaneously.

Before physicists and meteorologists fined-tuned the mathematics, sailors had their own theories about waves. One observation was that the size of seas (waves in a storm) could be estimated by the wind speed…a storm with 60-knot winds might produce 60-foot waves. People tend to overestimate wave size, especially when at sea, and the theoretical height is probably only about 80% of that figure (Still a very sizable and terrifying mass of water if you are in the midst of it!).

“Now would I give a thousand furlongs of sea for an acre of barren ground.” Shakespeare – The Tempest.

Another difficult aspect of wave behavior is estimating the velocity and distance between waves (wave period); and here we turn to the oceanographers and their experimental wave tanks. To try to understand waves at sea, it is much simpler to generate perfect swells in a controlled environment. Although wave behavior in a storm is chaotic and almost impossible to monitor accurately, there is good data on the swells that spread out from the fetch, and for that we turn to the ship’s “Bowditch.” (Nathanial Bowditch’s – American Practical Navigator).

So the 10 second swells rocking the ship are traveling at a speed of about 30-knots, and have a wavelength of over 500-feet; which means, among other things, smooth sailing for the Brown (and most of her passengers). I’ll continue to watch for signs of change and hopefully our fine weather will continue.

A breathtaking sunset
A breathtaking sunset

 

 

Dave Grant, November 11, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 11, 2008

Pilot boat alongside the Brown
Pilot boat alongside the Brown

Science and Technology Log 

The ship was cheered, the harbor cleared, Merrily did we drop, Below the kirk, below the hill, Below the lighthouse top – Coleridge

Finally, it is time to cast off. For days the scuttlebutt has kept us guessing about what has been holding up the cruise. It is approaching Midnight and dock workers have suddenly arrived, crew is adjusting lines and has flushed the birds, and new sounds and rumbling from the engine room are emanating through the deck. I am half asleep, lying in my bunk, and starting to hear announcements from the bridge that remind me of HAIKU:  All stations report. Testing bow thrusters. Visitors must leave the ship. Cast off lines. 

The Ron Brown has come to life! Leaving port is complicated since even the most experienced captain is usually in strange waters. For this reason, a local ship’s pilot is taken onboard to guide us. Thoreau wrote about the pilots off of Cape Cod in the 1800’s and describes how after lookouts spotted a vessel, pilots would race their sailboats to claim the fee for guiding the ship safely to port. Our pilot boarded with great fanfare and salutations from the deck hands. Even though it was calm, it can be dangerous transferring between vessels. Once aboard, he headed to the bridge to take over the wheel.

Close up of the radiosonde
Close up of the radiosonde

Hands-on training started immediately. Our first task was to use a sonde to take radio soundings of the atmosphere above the ship. Radiosondes are lifted by balloons and as they rise, broadcast atmospheric pressure, temperature and humidity data to the ground station. (In this case the lab on the ship.)  This allows atmospheric scientists to record a slice of the air up through the cloud levels through most of the troposphere, where our weather is generated. Radiosondes can also be modified to conduct ozone and radioactivity soundings for pollution studies, but the emphasis of the VOCALS research is the marine layer and its interaction (linkage) between the ocean and atmosphere. Here in the Southeast Pacific, away from continents and major cities, the air should be some of the least polluted on the planet.

Radar reflectors and parachute accessories are available too, but not needed out here since recovery is not an option. Once the balloon reaches low enough air pressure, it expands too much and bursts, and the unit falls into the ocean. (Now, before you start worrying about sea turtles swallowing balloons and meteorologists littering the ocean…this was my first question, and I was told that these materials deteriorate rapidly once they are removed from the hermetically sealed foil containers.)

Many students will state that observing weather and collecting data was the “hook” that got them interested in science; and that certainly applies to me too. As an elementary student helping Mr. Giffin and Mr. “Z” set up mercury column barometers, and seeing 16mm movies of “real scientists” launching weather balloons, really piqued my curiosity. And here I am, so many years later, sending up my own balloons – and for that matter, launching them off a ship in the middle of the ocean!

The science of radiosondes has been around since before WWII and is fairly straight forward. First, read the SAFETY INSTRUCTIONS FOR BALLOON OPERATORS:

  • Do not use in an area with power lines or overhead obstructions.
  • Do not use without consultation and cooperation with aviation authorities. (We will not see any air traffic here, except the scheduled flyovers from VOCALS research aircraft.)
  • Use extreme caution if generating hydrogen gas. (No problem. We use helium; but I did have a flashback of our grandmother Hinemon’s tale about witnessing the Hindenburg explosion from the family farm near Lakehurst, NJ.)
  • The balloon film is only 0.05 mm thick upon launch, so ensure that there are no sharp or pointed objects nearby. (That seems pretty obvious now, doesn’t it Homer Simpson?)
  • And finally, the Dennis the Menace clause: It is not advisable to deflate the balloon if it is leaking. Instead, release the balloon without a load. 
Balloon with message that says, “Thanks TAS!”
Balloon with message that says, “Thanks TAS!”

The units we send aloft are made in Sweden and have a small GPS omni-directional receiving antenna that looks like an eggbeater; a 9-inch wire broadcast antenna; and a thin metal sensor “boom” for temperature and humidity. Power is supplied by a curious little low voltage battery that is activated when soaked in water for a few minutes while the sonde is calibrated by the radio receiver and computer. There are a dozen steps to remember for a successful flight.  First the unit is unpacked from its shipping container. Then it is checked to confirm it is functioning and calibrated to the local conditions of temperature, pressure and humidity; as well as the current latitude and longitude. Fortunately the ship monitors these conditions continuously, so you just have to punch in the numbers prior to release. There is a science to filling the balloons. Too much Helium and it rises too fast for the sensors to record good information. Too little Helium and it may hit the water and malfunction. (You don’t get any second chances!)

Once the balloon is filled, and any messages you wish to photograph are attached to it, clearance is requested from the bridge by letting the duty officer know you will be on the “lee side of the stern” to launch it. Just like when you are seasick…this keeps things blowing away from the boat, instead of in your face. I thought I was clever putting our college logo and president’s name on one, until I saw the Great Pumpkin – a well-decorated balloon that made it to a whopping 23,464 meters on Halloween! (Not to be outdone next time, I am working secretly at night on a Thanksgiving turkey design.) The wind has been remarkably gentle most days, but with the ship rocking and steaming ahead constantly, handling a large balloon while zigzagging across deck between equipment and storage boxes can be challenging, especially in the dark. Sounding balloons are sent up every four hours, so the work is shared by everyone. There is a friendly competition to see whose makes it the highest and gets the best data.

Data from the sounding balloon
Data from the sounding balloon

Note the details in the above image of data from a sounding balloon.  Air PRESSURE (Green line) decreases to 25.7 hPa and the balloon finally bursts. The unit then plunges back to the ocean and pressure increases back to “normal” sea level values. HUMIDITY (Blue line) shows three (3) peaks (About 95%, 75%, and 15%. The highest humidity is at sea level and when the sensor reaches cloud level. The next sharp peak is moisture moving south from the ITCZ (Meteorological Equator).  The small, wide peak is probably Cirrus clouds that were seen earlier before the lower Stratus clouds moved in to block our view. TEMPERATURE (Red line) decreases with height and humidity until the sonde reaches the Tropopause, then begins to rise where higher intensity UV light adds heat. At the top of the image, all three lines merge as the sonde plunges back to sea level.

From the flow of data while this remarkable little instrument is aloft, we can study the decreases in temperature and pressure, and the changes in humidity from sea level to the moment the balloon reaches the bottom of the clouds. An hour or two later, the computer screen even shows the poignant moment (For the launch person, at least), and the decent rate when the balloon bursts and falls back to Earth.

Directional data of balloon winds: Tracking of the sonde shows the direction is drifting in relation to the ship.
Tracking of the sonde shows drifting in relation to the ship.
GPS tracking of the sonde is accomplished with at least four ($) satellites
GPS tracking of the sonde is accomplished with at least four ($) satellites

I’ve looked at clouds from both sides now, From up and down and still somehow, It’s cloud’s illusions I recall, I really don’t know clouds at all.  – Joni Mitchell

A sunset launch
A sunset launch

Personal Log 

I have the best cabin on the ship! Below us is the freshwater tank – the Brown produces over 4,000 gallons of freshwater every day (About 30% more than is needed)  and the sloshing of all that water each time we rock not only drowns out the noise of the ship, but it sounds to me like I’m right on the surface of the water. Falling asleep, I dream that I’m Thor Heyerdahl on Kon-Tiki!

As soon as we hit the open sea you could see some people getting uncomfortable, but as always, “Doc” was on top of it dispensing sea-sickness tablets and in a very few cases, injections. Within a day everyone was moving about and within two days even the dizziest landlubber was up for duty and at every meal. There are few things worse than mal de mer. In part because, as the fishermen like to say, you can’t buy the boat from the captain once you are out there. Years ago on a long and stormy cruise to Madiera, I was issued an experimental device that was part of a NASA trial to treat motion sickness. It was a CD player with headphones that were flat plates fitted behind your ears, which sent out random vibrations to “reset” your middle ear. It reminded me of one of those hearing tests you got in grade school, and seemed to help. However, when I quizzed the ship’s surgeon Dr. Bob (Ex-marine, Vietnam-era Army helicopter pilot, emergency room specialist; trainee in NASA’s early space program, humanitarian and great storyteller) about how his gadget works, he only shrugged his shoulders and replied, “We haven’t a clue.”

An unbelievable sunset
An unbelievable sunset

As it turns out, even NASA doesn’t understand why 80% of us get motion sickness at some point in our lives; but current research is pointing away from the traditional disoriented “middle ear” hypothesis. Over the years I have had success with my own remedies, including: acupressure, ginger cubes, Coca-Cola (Not a commercial endorsement) and as a last resort, over-the-counter remedies with Meclizine. They seem to do the trick, but this night as we sail west to Point Alpha, all I needed to put myself to sleep was Richard Rodger’s soothing tango from the US Navy’s classic WWII Victory At Sea documentary – Beneath the Southern Cross.

“The sea language is not soon learned, much less understood, being only proper to him that has served his apprenticeship.” (Sir William Monson’s “Naval Tracts”)

Words to check today: 

Screen shot 2013-05-18 at 8.09.18 AM

Source information 

From Dave Grant’s collection of stories:

The world’s worst tale of seasickness? As told by Ulysses S. Grant in his Memoirs 

One amusing circumstance occurred while we were lying at anchor in Panama Bay. 

In the regiment there was a Lieutenant Slaughter who was very liable to seasickness. It almost made him sick to see the wave of a table-cloth when the servants were spreading it. 

Soon after his graduation [from West Point] Slaughter was ordered to California and took passage by a sailing vessel going around Cape Horn. The vessel was seven months making the voyage, and Slaughter was sick every moment of the time, never more so than while lying at anchor after reaching his place of destination. 

On landing in California he found orders that had come by way of the Isthmus [Panama], notifying him of a mistake in his assignment; he should have been ordered to the northern lakes. 

He started back by the Isthmus route and was sick all the way. But when he arrived back East he was again ordered to California, this time definitely, and at this date was making his third trip. He was sick as ever, and had been so for more than a month while lying at anchor in the bay. 

I remember him well, seated with his elbows on the table in front of him, his chin between his hands, and looking the picture of despair. 

At last he broke out, “I wish I had taken my father’s advice; he wanted me to go into the navy; if I had done so, I should not have had to go to sea so much.” 

Poor Slaughter! It was his last sea voyage. He was killed by Indians in Oregon. 

 

Dave Grant, November 10, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 10, 2008

Science and Technology Log 

“Ships and sailors rot at port.”  – Captain Horatio Nelson

Today is a bit frustrating for the science staff since we are delayed in our departure; although the crew doesn’t object to another day of restaurant meals and visits to town to make final purchases.

The Brown’s Meeting Room
The Brown’s Meeting Room

This gave the science and navigation team time to get up to speed on the cruise track, and view satellite images of what is happening offshore, and to determine the first waypoint of the ship – Point “Alpha.” Alpha is at -20° S, 075 W (That will put us 130-miles southwest of Arica, 1200-miles south of the Equator, and in 4,000-meters of water.) We will be at the same Longitude as Philadelphia, PA.  Surface and subsurface sampling of the sea and air is to be done at the same time air samples are captured by several aircraft passing overhead at different altitudes. Low passes by a slow-flying US Navy Twin Otter will take samples at the “boundary layer” where particles of salt spray and other particles are cast into the air by wave action; while higher passes are made by a much larger C-130 operated by the National Center for Atmospheric Research.

Simultaneously, meteorologists on the ship will be launching SONDES (Weather Sounding Balloons) that collect data on the air temperature, humidity and air pressure up to about 25,000 meters; and oceanographers will be taking water samples with a CTD meter (Conductivity, Temperature, Density) at the surface and down to 3,000-meters.

Rules and Regulations! 

“You’ll never get in trouble following orders.” Commander Tom Kramer – US Navy

Safety

 “One hand for the ship and one hand for yourself.” Onboard, the 3-Point Rule is in effect. Even at dock the ship can move, so you should always have three points of contact. (Two feet and at least one hand on a railing.) “Only YOU can prevent…!” Fire, not drowning, is the biggest hazard on a ship. Smoking is only permitted in the designated area outside the ship and at the stern.

“If it’s too hot, stay out of the kitchen!” This is an open ship, but for obvious safety reasons and to avoid interfering with operations, certain places like the engine room, machine shop and galley are generally off-limits. Inform the bridge of your activities and always wear your safety vest and helmet while on the fantail.

Health

“Wash your hands!” Living in close quarters requires good hygiene. Wash frequently since you are constantly touching doors and railings. Immediately report any injuries to the health officer “Doc.” Know the signs of seasickness and immediately seek attention if you feel dizzy, nauseous or groggy. Stay hydrated.

Courtesy

“Can you hear me now?” We were reminded that we will be working where people live (the crew), and to observe others’ privacy whenever possible. Earplugs were on our list of Items to bring and one quickly learns that there is always inherent mechanical noise on a ship in addition to any work sounds. Since the ship is metal, any vibrations from the constant scraping, grinding and chipping of rust by the maintenance crew can often be heard reverberating through several decks to the sleeping quarters; sounding like your worst nightmare about visits to the dentist. (And they start work early, and work late!)

Meals

The Galley staff serves dessert -sweet potato pie!
The Galley staff serves dessert -sweet potato pie!

“Eat it and beat it!” To paraphrase that old Army saying, a ship sails on its stomach too, and the first order of the day was food, meal times and consideration of the galley staff. Meals are closely spaced and on a tight schedule because of rotating schedules (Someone on the ship has to be maintaining power, scientific equipment and our course every minute.). Also, the kitchen is in a constant state of clean-up and prep for the next meal, which means the small staff must start at “0-Dark-Thirty” hours (Well before dawn) and is not finished until evening. Mealtime is not the time for chit-chat. Eat and make room for others who are coming off duty. Many WWII veterans admit that their motivation for joining the Navy was to be assured of warm chow. (And a dry bunk instead of a foxhole!) Regardless of your culinary tastes and dietary needs, they are met at every meal on this ship.  The cuisine…in a word?  Excellent! For those who are tardy, sleep late, like to spread out their meals, or are delayed because of  a sampling conflict or problem in the lab; the cooks are always considerate enough to leave out fruit, soup, leftovers, world-class dessert (On the rare event that any is left) and predictably, the old standby – peanut butter and jelly. 

Screen shot 2013-04-19 at 9.16.00 PM

Emergencies

Abandon ship drill - Fitting survival suits
Abandon ship drill – Fitting survival suits

“This is a Drill!” The earsplitting ship’s bell keeps everyone aware of any serious problems. There are three signals you must respond to without hesitation: “HEL-LO Gumby” Everyone has seen or used a life jacket, but the Brown’s bright orange ones are specially designed equipment with the ship’s name on the back, reflector tape, an oversized whistle, and a strobe-light that is activated automatically when it comes in contact with the water. Since they are fairly thick, they also make good windbreakers when you are on deck; so there is little excuse not to wear them. Survival suits are oversized orange neoprene “dry” suits like the ones divers wear. Putting them on during our weekly drills is quite and adventure for the first time, but this is serious business and we are all checked out by the Safety Officer. And yes, you do look like the cartoon character, especially when you are walking in your “Jumbo Immersion Suit.”

“The two-man rule” Any doctor will tell you that nothing is better for allergies than an ocean cruise, and the air here between the desert and sea is very refreshing. However, in the confines of the ship we must be aware of gases like Nitrogen and Helium that the scientists need to operate analytical equipment, and since the ship has large and powerful engines, Carbon Monoxide is always a consideration. When working with these gases and in tight quarters, we were reminded to have a partner, while the Safety Officer trained us on the 10-minute rescue breathers in our cabins.

Interesting observation: One sign that odorless, suffocating gases are present is that someone passes out while you are talking to them. (Certainly THAT is every teacher’s worst nightmare!). We are also issued an EEBD (Emergency Evacuation Breathing Device) which would give us 10 minutes of air to escape such a situation. Feeling informed, safe and secure, we were given one very important final tip from the maintenance crew: “Please don’t flush anything down the head besides toilet paper and whatever your last meal was!”  We are ready to go to sea. 

Emergency breathing device - Demonstration by safety Officer
Emergency breathing device – Demonstration by safety Officer

Personal Log 

There may be miles of cordage on a ship: Line (Thin rope), Rope (Thick rope more than 1-3/4 inches in circumference) and hawser (Really thick rope at least 5-inches in circumference). Hawsers are used to secure and tow the largest ships.  As many as ten bow, stern, breast and spring lines, ropes and hawsers secure a vessel to the wharf.

Returning to the Brown after a long day hiking around and hoping to see some unusual wildlife during our last hours of “shore leave” I noticed the gang plank was moving back-and-forth appreciably, even though the harbor was flat calm. At the beach I enjoyed watching thunderous “overhead” surf breaking on the point and speculated about what sea conditions would be like at our rescheduled Midnight departure. Back in the harbor, the circular, movement of the ship was confirmation that there was a good long period swell refracting around the breakwater and setting the port’s water in motion. Watching the ship’s lines tighten and slacken at regular intervals of about a minute, I imagined the Brown was telling us she was biting at the bit to sail! Checking the lines I realized the hawsers had become a perfect roost for Inca terns; a bird I had searched for in vain at the shore – hoping to spot at least one before the end of my trip. The Inca tern (Larosterna inca) is the most distinctive of this gregarious group of seabirds. Rare elsewhere, it is fairly common along the coasts of Chile and Ecuador…and becoming increasingly abundant on the Brown! At night they outnumber every other bird in the port.

Brown at dock with birds gathering on lines
Brown at dock with birds gathering on lines

Birds of a feather flock together and this is certainly the case with terns. They roost, breed and fish in groups, often made up of different, but similar-looking, mostly grey and white species. Identifying them can be a challenge; except in the case of the dark grey Inca tern. Its red bill and especially its whiskered facial plumes separate it from its cousins, and all seabirds. Terns are my favorite group of birds and they have a cat-like aloofness when it comes to tolerating people. Sailing home from fishing trips in New Jersey waters, I usually have plenty of bait left over (Testimony to my questionable fish-finding ability.) and I soon learned that our common and least terns in Sandy Hook Bay are happy to dive down and perform fantastic midair catches of the bait I toss off the stern. These sharp-eyed hunters never seem to miss, and for me this is often the best part of the trip.

Terns on the hawser
Terns on the hawser

I thoroughly enjoyed my night with the whiskered terns, photographing them and watching their behavior. The birds were most crowded on the thick hawsers at the bow and stern. (Unlike perching birds like robins, most seabirds are flat-footed and can’t grip a perch.) There are two lines at each end of the ship (An inner and outer) and they behave differently – the outer lines stretching more but less gracefully, and occasionally shuttering. Also, the inner lines were better lit by the harbor lights than the outer lines. What follows is some of my data-driven research on the topic of Inca terns: It appears that some subtle differences encourage a definite hierarchy in the arrangement of the birds on the lines. Between 7075% of the group were adults (with their fancy plumes and dark coloration), however they were not distributed randomly. Almost all of the birds on the inner lines were always adults, and the juveniles (brown, “clean-shaven” and with less colorful bills) were banished to the outer lines. I monitored them for many hours and the whole group regularly would take off, even if only a few were disturbed (A typical tern behavior sometimes called “panic flights.”). They would circle out over the harbor, squawk a bit, and then return to sort themselves out at the lines. Adults would always jockey for space and replace any younger birds settled in the prime locations by hovering over them and making a few squawks and stabs with their bill. I never saw juveniles dislodge adults.

Balancing flat-footed Inca tern
Balancing flat-footed Inca tern

I also noticed some courtship behavior with the terns. This involves catching a small fish and offering it to your prospective bride; and since it only occurred between adults, I assume that like the gulls at the beach, they were approaching their breeding season too. At one point before it was too dark, a large gull wandered across the parking lot and was immediately dive-bombed and chased away (More typical tern behavior near colonies). There may even have been birds on eggs inside the few select hollow openings in the wharf’s walls, since individual birds stationed themselves at the dark entrances, defending them from others that tried to land there. Hmmm…Are Inca terns cavity nesters…cliff nesters…beach nesters? There is so much to learn about Inca terns….So many birds, so little time!

Dave Grant, November 8-10, 2008

NOAA Teacher at Sea
Dave Grant
Onboard NOAA Ship Ronald H. Brown
November 6 – December 3, 2008

MissionVOCALS, an international field experiment designed to better understand the physical and chemical processes of oceanic climate systems
Geographical area of cruise: Southeast Pacific
Date: November 8-10, 2008

From the top of El Morro, NOAA Teacher at Sea, Dave Grant, points to the Ron Brown anchored offshore.
From the top of El Morro, NOAA Teacher at Sea, Dave Grant, points to the Ron Brown anchored offshore.

Science and Technology Log 

Chile is due south of Portland, Maine; and Santiago, its capital, largest city and main gateway for international visitors is about 5235 miles from my home in New Jersey (By my crude flight calculations). Sometimes called the London of South America, it is as modern and upscale as some US cities. Chile is huge and diverse; it’s more than half the length of South America and bigger than Texas. Its 2666-mile (4300-Km) coastline stretches from the sub-tropical areas and deserts in the north, across the Tropic of Capricorn (The southernmost point where the sun reaches the Winter Solstice), through agriculturally important Mediterranean and Temperate climates at its middle, to the frigid tip of the continent at Tierra del Fuego.

Chileans are friendly, good natured and known for their hospitality towards visitors. Although the population is described as mestizo (A mixture of European and indigenous bloodlines) Aymara Indians in the North and Mapuche Indians in the South still follow many of their traditional ways of working the land. After a short stay in Santiago, another 1,040 miles and two flights up the coast put us in the port of Arica, the capital of northern Chile, where we were to meet the NOAA Ship Ronald H. Brown.

Location of the VOCALS project
Location of the VOCALS project

Arica is squeezed between the nearly rainless Atacama Desert of Peru, one of the driest places on Earth, and one the widest and island-free portions of the South Pacific. It is a week’s sail to “westernmost” Chile, Easter Island in the southwest; the home of the giant Moai statues and the most remote population of Polynesians. Arica is known as La Ciudad de la eternal primavera -“The city of the eternal spring” and is a busy but pleasant commercial center; the export/import hub for the region. Arriving before the ship’s departure allowed time for two worthwhile endeavors: sitting in on meetings with scientists who were reviewing their projects and exploring this fascinating part of the world. Over 50 researchers and technicians met at the Hotel Arica, on the shore just south of the city. Discussed in detail were various aspects of VOCALS (VAMOS Ocean Cloud Atmosphere Land Study). VAMOS refers to Variability of the American Monsoon Systems – the seasonal changes of wind patterns. Atmospheric scientists presented overviews on large scale wind movements, rain and cloud-forming particles (nuclei) in the air.

Mullet and mussels at the fish market
Mullet and mussels at the fish market

Oceanographers discussed the movement of rings (50-mile wide cores or eddies of circulating water bodies) in the main study area designated ORS* – the Stratus Ocean Reference Station – a curious region hundreds of miles off of Chile with persistent stratocumulus cloud cover. Satellite images, radar, air samples taken by various aircraft and balloons, and water samples brought to the surface from hundreds of meters below are analyzed to study this expanse to better understand the interaction between the ocean and atmosphere, as well as influences on climate.  Meteorologists sometimes tease their colleagues that oceanography is a small aspect of weather science. The atmosphere and ocean are linked by exchanges of energy, and the currency for this interaction is water vapor. Major mechanisms for energy transfer in the ocean are exhibited by  great water currents – “Rivers in the sea” as Mathew Maury described them – like the Gulf Stream of North America, and the Humboldt (or Peru) Current off of the western coast of South America.

Personal Log 

Tidepools at Isla de Alacran
Tidepools at Isla de Alacran

Since the ship was not fully loaded, the galley closed and much of the crew on shore-leave, we were free to explore the town’s small shops and restaurants at its center. My first stop is always the outdoor markets to see what is being raised and caught locally, and there are some interesting choices here besides fishes, including: muselina, cangrejo, limpa, percebe. (Mussels, rock crabs, limpets and barnacles.)  Then, after enjoying a meal of this interesting nugget that I couldn’t help copying verbatim from the local menu…Pastel de jabus en su greda (“Cake baked carb whit cheese in his clay pot”)…it was off to explore the shore.

There are small pocket beaches here with ghost crab burrows; and I found a nice assortment of bivalves and univalves for my collection. There were also many empty squid egg cases that were as thin and white as tissue paper. In spite of the cool waters (60’s), children don’t hesitate jumping in the waves or sitting in the tide pools gouged in the rocks. These pools are a perfect spot for the budding marine biologist to study or play, and are filled with barnacles, pretty striped snails, and kelp. In the larger ones, small fish stranded by the tides dart for cover when they see your shadow; and other residents – little dark blennies, that match the color of the  rocks and probably spend their lives in these havens, safe from bigger predators.

Barnacles and a drill snail in a tidepool
Barnacles and a drill snail in a tidepool

Higher up the tideline where the wash of the waves – the life support of the littoral zone –  diminishes, barnacles disappear and the main residents are durable little snails grazing on algae, and enduring harsher conditions of temperature and salinity that other creatures cannot. William Beebe wrote of his little periwinkle…”when a race of creatures develops an ability to clothe itself in impregnable marble palaces, immune to a host of dangers which threatens less armoured brethren, there is little need of their changing to meet new conditions.”  The uppermost depressions in the rocks collect salt spray or ocean water during the spring tides which quickly turns to brine in the dry air and afternoon sunshine. I find the coast here reminiscent of Southern California in many ways. Sturdy foot gear is in order since much of the coast is either eroding cliffs or rocky wave washed marine terrace. This is the realm of rugged creatures like limpets, snails and barnacles that must hold or cement themselves to the rock face. It is also the haunt of the colorful Sally Lightfoot, a lively semi-terrestrial crab that darts into crevices as soon as it sees you move, or in anticipation of the next wave – whichever comes first.

Black Oystercatchers
Black Oystercatchers

Picking at whatever morsels they can catch among the rocks are groups of ruddy turnstones; tall, stately and wary curlews; and noisy and very nervous black oystercatchers. The oystercatchers have a loud squeak-toy call and announce their presence regularly to intruders like me and each other, so although discrete, they are easy to find. Grey gulls (Larus modestus) live up to their Latin name only when it comes to appearance. Since this is the Autumnal spring, hundreds of them put on a continuous and raucous show along the shore, calling to each other in courtship pursuits, or in pursuit of any working fishing boat that passes. Some birds like the striking band-tailed gull habituate to people and are common around the docks and anywhere fishermen are cutting up their catch. Others, like the Peruvian booby, fly away whenever you approach them. The boobies and their cousins the cormorants, are responsible for the guano cliffs south of Arica, and a short trip to the end of the coast road brings you to a path that leads along the white-washed precipice through a series of caves.

Geoglyphs on a hillside
Geoglyphs on a hillside

The presence of seabirds is a clue to the productivity of ocean waters, and the legendary abundance of boobies, cormorants, pelicans and gulls (and their guano) along this coast and especially across the border, confirms it. The guano islands of Peru that were mined for their rich fertilizer, harbor the world’s largest colony of seabirds, some 10 million strong. The upwelling of nutrient-rich deep waters here helps produce perhaps one fifth of the world’s annual fish catch. By lunchtime the camanchaca (coastal fog) cleared “as it always does” and I negotiated a history and cultural tour with a very agreeable taxi driver named Federico. In spite of my poor knowledge of Spanish, he was able to make it a very educational afternoon. First stop was inland to the Azapa valley and the Museo Arqueologico which specializes in cultural artifacts from the various groups that inhabited this harsh environment from the 7th Century BC until the Spanish “invasion” and colonial period. The earliest inhabitants fished and hunted fur seals and sea lions, and must have struggled constantly with their environment because of the lack of water and building materials. However they did leave behind evidence of their accomplishments: tools like fish hooks fashioned from cactus spines, weaved materials and most significantly (to the archaeologists) cementerios with clay-covered mummies – said to be the oldest in the world. Three are exhibited: a man, woman and child.

Aduana – The old Custom house
Aduana – The old Custom house

They also invented and left behind their own brand of graffiti on the barren hills – Geoglyphs. By arranging dark stones on the light dusty hillsides, they created large and highly visible outlines of people and animals, especially llamas. South of Arica is the Giant of the Andes – said to be the largest in existence. I was told these images are a type of ancient trailside billboard, which would have guided pack trains. Climbing up one steep hill to line up a photograph of a very distant condor geoglyph, I stumbled and fell flat on my back – much to the delight of Federico and a friendly dog hoping for a treat from picnickers. I wonder how long my dust angel, The Gringo of the Andes(?) will remain here, untouched by wind and rain.

On our way back to town we passed many farms where drip irrigation allows the cultivation of hedgerows of tomatoes, and of course, corn. Olives are an important crop too and the trees that the Spanish introduced are some of the largest and oldest plants in the valley. I made a mental note to pick up some of the local products to bring home to New Jersey as gifts: Aceitede Olivia (Olive oil) and a delicious Mango Chutney.  In town we visited the restored 1874 customs house (Aduana) which, to my surprise, was designed by none other than Alexandre Gustave Eiffel. Besides designing the support structures for his famous tower in Paris and the Statue of Liberty, he is responsible for a number of buildings and bridges here in South America.   

Puerto de Arica from El Morro
Puerto de Arica from El Morro

Looming over the city and harbor is El Morro. At 330 meters it offers an incomparable vista of the entire area, including a birds-eye view of surfers and windsurfers taking advantage of the consistent southeasterly breeze and swell. Birds are in constant motion too, benefiting from the updraft on the steep cliff and circling it effortlessly. Vultures are the most common, and I made eye contact with a large red-tailed hawk soaring directly in front of us. At one point three falcons of different sizes were engaged in aerial combat, diving upon each other and then wheeling high above; the smallest being the noisiest and most aggressive; perhaps defending an eyrie below us. After a glorious sunset over the sea, the wind died down “as it always does” and the cool layer of marine air moved inland. Once it was dark, the park downtown erupted in music at several locations, including what I would describe as a head-banger concert that was loud enough to cause me to retreat back to the hotel to instead be sung to sleep (as the poets say) by the mewing of the nearby gladness of gulls. 

*(ORS refers to a Woods Hole Oceanographic Institution (WHOI) buoy moored at 20º South/85º West, in the center of a vast region of cloud cover in the South East Pacific (SEP). Similar cloud regions occur off of the coasts of West Africa, California, the Western Atlantic and Western Australia, but this one is the largest and most important in modifying weather.)

Brett Hoyt, October 24, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 24, 2006

Data from Bridge 

Visibility:  12nm (nautical miles)
Wind direction:  140º
Wind speed:  4 knots
Sea wave height: 0-1ft
Swell wave height: 6-8 ft
Sea level pressure:  1018.5 millibars
Sea temperature:  18.1ºC or 64 ºF
Air temperature:  18.7ºC or 65 ºF
Cloud type: stratus

Deployment of the new tsunami buoy began at 6am on October 23.  The scientists deployed the buoy first and then plan to deploy the Bottom Pressure Recorder (BPR).  The reason for this is that the BPR must be located close enough to the buoy for the acoustic communication from the BPR to reach the surface buoy.  As there are only a few instruments from the Woods Hole Oceanographic Institution on the buoy, this deployment process only took a few hours instead of most of the day.  They plan on letting the buoy settle for many hours before they deploy the BPR.  One of the challenges for the tsunami buoy is that unlike the Stratus 7 buoy which had a “watch circle” (the distance the buoy could wander) of over 3 miles, the tsunami buoy has a watch circle of no more than 1,500 meters.  This difference is that you don’t want the buoy wandering out of range of the Bottom Pressure Recorder transmitter.  To achieve this, the scientists must make the mooring line exactly the right length.  The day before they deployed the buoy the scientists measured the contours of the ocean floor and knew precisely how deep the water was. At the last minute, the scientists from the Chilean Navy cut and spliced a piece of mooring line to exactly the right length.  (See photo)

The Scientists 

Here a scientist from the Chilean Navy is seen splicing in an eye into the line after it was cut to length.  This process ensures that the buoy stays in the right location and does not wander too far.
Here a scientist from the Chilean Navy is seen splicing in an eye into the line after it was cut to length. This process ensures that the buoy stays in the right location and does not wander too far.

The Machine 

The Chilean Government's tsunami buoy on station in the South Pacific.  This is only one half of the warning equation.
The Chilean Government’s tsunami buoy in the South Pacific. This is only half of the warning equation.
The Bottom Pressure Recorder (BPR) with its anchor attached.
The Bottom Pressure Recorder (BPR) with its anchor attached.

The Experiment 

There was no experiment.

Classroom Activities 

There is no classroom activity, as creating your own tsunami in the classroom would be way too messy.

Brett Hoyt, October 22, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 22, 2006

Jeff Lord using an acoustic transmitter to talk to the acoustic release.  This machine also tells the scientists the range to the release that helps them in finding it.
Jeff Lord using an acoustic transmitter to talk to the acoustic release. This machine also tells the scientists the range to the release that helps them in finding it.

Data from Bridge 
Visibility:  12nm (nautical miles)
Wind direction:  130º
Wind speed:  19 knots
Sea wave height: 4-6ft
Swell wave height: 5-7 ft
Sea level pressure:  1019.7 millibars
Sea temperature:  17.3ºC or 63ºF
Air temperature:  18.0ºC or 64ºF
Cloud type: cumulus, stratocumulus, and stratus

Note: 

All day on the 21st was spent traveling to the Chilean tsunami buoy approximately 300 miles off the coast of Chile.  During this time, the Woods Hole group was busy retrieving data from their instruments from Stratus 6.  Many of the instruments collect data all year long and store it on flash memory cards.  When recovered one year later, this data is then downloaded onto computers for later analysis. We arrived late in the day on October 22 at the tsunami site and immediately started the process of recovering the old buoy. As you can see, scientists work day and night to get the job done. I really have never seen a group of harder working people.

Jorge Araya and Alvaro Vera, members of the Chilean Navy, looking for the yellow glass balls which were released over an hour ago and take that long to reach the surface.  Work vests were required but not hard hats for this part of the operation.  Both have over 12 years with the Chilean Navy.
Jorge Araya and Alvaro Vera, members of the Chilean Navy, looking for the yellow glass balls which were released over an hour ago and take that long to reach the surface. Work vests were required but not hard hats for this part of the operation. Both have over 12 years with the Chilean Navy.

The Machine

The glass balls are attached to the Bottom Pressure Recorder, or BPR, and float to the surface leaving the anchor on the bottom of the ocean.

Jorge Gaete, a civilian contractor for the Chilean Navy for the past 2 years, helps with the deployment of the tsunami buoy.
Jorge Gaete, a civilian contractor for the Chilean Navy for the past 2 years, helps with the deployment of the tsunami buoy.
Capturing the yellow flotation balls that have brought the BPR to the surface for recovery.
Capturing the yellow flotation balls that have brought the BPR to the surface for recovery.

The second part of the tsunami warning system is the recovery of the buoy.  This buoy receives the signal from the BPR and quickly transmits the warning via satellite to the Chilean authorities who in turn warn the public.  This recovery was done at night.  Without the vast array of sensors found on the Stratus 7 buoy, this recovery progressed quickly and was completed within 30 minutes.

Hooking lines to the tsunami buoy for a quick recovery.
Hooking lines to the tsunami buoy for a quick recovery.

The Experiment

There is no experiment today; however, I will try to explain how the system works. When a tsunami is triggered by an underwater earthquake the BPR detects the increase in pressure on the bottom of the ocean due to the increase in the height of the water column above the sensor. When I asked Alvaro how this worked when sea swell was 6-7 ft at times and waves could reach a height of 45ft he explained that the pressure is sharp and abrupt. This is indicated by a very short wave (period) of energy passing through the open ocean. In open ocean the height of a huge tsunami wave is so short a ship would hardly know one has passed by.  It is only when this wave heads into shallow water that the wave becomes deadly.

The BPR immediately after recovery, without its anchor that remains on the bottom of the ocean.
The BPR immediately after recovery, without its anchor that remains on the bottom of the ocean.

hoyt_log9ww

Classroom Activities

Please share with your students the DART tsunami warning system.

My next log will cover the deployment of a new warning system.

Brett Hoyt, October 19, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 19, 2006

Dan Wolfe, senior scientist at NOAA, at his workstation on board the research vessel the RONALD H. BROWN.
Dan Wolfe, senior scientist at NOAA, at his workstation on board

Weather from Bridge 
Visibility:  12nm(nautical miles)
Wind direction:  130º
Wind speed:  20 knots
Sea wave height: 5-7ft
Swell wave height: 3-4 ft
Sea level pressure: 1020.4 millibars
Sea temperature:  19.4ºC or 66 ºF
Air temperature:  19.2ºC or 66ºF
Cloud type: cumulus, stratocumulus

The Scientists 

Today we will be interviewing Dan Wolfe, a senior meteorologist for the National Oceanic and Atmospheric Administration—NOAA for short.  Standing an imposing 6’3”, it seemed only fitting that our next scientist should be studying the heavens.  Mr. Wolfe is a 30-year veteran of NOAA and has been a scientist for the past 31 years.  Mr. Wolfe entered the Coast Guard in 1969 immediately after graduating high school.  He was initially assigned to the Coast Guard icebreaker “Glacier” transferring to the oceanographic unit where he staged scientific experiments.  He traveled to the Arctic and it was there that he discovered his soon to be life long passion for the atmosphere and all that is in it. Mr. Wolfe was a trained scuba diver while stationed on the Glacier. After leaving the Coast Guard he attended Metropolitan State College where he earned his degree in meteorology.  He has the distinction of being the first student to graduate in meteorology at this college.  It was while at Metropolitan College that Mr. Wolfe became a coop student working for NOAA. After earning his degree he went to work for NOAA as a meteorologist where for the next 30 years he has become one if its leading atmospheric scientists.  After seven years on the job he decided that he wanted to know more and enrolled at Colorado State University where he earned his masters degree.

This is a radiosonde, which measures relative humidity, temperature, barometric pressure, and winds as it passes through the atmosphere and radios its data back to the scientist.
This is a radiosonde, which measures relative humidity, temperature, barometric pressure, and winds as it passes through the atmosphere and radios its data back

Mr. Wolfe is one of the few individuals who has worked in BOTH the Arctic (North) and the Antarctic (South) (not just Antarctica but actually at the South Pole). His work has taken him to the depths of the Grand Canyon and to the Arctic more times than he cares to remember.

One of his more exciting job assignments with NOAA is managing a 1,000-ft research tower just off of I25 north of Denver Co.  When I asked Mr. Wolfe what message he would like to give to upcoming scientists he replied, “Kids should seek out paid/or unpaid internships while in high school. Look for internships within your community in careers that you think you might like.  This gives you the opportunity to try a job before investing money and time in college in a future you may not enjoy. If you try a job and discover you don’t like it, try something else until you find something you do like.  Be sure to give the job a chance though.”

NOAA Teacher at Sea, Mr. Hoyt, releasing a radiosonde off the aft deck
NOAA Teacher at Sea, Mr. Hoyt, releasing a radiosonde

The Machine 

One important scientific instrument used by a meteorologist is the radiosonde (pronounced radio sond). This device measures relative humidity, temperature, barometric pressure, and winds by utilizing the global positioning satellite system.  The radiosonde is battery activated then secured to a large helium balloon.  It is then released where it begins its ascent into the upper atmosphere, measuring humidity, temperature, and pressure sending these data back to the scientist via a digital radio frequency. Depending on the balloon used, these radiosondes can obtain heights in excess of 6 miles. The atmospheric data collected on this cruise will be shared with other scientists to help improve global weather computer models.

The Experiment 

There is no experiment as these data are transmitted via satellite link immediately after the flight is finished to the National Center for Environmental Prediction to be fed into their continuously running forecast models.

Classroom Activities 

Elememtary K-6: 

Ask the students, “What is weather?”  “Why is it important to predict the weather?” Have the students take a piece of drawing paper and divide it into four equal parts.  In each part have the students draw and color four different types of weather common to where they live.  Example could be sunny, rainy, partly cloudy, and snow.

Middle School:  

Why do we use calibrated thermometers to measure air temperature?   Ask students to answer on paper whether the classroom is hot, warm, cool, or cold and to estimate the actual temperature of the room.  Then compare the students’ answers to the actual temperature.  Then discuss the importance of a “standard.”  Without this “standard” scientists around the world would have no way of communicating what the atmosphere is doing.

Please examine the High School for more activities

High School: 

Everyday we hear on the radio, television, or newspaper that it will be sunny, partly cloudy, partly sunny, etc.  How do meteorologist arrive at this? Today we will learn how.

Divide the sky into eight parts.  Examine each part and count how many squares have clouds. There is no hard and fast rule on what to do with partially filled boxes

No squares having clouds-Clear or Sunny 

One to two squares having clouds-Mostly Clear or Mostly Sunny 

Three or four squares having clouds-Partly Cloudy or Partly Sunny 

Five, Six, or Seven squares having clouds-Mostly Cloudy 

Eight squares having clouds-Overcast or Cloudy Take the sky photo below and print it out. Draw a grid like the one above on top of the sky photo. Have the students write down what they think the day is.  Then compare the student’s answers. Is this an exact science?

Have your teacher take photos of the weather in your area and do your own.

hoyt_log8w

Brett Hoyt, October 18, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 18, 2006

Weather Data from Bridge October 18 
Visibility: 12nm(nautical miles)
Wind direction: 120º
True Wind speed: 10 knots
Sea wave height: 2-4ft
Swell wave height: 3-5 ft
Sea level pressure: 1021.6 millibars
Sea temperature: 19.3ºC or 67ºF
Air temperature: 22.5ºC or 72ºF
Cloud type: cumulus, stratocumulus

We are going to use a different format for today because it is recovery day!

On October 16th we deployed the Stratus 7 buoy. The second part of this cruise is the recovery of the Stratus 6 buoy that was deployed approximately one year ago. To ensure a continuous record, a new buoy is installed at the same time the old one is recovered. Today, October 18th, is the recovery of the Stratus 6 buoy. Please compare and contrast the photos of October 16th (Deployment) with that of October 18th (Recovery).

The Stratus 6 Buoy one year after it was deployed.  The nearest Land is 600 miles to the east.  These birds are feeding off the marine life this buoy collects in the waters around the mooring.
The Stratus 6 Buoy one year after it was deployed. The nearest Land is 600 miles to the east. These birds are feeding off the marine life this buoy collects in the waters around the mooring.
Recovering of the Stratus 6.  Can you spot the Scotsman?  Hint: He’s the one in the cowboy hard hat.
Recovering of the Stratus 6. Can you spot the Scotsman? Hint: He’s the one in the cowboy hard hat.
 Instruments waiting deployment for Stratus 7.
Instruments waiting deployment for Stratus 7.
Stratus 6 instruments one year after deployment covered in barnacles.  What would two years of deployment look like?
Stratus 6 instruments one year after deployment covered in barnacles. What would two years of deployment look like?
Gooseneck barnacles from the Stratus 6 buoy.
Gooseneck barnacles from the Stratus 6 buoy.
Damage to a current meter caused by fisherman’s gear.  Of the 8 meters, 6 were fouled. Here we have entanglement of the current metering fans by fishermen’s lights. They use these lights on their lines to attract fish to their hooks at night.  Once the entanglement occurs data cannot continue to be gathered.
Damage to a current meter caused by fisherman’s gear. Of the 8 meters, 6 were fouled. Here we have entanglement of the current metering fans by fishermen’s lights. They use these lights on their lines to attract fish to their hooks at night. Once the entanglement occurs data cannot continue to be gathered.
NOAA Teacher at Sea, Mr. Hoyt, scraping barnacles off one of the sensors from     Stratus 6. “ I’ve got to talk to my travel agent.”
NOAA Teacher at Sea, Mr. Hoyt, scraping barnacles off one of the sensors from Stratus 6. “ I’ve got to talk to my travel agent.”
Remember the glass balls from Stratus 7?  Here are the glass balls from Stratus 6.  It took them over one hour to reach the surface after the acoustic release was activated.  They are not in the nice neat line as we had in deployment.
Remember the glass balls from Stratus 7? Here are the glass balls from Stratus 6. It took them over one hour to reach the surface after the acoustic release was activated. They are not in the nice neat line as we had in deployment.
Anyone like puzzles?
Anyone like puzzles?
The acoustic release, one year after being sent 13,000 ft to the bottom of the ocean.  Scientists sent a signal to this release to let go of one side of the chain.  Should one release fail, they could trigger the other release.
The acoustic release, one year after being sent 13,000 ft to the bottom of the ocean. Scientists sent a signal to this release to let go of one side of the chain. Should one release fail, they could trigger the other release.
Dr. Weller, leading by example, cleaning the equipment free of barnacles.  Remember in an earlier posting when he stated he was a “hands on scientist”?
Dr. Weller, leading by example, cleaning the equipment free of barnacles. Remember in an earlier posting when he stated he was a “hands on scientist”?

Brett Hoyt, October 16, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 16, 2006

Weather Data from Bridge 
Visibility: 12nm (nautical miles)
Wind direction: 060º
Wind speed: 10 knots
Sea wave height: 3-4ft
Swell wave height: 5-6 ft
Sea level pressure: 1020.8 millibars
Sea temperature: 19.3ºC or 66ºF
Air temperature: 19.1ºC or 66ºF
Cloud type: cumulus, stratocumulus

We are going to use a different format for today because it is Deployment Day! Today was deployment day for the entire crew and the best way to tell this story is in pictures. So let’s begin.

Before scientists deploy a buoy they must measure how deep the ocean is. This is the actual bathymetric (bottom measure) read out of the target site for Stratus 7.
Before scientists deploy a buoy they must measure how deep the ocean is. This is the actual bathymetric (bottom measure) read out of the target site for Stratus 7.
This is the map of the bottom of the ocean. Please note the scale in meters on the left as well as + marks the spot. Can you see the pattern the boat is making?
This is the map of the bottom of the ocean. Please note the scale in meters on the left
as well as + marks the spot. Can you see the pattern the boat is making?
With over 4,400 m (13,000 ft) of cable it takes a full crew to stage the cable.
With over 4,400 m (13,000 ft) of cable it takes a full crew to stage the cable.
Jeff Lord making final preparations for the dozens of instruments to be deployed beneath the buoy.  What an amazing man.  “What would we do without you?”
Jeff Lord making final preparations for the dozens of instruments to be deployed beneath the buoy. What an amazing man. “What would we do without you?”
Lifting the Stratus 7 Buoy off the ship.  This process takes the cooperation of about a dozen individuals to do.
Lifting the Stratus 7 Buoy off the ship. This process takes the cooperation of about a dozen individuals to do.
Stratus 7 off the side ready to have the instruments deployed under it.
Stratus 7 off the side ready to have the instruments deployed under it.
Jeff attaching a current meter (Invented and patented by Dr. Weller) to the bottom of the buoy.  It weights about 160lb and there are eight of them.  Please note the safety equipment Jeff is wearing.  SAFETY FIRST!
Jeff attaching a current meter (Invented and patented by Dr. Weller) to the bottom of the buoy. It weights about 160lb and there are eight of them. Please note the safety equipment Jeff is wearing. SAFETY FIRST!
Dr. Weller operating the winch (it has over 2.5 miles of cable on it!) and supervising the deployment operation.
Dr. Weller operating the winch (it has over 2.5 miles of cable on it!) and supervising the deployment operation.
Attaching glass balls (they are located inside the yellow plastic housings which protect them from chipping), which are at the very end of the 13,000 feet of cable just above the acoustic release, which in turn attaches to the anchor.  These hollow glass balls can withstand pressures in excess of 5,300 lb/sqin.
Attaching glass balls (they are located inside the yellow plastic housings which protect them from chipping), which are at the very end of the 13,000 feet of cable just above the acoustic release, which in turn attaches to the anchor. These hollow glass balls can withstand pressures in excess of 5,300 lb/sqin.
This is the acoustic release (actually two) that attaches the buoy mooring line to the anchor. One year from now an acoustic signal will be sent down 13,000ft to trigger the chain to be released.  The reason they use two is that if one fails the release will still take place and the mooring line will begin its ascent to the surface with the help of the glass balls.
This is the acoustic release (actually two) that attaches the buoy mooring line to the anchor. One year from now an acoustic signal will be sent down 13,000ft to trigger the chain to be released. The reason they use two is that if one fails the release will still take place and the mooring line will begin its ascent to the surface with the help of the glass balls.
Everything is just moments before release.  This anchor weighs 9,000lbs and will take over 45 minutes to fall to the bottom of the ocean.  All the instruments are attached, glass balls secured, and the acoustic release in place.  Drum roll please………………….
Everything is just moments before release. This anchor weighs 9,000lbs and will take over 45 minutes to fall to the bottom of the ocean. All the instruments are attached, glass balls secured, and the acoustic release in place. Drum roll please…………………. The anchor is deployed!
Stratus 7 on station in the South Pacific Ocean helping scientist understand this big blue planet we call home.
Stratus 7 on station in the South Pacific Ocean helping scientist understand this big blue planet we call home.

Brett Hoyt, October 15, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 15, 2006

Dr. Robert Weller sitting on the aft deck
Dr. Robert Weller sitting on the aft deck

Weather Data from Bridge
Visibility:  12nm(nautical miles)
Wind direction:  110º
Wind speed:  11 knots
Sea wave height: 2-3 ft
Swell wave height: 3-5 ft
Sea level pressure: 1016.8 millibars
Sea temperature:  18.6ºC or 65 ºF
Air temperature:  18.2ºC or 64ºF
Cloud type: cumulus, stratocumulus

The Scientists 

Today we will visit with Dr. Robert (Bob) Weller.  Dr. Weller is the lead scientist for this scientific cruise and upon whose shoulders the success or failure of this expedition rests.  Dr. Weller is an easy going, soft-spoken, easy to approach, modest, and very intense man with a passion for understanding the climate of the earth and all the processes within it.  Many times scientist possess a great mind for academic excellence yet they fail at relating to people. Dr. Weller is the exception, possessing a brilliant mind, keen insight and intuition, and superb people management skills.  It is exactly these qualities that have enabled him to lead such important and ground breaking research on climate and climate studies He understands that the success of a cruise depends on getting people (sometimes of various nationalities, on our cruise five) to work together to accomplish great things.

The Stratus 7 Buoy on station in the South Pacific Ocean just after being deployed from the ship
The Stratus 7 Buoy on station in the South Pacific just after being deployed

Dr. Weller began at an early age to feel the pull of science.  He entered college initially to be a biochemist but something happened.  In the middle of college he accepted a job with an oceanographer and from that time on he knew that a new career was in order. He graduated in 1972 with a degree in engineering and applied physics.  He continued on and five years later in 1978 earned his doctoral degree in oceanography.

Upon earning his doctoral degree he accepted a position working at the prestigious Woods Hole Oceanographic Institution. He has been there ever since.  How many people do you know who have stayed at the same job for 28 years!  Dr. Weller finds himself at sea 2-3 months out of the year.  He is a self-described scientist who likes to do things “hand on” (he’s not afraid to get dirty–please see the photo of him on deck and in his hard hat). When I asked him how long he has been a lead scientist he modestly replied” I don’t know if I’m there yet.” When I asked him what one message he would like to send to you future scientists he stated “ Kids and future scientists should be less concerned about outer space and more concerned about the planet we currently live on”.  He wants kids to think about the things you can do about the temperature of the oceans and the role they play in the wellbeing of our planet we call home.

The anchor for the buoy
The anchor for the buoy

The Machine 

Today we will examine the reason we all went to sea, the Stratus 7 Buoy.  This buoy sends real time data from a fixed location off the coast of Chile.  The buoy system maintained by the Woods Hole Oceanographic Institution (WHOI) out of Woods Hole Massachusetts plays an extremely critical role in understanding weather patterns that have worldwide implications.  These buoys are highly sophisticated weather and climate data-gathering stations. The data collected from these stations is used to check the accuracy of powerful computer simulations that are used to predict climate change.

The Stratus 7 buoy replaces the aging Stratus 6 buoy that has been on station for over a year. There has been a Stratus buoy in this location since 2000.  Dr. Weller stated that in years past buoys would not be on station for years at a time but rather for days at a time.  Most did not exceed 40 days.  Through trial and error, research and innovation, the life at sea for a buoy has been extended into the years.  Concerned about waste and pollution in the oceans, most buoys are serviced, refitted, and given a new life year after year.  Some might wonder about the cost, sometimes in excess of $1million dollars, of the buoy programs.  The economic payoff is immense.  It is buoys like these and the data that they collect that help scientists predict the absence or presence of El Nino. This has a huge and direct agricultural impact upon coastal states and to a lesser degree states far removed from the oceans.  Do you have droughts or floods out of the norm in your area? The cause could be ocean related.

Hundreds of pounds of chain!
Hundreds of pounds of chain!

The Stratus Buoy can make the following measurements: -precipitation -wind speed and direction -air temperature -relative humidity -barometric air pressure -long wave radiation (radiation given off by a hot body) -short wave radiation (incoming energy from the sun) -sea surface temperature. The buoy not only transmits this data real time but also stores much more detailed information on flash cards.  These cards are collected and taken back to the laboratory for further study. In addition to all the above surface instrumentation there is over 5,000 lbs of sub surface measuring instruments.  These include current velocity, salinity, and temperature.  These instruments are located at various depths down to 2,500ft. For example there will be 8 current velocity-measuring instruments at 8 different depths.

Cool facts 

-You probably wonder how this million-dollar instrument is powered.  Wind, solar, high powered lithium batteries, nope none of the above. It is powered by 1,650 D cell alkaline batteries. Exactly the ones you would use in a flashlight in your house.

-The mooring line (the line connected to the anchor) will be over 12,000 feet long

-The anchor is a cast iron weight that weighs over 9,000 pounds. -This anchor will take over 45 minutes to make it’s journey to the bottom of the ocean

-The buoy will have over 5,000lbs of instruments hanging from the bottom of it

The Experiment 

There is no direct experiment with the stratus buoy. The data collected by it is used by scientists world wide to generate new ideas, hypothesis, and conclusions. As stated earlier this data is used to help climatologists improve computer models and check them for accuracy.

Dozens of instruments to be deployed directly beneath the buoy 800 meters worth that’s over 2,400 feet of instruments!
Dozens of instruments to be deployed directly beneath the buoy 800 meters worth that’s over 2,400 feet of instruments!

Classroom Activities 

Elememtary K-6: Items needed- Styrofoam cup or similar floating device, small piece of string and a metal washer some rubber cement or other flexible glue, some round toothpicks and a large tub of water.  Have the students decorate their cup using markers, plastic straws, aluminum foil, or anything else that the kids might think would make their buoy look scientific. Put the string through the bottom of the cup making as small as hole as possible (the point of a compass or the toothpicks work well) tie the string to a toothpick on the inside of the cup and let the toothpick rest on the bottom inside the cup.  Place a small dab of glue on both the inside and outside of the string to keep the water from entering the cup.  With the string dangling from the bottom outside of the cup tie on the washer or other object for weight. Ask the kids what scientific information their buoy collects.

Middle School:  

Items needed- volt-ohm meter, glass beaker, two small copper wires, 500ml of distilled water, and some common table salt.

Salinity of the oceans seawater is of concern to scientists and is one of the tests conducted by the Stratus 7 Buoy. The way scientists test for salinity is called a conductivity test.  That is they measure the conductivity of seawater.  Have the student pour 250ml of distilled water into a glass beaker.  Place two small copper wires on opposite sides of the beaker and submerged in the water.  Be sure that at least 1cm of wire is exposed copper and in the water.  Set the voltmeter to ohms and get a reading and record it.  Add .5 grams of salt and mix well.  Test the conductivity again.  Keep adding salt in .5-gram increments.  Does the readings change? If so how?  Are the numbers getting larger or smaller? If so why?

High School: 

Items needed- volt-ohm meter, glass beaker, two small copper wires, 250ml of distilled water, and some common table salt, and sugar.

Salinity of the oceans seawater is of concern to scientists and is one of the testes conducted by the Stratus 7 Buoy. The way scientist test for salinity is called a conductivity test. That is they measure the conductivity of seawater.  Have the student pour 250ml of distilled water into a glass beaker.  Place two small copper wires on opposite sides of the beaker and submerged in the water.  Set the voltmeter to ohms and get a reading and record it.  Add .5 grams of salt and mix well.  Test the conductivity again. Keep adding salt in .5-gram increments. Does the readings change? If so how? Are the numbers getting larger or smaller? If so why?

Now run the test with sugar. What are your results?  Was there a change? Now change the temperature of the solution by heating or chilling with ice.  Does this make a difference in your readings?

Lead a class discussion on what each instrument of the stratus buoy does and why it is important to scientists.

Brett Hoyt, October 13, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 13, 2006

This is a Sea Surface Drifter.  The students of Burlington Elementary School in Billings Mt adopted this drifter.  It was deployed off the coast of Chile
This is a Sea Surface Drifter. The students of Burlington Elementary School in Billings Mt adopted it, deployed off the coast of Chile

Weather Data from Bridge 
Visibility:  12nm (nautical miles)
Wind direction:  160º
True Wind speed:  7 knots
Sea wave height: 0-1ft
Swell wave height: 5-7 ft
Sea level pressure: 1015.1 millibars
Sea temperature:  20.7ºC or 69.2ºF
Air temperature:  21.0ºC or 69.8ºF
Cloud type: cumulus, stratocumulus

The Scientists 

We will not highlight a scientist today, as the star of our show is the floats and drifters.

The Machine 

Today we will examine the Argo Floats and drifters. The two machines do basically the same measurements but in different layers of the ocean. The drifters that we are deploying during the Stratus 7 cruise measure sea surface temperature (SST) and transmit that temperature and their location as they drift with the upper ocean currents.  This tells scientist how warm or cold the water is and how the currents in the ocean move about.  The reason scientists use drifters is that even though satellites are fairly good at acquiring sea surface temperatures some, at present, cannot penetrate cloud cover and all need the drifter data to improve their accuracy.  By using the hundreds of drifters scattered throughout the globe, scientist can use this data to improve the current computer models of global climate condition and get real-time data to use in their work.

This is an Argo float. It will spend most of its life in the very deep ocean (up to 6,000ft deep) and come to the surface every 10days to send off its data.  It is approximately 4 •••ft to 5 ft long and weighs about 30 lbs.
This Argo float will spend most of its life in the very deep ocean (up to 6,000ft deep) and come to the surface every 10 days to send off its data. It weighs about 30 lbs.

Argo floats lead an active life traveling very little compared to surface drifters.  The reason for this is that floats spend most of their time in extremely deep and very slow-moving ocean waters. Some deep ocean water takes thousands of years to make their cycles through the oceans systems.  These floats descend to about 1,500m to 2,000m (approximately 4,500ft to 6,000ft) and every 10 days a bladder inflates and it rises to the surface taking measurements along the way; at the surface it transmits its data back to the scientists thousands of miles away. These floats are built to last about 4 years.

The Experiment 

No experiment with the drifters and floats.

Classroom Activities 

Mr. Hoyt and Jeff Lord are examining a drifter adopted by the Burlington Elementary Research Team (B.E.R.T.).  We all wish BERT a pleasant journey as he travels the Pacific Ocean.
Mr. Hoyt and Jeff Lord are examining a drifter adopted by the Burlington Elementary Research Team (B.E.R.T.). We all wish BERT a pleasant journey as he travels the Pacific Ocean.

Elememtary K-6: 

Since measuring environmental temperatures is one of the primary functions of the drifters and floaters, lead the students in a discussion of:  What is hot? What is cold? What can we use to measure temperature?  Do students have a temperature?

Middle School:  

The thousands of drifters are used to get real time readings of sea surface temperatures worldwide. Start by asking the students what is the temperature of our classroom.  After they give you the answer ask them if it is that temperature everywhere in the classroom.  Have them devise a way to check their theory.  Why is it the same/different around different parts of the room? Hint: This hint is for the classroom teacher and will be found at the bottom of this posting.

High School: 

This is the drogue chute that is deployed in the water beneath the drifter to stabilize its deployment with the ocean currents.
This is the drogue chute that is deployed in the water beneath the drifter to stabilize its deployment with the ocean currents.

Students should go to the Datastreme Oceans website to explore some of the cool findings available to the public.

Thought Experiment provided by Dr. Weller: 

How does an Argo float rise to the surface and later sink to a desired depth?

Middle School hint: 

Have the students set about 20 cups or glasses, filled with water, in various locations around the room.  Be sure the containers are covered to reduce cooling due to evaporation.  Let the water stabilize overnight.  The next day, have the students take temperature readings at the different “sites”.  Compare the different readings around the room.  Are they all the same or are they different.  Lead the students in a discussion on the reasons for their results. Can they make any predictions about tomorrow’s readings? Do the readings change over the weekend?  (Most schools turn down the heat on the weekend). Have each class post their findings so that other “scientists” from other classes can be compared with their own.  Maybe 1st period is different from 7th period.

High School Hint: 

The ocean is stratified–the seawater is denser the deeper you go.  This is because it is colder and sometimes saltier at depth.  The density of the float depends on the ratio mass/volume.  The float has a reservoir of oil inside that is pumped into or taken back from an external inflatable rubber bladder.  Filling or emptying the bladder changes the volume of the float while its mass remains the same, so the float can change its density, allowing it to become buoyant enough to float to the surface or to adjust itself to match the density of seawater at 1,500m.

hoyt_log4d

Brett Hoyt, October 12, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 12, 2006

Weather Data from Bridge 
Visibility:  12nm(nautical miles)
Wind direction:  185º
Wind speed:  9 knots
Sea wave height: 2-3ft
Swell wave height: 3-4 ft
Sea level pressure: 1011.9 millibars
Sea temperature:  23.9ºC or 75.0ºF
Air temperature:  21.0ºC or 69.8ºF
Cloud type: cumulus, stratocumulus

Dr. Byron Blomquist (seated) and graduate student Mingxi Yang (standing) beside the Atmospheric Pressure Ionization Mass Spectrometer or APIMS.
Dr. Byron Blomquist (seated) and graduate student Mingxi Yang (standing) beside the Atmospheric Pressure Ionization Mass Spectrometer or APIMS.

The Scientists 

As I mentioned yesterday, today I will begin to introduce the scientists, their equipment, and their experiments. Today I would like to introduce to you Dr. Byron Blomquist (lead scientist) and graduate student Mingxi (pronounced ming-she) Yang, both from the University of Hawaii. They plan to study the exchange of gases between the ocean and the atmosphere.

Dr. Blomquist is a quiet, soft-spoken, and self-professed tinkerer. He began his love of science at an early age with a fascination for all things living. He took a great interest in bugs, snakes, birds, and other animals and insects.  He stated that Biology was his favorite subject. Dr. Blomquist has a few interesting facts about himself he is willing to share with us; one is that he works in Hawaii however he lives in Colorado and the other is that he finished high school in only three years! 

Mr. Hoyt standing in front of Dr. Blomquist’s portable lab.  Please note the wires leaving the lab to the left of the photo.
Mr. Hoyt standing in front of Dr. Blomquist’s portable lab. Please note the wires leaving the lab to the left of the photo.

The other scientist is graduate student Mingxi Yang, we just call him Ming for now but someday we will have to address him as Dr. Yang as he plans on earning his doctorate degree. Ming is a very intelligent and self-confident graduate student from the University of Hawaii. Ming originally was born in Beijing China, when at the age of 14 his family moved to Massachusetts. He originally was going to get a degree in chemistry when in his junior year in college he accepted a summer internship with the Woods Hole Oceanographic Institution. It was during these 12 weeks that Ming decided that he could impact the world in a more positive way by switching majors and getting a degree in Oceanography.

Here is a view of the mast at the front of the ship where Dr. Blomquist’s instruments are located.  Because his instruments are so sensitive, no smoking will be allowed on the bow (front) of the ship during the experiment.  The mast is over 20m high that is over 60ft!
Here is a view of the mast at the front of the ship. Because the instruments are so sensitive, no smoking will be allowed on the bow. The mast is over 20m high that is over 60ft!

The Machine 

The Atmospheric Pressure Ionization Mass Spectrometer or APIMS for short is one of only three that exist worldwide. Dr. Blomquist built this machine from scratch.  Many of the components and circuit boards were custom designed and built specifically for this machine.  If cool and shiny is your thing and you have $300,000 in your piggy bank then you might be able to get Dr. Blomquist to build you one.  What cool scientific discovery you make with it is up to you.  Many students envision that science takes place only in large land based laboratories, but they would be wrong. Below is the portable (you might need a big truck or ship) laboratory that Dr. Blomquist and Ming brought with them.  It’s sort of like a camper without the wheels.

The Experiment 

We have read about man-made global warming and generally believe that this is not good for the earth and its climate.  Scientists also believe that the main source of global warming is the buildup of excess carbon dioxide in the atmosphere.  Since it would be impossible to measure everywhere on the earth at the same time scientists use powerful computers to create models (computer programs) to predict what is happening over the entire earth.  The Atmospheric Pressure Ionization Mass Spectrometer or APIMS measures a gas, which in computer models is similar to carbon dioxide.  What Dr. Blomquist and Ming are doing is collecting data to compare with model predictions to improve current computer models of the climate.  What they are looking for is the interaction between the atmosphere and the ocean. Liquids can and do absorb gasses.  To illustrate this open up a can of soda pop. The bubbles you see are the gas carbon dioxide leaving the liquid.  The ocean both absorbs and releases carbon dioxide, and therefore plays an important role in climate regulation.

The Teacher 

I spent my day interviewing scientist and preparing for upcoming interviews with other scientist.  Tomorrow we enter international waters and the experiments can begin.  I will also begin drifter watch. My watch time will be from 8am to 12 noon and 8pm to 12 midnight.  I will provide more details tomorrow and discuss drifters and how they are used.

Classroom Activities 

Elememtary K-6: 

Because of the complexity of this experiment we will have no classroom activity but perhaps you could enjoy a bubbly beverage of your choice.

Middle School:  

How many liquids could you list that have dissolved gases in them that are commonly found in the home.  What gases do you think they are?  Are they harmful to the planet?

High School: 

How many liquids could you list that have dissolved gases in them that are commonly found in the home.  What gases do you think they are?  Are they harmful to the planet?

We will continue to visit with some of the scientists and find out more on what experiments are being conducted on this Stratus 7 cruise and why.

Mr. Hoyt “driving” the ship.  The two controls I am holding are how the ship is steered. The ship has no rudder and the pilot need only to rotate these controls to turn the propellers in a different direction. Much like turning the motor on a small boat.
Mr. Hoyt “driving” the ship. The two controls I am holding are how the ship is steered. The ship has no rudder and the pilot need only to rotate these controls to turn the propellers in a different direction. Much like turning the motor on a small boat.

Brett Hoyt, October 11, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 11, 2006

Weather Data from Bridge 
Visibility:  10nm (nautical miles)
Wind direction:  220º
Wind speed:  12 knots
Sea wave height: 3-4ft
Swell wave height: 3-5 ft
Sea level pressure: 1012.9 millibars
Sea temperature:  25.5ºC or 77.9ºF
Cloud type: cumulus, stratocumulus

The Commanding Officer of the RONALD H.BROWN, CAPT. Gary Petrae
The Commanding Officer of the RONALD H.BROWN, CAPT. Gary Petrae

The Ship and Crew 

I am presently on board the NOAA ship RONALD H. BROWN.  This ship was commissioned in 1997 and is 274 feet in length (just 16 feet shorter than a football field) and 52 feet wide. The ship displaces 3,250 tons and has a maximum speed of 15 knots.  Captain of the RONALD H. BROWN (RHB) is Gary Petrae.  Captain Petrae has just celebrated his 28th year serving in the NOAA Officer Corps. The RHB is the fifth ship Captain Petrae has served on and the second ship he has commanded in his tenure with NOAA. We are truly lucky to have such an experienced captain at the helm.  When you are thousands of miles out to sea, you entrust your life to the captain and crew. One of the interesting facts about a ship at sea is that someone must be at the helm 24 hours a day 7 days a week. Now the captain cannot be there all the time so he turns over the job of “driving” the ship to one of his other officers. 

They take “watches” which in this case are four hours in duration.  During a recent trip to the bridge (this is what they call the command center for the ship) I was fortunate enough to visit with the Officer Of the Deck (OOD for short) Lieutenant (Junior Grade) Lt (JG). Jackie Almeida.  She stands approximately 5’0” with reddish/brown hair and a confidence that fills the bridge. Her bright eyes and effervescent personality quickly put me at ease. She earned her degree in meteorology and joined the NOAA Officer Corps. When she finishes her assignment with the RHB she will join the NOAA hurricane hunters and be advancing our knowledge of these deadly storms.

Ltjg. Jackie Almeida On the bridge of the RONALD H. BROWN
Ltjg. Jackie Almeida on the bridge

The Scientists 

The scientists are spending the day checking and rechecking their equipment making sure that when the crucial time comes all will go well.

The Teacher 

I spent the day observing the scientist preparing equipment and rechecking systems.  I am trying to remember all the safety information that was delivered on the first day. Just like in school, we have safety drills so that in the event something goes wrong everyone knows what to do. We practice fire drills just as you do in school. We also have abandon ship drills.  Below you can see me modeling the latest fashion in survival suits.  The crew calls them “Gumby suits.” 

Classroom Activities 

Mr. Hoyt “looking good” in his survival suit.  Hey kids, wouldn’t your teacher look good in this suit?
Mr. Hoyt “looking good” in his survival suit. Hey kids, wouldn’t your teacher look good in this suit?

Elememtary K-6 

Today’s activity is to give the students an idea of the ship that I’m on.  The teacher will need at least 650 ft of string (you can tie shorter rolls together) and as long a tape measure as you can find (a 100ft one works best).  This activity would be best done on the playground or any other large open space.  Have student-A hold one end of the string and measure out 274 feet in a straight line.  Then have student-B hold the string loosely and run the string back 274 feet to a different student-C but even with student-A. Now have students A and C move 52 feet apart and finish up with student A holding both the beginning and end of the length of string-Do not cut the string as you will need to keep letting out more string as you complete the next part.  Now have the rest of your class hold the string 52 feet apart between the two long lengths of string working your way up to student B remembering that the ship comes to a point (the bow). Go to this website for complete drawings.

Middle School  

At the beginning of this log, I mentioned that the Ronald H. Brown displaces 3,250 tons. What does this mean?  Can you use the concept of water displacement to measure other objects? Hint.

High School 

The ship travels at a maximum speed of 15 knots.  Approximately how long would it take for the ship to sail at maximum speed from Panama City to 25 degrees south latitude and 90 degrees west longitude off the coast of Chile?  How many nautical miles would be traveled?  How many land miles would that be? Hint.

Here, a scientist is checking an acoustic release mechanism.  They lowered it to 1,500 m or approximately 4,500 feet to test it. It will eventually be located 4,000 m beneath the surface or approximately 12,000 ft!
A scientist is checking an acoustic release mechanism. They lowered it to 1,500 m to test it. It will eventually be located 4,000 m beneath the surface!

On my next few postings we will be visiting with some of the scientist and finding out more on what experiments are being conducted and why.

Brett Hoyt, October 10, 2006

NOAA Teacher at Sea
Brett Hoyt
Onboard NOAA Ship Ronald H. Brown
October 8 – 28, 2006

Mission: Recovery and maintenance of buoy moorings
Geographical Area: Southeast Pacific, off the coast of Chile
Date: October 10, 2006

Weather Data from Bridge 
Visibility:  12nm (nautical miles)
Wind direction:  240º
True Wind speed:  11 knots
Sea wave height: 2-3ft
Swell wave height: 4-5 feet
Sea level pressure:  1010 millibars
Sea temperature:  28.7 ºC or about 84 º F
Cloud type: cumulus, stratocumulus

Mr. Hoyt on the RONALD H. BROWN leaving Panama passing under The Bridge of the Americas
Mr. Hoyt on the RONALD H. BROWN leaving Panama passing under The Bridge of the Americas

The Cruise Mission 

The overall mission of this cruise is to replace two moorings anchored off the northern coast of Chile. First we will retrieve the Stratus 6 buoy, which has been actively sending weather and ocean data for the past year.  We then will deploy the Stratus 7 buoy approximately 800 miles from land.  This mooring consists of a buoy that contains numerous meteorological sensors that collect data on relative humidity, barometric pressure, wind speed and direction, precipitation, short- and long-wave solar radiation, temperature, salinity, and velocity of the upper ocean and sea surface temperature.  The buoy serves as an extremely accurate weather station, one of few such stations in the open ocean.

Secondly, we will replace a tsunami (a potentially dangerous large wave of water) warning buoy belonging to the Chilean Navy Hydrographic and Oceanographic Service.  This buoy provides Chile with warning of approaching tsunamis.

The Teacher 

Masked Boobie- these birds fly in front of the ship for hundreds of miles seeking fish.  They will occasionally land on the ship to rest.
Masked Boobies fly in front of the ship for hundreds of miles seeking fish and occasionally land on the ship to rest.

Let me introduce myself—I’m Brett Hoyt, a NOAA Teacher at Sea.  NOAA’s Teacher at Sea program is open to all teachers K-16 who would like the opportunity to experience first hand working side by side with some of the planet’s top scientists conducting cutting-edge research. If you would like to apply or just know more about the Teacher, go here.

I will be bringing into your classroom the day-to-day happenings that are happening on board the NOAA research ship the RONALD H. BROWN.  Please feel free to email me (hoytbk@gmail.com) with any questions you might have about the program, the research, the scientists or any question in general about the ocean.  I will try to answer as many as I can.  In return, I will from time to time pose questions for you or your class to tackle.  I will give hints as to where you might find the answer.

Questions of the Day 

Elememtary K-6:  How much of the earth is covered by Water?  How much is covered by Land? Hint.

Middle school: What chemical compound makes up water? Are the elements solid, liquid, or gas? Hint.

High School: Why is the ocean blue?  Are all oceans blue?  Why or Why not? Hint.

On my next posting I will be giving you a tour of some of the staff and equipment on board the ship.

Vince Rosato and Kim Pratt, March 28, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: In port, Charleston
Date: March 28, 2006

Science and Technology Log

Yesterday we had a final meeting of “all hands.”  At the meeting, we presented Captain Patrae and Dr. Molly with gifts from our schools.  Students from Searles designed sea-life posters that had their pictures on it, and students from Cabello signed their class photo to be hung on the ship. At this meeting we thanked all the officers, crew and science party.

In closing our logs, we would like to honor everyone we sailed with by presenting a pictorial display (a display of pictures). Thanks for letting us sail with you, we’ve learned a lot, had great conversations with our students, and most importantly you’ve shared with us and our students the love of the sea!

The Engineering Team
The Engineering Team
The Galley Team
The Galley Team
The Mooring Team
The Mooring Team
 “Carlos’s Boys”—The Technicians
“Carlos’s Boys”—The Technicians
  The Winch Operators
The Winch Operators
 The Scientists
The Scientists
Dr. Molly and Carlos
Dr. Molly and Carlos

Vince Rosato and Kim Pratt, March 27, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Eastern Florida
Date: March 27, 2006

Screen shot 2013-04-08 at 4.44.27 PMScience and Technology Log

Today we had a special treat; we were a part of a “Man Over board” drill! A man overboard drill is held once during a three-month period so the crew is prepared in case someone falls off the ship  into the ocean. The drill starts with a “dummy” which is made of an old Mustang (survival suit) and is named Oscar. Next, the Captain makes a call to the Bridge (where they run the ship), and three bells are sounded.  These three bells are Morse code (a code of lights or bells that spell out words) and they make the letter “O” for Oscar. Everyone responds to a “Man Over Board” to search for the missing person, or in this case the dummy.  Once the dummy was located, the ship traveled to the dummy and brought it on board by means of a large hook.  At this point, LCDR Rodriguez and Chief Scientist Dr. Molly proceeded to practice CPR (Cardio Pulmonary Resuscitation– to get the heart started and air into the lungs) on the dummy.  Finally, an all-clear signal was given and the dummy was then put away for a drill later on in the year. It was very exciting.

Water was collected from the Bermuda Triangle for Ms. Pratt’s fifth grade class.  This area is known for strange disappearances. The Bermuda Triangle is located between the island of Bermuda, Miami, Florida and San Juan, Puerto Rico.  Many people have tried to explain what happens to the ships, small boats and planes that disappear and the most reasonable explanation is that there are environmental factors (weather, sea conditions) at play or human mistakes.

Interview with Julia O’Hern 

Julia O’Hern is a graduate student in biological oceanography at Texas A & M  (Agriculture and Military) University. She comes from the Hawkeye State, Iowa.  Julia loves being outside and in the water.  She has an interest in environmental science, and this led her to the ocean. Her parents always promoted science activities.  For instance, Julia recalls her summer, hiking through the prairie, catching bugs and identifying them.  Julia had an environmental science course in her high school boarding school that taught her how to be a field scientist. Julia feels lucky that a creek ran by her home and she could collect big ugly tadpoles.  From fifth grade through college she played softball, ran track, and she swam.  Julia likes chemistry and physics and is working on a degree in biological oceanography but truly loves whales. “Marine biology,” Julia explains, “is different from oceanography,” which studies how some of the physical processes in the ocean (waves, sea floor, and water) affect where the whales live. Marine biology studies the whale itself including its life cycle, its behavior and how it is affected by people.

Ms. Pratt collecting water from the Bermuda Triangle.
Ms. Pratt collecting water from the Bermuda Triangle.

“One of the only times I was out of Iowa, my parents took me on trip off of Maine and we saw whales,” said Julia. This inspired her.  To top everything off, she shared, “The coolest thing to ever experience is to be in the water when a humpback whale is singing.  It doesn’t even matter how far away they are, you feel their music.”  Books she suggested reading are Farley Moats’s, Never Cry Wolf and Jack London’s Call for the Wild as well as anything by Jane Goodall.  Her advice to students is: “If you want to do oceanography and study marine life you have to get past math and computers, and it won’t always be fun.” But, Julia agrees it’s worth it.

Assignment: In your sea logs, write the procedure for a “Man Over Board” drill.  Label each step that happens.  For example:   #1 – Put “Oscar” into the ocean.

Personal log – Kimberly Pratt 

This has been a very exciting trip! I’ve been stretched beyond my wildest dreams.  The correspondence with my students has been meaningful and very educational.  Working with the scientists, officers, crew and my fellow teacher has taught me lessons that I’ll never forget! Thanks to all of you for this unforgettable experience.

Personal Log – Vince Rosato 

Thanks to Captain Gary Petrae for welcoming us onboard and sharing so freely resources to help kids understand life at sea. Thanks, too, to Dr. Molly for extending this experience to us through NOAA. Thanks to my principal, Debbi Knoth, and the New Haven Unified School District Superintendent, Dr. Pat Jaurequi, for enabling this trip and to Kim Pratt for inviting me along.  Thanks to the crew!  Thanks to Mrs. Riach for substituting for me.  There are so many interesting and exciting happenings on board.  Juliet was a hit and remains with Lt. Commander Priscilla Rodriguez.  As Professor Jochem Marotzke shared, life at sea sensitizes you to put yourself in another’s shoes, simply because the job isn’t done when my own shift is over.  I had the pleasure of getting quotes from many people here.  Robert Bayliss, onboard from the THOMAS JEFFERSON for this cruise, advised anyone interested in life at sea to “Be prepared to spend long times away from home.”  Being one of Carlos’ boys with Rigo, Dallas and Mick was a “bonus.” At an all-hands meeting this afternoon we shared our gifts for the crew and NOAA scientists.

Afterwards those who wished got their picture taken in groups.  Dr. Molly created a centralized computer space for sharing pictures.  I have some CD’s to work with, thanks to Dr. Shari and LCDR Rodriguez. Those kinds of sensibilities make life pleasant.  I understand my Uncle Sam better from this cruise.  I cannot leave without a special hello to my 14-year-old daughter, Alexandria Jo.  When we return, there will be extension activities, such as lesson plans, presentations to prepare and publicity pieces.  My enriched enthusiasm and understanding of ocean science will be shared with every student. I got autographs from world-class oceanographers, modern-day explorers, and stand in awe at the collaborative efforts being made to better understand the ocean and its relationship to climate.  The current issue of Mother Jones is devoted to the state of the seas. Gratitude was my beginning attitude and remains as I prepare to return to land.  What makes a fine sailor also remains: someone who knows their job and gets it done, is dependable, a friendly person to be around, and one who you can trust to watch your back. This applies as a major lesson to those in all walks of life.

Vince Rosato and Kim Pratt, March 26, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Eastern Florida
Date: March 26, 2006

Mooring team at work
Mooring team at work

Science and Technology Log

Besides deploying (launching) buoys, and doing CTD casts, the RON BROWN also has a group of scientists from the United Kingdom (which consists of the countries England, Scotland, Wales, and Northern Ireland) and a scientist from Germany who are putting moorings in the ocean.  Moorings are instruments that are sent to the bottom of the ocean and are held there with weights. They can weight up to 3000 pounds!

Also attached to the moorings are floats so that when the scientists decide to get the instruments, they send a signal to the mooring to detach from the weight and then it can float to the surface.  After that, the scientists can easily locate the floats in the ocean and then pick the instrument up.  The moorings send information to the scientists about the velocity (or speed) of the deep-water currents.  They also measure temperature, salinity, pressure and tidal heights. Each mooring costs about $200,000 each!

On the RON BROWN, three large moorings were recovered (picked up) and four more were deployed (put into the ocean).  This team has deployed moorings all across the Atlantic Ocean— from west of Morocco, near the Sahara desert region, to east of the coast of Florida (where we are now.)

rp_log8f
LT Liz Jones

Interview with LT Liz Jones, Field Operations Officer  

LT Liz Jones defined herself as Field Operations Officer, or FOO, as “a coordinator of scientific operations between the science party and the ship’s crew to ensure the mission is carried out and the scientific objectives are met.”  While all NOAA Corps Officers have either science or engineering backgrounds, she also had prior seagoing experience before joining the NOAA Corps in 1999. Liz graduated from the Massachusetts Maritime Academy in 1996, majoring in Marine Safety and Environmental Protection.  Maritime academies provide classrooms at sea aboard their training ships.

An interactive program called the “Voyage of the MIMI” sparked her interest in the 5th grade. It sounded similar to the current “Jason Project,” where a scientific team videotapes and teleconferences their work from interesting places in the ocean.  Liz explained to a high school guidance counselor, “I love the ocean; I want to do some kind of work with the ocean.”  Fifteen years later, she is doing just that!

NOAA Corps officers attend three months of Basic Officer Training at the US Merchant Marine Academy in Kings Point, New York. From there, they are sent to sea aboard one of NOAA’s research vessels. A typical career has one rotating two years at sea and three years on land. “I really like the idea of reinventing myself every few years,” Liz explained.  The RONALD H BROWN is her second sea assignment.  Liz worked at NOAA’s headquarters for her first land assignment  She spent one year there as an aide to Rear Admiral Evelyn J. Fields, who was the first African American female to head the NOAA Corps.

As the FOO, Liz is always planning ahead. She stays very busy working on the plan of the day for tomorrow or the logistics for the next four cruises.  The most challenging projects to coordinate are the ones where new technologies will be used for the first time.  She is thankful to the crew that can make just about anything happen.  In her spare time, Liz works out, reads a good book or just relaxes.  For interested students, The California Maritime Academy in Vallejo has the Training Ship GOLDEN BEAR, which one day could be your very own classroom at sea.

Assignment: Using a world map, locate Morocco, the Sahara Desert and the east coast of Florida. Draw moorings straight across the ocean to connect these areas.

Personal Log – Kimberly Pratt 

We finally finished our CTD casts!  The last job I learned was how to be “Sample Cop”, which means I wrote down information about each water sample that was taken.  When scientists take samples, they need to clean each bottle three times before they fill it with the sample.  This is so the sample is pure and not contaminated (dirty) from the previous sample.  We use a lot of seawater for this purpose.  Thanks for all the e-mails!

Personal Log – Vince Rosato 

I checked out the drifting buoy-tracking site and found our buoy!  I have been busy responding to your emails and writing logs.  The scientists and crew have been very helpful in helping me be accurate and sensitive in the presentation of the work being done out here. I salute my nephew, in the Navy now.  We are getting excited about coming into port in a couple more days.

Vince Rosato and Kim Pratt, March 24, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Barbados, West Indies
Date: March 24, 2006

Science and Technology Log 

SHIP VOCABULARY 

The meaning of common ship terms may help land “lubbers,” (people who love life off the sea), get around this home on the seas.  First, let’s cover directions on a ship.  The front is called the BOW and the back end is called the STERN.  The very back deck over the propellers is the FANTAIL. Facing the bow, the right side is the STARBOARD SIDE and the left side is the PORT SIDE.  The KEEL is under the middle of the boat.  The WATERLINE is where the water meets the HULL on the outside of the ship.  The picture today is of the interior, or inside of the ship.  Use the picture diagram to practice your knowledge of shipboard terms.

A cross sectional view of the RONALD H. BROWN.
A cross sectional view of the RONALD H. BROWN.

The floor of the ship is called the DECK. Stairs to the eight different levels are called LADDERS. The ceiling is called the OVERHEAD and the hallway is called the PASSAGEWAY. When seas are choppy, you hang onto RAILINGS along the passageway and ladders. Railings can keep you from falling.  There is a safety phrase aboard that goes, “One hand for you and one hand for the ship.”  That means it’s safer to always touch some part of the ship.

Let’s go down where food and supplies are STOWED or put away before being brought up to cook and eat. In the HOLD AND TANK TOP, two decks below the MAIN DECK you find the ship’s STORES, or storage area. There are dry stores, a chill box, a freeze box, a room for cleaning supplies, and another for ship’s supplies, including shelves of flags. That’s five different rooms for food or supplies on this bottom floor, the HOLD.  The temperature in the CHILL BOX keeps fruits and vegetables just above freezing, but the FREEZE BOX feels like being turned into instant ice.  Those two lockers have safety latches so you can’t get locked inside. Together they measure about 11 feet wide by 12 feet long by 8 feet high, the size of a medium size moving van.

The DRY STORES keep all the extra cereal, tea and dry foods that do not need to be chilled. It is bigger than the freezer locker, about 110 square feet, the size of a small garden shed.  It has over 60 shelves, each 2 feet by 4 feet by 2 feet, the size of a garment or hanging clothes type-moving box. Michael Moats, the General Vessel Assistant, pointed out the SOPROLE, a milk product substitute that doesn’t need chilling for a long time.  A phone and an elevator are handy outside the supply rooms.  The kitchen areas, “the Galley,” and dining room, “the Mess Deck,” are two ladders up, so the elevator and phone make checking on and moving supplies easier. There is also a HEAD, or toilet, on the MESS DECK. The chief steward, Richard Whitehead, mentioned that in the GALLEY the safety bars on the ship’s stoves are called SEA RAILS.  A great reference for these and many other ship terms and the flag alphabet is http://www.schoonerman.com/sailingterms/. Time for more ship term practice!

The RONALD H. BROWN is 274 feet long and sails worldwide supporting our scientific understanding of the world’s oceans and climate.  The ship was commissioned, at a big birthday-like celebration, on July 19, 1997, in honor of the late Secretary of Commerce, Ronald H. Brown. To commission a ship is to put it into service at sea.  The ship carries six NOAA Corps officers, 20 crewmembers, and a maximum of 33 scientists.  The ship has two monster motors that give power to the ship.  Each one has the power of 3,000 horses pulling a load, or 3,000 hp. Top speed is 15 knots or fifteen nautical miles per hour. That’s a little faster than a car going 17 miles per hour, mph.  The ship makes 5,000 gallons of drinkable water a day just like the rain purifies water, by evaporation and condensation. We use about 4,000 gallons a day here.  Since we can only make water thirteen miles away from shore we need to not waste our water supply.

Interview with Commander Stacy Birk, Executive Officer 

Commander Stacy Birk said, “It’s a tough life at sea,” so she really tries to make life on the RONALD H. BROWN valuable and meaningful for all hands.  Stacy is the Executive Officer, XO. As the captain’s back up, the XO is boss in the captain’s absence.  She manages people, deals with people’s salaries and serves as safety officer while the ship sails from Charleston, SC, for about ten months of the year.  In elementary school Stacy enjoyed the books Island of the Blue Dolphins and I, Nathaniel Bowditch. This California surfer girl completed college and joined the Coast Guard Reserves.  She actually sailed around the Channel Islands.

As a personnel manager, Stacy hires people and evaluates them, like a teacher gives grades. As a safety officer, the XO helps people follow the rules, such as not wearing open toe shoes or not leaving kitchen cups around the ship or showing up at the wrong place for drills. You might compare this to a parent making sure rules are followed. She does everything possible to be fair with people. Stacy’s science background and sailing experience help her make accurate observations.  Her uniformed service as a NOAA Corps Officer and her rank as XO fit with her respect of the sea from childhood.  Not everyone has such a clear direction from youth.  She just celebrated her 19th wedding anniversary and suggested to students, “Visit ships in port in San Francisco, explore the TECH museums or practice flag signals,” to grow in ocean knowledge.

XO, Stacy Birk, during the Port Authority passport-clearing trip at Marsh Harbor, Abaco Island, Bahamas
XO, Stacy Birk, during the Port Authority passport-clearing trip at Marsh Harbor, Abaco Island, Bahamas

Assignment and question of the day:  Use as many of the ship terms in place of the land names.  Example:  Instead of saying, “I’m walking down the hall,” say “I’m walking down the passageway.” BONUS: Check out that website to learn more ship terms.  What is the perimeter of the CHILL BOX and FREEZE BOX together?  Hint: Check the length and width of both boxes.

Personal Log – Vince Rosato 

After a great night’s sleep I learned at breakfast that a small shark was sighted during the night as the CTD was at the surface. I also found out about an awesome website, http://www.ngsednet.org/oceans, that has pictures taken by students from my previous expedition to the Channel Islands with National Geographic.  You will see more critters on that site, for those interested.  In addition, over 7,000 living organisms will be under investigation on the RONALD H. BROWN’s next cruise.  I took a tour of engineering today, thanks to Chief Engineer Frank Dunlap.  The engineering department powers and maintains all systems on the ship; something like the Corps Yard does for our District.  Juliet, the flat person, took some pictures with two of our Southampton college graduates and with a few of the people on Stuart Cunningham’s Mooring Team.  Keep up your journal entries and emails.

Personal Log – Kimberly Pratt 

Hi all. Last night I saw two Mahi Mahi fish, which they also call dolphins or dolphinfish.  They were swimming along side of the ship and at first I thought they were sharks!  They certainly are beautiful.  Yesterday the scientists from the United Kingdom worked on moorings all day so I got some time off.  Today we’re busy again doing CTD casts and my job lately has been “cast cop”, which means I log all the data.  The weather continues to be nice, although today we went through a squall (which is a storm) and now it’s overcast outside.  Also today we received a distress call from a Catamaran that was taking on water, so we proceeded to go to help, but the Coast Guard was on their way and they also called a tow service from a nearby island to help them.  It sure added some excitement into our day!  With less than a week to go, things have certainly been busy!

Vince Rosato and Kim Pratt, March 22, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Barbados, West Indies
Date: March 22, 2006

Preparing the sounder
Preparing the sounder

Science and Technology Log: The Echo Sounder

For the past few days, we’ve been transiting back and forth picking up (recovering) and launching (deploying) a special kind of buoy called an Inverted Echo Sounder (IES).  This buoy is attached to a weight and sinks to the bottom of the ocean.  There it sends out a sound pulse to the surface and measures the travel time of that pulse to hit the surface and return to the unit on the bottom of the ocean. Using the travel time of the sound, scientists use it with a historical profile of the water to estimate temperature and salinity of the water. They obtain the historical profile by doing repeated CTD casts and especially the cast before deploying the IES. Sound speed is proportional to salinity/density and scientists use the density and temperature estimations to identify water mass and current movement.  Remember, these currents are moving all over the world! The buoy we deployed also had a current sensor as well as a pressure and temperature sensor.  When scientists are ready to get the information from the buoy, they travel to the site of the buoy, and park the ship right on top of it, and the buoy sends the information to them.

The buoy at night.
The buoy at night.

The buoys stay down in the bottom of the ocean sometimes as long as 6 to 7 years but usually they’re picked up after 5 years. They cost between $25,000 and $45,000 each! When scientists are ready to pick up the buoy, they send a signal that tells the buoy to detach from the weight holding it down and then it floats to the surface attached to a large yellow float. At night, it sends a strobe light flashing across the water so it can be easily found. Also in the past week, all the Styrofoam cups that have been decorated by students at Cabello, Searles Elementary, Key Biscayne Community School, and members of the crew of the RON BROWN were lowered into the ocean at about 5000 meters, or a little more than 3 miles below sea level.  The effect of pressure can be as great as 70,500 pounds of pressure! This rids the cups of all the air and shrinks them to 75% of their original size. It’s sort of like when you dive into a swimming pool, and while going down you feel your ears get tight— that is the effect of pressure.

The buoy deployed
The buoy deployed

Finally, although we’ve been out to sea for over two weeks, we’ve seen very little wildlife.  We’ve seen pilot whales, two or three squid, flying fish and some little fish called Ballyhoo that dance on top of the water with a long snout.  They look like mini swordfish.  The reason we haven’t seen much wildlife is that there is very little life in the middle of the ocean.  In fact, if you look at the middle of the ocean from space, it almost looks purple because there is no phytoplankton, (green plant material that is the base of the food chain). You’ll find life near the coasts or in the North Atlantic because all animals need nutrients to live and you need currents or up welling to move the nutrients around to feed the phytoplankton (plants) which feed the zooplankton (little animals), which feed the fish, which feed the dolphins, which feed the sharks!  This is an example of the food chain.

 

The cups before pressure…
The cups before pressure…

Interview with Chris Churylo – Chief Electronics Technician 

An important person on any cruise is the Chief Electronics Technician or Chief ET as they are called. Their main job is to make sure that all the electronics are working – that means sonar, networks, navigation, radio and all the things that keep the ship going to where it needs to go, and people talking to whom they need to talk.  On board the RON BROWN, the Chief ET is Chris Churylo. Chris is multi-talented—not only is he a Chief ET, he’s also a Licensed Practical Nurse, an Emergency Medical Technician, a truck driver, a fireman, a pilot, has a real estate license and is a Notary. Chris likes working on the RON BROWN because he works two months on and gets two months off. While he’s at sea and not working, he likes to play chess, learn guitar and work out in the gym.  During his off-time he likes to fly his plane, a Cessna 150, explore local places and hang out with his girlfriend of 18 years.  Chris, who grew up in Philadelphia now calls a farm in West Virginia his home.  During his career he has traveled all over the world, notably to the South Pole and Barrow Alaska during his 20 years of government service.  Chris’s attitude on board the RON BROWN is contagious.  He is a happy spirit, energetic and genuinely likes what he does.

Assignment:  In your logs, illustrate the effect of pressure.  Step one – Draw your decorated Styrofoam cup at the surface.  Step two – draw it on the CTD in a bag ready to go to the bottom of the ocean.  Step three – draw it now 2/3 smaller than when it started.

…and the cups after pressure!
…and the cups after pressure!

Personal Log – Kimberly Pratt 

Yesterday was a quiet day.  We headed back to Marsh Harbor, Bahamas so the science staff had most of the day off with CTD casts in the evening.  I got to do some reading about Great White Sharks off the Farallones Islands – outside of San Francisco Bay.  One of the main researchers in the book is Peter Pyle, who I sailed with last year on the MCARTHUR II. I’ve really met some great people being a Teacher at Sea.  This trip feels like it is winding down with less than a week to go.  The weather is still beautiful.  Sorry to hear about all the rain and hail back home.  Keep writing I love hearing from you all.

Personal Log – Vince Rosato 

Sad news came on three fronts today.  First, a crewmember heard by ship’s phone of a tragedy in the family and had to be brought to shore to catch a plane back home.  If you noticed the ship tracker had us going back and forth from Abaco Island, one of those trips was to bring a crewmate ashore.  Second, I heard from my home that a neighbor friend had a stroke and is under observation in the hospital.  And third, from my school, a teacher friend is taking the rest of the year off for health reasons.  Those things drained my energy. Work doesn’t stop whether we are happy or sad, so I continued becoming proficient at salinity analysis.  If counting time, however, I spent most of the day replying to your wonderful emails and working on logs.  I got to call out on the radio set the depths to the winch driver, and fire the CTD bottles on the late night cast.  That boosted my morale with Dallas, the author, and Mick, the father of Dr. Beal.  We have formed a bond with Carlos, our CTD team leader, through our tradition of after-shift snack time in the galley.

 

Vince Rosato and Kim Pratt, March 20, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Bahamas, West Indies
Date: March 20, 2006

Deploying the ARGOS buoy!
Deploying the ARGOS buoy!

Science and Technology Log

On Saturday, we deployed two buoys. A buoy is a floating object that sends science information to scientists.  They can have numbers, colors, lights, or whistles on them.  The buoys we sent off are a drifting buoy and an ARGO buoy.

A drifting buoy is the size of a basketball and sends its position in the ocean to a satellite where scientists can measure current speed by using its location and by tracking it around. Because it has a sock on it, it’s a good measure of current and it is not affected by the wind. The buoys can last a long time unless they are damaged or destroyed by a ship, run into land, or are stolen by a pirate. There are currently 1,468 drifting buoys worldwide and they cost more than $1500 each. Cabello, Searles and Key Biscayne Community School jointly adopted two of the buoys deployed. Students signed stickers that were attached to the buoy and sent out to sea. To track the buoy, here.

The second buoy that was deployed was an ARGO buoy. The ARGO is interesting because it acts like a little submarine.  The ARGO is launched off the ship, floats on the surface, then sinks to certain depth, gathering information on temperature, pressure, salinity, latitude and longitude. The ARGO, acting like a submarine, stays at a certain depth for a while, gathering information, then fills its bladder and rises to the surface, collecting information on the way up.  At the surface, the ARGO sends all the information to a satellite for the scientists to use in their labs.  To picture a bladder, think of “Professor” from Sponge Bob. Professor fills up with air and floats (like the bladder filling), exhales his air and sinks (like the bladder emptying). This ARGO was special because it had a large sticker from the New Haven Unified School District. So New Haven is literally traveling all over the ocean! To track the ARGO buoy go here.

Teamwork!
Teamwork!

Interview with Lieutenant Commander, Priscilla Rodriguez, US Public Health Service 

On the RON BROWN you will find the Medical Officer, Lieutenant Commander (LCDR), Priscilla Rodriguez. Officer Rodriguez actually is a part of the United States Public Health Service that overlooks the public health system for the whole country and sets the standard for health care.  LCDR Rodriguez is a Physician Assistant and her assignment onboard the RON BROWN will last for two years.  The most common illness on board a ship is seasickness and LCDR Rodriguez is on the lookout for crew or scientists who are not showing up for meals or who look a little “green.” She explains that your brain and inner ear need to get used to the movement of the ship and once they do you’re okay. In the meantime you may feel nauseous or tired. LCDR Rodriguez has a lot of responsibility on board the ship. She’s responsible for the health care of everyone and if someone gets extremely ill, she has to advise the Captain on whether to go into shore, or get a Coast Guard helicopter to come out and pick him or her up, which is very expensive.  LCDR Rodriguez was born in the Dominican Republic, grew up in New York City and presently calls New York City her home where she has just made a cooking video.  When she’s not working on the ship, she enjoys playing the guitar or flute, drawing and making videos. She’s currently developing “podcasts” for the Internet and has been interviewing subjects on the ship.  In the future, she would like to return to work with AIDS patients in underdeveloped countries and do everything she can to help the world.

Success!
Success!

Assignment: Draw a picture of what the ARGO buoy does. (How it acts like a submarine).  Label each movement – sinks, stays at the same level, and rises.  Draw a picture of what you think the ARGO buoy looks like.  (Hint: Long, thin, black tube).

Personal Log – Kimberly Pratt 

It’s good to be writing logs again. I’ve been having amazing conversations with all the scientists onboard. They’ve been very generous with their time.  A special thanks to Dr. Molly for our “up top” chats. Today the scientists from the United Kingdom are working on recovering a sub-surface mooring, so we’ve got time to work on logs, interviews and answer e-mail.  Last night I saw squid in the moonlight: one was approximately 1.5 ft, and another was approximately 2.5 ft.  They were chasing and eating flying fish!  Also fish that look like little swordfish were jumping around.  It was a virtual circus!  Hello to everyone! Students, keep writing!  Make it a good day!

Relaxing after a day of hard work
Relaxing after a day of hard work

Personal Log – Vince Rosato 

New Haven Unified School District,  Searles 4th graders and Cabello 5th graders got some press recently.  Thanks to fellow teachers for the article and to the Argus newspaper and Educational Service Center Information Officer, Rick LaPlante, for the favorable text. We’ll have another chance to thank ANG for newspapers in education and for the many businesses that sponsor Book Bucks.  I’m glad so many in the class are participating in this reading reward program.  I also heard the bus is confirmed for our “Reading is Cool” Sharkie field trip to the Hewlett Packard HP Pavilion, home of the Sharks hockey team.  It’s always good hearing from you so keep those emails coming and good luck with Book Bucks!  In my spare time I’m getting pictures with Juliet around the ship and reading John Climatus’, The Ladder of Divine Ascent.

Deploying the Argos buoy
Deploying the Argos buoy
Lieutenant Rodriguez
Lieutenant Rodriguez

rp_log5f

Vince Rosato and Kim Pratt, March 19, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Barbados, West Indies
Date: March 19, 2006

A view of the RON BROWN from the Zodiac (a small boat).
A view of the RON BROWN from the Zodiac (a small boat).

Science and Technology Log: The “Way Cool” Factor 

Today I spoke to Lisa Beal who introduced me to the “Way Cool” factor of the science we’re doing. I kept asking the question… why?… why?…why?… and now I realize how what we’re doing makes sense. This is a physical oceanography trip and it’s easy to get confused by the testing, measuring and chemistry that we’re doing.

So, the Way Cool Factor: The ocean has many currents, or rivers, running through it.  Some vary with the seasons and are called inter-annual (more than one time per year).  What is measured is the circulation and overturning of the ocean. We need to measure this overturning of water because it affects our climate and considering that two-thirds of our planet is covered with water, that’s important to know. Also, water masses have separate identities.  They all have a unique signature that is determined by the salinity (salt content) and temperature.  It’s sort of like a fingerprint.  These water masses travel all over the ocean in both a horizontal flow and a vertical flow.  Scientists track these water masses as they flow around the ocean.

What’s really cool is some of these water masses are over 100 years old.  For instance, North Atlantic Deep Water starts at the North Pole and travels all around the Pacific and even in the Indian Ocean and back again.  It’s sort of like a migration of water.  The colder (measured by temperature) and more dense (measured by salinity) water sinks to the bottom and scientists can then follow it around the globe.

Pretty interesting huh?  It helps make what we’re doing make sense.

rp_log4a
Dr. Molly Baringer, NOAA scientist

Interview with Dr. Molly Baringer, Chief Scientist  

Today I had the good fortune to sit and talk to Dr. Molly Baringer, Chief Scientist on the RON BROWN. Molly is an Oceanographer with the National Oceanographic and Atmospheric Administration (NOAA), based out of Miami, Florida.  She’s been with NOAA for 12 years and is currently working on the Deep Western Boundary Currents (DWBC) project.  The Deep Western Boundary Time Series, take her all over the Caribbean and into the Florida Straits taking measurements to measure the conductivity, salinity, temperature and depth of the ocean.  She is studying the currents, or the rivers, in the deep water of the ocean. This study has been on-going and it will really help the scientists understand the ocean better.

As a child, she always liked science.  She originally had a desire to be a neuroscientist and graduated from Tulane University where she was a premed/math major.  Her minor was in science.  She became a Research Assistant working with numerical models for a professor who was an oceanographer and, behold, her love for science coupled with the environment, became a perfect fit.

What she likes best about being a scientist is that she gets to be creative, learns new things every day, and she is valued for her thinking. She spends most of the day and sometimes nights on board the RON BROWN checking data, supervising casts, problem solving, and overseeing all the science that is happening.

The CTD seen here is just under the water’s surface.
The CTD seen here is just under the water’s surface.

While at sea she really looks forward to talking to her two children, Anna and John, and her husband (a computer scientist) who are awaiting her return.  While at home, she really likes to spend time with her family helping at their school, checking their homework, and going places and doing things.  Her hobbies are quilting, needlepoint, Bridge, and before she had her children, she and her husband used to golf approximately 3-4 times a week.

She hopes that eventually we’ll have an ocean observing program that will be institutionalized so we can continually monitor the state, or health, of our oceans.  She states that being a scientist is a great profession.  You get to be creative every day, you learn new things, and most of all you are valued for how you think.

Assignment:  Compare the movement of water masses of the Atlantic with the migration of gray whales. In your science logs, draw a picture of both.  Remember Gray Whales migrate (move) from Alaska (their feeding grounds in the summer) to Baja California warmer waters (for mating and calving) in the winter and back again.  North Atlantic Deep Water masses move from the North Pole south, into the Pacific and back again.

Personal Log – Kimberly Pratt 

Hi all. Until now Vince has been writing the scientific logs, but starting today I’ll be submitting them as well.  I’ve really missed discussing the science I’m learning with you.  I was really happy to talk to Dr. Beal who quite simply explained what we were doing.  It can get quite confusing and intimidating learning new things, but I’m adapting slowly.  The weather has been beautiful. Yesterday we deployed the Argo Buoy with New Haven’s name on it so we’ll be able to track it.  And we also deployed the drifter buoy that has been adopted by Cabello, Searles and Dr. Molly’s daughter’s school, Key Biscayne Community School. Today has been beautiful!  Awesome weather, beautiful blue water and we even got cell service!  I miss you all.  Hello students!  Keep e-mailing me and doing all your great work.  Remember you are the brightest, best and most confident fifth graders (soon to be sixth graders)!

Personal Log – Vince Rosato 

Thank you second grade reading buddies from Mrs. Mares class, for Juliet, the flat person, who has gotten in pictures with the drifter, visited the dining room, the bridge, the science lab and even went with the Zodiac party (speed boat) to get our passports cleared today. I’m sorry to report the laundry bag used to sink our Styrofoam cup mementos was lost at sea after ten years of loyal and faithful service.  We’re here off Abaco Island today. I looked out from the bridge deck into the starry night last night.  In pitch dark the vastness of the heavens is AWESOME!  It reminded me of camping in the mountains away from the city.  Clear views, crystal smooth water and imagine no television and only random music for three weeks.  I like it—very recollective.  Thanks, also to NHTA for the blue shirts showing our dedication to students as our special interest.  Finally, I was glad to call home today and find out in voice conversation all are well.

Vince Rosato and Kim Pratt, March 15, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Barbados, West Indies
Date: March 13, 2006

Dr. Beale with “Cheesy Poofs.”
Dr. Beale with “Cheesy Poofs.”

Science and Technology Log  

You may recall from the previous log that the package, or CTD, contains “mostly” a rosette of polyvinyl chloride (PVC )bottles that collect water samples on the way up from the sea floor.  We have completed eight casts, which means we have dropped the package to the bottom eight times.  On Cast # 4, on the way up, a piece of equipment on the package broke.  On this Deep Western Boundary Current (DWBC) expedition scientists want to put as many devices on “the package” as possible. All of the measurements they are taking have some relationship to measuring the current, velocity, or flow of water masses.  Flow in deep water is a little like a river in the ocean, but not like the one in the film, Finding Nemo. Some of the devices measure the same thing as other instruments do, and are redundant, or duplicated, in case some device fails on the unit. A secondary reason for redundancy is to check the precision of calculations to the thousandth or even ten-thousandth place (.002 or .0005).  Other devices measure different things. For example, the altimeter measures distance to the bottom.  It is important because a device lowered from the ship does not necessarily go straight down like a nut dropping off a tree, but moves with the rocking of the ship and shifting of the current in any direction.  While the ship may show the ocean floor at say 5445 meters, the package may be over a sea mound—a big bump upward from the ocean floor—that registers 5300 meters.  Do you see the necessity of having an altimeter to monitor of ocean depth?  What the ship sees below may not be what the package has directly under it. Since it costs so much to send an expedition out, it makes sense to protect the instruments as well as to do as many measurements as possible in each cast.

In the center of the package is the biggest instrument of all, an acoustic current meter fondly nicknamed “Cheesy Poofs.”  Look at the photo… can you see why it has that name? On Cast # 5 Cheesy Poofs went “POOF!” and broke. The ocean is a harsh environment for man-made instruments.  They must be very strong because of the pressure, and very water-tight so they do not spring a leak. Poor Cheesy Poofs sprang a leak and didn’t work anymore.  It measured the speed of the current, or, the “motion of the ocean,” as Dr. Lisa Beal said, the operator of the instrument.  Luckily, Lisa had a spare instrument to replace Cheesy, so she and several technicians worked hard for three hours to remove one instrument and replace it with another.  Just one acoustic current meter costs $50,000!  So, “Cheesy Poofs” visited Davey Jones’ Locker, or the ocean depths. Observation and measurement are essential elements for scientific investigation.

Question of the Day:  What sorts of measurements need to be very precise in your daily life at school or home, and what tools make those measurements?

Dr. Shari Yvon-Lewis
Dr. Shari Yvon-Lewis

Interview with Dr. Shari Yvon-Lewis Lead CFC Scientist. 

Shari, a true steward of the planet, is the lead CFC Scientist on cruise RB-06-03, aboard the RONALD H. BROWN. She studies Chlorofluorocarbons (CFCs) or more specifically, halocarbons, anything that has carbon and a halogen attached (one column left of inert gases on the Periodic Table). She hails from Chicopee, Massachusetts and grew up there. She received her undergraduate degree at the University of Massachusetts, Amherst and doctoral degree at the University of Miami.

She wanted to use her chemistry not only in a laboratory but was inspired to apply it to natural systems.  Her work on this voyage is all about determining the age of deep water.  We are familiar with how the rings of a tree tell its age, and how the layers, or strata, of rock date the age of the earth. Tree rings are usually horizontal.  Rock strata are thin horizontal layers that show age vertically. Rock layers are more like ocean layers, except ocean layers are fat.  Ocean aging is found in the rising and sinking of warm and cold waters.  Shari is studying when the deep water was last at the surface—the zero age reference.  “Anything that is lower than the surface is older,” she explained.  This is not to be confused with how old the oceans are, an entirely different question.  Rather, if water sinks in one part of the ocean than it has to rise in another place, otherwise the dynamics of the ocean would more closely be like a pond, and it is not a pond. Wind controls the surface currents or water on top of the ocean, and temperature and salt concentrations controls the deep-water circulation.  The scientific name for deep-water circulation is ThermoHaline Circulation, THC, or Meridional Overturning Circulation, MOC.  This particular cruise gives Shari one of the best places to study and prove or disprove that HydroChloroFluroCarbons (HCFCs) can be used as age indicators, or as viable tracers of water mass motion.  If proven, these HCFCs, which are replacement refrigerants (what used to be Freon as in car air conditioning systems), propellants (like in aerosol spray cans) and foam blowing agents (like the material sprayed on ceilings), will help scientists understand the age of deep water from the time it was last at the surface.

What might a person studying such wonders enjoy in her recreational time?  Shari likes to family golf, read Stephen King horror stories and other thrillers, and listen to Barry Manilow.  She loves science and the mysteries of the earth.  She would love to completely know the “feedback” between the ocean and climate change, as science continues to be a motivating force in her life.  She encourages going to the beach and watching the tides ebb and flow, seeing the effect of the ocean and humbly realizing we are powerless against its force.  Shari has judged science fairs from middles schools through graduate school and has mentored graduate students, who are students who after college graduation work on master’s degrees. She has a graduate student, Julia O’Hern, working with her on this trip, who is sharing a cabin with mentor NOAA teacher, Kimberly Pratt.  Shari concluded our discussion by telling me what 4th and 5th graders and everyone can do to get interested in oceanography: “Enjoy the ocean and take care of it,” she said.

Personal log—Vince Rosato 

Hello, everyone. I have been absorbing information from crew, scientists, civilians, and officers and been very busy during my shift helping scientists with getting samples and analyzing them.  I’m learning with Kim ways to put this knowledge into practice in the classroom.  Your email questions about the ship and the science, especially from your ocean books and logs, you’re your tracking our journey are filling my days with variety.  What is especially exciting to me is that misconception after misconception is being laid aside for truer models of what really is.  For example, I never thought of surface flow of water being driven differently than deeper water currents. Another insight was about what seafaring life is really like and the type of teamwork, community, and cooperation it fosters. In fact, it supports Searles’ “cooperation,” as the character education virtue of the month.  In participating in making measurements with so many specialized instruments, my uncle’s statement, “With the right tool you can do any job,” makes so much more sense.

I’d like to share something that I learned as a tribute for all future seafaring enthusiasts.  Officers, crews, and sailors worldwide have rituals not only for proper decorum, as at watch change, but also to inspire cooperation, and lift the spirits for those who live at sea away from family for months at a time.  One of the spirit-lifting rituals from maritime history was for those who were sailing over the equator for the first time.  To “measure” the courage of the sailors, so to speak, each one had to endure a rite of passage that graduated them from “pollywog” to “shellback.” Crewmates waited with fear and trepidation about what the latest rite of passage would entail. Recently, the challenge was for everyone to participate in a talent show.  Once you pass your “trial,” you receive a card of graduation that you have to carry with you.  If you are found without such documentation, you must endure the trial again!  It is reported by maritime historians and confirmed by Chief Boatswain, Bruce Cowden, also an accomplished cartoonist, that wars were interrupted by this longtime tradition.  He also mentioned that long ago, the shellback ritual was not so friendly.

Personal log—Kimberly Pratt 

Hi all. It’s been an interesting two days.  First of all, I’m trying to get used twelve-hour working shifts. It’s been difficult! Staying up late has been hard but it’s getting easier.  During my shift I’ve been helping collect water from casts, helping deploy the CTD, running “salts” which means putting water in an auto salinometer machine and testing it for conductivity.  I’ve also been conducting interviews, talking with crew and trying to figure out what’s been wrong with e-mails.  Today, after not hearing from my family for over a week, the Chief Scientist, Dr. Molly, let me call home.  Apparently my e-mails have been going out, but when people try to answer they are bounced back. Therefore, from now on use my AOL account, grnflea@aol.com, to contact me.  That way I am sure to hear from you.  The weather has been sunny, and yes, I did get sunburned yesterday. I also saw some flying fish and am always on the lookout for marine mammals.  Now with the e-mail situation taken care of, I look forward to hearing from my students and continuing to share more of what we’re learning from the sea!

Vince Rosato and Kim Pratt, March 13, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Barbados, West Indies
Date: March 13, 2006

Science and Technology Log: CTD (Conductivity, Temperature, Depth) Test Cast  

The “Package”
The “Package”

We learned what to do to help the scientists today. In other words, all science personnel were trained in CTD Data Acquisition Procedures. “The package,” is what we send down to the bottom, about 5600 meters, more than three miles deep.  The package, or CTD, is mostly a rosette of 23 cylinders, (specially machined thick PVC tubes). It is deployed, or lowered, overboard. A winch, a machine run by trained sailors, does this lowering. It has a strong wire and pulley to lift and put the package into the ocean.  Once on the surface of the ocean, the CTD was lowered to 10 meters, to get the air out of the system.  The distance of 10 meters is where the atmospheric pressure doubles.  The CTD is then returned to the surface.  We bring it back to the surface after getting all the bubbles out, in order to mark the winch line to zero so they know how far away the bottom is.  Not only is the winch line zero, but the software begins at a good water only profile level as well. All the tubes are open in the rosette on the way down so they do not burst with the pressure and they can collect water at various depths on the way back up from the bottom.  On the way down water passes right through the open tubes.  The procedure for lowering the package with the commands is given by the survey crew to the winch operator. They are simple and brief, explained Jonathan Shannahoff, the Chief Survey Technician, who along with the Chris Churylo, the Chief Electronics Technician, are in charge of the use of all the electronic equipment onboard.

So we followed a very detailed procedure of lowering the package to the depth of 2,000 meters and popped the tubes, closed the tubes on the rosette, thus collecting water samples at the depth of 2,000 meters.  This was a test cast.  It was brought to the surface and we practiced taking various samples from the water.  Kim got to do the salinity and nutrient samples and Vince got to work with Dr. Shari Yvon-Lewis, CFC Project Lead, and Julia O’Hern, post-graduate CFC analyst, with the trace element samples.  Each type of sample has a procedure to follow to make sure it is done in the same manner so no mistakes are made with the data.  The first actual data collection casts will be coming up on Monday. We expect to do 55 or so casts and make more than 20 samples from each cast. Yes, today was all practice. We labeled vials and sample bottles to make them more orderly. The scientific process requires that you replicate experiments, which means that someone else can do the same thing as we do under similar conditions and get the same results.  Without that procedural similarity, reliability of data is compromised.  In other words, if you don’t do the same thing you did the last time you did it, you may not get the same conclusions.

Captain Gary Petrae on the bridge of the RON BROWN
Captain Gary Petrae on the bridge of the RON BROWN

Interview with Captain Gary Petrae 

When you enter the bridge of the RON BROWN, you probably will meet Captain Gary Petrae. Captain Petrae has spent over 27 years with the NOAA Corps. He joined NOAA after graduating from Florida Institute of Technology where he majored in physical oceanography.  Captain Petrae chose NOAA because he likes adventures and loves a challenge. His favorite ports are Barbados W.I., Kodiak AK, and San Diego, CA.  When he’s not on duty, he catches up on paperwork, reads, and watches movies.  He encourages all his staff and crew to stop and relax and he tries to practice this daily himself.

CAPT Petrae really enjoys his commission, but does admit that the family separation is difficult. He encourages anyone to join NOAA and you can apply with a college degree to the commissioned corps, or in an entry-level position with a high school diploma.  A great benefit for NOAA employees is that you can live on-board a ship, (don’t have to pay rent), eat three meals a day and you can see the world. This is CAPT Petrae’s first command upon the RON BROWN which is a class one research vessel that travels all over the world.  The RON BROWN measures 274 feet stem to stern, is 52.5 feet wide, and needs 20 feet of water in which to operate.  The RON BROWN uses diesel fuel and has six generator motors.  The ship makes its own water using an evaporation system. The RON BROWN is scheduled to go to Brazil later in the year, and CAPT Petrae with his love of adventure is ready to go!

Personal Log – Vince Rosato 

You have asked, what is it like on the ship? The cabin I’m in has two bunks and two wall cabinets with closet space and drawers and one tall metal Chester drawer all of which I share with my cabin mate Ho, a doctoral student from the UK.  I have the bottom bunk and I work the noon-midnight watch.  He has the midnight to noon watch, which means each of us gets the room to ourselves for the time we’re not on watch.  We share the bathroom that has a fixture and shower stall with our adjacent cabin.  When we use it we lock both entry doors and remember to unlock them when we leave.  There is a sink with a mirror in each cabin as well.  The room has two sofa-like chairs and a stool that can be used like a desk chair next to the Chester drawers that has a pullout section that acts like a desktop. In each double size bunk there are drapes around three sides since one side faces the metal wall.  They shield the light in either direction because there is a bunk light with an outlet inside.  All in all the cabins are practical and spacious and we are in charge of keeping them neat and tidy.  Speaking of tidy, I did my laundry today two decks below.

Personal Log – Kimberly Pratt 

Hi all. The weather is beautiful.  I’ve spent the last two days doing interviews, taking pictures and forming friendships on board the RON BROWN.  Yesterday I was trained in CTD collection procedures and really felt like a scientist as I got to take samples.  I’ll be processing salinity samples as well as non-organic nutrients.  The ship has stopped rocking and rolling so seasickness is at bay.  Today I really go to work, collecting samples as my shift is from noon to midnight.  The crew and officers have been very helpful and friendly. It’s been going really well, and it’s nice to have a fellow teacher on board!

Vince Rosato and Kim Pratt, March 9, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Barbados, West Indies
Date: March 9, 2006

Teachers at Sea aboard the Ronald H. Brown
Teachers at Sea aboard the Ronald H. Brown

We sail today.  After spending the entire day traveling from San Francisco to Barbados by way of Miami, we arrived in Bridgetown. We heard screeching critters at the Grand Barbados Hotel. We learned that they were tiny frogs that sounded like squawking tropical birds. We took a taxi to the port, about 20 minutes on the other side of the island, after meeting Chief Scientist, Dr. Molly Baringer, also called “Dr. Molly.”

Docked among cruise liners (which are huge hotel-like pleasure ships), we were greeted aboard the NOAA ship, RONALD H. BROWN, by Ensign Jackie Almeida, serving as OOD, Officer of the Deck. The OOD is the captain’s delegate like when the principal has to go to a meeting the AP (assistant principal) is in charge.  Everyone welcomed us and made us feel right at home.  After stowing our gear and being directed to where the cabin linens (bed sheets, pillows and towels) and galley (where we eat meals) were, we made our way to Bridgetown and back by foot.  One of the main sources of income for Barbados is selling things to travelers, otherwise called tourism.  They made money by our visit. It cost $1.40 Barbados for postcard postage.  We passed a fish processing area not far outside of the closed port facilities where Mahi Mahi, otherwise known as “Caribbean Dolphin” by the locals was being prepared for market.  They are not real dolphins, since they are fish, and not marine mammals.

The harbor pilot and his assistant boarded the ship yesterday when our ship was moved.  We were invited to view the ship maneuverings from the bridge, where the officers navigate and drive the ship in the front, or bow, of the ship.  Junior Officer Ensign James Brinkley invited us to the bridge at the request of the Captain Gary Petrae.  If you thought parallel parking looked difficult by car, the captain explained a ship doesn’t have any brakes, which makes it harder.  He made it look easy.  We will continue to take photos and interview officers, crew, and scientists and help out where we can.  We will be sending logs periodically to keep you informed of our journey and help make the science we are learning more accessible in school and home.

Everyone enjoys seeing critters like monkeys and dolphins, but this expedition is primarily about chemistry, currents and climate, non-living, or abiotic, features of the seas. Coming up soon are fire and abandon ship drills.  Fire and emergency drills are held weekly at sea because shipboard personnel must rely solely on themselves in the event of an emergency.  In some cases help may be days away, so ships at sea will render assistance to other vessels located in proximity.  Later we will be conducting a test run of the CTD. The CTD is a conductivity, temperature and density reading at various depths from instruments on a line that extends from the surface of the sea to the ocean floor. Stay tuned for more data.

Assignment – Maritime flags are a very important way for ships to communicate to each other. For example, when a ship wants a harbor pilot to help it navigate its way through the harbor, they’ll hoist (put up) a blue and gold pilot flag.  We all use flags in our daily lives—the American Flag, California Flag, and we use flags to start races.  Describe one flag that you know of. Describe its markings and state the purpose for the flag or what it means.

Vince Rosato—Personal Log 

At the airport after getting up around 3:30 a.m. Kim and I were in line and an agent asked me to get into a “special” line.  No, it was not the express line.  As others walked by, one said, “Are you in the penalty box?”  I said, “I was chosen–perhaps I should buy a lottery ticket.” Anyway, I was run through a glass container and puffed with air jets which sensed nothing but my cologne and was passed along to our delayed flight and Kim’s enjoyment.  On the journey here the wife of a former Minister of Trinidad watched out for us. That was memorable because she attempted to get us quick passage to our connection at Miami after our arrival terminal was switched due to our delayed flight.

Kimberly Pratt—Personal Log 

Hi all! It’s great to be in Barbados!  The students and I really worked hard to get ready for the trip. In class they decorated their Styrofoam cups (for a later experiment), signed the stickers for the drifter buoy we’ll be deploying later and most importantly, they all made me going away cards!  I was really touched (they love to see me cry). It’s beautiful here.  The weather has been warm and tropical.  The flight was long, and I met a wonderful lady named Nora.  The next day I went to the ship and checked in.  Today, we sailed and we’ll be motoring straight away for two days.  I haven’t felt really sick, so that’s good news.  It’s nice to be traveling with another teacher this time around.  My e-mail on board the ship is kim.pratt@rbnems.ronbrown.omao.noaa.gov

Eric Heltzel, October 19, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 19, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

Sailing on the RONALD H. BROWN as a NOAA Teacher at Sea has been an opportunity to experience scientific research first hand.  I have been impressed by the commitment to excellence exhibited by all members of the scientific teams.  They have undertaken the design and logistical challenges of the Stratus 6 cruise with great attention to detail, absolute commitment to execution of the plan, and countless hours of effort.  Tasks were carried out with a high degree of professionalism and in good humor.

The officers and crew of the BROWN were not only generous and considerate, they were very competent.  People knew their jobs and did them without complaint.  There seems to be an enthusiasm for the research that the ship facilitates.  Throughout the cruise I felt confident that the ship was in good hands.

Going to sea for the first time has been a challenge for me.  As with many things that push us outside our comfort zone and away from the familiar, learning is fast paced and intense.  This will be my last log from the RONALD H. BROWN.  I wish to thank the Teacher at Sea program of NOAA for making this experience possible.  Thanks to Captain Tim Wright and the officers and crew of the BROWN for helping this previously land-locked teacher from Wyoming have a great experience.  Special thanks to Dr. Bob Weller and the team from Woods Hole Oceanographic Institution for taking me under their wings and answering my numerous questions.  Thanks to Peggy Decaria for substituting for me in my classes at Evanston High School.  I never would have been able to have this experience if not for the support of Superintendent Dennis Wilson and all of Uinta County School District #1.  I’m going back to school with a rich experience to share, new resources to facilitate my teaching, and many new ideas.  Thanks to you all.

Eric Heltzel, October 18, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 18, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

Rodrigo Castro and Carolina Cisternas are research technicians from the University of Concepcion in Concepcion, Chile.  They joined the cruise at Panama City and have been taking ocean water samples every 60 nm.  Their samples are run through 0.7 and 0.2 micron filters.  They capture and freeze particulate organic mater by this process and take it back to the lab at the university.  The samples are analyzed for the presence of stable isotopes of carbon and nitrogen.  These samples are then used as biomarkers to help determine the circulation of ocean water.  A second analysis will be going on to locate the gene associated with nitrogen-fixing organisms.  This is new ground for the scientists at the university.

Upwellings are areas where deep ocean water comes to the surface.  According to Rodrigo and Carolina there are four significant areas of upwelling along the Chilean coast. The two most northerly are found at 20 degrees south and 24 degrees south.  These are active year round and are slow and steady with no significant seasonal fluctuation. Another at 30 degrees south is moderate in nature with some seasonal variation, being more active during the summer.  The most southerly is at 36 degrees south and is strong September to April. However it mostly disappears the rest of the year. Upwelling zones are recognizable because of their cooler water temperature.  They also have increased nutrients that are brought up from the deep and a higher amount of chlorophyll due to increased photosynthetic activity.  Some fish species are found in greater abundance in these zones due to increased nutrients extending into more food availability.

Personal Log 

The RONALD H. BROWN is under way. We are steaming in an easterly heading on the leg of the cruise that will take us to Arica, Chile.  It is a bit of a challenge for me, as we are no longer headed into the direction of the swells; instead, we are crossing them at a 30-degree angle, which makes for more oscillations in the movement of the ship.  My tummy is being challenged.

Eric Heltzel, October 14, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 14, 2005

Weather Data from Bridge
Temperature: 19 degrees C
Sea level Atmospheric pressure: 1016 mb
Relative Humidity: 70%
Clouds cover: 8/8, stratocumulus
Visibility: 12 nm
Wind direction: 120 degrees
Wind speed: 16kts.
Wave height: 3 – 4’
Swell wave height: 4 – 5’
Swell direction: 120 degrees
Seawater Temperature: 18.3 degrees C
Salinity: 35 parts per thousand
Ocean depth: 4364 meters

Science and Technology Log 

A big day today! We managed to deploy the Stratus 5 buoy.  It was basically the reverse of our retrieval. The buoy was tipped up 45 degrees and the top 35 meters of instruments were hooked together.  Next the mooring was attached to the buoy and it was placed in the water with a crane. This phase was done off of the portside of the fantail.  We held the wire that was attached to the buoy and let it swing out behind the ship.  Then using a large winch we would play out more of the cable, stop, secure the line, and then attach the next instrument.  Consider the fact that if we were to lose hold of the mooring we could lose the whole works into 4000 + meters of ocean water.  It’s not like working on land where if you drop something, you say whoops and pick it up again.  If that happens on the ship the thing you drop may well go over the side.  Serious Whoops!

Once all of the instruments were attached we started paying out nylon and polypropylene line. This was accomplished by using an H-bit to run the line through.  The line was in 4’ x 4’ x 4’ boxes and trailed out into the ocean as the ship moved forward at just over one knot. When we got to the end of the line it was time to attach the new acoustic releases so that this buoy can be recovered next year.  Then it was time for the big splash. The mooring was attached to the anchor which was made up of three iron disks, twelve inches thick and three feet in diameter.  The anchor’s weight is 9000 pounds. The anchor was sitting on a steel plate and the stern of the fantail.  A crane picked up the forward edge of the plate and tipped the anchor into the ocean.  The splash from the six-foot drop to the water went twenty feet in the air.  The anchor started the trip to the bottom dragging all of the mooring and the buoy.  The falling anchor pulled the buoy at about four knots towards the anchor location.  Excited cheers went up on the fantail. The Stratus 5 buoy had been successfully deployed!

Instruments Deployed (top 450 meters)

Deployed on the mooring line beneath the buoy: MICRO CAT temperature, salinity SEA CAT temperature, salinity Brancker temperature, salinity VMCM direction, velocity of water flow NORTEK acoustic Doppler current profiler T-POD   temperature logging device SONTEK acoustic Doppler current meter RDI ADCP acoustic Doppler current profiler (125 m) SDE 39 temperature logging device Acoustic release just above the anchor

On the buoy: (this information is transmitted 4 times a day) Atmospheric pressure, Air temperature, Wind speed and direction, Relative humidity, Precipitation, Long wave radiation, Short wave radiation, Sea surface temperature and salinity.

You may notice that many of the instruments on the mooring measure the same thing.  This redundancy is intentional guaranteeing verifiable data.  There are two complete meteorological systems on the buoy.

Response to Student Questions 

Does the stratus layer extend to the land?

After questioning the senior scientists about this the answer is yes.  We are at about 20 degrees south. Here there is a daily fluctuation in the cloud cover.  It often dissipates during the afternoon as a result of warming by the sun.  Apparently the coast of northern Chile often has a cloud layer that also dissipates during the day.  This can be low-lying enough to be fog. As you travel a few miles inland and up in elevation you are no longer under the stratus layer.

Does the stratus layer affect El Nino?

Ocean and atmosphere constantly influence each other.  I have to do more inquiry to give a solid answer to this question.

Note: There is some confusion about the labels being used for the buoy and the cruise.  This is the sixth Stratus Project cruise which is deploying the fifth Stratus buoy.  Hence, the Stratus 6 cruise is recovering the Straus 4 buoy and deploying the Stratus 5 buoy.

Eric Heltzel, October 13, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 13, 2005

A small boat is launched in order to get to the stratus buoy
A small boat is launched in order to get to the Stratus buoy

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

We are holding on station today as the data from the Stratus 4 buoy is downloaded and analyzed. I helped out on the fantail for a couple of hours today.  We were rearranging the positions of the Stratus 4 and 5 buoys. These are large, heavy devices that can only be moved by crane and winches. The buoy waiting for deployment is now on the portside of the fantail, is strapped down, activated, and awaiting deployment.  The buoy we retrieved yesterday is tucked in next to the starboard side crane. This doesn’t sound like a big thing, but each buoy is very heavy and the deck is moving up and down six feet and rocking side to side every few seconds. We go slowly and are very deliberate.

Sean Whelan attaches a line to the buoy
Sean Whelan attaches a line to the buoy

Jeff Lord is setting up for deployment of the Stratus 5 buoy and its array of instruments.  The buoy will be launched, followed by the mooring and its attached instruments, and lastly the 9000-pound anchor will be deployed over the stern of the ship.  Before this a Sea Beam survey of the ocean floor has to be accomplished to help Dr. Weller choose the site of the Straus 5 deployment.  I am continuously amazed by the thorough planning that has been done for this venture.

Personal Log 

I’m sitting on the foredeck of the BROWN as I write this entry. It’s once again a partly sunny day and I am sitting out of the wind enjoying the sunshine. I realize that I haven’t seen a jet contrail since we crossed the equator. Yesterday I did see a whale spout at about of a quarter mile out and there was a fishing boat about four miles away.  Except for a few birds the view is of ocean and sky.  We had an abandon-ship drill Tuesday and the captain announced that the nearest land is some Argentine islands over 400 miles away.  We are out there.

Glass balls attached to the buoy
Glass balls attached to the buoy
The buoy is retrieved for maintenance
The buoy is retrieved for maintenance

Eric Heltzel, October 11, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 11, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

The throbbing heart of the RONALD H. BROWN is the engine room and the associated systems.  Last night Assistant Engineer Wayne Smith gave me a tour.  I was impressed with the complexity and effectiveness of the systems.

The core of the power is six Caterpillar diesel engines.  These function as electric generators for the ship’s systems.  The three largest of these are dedicated to the propulsion of the ship. The ship is propelled and maneuvered by two aft thrusters and one bow thruster. The thrusters are propellers that have the ability to be rotated 360 degrees. Each thruster is driven by and independent Z-Drive that is actuated by an electric motor and shaft.  Under normal sailing only the two aft thrusters are in use.  The bow thruster is engaged when the ship is maneuvering into dock or holding a position.  As I write, we are holding position 0.25 nautical miles from the Stratus buoy.  By engaging the Dynamic Positioning System a location for the ship is established via GPS and a computer controls the direction and rpm of the thrusters.  This allows the BROWN to hold a position without having to drop anchor.  I was surprised to learn that this ship has no rudder—it is steered via the Z-Drive of the thrusters.

Since the BROWN is a research vessel it has on board many sophisticated electronic instruments.  The current running through its wires is like our household current, about 115 volts.  Because of the sensitive nature of some of the equipment there are outlets labeled “clean power”. This current runs through a secondary motor which ensures that there will be no power spikes that could damage electronic equipment.

Ventilation is very important and there are several air conditioning systems that control the temperature in most of the ship.  Different areas have independent thermostats so the ship is quite comfortable.  The science labs are generally kept quite cool.  Freshwater is supplied by using heat from the engines to evaporate seawater.  The condensed steam is run through bromine filters to ensure no bacteria in the water tanks.  The water is extremely soft, having no salts in it.  Wayne chuckled at the idea of people buying bottled water to drink on ship because the water provided is as pure as water gets.

The NOAA research vessel RONALD H. BROWN was launched in 1997.  It is the largest ship in the fleet and provides a state of the art research platform.  The versatility and capabilities of this ship and expertise of the crew allow up to 59 people to sail for extended periods of time and perform sophisticated oceanographic and atmospheric research.  I feel privileged to be along on the Stratus 6 cruise.

Personal Log

Wow! I can see my shadow.  This is cause for staying out on deck. We have been sailing under overcast skies since we crossed the equator.  I’m sitting out on the bench on the 03 deck beneath the Bridge. There’s a breeze blowing from the southeast but I’m comfortable in a light jacket and shorts.  It has been a surprise to be traveling in tropical waters with overcast skies and cool temperatures.  It makes me realize that we get a lot of sunny days in Wyoming.

At 1415 today we had a meeting outlining the program for tomorrow.  Jeff Lord from WHOI is coordinating the buoy recovery program.  He is very organized and has gone through step by step how it will be done.  It will be a very interesting, very busy day tomorrow.  It is very important to the success of this cruise that we recover all of the instruments and buoy safely.  At 0640 the acoustic release will be activated and the floats attached to the mooring will be released from the anchor.  The depth here is 4400 m and it will take the floats about 40 minutes to reach the surface.  This will be a major operation involving everyone on the ship.

Eric Heltzel, October 9, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 9, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

After Dr. Lundquist and I have a successful radiosonde launch we return to the computer terminal and watch the measurement data come in.  My favorite display is a color-coded graph showing temperature, dew point, and relative humidity graphed against the altitude of the radiosonde. The main area of study is taking place where we are in the eastern Pacific off the coast of northern Chile.  In this area there is a large, semi-permanent layer of stratus clouds.  The effects these clouds have on the ocean temperature, and vice versa, is one of the reasons for choosing this area to study.

As the balloon ascends from the ship the temperature cools at the dry adiabatic rate. The dew point goes down but not as rapidly.  Usually at an elevation of about  600 meters the dew point and temperature intersect.  On the same screen green line showing relative humidity hits 100% as we would expect.  This marks the base of the cloud layer.

As the radiosonde ascends another 200 to 400 meters the temperature shoots way up, as much as 8 degrees C.  This indicates the top on the cloud layer where the sun is shining brightly. As the balloon continues to ascend the temperature once again cools consistently at the dry adiabatic rate.  It’s about negative forty degrees C at an altitude of 20 kilometers.  In this part of the atmosphere the relative humidity approaches zero and the dew point stays well below the air temperature.  This suggests the upper air is descending and is stable. The bottom 800 meters is referred to as a marine boundary layer.

Despite the constant cloud cover there is very little precipitation in this area.  Temperatures at the ocean level are surprisingly cool as evidenced my most of the crew wearing long pants and jackets or sweatshirts.  Atmospheric and oceanic data in this area are very sparse. One goal of the Stratus Project is to gather more information so we can better understand the interrelationships between ocean and atmosphere.

Personal log

As I write this I am on my watch in the main science lab.  I’m preparing to launch a Drifter in about 15 minutes and I will launch a weather balloon at 13:00.  It’s really fun to throw things into the ocean and release balloons into the atmosphere and see where they go.

Our ETA at the Stratus mooring site is 17:30.  We are approaching the end of southerly leg of our cruise. There are about six days of work scheduled at the buoy site.  It should be interesting.

Eric Heltzel, October 8, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 8, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

I’ve been working with the meteorological team from NOAA in Boulder, Colorado. I’ve been teamed with Dr. Jessica Lundquist to manage the 13:00 weather balloon launch. Balloons are launched four times a day at intervals of six hours.  A balloon carries an instrument called a radiosonde to a height often exceeding 20 kilometers.  Eventually the balloon ruptures and the instrument and spent balloon fall to earth.

When preparing a radiosonde we take the battery pack and add water to activate it. As the battery is soaking, the sonde is attached to the computer interface/radio receiver, and it is activated and calibrated.  It is necessary to have real-time weather measurements to input into the sonde so it has a comparison to ensure accuracy.  A radio transmitting frequency is selected then the sonde is detached from the interface and attached to the battery.  While it is still in the lab, we make sure that data is being transmitted.  If all of this goes correctly the radiosonde is set to launch.

We take the activated radiosonde out to the staging bay, which looks a bit like a garage. There are two overhead doors, a workbench, and bottles of helium.  We inflate the balloon with helium to a diameter of about five feet.  When it is inflated we close the balloon with a zip-tie, then attach the radiosonde by its hook, and close it with another zip-tie. We call the Bridge and let them know we are about to launch a balloon.

Now comes the tricky part, walking out on the fantail of the rolling ship carrying a large balloon in one hand and the radiosonde in the other.  Today there 16-knot winds coming from the SE and a wind generated by the ship’s speed of an additional 10 knots from due south.  To complicate matters further, the superstructure of the ship blocks the wind and creates erratic eddies. We check the wind direction and decide on which corner of the fantail will give us the cleanest launch.  Walking aft, the balloon is buffeted by the wind. It pulls and pushes you in various directions while you try to maintain balance on the heaving deck.  When you reach the railing, you hold your hands out and release the balloon and radiosonde. If it clears the A frame and the other equipment you stand and watch your balloon ascend until it enters the cloud layer and disappears.  We call the Bridge and let them know the balloon is away.

Now we return to the Lab to check that our sonde is sending out data.  Measurements of temperature, relative humidity, and atmospheric pressure are taken and sent back every two seconds. The GPS tracking device allows us to know wind speed, wind direction, altitude, and location of the radiosonde.  The measurements of temperature and relative humidity allow the computer to calculate the dew point.  Data streams in until the balloon reaches an elevation where the atmospheric pressure of  about 30, the balloon fails and the radiosonde falls to earth. Tomorrow: More about radiosonde information.

Questions to Consider 

-What is an eddy?

-What will happen to the volume of the balloon as it rises in the atmosphere?

-Why does atmospheric pressure decrease as elevation increases?

-What is the relative humidity when dew point and air temperature are the same?

-What is the adiabatic rate?

-What is a temperature inversion?

Personal log

I am a Pollywog.  Yes, that’s right. I’m one of those slimy little creatures with a spherical body and a tail. At least that’s what the Shellbacks tell us.  A pollywog is a person who has never sailed across the equator and gone through the ceremony and initiation to move onward. Shellbacks are people who have been through these rites.  I made the mistake of admitting that I don’t know what a Shellback is.  I fear that admission will come back to haunt me.  Initiation is approaching. I don’t know what I’ll have to do. I’ll keep you posted.

Eric Heltzel, October 7, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 7, 2005

The adopted buoy, ready for deployment
The adopted drifter buoy, ready for deployment

Weather Data from Bridge

Temperature: 18.6 degrees C
Sea level Atmospheric pressure: 1014 mb
Relative Humidity: 78%
Clouds cover: 6/8,stratocumulus, cumulus, cirrus
Visibility: 12 nm
Wind direction: 140 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 6 – 8’
Seawater Temperature: 18.6 degrees C
Salinity: 35.25 parts per thousand
Ocean depth: 4476 meters

Evanston High School, your adopted Drifter is in the water! 

Lara Hutto is a Research Associate II at Wood’s Hole Oceanographic Institution in Massachusetts. She and I deployed our Drifter Buoy off the port side stern of the fantail at 19:01 UTC (the time at the Prime Meridian) on October 6, 2005. Our Drifter serial number is 54410.

The sock of the drifter buoy is unfurled
The sock of the drifter buoy is unfurled

To: Heltzel’s Oceanography/Meteorology students:  The NOAA decals you signed were placed on the dome of our drifter.  All of your names and the name of Evanston High School are floating freely in the eastern Pacific off the west coast of Peru.  You should be able to track it on the Drifter web page. Should anyone find it they will be able to identify who adopted Drifter 54410.

Update: the EHS drifter is streaming in data from the eastern Pacific. Check it out here. I can’t access this website from the ship but Kevin O’Brien of NOAA says that data is being sent by our adopted drifter.  Check it out and let me know what you find.

Science and Technology Log 

Drifters are a wonderful tool for gathering information about earth’s oceans.  They have a spherical top which provides flotation and contains the electronics of this device.  These include a temperature probe for measuring the surface seawater temperature and a GPS tracking signal. This device is battery powered and is regularly sending out information on seawater temperature and location.

When deployed a fabric tube (sock) extends downward to a depth of between 10 and 15 meters. This is attached to the floating sphere by cable. The sock reduces the effect of winds and surface waves on the movement of the Drifters.  The data is gathered via satellite and plotted. This helps us figure out movements of the ocean waters at the surface.

An entire person can easily fit inside the sock
An entire person can easily fit inside the sock

Compared to many of the instruments that are attached to the Stratus mooring, Drifters are simple.  They are easily deployed because the unit activates itself once it hits the water.  A magnet is attached to the dome and it holds the switch in an off position. Once the magnet is removed, the switch is activated and The Drifter is on the job.  The magnet is attached with water-soluble glue so once in the water the glue dissolves, the magnet falls off, and the Drifter is activated. The sock is also rolled up and held in position with water-soluble tape.  Once in the water this also dissolves and the sock extends downward. The ingenious design of Drifters makes them very easy to deploy.  These are sent out with any type of ship so Drifters have been placed in many of the world’s oceans. Life expectancy on a Drifter is one to two years.

Questions to Consider 

How might the information gathered from Drifters be useful?

What are some ways that the oceans and the atmosphere affect one another?

Personal Log

My quarters are in the low part of the ship.  I have no natural light to tell whether it is night or day. As I lay in my bunk I can hear the sounds of the ship pushing downward through the waves. Sometimes it sounds like gurgling water, sometimes like something solid is striking the hull, other times like the sound of rapids on a river.  When I’m nearly asleep I imagine I am at home in Wyoming and the sounds I hear are of a raging blizzard outside my window. I go on deck of the RONALD H. BROWN and look at the tropical eastern Pacific waters.  Toto, this definitely isn’t Wyoming!

Eric Heltzel, October 6, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 6, 2005

Eric on the bridge of the RON BROWN
Eric on the bridge of the RON BROWN

Weather Data from Bridge, 07:00 

Temperature: 19.1 degrees C
Sea level Atmospheric pressure: 1012 mb
Relative Humidity: 78%
Clouds cover: 8/8, stratocumulus
Visibility: 12 nm
Wind direction: 160 degrees
Wind speed: 6kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 18.3 degrees C

Science and Technology Log 

The science team from the Upper Ocean Processes Group is busy preparing instruments to be deployed on the mooring of the Stratus 5 Buoy. Each instrument must be physically examined to ensure that it is properly mounted in its rack.  Then these instruments are awakened to make sure that they are working properly. They are hooked up to a computer so that their operation and calibration can be tested.

The Stratus Buoy
The Stratus Buoy

Today I had a look at a mechanical current meter.  These were designed by Senior Scientist, Dr. Bob Weller as part of his Doctoral work at Scripps Institute. The instrument is housed in an aluminum cylinder that is 2 feet long and 7” in diameter.  The canister is water tight utilizing two interior rubber seals. Extending from one end is a 3’ long PCV mast that has two propeller mounts on it. At each mount are two sets of propellers on either side of the hub.  The two mounts are set at 90 degrees to one another. When water flows through the propellers revolutions are measure and the data is stored in a chip inside the canister.  The number of revolutions per given unit of time gives the velocity of the current.  Having two sets of propellers set at 90-degree angles allows the direction of the current to be determined.

There is also a second type of current meter that uses measurements of sound waves to determine current velocity.  Several of these will be deployed on the mooring along with the mechanical current meters.  Using two types of instruments allows the team to compare results.  The mechanical units have been used for about 20 years and they are known to be reliable and accurate.  Placing the acoustic velocity meter nearby will help determine the accuracy of these devices.

Questions to Consider 

Why are all the instrument cases cylindrical in shape?

Why is a “sacrificial zinc anode” placed on each end of the mechanical current meter?

How could the direction of a current be determined using two sets of propellers at 90- degree angles to one another?

Why build canisters out of aluminum?

Eric Heltzel, October 5, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 5, 2005

Weather Data from Bridge 

Temperature: 19.5 degrees C
Sea level Atmospheric pressure: 1010 mb
Relative Humidity: 90.5%
Clouds cover: 8/8, stratocumulus, altostratus
Visibility: 9 nm
Wind direction: 230 degrees
Wind speed: 6kts.
Wave height: 3 – 4’
Swell wave height: 3 – 5’
Seawater Temperature: 19.5 degrees C
Salinity: 34.7 parts per thousand

Science and Technology Log 

Notice that the seawater temperature declined from 28.7 to 18.8 degrees C between yesterday and today. We crossed the equator last night so this must have something to do with it.  I went to Doctor Weller and asked for an explanation:

At this latitude and at this season we are still under the influence of the southeast Trade Winds.  Wave motion generates and moves at 90 degrees to the wind direction.  Now the Coriolis Effect comes into play causing waves to deflect to the left in the southern hemisphere.  That means that the prevailing wave direction is from northeast to southwest south of the equator.

As the winds move into the northern hemisphere wave movement is still at 90 degrees. However, now the Coriolis Effect causes waves to deflect to the right, from southwest to northeast. So this time of year the wave motion in the two hemispheres is 180 degrees to one another.  As the surface waters move apart, deeper ocean water comes to the surface to fill the area evacuated by the surface wave motion.  This water is coming from greater depths and is colder.  This accounts for the lowering of the seawater temperature.  Dr. Weller suggests that this action brings nutrients to the surface which should enhance feeding opportunities for marine life.

Vertical and horizontal motion of ocean water causes constant exchanges of heat energy. These exchanges are between water of different temperatures and also the atmosphere.  Currents, waves, upwelling, evaporation, and winds are just some of the factors that influence heat exchanges on planet earth.  These processes are critical to maintaining global climates.  Dr. Weller’s Upper Ocean Processes Group seeks to better understand these relationships.

Ship Crew Activity 

I went to the Bridge this morning to gather weather and sea condition data.  The Officer of the Deck was LTJG Silas Ayers and the Watch Stander was Ordinary Seaman Phil Pokorski.  The Bridge Officer always has a crewmember with them whose job it is to be lookout to scan the ocean and report what can be seen.  This could be another ship, debris, or whales. The crewmember takes a sighting and determines the distance and bearing. Avoiding collision is an important job for the Officer of the Deck.

While there, the three of us engaged in a discussion of nautical measurements and their equivalencies. LTJG Ayers went to the Chart Room and extracted a reference book.  Here are the values we found:

Fathom = 6 feet, 2 yards, 1.8288 meters

Cable = 720 feet, 240 yards, 219.4560 meters

Statute Mile = 5280 feet, 1760 yards, 1609.344 meters

Nautical Mile = 6,076.11548556 feet, 1852 meters, 1.150779448 statute miles

League = 3 statute miles, 4830 meters

(As in 20,000 Leagues under the Sea)

Being a Jules Verne fan, I’ve often wondered how far 20,000 leagues really is.  Now I know that it is 60,000 statute miles.  But nowhere is the ocean nearly that deep. Phil then pointed out that Verne was referring to horizontal distance traveled while submerged in the Nautilus.  Finally the title of his tale makes sense to me.

Personal Note 

Starting last evening I was hearing a squeaking sound.  At first I thought it was my deck shoes squeaking on the tile deck floors.  Then I notice that even when I wasn’t moving the sound persisted. I was beginning to wonder if being at sea and wearing a motion sickness patch wasn’t causing me to be hallucinatory.  I looked and looked for the source of the sound. I finally asked Dr. Weller if he could hear it and fortunately he said yes. It is the sound generated by the Sea Beam, the ocean floor profiler.  I was relieved to know that if wasn’t just me hearing this sound.

Eric Heltzel, October 4, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 4, 2005

Acoustic releases
Acoustic releases

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

Today Senior Scientist Bob Weller and Senior Engineer Assistant Paul Bouchard showed me the acoustic releases.  These are devices that are placed on the tether that holds the Stratus Buoy to its anchor on the ocean floor. At the deployment location the ocean depth is 4425 meters (14,518 feet).  The acoustic release will be placed 30 meters from the anchor. Attached to the tether will be 35 instruments placed at a particular distance from the buoy. Their attachment distance will determine the depth at which they are located and will allow scientists to gather data about conditions at these particular depths of the water column.

The job of the acoustic release is to detach the buoy and tether from the anchor.  When we arrive at the currently deployed buoy a digitized acoustic signal will be sent through the water.  The acoustic release will “turn loose” of the anchor and allow our team to retrieve the buoy and the instruments attached to the tether. This is important because some of the instruments contain a year’s worth of data that must be downloaded and analyzed. Another reason is the cost of the buoy itself, all of the instruments, and the cable and line that have held it to the anchor. These things are worth about $500,000 dollars and would be difficult to replace. All of the instruments can be refurbished and used again.

Cornell Hill making a line splice.
Cornell Hill making a line splice.

When we arrive at the currently deployed Stratus Buoy the acoustic release that was put in place last year will be activated.  This should allow us to retrieve the system and replace it with the one we are carrying on board the ship. The acoustic releases we are carrying will be placed in the tether holding the new buoy and will not be activated until next year when that system is recovered. Acoustic releases are also used on drilling platforms and other objects tethered to the sea floor. These machines allow the objects tethered to be freed without the need to dive into the water and cut the line. These are an ingenious piece of technology that improves the safety and convenience of oceanographic research teams.

Ship Crew Activity 

I had the opportunity to watch Boatswain Group Leader Cornell Hill making a line splice.  He took the end of the line around a metal eye that is built with a groove on the outside. The line comes back on itself and Cornell braids the strands into the main part of the line. He has a knife with a spike on it to help lift the strands so he can braid it together.  What results is a closed loop with metal lining at the end of the line.  It’s very strong and is used as an attachment point. I have long wondered how this was done so it was very interesting to see the skillful way Cornell accomplished this feat.

Terms 

Acoustic signal – a particular blend of frequency and pattern of sounds that sends a message through the water to instruct a device to perform its operation. Example is the signal sent to activate the acoustic release.

Acoustic Release – a device that releases a line when given the proper sound signal. Used in the tether system of the Stratus buoy.

Bosun – crew member in charge of deck operations

Line – rope Line Splice – Braiding stands of a line back into itself.

Tether – attachment to a fixed object. This may be a combination of cable, chain, line, or wire. Example is the attachment of the Stratus Buoy so that it  doesn’t drift away.

Eric Heltzel, October 3, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Panama Canal
Date: October 3, 2005

Weather Data from Bridge
Clouds cover: 7/8, stratus, cumulus, altocumulus
Wind direction: 250 degrees
Wind speed: 18kts.
Wave height: 3 – 4’
Swell wave height: 5 – 5’
Seawater Temperature: 29.9 degrees C
Sea level Atmospheric pressure: 10.10 mb
Relative Humidity: 82%

Science and Technology Log 

Today I worked my first watch from 08:00 to 12:00.  I was responsible for being present in the main science lab and monitoring our position and being aware of where the first deployment of instruments will occur.  Since we are not yet allowed to deploy any instruments, it was a fairly slow day.  We did receive training from Sergio Pezoa on how to calibrate and activate radiosondes.  These are the instrument packages that send back information on its position, temperature, atmospheric pressure, and relative humidity.  These instrument packages carry a water-activated battery and are attached to a helium balloon. They are released into the atmosphere at prescribed times and send back by radio the information they gather to the receiving unit.  This continues until the balloon fails and the instrument package tumbles to earth.  Radiosondes are the basis for most of the information about conditions in the upper troposphere.  I’ll be working on the team that launches the weather balloons carrying these instrument packages.

Eric Heltzel, October 2, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Sailing through the Canal
Sailing through the Canal

Mission: Climate Observation and Buoy Deployment
Geographical Area: Panama Canal
Date: October 2, 2005

Science and Technology Log 

We’ve been in port at Panama City.  The whole idea of sailing from the Atlantic basin across part of the continent to the Pacific basin seems rather amazing. Seeing the locks in operation was fascinating. A tug helped us get into the correct position then four cables were attached, two forward and two aft. These cables were each fed out from a winch on railroad switch engines which were on tracks on either side of the lock.

The engines moved with us and kept tension on the cables so our ship stayed in the center of the lock.  The locks are 1000 feet long so our 274’ vessel could fit in with another ship. Once we were in, the lower gate closed and water started to flow in from the base of the sidewalls of the lock. I was surprised at how rapidly the lock filled with water.  The water largely flows in by gravity so little has to be pumped.  Once we finished going through the three locks we were lifted to the level of the natural lake that acts as a critical part of the passage. This lake, which is filled by the abundant rainfall, provides water to fill the locks and has a navigable channel dredged across. On the western side is the infamous cut.  Here the canal looks like it is a river going through a canyon although it has no current and the canyon is man-made.  The ship descended through locks on the Pacific side and we docked at Panama City.

A closed lock inside the Panama Canal
A closed lock inside the Panama Canal

When I awoke on Saturday the deck crew and engineers were preparing to take on fuel.  This is a ticklish business that requires a lot of attention.  It’s the same principle as pulling into the local gas station except the hoses are 8” in diameter and get bolted together then bolted to the ship. We took on 80,000 gallons of diesel fuel which we will need for the next leg of our voyage to Arica, Chile.  The RON BROWN can hold about 120,000 gallons of fuel. I was pleased that this wasn’t billed to my account.

This morning I went out for a walk around the compound where our ship is docked. This is a military compound with nicely kept grounds but around the edges the indigenous vegetation is showing itself.  There were several pathways up into the trees where I got a sense of what the forest in Panama is like.  “Green” and “busy” are two operative descriptors. In areas along the edge there were several beautiful plants in bloom. I also got to watch leaf-cutter ants carrying there booty back to their nests. These guys travel back and forth along the same path from the tree they are carving leaves from to their residence.  It always reminds me of a safari through the jungle. I also saw an Agouti in an opening. I had only seen photos of this large rodent and I was excited to see one in the field. It was in the 80’s and very humid so I returned to the ship very damp.

Tropical flowers
Tropical flowers

We are preparing to depart on the next leg of the cruise.  We expect to pull away about 17:30 after the Pilot comes on board.  Twelve more members of the scientific team arrived yesterday so we now have our full complement.  I have assigned my first “watch” tomorrow from 08:00 to 12:00.  We will be trained on deployment of drifters and ARGOS buoys this evening.  I also will be helping the meteorological team by launching weather balloons. We’re going to begin the scientific research tomorrow.  Wow!

Things to pursue: Design of the Panama Canal, History of the Panama Canal, and Plants and animals of Panama

Eric Heltzel, September 30, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Panama Canal
Date: September 30, 2005

Science and Technology Log 

At 12:00 local time, we are sailing south towards the Panama Canal.  To portside, mountains rise up directly from the ocean.  Ahead is the isthmus lying low just above the horizon. As I watch the distant skyline, Captain Wright appears on the deck below.  As he walks the decks of his ship, he stops to make sure that I am armored against the tropical sun. He sees that I am wearing long sleeves, a sun hat, and gloves and asks if I have on sunscreen, which I do. He then comments, “we don’t have to worry about looking good at our age.” He looks sharp in his khaki uniform, and those of you who have seen me in my sun clothes know what prompted his comment.  Oh well.

As I scan the sea southward I can tell when the Canal begins because of the silhouettes of numerous ships.  All through the morning we have seen other ships traveling headings that converge on the Canal.  Captain Wright says that usually ships go through in convoys of four or five and the trip takes about twelve hours.  We will be starting about 16:30 so most of our passage will be at night.

I’m sitting on the deck just below the bridge.  This affords me a good view of where we are going. It’s the rainy season in Panama and there are banks of cumulonimbus clouds over the land.  Captain Wright cautions that I should be prepared for sudden downpours. Going through the Panama Canal is an experience I never expected having. I’m very excited.

Eric Heltzel, September 29, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Caribbean
Date: September 29, 2005

Science and Technology Log 

I can hardly believe that this is my fourth full day on board the RON BROWN.  We are sailing southward across the Caribbean towards Panama.  It is so very different from my life in Wyoming.  Outside are temperatures in the 80’s and low 90’s with high humidity.  I’m having a bit of difficulty adjusting to the fact that the deck (floor) is in constant motion.  Walking down a corridor, I must be prepared to catch myself.  I’m a bit slow in finding my “sea legs.”

Yesterday I had the opportunity to interview the Executive Officer, Stacy Burke.  What follows is a synopsis of that interview.

The Executive Officer (XO) is number two, second only to the Captain.  Her responsibilities focus on the ship’s personnel.  She is responsible for hiring crew, solving problems that might arise, and overseeing the wellbeing of the crew.  Commander Burke stands half watch (4 hours) on the Bridge.  When there, she is responsible for “driving” the ship, navigation, avoiding collisions, and executing maneuvers to enable the scientific missions.

Commander Burke has been working for NOAA for nineteen years.  The last six of those have been “at sea.” She indicated that operating a ship is complex and she enjoys being part of a team that works towards the success of the mission.  “Going to sea is not solitary,” says Commander Burke. The crew lives and works together, often for months at a time.  A working cruise has little resemblance to “taking a cruise.”  This ship rarely calls in at ports. Most missions take the RON BROWN to remote locations to enable the gathering of scientific data.

To become a NOAA officer Commander Burke suggests a bachelor’s degree in one of the “hard” sciences (physics, chemistry) or engineering.  Oceanography works if the student focuses on the technical aspects of the field.  She also said, “I have openings right now for Deck Hands.” Operation of a large research vessel requires crew performing many different jobs.

I hope to continue interviewing personnel aboard the RONALD H. BROWN to help clarify what ship life and ocean research are like.

Eric Heltzel, September 26, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

TAS Eric on board, Miami in the background
TAS Eric on board, Miami in the background

Mission: Climate Observation and Buoy Deployment
Geographical Area: Caribbean
Date: September 26, 2005

Science and Technology Log 

As I sit to write this entry I realize I’ve been on the ship just over 24 hours.  It’s interesting how perceptions change. I can now find my way to my berth without difficulty. I’ve had three excellent meals and can remember the first names of all the Scientists on the Stratus Project team.  It is odd how I can hear sounds of moving water through my wall, intermittent sloshing.  We are under way now so I can only assume that this noise is normal.  I hope so!

Today was a very busy day. We had a lot of equipment that still needed to be loaded onto the ship and then secured.  They have these really neat threaded holes all over the decks and in the science labs that you can put eye bolts into.  These are attachment points for come-along straps that are used to keep objects from moving around. Much of the equipment was loaded on board with cranes that are mounted on the rear deck. We then use dollies and pallet jacks to move heavy objects around.  There is stuff galore. I helped the Deck-Hands move and secure equipment this morning and helped the Science team to move equipment into the Labs.  It was quite hot and humid and fairly heavy work. I felt good to help get the ship ready to go.

When we were two miles offshore we started doing safety drills.  There are three, man overboard, fire, and abandon ship.  Every person is assigned a mustering station where an officer (in my case, the Lead Scientist) checks to make sure we are all there.  Hopefully we will not have to follow any of these procedures for real. (Sorry kids, I’m really not planning on falling overboard)  There were inspectors checking that we did things correctly. We even had to put on our survival suits to see how they fit. These are a lovely red with built in gloves, booties, and a hood. Very becoming, perhaps a good school uniform?

We finally got under way about 19:00 and are traveling in a southerly direction.  I went on deck to watch the sun go down behind a cumulus cloudbank.  The skyline of Miami was backlit with a rosy glow.  I even saw a Dolphin racing along beside us. It has been a full day and a great start to my adventure on board the RONALD H. BROWN.

Eric Heltzel, September 25, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Caribbean
Date: September 25, 2005

Science and Technology Log 

Today I flew from Salt Lake City to Orlando, then on to Miami.  This was an educational experience in and of itself. Having chosen a seat with a view my head was pressed against the window for the first hour. We flew along the south slope of the Uinta Mountains and I could look down on Tungsten Basin where we caught such beautiful Brook Trout last summer.  I could see King’s Peak and the length of the range.  What a great way to connect studies of maps and experiences on the ground.  It was like looking at the best three-dimensional map possible

Having received a degree in Geography from the University of Colorado it was great to get such a bird’s eye view of the places I had studied.  I saw the mountains near Crested Butte and gazed delightedly at the highest fourteeners in the Sawatch Range.  The view changed when looking down on the striking contrast of the light color of Great Sand Dunes National Monument.  A bit was vertical view of the summit of the Spanish Peaks. I could see dikes radiating from the summit of the western mountain.  It was striking evidence of the geologic complexities of these mountains that were once active volcanoes.

As we crossed over the flatter country my interest became more focused on the atmosphere.  Looking northward from over New Orleans I was searching for the remnants of Hurricane Rita.  By this time she had moved inland and was already downgraded below a Tropical Depression. My gaze was drawn to where I thought her center would be and there were tall, well-developed cumulonimbus clouds.  The phenomenon that interested me most was the sight of bands of mid-level cumulus clouds radiating southward from what was Rita’s center. They were in bands with clouds alternating with clear air.  Students, I don’t have a clear hypothesis as to why this occurred.  I’d be curious to hear your ideas. I hope to discus this with the scientists on board.

Speaking of on-board I arrived at NOAA Ship RONALD H. BROWN at the Coast Guard facility in Miami Beach at 1900 without a hitch.  The ship is larger that I had visualized, about 270 feet long and over 50 feet wide.  My berth is one level below the main deck and has no porthole. It is, however, quite comfortable.  I have a small bunk (too low to sit up in, but plenty long), a desk, storage for my clothing and equipment, and a bathroom I share with the room next to me.  It strikes me as comfortable and I am sitting at my desk as I write this first entry.

Tomorrow we sail.  I hope to get some photos of our departure.  So far it looks great!

Mary Cook, January 7, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 7, 2005

Quote of the Day

“You cannot stay on the summit forever. You have to come down again. So, why bother in the first place? Just this … one climbs, one sees, one descends. One sees no longer but one has seen. There is an art of conducting oneself in the lower region by the memory of what one saw higher up. When one can no longer see, one can at least still know.” Rene Dumaul

Final Log Entry

This morning as I stirred from a restful night’s slumber, I lay in my bunk all warm and toasty, snuggled under two wool blankets. Among my first ponderings were “This is it. It’s over.” As I emerged from my cocoon to stretch and yawn, the thought struck me, “I am not the same as before.” Like a metamorphosis. Did you know that back in November I had no inkling of the wonders awaiting me in the very near future? I had no idea. Even though I have traveled to many places in this world, living at sea was as foreign to me as going to the Mars. And I must share with you that in the days before I left home, I had an almost overwhelming fear about this journey. And the people who know me, know that I embrace a journey like a drowning person clings to a lifeline. I love to travel more than I like to eat. And that’s saying a lot! I love to see the beauty and uniqueness of Earth’s places. I love to learn and be challenged and be thrust into situations that test my ability and endurance and communication skills. But for some unfathomable reason, the notion of living at sea scared me. My dread was that the RONALD H. BROWN would become like a prison. That I would feel trapped, unable to escape. The idea of being three weeks at sea with no way to get off that boat, cast a shadow of doubt in me that struck at the very foundation of my self. But deep down, this one thing I knew, I was going to go to sea. In the words of Luke Skywalker as he fought the enemy, “I’m going in!” I would face my fear and either be broken by the experience or come out stronger and renewed. In my opinion, I had no choice. I had to find out. Shrinking from this daunting challenge was not an option.

Ironically, after we were out to sea for a few days, I realized that I felt free. Free! Who would’ve guessed it? When I looked out to where the sky meets the ocean it was like looking into infinity. Never-ending. I felt liberated. There were miles of water beneath me and miles of air above me and no stable place to put my feet, but I felt as though I was standing on a firm foundation. Now I know.

Well, if you’ve read my logs you know all the science and seafaring knowledge that I’ve gained since December 1st. I’m not going to recap that because it’s all in there. But I will say that this “Teacher at Sea” experience has nourished me on a multitude of levels: intellectually, professionally, interpersonally, emotionally, and spiritually. And as you know, nourishment brings about change.

This chapter of my life as “Teacher at Sea” has come to a close.

Now I will return to my family, my friends, my students, my co-workers, and my Arkansas. Throughout this journey, I’ve affectionately carried them with me in my thoughts. It is an honor to have them in my life.

THANK YOU.

Thank you NOAA, and Southside School, and Diane, and Jennifer, and the RHB crew and officers, and the WHOI scientists, and the people of Chile, and everybody back home. Thank you.

My next challenge: Live vibrantly as “Teacher on Land”.

Farewell,

Mary

Mary Cook, January 6, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 6, 2005

Location: Latitude 53°10.14’S, Longitude 70°54.40’W

Sunrise 0525
Sunset 2212

Question of the Day

How do penguins feed their young?

Quote of the Day

“To every thing there is a season, and a time to every purpose under the heaven.” Ecclesiastes 3:1

Science and Personal Log

Today has been a wonderful day. Vickie, Jackie and I traveled about one hour northwest of Punta Arenas to the Otway Fjord where a colony of about 10,000 Magellanic penguins are busily tending their young. These little black and white flightless birds are amazing! I found out that penguins live 25-30 years and always come back to the place where they were born for the mating season. They usually have one or two offspring. Males and females take turns watching and feeding the little ones. They swim for food every eight hours and dive 30 to 35 meters deep. Couples are always the same and they come back to the colony only for the reproduction season. They arrive at this site in mid-September to court and prepare their nests. Before courting they go through a period of fasting. (These birds are serious about family life! Maybe we could learn something from them.) The first days of October, they mate and lay their eggs. In November, they incubate their eggs and nearing the first of December the eggs hatch. They dig holes called burrows for their babies in the soft grassy plains just off the beach. In January and February the young ones lose their fuzzy gray down and develop feathers. This is when they make their first trips to the sea and begin to swim. In mid-March and April, they leave and move to the coast of Brazil and the Atlantic Islands.

This morning it was cold and blustery as we followed the winding trails through the grassy plains right in amongst the penguin burrows. Believe it or not, it sleeted while we were out there. A parent was always nearby and usually standing guard at the entrance of the burrow as the fat little baby was lazily stretched out with its head peeking through the hole. At this time in their development the babies are almost as large as the adults. A few of the males were standing tall with their wings outstretched and braying like donkeys. The Magellanic penguins sound remarkably like donkeys! Near the beach we stood behind a “penguin blind” and watched them marching single file toward the ocean and diving into the waves. If it hadn’t been so bone-chilling cold, I could’ve stood there and just watched those penguins for hours on end. While on land the penguins are cumbersome but in water they are agile and great swimmers. It looked like some of them where trying to catch a wave! South American surfer dudes.

Other than the penguins, we saw wild rheas, sheep, gulls, geese, ducks, and a few UFBs (unidentified flying birds).

After our incredible visit to the penguins, we returned to Punta Arenas. Punta Arenas has a population of 110,000 and is the capital of the Magellanic and Antarctic Region XII. According to the guide book, Punta Arenas is Patagonia’s most important city and makes a living from coal mining, wool production, petroleum, fishing, and serves as a center for cargo ships. I’ve seen all of these industries in just the short time I’ve been here. My favorite place to visit in the city of Punta Arenas has been the very charming Plaza Muñoz Gamero with its huge, gnarled cedar trees surrounding the bronze statue of Magellan. Another intriguing gadget is the 1913 German clock near the waterfront that has a complete meteorological instrumentation and hands showing the moon’s phases and a zodiac calendar.

Well, I’ve put it off as long as possible but it’s time to go pack. Tomorrow morning I’ll bid farewell to the RONALD H. BROWN.

What a grand finale today has been for this “Teacher at Sea”!

Until tomorrow,

Mary

Mary Cook, January 5, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 5, 2005

Location: Latitude 53°49.76’S, Longitude 71°39.22’W
Time:
0900

Weather Data from the Bridge
Air Temperature (Celsius) 7.66
Water Temperature (Celsius) 8.94
Relative Humidity (percent) 87.33
Air Pressure (millibars) 987.72
Wind Direction (degrees) 270.59
Wind Speed (knots) 6.27
Cloud Cover 8/8 Stratus
Sunrise 0526
Sunset 2218

Question of the Day

What is the ozone layer?

Quote of the Day

“A smooth sea never made a skilled mariner.” English proverb

Science and Personal Log

Today, I interviewed Victoria Carpenter. Vickie is an Able Bodied (AB) Seaman and she has a variety of duties aboard this ship. These duties include watch-stander, deckhand, winch operator, securing the ship for departure and darkening the ship. Darkening the ship means that she makes sure all portholes on the ship are closed at night so that the light from inside the ship’s rooms doesn’t shine out and reflect off the water which blinds the bridge crew. We all want the bridge crew to be able to see because they’re driving the ship! Vickie grew up in southern California with three brothers. She now resides in Vancouver, Washington. Vickie has traveled around the world. Really. She’s been to Asia, Africa, Europe, North and South America, and Australia. And she’s ridden a bicycle from coast to coast in the United States. It seems to me that she has done just about everything from being a Girl Scout Leader, to a berry picker, to a camp director, to an Outward Bound leader, and even a tour guide!

She will be attending the AB to Mate School for 19 weeks later this year. Besides getting a raise, becoming a Mate will enable her to plot charts and steer the ship.

Vickie says she loves the sea and the seagoing life. She considers Ernest Shackleton, the great explorer of Antarctica, to be her inspiration. Vickie is a true adventurer and I’ve loved listening to her stories.

For some reason, I awoke at 0430 this morning. I’m not sure why I stirred at such an early hour but it could have something to do with the fact that we have been in the famed Straits of Magellan since 0200. I most certainly did not want to sleep through it. So I was out at first light. Reggie, the watch-stander called me and said that the seals were putting on a show, so up I headed to the bridge. There were seals frolicking all about! These remind me of dolphins in the way they come up out of the water. We were passing through the Tortuoso Passage. According to the Chilean pilot Luis Holley, Tortuoso means “very difficult” in Spanish. To me it sounds like torturous. A torturous passage. This is the place where the Atlantic Ocean currents meet the Pacific Ocean currents. All this water converging in a narrow canal makes for a difficult place to transit. At this junction back in early navigation days the current actually pushed ships aground. That would definitely be torturous in my book. I was intrigued that we could really see the current. It was a place of choppy waters called the “the cross tide” and when the ship encountered the current, it slid sideways a little bit! Whoa!

One of the bays on this route is called Seno Ballena which means whale fjord. The pilot explained this to be a place where whales come to have their babies. A whale nursery! We saw two whales that flipped their flukes (tails) up in the air. It’s a nice feeling to watch whales just living their lives.

Shortly thereafter, the RONALD H. BROWN with all its inhabitants rounded the southern-most tip of the continent! It’s called Cape Froward and has a huge steel cross perched on the point which is covered with gnarly looking trees.

We’ve just arrived in Punta Arenas and Captain Wright called an “all hands” meeting. At the meeting the Chilean pilots awarded us certificates documenting our passage through the Straits of Magellan! It has a map tracing our route and says that I am a “certified explorer of the Straits of Magellan”. ? Signed and sealed by the Chilean pilots!

Les Cruise, the medic reminded everyone to wear sunscreen, long sleeves, and hats because we are under the “hole” in the ozone layer. Punta Arenas has one of the highest occurrences of skin cancer per capita than any city in the world.

This is a very attractive small city. It is situated on the coast with only a few tall buildings and has low, rounded mountains as a backdrop. The main square is a tree-lined park with a central statue of Ferdinand Magellan. The statue also has a native South American on it whose foot is projecting from the base. It is said that if you rub his big toe then you’ll return to Punta Arenas someday. That big toe is shiny smooth! Well, here’s a question for you. Do you think I rubbed the colossal toe? You know the answer to that question. The Punta Arenas downtown is European quaint and bustling with people shopping, relaxing, and going somewhere. Ice cream must be a popular treat. It seems that everyone has a cone. I even saw a sign in a store window that said “Do not enter with ice cream.” I love ice cream, but when I’m wearing three layers and a muffler scarf, I prefer hot chocolate. There are tour offices that offer excursions to penguin colonies, trekking in Patagonia or boat rides to glaciers. Tomorrow morning will be my last full day here, and I’ve decided to check out the penguins. I’ll let you know how they’re doing in my next log installment!

Until tomorrow,

Mary

Mary Cook, January 4, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 4, 2005

Location: Latitude 49°28.60’S, Longitude 74°26.42’W
Time: 0835

Weather Data from the Bridge
Air Temperature (Celsius) 10.34
Water Temperature (Celsius) 11.83
Relative Humidity (percent) 74.17
Air Pressure (millibars) 997.56
Wind Direction (degrees) 226.45
Wind Speed (knots) 6.89
Cloud Cover: 8/8 Low Stratus
Precipitation: Steady rain
Sunrise 0559
Sunset 2205

Question of the Day

What does NOAA stand for?

Quote of the Day

“Midwesterners make some of the best sailors.” Tim Wright, Captain of the RONALD H. BROWN.

Science Log

Today I’ve conducted several interviews of the ship’s officers, merchant marines, and Chilean channel pilots. I’d like to thank each person for giving their time and for being enthusiastic and open in sharing about themselves and their work.

Interview: Captain Tim Wright

Captain Wright shares with us that growing up as a boy in land-locked Kirkwood, Missouri he loved to read about the ocean and romanticized about becoming a sea-faring man. He joined the Navy at 18 and served in the Vietnam War. After his time in the service he went to the University of Washington and obtained a degree in Physical Oceanography. Captain Wright achieved this rank in October of 2003 and has been the Captain of the RONALD H. BROWN since February, 2004. Captain Wright says that his most important duties are the safety and security of the crew and ship. His responsibility is a 24 hour a day job for navigation and safe overside operations. Captain Wright shares that his most enjoyable time with NOAA was when he worked three years in Paris for the Intergovernmental Oceanographic Commission. It was a time when he could have his family living with him. Another very enjoyable time was his stint as the Captain of the KA’IMIMOANA, a NOAA ship stationed in Pearl Harbor. They deployed buoys along the equatorial Pacific. Captain Wright says he loves his work and wouldn’t dream of having any other career. He highly recommends oceanography and the seafaring life for the person who enjoys the outdoors, adventures, and challenges.

Interview: Navigator Jeffery Shoup

Navigator and Bridge Officer Jeffery Shoup grew up with two older sisters in Oak Park, Illinois. He obtained a Chemistry/Chemistry and Physics Education degree from “Miami of Ohio” in Oxford, Ohio. He considers his responsibilities to be standing watch, driving the ship and laying out the trackline for the scientists. After the scientists turn in a statement telling him where they want to go to do their projects, Mr. Shoup maps out a safe and efficient course for the ship. He has been with NOAA for three years and considers this cruise to be the highlight. Since he left Charleston, he has traveled through the Panama Canal and the Straits of Magellan will be great place to get off the ship. He has also been to the Canary Islands and Iceland. Mr. Shoup says that persons who aspire to the seafaring lifestyle should be independent, self sufficient and able to get along well with others. He says the only negative thing about going to sea is that the family relationships suffer because of your absence for long periods of time. This is Jeffery Shoup’s last cruise. He’s taking a new position in Maryland to work for Search and Rescue Satellite (SarSat). This is where they receive messages from beacons on ships and aircraft in distress. The SarSat beacons use GPS to locate the needy vessel and then personnel proceed with the rescue.

Interview: Ensign Silas Ayers

Junior Officer Silas Ayers grew up in Pennsylvania as one of five children. He has been with NOAA for one year. Before that, he served three years in the Army and attended school for eight years at Westchester University in Pennsylvania where he obtained a Bachelor’s Degree in Earth and Space Education and a Master’s Degree in Physical Science.

Ensign Ayers says that he chose this career and way of life to gain real world experiences to become better equipped for a teaching career. He considers his responsibilities on the ship to be ship safety, damage control, and property accountability. Mr. Ayers says the most fascinating experience for him has been the personalities aboard the ship. “I’m a ‘people’ person not a ‘place’ person.” The human dynamics involved in living aboard a seagoing vessel are fascinating to him.

Interview: Jim Melton

Mr. Jim Melton is a pilot, a lookout and a deckhand. He is a merchant marine and works under the Department of Commerce. Mr. Melton grew up in Florida and has been going out to sea since he was about three years old. He graduated from the University of Florida in 1970. Mr. Melton has a colorful and exciting life of doing all sorts of work such as pipefitting, welding, grooming ski resort slopes, farming, being a real working cowboy, and of course all kinds ship work. He shares that his most fascinating experiences have been at sea. He loves it. But he also shares that it’s not the life for everyone. It’s lonely and hard on relationships. The sad part for a father at sea is not being there to raise your kids. He considers his father to be his inspiration because he was a hard worker, a jack-of-all-trades, and an adventurer.

Interview: Chilean Pilot Luis Holley

Mr. Luis Holley of Reñaca, Chile has been a Patagonian Channels and Magellan Straits pilot for 4.5 years. Before that he was in the Chilean Navy for 33 years and retired at the rank of Captain. Mr. Holley shared with me that before one becomes a pilot he must have certain credentials. These credentials include being an advanced Captain in the Chilean Navy or the Chilean Merchant Navy. He said that they often use the channels for navigation and military exercises. If one has the credentials then that person may apply to the Chilean Coast Guard for the position of pilot. The Coast Guard puts them through a three week course of simulations and real navigation through the passages. There are only 88 channel pilots.

Interview: Chilean Pilot Alex Waghorn

Mr. Alex Waghorn has been a pilot for the Patagonian Channels and the Magellan Straits for three years. He makes 18-20 passes through here per year. Mr. Waghorn shared with me that to become a pilot for these channels you must be ever vigilant, memorize charts and become very familiar with the passageways. He said overconfidence is dangerous and he treats every trip just as if it were his first time.

Personal Log

I awoke at 0530 in eager anticipation of passing through the English Narrows. It is a cold, foggy, rainy morning. I can see my breath. It’s cold enough that even the “die-hards” have to come in to warm up and get a cup of hot chocolate. The English Narrows are narrow. We were so close to the land, I could see the individual leaves of the trees! Just this morning in the span of one hour, I saw more waterfalls cascading down the mountains and plunging into the sea than I’ve ever seen in my entire life! I started to count them, but as the ship rounded every bend, there were more and more of them, so I just gave up on the count and enjoyed the view. I’ve never been anywhere like this before.

There’s something I’ve come realize about the RONALD H. BROWN: this is a boatload full of map-lovers! I’ve never been so surrounded with people, like myself, who love to read maps. They are magnetically attracted to maps. And when they’re reading a map, it’s like they’re being transported to that place and can visualize it as though they are really there.

It’s ironically funny that yesterday, I was on the bridge and I spied a new and different kind of map. So I strolled over to get a closer look. It was a detailed chart of the Patagonian Channels and the Straits of Magellan! I smiled and said, “I want a map like that!” Ensign Ayers said, “You and everyone else on this ship.” I realized I wasn’t the only person who had an interest in that map. I soon discovered that these maps are printed especially for the Chilean pilots who guide ships safely through these passageways. Hopefully, there’s a way to get my hands on a copy.

Now, wouldn’t that be something? ?

This evening as I sit here and ponder all the day’s happenings, I think about the remoteness of this place. How we’re one little ship seemingly in the middle of nowhere. The land and water and sky are beautiful and cold and cloudy and ………….. empty of people. I look at those massive, worn, eroded mountains with snow and blue-hued glaciers and realize that I can’t even fathom the magnitude of the powers that have formed them. It causes me to recognize my place. The reality is I’m weak and small and made of dust. And that I have absolutely no jurisdiction over the driving forces behind the natural cycle of Earth. The Earth is essential for my fleshly existence but I’m not at all essential for Earth’s existence.

Until tomorrow,

Mary

Mary Cook, January 3, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 3, 2005

Location: Latitude 45°49.53’S, Longitude 75°03.22’W
Time: 0930

Weather Data from the Bridge
Air Temperature (Celsius) 11.90
Water Temperature (Celsius) 13.55
Wind Direction (degrees) 343.52
Wind Speed (knots) 5.85
Relative Humidity (percent) 66.50
Air Pressure (millibars) 1016.06
Cloud Cover 6/8 Altocumulus
Sunrise 0615
Sunset 2152

Question of the Day

What is phytoplankton?

Quote of the Day

“Dream no small dreams for they have no power to move men.” Johann Wolfgang von Goethe

Science Log

This afternoon I interviewed Co-chief Scientist, Julio Sepúlveda, an oceanography graduate student from the University of Concepción. Julio did his Master’s thesis work for eight months at Woods Hole Oceanographic Institution in Massachusetts. In April, he’s leaving for Germany to spend three years continuing his education toward a PhD. in marine organic geochemistry. Julio has been kind enough to further explain the work they’ve been doing onboard the RONALD H. BROWN. The Chilean group of scientists include Pamela Rossel, Sergio Contreras, Rodrigo Castro, Alejandro Avila, and Luis Bravo. He says that their work has two parts: the water column process and the sedimentary record. The water samples and the sediment traps give a “picture of the moment”. They conducted the transect of samples starting at the shallow coastal waters and moving into the deeper offshore waters. These samples will provide a gradient of the nutrient concentrations at the Bay of Concepción which is part of an active upwelling location. To put it simply, they are looking at how the phytoplankton (plant-like microscopic organisms) uses the nutrients in the water. In particular they are looking at the nitrogen stable isotopes (nitrogen atoms with different masses) and their concentrations. They are trying to see how this is related to El Niño which greatly affects Chile and many places around the world. Julio explained that normally the upwelling brings cooler water containing nutrient-rich materials up to the surface. During El Niño events, the upwelling brings warmer, less nutrient-rich waters to the surface. This changes many things including the weather. The causes of El Niño are multi-varied air-sea fluxes that are not fully understood. In the last ten years the scientific community has been especially interested in knowing the possible influence of global warming in the El Niño variability. It seems that its frequency is changing and several articles indicate that El Niño is occurring more often. So their research provides a few “pixels” for capturing the entire “picture” of El Niño.

The second part of their research involves the core samples. The purpose of the core sampling is to collect the layers of sediments on the ocean floor. Julio described the layers to be like pages in a history book. Each layer tells the “story” of what was going on in the water at that location during that time. They are also looking at the degradation of the organic matter in the core samples. So, Julio says the water samples tell us about the present and the core samples tell us about the past. Using these methods of research, it is their intention to better understand the history of El Niño and better predict future El Niño events.

Personal Log

This morning we entered the fjords! Several of us were up and outside on the deck at 0630, “ooohing” and “aaahing”, taking pictures even though it’s very cold and windy out there. It is an irresistible attraction. We’re passing by the peninsula Tres Montes and we’re headed for the Bay of Tarn. All morning we’ve been sailing by emerald forest-covered mountains and black craggy rocks that have been eroded into peculiar shapes by the waves relentlessly smashing against them. The clouds are ominous and hanging low. The albatross are soaring with wings spread wide. An occasional whale sends a plume of spray into the air. I want these scenes to be indelibly saturated into my mind’s eye. I never want to forget this. No dwellings. No other ships. It’s just us. Just us and the birds and the whales. It’s good. It’s all good.

Until tomorrow,

Mary

Mary Cook, January 2, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 2, 2005

Location: Latitude 41°47.12’S, Longitude 73°33.42’W
Time: 0830

Weather Data from the Bridge
Air Pressure (millibars) 1012.81
Relative Humidity (percent) 93.61
Wind Direction (degrees) 354.55
Wind Speed (knots) 7.03
Air Temperature (Celsius) 14.46
Water Temperature (Celsius) 11.62
Sunrise 0624
Sunset 2132

Question of the Day

What is a fjord?

Quote of the Day

“Withhold not good from them to whom it is due, when it is in the power of thine hand to do it.” King Solomon

Science Log

It’s raining! I haven’t seen rain since last year. The sky is thick with dark, billowing clouds and gray mist. Occasionally a patch of bright blue breaks through. But it only takes a few minutes until it’s eclipsed by a rain cloud. The land on both sides of the channel is shrouded in the mist and looks mysteriously enchanting. Only a few people onboard have ever been this way before and everyone is excited. Even these salty sailors are energized. Seals are popping up and playing all around. It looks like they’re chasing each other. We’ve passed a couple of small fishing villages and there are some ferryboats in the channel. The Chilean pilot told me that we’re in a very interesting place because of the strong current. Our ship is traveling against a three knot current at this time and they’ve brought more engines online just in case we need them. He said the current can get as high as eight knots! I heard Captain Wright say that the last time he was through here the ship was going with the current and traveling at 21 knots!

Bruce, the boatswain is now on constant anchor alert. There are many potential hazards when traveling the narrow channels so all hands must be prepared for anything.

I’ve been standing outside in a sheltered place under the ladderways for about an hour. At first it didn’t seem cold but as time went by I felt the chilly dampness in my muscles and had to zip up my jacket and put on my hood.

Something I’ve learned about this ship is that even when the scientists aren’t actively conducting research projects, science is always going on aboard the RONALD H. BROWN. At the top of every hour they always record the weather data, which includes about 50 entries, and then send it in to the National Weather Service every six hours. If the ship is within 200 miles of the coast of the United States or Canada or within 300 miles of a named tropical storm or hurricane they report every three hours. They record the ship’s location and speed, plus wind factors, temperatures, pressure, clouds, precipitation, wave size and directions, swells, and presence of ice. It seems to me that everything is written in code. They have the “Ship’s Synoptic Code Ready Reference” lying nearby and make use of it when filling out the charts. This information is entered into the National Weather Service computers and used for weather forecasting.

Personal Log

There’s a festive atmosphere throughout the entire ship. Everyone’s smiling and walking with a little extra spring in their step. These seasoned sailors are like little kids on Christmas morning, their eyes sparkling with anticipation. They’re out on the deck with their binoculars looking over the pastoral scenes of green rolling hills dotted with colorful houses and farms and churches connected by winding dirt roads. One of them said, “Just give me ten acres with a little house and I could settle down and live right here.” Several nodded in agreement. Then they spotted the big snow-capped mountains in the distance! Their dreams of settling down seemed to evaporate into thin air as their attention had been captured by the majestic and forbidding.

Our course is taking us through the Gulf of Corcovado and we’re just now passing the volcanic mountain for which the gulf is named. The pointy, snow-capped mountain is Mt. Corcovado and it stands 2300 meters in elevation which is about 7000 feet high.

The water is so smooth in this gulf that I can barely tell the ship is moving. It’s great! Seasickness is but a distance memory.

Officer Ayers just told me that I missed a fabulous display of bioluminescence last night about 0200. I said that I’d just stay up all night tonight so I could see that for myself. Then watch-stander Melton says, “Oh, now you want to be awake and out at 0600 tomorrow because we’ll be entering an extremely narrow channel. You can’t be sleeping through that.”

Decisions. Decisions.

Whales on the starboard bow! I ran out and saw three waterspouts and one tail. Pretty cool.

Tomorrow, my students and co-workers will be returning to school from their Christmas break. I hope they’ve all had a good vacation and come back with renewed energy and smiles. I can’t help thinking about them and wishing they could be out here in this never-ending, ever-unfolding story of exploration.

Until tomorrow,

Mary

Mary Cook, January 1, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 1, 2005

Happy New Year!!
Feliz Años Nuevos!!!!

Location: Latitude 37°47.97’S, Longitude 74°02.84 W
Time: 1000

Weather Data from the Bridge
Relative Humidity (percent) 91.44
Air Pressure (millibars) 1015.72
Air Temperature (Celsius) 17.28
Water Temperature (Celsius) 17.58
Wind Direction (degrees) 212.20
Wind Speed (knots) 12.20
Cloud Cover 8/8 Stratus
Sunrise 0638
Sunset 2120

Question of the Day

What causes seasickness?

Quote of the Day

“The best portion of a good man’s life is the little, nameless, unremembered acts of kindness and love.” William Wordsworth

Science Log

All the Chilean scientists plus Jordan Watson from Scripps and the ship’s wage crew are all sleeping soundly after their 48 hour marathon project of collecting water and sediments. They will continue collecting surface water every 30 minutes of latitude but the ship will not stop for these collections.

Sometime tonight we will meet up with the pilots who will safely guide the RONALD H. BROWN through the inside passages. There will be two pilots so that one will be on the bridge at all times.

Today, Les Cruise shared with me that it is a seafaring tradition that the first log entry of the year for the ship should rhyme. So I want to share with you the first log entry of 2005 for the NOAA ship the RONALD H. BROWN.

Underway in the South Pacific 2004 was terrific.
Collecting mud on station six, all three thrusters in the mix.
Punta Tumbes, bearing 119º, at 34 nautical miles away is the closest point of land, in accordance with the Ronald Brown science plan.
All our lights are burning fine and our bow thruster is on line.
Main Power Diesel Generator Two keeps us going through and through.
Ship Service Diesel Generator Five gives us power to survive.
Auto-Positioning is how she sits, on a heading of 206°.
The sky is clear, I will not lie, Watch-Stander Melton is standing by.
Engineer-on-Watch Jacobson is down below, making sure the engines go.
Maneuvering various courses and speeds for sediment trap recovery, maybe there will be a new discovery!
Multiple personnel working in accord have brought the sediment trap aboard. Main Power Diesel Generator Three on line to help us make good time.
Increase speed 700 rpm, Auto track mode now as then.
190° is the way we go. Bow thruster power taken to zero.
Security round complete. That Jim Melton, he’s pretty neat.
Lt. Jones has the deck and conn ensuring the ship carry on.
13.3 nautical miles is our distance run. Hope 2005 will be fun! ”

Personal Log

This evening, my seasick queasiness is much better. I took the medics advice which was, “Stop looking at the computer and go to bed in a dark room. And stay there!” He was right.

But as a consequence of taking his advice my personal log is severely lacking. Most of the time, I’ve been in my stateroom, snuggled under a blanket looking at the backside of my eyelids.

Until tomorrow,

Mary

 

Mary Cook, December 31, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 31, 2004

Location: Latitude 36°13.8’S, Longitude 73°31.25’W
Time: 0830

Weather Data from the Bridge
Wind Direction (degrees) 206.36
Wind Speed (knots) 3.94
Air Temperature (Celsius) 15.50
Water Temperature (Celsius) 14.58
Relative Humidity (percent) 96.10
Air Pressure (millibars) 1015.21
Cloud Cover 3/8 Altocumulus and Cirrus
Sunrise 0639
Sunset 2114

Question of the Day

Why are the daylight hours getting longer as we travel southward?

Quote of the Day

“Information is the commodity of science.” Kevin Sullivan

Science and Technology Log

No stargazing last night due to cloudiness. So I’ll try again some other night.

Today we’ve been hovering in one place for six hours waiting on the drifting sediment trap to do its thing, which is to trap sediment.

We’re farther from land and in deeper water so it takes longer for the trap to collect a sufficient amount of sediment. They’ve just gotten it out of the water so now we’ll transit for about two hours to the next station and hover there for about eight hours. At this station they will deploy the bigger, heavier core sampler that looks like a 4 meter-long hollow rocket. It will go down to about 1000 meters depth and gravity will ram it into the mud. The layers of sediment will fill the hollow tube then it will close under the pressure as it is brought back to the surface by the winch.

This afternoon as we hovered in one place, the seagulls gathered around the ship for a siesta. There were hundreds of them just sitting in the water like ducks. It was almost like they were waiting to see what we were up to. It was interesting to watch them take to flight from the water. They’d spread their wings and begin flapping. But that wasn’t providing enough lift so they’d start paddling with their feet. It looked they were walking on water!

Finally, up they’d go, soaring through the air and then swooping down, gliding just above the water’s surface.

Personal Log

Today, I’ve been moderately seasick. I think it was the 10-12 feet swells passing under the ship as we hovered at station. The seasick medicine made me drowsy so I’ve spent time lying down in my stateroom off and on all day.

At 0230 in the morning we are supposed to make the turn due south and steam toward the inside passages! I’m ready to move on.

I eagerly anticipate traveling the same paths as the great explorers of Ferdinand Magellan and Sir Francis Drake. We’ll meet up with the pilot who will board the ship and take us safely through the narrow straits.

This is the last day of 2004. As I reflect back on my life during the past year I can’t help but know I’m blessed. With a wonderful family and circle of friends that love me, a good job and great co-workers, good health and great opportunities to live life abundantly. And for all this I am deeply thankful. Of course, we all know that life isn’t always smooth sailing. We all have struggles. Some are life and death struggles, some are relational struggles, some are financial struggles, and some are spiritual struggles. This journey in the Pacific has been more than an adventure for me. Being removed from my comfort zone has compelled me to contemplate. Contemplate just about everything. There’s one phrase that keeps coming to my thoughts over and over again. “It is more blessed to give than to receive.” And I don’t think this means money or other material possessions. I think it means giving of self. This is a much greater challenge, for me anyway. I want to absorb this into my life philosophy for the coming year and for always. I fully realize that I do not know the depth to which I may be called upon to live out this truth, but I have confidence that the future is brighter with this mind set.

Happy New Year!!

Until tomorrow,

Mary

p.s. Happy Birthday, Diane!

Mary Cook, December 30, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 30, 2004

Location: Latitude 36°21.31’S, Longitude 72°59.65’W
Time: 9:15

Weather Data from the Bridge
Air Temperature (Celsius) 14.33
Water Temperature (Celsius) 14.81
Air Pressure (millibars) 1015.24
Cloud Cover 3/8
Cloud Type: Stratus
Wind Direction (degrees) 325.6
True Wind Speed (knots) 1.26
Sunrise 636
Sunset 2112

Question of the Day

What is a light year?

Positive Quote of the Day

“The influence of each human being on others in this life is a kind of immortality.” John Quincy Adams

Science Log

Last night I went up to the bridge at about 2300 hours. Vickie, Jeff, and Jackie were stargazing in search of the Southern Cross. There it was, almost directly in front of the ship! It had just risen over the horizon and looked more like a baseball diamond than a cross. We also spotted Alpha and Beta Centauri. At about 4.3 light years away, these are among the closest stars to Earth other than our Sun. Vickie also pointed out Orion with his belt of stars and the seven sisters called Pleiades. I’m going to get out my textbook and read up on the Magellanic Clouds because I’m wondering if we can see those from here. Then Jackie looked over the edge of the ship in the wake and caught a glimpse of some momentary flashes of light! Bioluminescence! I stood there pressing my face against the window staring at the darkened waters waiting patiently for some more microorganisms to glow. Sure enough it happened. They looked like little sparks of lightening in a cloud. It happened several times. I’ll definitely be back on the bridge again in search of more wonders of the sea at night.

For this leg of the journey, I’ve been moved to a different stateroom. I’m now down below in the science quarters. The sounds are different down here. I can hear the water splashing up against the ship’s hull. It sounds like I’m in a perpetual carwash!

It’s a soothing sound, though. I slept like a bear in hibernation.

Today begins the science operations. Right now, the scientists are on the fantail preparing the drifting sediment trap with its radar-reflector, floaters and nighttime strobe light. We’ll deploy the instrument then leave it while we make a short transit to the next station for CTD casts and core sampling. Afterwards, we’ll return and retrieve the sediment trap. According to the work plan, we’ll do this same thing at six different locations across the continental shelf and slope off Concepción, Chile. Most of the CTD casts are in fairly shallow water with the deepest one going down to 980 meters. These scientists will be working 48 hours non-stop.

It’s beautiful here in the Bay of Concepción. The water is so smooth and glistening in the sunshine. We’re nearly surrounded by a crescent-shaped coastline and we can see houses, forests, and other ships. This afternoon, we saw several ghostly-white jellyfish pumping their way through the water. Jim pointed out little anchovies swimming nearby. Yum!

I spoke with Kevin Sullivan of the NOAA research branch in Miami and Jordan Watson from the Scripps Institution of Oceanography. They patiently explained some of the science to me. And I really appreciate that.

This is how the drifting sediment trap works. After the instrument collects the sediments from the water near the surface and is retrieved, it will be set aside for a few hours to allow the sediments to settle to the bottom of the tubes. Then a lever is turned that empties the sediments into bottles containing a preservative. Sediments can be particles from the air like dust or particles from the ocean such as little deceased sea creatures called diatoms.

The Rhumor gravity core sampler is basically a one meter long hollow tube with heavy weights attached to the top. After being lifted by the winch, it is slowly lowered into the water. When the tube gets about 10 meters from the ocean floor it is lowered very quickly and gravity rams it into the mud. In this process, the mud layers fill the hollow tube and as the core sampler is raised the pressure closes a valve that keeps the mud from coming out.

I’ve noticed on the SeaBeam readout that the depth here is only about 100 meters. That’s a huge contrast to a couple of weeks ago when we were in waters with a depth of 5000 meters!

It is my understanding that the rationale for their research is to explore the effects of nitrogen distribution and how that affects the marine algae nutrient usage in the present day water column. They are conducting the sampling in this location because of the upwelling that occurs which brings nutrients to the surface and because there are algae present that utilize the nutrients in these upwelling plumes. Likewise, they are interested in evaluating the amount of nitrogen left in the sedimentary record. This will help scientists better understand the history of the oceans.

Personal Log

Today has been a quiet but interesting day. All the science was new to me so I had to pay attention and ask lots of questions. It’s very rewarding to have people around who are eager to share with me what they are doing and the significance of it all in the whole scheme of things. I’ve learned a tremendous lot and my brain is kind of tired. Plus, I miss my mentor. She’s got enough energy for two people! I did take some time to go to the ship’s bow and watch the water skim by and look around for animals. I saw lots of birds and jellyfish. I like watching jellyfish because I never see jellyfish in Arkansas. To me they are intriguing critters because they are transparent. I can see right through them!

Well, I’m headed for the exercise room to rest my brain and work off that cake with chocolate icing that I ate for dessert. Then, after dark, up to the bridge for more stargazing in the Southern Hemisphere!

Until tomorrow,

Mary

p.s. Congratulations Brandon and Becky!

Mary Cook, December 29, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 29, 2004

Question of the Day

What is sediment?

Quote of the Day

“Rust never sleeps.” Dan Wolfe

Special Edition Log: Part 2

We’ve just left the port of Valparaiso and we’re underway, headed for the inside passages and the Straits of Magellan!!! I’ve looked on the ship’s course chart and it’s going to be a great voyage!! We’ll be sailing between islands and there’ll be land on both side of the ship. I expect to see lots of wildlife-hopefully penguins and an albatross or two.

Bruce, the boatswain and Jeff, the chief computer technician have set me up in the science office with a desk, Internet, a big, comfy chair and a phone. And I’ve just found someone’s secret stash of Dr. Pepper’s under my desk. Yep, things are looking good.

I wanted to share with you about the Easter Island Museum that we went to yesterday. This will be my personal interpretation of what I saw since most of the museum’s information was in Spanish.

Easter Island is a volcanic island situated in the Pacific Ocean several hundred miles off the coast of Chile. The indigenous people or Rapi Nui made huge monolithic statues called maori and placed them all around the island. These gods are thought have been put in place for protection and worship. The native people had four quarries from which they extracted the stones and carved the features. Then they slid them into place with wooden rails and ropes. There are only four of these statues outside of Easter Island and one of them stands in front this museum. The Rapi Nui had a complex and organized society led by a chief. They made pottery, arrowheads, harpoon heads, and jewelry. They were great fishermen. It appears as though they had a sophisticated system of ocean navigation with bamboo and seashell “maps” that indicated currents and islands. (I love maps. So seeing this was “way cool”!) Sometime during the 1700’s the first white man arrived. Some of the Rapi Nui were taken as slaves. Different diseases were introduced that spread rapidly throughout the island. And so this was the beginning of the end for their culture. Today, Easter Island is part of the country of Chile and the maori are being restored and preserved as a world heritage site. So, that’s my take on the fascinating museum of Easter Island loaded with its artifacts of history, mystery and intrigue.

Tonight, my plans are to stay up late and go hang out on the ship’s bridge and search the dark waters for bioluminescence. Wow, that’s a big word. Bioluminescence refers to microorganisms that emit light when disturbed. I’ve heard about bioluminescence in the ocean but I’ve never witnessed it. Silas says it’s there almost every night so, hopefully, tonight we’ll see the ocean glow!!!! In Arkansas, we have lightning bugs that flash a glowing, neon green light. When I was a kid I loved catching them and holding them gently in my fist to watch the rays of green light shine between my fingers. It was fascinating, but they smelled like, I don’t know, lightning bugs. Anyway, I’ve heard that the bioluminescence in the ocean can be red or blue or green! I can’t wait. If I don’t see any tonight, I’ll go back every night until those little rascals get disturbed enough to emit a sparkle.

Tomorrow, we begin the scientific work with the University of Concepcion. According to the plan, a drifting sediment trap will be deployed, a CTD rosette cast will be conducted, and a sediment core sample will be taken.

The sediment core sampler looks like a rocket. It’s a long narrow metal cylinder with fins on the bottom. But instead of going up into space, it’s going down into the ocean floor. Co-chief scientist, Julio says it will collect sediments that were laid down thousands of years ago. This will enable them to better understand the history of the ocean.

Before I sign off for the day, I’d like to thank Alvaro Vera of the Chilean Navy for his thoughtfulness and generosity extended toward us during our stay in Viña del Mar. Alvaro invited all the Stratus 5 scientific crew over to his house for a barbeque in celebration of a job well done and the good working partnership between the Chilean scientists and the American scientists. It was great food and great fun-another fine example of Chilean hospitality.

Until tomorrow,

Mary

Mary Cook, December 28, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 28, 2004

Question of the Day

What type of mountains are the Andes mountains?

Positive Quote of the Day

“I not only use the brains that I have, but all that I can borrow.” Woodrow Wilson

A Special Edition Log

This afternoon concluded my shore leave for Christmas. I have returned to the NOAA ship, RONALD H. BROWN. It felt good to walk across the gangplank-almost like home. Well, maybe not as good as home, but still I’m happy to be back. It’s going to be different because my mentor, Diane and all the scientists that I worked with have returned home. I already miss them. But the ship’s crew welcomed me aboard with smiles and inquiries about what I did on shore leave. I’ve met the co-chief scientists of the new science crew onboard, Kevin and Julio. They’ll be conducting CTD casts, sediment core samples and water sediment samples. I look forward to observing and helping out with these new science research projects.

My days in Valparaiso and Viña del Mar were wonderful. What an interesting and beautiful place. The cities are wedged in between the mountains and the ocean. The colorfully painted homes are built on the steep slopes and seemed to be stacked on top of each other. The streets are very steep and narrow. Every nook and cranny has something built in it-a doorway, a walkway, a stairway, a little garden or maybe a parking place. It’s seems that there is no space left unused. And I must say, the canine population is alive and well here, too. Everyone has a dog or two or three. Valparaiso and Viña del Mar have funiculars that carry pedestrians up and down the steep hillsides. The Chileans call them ascensors. A funicular is like a short railway that keeps the passengers in an upright position as it moves up or down the slope. The arrangement is two parallel tracks with a rail-car on each track. The two cars are connected by a cable and when one ascends the other descends. These funiculars are old. I saw 1887 engraved on the entrance of the Concepción funicular. They are also small with a maximum capacity of seven passengers! We searched out and rode three different funiculars, each being brightly painted with its own special design. The ride takes about three minutes. These really are short railways!

At night, it’s amazing to see all those city lights twinkling across the slopes and frankly, it’s mind-boggling to me to think about how many people live in such a congested area.

But the Valparaisians do it with finesse and great style. I’ve come to discover that the Chileans are very proud of their country, both their diverse culture and beautiful landscapes. As a result, they are a hospitable and courteous people who love to share and help others experience the depth of Chile’s wonders.

Christmas Day was a special day for me. It was definitely not the traditional Christmas with family, turkey and dressing, pumpkin pie, and gift-giving. For which, I have to admit, I felt a little reminiscent. I’ve realized that one of my favorite Christmas memories is seeing the pleasure in my mother’s face as she hugs all her kids, grandkids, great-grandkids, and the one great-great! Plus, I missed her famous fruit and nut roll made with vanilla wafers. (Mom, save some back for me until I get home.)

Well, on to my Christmas Day. It was very special to me because Diane, Jeff, Jason and I went hiking in the Andes Mountains across the border into Argentina. At over 10,000 feet, it was breathtaking in more ways than one. Having spent most of my life at about 200 feet elevation, hiking in these mountains was a shock to my system, to put it mildly. I was sucking in air like a vacuum cleaner! But I loved every minute of it. I think the sky is bluer, the snow is whiter and the mountains are more magnificent when the oxygen is thinner. We were following a dirt road up Santa Elena Mount (approx. 12,000 feet) in hopes of reaching the top where the “Christo Redentor” statue of Jesus with outstretched arms is overlooking the two countries of Chile and Argentina. We were just about to abandon our quest due the lateness of the day, when Diane rounded the corner of a switchback and gasped. There it was! We cheered and hugged and wished each “Merry Christmas”. Diane burst forth into song. Even though my body was relentlessly demanding more air, my fatigue had mysteriously left me. It was great to be on top and look out across the mighty expanse of the Andean mountains and valleys. We even caught a glimpse of Acongagua, the highest mountain outside of the Himalayas. Beautiful. Magnificent. Glorious. You know, sometimes there just isn’t a word to convey the feeling. As I reflected on what Christmas means to me, I thought how appropriate to be on a journey on Christmas Day in search of the symbol of peace and goodwill to all men.

As we began our descent, a beautiful blue-eyed, thick-furred dog took up with us. We thought he was hungry so we fed him some beef jerky sticks. That sealed our friendship and he was our constant companion for the next six miles to the border crossing. We tried to get him to go back but he was persistent and wouldn’t leave our side. I named him “Balto” after the famous sled dog from Alaska. “Balto” was a pleasure. When we sat down to rest, he’d sit down to rest and snuggle right up next to one of us with this look of contentment on his face. Sometimes he’d put his wet nose right up to ours. When we came to a waterfall he detoured to get a quick drink and then ran to catch up with us.

We knew “Balto” was someone’s pet because he was well-fed and such a gentle creature.

When we got to the border crossing and presented our papers to the officials, “Balto” was also met by the obviously self-appointed “canine border patrol” – a band of five not-so-friendly dogs. Did he back down? No way. “Balto” is definitely an alpha-male. Before we knew it “Balto” had trotted into the customs building like he owned the place!

We stopped in a nearby hostel for something warm to drink and then loaded into the car and headed back for the Hotel O’Higgins in Viña del Mar. As the full moon continued its path across the darkened sky, we trudged into the hotel, dusty, sunburned and exhausted, ready for a peaceful sleep on that Christmas night in central Chile.

Happy Holidays!

Until tomorrow,

Mary

Mary Cook, December 22, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 22, 2004

Location: Latitude 31º58.92’S, Longitude 73º01.21’W

Weather Data from the Bridge
Relative Humidity (percent) 88.87
Air Pressure (millibars) 1012.32
Air Temperature (Celsius) 16.59
Wind Direction (degrees) 228.6
Wind Speed (knots) 16.9
Wind Speed (meters/sec) 8.66
Sunrise 0643
Sunset 2058

Question of the Day

What is the highest mountain outside of the Himalayas?

Positive Quote of the Day

“The air doesn’t even know its own temperature.” L.F. Richardson

Science and Technology Log

Actually, not much science happened on the ship today because everyone’s packing up and getting ready to off load tomorrow morning. The last radiosonde was released at 1600. We had an All Hands meeting with Captain Wright in the library. We were given instructions about disembarking and when to return to the ship.

It has been very sunny today. I think we have finally left the stratus cloud layer!!!! Bob Weller told me that today’s sunset was a good opportunity to see the green flash. I have never seen a green flash! I can’t wait!

Personal Log

This morning, out on the fantail, Diane videotaped me recapping the last three weeks of my life at sea. It’s hard to recap something of such magnitude. I’ve been putting it off for a couple of days because I just didn’t want to think about it being over. Besides, how do I condense it? Diane recommended that I focus on the highlights. It’s funny because everything has been a highlight. Of course, recovery and deployment of big buoys would be on everyone’s highlight list. And that was amazing. Just to think about being with the world’s best oceanic and atmospheric scientists who are deploying the world’s most sophisticated instrument for studying air-sea interactions is both humbling and exciting. The coordination of scientists, crew, and officers was really something to see. But what nobody knows is, that for me, just finding out how an acoustic release works was a highlight. And watching the SeaBeam as we passed over the Nazca Ridge. And holding the miniature cups for the first time. I’ve never touched anything that’s been 9000 feet down in the ocean. And watching the graph develop on the computer as the radiosonde flew up into the clouds. Having all those squiggly lines explained to me in a fashion where they now have meaning and substance was enlightening. When they deployed the Chilean Tsunami Buoy, I couldn’t help but think about how many lives this obscure little buoy could help save. Just gazing out over the ocean and letting my spirit soar has been wonderful, inhaling some of the cleanest air on Earth. There are so many monumental things that have happened to me in the last three weeks. My heart swells with gratitude to be given this opportunity. I have to say that the absolute most meaningful occurrence in the scientific realm to me was tossing the drifting buoy that my students have adopted. Our school’s logo and all their signatures are out there somewhere on that little drifter. Our little drifter. When I tossed it into the ocean I felt as though I was giving all my students a gift. A gift of opportunity and challenge. I’ve decided to name the little drifter Bob, for two reasons, the drifter is bobbing around at the ocean’s surface plus the Chief Scientist who requested a Teacher at Sea is named Bob. We’re going to put a big map up in the hallway at Southside Middle School entitled “Where’s Bob?” Each morning Bob’s latitude and longitude will be announced and plotted on the map. Bob Weller has been so helpful and willing to answer all my questions and helped ensure that I got involved in every scientific work done on the ship. Dr. Bob Weller is a big reason why the opportunity was opened up for a Teacher at Sea to participate in the Stratus 2004 cruise. Had he not requested that a Teacher at Sea be onboard then I would still be back in Arkansas eating Christmas candy, watching football, and hoping for a snowflake.

Of course, I’ll never forget those rip-roaring RHIB rides!

And still, I’ve yet to mention the human side of this experience. I’ve loved meeting all these people, each with their own special qualities that make ship life such a dynamic process. There’s not enough space to mention everyone’s name but each person on this ship contributes in a vital way. It may be washing the dishes or mopping the floor or operating the winch or taking pictures of clouds or standing watch. It’s all important and the people doing those jobs are valuable. The officers, marine crew and scientists all have my respect and admiration. Something I’ve noticed about everyone on the ship is that they have a refreshing spirit of exploration.

There’s no way I can recap this cruise without mentioning my mentor, Diane Stanitski. Not long after we met and the very first day onboard, she said (in her excited and bubbly way) “We’re going to write a book about this cruise! You’ll write it. Bruce will illustrate it. I’ll edit it.” I thought to myself, “Lady, you’ve got to be kidding.” But I smiled and said, “Sure, that sounds great.”

Now looking back, I can see that was a foreshadowing of things to come. Not just the book but everything else, too. Diane has helped me get the most out of being here. I mean, squeeze every bit of information, joy, and opportunity out of this experi

ence. “Redeem the time” must be her motto. She made sure that I knew what was going on and helped me understand the science behind it. Just like a good teacher, she showed me, told me, modeled proper technique for me, then, let me go on my own.

I knew that I liked Diane before I ever met her. On the NOAA Teacher at Sea website I had read her logs from a couple years back while she was in Hawaii. There was one scenario that conveyed her personality in such a way that I knew she would be a great person to work with. She wrote in her log about taking a RHIB ride to the buoy. The buoy needed repairs. Someone had to climb up on the buoy while it was bobbing in the ocean and fix it. A dangerous feat, I’d say. Anyway, Diane volunteered. In her log entry when she was writing about it she said, “Mom, don’t read this part.” I instantly admired her for considering her mother’s feelings even though it had been an exciting adventure for herself.

Diane has been a great mentor and I’m glad to say that, in her, I have found a new friend with a kindred spirit of adventure and yearning to live life to its fullest.

I have been truly blessed to have been a part of this whole operation.

After tomorrow, all the scientists will have left the ship and be going back home. I will spend a few days ashore then I will re-board the RONALD H. BROWN and continue on to Punte Arenas! I’d like to thank my school, the ship’s captain, and NOAA’s offices for given me this extended opportunity of a lifetime. This is my last log for about 5 days. When I return to the ship I’ll resume sending pics and logs once again. So tune in next week, same time, same station!

Until next week,

Mary

Mary Cook, December 21, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 21, 2004

Location: Latitude 26º56.06’ S, Longitude 72º17.13’ W

Weather Data from the Bridge
Relative Humidity (percent) 75.05
Air Temperature (Celsius) 17.08
Water Temperature (Celsius) 17.88
Air Pressure (millibars) 1015.65
Wind Direction (degrees) 205.79
Wind Speed (knots) 13.98
Wind Speed (meters/sec) 7.01
Sunrise 0652
Sunset 2042

Question of the Day

What does RADAR stand for?

Wayne’s Question of the Day

Are we there yet?

Positive Quote of the Day

Excellence is an art won by training and habituation. We do not act rightly because we have virtue or excellence, but rather we have those because we have acted rightly. We are what we repeatedly do. Excellence, then, is not an act but a habit.” Aristotle

Science and Technology Log

Today is both the longest and shortest day of the year! How can that be, you might ask? Today, December 21st has the longest daylight hours in the Southern Hemisphere and the shortest daylight hours in the Northern Hemisphere. This day is called the Solstice-the summer solstice down here and the winter solstice up there. The sun reaches its highest point in the sky for the southern hemisphere and its lowest point in the sky for the northern hemisphere. It’s the first day of summer here in Chile and the first day of winter back home in the United States! Today, the sun is almost directly overhead here at 26º S. But as Frank Bradley said, “It would really be nice if we could see it, wouldn’t it?” We’re still under the consistent stratus cloud deck so we haven’t even gotten a glimpse of the sun today.

Diane and I completed our first draft of the “Teacher at Sea” book and the special reading in the library went fabulously!

Personal Log

I have to tell you that the “Teacher at Sea” book has been a cathartic process for me. The book features Miss Cook, NOAA’s Teacher at Sea. It begins at Southside Middle School with Miss Cook and her students getting the good news of being selected for the Teacher at Sea program. Then the story follows her as she has all the wonderful experiences with the scientific work being done aboard the RONALD H. BROWN over a three week period. So during all this writing and rewriting and rewriting and rewriting we’ve had to review and analyze many things. On the last page we wanted to convey Miss Cook’s feelings as she returned home to her students. So how do you do that? How do you convey satisfaction and happiness and exhaustion and feeling blessed? How do you convey that your cerebrum has been inundated with fascinating, cutting edge science? My brain is so full of new information I wonder how long it will take for me to process it into my knowledge base as though it had always been there. Have you ever heard this saying? “The more you know, the more you realize what you don’t know.” I’m constantly saying, “Wow, I didn’t know that.” And I’m constantly thinking how can I make a good lesson plan from this scientific event? I’ve learned all this cool scientific “stuff” and all about ship life and it makes me realize how much more I need to know. I want to know more. And how do you convey that you want to be a teacher that leads her students to achieve their best; a teacher who inspires and guides her students into a higher plane of knowledge and experience?

Tomorrow is the last full day of this cruise. Everyone will be going their own separate ways. This particular group will never be together again. Never.

Until tomorrow,

Mary

Mary Cook, December 20, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 20, 2004

Location: Latitude 26º19.99’S, Longitude 77º07.65’W
Time: 0810

Weather Data from the Bridge
Air Temperature (Celsius) 17.88
Water Temperature (Celsius) 18.41
Relative Humidity (percent) 64.16
Air Pressure (millibars) 1016.86
Wind Direction (degrees) 183.76
Wind Speed (knots) 12.37
Wind Speed (meters/sec) 6.41
Sunrise 0714
Sunset 2101

Question of the Day

What is reverse osmosis?

Positive Quote of the Day

“Never spit into the wind.” Anonymous

Science and Technology Log

The last Argo float was deployed today. Bob Weller gave me the honor of waking it up! Waking up an Argo float is pretty simple. I passed a magnet across the “reset zone”. This triggers the float to inflate. The float is “awakened” a couple of hours before it is deployed.

Diane, Bruce and I continued working on the book. Bruce just has a few touch ups to do on the paintings. Diane and I are almost finished with the text and we’ve completed the scans of the original paintings. We must get finished soon because we’re doing a reading and presentation for everyone onboard tomorrow night at 7:30!

Mike Gowan, the Chief Engineer for the RONALD H. BROWN, gave us a tour of the engine room this afternoon. He said the ship’s engines are diesel/electric. We started in the control room which has a wall of computer screens, buttons and joysticks. They can drive the ship with joysticks from the engine room. But I wondered how they’d see where they’re going from deep inside the ship? There are huge computers and automated compartments through the engine room. I didn’t know the “engine room” was going to be numerous rooms located at different places throughout the ship. Our tour was like a hike from one end to the other going up and down several ladderways. After the control room we went into the engine room. It’s really LOUD in there. We were required to wear earplugs. The ship has six engines and one emergency engine. They provide electricity for propulsion and ship service needs. He showed us some huge canisters of carbon dioxide that are standing ready to be used to smother a fire in the engine room should one occur. Mike told us about the marine sewage device which works on a vacuum principal. When we push the flush button on the head (toilet) there is a great suction sound and all the “stuff” is whisked away! Mike also explained to us how they make water. There are two ways: reverse osmosis and evaporation. The reverse osmosis forces water through a semi-permeable membrane that separates the water molecules from everything else. The evaporation technique uses the excess heat from the ship’s generators to cause the water to evaporate and then the fresh water vapor is condensed and collected for use.

This afternoon was sunny and gorgeous! Diane and I took some time soaking in the warmth, enjoying the fresh air while gazing out across the glistening water. It can be mesmerizing.

This evening we interviewed Bruce Cowden, Chief Boatswain and artist-in-residence of the RONALD H. BROWN. Wow! Bruce has led an interesting life. He’s been working on ships since he was a teenager and started working for NOAA about 15 years ago. He has worked his way up to the boatswain position and he supervises seven people who keep the ship in good working order. They clean and paint all the time. Bruce also oversees the large machinery operations and conducts the buoy deployments. His main job is to make sure that everyone is safe and the equipment is kept in good condition. He has had “Captain Nemo” adventures like driving a one-man submarine at the bottom of the Caribbean in search of ancient fossils! The life of a seaman is not an easy life. He spends about ten months a year out to sea. He also shared with us his artistic hobbies. Bruce is a painter and carver. He showed us the carvings from the Taigwa nut. The Taigwa nut grows in Central America and looks like a small coconut. When carved and polished it looks like ivory. Bruce makes jewelry and whatnots. He is planning to have a craft show when he gets back to South Carolina.

This has been another great day at sea!

Until tomorrow,

Mary

Mary Cook, December 19, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 19, 2004

Location: Latitude 25°07.83’S, Longitude 81°54.62’W
Time: 0830

Weather Data from the Bridge
Air Temperature (Celsius) 19.04
Water Temperature (Celsius) 19.42
Relative Humidity (percent) 56.95
Air Pressure (millibars) 1018.17
Wind Direction (degrees) 155.6
Wind Speed (knots) 15.91
Wind Speed (meters/sec) 7.99
Sunrise 0734
Sunset 2116 (9:16 pm)

Questions of the Day

Why is the sunset so late in the day?

Positive Quote for the Day

“The world of achievement has always belonged to the optimist.” J. Harold Wilkins

Science and Technology Log

We tossed the last of fifteen drifting buoys this morning! It’s not the end, but the beginning of a wonderful new program. I’d say the Adopt-a-Drifter program got underway with a big splash! Teachers and their students around the world can adopt a drifting buoy just like my students at Southside Middle School in Batesville, Arkansas. They can map its path as it goes with the flow of the ocean currents. These drifting buoys also provide sea surface temperature and air pressure. This information can be utilized to gain a better understanding of the global oceans. I watched as Jeff and Bob deployed another Argo float. These floats are lowered over the back of the ship and when the quick-release mechanism comes in contact with the water, the powder in a small device dissolves and this releases a spring that unhinges the float from the straps. The straps are pulled back onboard as the ship leaves the Argo float in its wake.

I sat down and had a conversation with Chief Scientist Dr. Robert Weller of Woods Hole Oceanographic Institution about the importance of oceanic/atmospheric studies. He made some very good points that highlighted the fact that when just 1ºC of heat energy is released from the ocean water into the atmosphere it affects the air flows for thousands of miles. This then can be like a domino effect and continue around the globe influencing weather patterns for people everywhere.

At 2:00 we interviewed Richard Whitehead, Chief Steward. Richard is over the food preparation in the galley. Richard shared that he has been working on ships for over 40 years and has had several trainings for the position he now holds. He said that the menus were developed based on nutritional guidelines and availability of produce. Richard shared with us that they keep the produce fresh for weeks by keeping it very cool and placing it in special bags that slows the deterioration. He also said that there are many safety issues that concern food preparation on a moving ship. All the pots and pans are deep, there are railings on the stovetop, and special care must be taken with knives. The countertops must be covered with anti-slip cloths to keep everything from sliding around. He also said that they consider the weather when deciding what to prepare because you wouldn’t want to bake a cake while the ship was moving through rough waters.

We changed “6:00 Science on the Fantail” to “6:00 Science in the Van on the Bow” because we wanted to interview Jason Tomlinson of Texas A & M about his work with aerosols. First of all, Jason explained that an aerosol is not a spray can. It is a small particle in the air. Jason showed us the Tandem Differential Mobility Analyzer (TDMA). It looks like a mad scientist’s invention with wires, tubes, canisters, and radioactive components! It is one of the best devices in the world for analyzing small particles in the air. It draws in air from outside then dries the air. It then separates the particles according to size. Jason said that these particles are too small to see with the naked eye but they have a great influence on cloud formation and cloud life length. The TDMA can determine what the particles are made of by adding moisture or by adding heat. The TDMA costs about $70,000! He also showed us the Aerodynamic Particle Sizer (APS) which analyzes larger particles. They mostly get sea salt and dust out here in the ocean. Jason said that there’s a mystery about the sea salt and its influence on clouds. The APS costs about $35,000. He also said that occasionally they take in the ship’s exhaust and that destroys their data for that particular time. He concluded by saying that it all gets back to climate change and using these data to make better models for predictions.

After our interview with Jason, we ran outside to glimpse San Felix and San Ambrosio Islands! Our first land sighting in over two weeks! These small islands, located about 300 nautical miles from Chile, are volcanic in origin. They are basically huge, desolate rocks protruding up from the ocean floor. As far as I could tell nothing is growing on them. Seafaring birds do nest on the cliffs. Since 1975 the Chilean Navy has had an installation on San Felix Island where they operate a short airstrip, a weather station and a tide station.

Personal Log

I’m just beginning to realize that this trip is nearly over. We only have four days left. I knew it wouldn’t go on forever but as the old saying goes “time flies when you’re having fun”. What a superb voyage this has been for me-a voyage that is continuing my personal quest to search out the majesty of Earth. In doing so it is my heart’s desire to absorb the inexplicable magnificence of our Earth. I want to be permeated with awe for the splendor as I soak it in with my eyes and ears and nose and skin. I am amazed. How can I take it all in? Where was I when the Earth was formed and hung in the nothingness of space? From where did this splendor come? Clouds and rain and snow and hail are amazing! Mountains and valleys and canyons and caves are amazing! Oceans and rivers and glaciers and springs are amazing! Rocks and minerals and soil and sand are amazing! People and animals and languages and ideas are amazing! And they all work together in a symphony of overwhelming magnitude. I believe that we’re all an inextricable part of this grand masterpiece. Traveling is not the essential element in a voyage. Life is a voyage no matter where you are. Our voyage is how we perceive our surroundings, how we face our challenges, and how we come to Truth. Actually, none of us ask for this voyage called life. We’ve been thrust into it by forces greater than ourselves. So here we are. We do have some choices, though. Will we make the most of this journey or will we let it sweep us along without ever wondering, and questioning and being amazed?

Until tomorrow,

Mary

Mary Cook, December 18, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 18, 2004

Location: Latitude 22°16.32’S, Longitude 86°10.94’W
Time: 8:30 am

Weather Data from the Bridge
Air Temperature (Celsius) 19.46
Water Temperature (Celsius) 19.81
Relative Humidity (percent) 69.46
Air Pressure (millibars) 1016.99
Wind Direction (degrees) 123.54
Wind Speed (knots) 15.73
Wind Speed (meters/sec) 7.20
Sunrise 07:57
Sunset 21:27 (9:27 pm)

Question of the Day

What does a psychrometer measure?

Positive Quote of the Day

For where your treasure is, there will your heart be also. Jesus Christ

Science and Technology Log

Today Diane and I journeyed up to the bridge struggling against the strong winds and the lurching of the ship. We interviewed Ensign Silas Ayers and “Pirate” Jim Melton. Silas gave us instruction on ship safety and navigation. He said the two most important things in navigation are: don’t hit anything and don’t run aground. Silas showed us how they plot the ship’s course on a map/chart and all the navigational instrumentation. The RONALD H. BROWN has radar that ranges up to 96 miles but it is set for 24 miles at this time. The radar is used to detect other ships that might be in our path. He also showed us the autopilot computer and controls. They can set the coordinates and the ship will drive itself!!! Of course someone has to stay on the bridge at all times, because as everyone knows computers have glitches that could cause a malfunction. That could be a disaster. Something that I find fascinating is that this ship can hover in one place! It’s officially called dynamic auto positioning. They set all the thrusters at a specific setting and the ship stays in one place. He then explained the ship’s lights. The ship has a red light on the port side and a green light on the starboard side. These lights reveal our ship’s location to other ships and enable them to ascertain our heading by watching the movement of our lights.

There’s another series of light signals that communicate the ship’s condition. For example, when we hover to do a CTD cast, the ship displays a set of red/white/red lights that tell other ships we are unable to make quick maneuvers. There’s also a set of lights that means man overboard. Another cool thing on the bridge was the spinning window. Yep. I said spinning window. It wasn’t spinning today but it can spin. (I hope they weren’t pulling my leg.) The purpose of the spinning window is to reduce ice buildup on the glass.

“ Pirate” Jim Melton shared with us the lookout duties. He keeps a watch that scans the horizon constantly. Jim uses an alidade. An alidade is a telescopic instrument that has a special swiveling balance that can compensate when the ship rolls, pitches, or yaws.

I looked through the alidade and saw a line across my field of vision. Jim said that they use that line as a reference point and they can determine the size of the ocean swells. Everyone working on the bridge must also report the complete weather data to NOAA every hour.

Before we finished, I sat in the captain’s chair and scanned the horizon for whales and other ships at sea!

Late this afternoon, Diane and I continued working on the children’s book. Bruce Cowden, the illustrator, is producing artwork faster than we’re writing the story! So we’re feverishly trying to catch up. It’s fun writing with Diane. She has a bright mind and she has a genuine excitement for atmospheric and oceanic science.

Tonight at “6:00 Science on the Fantail”, we interviewed meteorologist Dan Wolfe of the Environmental Technologies Laboratory in Boulder, Colorado and Frank Bradley physicist/ meteorologist of Australia’s Commonwealth Scientific and Industrial Research Organization. They have been studying clouds, precipitation and humidity, as well as launching radiosondes (weather balloons) 4-6 times a day. Dan explained how the radiosondes work. The instrument package records temperature, pressure, and humidity as the helium-filled balloon ascends into the sky. The radiosondes have a GPS antenna that transmits its location and another transmitter that communicates the data being collected back to the computer in the lab. All of this information is compiled to help develop a “picture” of the atmosphere in this region which has never been thoroughly studied. This information can then be used in making models for more accurate weather prediction.

Frank Bradley shared with us his work which has been in collaboration with Dr. Bob Weller and Dr. Chris Fairall for the past 20 years. Frank showed us the somewhat “old fashioned” Assman psychrometer that he uses to take the wet bulb and dry bulb temperature readings several times a day. A psychrometer’s temperature readings can be used to determine relative humidity. Frank says that he uses this low-tech instrument because nothing can go wrong. This psychrometer’s readings are then used as a validation of the high tech instruments on board. Frank said that he has studied air-sea interaction, the interface of the ocean and the atmosphere, for many years and considers it a very important area for developing better models to predict the weather.

Personal Log

Wow! I really liked the bridge! It is cool. I don’t know why they wouldn’t let me drive the ship. I mean, come on, we’re out in the middle of the biggest ocean on Earth. What could I run into? And there’s no ground in sight. Actually, there’s nothing in sight. So I’d be satisfying the two most important rules of ship navigation and safety: don’t hit anything and don’t run aground. It seems though, that I remember something about needing a license to drive. I’m not sure.

While on the bridge, I saw that our planned course will take us right by the San Felix islands. It’ll be the first land I’ve seen since December 5! I wonder what that will feel like?

As we near the end of the cruise and it seems almost all the work is done, everyone is reading guidebooks about Valparaiso and planning some excursions. Even though I’m not ready to get off the ship, I am feeling a little excited about seeing a new place. I just love to go to new places and I’ve heard that Valparaiso is one of Chile’s most beautiful cities. Diane and I are deciding what to do during our two days there. One day we want to see the city and another day we want to drive toward the Andes Mountains and get glimpse of Aconcagua, the highest mountain in all of the Americas!

Yeah! Another adventure awaits!

Until tomorrow,

Mary

Mary Cook, December 17, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 17, 2004

Location: Latitude 19°40.26’S, Longitude 89°46.38’W

Weather Data from the Bridge
Air Temperature (Celsius) 19.59
Water Temperature (Celsius) 20.13
Relative Humidity (percent) 73.07
Air Pressure (millibars) 1017.14
Wind Direction (degrees) 101.42
Wind Speed (knots) 15.44
Wind Speed (meters/sec) 7.67

Question of the Day

What are the ship’s three types of motion?

Positive Quote of the Day

“Never say “No” to opportunity.” Melvin G. Marcus

Science and Technology Log

Today, we made the big turn toward the San Felix islands and we’re heading southeastward at 12 knots. We did our last CTD cast of the cruise! Several of us decorated more Styrofoam cups to send down for compression by the pressure of the ocean water at 1000 meters depth. This afternoon and for the remainder of the cruise we will be tossing drifting buoys and Argo floats over board from the fantail. The Argo float has a bladder that inflates and deflates to allow it to go down to 2000 meters, drift in the current for about 10 days, and then record temperature and salinity as it comes back to the surface. It then transmits the data to a satellite where it is then sent to a ground station. The Argo float goes up and down over and over until the battery runs out. These floats are never recovered. It is hoped that there will be 3,000 of them in the oceans by 2006.

As we toss the drifters we are doing a promotional video segment to describe what a drifter measures and encourage teachers and their students to adopt a drifting buoy. This is a great way to get real science in the classroom. The Adopt a Drifter Program is sponsored by NOAA’s Office of Climate Observation and can be accessed online at http://osmc.noaa.gov/OSMC/adopt_a_drifter.html.

This afternoon Diane and I toured the ship and recorded it with the video camera. We went to the galley, mess hall, our stateroom and toilet room, the ship’s bow and the bridge. The bridge is where the ship is driven. While on the bridge, we spoke with NOAA Corps officer Silas Ayers and he explained how they record and report the weather observations to the National Oceanic and Atmospheric Administration (NOAA) offices located back in the United States. Tomorrow, he will give us a complete tour of the bridge.

In “6:00 Science on the Fantail”, we interviewed Chris Fairall, a physicist/mathematician who works for the NOAA Environmental Technology Lab (ETL) based in Colorado. Chris explained some of their instrumentation for measuring clouds and precipitation. He said that some of their instruments can individually measure the smallest of mist droplets! They have worked closely with the Woods Hole Oceanographic Institution over the past few years to compile data for the stratus cloud deck over this part of the Pacific Ocean. Chris said that the main reason this particular location was selected for the study was lack of data because it had never been thoroughly studied.

This evening, Diane and I continued the writing of the children’s book documenting this Stratus 2004 cruise.

Personal Log

Today has been another good day at sea. I’ve gotten emails from students, family and friends. I’ve had good food to eat and good conversation and laughter with new friends. I spent some quiet, alone time to ponder and count my blessings. The sun momentarily broke through the stratus clouds like a smile from up above! We tossed some Argo floats and drifters overboard. We’re steaming ahead to new and exciting places! What more could I ask for?

An observation: the Argo float is tossed in the water without removing the biodegradable cardboard box, so it looked to me like a casket as it floated away in the wake of the ship. I guess it really is a burial at sea because the Argo floats are never recovered.

Paul and I are about to deploy another Argo float shortly. This will be my first Argo float where I actually get to do the hands-on tossing! I’ve just been observing up until now. We’ll lower it by a rope over the back of the fantail then release it into the water.

Another observation: As the ship steams along it is rolling and pitching. All that motion causes stuff to shift and creak and rattle. Even if I’m in a room all alone, I still feel like someone else is there, too. It’s an odd sensation to hear a noise, turn expecting to see someone and nobody is there!

I look forward to tomorrow. We have a couple of interviews and will continue working on the book plus tossing a few more drifting buoys and floats along the way.

Until tomorrow,

Mary

Mary Cook, December 16, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 16, 2004

Location: Latitude 19°44.39’S, Longitude 86°20.07’ W
Time: 8:00 am

Weather Data from the Bridge
Relative Humidity (percent) 72.50
Air Temperature (Celsius) 19.34
Water Temperature (Celsius) 19.78
Air Pressure (Millibars) 1016.06
Wind Direction (degrees) 97.86
Wind Speed (knots) 20.90
Wind Speed (meters/sec) 10.31

Question of the Day

When is the first day of summer in the Southern Hemisphere?

Positive Quote of the Day

“Most of us miss out on life’s big prizes. The Pulitzer. The Nobel. Oscars. Tonys. Emmys. But we’re all eligible for life’s small pleasures. A pat on the back. A kiss behind the ear. A four-pound bass. A full moon. An empty parking space. A crackling fire. A great meal. Hot soup. A glorious sunset” -Anonymous

Science and Technology Log

Yesterday was probably the last RHIB ride I’ll ever get to go on and last night at midnight, we left the Stratus 5 buoy all alone moored to the Pacific Ocean floor. I felt a little wistful.

So far today has been a quiet day. We’re steaming toward the San Felix islands. We’ve started watch duty again. Alvaro Vera and I have watch duty together from 8:00 am to noon and from 8:00 pm to midnight. This evening we’ll do another CTD cast. All the WHOI guys are dismantling the old buoy and packing up all the components to be sent back to Woods Hole. I finally got tons of email from my students and many of them are tracking the adopted drifting buoy which makes me proud of them. It seems I’ve spent half the day answering them. I’ve enjoyed it though. It’s good to have connection across the miles. We came out from under the stratus cloud deck and what a beautiful day! People are sitting out on the fantail soaking in the sun and warmth.

Personal Log

I’ve just been out on the ship’s bow peering over the edge to watch the ship slice through the water. It’s mesmerizing and clears my mind of thoughts. I think it’s like meditating. It’s especially calming to just look and listen and forget everything else. I see the many hues of blue in the water. I hear the waves splashing and the hum of the ship’s engine. The salty air feels clean in my lungs. Even the greens of the slimy algae growth just below the water line add another dimension to the sights and sounds of life at sea.

With a clear mind and clean lungs,

Until tomorrow,

Mary

Mary Cook, December 15, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 15, 2004

Location: Latitude 19°43.66’S, Longitude 85°33.13’W
Time: 10:00 am

Weather Data from the Bridge
Wind Direction (degrees) 132.47
Relative Humidity (percent) 66.35
Air Temperature (Celsius) 19.44
Water Temperature (Celsius) 19.41
Air Pressure (Millibars) 1016.60
Wind Speed (knots) 15.05
Wind Speed (meters/sec) 7.54

Question of the Day

For what purpose are the lights in the hallways colored red at night?

Positive Quote for the Day

“The life that conquers is the life that moves with a steady resolution and persistence toward a predetermined goal. Those who succeed are those who have thoroughly learned the immense importance of plan in life, and the tragic brevity of time.” W.J. Davison

Science and Technology Log

We had another early morning RHIB ride! The purpose was to visually inspect the newly deployed Stratus 5 buoy. It looked so small out there in the choppy ocean water. The buoy was found to be in good working condition with a minor break in a railing that surrounds the weather instruments that sit atop the buoy. The break will have no bearing on the workings of the instruments so all was approved by Jeff Lord, the WHOI engineering technician. Then we took another wild ride back to the mother ship!

I think today is a good day to show you pictures of the inside of the ship and talk about ship life. Here are some of my impressions of the ship interior. The hallways are narrow and if two people meet, one must step aside. The doors seem to weigh two tons and if one slammed on your fingers it would crush them off.

You must step up and over as you cross the threshold of a doorway. It’s built up to prevent water from getting into every room if there’s a flood. In the stateroom (bedroom), the bunk beds are comfortable but there’s no room to sit up in bed. The round windows are called portholes. The toilet (called the head) has no lid. The toilet is flushed by pressing a button then a powerful vacuum suctions everything down! There are handles to hold on to in the shower. The shower room doors have huge, strong magnets that hold them open. All the drawers and cabinets have latches so they won’t swing open when the ship moves around. Everything is tied down or secured in some fashion. There are no wheels on the office chairs. At night the hallway lights are turned to red instead of white. The food is outstanding. We eat three meals a day plus snacks are available 24 hours a day. There’s an exercise room and a laundry room and a TV room where two movies are shown each evening. There’s a library, too. It seems that computers are in every nook and cranny. There’s lots of equipment onboard like scientific instruments and big machinery. They make water on the ship. I’ll explain that on another day.

Diane, Bruce and I collaborated on the children’s book again today. Things are coming together nicely.

At “6:00 Science on the Fantail” we interview the Chief Scientist, Dr. Robert Weller of Woods Hole Oceanographic Institution. He gave us the reasons for placing the Stratus 5 buoy at this particular location in the Pacific Ocean. Bob said that there needs to be greater understanding of air-sea interactions for scientists to make better models and predictions of weather and climate patterns. The area just off the coast of Chile is one that has had minimal data collected in past years. Plus, it is an area that has a constant stratus cloud deck which isn’t clearly understood. That’s why the Woods Hole Oceanographic Institution and the Office of Climate Observation have partnered to fund the Stratus program for, possibly, as long as 15 years. Now, in its fifth year, the Stratus program has collected very useful data that has helped in better understanding the eastern Pacific Ocean and the weather that originates there. Dr. Weller was also very pleased with the work effort and cooperation between the WHOI scientists, the crew, and the Chilean scientists and students. It took a well organized work effort to get it all done. Now the WHOI scientists and engineers are taking the data collected from last year’s buoy and beginning the evaluation process.

Personal Log

I have to tell you about the exercise room. Last night, Diane invited me to go down for a workout. Diane’s a runner and so she goes to workout every evening. I’d never really taken a good look in there, except to see several pieces of equipment because I hadn’t brought any clothes or shoes appropriate for working out. So, I thought, why not? I need to exercise. So I put on my trusty, old clunky hiking boots and headed down to the exercise room. When I opened the door there was a red and black stairway leading down toward a yellow grate. Most of the exercise equipment was sitting on the grate. The room was dimly lit and the air was cool. I could hear the humming of fans. There was one gray door that had a claxon sounding off from within. I considered opening it but changed my mind. I saw a red “Danger High Voltage” sign and about ten huge carbon dioxide tanks sitting upright in the corner. There were some blinking lights coming from a partially opened doorway leading into another room. Running along the ceiling and walls were cables and pipes. I knew I was alone so I looked around to survey which machine I’d try first. Over in the far corner were rows of orange-colored coveralls hanging from the ceiling by their hoods with their arms outstretched. All the orange suits were moving with the swaying of the ship. It appeared as though people were inside the suits and just hanging in mid-air! I stopped, and looked around with an eerie thought. I felt like I was in an episode of Star Trek where they have rooms filled with extra worker-drones waiting to be activated during times of crisis. OK. Maybe I have been on this ship too long. But it’s a great place for the imagination to run wild. Don’t you think?

Until tomorrow,

Mary

Mary Cook, December 14, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 14, 2004

Location: Latitude 19°45.13’S, Longitude 85°30.82’W

Weather Data from the Bridge
Wind Direction (degrees) 164.30
Relative Humidity (percent) 75.74
Temperature (Celsius) 18.60
Air Pressure (Millibars) 1016.02
Wind Speed (knots) 15.33
Wind Speed (meters/sec) 8.40

Question of the Day

Why do you think the floaters are made of glass?

Positive Quote for the Day

“Patience is passion tamed.” Lyman Abbott

Science and Technology Log

At about 5:30 this morning the WHOI guys are up early and ready to go! This is the day that the new and improved Stratus 5 surface mooring is deployed! It’s what everyone has been working toward. My understanding is that first, the mooring line and upper 50 meters of instruments will be put in the water and attached to the buoy. Second, the buoy will be deployed with a quick release hook off the port side. Then the ship will move ahead to bring the buoy behind it. Next, the ship will slow down and move ahead as needed to keep the buoy aft while the crew attaches the remaining instruments. The last things to be put on the mooring line are the glass ball floaters, the acoustic release, and then the 9000 pound anchor. We’ll wait around for a couple of hours for the anchor to sink and settle, then, they’ll take a Seabeam (echo-sounding) survey of the ocean floor where the anchor is located. After the survey, we’ll move downwind of the buoy and tomorrow inter-comparison testing will begin.

Now, it’s 5:30 in the afternoon, and all the hard work is completed. Everything went off without a hitch. Well, almost. There were a couple of tense moments throughout the day, but all in all it went very well. The planning and orchestration of the whole process is quite amazing with several people communicating with radios and hand signals, all getting it done just right.

At “6:00 Science on the Fantail”, we interviewed Keir Colbo who works for Woods Hole Oceanographic Institution. He shared with us his duties for the day. According to Keir, his job is to stay out of the way and record everything in a logbook. I mean everything. Keir wrote down the deployment time, serial number and order of every instrument that went into the water. He counted every glass ball floater (total 90). He recorded the Global Positioning System (GPS) reading of the anchor as it was dumped into the ocean. GPS uses a receiver to locate an object by detecting a series of satellites. Keir also explained the glass ball floaters. They are 5/8 inch thick glass domes with a diameter of 17 inches. The glass balls are put into bright yellow plastic hulls that protect from breakage and enable them to be chained together. Keir’s job is very important even though at times it may seem monotonous. When the scientists return next, his records will be the first thing they pull for references to make sense of the science.

Personal Log

It’s 5:30 Tuesday morning and I am sitting at my desk thinking about the day that’s before us. The ship is constantly moving with the ocean motions. There’s no way to get away from it – it’s always a presence with me. I can’t help thinking that we’re atop something alive and breathing. Every time there’s a swell it feels like the ocean is taking a deep breath and then slowly exhaling. It reminds me of the rhythmic breathing of someone who is asleep. I must admit, I can more easily understand why some ancient cultures worshipped the ocean or devised amulets for protection from the spirits of the ocean. Well, I don’t worship the ocean but everyday I gain a deeper respect and appreciation for it – for its vastness, and power and how much all of life on Earth is so intricately dependent upon its wellbeing. Even living things that are a long way from the ocean like in Arkansas, or south central Siberia, depend on the ocean.

I enjoyed today. We watched all the guys working in unison to get the work done which has danger lurking around every corner. These guys are safety-minded, too. They do things right and they watch out for each other. It’s also cool to see the Chileans and Americas working together. It’s like it should be. My least favorite part of the day was waiting for all the cable to reel out. I took a nap. My most favorite part of the day was when the 9000 pound anchor was dumped overboard! What a BIG splash! It sounded like someone doing a cannonball at the city swimming pool. Everybody was smiling.

Happy Birthday, Deano.

Until tomorrow…..

Mary

Mary Cook, December 13, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 13, 2004

Location: Latitude 19°45.88’S, Longitude 85°30.36’W

Weather Data from the Bridge
Wind Direction (degrees) 147
Relative Humidity (percent) 72.19
Air Temperature (celsius) 19.34
Water Temperature (celsius) 19.36
Air Pressure (millibars) 1015.75
Wind Speed (knots) 15.71
Wind Speed meters/sec 8.08

Question of the Day

Why aren’t light waves or radio waves used for ocean exploration?

What is a nautical mile?

Positive Quote for the Day

“The Earth is given as common stock for man to labor and live on.” Thomas Jefferson, letter to James Madison, 1785

Science and Technology Log

Today the Woods Hole scientists are making preparations for the new Stratus 5 mooring deployment. Early this morning Paul and Jason were placing the CTD units in ice water to spike the temperature sensors and set the clocks on each unit. Using cranes, winches and ropes, the boatswain and his crew in conjunction with the WHOI scientists moved the old Stratus 4 away from the launch site and put the new Stratus 5 in position for tomorrow. All the instruments are being readied and the ship is making a horseshoe-shaped transit as the Seabeam records echo soundings from the ocean floor. Echo sounding is when sound waves are sent to the bottom and then bounced back to a receiver. This can then be used to show the depth of the ocean at that location. The Seabeam can make an 8 kilometer-wide reading as the ship moves along. The computer display of the ocean floor looks like several parallel ridges. Bob Weller says the ship is also running parallel to those ridges which will aid in the placement of the anchor. If we were going perpendicular to the ridges the anchor deployment would be more difficult and hampered by the ship going against the trade winds.

We had our weekly fire and abandon ship drills and they announced that we are over 800 nautical miles from Chile. The San Felix islands are about 300 nautical miles from here. All of the WHOI guys have turned in early because tomorrow is an even bigger day than yesterday!

Personal Log

OK. I know I wimped out last night. Sorry. So today I’ll try to do better. Besides being really tired last night, it was windy and the ship’s motion tossed me back and forth in the bed. All night long I had the instinctive feeling that I needed to hang on tight to the railing. Even when I was asleep, there was a persistent apprehension in the back of my mind that I was about to be thrown from my bed!

Yesterday, everyone worked outside so much that today we’re all sunburned and have red noses. It doesn’t seem to matter how much sunscreen I use, the sunrays still penetrate and zap me.

I’ve been working on my lesson plans and, boy, do I have some of the greatest resources! Chris and Dan, the meteorologists sat down with me and we brainstormed some radiosonde lesson plan ideas. Diane has given me some great input and is helping it all come together. I want these lesson plans to be useful, practical and interesting all the while meeting or exceeding our state and national education standards.

It’s a beautiful sunshiny day (which is rare here) and the white capped waves skipped across the indigo-colored waters as far as the eye could see. Very picturesque. I wanted to go out to the ship’s bow but the wind was whipping around too strongly. I enjoyed watching the guys move the two buoys into position. It’s fascinating to watch big machinery work. My stomach got a little tense when the buoy was suspended by ropes in midair and the ship’s motion caused it to swing. There’s just not much room for error on the fantail because there’s equipment stored everywhere. But the guys did a great job and made it look easy. “All in a day’s work” is what they say. I’m still impressed.

“Chester”, one of the young men in the Chilean navy, just showed us his CD photos of Antarctica, when he was there for research and training. His research was with whales. He said that he took biopsies of whales. That sounds dangerous to me, but the photos were so cool! (pun intended)

I got more emails today from school and family. It always makes me smile to open the messages and read what’s happening back home. It’s an encouragement to know that out of sight doesn’t mean out of mind. I have to say, I’m missing my students. I’ve never realized how much energy they give me. I think about them often. I’ll be glad to see them again in January.

Well, this has been another great day for this Teacher at Sea!

Until tomorrow…

Mary

Mary Cook, December 12, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 12, 2004

Location: Latitude 19°46.24’S, Longitude 85°30.89’W
Time:
7:00 am

Weather Data from the Bridge
Wind Direction (degrees) 145.06
Relative Humidity (percent) 80.68
Air Temperature (Celsius) 19.22
Water Temperature (Celsius) 19.32
Air Pressure (Millibars) 1014.64
Wind (knots) 13.76
Wind Speed (meters/sec) 6.53

Question of the Day

Why are the water and the air temperatures nearly the same?

Positive Quote for the Day

Physical concepts are free creations of the human mind, and are not, however it may seem, uniquely determined by the external world. Albert Einstein, Evolution of Physics

Science and Technology Log

Today’s the big day! The Woods Hole Oceanographic Institution scientists will begin bringing the old Stratus 4 buoy onboard the RONALD H. BROWN. They’ve enlisted the help of just about everyone on the ship. At 6:00 this morning, the sky was dark blue and overcast. As daylight began to creep in, we all gathered in the main lab to prepare for the day’s work. First of all, the scientists triggered the acoustic release at the bottom of the ocean which is about 4400 meters deep. This released the buoy and array of instruments underneath it from the anchor. The 9000 pound anchor was left on the ocean floor. Then we waited.

And waited. And waited some more. It was about 45 minutes in all. We were waiting for the floats to come to the surface. The floats are big glass balls covered in yellow plastic hulls. They’re about the size of a medicine ball. And they are heavy, too. Wouldn’t you think a float would be lightweight? After the floats popped up out of the water, David, Phil, Jason and I went out on the RHIB to hook onto them and tow them to the ship. Once again the RHIB ride was awesome!

Pulling the floats onto the ship began the whole process of reeling in the old Stratus 4 mooring. This took all day. First they reeled in all the cable connecting the surface buoy to the anchor. At the beginning the buoy was a little speck near the horizon but as the cable got shorter, the buoy got closer and bigger until it was just behind the ship. That alone took several hours. When the instruments began coming in, we had to log and photograph each one. Then another RHIB ride was in order!

This was the RHIB ride of my life! Jeff, Diane, Jason, Phil and I went barreling across the swells and hit a wave that bounced Jason into midair for a second or two! I was hanging on with all my might and waves came over the edge right into my face. When we arrived at the buoy the guys hooked onto it and we towed it back to the ship. Then the crew on the ship hauled it aboard with a crane. While they were hauling it in we stayed out in the RHIB and pitched and rolled. That’s when I started to feel a little bit green. Fortunately, we were soon retrieved but on the starboard side of the ship…home, sweet home. We then watched the final removal of subsurface instrumentation. Wow! The Stratus 4 buoy was covered in amazing barnacles! Big ones and little ones. Long-necked barnacles are bizarre looking creatures. They attach themselves to anything in the water, just like suction cups. It’s like they’re stuck on with Super Glue. Once everything and everyone was safely onboard we had a barnacle scraping party. All available hands scraped those little rascals off and threw them back into the ocean. It was a mess but with everyone pitching in things got nicely cleaned. Tomorrow, we get everything ready for the deployment of the new and improved Stratus 5 buoy!

Personal Log

I am so tired.

Until tomorrow,

Mary

Mary Cook, December 11, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 11, 2004

Location: Latitude 19°44.43’ S, Longitude 85°32.17’ W
Time:
9:30 pm

Weather Data from the Bridge
Wind Direction (degree) 134.18
Relative Humidity (percent) 74.66
Temperature (Celsius) 19.46
Air Pressure (Millibars) 1014.06
Wind Speed (knots) 15.04
Wind Speed (meters/sec) 8.14

Question of the Day

When we send the Styrofoam cups down to 3000 meters in the ocean, what will happen to them and why?

Positive Thought of the Day

“I think laughter may be a form of courage. As humans we sometimes stand tall and look into the sun and laugh, and I think we are never more brave than when we do that.” Linda Ellerbee

Science and Technology Log

This morning we arrived at the Stratus 4 buoy site! The buoy looked so small bobbing out there all alone on the ocean. David Owen took Jeff Lord, Phil Pokorski and I for a boat ride in the RHIB (rigid hull inflatable boat). The RHIB is an orange raft-looking motor boat. The RHIB is raised and lowered into the water on a lever lifting device called a small boat launch. We went out to make a quick inspection and to see if the temperature sensors were working. Jeff said it all looked pretty good and there weren’t as many barnacles as he’d expected. He took pictures then we returned to the ship. Today, all the scientists are quietly working on inter-comparison testing with the ship’s sensors and the buoy.

At “6:00 Science in the Main Lab”, we interviewed Jason Smith, an engineering technician for Woods Hole Oceanographic Institution. Jason explained the instrumentation that will be attached to the bottom of the Stratus 5 moored buoy. The first instrument is a temperature sensor, which is an electronic device. It has a resistance that changes with temperature and that resistance can be measured with an electronic circuit. These instruments can also measure conductivity which is an indicator of salinity. In addition, there are various styles of current meters used. Some are mechanical and some use acoustics. All these instruments will be suspended at different depths with most of them concentrated from the surface down to 300 meters. One problem that they encounter is marine animals adhering to the instruments and fouling up their functions. Different types and colors of anti-fouling paints are being tested to see which one inhibits the marine life from sticking to the machinery. Jason emphasized that it was very important to develop an anti-fouling paint that is both environmentally safe and keeps the marine life from setting up housekeeping on the instruments.

This evening, Diane and I sat down to begin writing the children’s book about the cruise. Don’t let anyone ever tell you this is easy. But we’re progressing nicely and I can see an interesting book emerging.

Personal Log

Well, the last thing my mentor, Diane, said to me last night was “Tomorrow will be a more relaxing day”. So I thought, “I’ll sleep in and take my sweet time getting out and about in the morning.” You know, do some of those personal hygiene things we often take for granted like blowing our hair dry and trimming our toenails.

And so there I am peacefully sleeping like a baby being rocked when Diane comes in and says, “Mary, Bob said the RHIB is leaving in about 30 minutes!” At first, I thought I was dreaming, but then I realized, “This is for real!” Anyway, I jumped up and threw on some clothes and ran out to the small boat launch deck. Sure enough, they were getting ready to leave. I made it in just the nick of time! Yeah! Diane and Bob had my life vest, hard hat and radio ready. I grabbed them and climbed in.

The RHIB ride was awesome! It’s funny how the ocean swells look a whole lot bigger when you’re in a little boat than from the ship’s deck. As the boat zipped up and down across the surface, I was hanging on for dear life and ocean spray was splashing me in the face and running down my back to make a puddle right where I was seated. The buoy would disappear then reappear time and again.

Even in all this excitement and adrenaline rush, my mind was thinking about those early explorers like the Polynesians who launched out in small thatched boats. For a moment, I felt a cosmic connection across time and cultures. And then it hit me, “What were they thinking? This is nuts!” I mean they had to be daring and bold of personage to cast their lives onto the rolling, endless waters in search of the unknown. Then, I gazed back on the RONALD H. BROWN, my temporary home, floating like a little toy ship in a great big tub. I like that ship. It’s like my whole universe for the next 2.5 weeks. Then what happens? My universe will disappear and everyone will go to their own real world lives. I’m still trying to wrap my mind around that thought.

After we did a visual inspection of the buoy, we posed for pictures and zoomed back to the mother ship. As David pulled alongside the ship, Phil and Jeff grabbed the ropes and hooked us up to the small boat launch, then, the operator lifted the RHIB aboard. We banged against the boat launch so hard it knocked my hat off! It went tumbling around in the bottom of the RHIB. I felt like one of those persons who loses their hat in the wind and keeps chasing after it.

We were all wet but with great big smiles on our faces. Riding the RHIB was as good as the Zippin’ Pippin’ rollercoaster in Libertyland! I’m ready to go again!

Until tomorrow,

Mary

Mary Cook, December 10, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 10, 2004

Location: Latitude 19°39.97’ S, Longitude 83°40.08’ W
Time: 9:30 a.m.

Weather Data from the Bridge
Wind Direction (degrees) 118.48
Relative Humidity (percent) 70.62
Temperature (Celsius) 18.99
Air Pressure (Millibars) 1015.61
Wind Speed (knots) 12.97
Wind Speed (meters/sec) 7.21
Cloud Type Stratus

Questions of the Day

What does CTD stand for? (answer is found in the previous logs)

What season is it right now in the southern hemisphere?

Positive Thought for the Day

“Life leaps like a geyser for those willing to drill the rock of inertia” Alexis Carrel

Science and Technology Log

Today Bob Weller and Jeff Lord of Woods Hole Oceanographic Institution (WHOI) helped me deploy two more adopted drifting buoys for Viviana Zamorano’s class at the Escuela America in Arica, Chile and Debra Brice’s class at San Marcos Middle School in San Diego, California! Their classes will be able to electronically access the drifter’s location along with the sea surface temperature and pressure. They can then use this information to study the ocean currents.

Late tonight and early tomorrow we will arrive at 19º45.91’S 85º30.41W , the location very near the Stratus 4 moored buoy that has been in the water for over a year. We will hover here for a day and conduct inter-comparison tests of the old buoy’s instruments with the instruments onboard the ship. This is a very important part of the research and data collection because they must prove that the information gathered is accurate. Accuracy of the data is of the utmost importance. After the testing is complete, they will begin the process of reeling in the old Stratus 4. This will take quite a while because there’s about 3 miles of cable to bring onto the ship. Then the old Stratus 4 will be hoisted onboard. I’ll give more details about the new Stratus 5 deployment as the time draws near.

This evening we interviewed Jeff Lord for “6:00 Science on the Fantail”. Jeff is a senior engineering tech for WHOI. He’s intricately involved in the new design of the Stratus 5. Jeff said that two really big changes in this new design are the construction materials and the modular-style architecture. The buoy is made of Surlyn foam, a tough but soft and buoyant substance. It can withstand wear and tear of whatever the ocean environment throws at it. Also, when taking it in and out of the water, if it bangs into the side of the ship, no problem! The other new design aspect is that the Stratus 5 can be taken apart and shipped in closed containers. The old Stratus design has a big aluminum hull that is one solid piece. It is too big to fit in a closed container, therefore the end of it sticks out about two feet. Jeff said that nowadays, transporting in open containers is very difficult because it limits the stackability and transportation companies find it difficult to deal with. Jeff also told us about the cables and ropes attaching the buoy to the 9000 pound anchor. The upper section is made of strong cable wire that can support the instrument packages and resist being bitten in two by fierce sea creatures. Then there’s lighter nylon rope that goes down nearly to the bottom and the last portion is made of a buoyant material so it doesn’t drag on the seafloor and get tangled. Jeff said to just wait until the old buoy is reeled in and new one deployed because it’s an impressive operation!

Personal Log

Today has been a good day. I like throwing the drifter buoys overboard. It only takes a few seconds but it makes me feel part of something important, something important on a global scale. This evening the sky is overcast but beautiful nonetheless. It’s cool and fresh out on the deck. I smiled to see that Phil has donned his reindeer antlers to set the holiday mood. Diane has been taking pictures of everyone and posting them on the doors. Bruce completed another great illustration for our book. It’s been approved for me to tour the engine room! The WHOI guys are getting excited because time is drawing near for the big buoy.

This afternoon I worked on developing lesson plans based upon the science work being done on the ship. I’m very excited about coming up with some practical and interesting lessons. Tonight during my watch, I am operating the radio as the Chilean university students perform a 3000 meter CTD cast. It takes about 3 hours to complete. Several of us have decorated Styrofoam cups and sent them down with the CTD rosette. Many people put Christmas greetings on them. Some of the Chileans put an American flag and a Chilean flag on their cups. I drew the Ron Brown ship with a “Christmas star” overhead. We are anxiously awaiting their return from the depths of the deep blue sea. I just found out that watch duty is suspended for the next five or six days! My watch times are good because they’re during waking hours but some people have the night shift plus an afternoon shift. So they’ll get a much needed break and get to sleep the night through instead of catching a nap here and there. Like I said, today has been a good day.

Until tomorrow….

Mary

Mary Cook, December 9, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 9, 2004

Location: Latitude 19°39.99’ S, Longitude 80°16.85’ W
Time: 8:30 am

Weather Data from the Bridge
Wind Direction (degrees) 138.27
Relative Humidity (percent) 84.01
Temperature (Celsius) 18.65
Air Pressure (Millibars) 1014.24
Wind Speed (knots) 12.00
Wind Speed (meters/sec) 5.10

Thought for the Day

“No man who has once heartily and wholly laughed can not be altogether irreclaimably bad.”
Thomas Carlyle (1795-1881) Scottish writer

Science Log

This morning we are passing over a significant underwater ridge called the Nazca Ridge. The ridge is a series of mountains rising from the ocean floor. Yesterday, the ocean bottom was 5,000 meters down. This morning it was just 960 meters deep. We dropped CTD’s over this shallow area and we had to be very careful not to let them hit the bottom. When I was operating the radio for the CTD commands to the winch, I accidentally said “Bring it up at 600 meters per minute” (It was supposed to be 60 meters per minute). Thankfully, that speed is an impossible one for the winch to do! Because it would have shot out of the water like an Olympic sprinter!

Congratulations to Mary Castleman, an eighth grader at Southside Middle School in Batesville, Arkansas! She correctly answered the “Question of the Day”. Mary said, “A muster station is a place where people get together before going to a lifeboat loading station.” Thanks, Mary, for your extra effort!

At “6:00 Science on the Fantail” tonight, we interviewed Paul Bouchard, the senior engineering assistant for Woods Hole Oceanographic Institution. Paul is a hard worker with a good sense of humor. His job is to prepare, maintain, and repair all the various units of instrumentation on the Stratus 5 mooring so the scientists can analyze the data retrieved. Paul explained all the instruments mounted atop the buoy. There are instruments that measure temperature, relative humidity, precipitation, air pressure, short and long wave radiation, wind speed and direction, Also, there are several units that extend underneath the buoy for a few hundred meters that record temperature, conductivity, depth, and water current. These instruments take readings every minute and send the data via satellite every hour. The Stratus 5 mooring is the most sophisticated array of instrumentation for the collection air-sea interaction data in the world! Another amazing fact is that there’s five miles of rope and chains connecting the buoy to the anchor at the bottom of the ocean floor. Paul said that all the instruments are battery powered. Three thousand “D” cell batteries are used to keep it going for over a year! The buoy has a “bleeper” on it to alert ships so they won’t run into it. The Stratus 5 will be deployed in three days! It’ll be a big moment. For the last year, lots of hard work, problem-solving, dreams and money have gone into the Stratus 5 and soon it will finally be a reality.

Personal Log

This afternoon, I had to find the laundry room because well, I didn’t have any clean clothes left to wear for tomorrow. So I ventured into the bowels of the ship in search of the laundry room. It’s five decks from my stateroom. That’s a lot of stairs to climb up and down. Actually I need the exercise. Anyway, while my clothes were washing, I ran back upstairs to help Frank Bradley do the 2:00 radiosonde launch. With that completed, I then ran back down the stairs to put the clothes in the dryer. Then, I walked back up to the main lab and answered a few emails. After about 20 minutes, (you know the drill) I went back down to fold my clothes then carried them up five flights to my room. So I sat down on my bed to rest for just a minute and woke up an hour later!

After interviewing Paul, Diane and I decided we wanted our picture taken on the most sophisticated mooring instrument in the world. So we climbed around on it and had an impromptu photo session.

I’d like to say that I’m enjoying all the emails from students, friends, and family. You make me smile. I’m happy that you’re interested enough to send me a message. And too, it makes me feel connected even though I’m way out here in Pacific. So keep ‘em coming!

Until tomorrow,

Mary

Mary Cook, December 8, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 8, 2004

Location: Latitude 19°39.99’S, Longitude 77°07.27’W
Time: 8:30 am

Weather Data from the Bridge
Wind Direction (degrees) 126.27
Relative Humidity (percent) 72.01
Temperature (Celsius) 18.87
Air Pressure (millibars)
Wind Speed (meters/sec) 7.30
Cloud Type Stratus at 2810 feet

TODAY’S BIG NEWS!

I tossed the first adopted drifting buoy overboard with the help of Dr. Bob Weller of Woods Hole Oceanographic Institution! My eighth graders and I at Southside Middle School in Batesville are proud to be the first school to adopt a drifting buoy. We will periodically access the buoy’s coordinates online and track it as it moves with the ocean currents. It’s a great feeling to be a part of this important scientific endeavor!

Question of the Day

How do you think I can determine the exact elevation of the clouds?

Positive Quote for the Day

To be capable of steady friendship or lasting love, are the two greatest proofs, not only of goodness of heart, but of strength of mind. William Hazlitt (1778-1830) English essayist

Science Log

Yesterday evening, we had our first interview with a scientist. We’re going to try and schedule one every evening and call the session “6:00 Science on the Fantail”. The fantail is the back of the ship. It’s flat and open with an A-frame used to hoist and guide objects off of the ship. Alvaro Vera is an engineer with a Master’s degree in oceanography and is from the Chilean Armada (Navy). Alvaro and his team have been working for over a year preparing to deploy the first tsunami buoy in the Southern Hemisphere. They have trained in Seattle and gotten the buoy ready for this moment. A tsunami is a wave generated by an undersea earthquake. The instruments for this buoy can detect changes in pressure at the bottom of the ocean as small as 2 centimeters and will give the coastal areas about one hour warning. He said that about 100 years ago a tsunami devastated Arica on the coast of Chile. For this reason and continued threat, it is important that the Chilean population living along the coastal areas have ample warning of an impending tsunami.

Today, we sent several Styrofoam cups down to 1500 meters depth in the ocean. We decorated the cups with drawings, the date and location, then put them in mesh bags. When the cups were brought back to the surface they were miniatures! Styrofoam has air between the particles and as the water pressure builds during the descent the air is forced out and the cup is compressed.

This afternoon, two acoustic releases were tested. An acoustic release is used to release the buoy from the anchor at the bottom of the ocean by using a signal from the surface. One worked. The other did not. The working acoustic release will be used with the Stratus 5 moored buoy that is scheduled to be deployed this weekend. The acoustic release will sit at the bottom of the ocean with the anchor until this time next year. When the scientists come back to replace the Stratus 5 buoy with the Stratus 6 buoy, they’ll signal the release and it will separate the anchor from the buoy. The anchor is then left on the ocean floor.

Personal Log

This evening I went out on the ship’s bow and took a deep breath. My, the ocean is big. And blue. And deep. And always moving. Who can comprehend it? I know I’m just a little speck floating along the surface, but for some reason I don’t feel insignificant. I feel satisfied. And curious. I wonder how the early seafaring explorers felt? It doesn’t seem to matter whether I’m working in the lab, answering emails, wearing a hard hat and life vest on the fantail, or just sitting on the bow looking over the shimmering water, I really like what I’m doing. I’m getting to know some of the other people on board. As we waited for the acoustic releases to be pulled up from a depth of 1500 meters, I had the opportunity to just hang out with Bruce, Bob, and Paul. Bruce did his pirate’s “Aarrrgh” and told a bit about the true story of Moby Dick. Bruce Cowden is the ship’s boatswain. He and his crew keep the ship in working order. He’s also an artist and is illustrating a book about our cruise. His artistic talent is impressive. Everyday, I eagerly await his next illustration. Bruce designed the tattoos around his ankles which resemble Tahitian tiki idols. He said there’s one for each of his two sons. Bruce let me operate the A-frame hoist on the back of the ship as they were lowering the acoustic releases into the water. I felt like “Bob the Builder”! I have to say it is fun operating big machinery!

Today, I learned that both Jonathan Shannahoff who is the man in charge of all the CTD launches, and I have been to Lake Baikal near Irkutsk, Russia. I enjoyed sharing and looking at the pictures of his trip.

It seems to me that the people on this ship have been everywhere in the world. They’re just amazingly intelligent and adventurous individuals.

Until tomorrow,

Mary

Mary Cook, December 7, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 7, 2004

Location: Latitude 19°41.54 S, Longitude 74°55.66 W
Time: 10:00 am

Weather Data from the Bridge
Wind Direction 156.10
Relative Humidity (percent) 70.98
Temperature (Celsius) 19.07
Barometric Pressure (Millibars) 1014.09
Wind Speed (Knots) 12.46
Wind Speed (Meters/sec) 6.51
Cloud type: Stratus at 2950 feet

Question of Day

What is a muster station?

Personal Log

It’s another great start for this seafaring teacher! A pod of about 12 pilot whales are hovering around the ship. They’re black with a crescent-shaped dorsal fin that breaks the water surface like a shark’s fin. It looks like they are about 10 feet long and I can hear a swoosh as a spray of water shoots up into the air when they exhale. As I was standing on the deck scanning the ocean for the whales, the cool breeze in my face, I was thinking how blessed I am to be here and my heart swells with gratitude for the grandness of it all. I just love to look out over the horizon where the sky meets the water and I wonder what other magnificent creatures are lurking below!

Today, I will be working a small part of the CTD deployment in conjunction with the Chilean Armada (Navy) team. CTD stands for conductivity, temperature, and depth. The CTD array contains a series of canisters that are opened at various depths to collect water for gas and nutrient sampling. As the data are collected and displayed, they will locate the ocean’s thermocline in this area. The depth of the thermocline can be used as a component to better understand El Nino which can affect worldwide climate changes. My job as part of the CTD deployment is to be the English speaking person on the radio to relay information to the winch operator as the CTD rosette is being lowered into the water and then brought back on the ship. We had an extensive meeting with all people involved and ran a practice deployment to make sure responsibilities and communications were clearly understood. Everything must run smoothly like clockwork or expensive equipment could get damaged or even worse someone could get injured. A lot of prior research time, effort, and money have gone into these projects and it would be a shame to botch a deployment.

Frank Bradley and I just successfully launched another radiosonde (weather balloon). After we launched it, we went back into the computer room to check the data being transmitted. Dan Wolfe explained that according to the data the thick, overcast stratus cloud layer was thinning. Shortly thereafter, the sun popped out and it was a gorgeous, bright sunshiny day!

Jeff Lord helped me get our drifter buoy out of storage and I placed the stickers of the Southerner man and all the 8th graders’ signatures on it. Southside School is the first school to ever adopt a drifting buoy. We are excited to be one of the first schools involved in the “Adopt a Drifter” program.

At 6:30 this evening, Diane and I will conduct “Science on the Fantail” with Alvaro Vera, leader of the Chilean Armada group that deployed the tsunami warning buoy. I will report on his interview tomorrow. I have watch duty from 20:00-24:00. During nighttime watches, I may have to go outside in the DARK. It’s really, really dark out here, too! All the ship’s outside lights are turned off. Anyway, if they deploy buoys at night I have to go out and help do whatever they need. While working on the deck at night everyone must attach a strobe beacon to themselves so if they fall overboard someone will be able to see them in the dark ocean waters. “Hey, who’s afraid of the dark?”

Until tomorrow, I’m signing off.

Mary

Mary Cook, December 6, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 6, 2004

Location: Latitude 19° 50.49` S, Longitude 73° 22.51`W
Time:
8:30 am

Weather Data from the Bridge
Wind Direction (degrees) 144.45
Relative Humidity (percent) 68.72
Temperature (Celsius) 18.65
Barometric Pressure (Millibars) 1012.77
Wind Speed (knots) 11.36
Wind Speed (meters/sec) 5.51

Question of Day

Based on the name, what do you think a thermosalinograph measures?

Personal Log

Good morning, everyone! Wow! What a great way to get a good night’s sleep, in a gently rocking ship. It’s like sleeping on a waterbed. The morning shower was a challenge, though. Being wet and soapy even on a gently rocking ship could be very dangerous. After breakfast, we met with Dan Wolfe and Chris Fairall for radiosonde deployment training. A radiosonde is a really cool giant helium filled balloon with instruments attached to a cord dangling beneath it. The radiosonde must be assembled and calibrated before launching. As the instruments detect the relative humidity, wind speed, wind direction, and temperature readings they transmit these data back to the computer onboard the ship. A radiosonde lasts for about one and a half hours and goes about 20 kilometers (12.4 miles) high. Dan actually deployed a radiosonde and we watched it go up, up and away! Then we went back into the lab and observed the data coming into the computer. I can’t wait until it is mine turn to deploy a radiosonde!

Our next training session was led by Jeff Lord and he showed us how to deploy the drifter buoys and the Argo floats. These are fairly simple to get into the water. Just record their identification numbers, fill in the log sheet for time, date, GMT, latitude and longitude, then toss them overboard. The drifting buoys are small and they measure surface temperature and pressure. The drifters have a long caterpillar-shaped drogue extending far down into the water that ensures the buoy will drift with the ocean currents and not the wind. In a few days we will deploy the first of fifteen drifter buoys and my students at Southside School will adopt this one and keep track of it online. I am amazed at the designs of all these instruments. It’s almost unbelievable what ingenuity has gone into these designs. Some are high-tech and some are low-tech but they all work together to obtain the necessary data for the scientists.

The Argo floats sink down to 2000 meters then float to the surface. On their way up they measure temperature and salinity. When the float reaches the surface, it then sends the information to a satellite. The float has a bladder that deflates and it sinks again to repeat the process. The Argo floats can keep on going for two to four years depending on their battery life.

After our training sessions, Diane and I sat down with Bruce Cowden, the ship’s boatswain, who’s also an artist, to brainstorm for a children’s book about the science work of this cruise.

At 1415, we had our “surprise” safety drills: a fire drill and an abandon ship drill. The fire drill was pretty simple. Upon hearing the alarm, we reported to our muster stations. Then the chief scientist called the bridge and said that all persons were present.

The abandon ship drill was quite another story. When we heard the alarm, we had to go to our staterooms to get our life vests and emergency bag containing the big red “gumby suit”. Then we went to our lifeboat station and put on the suit. Its purpose is to keep you dry and afloat in the event you were forced to abandon the ship.

Diane and I are taking water surface temperature readings every thirty minutes. This is really kind of fun. There’s a thermometer in a tube-shaped “bucket”. The bucket is attached to a long cord. We then swing it over the edge of the ship into the water until the bucket fills up. We raise the bucket and read the temperature immediately. This is compared to the temperature reading on an instrument mounted underneath the ship called a thermosalinograph.

Later this afternoon, we finally arrived at the deployment site for the Chilean Armada tsunami buoy. We are about 200 miles off the coast of Chile. The ship hovered over the location while the buoy was hoisted by a crane then swung over the edge and lowered into the water. At this time the men are unrolling over 5000 meters of cable to attach to the anchors which happen to old railroad wheels. It will take about one hour for the anchors to sink to the bottom of the ocean. The bottom pressure recorder will then be lowered. It detects the slightest changes in pressure as small as two centimeters and sends messages back to the surface buoy which then relays that to a satellite which has direct ground communications. The ship will stay in this position for a few hours to make sure the tsunami buoy and ground pressure recorder are communicating with each other. A RHIB ride is in the near future!

And I hope I’m on it. RHIB stands for rigid hull inflatable boat and they go really fast! Some of the workers will be riding out to the tsumani buoy to check everything out before we leave it.

I’ve just found out that I will have morning watch each day from 0800 until 1200. Everyone on board is assigned a daily four hour watch duty. My duty will be in the main lab and I will stay in contact with the bridge and help out when needed.

So tune tomorrow for more on our exciting adventure!

Mary.

Mary Cook, December 5, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 2-5, 2004

Personal Log

This afternoon we will board the NOAA Research Vessel RONALD H. BROWN and depart from Arica, Chile and steam westward for the Stratus buoy. I look forward to this adventure with great anticipation and a little trepidation. I’ve never been out to sea for three weeks and can’t help wondering how I will react to this challenging environment. I’ve already met several of the crew and scientists, all of whom have been very cordial and hospitable. I look forward to interviewing them, working with them and just getting to know these incredible people who’ve dedicated themselves to this research effort that will help us better understand the Earth’s systems and benefit mankind in so many ways.

As I reflect upon the last few days since we’ve arrived in Chile, I am overwhelmed by all the wonderful experiences that have been bestowed upon me. First of all, I must mention my mentor Dr. Diane Stanitski. She is a great teacher and a sincere encourager. She is patient yet exudes an energy that’s contagious. Diane has already gained my trust and I look forward to her continued mentoring. Another person with whom I have worked closely is Dr. John Kermond. Dr. Kermond’s the movie-maker. He makes documentaries for NOAA. He’s a very good coach for a novice like me, and a fine tour guide, too. Both he and Diane have put me at ease, modeled proper on-camera techniques and given me advice that’s helped me considerably. I like being their student because I’ve witnessed their expertise and I know they genuinely have a love for this work. What more could a student ask for?

Well, let me tell about some of the sights we’ve seen in the last couple of days while waiting for the cruise to begin. We’re staying at the Hotel Arica. It’s a resort situated right on the beach. I can hear the big waves crashing on the rocks and smell the salty air from my room. It’s a very comforting sensation. The first morning here as I walked along the beach and out on the rocks looking at the ocean, I couldn’t wipe the smile off my face! There’s just something about it that causes my spirit to soar. It’s so mysterious and grandly beautiful.

Then Diane and I went to the ship to participate in a tour for school children from the Escuela America. The mayor of Arica and the local television station were there, too. The kids were great, well-behaved and asked interesting questions! They were third graders and eighth graders. This tour is part of the education efforts of the NOAA.

After the tour, we went to the top of El Morro, a hill that looks like a giant mound of sand. It stands guard over Arica with a statue of an open-armed Jesus overlooking the city and the harbor. We shot a movie clip of Diane and me giving a brief history of Arica.

The next day we journeyed into the Atacama Desert and Andes mountains to have a look. But first we stopped to get water and food because we were going into such a remote area. Wow! The Atacama Desert is one of the driest places on the Earth. It’s a stark yet breathtaking sight to behold. Even though this is a desert there’s abundant evidence of water erosion where a multitude of rounded rocks have been carried into gullies.

As we were driving we suddenly began to see some interesting cacti. These were the Candelabro cacti which grow only between 2500-2800 meters elevation. They have a narrow life zone and are fragile for that reason alone. We were told by a local Chilean woman that they grow very slowly and only after about 30 years will the cactus begin to grow the branches at the top. Diane and I also collected a few rocks to take back to my classes.

As we continued along the main highway that connects Bolivia to the ocean, we stopped at Pueblo de Mallku. This is a village of six! Actually, it’s a homesteaded property of a very interesting family who are conducting the Center for Renewable Energy Resources in conjunction with the university in Arica. They live out in the middle of the desert in a nearly subsistence lifestyle with their closest neighbors being several miles away. They were eager to show us their setup which was quite amazing. They have a solar oven, solar water heater, and a high-tech electrical generator. They have built their dwelling from hand-mixed adobe and cactus logs. They home school their children who’ve compiled a book of local plants and animals along with traditional indigenous Chilean instructional songs on cultivation and medical uses of the plants. During our visit they served us tea with bread and jam. It was quite tasty. The tea was a concoction of leaves and boiling water that will help a body adjust to the extreme altitude.

After we said our goodbyes, we continued to ascend toward the Chungara Lake area. As we went higher and higher on the winding road, two snow-capped volcanoes came into view! I noticed the air started to get very chilly and it was windy. We saw llamas and alpacas grazing in the mountain meadows along the snow-melt streams from the mountaintops. These animals are curious critters! When we stopped for a photo op, they’d perk up their ears, take a long look at us, chew for awhile as though they were thinking about us, then move away occasionally looking back to see if we were looking back. We were fortunate to get to meet a pet alpaca named Cookie. Cookie likes to eat cookies. She was owned by some merchants who had a craft stand near the border stop. John dug out the last of the coconut cookies and shared them with Cookie. She was a true blue friend after that! Cookie’s fur is thick wool and can sell for a high dollar in the U.S.

At this point we were at about 14,000 feet elevation and I was really feeling it. I had a headache, dizziness, and my leg muscles were quivering from fatigue only after a short walk. I didn’t drink enough tea back at Pueblo de Mallku! So we got back in our trusty Puegot and descended to a village called Putre. Putre is a town that caters to tourists. They were happy to see us and very outgoing. Everyone we saw said “Hola” and waved with a smile. We went into a tiny grocery store and purchased supper. We had meat, egg, and olive stuffed empanadas followed by a delicious fig and coconut pastry.

We then took the long and winding road in total darkness back to Arica.

Now I am aboard the NOAA Ship RONALD H. BROWN and we’ve been sailing for six hours. No land in sight. We’ve had two meetings and a delicious supper in the galley. They have an interesting sign in the eating area that says, “Eat it and beat it” There aren’t enough chairs to seat all 45 people at once so when we finish eating we must get up and go elsewhere. It seems everyone has lots of work to do anyway.

Our first meeting was about ship rules and regulations with a focus on safety. We will have our surprise fire drill tomorrow at 2:15 pm promptly! Our science meeting was about the several scientific endeavors and the logistical problems to solve. Our chief scientist Dr. Bob Weller of Woods Hole Oceanographic Institution, encouraged us all to be helpful and considerate.

Some members of the Chilean Navy and Concepcion University are on board to deploy a tsunami detecting buoy which will get underway tomorrow afternoon. We will be deploying CTDs (conductivity, temperature, and depth sensors), and ARGO floats which go down 2000 meters then float to the surface measuring salinity and temperature. Once they break the surface then they send the information to a satellite. These floats then go back down and do it all over again. We’ll also be sending up radiosondes (weather-balloons) and tossing out drifting buoys which measure temperature, pressure, and ocean current pathways. Then the “biggie” is the Stratus 5 buoy! We’ll be out into the Pacific Ocean about 800 miles off the coast of Chile when we do this work which will take about six days. All this stuff is so cool I can’t believe I actually get to witness and participate in even a small way! I’m amazed. I’ll be giving you more information as the time comes so stay in touch and don’t forget to look at the pictures.

Mary

Kevin McMahon, August 7, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 7, 2004

Weather Data from the Bridge
Lat. 42 deg 33.05 N
Lon. 68 deg 23.03 W
Heading 349 deg
Speed 0 kts
Barometer 1007.91 mb
Rel Humidity 83.96 %
Temp. 16.68 C

Daily Log

0800 hours. The past evening was spent steaming to this point where we are on station. The ship will remain here for all of the morning and part of the afternoon. We will await a fly over by the J31 as well as the NASA DC8. Many of the scientists onboard will also set their equipment with the use of a satellite due to pass overhead in the early afternoon.

My morning was spent helping Dan Wolfe, one of the NOAA meteorologists repair an electrical problem which had disabled the sensors that relay air temperature and relative humidity to computers aboard ship. As you can see from the photos, this was not something you would find in the job description for meteorologists. To solve the problem Dan had to climb up to a crows nest like platform on the masthead near the bow of the ship and then perform a diagnostic test on the electrical circuitry for the systems.

It was finally discovered that a switch box had allowed moisture to enter through leaky gasket. In all, the task it took several hours to complete.

During the time we were engaged with the repair we started to notice a small school of dolphins moving closer to the ship. At first they seemed to keep a distance of about 100 yards but after time, small pods of four or five would move in closer to the ship and investigate our presence in their world. I believe that this type of dolphin is known as the Atlantic White Sided Dolphin. As we were stationary in the water, a flock of shearwaters could be seen loitering off our stern and starboard side. They are a wonderful seabird to watch as they seem to effortlessly propel themselves through the air with a continuous glide, using a ground effect air flow created by an updraft of the sea waves. The dolphins would at times glide under the floating shearwaters and make them alight from the water. They seemed to enjoy this form of teasing as they repeated the act over and over.

During the afternoon I helped Drew Hamilton take more sun readings with his Sunphotometer. As I stated in yesterdays log, the sunphotometer measure the intensity of the suns direct radiation. Because we had a couple of aircraft fly over us today, the J31 and the DC8, and because those platforms contain the same equipment as that aboard the ship, we were able to validate our readings.

Question

Why is it important to have standardized equipment when conducting the same types of experiments by different people in different locations?

Kevin McMahon, August 5, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 5, 2004

Weather Data from the Bridge
Lat. 44 deg 03.77 N
Lon. 68 deg 18.53 W
Heading 210 deg
Speed 8.7 kts
Barometer 1005.7 mb
Rel Humidity 79.8%
Temp. 15.4 C

Daily Log

0800 hours. We have left behind the protective cove in the shadow of Mt. Desert Island and are now in the Gulf of Maine of 235 degrees along the Maine coast. The skies ahead look more threatening than the skies we are leaving behind.

1130 hours and we are just off Matinicus Rock Lighthouse. I spent about one hour in the engine room with Keegan Plaskon who is the ships 3rd engineer. A very sophisticated propulsion system not to mention electrical systems, HVAC, and desalinization systems for the ship.

The RONALD H. BROWN is known in the trade as a diesel electric ship. It propulsion system is somewhat unique in that it uses diesel engines to generate electricity which in turn is used to power the motors turning the propellers. On most vessels of this size, there is a direct connection between the diesel engines and the propellers.

The propeller system is also unique in that there is no rudder system to steer by. With the propellers connected to what is known as a thruster, the two aft propellers can be rotated independently of each other a full 360 degrees. When the two aft thrusters are synchronized with the bow thruster and tied in with the ships GPS system, it allows the team of scientist onboard to remain on station in one place for an extended period of time. Wind, tide and currents can be overcome. Last evening we stayed in one position in a small bay near Bass Harbor, ME with the ships bow pointed into the wind. Although the wind was only about 4 knots out of the northeast, the tidal flow was running about seven knots at its peak.

There are three large diesel engines onboard whose primary use is propulsion. Each is a 16 cylinder Caterpillar (Cat 3500). A single Cat can propel the ship along at about 7 knots. As more speed is needed, the other two Cats are brought on line. The top speed of the ship is about 14 knots. But the ship also uses it diesel engines for other needs. There are three other Cats onboard. They are smaller engines with 8 cylinders each. These engines are used to provide the ship with the needed electricity for everyday use, and the BROWN uses a lot of electricity. Besides the need the scientists have for electricity, there scientific equipment runs on 110 AC just like in your TV and refrigerator home. The ship uses its generators to make fresh water, provide climate control, refrigerate its food supplies, and run the sewage treatment system, its navigational system and what seems like an endless list of other needs.

What is the fuel consumption like? I am told that the ship consumes between 5 & 6 thousand gallons of fuel per day.

Question

If there are about 75 scientists and crew aboard, how many gallons are needed per hour per day for each person per day?

The vessel is also capable of producing 4,000 gallons of water per day but that on a normal day the people onboard consume about 3,000 gallons per day for consumption, personal hygiene, toilets and industrial uses.

Question

How many gallons is this per person per hour per day?

Kevin McMahon, August 4, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 4, 2004

Weather Data from the Bridge
Lat. 44 deg 07.58 N
Lon. 68 deg 01.74 W
Heading 035 deg
Speed 7.6 kts
Barometer 1005.17 mb
Rel Humidity 98.3%
Temp. 15.5 C

Daily Log

0700 hours and we are off Mount Desert Island. The air is cool with a light fog over the water and partly cloudy skies above.

The morning was spent on a heading of 035 degrees as we continue our move to the Northeast. I am told that we will just make it to the boundary area between the U.S. and Canadian border. Then we will reverse our course. It is hoped that by being close to the coastline and with the winds cooperating that the ships scientist will be able to measure some of the organic biogenics being produces by the forests of Maine. The relationship between the Volatile Organic Compounds (VOC) which are natural in nature, and man made pollutants produced by the combustion of hydrocarbon products is one of the areas that scientist are working to understand.

0930 hours. I have been spending some time on the bridge transferring the Ships Sighting Log to an Excel Spreadsheet File and then putting the file on the ships website so that some of the scientist can compare their pollution data with various ships we have encountered.

I had a brief tour of the LIDAR (Light Radar) operation today. But we needed to cut it short as they were in the middle of a software problem. I plan to return tomorrow when the equipment is functioning more reliably.

1600 hours.

Weather Data from the Bridge
Lat. 44 deg 06.37 N
Lon. 68 deg 12.10 W
Heading 220 deg
Speed 7.4 kts
Barometer 1003.89 mb
Rel Humidity 88.96%
Temp. 15.35 C

We seem to be charting a course to enter one of the many fiords around Mt. Desert Island, ME.

2030 hours. We are in a fjord near Mt. Desert Island off the town of Bass Harbor. Instead of setting the anchor, the ship will hold position with its bow into the wind using its thrusters which are controlled by the GPS system. The plan is for the atmospheric sensors to measure the organic biogenic compounds which are produced by the forests of the surrounding area.

Kevin McMahon, August 3, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 3, 2004

Weather Data from the Bridge
Lat. 43 deg 38.65 N
Lon. 69 deg 43.93 W
Heading 096.4 deg
Speed 7.9 kts
Barometer 1009.84 mb
Rel Humidity 99.47%
Temp. 16.5 C

Daily Log

0635 hours and we are in dense pea soup fog.

1120 hours. We have been delayed by the fog but are now underway at a very slow speed, fog horn sounding every minute. The ship need to travel about 10 miles to the entrance to Boothbay harbor so that we can put ashore by launch one of the scientist and bring back to the ship another of the NOAA scientist who has been working at Pease.

I am starting to hear other fog horns in the distance. I spent some time on the bridge. The radar’s give a very accurate view of what’s around us, shoreline as well as vessels large and small in the area, but still it is not perfect and hence the need to proceed slowly.

We made it in very close to the entrance to Boothbay Harbor. I was hoping to get some pictures of the area but we were entirely fogbound. One scientist was sent ashore at approximately 1330 hours but then the return of the launch with the replacement took longer than anticipated. Apparently they became lost in the fog on their return to the ship.

We spent most of afternoon south of the Boothbay area traveling in an east west pattern taking air and water samples. We seem to slide into and out of dense fog…

I spent about an hour today on the bridge. The ability to track and identify an object at sea is so common now that it is taken as a guarantee of safety. The personnel on the bridge made it abundantly clear that it is not.

It is amazing to me that the same technology which is used to see and identify ships at sea is in a way the same technology that allows many of the scientists onboard to identify and measure many different species of chemical compounds.

Question

What size are the smallest particles we can measure in our Chemistry lab at Grady H.S.?

Kevin McMahon, August 1, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
August 1, 2004

Weather Data from the Bridge
Lat. 42 deg 56.49 N
Lon. 70 deg 33.31 W
Heading 235 deg
Speed 8.2 kts
Barometer 1015.4 mb
Rel Humidity 90.2%
Temp. 18.2C

0740 hours. We spent most of the past evening in a stationary position very near the Isle of Shoals. A very beautiful moonlit evening. We now are on a heading almost due east of the Isle of Shoals, again looking for the NYC, Boston plume.

It is a continual quest, not quite like Ahab and his search for the white whale but a quest none the less. The scientists aboard the RONALD H. BROWN have embarked upon a continual search. Someone once said that one of the great joys in life is getting nature to give up one of her secrets. Meaning that the fun and excitement in science is learning how things work. Each in his or her way is really trying to gain an understanding of how the world works.

Today I spoke with Hans Osthoff. He is a young man with an intense desire to learn about the chemistry of our atmosphere. Hans works for NOAA at the Aeronomy Laboratory in Boulder, Colorado. As a young boy he developed a love for chemistry and stayed with it. He now has advanced degrees in Analytical and Physical Chemistry.

Aboard the ship he runs a piece of equipment which is extremely sophisticated. It is called a Cavity Ringdown Spectrometer. It can measure the diffusion of light as it is passed through a sample of air which is contained in a copper tube. At each end of the copper tube there are parabolic mirrors. As a beam of laser light enters the tube, it bounces back and forth many times before exiting at the other end. The time the beam of light spends in the tube is measured and allows scientists to measure concentrations of:

NO2 NO3 N2O5

Once the concentrations have been found, the scientist can then calculate the reactions rates and the products which will be introduced to our atmosphere.

In the end, we will all gain a better understanding of our atmosphere and hopefully learn how to better maintain our environment.

Question

Can you name the three compounds above?

Kirk Beckendorf, July 31, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 31, 2004

Daily Log

This will be my last day in New England with NEAQS-ITCT. Tomorrow morning I leave my hotel at 3:00 AM to drive to the airport to fly home to Oregon. The past month has been an amazing experience. I have been continually amazed at the complexity, cooperation and coordination involved in this massive air quality study. I have seen that the scientists are an extremely intelligent and hardworking group of men and women. They are truly committed to obtaining a thorough and accurate understanding of our global society’s air pollution problem so that solutions can be obtained.

Today Fred took me onto the WP-3, another of NOAA’s planes being used in NEAQS. Unlike the DC-3 which only has a LIDAR on board, the P3 is packed with many different scientific instruments. To be able to make as many measurements as possible, equipment is also attached underneath the wings, under the fuselage and even sticking out from the tail is a special cloud radar. The windows and body have been modified so that specially designed tubes stick out and suck air from the outside and feed it to the instruments inside the plane. Once we have climbed up the ladder and are inside, we can barely get passed the door.

In a couple of hours the P3 will take off for a night flight, but right now the plane is not only packed with the equipment, it is also packed with scientists making last minute adjustments to their instruments. Because there are so many air quality measurement instruments on board, there is very little room for people during the flight. Therefore the instruments need to be ready to run on their own with very little supervision.

Much of the equipment is similar to that found on the BROWN, but the plane will obviously be taking measurements higher in the atmosphere and over a larger area in a shorter amount of time, than can the BROWN. Also, because the plane is traveling a lot faster than the BROWN, if a measurement is made every 30 seconds and the P3 passes through a narrow plume of pollution the plume may not even be measured. It is therefore important for the measurements to be made very quickly and often.

The flight is intentionally leaving late in the day so that most of the flight will be after sunset. Sunlight is necessary for a lot of the chemical reactions that cause pollutants to change once they are in the air. Tonight’s flight is designed largely around a single instrument measuring the specific chemicals that are more likely to be in the atmosphere at night. During the day the sunlight breaks these chemicals down, yet they are a very important part of the pollution problem.

Since the beginning of July until about the end of August, for almost two months, the men and women involved in NEAQS will be making measurements from airplanes, from the BROWN, from satellites, from the top of Mt. Washington and other spots on land. But when I asked Fred what is the one thing my students should know about this project, he said that they need to realize that the real work starts after everyone is out of the field. The “Ah-ha” moments will occur over the next 8 -12 months as the data is being analyzed, that is when the real learning and understanding will happen.

Finally I would like to thank all of the scientists who were so generous, cooperative and patient with my many questions.

Kevin McMahon, July 31, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 31, 2004

Weather Data from the Bridge
Lat. 43 deg 38.20 N
Lon. 69 deg 57.97 W
Speed 8.9 kts
Barometer 1016.68 mb
Rel Humidity 97.27%
Temp. 18.16 C

Daily Log

0835 hours. The wind speed has increased and is now at about 16 kts which lend a slight roll the ship.

We came within a couple of miles of Fletcher Point, ME. Before turning around, at present we are heading in an easterly direction.

Helped to launch an ozonesonde at 1000. The winds had kicked up to about 20 kts out of the southwest which made it somewhat tricky. In all though it was a successful launch.

I learned later that the ozonesonde made it to an altitude of 39.9 kilometers, not the record but pretty close.

I’ve been up on the bridge. The views of the Maine coastline are spectacular.

Talking to some of the men and women who operate the ship I am amazed at the complexity of the vessel. Aside form the scientific aspect, the bridge alone seems to have more in common with a Boeing 747 than it does with a ship on the sea. Gone are the ships wheel and binnacle and the entire nautical flavor as described by Melville.

The RONALD H. BROWN is as modern a ship as you will find on the ocean.

She is 274 feet in length with a beam of 52.5 feet and a draft of 19 feet.

Its diesel engines do not drive the propellers directly, rather they produce electricity which intern powers electric motors that drive the ships twin aft thrusters and single bow thruster. The ship does not have rudders but is instead maneuvered by the thrusters which have the ability to rotate 360 degrees.

The ships wheel has been replaced by a joystick type apparatus which allows for minute movement in all direction. The GPS navigational system allows the ship to maintain a fixed course over an extended period of time or, hold a steady fixed position within one meter of a desired location.

Questions

How does a GPS system work?

Does the GPS system on the ship differ from the one we use for class fieldwork?

Kevin McMahon, July 30, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 30, 2004

Weather Data from the Bridge
Lat. 42 deg 37.86 N
Lon. 70 deg 12.37 W
Speed 8.6 kts
Barometer 1018.96 mb
Rel Humidity 93.16%
Temp. 18.9 C

The seas are calm. The skies have a distant haze. The New England atmosphere so common at this time of year. As is usual for the day, at 0700 we sent aloft a radiosonde, and then at 1000 an ozonesonde.

I was lucky enough to see a couple of finback whales; but unfortunately I had left my camera on my bunk, before beginning a discussion with Drew Hamilton about alternative power generation. Many of the scientists lead very diverse lives. Drew has a house in Seattle and wants to get off the electrical grid. He has worked for NOAA for 25 years and has seen much of the world. Thirty years ago he started out at the University of Miami, never in a thousand years dreaming he’d be involved in the kind of research he’s doing.

Ever hear of di-methyl sulfide DMS? As chemistry teacher I’d heard the name but never understood its significance to the atmospheric work the scientist aboard the ship are undertaking. It turns out that di-methyl sulfide is produced by plankton and is part of a planktons waste process. DMS is one of the major contributors of atmospheric sulfur. Overly high levels in the atmosphere can act as a reflective unit not allowing enough sunlight through our atmosphere. As a result, in certain areas the Earth does not receive the needed heat for some of the biological processes to take place.

Weather Data from the Bridge
Lat. 43 deg 17.84 N
Lon. 69 deg 33.83 W
Speed 9.3 kts
Barometer 1018.3 mb
Rel Humidity 86.16%
Temp. 20.65 C

1530 hours and there seems to be a flurry of activity among many of the scientist. A radiosonde is being rapidly readied to be sent aloft. It seems that the ship has reached a position somewhat east of Portland, ME and we have found a plume of ozone. The initial spike on the instrumentation showed 80-85 ppb (parts per billion) but then it jumped again to 101 ppb. This spike in the ozone was enough to request that another ozonesonde be readied and sent aloft. They have also requested a fly over by the DC3 out of Pease. Onboard the DC3 is a LIDAR (Light Radar) which measures atmospheric ozone. I am told that the cost of one ozonesonde is approximately one thousand dollars, so I assume that the readings on the instrumentation are justifying the expense. It will be interesting to see what they all have to say at the evening science meeting which is held each evening at 1930 hours.

We seemed to have found a large plume of ozone. It is as everyone, the science staff at least, had assumed. We have indeed found a large plume of ozone.

1930 hours. We are now heading in a westerly direction for Cape Elizabeth, ME.

Kevin McMahon, July 29, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 29, 2004

Weather Data from the Bridge
Lat. 42 deg 43.99
Lon. 70deg 02.99
Barometer 1015.71 mb
Rel Humidity 94.6%
Temp. 17.1 C
Radiosond aloft at 0710.

Daily Log

Science meeting at 0800. It has been decided that we will try to rendezvous with the J31 out of Pease at approximately 1130 and if all goes well send another radiosonde aloft.

Since I came onboard the RONALD H. BROWN on the 26th of July I have been completely amazed at how sophisticated life onboard a modern research vessel has become. On the first day waiting in line for lunch I inquired as to how long we can expect to have the fresh fruits and vegetables? Mr. Whitehead, the chief steward answered me that, “we always serve up fresh salads, very little of our produce is frozen.” When I inquired as to how they do it, I was informed that the ships refrigeration system was equipped with a device which filters out the Ethylene, a compound which causes produce to rot. As a result we can expect to have fresh salads on a daily basis.

This little tidbit of information got me to thinking about the possibility of a lesson plan which would incorporate some chemistry and some biology.

Questions

1. Can you draw the molecular structure of Ethylene?

2. What bacteria are involved in the spoilage of food and how does the elimination of ethylene play a part in this process?

Most of my time over the last 3 days has been spent getting to know the ship, the crew, and the scientific staff. It is odd in that I am being drawn more towards the operation of the vessel than I am to the scientific community. But both aspects are keeping me busy.

I have been working with Dan Wolfe, one of the main meteorologists onboard. I had thought that because I teach Earth Science, I knew something about weather forecasting. I have a long way to go. It has been an education. We have been sending aloft four radiosonde balloons per day. One every six hours. Each device is carried aloft by a balloon filled with helium. The radiosonde sends back to the ship its location, direction of travel, velocity, and altitude as a result of the barometric pressure.

Question

Which gas law equation does one use to calculate the relationship between pressure and volume?

1400 hours and I have just been informed that my hands are needed to assist with the preparation and launch of an ozonesonde. 1500 hours and we have been informed that a DC3 out of Pease will rendezvous with us in about 30 minutes. An ozonesonde has many of the characteristics of the radiosonde but also has the capability to measure ozone levels at various altitudes. It also has a longer life span and stays aloft about 2 hours and 45 minutes. The DC3 is really an aerial platform which has equipment onboard to measure ozone. I have been informed that the DC3 is nearing our location so it is time to fill the balloon.

Kirk Beckendorf, July 28, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 28, 2004

Daily Log

How do you decide where to fly to find and measure pollution?

I spent today at the NEAQS Operation Center at Pease International Tradeport in Portsmouth. The Op Center is the temporary “headquarters” for the air quality study. It is located in a college campus. About 15 large classrooms are being used as group offices for the approximately 100 scientists. I arrived just in time for the morning DC-8 briefing. The DC-8 is a NASA research plane which is loaded with equipment similar to what is on the RON BROWN. This morning about 20 scientists are planning tomorrow’s flight.

To begin the meeting several meteorologists showed some current weather movements and their predictions for tomorrow. Then the modelers who predict pollution motion and chemical changes explain what they expect to be happening to some pollution tomorrow. What this group plans to study tomorrow is a large bunch of pollution moving out of the New England and out across the Atlantic Ocean. About half way to Europe the pollution makes a large loop to the south and then loops back north. They want to fly through all of the pollution and see how the chemicals change as the pollution ages. There are three satellites that will be passing overhead at specific times and they want to be under them. So they have to time their flight schedule accordingly. Once everyone is on the same page of the general plan, they start planning the actual flight. The main idea is to fly out over the Atlantic following the looping band of pollution. At several points they want to spiral up and down to take measurements close to the ocean surface all of the way to the top of the pollution.

With a computer image of the NE US and the N. Atlantic being projected onto a screen, one of the scientists begins to type in a flight plan, as he types in latitudes and longitudes the route shows up on the map. As the route is being plotted, there continues to be discussion about where they should go to get the best measurements. Because of the points brought up in the discussion, the route and where they will spiral up and down are changed a number of times. Finally they have a flight plan. However, it is about an hour longer than they should be in the air. So the route is modified and remodified a number of times, until everyone feels that they will be able to make the measurements needed, and still have enough fuel to get back.

Question of the Day

What is your latitude and longitude?

The pollution being sampled by the DC-8 is also being measured in the Azores? Where and what are the Azores?

 

Kirk Beckendorf, July 27, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 27, 2004

Daily Log

Jim Koermer invited me to come up today and “work” a session with him. Jim is a Professor of Meteorology at Plymouth State in Plymouth, New Hampshire. During NEAQS he is responsible for providing the scientist on the BROWN twice daily forecast of the weather conditions. Yesterday evening I drove the 2 hours to Plymouth and went to Jim’s house. After a short visit with Jim and his wife it was about 9:00 PM. It was time for a nap, only a nap because his work session today started at midnight.

One of Jim’s students had worked the previous session. After we arrived he gave Jim a brief summary of what he had been doing. Rachel, another of Jim’s students soon joined us and she went to work immediately gathering some of the data necessary to make the forecast.

Along one wall of the long room, where they build the forecast, is a bank of 34 displays each continually updating satellite images, radars, computer models, webcams and other global and local weather information. On the desk are four computers which are used to gather other weather data and computer models which give real time, delayed time and computer models which predict general weather patterns.

Rachel and Jim are writing a very specific forecast for the area of the Gulf of Maine in the location of the BROWN. Their predictions give details such as wind speed and direction, air temperature, rainfall, cloud cover and where pollution will be starting from and then will move to. Even though they send the BROWN these predictions twice a day the forecast are for the next 48 hours, at six hour intervals. Until 6:00AM the two of them analyze the information from all of the different sources and then they hand draw some of the predictions on maps and type the rest. The drawn maps are scanned and merged with the typed predictions and the entire file is loaded to a website for the BROWN to access when it connects to the web by satellite at 7:00. You can see one of the hand drawn predictions in one of the pictures I sent in earlier from the BROWN.

The scientists on the BROWN will then use the predictions to determine what will be the best place for them to sample pollution. The BROWN does not travel very fast so plans have to be made ahead of time to catch certain pollution events.

You can also use a lot of the tools that Jim uses. His website is at http://vortex.plymouth.edu/

Question of the Day

What is a vortex?

Kirk Beckendorf, July 26, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 26, 2004

Daily Log

This morning there was a big press conference at the BROWN. A lot of very important people were here. I got to meet the head of NOAA, Admiral Lautenbacher. I found out his wife is a middle school science teacher. Senator Judd Gregg from New Hampshire was also here. Since the BROWN is sailing out today everyone who will be out on the second leg of the research cruise had to be on board at 1:00. I took some pictures of Kevin as he boarded. This time as the BROWN pulled away from the docks, went under the drawbridge and headed out of port I was standing on shore taking pictures and waving to those on the ship. Three weeks ago I was the one standing on the ship deck waving to those still on shore. I’ll sure miss being out there. I just hope they don’t have fog all of the time.

Kirk Beckendorf, July 25, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 25, 2004

Daily Log

There was a big open house on the BROWN, so I went back to the ship for that. This evening for dinner Kevin and I meet with a group of teachers who were interested to know what it is like to be a Teacher at Sea. I will be visiting some of the land based parts of NEAQS this week so I met and visited with some of the people that I will be seeing. I scheduled a time with Jim Koermer a meteorologist at Plymouth State University. He is the scientist in charge of developing weather predictions received twice daily by the BROWN. I will go to Plymouth, New Hampshire on Monday evening. From midnight until 6:00 AM I will be watch how he makes his predictions.

Kirk Beckendorf, July 24, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 24, 2004

Daily Log

I actually moved off the ship today and got a hotel room. All day there was a big meeting at the University of New Hampshire about 30 minutes from here. Scientists from the BROWN, from the airplanes, the land based measurement systems, those in charge of the satellite data, weather forecasting, and the computer models all gave short presentations. This was a big version of our nightly show and tell that we had on the BROWN. Because NEAQS-ITCT is such a huge research project, this meeting was necessary to help everyone know what has been happening in each part of the project and what should be done the next few weeks. It is kind of like a football team gathering in a huddle between plays.

Kevin will be the new teacher on the ship for the second leg of the research cruise. I showed him around the BROWN and introduced him to a number of the scientist. I also bought a new t-shirt. The BROWN helped re-explore the Titanic a few months ago and the Titanic shirts they ordered were delivered today.

Kirk Beckendorf, July 23, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 23, 2004

Daily Log

Today was my last day and night on the BROWN. We spent last night off the coast of New Hampshire. We were scheduled to meet the pilot at 11:00 AM. The pilot is a person very familiar with the local port and he or she comes on board large ships and drives them into and out of the port. Since they know the harbor very well they can make sure the ship doesn’t run aground in what may be a very narrow channel. It was pretty cool to watch him jump from a small boat onto the rope hanging from the side of the BROWN while we were moving. Everyone was out on deck as we came up through the channel into Portsmouth. As we got to the dock the crew had the ropes out and ready. Tanker trucks of fuel were lined up ready to refuel the ship, which can hold about five tanker trucks worth of diesel. It was a bittersweet feeling to dock and be back ashore. It is good to be back but I am sure going to miss all of the people on board. I have learned so much from them, plus I enjoyed their company.

This evening we had a big New England style clambake at a beach. They fed us steamed calms and whole lobsters.

I finally met Jennifer Hammond. She is the person in charge of the Teacher at Sea Program and who got me on the BROWN and who gets the logs and pictures onto the web.

Kirk Beckendorf, July 22, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 22, 2004

Weather Data from the Bridge
Time 4:50 PM ET
Latitude- 42 49.88 N
Longitude- 70 15.46 W
Air Temperature 20 degrees C
Water Temperature 17 degrees C
Air Pressure 1011 Millibars
Wind Direction at surface Southwest
Wind Speed at surface 15 MPH
Cloud cover and type clear but hazy

Daily Log

Last night at sunset we were just out from Boston when we launched the radiosonde. The pollution levels were up and we had to look through a haze to see the downtown skyline. A sea breeze began blowing cleaner air to us from the east. Late last night we headed east to meet up with a couple of the airplanes this morning. The goal was to have us and two of NOAA’s research planes all under a satellite which will be orbiting overhead. Pollution measurements could be made at many different levels of the atmosphere plus instrument comparisons could be made.

Of course it was foggy again. Wayne Angevine, a meteorologist back on shore was looking at live weather satellite images and got word to us that close by was a clear spot in the fog. The flight crew in the airplanes confirmed what Wayne said. When we got to the latitude and longitude they had directed us to, we found clear skies. The plan worked. The planes flew by making their measurements, several satellites passed over head, the ozonesonde was launched, all of the instruments on the Brown were continuing to collect data and Drew and I did Sunops.

Later today the rest of the fog burnt off, but there was still a haze as we slowly made our way back to the west. We need to be in the vicinity of Portsmouth so that we can meet up with the harbor pilot tomorrow morning. The pilot will direct the ship back into Portsmouth at about noon. The timing is actually important because we need to go in at high tide. Tonight the plan is to continue back and forth through the urban pollution. Before we get to port tomorrow, a couple of the crew will be diving under the ship to do some maintenance that should be interesting to watch.

Today is my last full day at sea on the BROWN. This next week I will be visiting some of the land based scientists, facilities and activities involved in NEAQS. We get into port about noon tomorrow.

I asked some of the scientist what is the one thing my students should know about this research project on air pollution. Some of the statements were:

We are studying a very complicated situation with no simple answers.

To study something very complicated takes lots of coordination and cooperation from numerous organizations and a lot of people.

Air pollution is a global problem not a local problem. Even people in areas, like Redmond, OR, with little pollution should be concerned. Air pollution doesn’t stay where it is made. North America gets pollution from Asia, Europe gets pollution from N. America, Asia gets pollution from Europe.

Each one of us needs to realize that we are part of the problem.

Question of the Day

How can you be part of the solution not just part of the air pollution problem?

Kirk Beckendorf, July 19, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 19, 2004

Weather Data from the Bridge
Time Noon ET
Latitude- 44 8.76 N
Longitude- 66 42.03 W
Air Temperature 12 degrees C
Water Temperature 9 degrees C
Air Pressure 1007 Millibars
Wind Direction at surface South
Wind Speed at surface 11 MPH
Cloud cover and type FOG!!!

Daily Log

Ozone can be a major pollutant but we don’t release it into the atmosphere, so where does it come from?

More fog!!! We are all getting tired of the fog. I wonder what the Nova Scotia coast looks like. We have been along the coast for awhile, but I only got a glimpse through the fog for a few minutes.

We followed the Boston pollution up here but now we are in clean air. It has been very interesting, for both the scientists and myself, to see how the kinds and amounts of the gases has changed as the pollution gets older. Leave a glass of milk in the sun on the kitchen counter for a few days and it will change. Air pollution floating in the air and cooking in the sun also changes.

Paul Goldan points out some of today’s data which shows that the air is coming from a pine forest. Every thirty minutes Paul’s equipment samples the air and measures the concentration of 150 different VOC’s (volatile organic compounds). Some VOC’s can be man made and others are natural. This morning’s data shows very low levels of human pollution but there are spikes in the graph for two chemicals that are released into the atmosphere by pine trees (the pine scent). We look at the wind profiler and see that the wind is blowing from Nova Scotia.

Avery Bell emailed and asked which pollutant is most potent. As I have mentioned, the two parts of air pollution are the gasses and the particles. According to several of the scientist on board, ozone and the very tiny particles are the two of most concern from a health standpoint. Small particles and ozone can both damage your lungs. For people who already have breathing problems (such as asthma or emphysema), it can make matters even worse. Ozone also damages plants, both wild and agricultural crops, reducing crop yields. The cost of agricultural losses was one of the first reasons that ozone became a concern.

Every day I spend time talking with some of the scientists who are here from NOAA’s Aeronomy Lab. They are studying ozone and many other gases in the atmosphere. To decrease ozone pollution is much more complicated than just saying let’s reduce the amount of ozone we release. We don’t release ozone into the atmosphere as a pollutant!!! It is made in the atmosphere when other gases combine in the presence of light.

Imagine you live in the desert and you plant a tree in your back yard. It of course needs water, air, nutrients from the soil and light to survive and grow. In your backyard it gets all of the light, air and nutrients that it needs; but imagine that you never water the tree. The tree survives because it gets a little rain, but it doesn’t grow much. Water is limiting its growth. If you water it a lot, the tree grows a lot.

High ozone levels occur in a similar way. For ozone to form, certain gases and sunlight have to be present. If there is only a small amount of those gases, only a small amount of ozone can form. But if there are a lot of those gases, a lot of ozone will form. In the unpolluted atmosphere, there are low amounts of the gases that are needed to make ozone. Guess what happens when we burn fuels to run our vehicles, to make electricity, to heat and cool our homes, and to make the products that we use every day. You guessed it; we release a lot of the gases that are needed to make ozone. Ozone can then reach the high levels necessary to become a health risk. It does not take that much ozone to be at a dangerous level. A level of 80 PPB (parts per billion) for 8 hours is considered too high.

It is very difficult to try and understand what 80 parts per billion really means but I’ll try to help. It takes about 31.7 years to have 1 billion seconds. Imagine how much air you would have if you took a breath every second for 31.7 years and blew all of the air into one balloon. Now imagine that 80 of those 1 billion breaths were ozone. The concentration of ozone in the balloon would be 80 PPB.

Questions of the Day

What are three activities that you do everyday that can add to the atmosphere the gases that help form ozone?

What can you do to reduce the amount of those gases that you are responsible for producing?

Based on the example in the last paragraph how many breaths of ozone could you have in the balloon if there was 1 PPB?

Kirk Beckendorf, July 18, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 18, 2004

Weather Data from the Bridge
Time 9:15 ET
Latitude- 44 01.29 N
Longitude- 67 13.5 W
Air Temperature 14 degrees C
Water Temperature 13 degrees C
Air Pressure 1015 Millibars
Wind Direction at surface Southeast
Wind Speed at surface 10 MPH
Clouds Cloudy

Daily Log

What do you do if the weather gets rough? (Besides get seasick and throw up.)

The weather forecast for tonight calls for strong winds and 15 foot waves (the ceiling in your bedroom is probably 8 feet high). The crew has been making sure that nothing is loose on the ship. Everything needs to be strapped, tied or chained down. If the ship is pitching and rolling a lot, you don’t want things flying around, otherwise someone could get hurt or something could get broken. We have also been instructed to make sure none of our own supplies are loose.

I spent some time visiting with Chris, a member of the deck crew. He has been on the BROWN for a little over two years. Before that he was working on commercial ships. He said the roughest seas he has sailed in weren’t that big, only about 20 foot waves. When the waves are closer together, he says it isn’t as rough as compared to when they are further apart. Chris said, as the ship climbs up a wave and then beaks over the top, if there is not another wave to land on, the ship drops down into the trough below. This makes for a lot rougher ride than when the waves are close together, and the ship can land on the next wave. After this cruise, he will be transferring to a higher position on another NOAA ship. Eventually, he would like to work back on shore for a fire department. A lot of the safety training he has received from being a deck hand on the ship would fit right into a fire department. As part of the deck crew’s training, he has received EMT (Emergency Medical Technician); fast boat and other rescue training and firefighting training. When your ship is at sea for a month or so at a time, 300 days a year, the crew really needs to be self sufficient. You are your on fire department and medical team; there may not be anyone close by to call.

Drew Hamilton now works at NOAA’s Pacific Marine Environmental Lab in Seattle, but before that he worked on NOAA ships for 15 years. He said his first cruise with NOAA was in the middle of the Sargasso Sea in hurricane with 30 foot seas. Ten years ago he was on a ship delivering supplies to scientists working in Antarctica. For 4 days the ship fought its way through high winds and 30 foot waves. Almost everyone was sea sick, even the experienced sailors. It was a rough way to start his sailing career.

Sallie Whitlow, a scientist from the University of New Hampshire, has her instruments on top of a large container van on the bow of the ship. Once during a storm she was working on the equipment. When the waves started breaking over the bow, she decided it was time to go inside.

At this evening’s science meeting the new weather report shows that the storm is not going to be as intense as was previously thought. The rough seas probably won’t happen. Bummer, I was looking forward to an exciting ride.

Questions of the Day

What town and state was the ship from, that was lost in “The Perfect Storm”?

Where are we located compared to where that storm occurred?

Where is the Sargasso Sea?

Kirk Beckendorf, July 17, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 17, 2004

Weather Data from the Bridge
Time 6:20 PM ET
Latitude- 43 20.33 N
Longitude- 68 18.92 W
Air Temperature 17 degrees C
Water Temperature 14 degrees C
Air Pressure 1009 Millibars
Wind Direction at surface Southwest
Wind Speed at surface 7 MPH
Cloud cover and type Clear

Daily Log

How is it possible to tell if we are in pollution when we can’t even see it?

This morning I went through the normal routine of helping launch the ozonesonde at 10:00. Because it was a sunny day Drew Hamilton could make Sunop measurements throughout the afternoon so I helped with that. We specifically timed the Sunops so that we were taking measurements at the same times that three satellites were crossing overhead. The satellites were taking similar measurements looking down, while we were taking them looking up. Later, our measurements will be compared with those of the satellites.

In general, air pollution is a combination of particles and gases. I have discussed the particles in previous logs, but not much about the gases. A large number of the scientists involved in NEAQS-ITCT are studying these gases. I have spent a large amount of time talking with Eric Williams, Brian Lerner, Sallie Whitlow, Paul Goldan, Bill Kuster, Hans Osthoff and Paul Murphy. They have instruments on board which measure many of the different gases related to air pollution. But not all air pollution is the same.

The cause of the pollution determines what gases and particles are in the pollution. Gasoline powered automobiles release one combination of gas and particles. Diesel engines produce another combination. Coal burning power plants release yet a different combination. Natural gas power plants release (Yep, you guessed it) yet a different combination. In a city these get mixed together, so individual cities have there own unique pollution depending on the number of automobiles, power plants and factories. To make things more complicated, once these chemicals are released into the atmosphere and start mixing together, in the presence of sunlight they react with one another making additional gases and destroying others. What eventually happens to these pollutants and where they go, are two of the questions these scientists are seeking to answer. But answering these questions is very difficult, in part because things get extremely complicated very quickly. As Paul Goldan told me, part of the reason we need to make so many different kinds of measurements is because we are not even sure exactly what we are looking for.

Today as we criss-crossed back and forth through two plumes of pollution Eric showed me some of today’s data. As always, his instruments were measuring and recording some of the gases in the air. The quantities and kinds of gases changed as we went back and forth, helping to map where the pollution was located and how it has changed. Nothing looked different outside, but from the measurements he was taking he could tell that one of the plumes was younger than the other.

During the nightly meeting, Paul Goldan and Tim Bates presented completely different kinds of measurements that agreed with what Eric’s data showed. This comparing of daily observations will help confirm the accuracy of the observations and what they actually mean.

Questions of the Day

Where is the electricity in your house produced?

What kind of fuel is used to make your electricity?

What kind of fuel is burnt to make your automobiles run?

Who should be responsible for the pollution produced to make the electricity you use?

Kirk Beckendorf, July 16, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 16, 2004

Weather Data from the Bridge
Time 8:00 AM ET
Latitude- 42 44.24 N
Longitude- 70 41.99 W
Air Temperature 19 degrees C
Water Temperature 15 degrees C
Air Pressure 1002.6 Millibars
Wind Direction at surface Southwest
Wind Speed at surface 7 MPH
Cloud cover and type Partly cloudy

Personal Log

What do I do all day?

I received an email asking what life is like on the ship, and what my daily schedule is. The schedule revolves around breakfast, lunch and dinner. There is an hour for each and if you want to eat you had better be there at the correct time. Actually, the stewards do have snack foods out for us 24 hours a day, they feed us very well. There are always a lot of vegetables available and at least two main items to select from. For lunch today the main entrees were shrimp and hamburgers. (Check out the pictures.)

So my schedule: Keep in mind that nothing is very far away here on the ship so you don’t have to give yourself much travel time, everything is literally down the hall. In the morning I roll out of my bunk and walk the 5-10 feet to the shower. See the pictures of my stateroom. After a shower, shave (I skip that part), and brushing of teeth it is time for breakfast. Down the hall, up the stairs and through another hall. On the way to the mess hall I usually go outside to the railing, on deck to get some fresh air and to check the weather. Today it is a beautiful sunny day at sea.

Other than the rocking of the ship there is no way to tell what the weather is like while in the ship’s lower levels. There are no windows in the lower levels of the ship (that would be really dumb), and only small ones on the middle levels. At night, all windows are covered by metal plates, except for the windows on the bridge. The crew on watch, in the bridge, should not have their night vision compromised by light from the windows. In their around the clock observations, they need to be able to see out into the darkness. But back to my daily schedule.

Breakfast is served from 7:00 – 8:00 AM Eastern Time every morning. At 8:00 AM Tim Bates, the chief scientist, holds a morning science meeting to discuss the day’s plans and the weather forecast. This is usually a pretty short meeting. After the meeting, I usually try to finish typing up the previous day’s log. Around 10:00 AM Ann Thompson launches an ozonesonde which I generally help with. By the time we are through with the sonde, it is almost time for lunch which is served from 11:00 – 12:00. It is that time right now and I obviously haven’t completed the log.

After lunch I visit with one or more of the scientist about their research topic, data collection and measurements. On sunny days, I often help Drew make sun photometer measurements. By then it is time for dinner which is served from 4:30 – 5:00. (I told you the meals drive the schedule.) Afterward dinner and dessert I start typing the day’s log and also visit with the scientists some more.

At 7:30 PM there is another science meeting. It is a science version of show and tell, longer than the morning meeting. There is a discussion of what happened during the day in terms of where we went and what pollution was seen. Some of the data collected is reviewed and discussed. Usually someone will also discuss their specific research. Possible plans for the following day are debated. Following the meeting, I will sometimes visit the BROWN’s gym for a ride on the exercise bike. Eventually I find my way back down the halls to my stateroom and bunk.

This evening there was a very nice sunset so many of us enjoyed the view from the BROWN’s fantail.

So there you have, a day in the life of a teacher at sea.

Questions of the Day

What time do our breakfast, lunch and dinner start in Pacific Time?

What color of light can be used at night so you do not lose you night vision?

What can you do with your flashlight so that you can use it at night without losing your night vision?

Kirk Beckendorf, July 15, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 15, 2004

Weather Data from the Bridge
Time 8:00 AM ET
Latitude- 45 53.18 N
Longitude- 70 36.48 W
Air Temperature 14 degrees C
Air Pressure 1000 Millibars
Wind Direction at surface Northeast
Wind Speed at surface 3 MPH

Daily Log

Yeah!!! The sun is trying to come out, the rains have stopped and the sea has calmed down. No I didn’t get sea sick, but it is hard to sleep when your bed is swaying back and forth and up and down. The winds have shifted and the scientists are hoping that the winds may be blowing some pollution our way. Seems like a strange thing to hope for, but of course they are here to study pollution and the wind has been blowing it away from us.

Why should anybody care if we add microscopic particles to the air?

Yesterday, I discussed one of the techniques used to study the microscopic particles that are in the atmosphere. But so what, why does anyone care about these tiny specks? Air pollution made by automobiles, power plants, factories and ships all contain both gases and particles. To be able to predict the changes resulting from air pollution, we have to learn all we can about the gases and the particles being released.

When the pollution is released into the atmosphere, the gases and particles start traveling with the air. (Just like pouring a quart of motor oil into a river.) Gradually the gases and particles spread out into the surrounding atmosphere. The gases can recombine and may start changing into other chemicals, but that’s another story I will get to soon.

The particles are not all the same. They come in different sizes and are made of a variety of chemicals. There are two main concerns about these little chunks floating along in the sea of gas; health hazards and climate change. If you take a breath, not only do you inhale the gas, but also all of the particles floating in the gas. Some of these particles may have a negative effect on a person’s health.

The main interest in the particles here on the BROWN is the effect they have on climate change. The Earth is of course warmed by the energy (light) coming from the sun. The more energy (light) the Earth gets and keeps, the warmer our temperatures. The less energy (light) the Earth gets and keeps, the cooler the temperatures. Pretty simple stuff? Not at all.

When sunlight shines down through the atmosphere and hits a particle the sunlight can either bounce off of the particle or be absorbed into the particle. If the light bounces back out of the atmosphere the Earth does not keep the light’s energy and there is a cooling effect. When light is absorbed into the particle, the energy (heat) will now be in the atmosphere and so there is a heating effect. Some particles absorb more light than others, so some have a cooling effect on the Earth’s atmosphere and others have a heating effect. One of the questions being asked is, overall do the particles cool the atmosphere or heat the atmosphere? This is not as simple of a question as it sounds, because there are also a lot of indirect effects that are not yet understood.

These microscopic chunks also affect clouds and cloud formation, but how much of an effect is not completely understood. The particles may cause clouds to be less likely to rain or at least, not rain as often. These microscopic particles in air pollution could have an effect on where and when it rains. So the scientists, here on the BROWN, are gathering data to help them try and understand the impact that particles will play in changing the Earth’s climate. Part of their task, is to determine where the particles are from, the numbers, sizes, and chemistry of the particles.

If I lost you in all of that, maybe it will help to put it all in a nutshell. These scientists are studying the type and number of particles in air pollution, to try and understand what effect these little chunks may be having on the Earth’s temperature and water cycle.

As Tim Bates said, we are trying to put together a large jigsaw puzzle and we don’t know what picture is on the puzzle. First we have to find all of the pieces. Then we have to put together the puzzle. We are now at the point that we think we have found most of the pieces and now we are trying to put them together. As you can see from the picture I sent in today there is some relaxation time, in the middle of all the data analysis.

Questions of the Day

The smaller particles are measured in nanometers how much of a meter is 1 nanometer?

If the wind is blowing 5 meters/second and we are 50 miles from Boston how long will it take Boston’s pollution to reach us?

Typical unpolluted air will have about 1000 particles in every cubic centimeter of air. What is something that has a volume of about 1 cubic centimeter?

Kirk Beckendorf, July 14, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 14, 2004

Weather Data from the Bridge
Time 10:20 AM ET
Latitude- 42 22.77 N
Longitude- 70 52.02 W
Air Temperature 16 degrees C
Air Pressure 1004 Millibars
Wind Direction at surface Northeast
Wind Speed at surface 13 MPH
Cloud cover and type Stratus clouds and rainy

Daily Log

Why would anyone care if there are a few pieces of stuff 1000 times smaller than a grain of sand floating around in the air?

I visited one more piece of the elephant the past couple of days. To be more accurate, I have been visiting with some of the people who are studying another piece of the pollution elephant. I’ll call them the particle people. I have been visiting with Dave Covert, Tim Onasch, Tim Bates, Patricia Quinn, Theresa Miller, Kristen Schulz, Anders Petterson and Tahllee Baynard and Derek Coffman. These scientists are studying the particles that float in the air. Some particles are from human pollution and some are from natural sources. These chunks of stuff can be so small that it may take more than 250,000 lined up side by side to be an inch long, about 1000 times smaller than a grain of sand. Those are not even the smallest ones. Even though these particles are so tiny these scientists can find out what chemicals make up the particles and how many of the particles are in the air.

Amazingly, the scientists can sort out these very tiny chunks by weight. But as Paul Murphy told me the other day none of this is magic. A number of methods are used to sort the particles; here is the idea behind one of them. But you are going to have to use your imagination again. You are in a long narrow L-shaped hall. You look down the hall and at the end it makes a sharp turn to the left. You and a friend are going to have a race to the end of the L. But of course this isn’t a normal race. Each of you has an office chair in front of you. In your buddy’s chair is a very large person, your chair has a mouse. On your mark, get set, go!!! You both start pushing and running as fast as you can. One of the rules in our race is that you cannot slow down until you get to the end. Your friend is a major weight lifter and runner and so even though he is pushing a lot more weight the two of you are neck and neck, flying down the hall. Then you get to the sharp left hand turn. Remember this is a narrow hall and you can’t slow down. You and your mouse make the turn fine. Because of the heavy person in his chair your buddy can’t make the turn and hits the wall. You and the mouse end up at the end of the hall. Your buddy’s chair and passenger end up splattered against the wall.

But we were talking about microscopic particles in the air. The big white air inlet shown in pictures I sent yesterday pulls in air. Inside that large inlet are 21 smaller tubes which separate the air and sends it to different pieces of equipment. Some of the particles are removed from the air and are separated by size in a method similar to our race. A stream of the air, along with any particles that are in the air, quickly moves through a tube called an impacter. (In our race the mouse and person on the chair represent two different sized particles. You and your buddy are the air.) The air and any particles in the air have to make a sharp right hand turn. The largest particles can’t make the turn and they hit and stick to the “wall”. As the air moves through the tube, the air and remaining particles have to make progressively tighter turns. Each turn separates out a different sized particle. Those particles are collected off the wall and can be analyzed to determine what chemicals they are made of as well as weight and numbers of each size. Removing the particles from the impacter (the wall) needs to be done under controlled conditions so that contamination does not occur. Other techniques are then used to analyze the particles that are so small that they get through the “maze”.

While I have been on the ship there have been two main issues that I have been learning about. The first is learning about the techniques which the scientists use to study pollution. The second issue is: why make these observations and what will be done with them. Most of what I have described are the techniques that are being used. I have not written much about why the scientists are doing this and what they hope and expect to learn. More about that soon.

So why would anyone care about a few tiny particles anyway?

When the particles are breathed into a person’s lungs they can cause health problems. The particles may also have an impact on climate change, more about that in the next log.

Today the weather has again been cloudy, cool and rainy. The winds are blowing strong from the northeast which brings us clean air so we have moved south of the shipping lanes going into Boston to try and measure some ship exhaust. The swells are about 5 feet high and so the ship is rocking more than it has been. Everyone seems to be staggering about when they walk.

Questions of the Day

What are some of the main gasses which cause the greenhouse effect on Earth?

Where do the particles come from?

On average how long will they stay in the atmosphere?

Kirk Beckendorf, July 13, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 13, 2004

Weather Data from the Bridge
Time 11:30 AM ET
Latitude- 42 56.92 N
Longitude- 70 36.22 W
Air Temperature 17 degrees C
Wind Direction at surface East
Wind Speed at surface 20 MPH
Cloud cover and type Cloudy- Stratus
Air Pressure
11:30 AM 1014 Millibars
7:15 PM 1009 MB
10:15 PM 1008 MB

Daily Log

Look at what the air pressure has done today. What do you think our weather is like now at 11:00 PM (past my bedtime)?

Keep in mind that we are sitting out in the ocean in a ship, sometimes you can see land, other times you can’t. Rarely can we see any buildings much less a city. How are we supposed to know where to go to find some pollution? Especially if we are looking for particles that are too small to see and gasses that are colorless. Not to mention there may be less than 1 part per billion of that gas mixed in with the air. That is where Wayne Angevine and Jim Koermer come in. They are two meteorologists who are on shore. Twice a day they send us weather forecasts. Wayne works for NOAA and Jim is a professor at Plymouth State University in New Hampshire. (Check out Jim’s website at vortex.plymouth.edu)

Based on their forecast, Wayne also sends recommendations for where we should go to find pollution. Today they are predicting that winds will be from the southeast and east through at least tomorrow. We know that pollution comes from automobiles, power plants, ships and factories. Although some of the chemicals involved in air pollution do also come from trees and other plants. Pollution of course blows with the wind so we want to be down wind of the pollution sources. If you look at a map to see where we are located the only thing east of us for a very long way is water, so easterly winds bring us clean air. There aren’t any cities or automobiles floating out here on the ocean, but there are ships. Wayne’s recommendation today was for us to move to Mass. Bay to get down wind of the shipping lanes and sample ship exhaust as they come by. That is what we have been doing most of the day.

Wayne says that possibly tomorrow afternoon the winds will shift and come from the southwest. If that happens Boston’s pollution will be flowing out over the water again and if that happens he suggest we sample it as we did yesterday, which was to zigzag back and forth across the plume coming from Boston. We couldn’t actually see it but we know where Boston is, we knew which way the wind was blowing and many of the instruments are measuring and recording what is in the air in real time. The captain also has charts that show how deep the water is so we didn’t run aground as we got close to shore.

It has been very interesting switching rolls from my normal job of being the teacher to the roll I am in on the ship which is, being the student. This past year after a particularly hard lesson one of my students said my brain hurts; now I know how he felt. This afternoon I went down to the ship’s gym to try and digest all that I have been learning the past two weeks, by working out physically rather than mentally. Plus I had to work off some of the great food the stewards feed us here on the Brown.

With the drop in air pressure the winds have picked up, it has started raining lightly and the ship is rocking and rolling. Nothing extreme, but it should rock everyone to sleep tonight.

We had another abandon ship drill today.

This afternoon we saw a pirate ship. Well ok it really wasn’t a pirate ship but it kind of looks like one, with its sails down and floating in the mist. It is actually a Mexican Navy training ship.

Questions of the Day

Today we had a low pressure system, what kind of weather can we expect if we have a high pressure system?

What activities do you that would create air pollution?

From which way is the wind blowing today, where you live?

What is up wind of you? What is downwind of you?

Kirk Beckendorf, July 12, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 12, 2004

Weather Data from the Bridge
Time 8:30 AM ET
Latitude- 42 47.28 N
Longitude- 70 42.29 W
Air Temperature 17
Air Pressure 1019 Millibars
Wind Direction at surface Southeast

Daily Log

Why are so many methods used to measure air quality, why not just one or two simple tests?

I received an email from Paige who is a student at Obsidian Middle School where I teach. She asked how air samples are taken and how air quality is measured. Those are two very big and good questions, without simple answers. This is one of the reasons that there are several hundred scientists working on NEAQS. I emailed Paige a fairly short answer but will give a more detailed explanation here. In some of the previous logs that I have written here on the BROWN, I explained some of the techniques somewhat in detail but I haven’t given you an overview, so here we go. Great questions Paige!!!

There are many different ways that the air is sampled and measured. In some cases, such as the LIDARs, samples are not taken at all. The LIDARs shoot light through the atmosphere, some of the light bounces back to the LIDAR, and this helps to measure some of what is in the air. The ozonesonde immediately and constantly measures the amount of ozone as the balloon rises through the atmosphere.

In other cases air is sucked into tubes mounted on towers at the front of the ship and the other end of the tube goes to the scientists’ equipment. (See the pictures, the big white upside down funnel and the smaller pink upside down funnel, are two of the inlets shown.) Sometimes samples are actually stored and in others the air quality is measured immediately.

Some of the instruments measure many chemicals such as one designed, built and run by Paul Goldan and Bill Kuster. It pulls in a sample of air every 30 minutes and in 5 minutes automatically measures about 150 different kinds of chemicals. It can measure the chemicals in parts per trillion. If you made some Kool-Aid that was one part per trillion, you would mix 1 drop of Kool-Aid into 999,999,999,999 drops of water. It certainly wouldn’t taste like Kool-Aid.

Other instruments measure one or just a few of the chemicals that are in the air. Today Hans Osthoff showed me a piece of equipment that he uses to measure air quality. He uses it to measure three specific chemicals in the air. One of Eric Williams’ instruments sucks in air and measures the amount of ozone every second, 24 hours a day.

Tim Bates showed me a number of pieces of equipment which suck in air and can used to find, in real time, the size and chemical composition of the particles that are floating in the air. These particles can be so small that it may take 250,000 or more laid side by side to be an inch long. Dave Covert and Derek Coffman showed me their equipment which removes particles from the air. These particles are then collected by Theresa Miller and Kristen Schulz who will analyze them. Some of the samples will be analyzed here on the ship and other samples will be analyzed once they return to Seattle.

So why not just one or two simple tests? Why so many?

Our atmosphere and the pollution in it are extremely complicated. Even though air is about 99% nitrogen and oxygen it also contains hundreds of other chemicals which are very important. Some are natural, some are man-made and some are both. This soup of chemicals is constantly changing and moving. To be able to understand pollution in the atmosphere we have to understand all of the parts. This goes back to the elephant I mentioned a few days ago. The more parts we observe and the more ways we observe the parts the better we will understand our elephant. If you feel the elephant’s leg you learn a little, if you use your nose and smell the elephant’s leg you learn a bit more, if you use your tongue and lick the elephant’s leg you will learn even more about the elephant. Understanding the pollution in our atmosphere is similar. Each type of measurement has advantages and disadvantages but each tells you more about the pollution and the atmosphere. Combined all together they can eventually give us an understanding of the whole elephant.

We had another abandon ship drill today.

Questions of the Day

What is the ozone level today where you live?

What is the level of particles where you live?

What is the maximum limit of ozone as set by the EPA (Environmental Protection Agency)?

Hint: You can probably find these on the Internet.

Kirk Beckendorf, July 11, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 11, 2004

Weather Data from the Bridge
Time 8:00 PM ET
Latitude- 42 37.71 N
Longitude- 70 22.9 W
Air Temperature 17 C
Air Pressure 1018 Millibars
Wind Direction at surface Southeast
Cloud cover Partly cloudy

Daily Log

What famous event happen at Boston harbor?

It was a very eventful day today. The computer program that manages the wind profiler showed that there was a problem because one entire section was being shown in red instead of green. Dan Law asked if I would help him find out what was wrong. I jumped at the opportunity knowing that he really needed my expertise. I was very good at holding the wrench for him. As I was taking pictures of him and the inside of the profiler we were sailing into Boston Harbor. As we came into town our decks looked like those of a cruise ship. Most of the scientists were out on deck taking pictures and enjoying the view. Now everyone is back inside of their lab facilities which are mostly big shipping crates.

We spent most of the day in Boston Harbor near the end of Boston Logan Airport sampling the air in Boston. It was a beautiful weekend day and there were hundreds of sail and motorboats all around us. I didn’t see any tea floating in the water though. While soaking up the sun and enjoying the view of the harbor I helped Drew Hamilton, from NOAA’s Pacific Marine Environmental Lab in Seattle, Washington take some measurements with an instrument call a sunphotometer which measures the total amount of particles in the column of air above the instrument.

In the afternoon we left Boston and specifically to follow a cruise ship. Its exhaust was visible in the air and we criss-crossed back and forth across the plume to see what chemicals were being released by the ship. After we left the cruise ship’s exhaust plume our ship stopped so that we could do the daily launch of the ozonesonde. A little while before sunset one of NOAA’s WP-3 airplanes circled us several times. It is also sampling and measuring the chemicals in the air as part of NEAQS. Comparisons can then be made of the plane’s measurements with those made here on the ship.

The weather report is for winds to be blowing from the southwest through tomorrow so the plan is for us to travel tonight to the northwest so that we will be in the pollution blowing from Boston.

Questions of the Day

What does NEAQS-ITCT stand for?

What will our bearing be tonight if we are going northwest?

How many kinds of planes are being used in NEAQS-ITCT?

Kirk Beckendorf, July 10, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 10, 2004

Weather Data from the Bridge
Latitude- 42 26.72 N
Longitude- 70 01.99 W
Air Temperature 16.5 C
Air Pressure 1013 Millibars
Wind Direction at surface- Northeast

Daily Log

How can you become an officer on a NOAA ship?

The RONALD H. BROWN is run by a crew of 24. The stewards make sure we are well fed, the engineers keep the ship’s generators running, the deck hands manage the deck equipment, the survey tech runs the science monitoring equipment and the officers run the ship. The BROWN is fairly new– it was launched in 1996. Specifically built for ocean going research, it can work in the deep ocean and in shallower water along the coast. It is well suited to be used to study either the ocean or the atmosphere. About 9 months out of the year it can be found out on the ocean doing research. After our NEAQS research cruise ends in August, the BROWN and its crew will still be out at sea doing other research until next March. That is a long time away from home for the crew.

To get a job as an officer on one of NOAA’s ships, a person needs to have at least a Bachelors degree with specific requirements in math and science. There are physical fitness requirements as well. Once accepted a person must then attend a special mariner’s training school. Of course once you become an officer on a ship there is still lots of on the job training.

Today Lt. Liz Jones gave me a tour of the bridge. The ship does not have a propeller like many ships and it does not have a big wheel to steer the ship like you see in the movies. Instead of a propeller it has three thrusters. Each is kind of like a funnel turned sideways where the water goes in the big end and gets forced out the little end pushing the ship in the opposite direction. The three thrusters can be rotated individually and in a complete circle to push the ship in any direction. Even in an ocean current it can stay in one spot by using the thrusters. They can also be loud. The bow thruster is next to my stateroom. Sometimes it keeps me awake when it is turned on an off during the night. Instead of the big wheel, there are a couple of ways to maneuver the ship. On the bridge are three levers, one for each thruster. In some situations when you don’t want to worry about three different levers there is a joy stick that can be used to control the ship.

Lt. Jones said one of the main jobs a person has when on the bridge is to constantly be aware of the surroundings. Looking for other ships, keeping an eye on the weather and watching the charts to know the water depth are all extremely important. The BROWN can run on autopilot to make sure it maintains its course or position even if winds, waves or currents are pushing it in another direction. Even though the bridge is loaded with state of the art electronic equipment like GPS, radars, autopilot and depth finders the crew on watch still uses paper charts and binoculars so that they are not dependant on the electronics.

Questions of the Day

What is the NOAA Corps?

Which side of the ship is starboard and which side is port?

Which end of the ship is the bow and which is aft?

Kirk Beckendorf, July 9, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 9, 2004

Weather Data from the Bridge
Time 8:00AM ET
Latitude- 43 43.31N
Longitude- 66 15.13 W
Air Temperature 11 C
Air Pressure 1010 Millibars
Wind Direction at surface SE
Wind Speed at surface <5 MPH
Wind Direction at 1 Kilometer- E
Wind Speed at 1 Kilometer <5 MPH
Wind Direction at 2 Kilometers E
Wind Speed at 2 Kilometer <5 MPH
Cloud cover and type Fog

Daily Log

One of the blind men observed an elephant and said it is like a tree, another said it was like a rope, another said it is like a water hose. Which was correct?

This morning I visited with Christoph Senff and Rich Marchbanks. After lunch I visited with Alan Brewer. All three are here from NOAA’s Environmental Technology Lab in Boulder, Colorado. Chris and Rich are operating a LIDAR, which remotely measures amount of ozone in the atmosphere. Alan has a Doppler LIDAR which remotely measures wind speed and direction. By “remotely,” that means they can measure ozone and wind from 3-4 kilometers away. An amazing thing about many of the instruments on board is that they have been designed and built by the scientists themselves. They can’t just run down to some high-tech store and buy their equipment, what they need isn’t for sale anywhere. They decide what needs to be done, and then they design and build the equipment that will do the job. The LIDARS that are being used here on the BROWN and in the rest of NEAQS project are examples of some of that “homemade” equipment.

In the case here on the ship “homemade” certainly does not mean it is just thrown together, held up with bubble gum, baling wire and duct tape. The LIDARS and the other instruments on board are extremely intricate, sophisticated and complicated devices.

To understand the very basics of how a LIDAR can detect ozone and air movement forget about LIDARS and just think about a normal flashlight. Pretend that you go outside in the middle of a completely dark night, no light from anywhere. Point your flashlight straight up and turn it on. Now imagine that there are a flock of white pigeons circling overhead, you will not see them unless the light from your flashlight hits them and then bounces back into your eye (hopefully it’s just the light that gets in your eye).

Now imagine that several of the pigeons poop and their poop is completely black and is between you and the pigeon. Yeah I know pigeon poop is usually white but for now pretend it is black. Because the poop is completely black when your beam of light hits the poop the light will not bounce off, instead it will be absorbed by the poop. The more poop in the air the more of the light is absorbed and less light bounces back to your eye.

Picture this. You are standing in the dark with your flashlight. The pigeons are circling over your head- between you and them is their poop. Quickly turn your flashlight on and then back off and measure the amount the amount of light that leaves. The light shoots up through the poop (which absorbs some of the light) and hits the pigeons. Some light bounces off the pigeons back through the poop and to your eye. You measure the light that comes back. By figuring out how much light was absorbed by the poop you can get an idea of how much is in the air above you.

Instead of visible light other wavelengths of light, like ultraviolet (UV) and infrared (IR), are used. Christoph, Rich and Alan use a laser rather than a flashlight and their LIDARs can turn the light on and off in nanoseconds. They can also measure many things about the light that leaves the laser and the light that returns.

Let’s take this one step further. Imagine that flashlight, dark night and poop and pigeons over head again. Also imagine that you can measure how long it takes for the beam of light to go out to some pigeons and then bounce back to your eye. If you know how fast the light is going you could calculate how far away they are and where the poop is located. If we put this all together and measure both how much light bounces back and how much time the light has traveled, you could determine the amount of poop at different distances.

Enough pretending and imagining, lets get back to the LIDARs. Light travels approximately 186,000 miles every second (it is about 25,000 miles around the equator) and the LIDARS can measure the time it takes the light to travel just a few hundred yards. Rich and Christoph’s ozone LIDAR is sensitive enough to measure ozone in parts per billion from 2-3 kilometers away and Alan’s LIDAR can measure wind speed and direction 3-4 kilometers away from here. They do this using a principal similar to the flashlight example, but obviously much more complicated. Chris and Rich’s ozone LIDAR uses a UV laser, picked specifically because its light will bounce off particles in the air (the pigeons) and be absorbed by ozone molecules (the pigeon poop). Allan uses an infrared laser that will bounce off particles floating and moving with the air. The particles, which are much too small to be seen would, as Allan said, seem like boulders to the beam of light.

What that all means, is that for the next six weeks along the ship’s path, the LIDAR’s will be measuring the amount of ozone pollution in the atmosphere, the wind speed and the wind direction.

The ozone LIDAR’s will eventually be used to show the amount and location of ozone pollution in the atmosphere from about 50 meters above the ocean surface up to 2-3 kilometers. The Doppler LIDAR data will be used to make a similar map of the wind speed and direction during the 6 weeks at sea. Eventually these and other data can be merged and compared.

What about those blind men examining the elephant? The first had grabbed the leg, the second had grabbed the tail and the third had grabbed the trunk. None of them of course had a complete picture of the elephant. During NEAQS-ITCT, hundreds of people are examining an elephant this summer. Individually they cannot give us a clear picture of the elephant. The elephant is air pollution. The more parts that can be accurately examined the better the picture. Instead of a trunk, tail and leg to observe, the scientist are examining the many kinds of chemicals in the pollution, the particles in the air, the movement of the pollution and the movement of the air. Different methods can be used to insure accuracy. Once each part of the elephant has been thoroughly examined and understood and all of the blind men evaluate their observations maybe they will have at least a partial picture of the elephant.

Question of the Day

What does LIDAR stand for?

How much of a second is a nanosecond?

Kirk Beckendorf, July 8, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 8, 2004

Weather Data from the Bridge
Time 9:08 AM ET
Latitude- 42 28.14 N
Longitude- 67 47.02 W
Water Temperature 7 C
Wind Direction at surface East
Wind Speed at surface <5 MPH
Wind Direction at 1 Kilometer- West
Wind Speed at 1 Kilometer <5 MPH
Wind Direction at 2 Kilometers West
Wind Speed at 2 Kilometer 5 MPH
Cloud cover and type Fog

Daily Log

What should we do if someone fell overboard or if we had to abandon ship?

Today we are just off the southern coast of Nova Scotia, Canada. It has been foggy all day so we cannot see very far past the ship’s railing. If anyone fell overboard it would be extremely difficult to find them. With the water temperature at 7 degrees C a person would be hypothermic very soon if they were in the water.

I helped Anne again with today’s ozonesonde. The launch did not go as smoothly as yesterday’s. Before releasing the balloon the computer was not receiving a signal from the sonde. After Anne checked out a number of things that could be wrong we attached a different radiosonde, which is the part that sends the signal to the computer. With that change the problem was immediately solved. The sonde detected three layers of ozone pollution and of course the good ozone layer.

The ship’s crew keeps a written record of all ships sighted from the bridge. Today I typed the information into a computer spreadsheet. The scientists will then be able to compare these contacts to their pollution data.

Safety is a major concern on the ship. At school we have fire drills, here on the BROWN we have Abandon Ship and Man Overboard drills. Today when we heard the Abandon Ship alarm (6 short blasts from the whistle followed by one long blast), we rushed to our stateroom (bedroom), grabbed our life jacket, long pants, long sleeve shirt, hat and survival suit. If this were a real emergency we need to have clothes that will protect us from the weather and sun while we are floating in a life raft. We then rushed to our preassigned meeting areas on deck. One of the ship’s crew called roll. Afterwards we practiced putting on our bright red survival suits. The suits are designed to help keep us warm, floating and easy to see.

When the Man Overboard alarm was sounded (three long blasts from the ships whistle) the scientists and myself met in the main science lab to get a head count. Meanwhile as part of the drill, the crew had thrown a “dummy” overboard. They quickly launched one of the small boats and sped away to rescue the “man overboard”. The dummy was rescued quickly. If someone were to fall overboard while the ship is moving and no one realized they were missing, it would be very difficult to find and rescue them since we would not know how far away to look.

Questions of the Day

What is the maximum amount of ozone pollution an area can have without being in violation of the Environmental Protection Agency (EPA) standards?

What is the temperature of the water in degrees F here off the coast of Nova Scotia?

What is the bridge of a ship?

What does hypothermic mean?

Kirk Beckendorf, July 7, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 7, 2004

Weather Data from the Bridge
Latitude- 42 30.79 N
Longitude- 70 33.32 W
Air Pressure 1011.28 Millibars
Wind Direction at surface NW
Wind Speed at surface <10 MPH
Wind Direction at 1 Kilometer- WNW
Wind Speed at 1 Kilometer <10 MPH
Wind Direction at 2 Kilometers W
Wind Speed at 2 Kilometer 10 MPH
Cloud cover and type Clear

Science and Technology Log

We hear a lot about the hole in the ozone layer and that the ozone layer is being destroyed, however, in a lot of areas we also hear that the ozone levels are often too high. How can we have too little and too much at the same time?

A number of the scientists on board are studying ozone. I spent a large part of today with one of them, Anne Thompson. Anne is a chemist who works for NASA’s Goddard Space Flight Center in Greenbelt, Maryland. While on the BROWN she plans to launch an ozonesonde once a day. Like the radiosondes they are carried high into the atmosphere by a helium balloon. However, the balloon has to be a lot larger because it lifts a bigger package. Anne has a radiosonde and a GPS riding piggy back on the ozonesonde. All three instruments will be packaged and duct taped together. Preparing the sonde is a tedious and time consuming task. Many steps must be performed to insure that the device runs correctly and measures accurately. It will need to detect the amount of ozone in parts per billion. The steps must be completed on a set time table; some must occur a few days and others a few hours before release. Filling and launching the balloon is the fun and easy part (it also makes the best pictures) but it must be done correctly to protect the balloon and to make sure that the balloon is filled enough, but not too much.

Today’s launch, ascent and data collection went flawlessly. The ozonesonde was released at 10:05 AM ET. It was really cool because the computer was immediately receiving signals from the sonde. In real time we watched as the ozone levels were instantly graphed by the computer as the balloon ascended. It rose at a rate of 4-5 meters/second. At first the amount of ozone was at an acceptable level but once the balloon reach about 3 kms, ozone levels increased and but then dropped. This was a layer of ozone pollution. Another layer of pollution was detected at about 6 kms. Once the instruments reached about 17 km, the graph showed a major increase in the amount of ozone. This was the good ozone layer. About 2.5 hours after launch when it was 38.6 kms (about 23 miles) high, the balloon popped and everything fell back to Earth still collecting data.

As part of this study five other sondes were released on land. The data from all 6 launches have already been used by the computer modelers. They have made their predictions of where the ozone polluted layers of air will be three days from now.

So how can there be both too much and not enough ozone? The simple answer is: when the ozone is way above the Earth’s surface, like that measured at 17 +kms, by today’s ozonesonde, the ozone will block some of the sun’s UV rays which can be harmful to life on Earth. If there is not enough ozone in that layer, too much of the harmful UV rays get to the Earth’s surface.

However, too much ozone can be harmful for people to breathe, especially for those people who have asthma or other breathing problems. If there is too much ozone close to the Earth’s surface, like the layers measured at 3 and 6 kilometers today, the ozone gas can threaten people’s health.

Questions of the Day

What is the speed of the ozonesonde in miles per hour?

At what altitude do airliners generally fly?

In which layer of the atmosphere is the “good” ozone?

In which layer is the “bad” ozone?

Kirk Beckendorf, July 6, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 6, 2004

Daily Log

If you are standing on the ground, or in our case floating on the ocean, looking up into clear skies how could you tell the speed and direction of the wind a mile or two above you?

I spent the morning with Dan and Michelle who are from NOAA’s Environmental Technology Lab in Boulder, Colorado. Dan spent most of the morning showing me how the wind profiler he designed, can determine the wind speed and direction at any point above the ship, up to 6 kilometers in altitude. Dan was the chief engineer in designing NOAA’s wind profiler network, which has facilities strategically located across the United States. One of the phased-array radar wind-profilers is also installed on the BROWN. The profiler uses radar to remotely detect wind speed and direction in the column of air above our location. Five radar beams are aimed upwards from the ship, one looks straight up and the other four look upwards but at a slight angle. The radar signals bounce off turbulence in the air (kind of like air bubbles in a flowing river) and are then picked up by an antenna back at the profiler. The instrument then combines the signals from the five beams and determines the wind speed and direction at any point above the ship, up to about 6 kilometers (km). The computer monitor on the profiler gives a constant readout of the air’s movement. The chart this morning is showing that the air from the surface to about 3 km has shifted considerably both in speed and direction during the past 24 hours as a weak cold front passed through. However, the air above 3 km did not change its speed and direction much at all.

Dan and Michelle will also be launching radiosondes (commonly called weather balloons) four times a day. The radiosonde is attached to a large helium balloon. As it is rises through the atmosphere it measures relative humidity, air temperature, air pressure, wind speed and wind direction. Normally the sonde will rise to a height of 50,000 – 60,000 feet before the balloon burst and the radiosonde falls back to Earth. So this afternoon we went to the aft (back) of the ship. There Dan filled the balloon with helium until the balloon was about four feet in diameter. He then attached the radiosonde, which is smaller than a paperback novel, so that it was hanging from the bottom of the balloon. Once the computer had a good signal from the radiosonde’s Global Positioning System (GPS) he released the balloon. We all went back inside to the computer monitor that was graphing the relative humidity, air temperature, air pressure, wind speed and wind direction as the balloon ascended.

In the evenings after dinner the scientists have show and tell time. Different research groups showed some of the data that was collected today and gave a status report of how their equipment is working.

Questions of the Day

Why would the helium balloon burst as it reaches high altitudes?

How many MILES high can Dan and Michelle’s wind profiler determine wind speed and direction?

What is a GPS used for?

Kirk Beckendorf, July 5, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 5, 2004

Personal Log

I woke this morning in my bunk, which is a good thing since it is a long way to the floor from my top bunk. It may be a long way to the floor but it is not very far to the ceiling. I cannot sit up in bed without hitting the ceiling.

I talked to Wayne, one of the engineers on the BROWN, who helps keep the ship’s engines running. He and some of the crew needed to work on one of the small boats kept on the ship for excursions off the BROWN. It had to be lowered down to the water from about two stories high where it is kept secured in place. Wayne has had his job with NOAA on the BROWN for about 2 years. Before that he was a guide on fishing and scuba boats in Florida and the Cayman Islands. He loves working on the BROWN since he gets to travel all over the world. One of his favorite places to visit is Brazil because the people are so friendly.

Tim, the chief scientist, called a science meeting at 10:00 this morning. The meeting was to answer any final questions before we leave port this afternoon. He also wanted to make sure everyone has settled into their staterooms and have what they needed. Someone asked him where they could get soap. He explained where we could find soap, toilet paper and other similar items. One of the scientist mentioned that if we used toilet paper we wouldn’t need so much soap.

During the day I visited with Graham Feingold. He will be one of the many scientists working on shore throughout the project, he hopes to be analyzing data on aerosols and clouds. Aerosols are very fine particles that are suspended in the atmosphere. They have major effects on climate change. Graham hopes to learn more about the effect the aerosols have on clouds and water droplets. Water droplets can form around these particles. If there are more of the particles for moisture to attach to, fewer but smaller drops may form. Since the drops may not get very large they may not be heavy enough to fall out of the cloud. What effect that will have on precipitation patterns and climate is unknown?

The warm sunny days left today. This morning began with cloudy skies which have persisted throughout the day. We were scheduled to depart Portsmouth at 4:00 PM but were delayed because of a large ship which came into port. There was not room in the channel or under the bridge for both of us. Even though there was a cold drizzle when we left the dock, everyone was still out on the decks watching as we pulled away. The bridge was raised so that we could get underneath and the BROWN headed out the river channel into a misty gray sea. Once away from land we turned south down the coast towards Boston.

The plan is to stop just north of the shipping lane, the “two lane highway” large ships must use to enter Boston Harbor. The forecast is for the winds to be blowing relatively clean air towards us from the shipping lane. As the wind blows the passing ship’s exhaust across the BROWN, our instruments will measure the specific chemicals in the pollution. By comparing the polluted air to the clean air, the instruments on board can be used to determine