Spencer Cody: No Survey, No Problem, June 8, 2016

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 8, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 10.643′ N

Longitude: 132˚ 54.305′ W

Air Temp: 17˚C (63˚F)

Water Temp: 11˚C (52˚F)

Ocean Depth: 33 m (109 ft.)

Relative Humidity: 52%

Wind Speed: 10 kts (12 mph)

Barometer: 1,014 hPa (1,014 mbar)

Science and Technology Log:

155_3353 (2)
Refrigeration, boiler, and compressed air are just three of the many systems that are monitored and maintained from engineering.

With much of the survey team either on leave or not yet here for the next leg of the hydrographic survey, it can be easy to be lulled into the sense that not much is going on onboard the Fairweather while she is in port, but nothing could be further from the truth.  Actually, having the ship docked is an important time for departments to prepare for the next mission or carry out repairs and maintenance that would be more difficult to perform or would cause delays during an active survey mission.  On that note while the Fairweather was docked was a perfect time to see the largely unseen and unappreciated: engineering.  Engineering is loud and potentially hazardous even when the engines are not running, much less, when we are underway.  One of the key purposes of engineering is to monitor systems on the ship to make sure many of the comforts and conveniences that we take for granted seemingly just happen.  Sensors constantly monitor temperature, pressure, and other pertinent information alerting the crew when a component drifts outside of its normal range or is not functioning properly.  Catching an issue before it progresses into something that needs to be repaired is a constant goal.  Monitoring in engineering includes a wide array of systems that are vital to ship operations, not just propulsion.  Sanitation, heating, refrigeration, ventilation, fuel, and electric power are also monitored and regulated from engineering.  Just imagine spending the day without any of these systems while the loss of all of them would send us reeling to earlier seafaring days when humanity was entirely at the mercy of nature’s whim.

155_3424 (2)
Tommy Meissner, an oiler in the engineering department, is giving me a tour and overview of engineering.  The day after this photo was taken, he took and passed his junior engineer certification exam.  Congratulations Tommy!

Two diesel generators can produce enough power to power a small town.  Water systems pressurize and regulate water temperatures for use throughout the ship while filtration systems clean used water before it is released according to environmental regulations.  Meanwhile, enough salt water can be converted to freshwater to meet the needs of the ship and crew.  The method of freshwater production ingeniously uses scientific principles from gas laws to our advantage by boiling off freshwater from salt water under reduced air pressures increasing freshwater production while minimizing energy consumption.  Steam is generated to heat the water system and provide heat for radiators throughout the ship, and of course the two large diesel engines that are used to provide propulsion for the ship are also located in engineering.

150_2981 (2)
Chief Engineer Bill Ness using the ship’s crane to unload a crate of materials and equipment onto the pier.

How does one get to work in engineering onboard a ship like the Fairweather?  There are several different positions in the ship’s engineering department.  An oiler is largely responsible for maintenance, repair, and fabrication and must pass a qualifying test for this designation focusing on boilers, diesel technology, electrical, and some refrigeration.  Once the qualifying test is passed, the Coast Guard issues a Merchant Mariner credential.  Only then can one apply for that position.  Junior engineers must pass a test demonstrating that they have the working knowledge of the systems involved with engineering especially in areas of auxiliary systems and repair.  Junior engineers generally need less supervision for various operations than oilers and have a greater scope in responsibility that may also include small boat systems and repair.  The scale of responsibility does not stop there, but continues through Third, Second, and First Engineers.  Each involving a qualifying test and having more requirements involving education and experience.  Finally, the Chief Engineer heads the department.  This too requires a qualifying test and certain experience requirements.  There are two different ways in which one can progress through these different levels of responsibility.  They can attain the formal education or they can document the job-related experience.  Usually both play a role in where someone is ultimately positioned determining their role onboard the ship as part of an engineering team.

Personal Log:

100_0019 (2)
Deck crew Terry Ostermyer (lower, right) with Jason Gosine (middle) and I (left) degreasing cables for the hydraulic boat launching system.  It really needs a before and after photo to be appreciated.  Credit Randy Scott for the photo.

Dear Mr. Cody,

The crew is very friendly.  They take care of everything that we need on our trip to Alaska.  They also take care of the ship.  They must have to do a lot of work to keep such a large ship going and take care of this many people on vacation at sea.  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The Fairweather also has a crew that takes care of the ship and its very own fleet of boats.  While in port, I worked with our deck department to get a very small sense of what they do on a day-to-day basis to keep the ship running.  The pitfall of having a lot of equipment and having the capability of doing many multifaceted missions is that all of this equipment needs to be maintained, cleaned, repaired, and operated.  This includes maintaining both the ship’s exterior and interior, deployment and retrieval of boats, buoys, arrays, and various other sampling and sensory systems.  When not assisting with carrying out a component of a mission such as launching a boat, the deck crew is often performing some sort of maintenance, standing watch, mooring and anchoring the ship, unloading and loading supplies, and stowing materials.  Depending on years of experience and whether they have a Merchant Mariner’s certification or not will determine the level of responsibility.  On a survey ship, the deck department specializes in boat launches and maintenance; so, the levels of responsibility reflect that central area of concern.  Beginning experience starts with general vessel assistant and ordinary seaman progressing through able seaman with Merchant Mariner’s certification and seaman surveyor or deck utility man to boatswain group leader to chief boatswain.  The chief boatswain is in charge of training and supervision regarding all of the areas pertinent to the deck department.  This is a stark contrast compared to the deck department on the Pisces that specialized in techniques associated with fish surveys.

100_0033 (2)
Cannot paint because of a rain delay?  No problem.  There is always something else to do like heads and halls.  Deck crewmember Denek Salich is in the background.  Credit Randy Scott for the photo.

When I was with the Fairweather’s deck crew, they were working on taking an old coating of grease off cables and applying a new coating back on.  The cables are used to raise and lower the 28’ long hydrographic survey launches.  This will be a system that will be in use throughout the next leg; so, now is a great time to clean and replace that grease!  After using rags and degreasing agents to strip the old grease off, a new coating was added to the cables.  The crew is always conscientious about using chemicals that are friendly to the environment and proper containment strategies to prevent runoff from the deck directly into the ocean.  Deck crew need to be very flexible with the weather.  Since the weather was not cooperating for painting, we moved indoors and did “heads and halls,” sweeping and mopping hallways and stairs and cleaning bathrooms.  The Fairweather resembles an ant colony in its construction; so, heads and halls can be a lot of work even for a whole team of people, but as I am reminded by one of our deck crew, “Teamwork will make the dream work.”  It is, indeed, teamwork that makes Fairweather’s missions, not only possible, but successful.

Did You Know?

The boiler system produces steam that provides a heat source for the water system and the heating system.

Can You Guess What This Is?

155_3411 (2)A. an ocean desalinization unit  B. an oil filter  C. a fuel tank  D. a sewage treatment unit

The answer will be provided in the next post!

(The answer to the question in the last post was C. an incinerator.  You may not think of it as being a major problem, but one person can produce a lot of trash over the course of a week or weeks.  Imagine this same problem times 50!  Since the Fairweather must utilize its storage and equipment spaces efficiently, burnable wastes must be incinerated; otherwise, we would be stacking the trash to the ceiling in every available space.)

Leave a Reply

%d