Denise Harrington: Let Kids Be Kids, October 18, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Tuesday, October 18, 2016

Location: 45 27’19″ N  123o 50’33″ W, Tillamook, Oregon

Weather: Rainy, windy, cloudy, and cold (nothing like the Gulf of Mexico).

Meet a Scientist: Dr. William “Trey” Driggers

Trey Drigger’s passion for aquatic predators was born in a lake at his grandparents’ house in Florida, while his dad, a jet pilot, was off fighting in the war in Vietnam.  When his dad left, Trey’s mom loaded the two boys and two dogs into the car and headed north to her parents’ lakefront home in Florida.  Soon thereafter, one of the dogs, used to swimming in safer waters, got eaten by an alligator that lived in the lake.  Trey feared the gators but also must have been fascinated by the life and death struggle between two animals.

With thoughts of fighter pilots and alligators, Trey was one of those students teachers might find challenging. He had trouble focusing on the mundane.  But through books, he could get a little bit of the thrill he sought.

shark-dictionary

He knew he was destined to do something cool, just like his dad. Yet by the end of college Trey was still unsure of what he wanted to become.  One day, he was in the library when the spine of a book caught his eye: Sharks Attack.  After reading this book his childhood fascination with aquatic predators was reinvigorated. During a trip to the Smithsonian Museum of Natural History, Trey purchased a book entitled “Sharks in Question.” The last chapter was about how to become a shark specialist.  What, he thought, I can make a living studying sharks?!

sharks-in-question

Trey quickly finished up his history degree and began two years of science classes he had missed.  In Marine Science 101, the professor said “If you are here for sharks, whales, or dolphins, you can leave right now.”  Trey took the warning as a challenge, and began his now spectacular career with sharks.

img_3208
Trey and Chief Boatswain Tim Martin measure a sandbar (Carcharhinus plumbeus) shark while fisheries biologist, Paul Felts, records data.  Photo: Matt Ellis/NOAA Fisheries

His attraction to the mysteries of the deep and the written word has resulted in many discoveries, including a critical role in the discovery of a new species, the Carolina hammerhead (Sphryna gilberti). Recently, Trey’s research has focused on, among other things, examining the movement patterns of sharks. However, understanding the movement patterns of sharks is tricky.  Many have large ranges and occupy numerous habitats under the surface of the ocean that covers over 70% of our planet.  Most sharks can’t be kept in captivity.  For all these reasons and more, sharks are mysterious and fascinating creatures.

So which sharks are currently catching Trey’s attention? One of his many interests is a group of bonnethead  (Sphyrna tiburo) sharks that have been recaptured over multiple summers in specific estuaries in South Carolina.

Like other hammerhead sharks, the bonnethead shark has a cephalofoil.  Why do hammerheads look like that?

bonnethead-sphyra-tiburo
The photo of this bonnethead shark was taken in 2010 by a fellow TAS, Bruce Taterka, also aboard the Oregon II.

Theories abound about the funny looking hammerheads, whose heads look more like wings than hammers.  As Trey says, many people have speculated “the hammerhead has a cephalofoil because ….” giving a single reason.  Some say the cephalofoil acts as a dive plane, pulling the shark up or down as it swims, others say the distance between the nostrils allows it to smell better, honing in on prey, some say it is to compensate for their blind spot, and still others hypothesize that the shark uses its head to pin down prey.

 

Many people have asked this question, but very few get to work like Trey does, collecting data, making observations, and analyzing the data. He says the best part of his job is “when I figure something out that no one else knows.” One day, looking at data a friend collected in Bull’s Bay estuary, near Charleston, South Carolina, he noticed a pattern of the same sharks getting recaptured there year after year.  A small group of different aged, different size friends going to enjoy their summer together to Bull’s Bay while another group always going to the North Edisto estuary every year?  Why?

Trey hypothesizes that in the summer, blue crab abound in that spot, and are thick with eggs. The bonnetheads have the shortest gestation period of all sharks, four months, and need a lot of nutrients.  Their heads, shaped just right for holding down a blue crab, and their convergence at Bull’s Bay on the fertile female crabs, may just be the elements necessary to get a shark pup from embryo to viability.  Pretty cool!

800px-noaa_fishery_science_center_measuring_bonnethead_shark_pup
Here, a juvenile bonnethead shark is being measured.  Photo: NOAA Fisheries

With all this evidence supporting a hypotheses that the bonnethead shark cephalofoil is used for holding down prey, one might predict that Trey’s next publication on the topic will make that conclusion.

“People want to pick one answer,” Trey says, but “there is a lot more that we don’t know than we do.”   There is often more than one right answer, he continues, more than one solution to a problem.  Speaking about fishing regulation, conservationists and fishermen, Trey suggests that both sides need to understand that the other side has positive things to contribute.  He lives his life this way, moving fluidly among the deck crew, officers, stewards, and scientists looking for commonalities.  Together, all the members of the team play an essential role in keeping the ship and survey moving forward.

p1080860
Kevin, Matt Ellis, NOAA Science Writer, Paul, and Trey were the four other members of the day shift science team.  I took my christened baiting gloves home with me as a souvenir.

Personal Log

Each member of the crew shared insights and skills that I will take back to my classroom and incorporate into my life

My work as a NOAA Teacher at Sea was one of the most challenging experiences of my life. I knew very little about fish before stepping aboard the Oregon II, and from the crew have gained understanding of and appreciation for fish, other marine species, and the diversity of life on our planet.  I’ve learned that while the Gulf of Mexico is home to the world’s largest fisheries, the human impact from industries, watershed runoff, development, and other sources is unbelievable.

When the time for science arrives, or weaves its way into the other subjects as it always does, students’ eyes light up.  I know I am far from a professional scientist, but through NOAA,  I can now speak authentically and accurately about what happens in the field and why.  My students have become mini-scientists, speaking among themselves about collecting data as if it were a playground game.

As I listened to NOAA Corps Officer David Reymore share memories of a Make a Wish trip with his son to Disneyland, I learned to take each moment with a child as a gift and was also reminded of the sacrifice crew members and their families make in support of science during their weeks, months, and years at sea. Thank you, each and every NOAA crew member aboard the NOAA fleet, for your service.  With the time away from family as the only negative, I learned that the many different careers available through NOAA provide great learning opportunities, adventure, and inspiration to those who are ready for some very hard work.

What advice can you give me as a teacher, I ask Trey.  “Quote me on this,” he says with a smile, “don’t give kids so much —- homework.  Let them be kids.”

img_0463
NOAA Corps Officer Brian Yannutz wears his lucky shark hat as we bring in the long line.

Laughing, shaking my head in amazement, leafing through my journals, I have enough inspiration from these two weeks to last a lifetime.  How did I get so fortunate?

 

 

Denise Harrington: What Fish Do I Eat? October 3, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Monday, October 3, 2016

I asked Kevin Rademacher, Research Fisheries Biologist at the Pascagoula, Mississippi Lab, what fish I could eat and still support sustainable fisheries.  He answered with a question, “Have you read the book Four Fish?” When I finished reading the book by Paul Greenberg, I spoke to Kevin again. “What do you think now?” He asked.

I said “There is something about wild fish that makes me want to catch and eat them, but I worry about whether we are eating wild fish out of existence.”

img_2656
Yellowedge grouper (Epinephelus itajara). Photo: Matt Ellis/NOAA Fisheries

“Have you talked with Adam?  He’s the numbers guy,” Kevin said.  It seems like the good teachers are always sending students away in search of their own answers.

Adam Pollack is a contract Fisheries Biologist with Riverside Technology, Inc., and works on the night crew.  We sometimes cross paths at midnight or noon.  Catching him wouldn’t be easy.

OLYMPUS DIGITAL CAMERA
Here, Adam measures a shark too large to bring on deck.  Photo: NOAA Fisheries

During one of these transition times, we had a moment to talk.  I asked Adam about his earliest fish memory.  He smiled.  “At about five, I went fishing with my dad.  We had a house in the mountains surrounded by a bunch of lakes.”  Adam and his dad would sit by the lake with their lines in the water “watching the bobber disappear.”  He smiles again.  These little largemouth bass changed his life.

adam-fishing
Adam takes a selfie with a red drum (Sciaenops ocellatus).

At first, he was set on becoming a professional bass fisherman but made a practical switch to marine biology.  He took all the science electives and the hardest math classes he could.  He went on to Southampton College on Long Island, New York, where he got lots of hands-on experiences beginning in his freshman year.  He believes a good education should include lots of opportunities, as early as possible, for interactive learning in a real world environment.

Once he graduated, Adam got his dream job: working in the Gulf of Mexico during the field season and then crunching numbers the rest of the year.  He takes the data scientists collect to the SouthEast Data, Assessment, and Review (SEDAR).  SEDAR is a cooperative process through which scientists, fishermen, and policy makers look at the life history, abundance trends, and other data to determine how many fish we can catch sustainably.

Adam, and many others, also look at how catastrophic events like Hurricane Katrina and the Deepwater Horizon oil spill affect marine species in the Gulf of Mexico.  After Hurricane Katrina, he said, shrimping efforts died down by about 40%.  The effects of the oil spill are still a little murky.  Many of the biologists on board initially predicted dire and immediate effects.  Yet unlike the spill in Alaska, the warm Gulf of Mexico water is host to bacteria, plants, and other living things that might be eating up the oil.  Many questions, such as whether these living things will mitigate the effects of a spill, are still being asked. “Deepwater Horizon is always on our minds,” Adam says.  There are also naturally occurring events like harmful algal blooms and long term issues like climate change that affect fish populations.

img_1611
Oil rigs dot the horizon as Tim Martin, Chief Boatswain, gets ready to retrieve the longline. Photo: Matt Ellis/NOAA Fisheries

 

img_1372
Here, Paul Felts, Fisheries Biologist, weighs a yellowedge grouper (Hyporthodus flavolimbatus). Photo Matt Ellis/NOAA Fisheries

“Can you tell me about snapper?” I asked Adam.  Red snapper (Lutjanus campechanus), assessed every other year, is a hot button topic for commercial and recreational fishermen alike in the Gulf. The species was in decline. Recreational fishermen went from a 180 day season to catch fish to an 8 day season and from 10 to 2 fish a day per person.  Commercial fishermen weren’t happy either: they could only take 49% of the year’s quota for red snapper, while the recreational fishermen get to catch 51% of the quota.  Fairness is not just a second grade concern, it is a major sticking point in regulating fisheries world wide.

img_3226
Snapper is as tasty as it is beautiful.  Photo: Matt Ellis/NOAA Fisheries

Red snapper is a vulnerable species.  Snapper settle to the bottom of the water column from larvae.  They are at high risk of mortality from ages 0-5, the same time when they are close to human activity such as oil rigs, shrimping grounds and easy to access fishing areas.  Those who manage the fisheries are trying to get the snapper through that vulnerable stage.  Like money in the bank accruing interest, a 10 year old snapper can produce more eggs than a five year old.  Before we take snapper from the sea, we must make sure a healthy older population remains to reproduce.

img_3230
TAS Denise Harrington holds up two red snapper. Photo: Matt Ellis/NOAA Fisheries.

Once an assessment is complete, scientists determine a maximum sustainable yield:  how many fish can be taken from the population and still keep enough around to make more fish for the future.  Take a look at a shark assessment and a snapper assessment. Looking at these long and complicated assessments, I am glad we have people like Adam who is willing to patiently work with the numbers.

Gathering the best data and making it available to people who collaborate to make informed decisions is an important part of Adam’s job. We all want fish and NOAA fisheries biologists are doing their best to make that happen for us, and for generations to come.

Personal Log

My time aboard the Oregon II has come to an end.  Bundled up in my winter clothes,  I look out over a rainy Oregon landscape filled with fishermen hoping to catch a fall Chinook salmon. Two places with different weather and many different fish species.  Yet many of our challenges are the same.

Back at school, students and teachers welcome me enthusiastically.  Instead of measuring desks and books as part of our Engage NY curriculum, we measured sharks and their jaws.  Many of these students have never been out of Oregon, many have not been to the beach, even though it is only 4 miles away.  With NOAA, South Prairie Elementary students were able to learn about faraway places and careers that inspire them.

Soon these seven year old children will be in charge. I am thankful to the NOAA crews and the Teacher at Sea program staff, as they’ve prepared generations of students of all ages to collaborate and creatively face the task that lies ahead.

 

 

Denise Harrington: A Shark A Day, September 29, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Thursday, September 29, 2016

Science Log

The cruise is coming to a close. Looking back at my three experiences with NOAA, hydrography (mapping the ocean), fisheries lab work, or shark and snapper surveys,  I couldn’t decide which was my favorite.  Like the facets of a diamond, each experience gave me another perspective on our one world ocean.

Just like different geographic locations and work, each shark species give me a lens through which I can appreciate the mysteries of the ocean.  Every day, I held, measured, kissed, or released a different species of shark. In the Gulf of Mexico, there are 44 shark species frequently caught.  Fortunately, I saw quite a few, and will share some, in the order in which I met them.

Our first night fishing, we caught many Atlantic sharpnose sharks (Rhizoprionodon terraenovae).  They are named for their long flat snout and sharp nose. It seemed whenever we caught one, a bunch more followed. They were abundant and kept us busy.

p1080163
Paul Felts, Fisheries Biologist, records measurements while Kevin Rademacher, Fisheries Biologist, wrestles and measures the shark. Matt Ellis, NOAA Science Writer, took amazing pictures throughout the cruise.

Day two, we caught a deep water Cuban dogfish (Squalus cubensis).  

 

p1090143
The Cuban dogfish’s huge iridescent eyes were entrancing.

On September 2o, we almost caught a bull shark (Carcharhinus leucas).  We brought the cradle down, but the shark thrashed its way off, refusing to be studied. The bull shark, along with the tiger shark, are “one of the top three sharks implicated in unprovoked fatal attacks around the world.”

Within a couple days of catching the Cuban dogfish, we caught another shark with iridescent eyes. It turns out this similar looking shark was not a Cuban dogfish, but a rare roughskin spiny dogfish (Cirrhigaleus asper).  

p1080318
Dr. Trey Driggers, Field Party Chief, and prolific shark researcher, surprised us all when he reported this was the first roughskin spiny dogfish he had ever caught!

The beautifully mottled, sleek, immature tiger shark (Galeocerdo cuvier) caught on September 23 had remarkable skin patterns that apparently fade as the shark ages. Adult sharks can get as large as 18 feet and 2,000 pounds.  Along with the bull shark, it is one of the top three species implicated in unprovoked, fatal attacks worldwide.

September 24 we caught a fascinating scalloped hammerhead (Sphyrna lewini).  The flat extended head of this hammerhead is wavy, giving it the “scalloped” part of its name.  Its populations in the Gulf have drastically decreased since 1981, making it a species of concern.

 

img_0430
Here, Kevin measures one of several scalloped hammerhead sharks we caught on Leg IV of the survey.

We also caught a silky shark (Carcharhinus falciformis). Like other Carcharhinus sharks, the silky shark has a sharp “Carchar,” nose “hinus” (Greek derivation), but also has a silky appearance due to its closely spaced dermal denticles.

img_2294
I instantly felt the silky was the most beautiful shark I’d seen. Photo: Matt Ellis/NOAA Fisheries

 

We  saw two of the three smoothhound species present in the Gulf.  On September 25, we caught a Gulf smoothhound, (Mustelus sinusmexicanus), a species named less than 20 years ago. Much is left to learn about the ecology and biology of this recently discovered shark.

img_2575
Getting ready to weigh the gulf smoothhound, Kevin Rademacher, Fisheries Biologist, stops for a photo.                                                      Photo: Matt Ellis/NOAA Fisheries

Then, I watched the night crew catch, measure and tag a dusky shark (Carcharhinus obscurus).

OLYMPUS DIGITAL CAMERA
Photo: NOAA Fisheries

On September 26, we caught a sandbar shark (Carcharhinus plumbeus).  Despite its size,  the sandbar shark poses little threat to man.

img_2889
The sandbar shark’s large fin to body ratio and size make them a prime target for commercial fisheries. Photo: Matt Ellis/NOAA Fisheries

Due to over-fishing, sandbar shark populations are said to have dropped by as much as 2/3 between the 1970’s and the 1990’s. They are now making a comeback, whether it be from fishing regulations, or the decreased populations of larger sharks feeding on juvenile sandbar sharks.

img_3128
This sandbar shark attacked a blacknose shark that had taken our bait. Photo: Matt Ellis/NOAA Fisheries

We tagged many sharks during my two weeks on the Oregon II.  If you never catch one of those sharks again, the tag doesn’t mean anything.  But this week, we also caught a previously tagged sandbar shark!  Recapturing a wild marine animal is phenomenal.  You can learn about its migration patterns, statistically estimate population sizes, and learn much more. The many years of NOAA’s work with this species in particular demonstrates that thoughtful, long term management of a species works.

 

On September 27, we almost caught a nurse shark (Ginglymostoma cirratum). The barbels coming from its mouth reminded me of a catfish or exotic man with a mustache.

Today, September 29, was our last day of fishing, a bittersweet day for me.  That nurse shark that got away, or more likely, another one like it, came up in our cradle.

Every day we caught sharks, including a few other species not mentioned here.  Only once our line came back without a fish.  The diverse characteristics and adaptations that allow each of these species to survive in a challenging marine environment inspire biologists as they try to categorize and understand the species they research.   While catching so many different species of sharks gives me hope, many members of the crew reminisce about times gone by when fish were more abundant than they are now.

Personal Log

I am the kind of person who always struggles to return from an adventure.  I have learned so much, I don’t want to leave.  Yet I know my class at South Prairie is waiting patiently for my return. I hope to share these many marine species  with my class so that we all may view every moment with curiosity and amazement.

 

 

 

 

Denise Harrington: Spotlight on a Blacktip Shark, September 24, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Saturday, September 24, 2016

Yesterday, I was in the crew lounge, working on my next blog, when Eric Hoffmayer, Research Fishery Biologist, called me out to the fantail to see a large deceased female blacktip shark (Carcharhinus limbatus) brought in that morning.

countershade-2
(deceased) female blacktip shark

The contrast between the gray and white skin caught my eye. The countershading, a dark grey color on top, had a light bronze hue that sparkled in the light. A white band starting at its pectoral fins widened until it merged with the belly at the anal fin.

If there is a mortality, the science team uses the opportunity to dissect the fish, collecting additional information otherwise unavailable.  When we catch a shark, we release it as quickly as possible. The urgency of getting shark back in the water keeps me from carefully studying its detailed characteristics.

While I understand the loss of this particular shark touches many of us on board, understanding the species better through the loss is a practical, necessary approach to  managing the marine environment.  Without an in depth understanding of sharks, their populations, life cycle, and reproduction, there is no way we can sustainably manage fish populations.  Some may find dissection unappealing, and for those folks you may want to skip this blog, but not without first thanking the biologists who do this work compassionately. They keep our fisheries sustainable.

I rubbed my hand from the head to the tail.  It was smooth. Rubbing from the tail to the head felt just the opposite, rough like sandpaper.  Tiny dermal denticles allow sharks to move quickly through the water, an adaptation so amazing, it was put to use by designers of swimsuits in the Olympics and engineers of Navy ships.

Eric, Adam, and Chrissy, placed the shark on the table.  Eric cut the shark and pulled out a long sack that looked like empty sausage casing. At the end of the casing was a tiny shark pup. Trey joined the crew as they took data on each of the six pups.  The shark was pregnant.

The golden colored egg casing is still about six times the size of the pup, giving it plenty of room to grow.
The golden colored egg envelope is still about six times the size of the pup, giving it plenty of room to grow.

 

Here, Trey stretches out the casing demonstrating the significant amount of room left for the pup to grow,
Here, Fisheries Biologist Eric Hoffmayer stretches out the egg envelope demonstrating the significant amount of room left for the pup to grow. In the background you can see the egg envelop of another pup stretching across the table.

From the number of pups in a brood, to the possibility of immaculate shark conception, the reproduction of blacktip sharks is of interest to fishery biologists.  Without knowing all about shark reproduction, how many, and where sharks reproduce, we cannot sustainably manage this species, or fisheries in general.

Trey takes me through each stage of reproduction. The blacktip shark is viviparous, like humans. They are born alive, “vivi,” and develop within the mother getting nutrients through a placenta.

life-cycle-diagram

 

Egg

The shark life cycle begins in the female shark’s ovary with an egg.   Trey hands me an ovary that holds the eggs.  It is a large sack of many small red pinpoint size spheres with about 6 larger marble like balls from the high in the body cavity. These eggs wait to mature until the conditions are ideal for reproduction. At that time, the follicle ruptures, and the egg comes out.

Shark eggs are fertilized inside the female’s body.  The male fills his siphon sacs with seawater, and then flexes his abdomen to shoot the seawater and semen into the female shark through his clasper.

p1090186
Now I understand why we spin the clasper of a male shark to determine its maturity.  I was able to rotate this male Gulf smoothhound shark (Mustellus sinusmexicanus) clasper 180 degrees and reported it as an adult male.

Embryo/Pup

The male blacktip shark is often ready to mate in April to May but the females are often not ready to reproduce until June or July.  With many sharks, blacktip sharks included, the sperm can remain inside the female until she is ready to reproduce.  When that moment arrives, the egg slips through the ostium, down the anterior oviduct, and into the oviducal gland where it is fertilized by the sperm. For the blacktip shark, usually 4-6 eggs will be fertilized and develop into shark pups.  Females usually reproduce every other year.

 

large-yolk-little-shark
Note that different sharks have different modes of reproduction.  For example, Cuban dogfish (Squalus cubensis) reproduce through aplacental viviparity or ovoviviparity. The tiny pups you see here nourish themselves with the yolk “ovo” and have no placental connection to their mother.  They are born live “vivi,” and able to feed and protect themselves. Some sharks are oviparous, which means they lay eggs  that hatch later.

Initially,  the blacktip shark embryo uses the nutrients from a yolk sac for about 10-11 weeks. For the remaining time inside the mother, the pup increasingly gets nutrients from the mother through a placenta.  They are viviparous and remain inside the mother for approximately 10 months until they can survive on their own.  I held a pup, still connected to its mother by the umbilical cord. The similarities between human reproduction and blacktip shark reproduction surprised me so much I began to question the classification of viviparous sharks as fish.

 

holding-pup
I held a pup, still connected to its mother by the umbilical cord.

Immature Shark/Juvenile

For approximately two months after it is born, the immature shark has an umbilicus (like a bellybutton) that is still open.  During this phase of the life cycle it is called a neonate, or newborn.  It is otherwise just like a miniature adult blacktip shark.  It can hunt and hide from predators (including its mother).

immature-blacktip
Here, Eric and Evan Pettis, Texas Parks and Wildlife Fisheries Biologist, tag, measure, and release an immature blacktip shark.

 Mature Shark/Adult

Individual sharks even within a species mature at different rates, just like humans.  Generally, a male blacktip shark matures between 4-5 years of age, and females between 7-8 years.

p1080498
This 1385 mm male mature blacktip shark was brought in our second day of the survey.

How does the shark’s life cycle affect fisheries?

Evolutionarily speaking, placental viviparity gave the blacktip shark and others like it an advantage; the shark is born able to survive independently.  But this adaptation has also has a downside:  the females only produce a small brood, unlike other fish that use broadcast fertilization.

During gestation, the female shark we caught most likely migrated to our current location just off the coast of the Mississippi from deeper waters.  Called the Fertile Fisheries Crescent, the Mississippi Sound is one the most productive seafood areas in the nation.  Another risk to this species is pollution and over-fishing in the fragile estuarine habitat, the juvenile shark’s nursery.

There is demand for the high quality blacktip shark meat, the fins, and even the carcasses for fishmeal. The work NOAA Fisheries does to collect information about shark populations over time and over a wide geographic area not only helps keep blacktip shark populations sustainable, it also gives us valuable information about the ocean’s health in general.

 

Personal Log

Today I reached the half way point in my time on the longline crew.  I finally feel like I am getting into the groove, finding my way around the ship, and meeting people beyond my fishing buddies.  Valerie  McCaskill, Chief Steward, and her cousin, Ava Speights cook amazing seafood, grilled veggies, and au gratin everything. Ava showed me a great piece of exercise equipment, Jacob’s Ladder, to allow me to enjoy the great food guilt free.

Each station, each day, a new adventure.

Denise Harrington: First Day Jitters, September 21, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Wednesday, September 21, 2016

My first day on the longline cruise seems so long ago with three days of work under my belt. The night before my first shift, just like when school starts, I couldn’t sleep. Trying to prepare was futile. I was lost, lost in the wet lab, lost in my stateroom, lost in the mess. I needed to get some gloves on and get to work, learning the best way I know how: by doing.

At noon, I stepped out the fantail, life vest, gloves, hard hat, and sunscreen on, nervous, but ready to work. The Gulf of Mexico horizon was dotted with oil rigs, like a prairie full of farmhouses. Heat waves rose from the black deck.

Fifteen minutes before arriving at our first station, our science team, Field Party Chief Dr. Trey Driggers, Field Biologist Paul Felts, Research Biologist Kevin Rademacher, NOAA Science Writer Matt Ellis, and I began to prepare for our first station by baiting the hooks with mackerel (Scomber scombrus). I learned quickly that boots and grubby clothes are ideal for this task.

p1080831
Once all the hooks were baited, Chief Boatswain Tim Martin and Paul release a high flyer, a large pole with a buoy at the bottom and a reflective metal flag on top.

The buoy, connected to the boat by the longline, bobbed off toward the horizon.

p1080429

Tim attached the first of three weights to anchor the line to the sea floor.

p1080443

As the longline stretched across the sea, Kevin attached a numbered tag to the baited hook held by Paul.

p1080326

Paul passed the baited, tagged hook to Tim, who attached 100 hooks, evenly spaced, to the one mile longline.

p1080838
On another station, Paul attached numbers to the gangion (clip, short line, and baited hook) held by Trey.  Each station we change roles, which I appreciate.

Setting the longline is rather predictable, so with Rush and Van Halen salting the air, we talked about our kids, dogs, riots in the news, and science, of course. The tags will help us track the fish we catch. After a fish is released or processed, the data is entered in the computer and shared with the scientific community. Maybe one of these tagged fish will end up in one of the many scientific papers Trey publishes on sharks each year.

The line soaked for an hour waiting for snapper, tilefish, eels, sharks, and other fish to bite. While the line soaked, Mike Conway, skilled fisherman, and I lowered the CTD, a piece of equipment that measures conductivity (salinity), temperature, and depth, into the water.  Once the biologists know how salty, cold, and deep the water is, they can make better predictions about the species of fish we will find.

We attached a bag holding a few Styrofoam cups to see how the weight of the water above it would affect the cup.  Just imagine the adaptations creatures of the deep must have developed to respond to this pressure!

The ship circled back to hook #1 to give each hook equal time in the water. After an hour, we all walked up to the well deck, toward the bow or front of the ship. We pulled in the first highflyer and weight.  We pulled in the hooks, some with bait, and some without.  After 50 hooks, the middle weight came up. We still didn’t have a fish.  I began to wonder if we’d catch anything at all.  No data is still data, I thought. “Fish on eighty three!” I heard someone yell.   I wake from my reverie, and get my gloves on.

p1080432

It was a blacknose shark (Carcharhinus acronotus), “pound for pound, the meanest shark in the water,” says Trey. He would know, he’s the shark expert. It came up fighting, but was no match for Kevin who carefully managed to get length, weight, and sex data before releasing it back into sea.

With one shark to process, the three scientists were able to analyze the sexual maturity of the male blacknose together. I learned that an adult male shark’s claspers are hard and rotate 180˚, allowing them to penetrate a female shark. An immature shark’s claspers are soft and do not rotate. For each male shark, we need to collect this data about its sex stage.

p1080172
Here, you can see Trey rotating the clasper 180 degrees.

Later, Paul talked about moments like these, where the field biologists work side by side with research biologists from all different units in the lab.  Some research biologists, he notes, never get into the field.  But Kevin, Trey, and others like them have a much more well-rounded understanding of the data collected and how it is done because of the time they spend in the field.

Fortunately, the transition from inexperienced to novice was gradual. The second line was just as easy as the first, we only brought in two fish, one shark and one red snapper (Lutjanus campechanus).

For the red snapper, we removed the otoliths, which people often call ear bones, to determine age, and gonads to determine reproductive status.  I say “we” but really the scientists accomplished this difficult feat. I just learned how to process the samples they collected and record the data as they dissected the fish.

We set the longline a third time. The highflyer bobbed toward the orange sun, low on the horizon. The ship turned around, and after an hour of soaking, we went to the well deck toward the front of the ship to pull in the longline.  The sky was dark, the stars spread out above us.

“One!” “Three!” “Seven!” “Nine!”  The numbers of tags with fish on the line were being called out faster than we could manage.  It seemed like every other hook had a shark on it.  Two hours later we had collected twenty-eight Atlantic sharpnose (Rhizoprionodon terraenovae) sharks and had one snapper to process. Too busy working to take pictures, I have nothing to document my transition from inexperienced to novice except this data sheet.  Guess who took all this data? Me!

p1080265

Personal Log

NOAA Ship Oregon II is small, every bunk is filled.  I share a stateroom with the second in command, Executive Officer (XO) Lecia Salerno, and am thankful she is such a flexible roommate, making a place for me where space is hard to come by.

Last night, as I lay in my bunk above XO Salerno and her office, I felt like Garth on Wayne’s World, the thought that “I’m not worthy” entering my head.  All members of the crew are talented, experienced, and hard-working, from the bridge, to the galley, to the engine room, and out on the deck where we work. I’ve made a few mistakes.   I took the nasty thought and threw it overboard, like the slimy king snake eels (Ophichthus rex) we pull from the deep.

o-rex
King Snake Eel (Ophichthus rex)

In the morning I grabbed a cup of coffee, facing the risk of being the least experienced, slowest crew member to learn, with curiosity and perseverance.  First day jitters gone, I’m learning by doing.

Denise Harrington: Joining the Longline Crew, September 17, 2016

 

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Saturday, September 17, 2016

Location: 29 2.113’ N  93o 24.5’ W

Weather from the Bridge: 28.9C (dry bulb), Wind 6 knots @ 250o, overcast, 2-3′ SE swell.

Science Log

The muggy afternoon air did not dampen my excitement as we left Galveston, Texas, aboard the National Oceanic and Atmospheric Administration (NOAA) Ship Oregon II.  I am a NOAA Teacher at Sea, participating in a  longline survey in the Gulf of Mexico, surveying sharks and bony fish.

p1080113
Fellow volunteers Leah Rucker and Evan Pettis and I bid farewell to Galveston. Evidence of human influence, such as development, oil rigs, barges, and ships, is not hard to spot. Photo: Matt Ellis, NOAA

When I tell people about the Teacher at Sea program, they assume I teach high school or college, not second grade in rural Tillamook, Oregon.  Yet spend a few moments with any seven or eight year old and you will find they demonstrate significant potential as scientists through their questions, observations, and predictions. Listen to them in action, documented by Oregon Public Broadcasting, at their annual Day at the Bay field trip.

Just as with language acquisition, exposing the young mind to the process of scientific inquiry ensures we will have a greater pool of scientists to manage our natural resources as we age.  By inviting elementary teachers to participate in the Teacher at Sea program, NOAA makes it clear that the earlier we get kids out in the field, the better.

dsc_0447
Each year, my students develop a science or engineering project based upon their interests.  Here, South Prairie Elementary students survey invertebrates along a line transect as part of a watershed program with partners at Sam Case Elementary School in Newport, Oregon.

The NOAA Teacher at Sea program will connect my students with scientists Dr. Trey Driggers, Paul Felts, Dr. Eric Hoffmayer, Adam Pollock, Kevin Rademacher, and Chrissy Stepongzi, as they catch sharks, snapper, and other fish that inhabit the Gulf of Mexico. The data they collect is part of the Red Snapper/Shark Bottom Longline Survey that began in 1995. The survey, broken into four legs or parts each year, provides life cycle and population information about many marine species over a greater geographic distance and longer period of time than any other study of its kind.

Leg IV is the last leg of the survey.  After a long season of data collection, scientists, sailors, and fishermen will be able to return to their families.

My twelve hour shift begins tomorrow, September 17, at noon, and will continue each day from noon until midnight until the most eastern station near Panama City, Florida, is surveyed.  Imagine working 12 hour shifts, daily, for two weeks straight!  The crew is working through the day and night, sleeping when they can, so shutting the heavy metal doors gently and refraining from talking in the passageways is essential.  I got lucky on the day shift:  my hours are closer to those of a teacher and the transition back to the classroom will be smoother than if I were on the night shift.

Approximately 200 stations, or geographic points, are surveyed in four legs. Assume we divide the stations equally among the legs, and the first three legs met their goal. Leg IV is twelve days in duration. How many stations do we need to survey each day (on average) to complete the data collection process?  This math problem might be a bit challenging for my second graders, but it is on my mind.

p1080124
Mulling over the enormity of our task, Skilled Fisherman Chuck Godwin and I discuss which 49 year old fisherman will end up with more wrinkles at the end of the survey. Currently, I am in the lead, but I bet he’s hiding some behind those shades. Photo: Mike Conway

I wonder what kind of sharks we will catch.  Looking back at the results of the 2015 cruise report, I learned that there was one big winner.  More than half of the sharks caught were Atlantic sharpnose (Rhizoprionodon terraenovae) sharks. Other significant populations of sharks were the blacktip (Carcharhinus limbatus) shark, the sandbar (Carcharhinus plumbeus) shark, and the blacknose (Carcharhinus acronotus) shark.

My fellow Teacher at Sea, Barney Peterson, participated in Leg II of the 2016 survey, and by reading her blog I learned that the shark they caught the most was the sandbar shark.

p1080106
In this sample data sheet from the end of Leg III, all but one of the sharks caught were the blacknose sharks.  Notice the condition of two of the fish caught: “heads only.”  Imagine what happened to them!

 

 

Personal Log

My first memory of a shark was when my brother, an avid lifetime fisherman, took several buses across the San Francisco Bay area to go fishing.  That afternoon, he came home on the bus with a huge shark he’d caught.  I was mesmerized. We were poor at the time and food was hard to come by, but mom or dad insisted sharks were not edible, and Greg was told to bury the shark in the yard.  Our dog, Pumpkin, would not comply, and dug that shark up for days after, the overpowering smell reminding us of our poor choice. I don’t have many regrets, but looking back on that day, I wish we had done something differently with the shark.

Since then, I’ve learned that shark is a popular source of protein in the diets of people around the world, and is growing in popularity in the United States.  In our survey area, Fisheries Biologist Eric Hoffmayer tells me that blacktip and sandbar sharks are the two most commercially important species. Our survey is a multispecies survey, with benefits beyond these two species and far beyond our imagination. As demand increases, so too does the need for careful management to keep fisheries sustainable. I am honored to be part of a crew working to ensure that we understand, value, and respect our one world ocean and the animals that inhabit it.

Barney Peterson: Who Works on NOAA Ship OREGON II? Part 3

NOAA Teacher a Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

DECK CREW

Tim Martin, Chief Boatswain, aboard the OREGON II, left his home near the Missouri River in Missouri for a life at sea and has never looked back.  Like many young people from the Central United States, he joined the Navy as a way to travel and see the rest of the world.  He was stationed on Whidbey Island in Washington State and when he left the Navy he became a commercial fisherman working out of Seattle to fish the in Bering Sea from Dutch Harbor, Alaska.

Tim left the west coast and the world of commercial fishing to join NOAA and worked for several years on ships out of NOAA Woods Hole Station in Massachusetts.   Eventually, through connections he made on the job, he was able to transfer to the Southeastern Fisheries group.  He has worked on several ships, but has been on the OREGON II for 12 years.  Tim likes his job for the variety and activity it provides, as well as opportunities to apply his mind to ways to make things work better or more smoothly.  He attributes much of the good working atmosphere on the ship to the stability of many crew members who have worked together for years.   As a long-time civilian mariner with NOAA he appreciates the importance of believing in what you are doing and being committed to being successful.

But, Tim Martin is not so one dimensional that you can know him as just a mariner.  Talking with him I learned that he is a voracious reader with very eclectic tastes in literature.  He devours everything from travel accounts to true adventure, biographies, and historical accounts of exploration and settlement of the world.  He has traveled broadly and uses his reading time to continue to learn about the places he has visited.  He is a licensed diver and enjoys the underwater world as much as sailing on the surface of the sea.   I was fascinated to learn that he has dived to authentic pirate wrecks…quite a change from his underwater beginnings in the dark and brackish Pascagoula River.  Tim is a great example of someone who recognizes that his only limits are the ones he sets for himself.  That is a great legacy to leave for his family.

Chris Nichols, Lead Fisherman, got into marine work for the adventures.  Growing up he read classics like “Captains Courageous” and “20,000 Leagues Under the Sea.” His years as a Boy Scout helped empower him with a can-do attitude that kept him from quitting when things got difficult.  After a mediocre high school career and his childhood years in West Palm Beach, Florida, hanging around the docks and fishing, his quest for travel and adventure led him first to commercial fishing and then to join the Navy.

After six years in the service, including training in water rescue, Chris left the Navy and started classes for work in the merchant marine industry.  As he worked toward earning his 100 ton master rating he discovered that using math, which had seemed unimportant and boring in high school, was critical for navigation.  Applying the things he was studying to real world problems made learning important.  The life-style structure of his military years helped him move fairly seamlessly into the shift work that became his routine aboard merchant ships.  The travel fed his sense of exploration and adventure.

Now, after 20 years working either on NOAA ships or for companies that contracted with NOAA, Chris still loves his job and his life style.  His experience in the merchant marine gave him the background to understand working on ships from the viewpoint of the wheel house and the deck.  He patiently explained to me that the job titles of people working on the deck crew are just positions for which eligible Able Bodied Seamen were hired.  They are not classification by skill or experience; they are job descriptions.  Each survey watch requires 3 crew members on deck to work equipment and support the scientists in deployment and retrieval of lines. Cooperation and communication are the most critical skills needed by everyone on the ship for success in carrying out their mission.

“NOAA has recently been experiencing a lack of interested, qualified applicants,” Chris told me.  “I think many young people lack the sense of adventure that makes life at sea attractive.”  He certainly demonstrates that desire for adventure: his eyes light up and an infectious grin spreads across his face as he talks about the places he’s been and the places he still wants to go.

The whole deck crew, including Chris Rawley, Mike Conway, Chuck Godwin, and James Rhue, are a lively, hard-working bunch.  They do their jobs, they have some fun doing them sometimes, and they like what they are doing.  Every time I was around them I could hear John Fogarty’s song “Rambunctious Boy” playing in my head and I ended up smiling and humming along!

the-deck-crew-chris-nichols-mike-conway-tim-martin-james-rhue-and-chris-rawley
The Deck Crew – Chris Nichols, Mike Conway, Tim Martin, James Rhue, and Chris Rawley

ENGINEERS

Thirty-six years ago Rich Brooks took the advice of his high school math and history teachers and enrolled at the Massachusetts Maritime Academy.  The strict structure of the Academy helped him develop his study habits and learn the discipline needed to raise from a low C student a B+ student who took pride in his work.  He graduated with a degree in Marine Engineering, but spent time as a substitute teacher while deciding where he wanted to go with his career.  Currently he holds 3 chief engineer licenses: steam, motor and gasoline and is qualified to operate any watercraft.

richard-brooks
Richard Brooks

Eventually he started working on ships, spending a number of years in the Merchant Marine.   He worked on merchant transport ships contracted to our government to support Operation Desert Storm and Operation Iraqi Freedom in the Persian Gulf. For 10 years he worked on independent oil tankers on the West Coast, transporting oil and gasoline to and from various ports. He has been a 1st Engineer for NOAA for 2 years.

Rich enjoys the travel and adventure that are part of his career.  He likes visiting different cities and has been through both the Suez and Panama Canals in his travels.  It has been a long journey around the world from his childhood home in Haverhill, Massachusetts to Mobile, Alabama where he made his home base for the last 25 years.  He is proud that his work as an engineer has influenced his son to pursue a career in engineering, following his father’s example of hard work and sacrifice as the way to get ahead in life. Rich hopes to see more young people turn to careers in engineering, knowing as he does that the average age of marine engineers in this country is 58 years which means there will be openings for young people as they complete their training.  As for him, when he retires several years in the future he looks forward to moving closer to his father in Florida, going fishing and playing golf.

 

THE PEOPLE I MISSED INTERVIEWING:

My roommate, Chrissy Stepongzi, is a marine biologist and the person of whom I saw the least on this cruise.  She knows her job and was always eager to answer questions.  We just did not see each other often to talk because of being on opposite shifts and sharing the room.  She slept while I worked and visa-versa.  I appreciated her quick smile and well-developed sense of humor and wish we had been able to get better acquainted.

night-crew-before-shift-change-trey-chrissy-lydia-and-toni
The Night Crew before a shift change – Trey, Chrissy, Lydia, and Toni

Fisherman Mike Conway has been working on ships for a long time.  He loves the ocean and loves the travel.  His willingness to make sure I learned and got opportunity to see things was really helpful and made me feel welcome.  Mike was always willing to grab my iPad and take pictures so I could be in them and he was the one that made sure I got to see the sky at night and appreciate the beauty of being on the ocean in one more way.

Fisherman Chris Rawley, quick to grin, but slow to talk, took some effort to get to know.  Chris was a fisherman on our shift and helped with everything from running the crane to pulling lines to wrestling sharks.  He was “born under a wandering star,” and loves to travel.  He’s a gypsy at heart.

James Rhue is another fisherman working on the deck crew.  He too was with the night shift so we didn’t cross paths often.  When we did talk he could always answer my questions and made me feel welcome.

Mike, Chris, and James are pictured in the Deck Crew photo above.

Mary Stratford was filling in on the deck crew this cruise.  She lives in Puerto Rico where she is a ceramic artist, but much of her life has been spent working in jobs that allow her to see the world.  Mary was helpful and friendly and always interesting to talk to.

2nd Engineer Darnell Doe, the quiet, friendly guy I ate breakfast with most mornings.  We shared a little conversation and watch the news over a quick bite to eat and a cup of coffee.  I never turned out into a formal interview and didn’t take notes on our casual conversations.

darnelle-doe
2nd Engineer Darnell Doe

3rd Engineer Sam Bessey was filling in a temporary vacancy.  He is a recent graduate of an academy in Maine and worked the opposite shift of mine so we had a few chances to talk a little, but not enough to call an interview.  I do know he wants to head for Hawaii and try to find work there after this cruise, but will head home to Maine to see family first.  Good luck in your new career Sam.

Roy Tolliver was our tech person.  I most often saw him walking from place to place on the decks, checking on electronic equipment and trying to troubleshoot computer problems when they arose.  Roy has worked on ships for many years and has been many places around the world.

roy-tolliver-and-sam-on-the-flying-bridge-as-we-moved-into-the-harbor-at-gulfport-mississippi
Roy Tolliver and Sam Bessey on the flying bridge as we moved into the harbor at Gulfport

O C Hill, Listed on the staff roster as a “wiper” was another one of the people who kept the ship running.  Our interactions were limited to friendly smiles and greetings.  When folks work in the engine room it is hard to find a time to talk with them, especially if shifts don’t match.

wiper-otha-hill
Otha (O.C.) Hill

Valerie McCaskill, our cook and one of the most important people on the ship.  I know she has a daughter she was eager to get home to see.  I know she had very little warning that the previous cook would not be on this voyage so she had to step in in a hurry.  I know that she has a beautiful smile and makes legendary macaroni and cheese!  She kept us very happy!

Chuck Godwin would normally be working on this ship as a skilled fisherman on the deck crew, but he worked in the kitchen with Valerie this trip to fill an important empty spot and keep us all well-fed.  His irrepressible sense of fun and lively conversation kept us all hopping.  His career has spanned time in the Coast Guard as well as years with NOAA.  His is a proud new grandpa.

valerie-mccaskill-and-chuck-godwin-in-the-galley-of-noaa-ship-oregon-ii
Valerie McCaskill and Chuck Godwin in the galley of NOAA Ship OREGON II

That I did not get to know everyone on the ship is my loss.  Everyone that I met was friendly and helpful.  It was a true pleasure to meet and work with these great people.

Barney Peterson: Who Works on NOAA Ship OREGON II? Part 2

NOAA Teacher a Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHO WORKS ON THE OREGON II?  Part 2: THE SCIENTISTS

Meet Lisa Jones, a career marine scientist who came to her present position as a Research Fisheries Biologist for NOAA from a life of working with animals.  Born in Memphis and raised in the mountains of east Tennessee, she did her undergraduate work at Emory University, and then earned her Master of Science at East Tennessee State.

Lisa has lived and worked in Colorado where she trained horses for a while.  She moved to California and worked for the Department of Fish and Game to earn money for grad school and eventually ended up in at the National Marine Fisheries lab in Pascagoula, Mississippi.  She started there as a student intern and 19 years later is working as a research scientist for NOAA.  Her schedule of being out on the water during the summer and home during the winter months suits her well.

Ten years ago Lisa got interested in doing agility training with a rescue dog she kept, an Australian Shepherd.  Since then she has acquired 3 more Aussies through rescue and adoption (one dog left homeless by Hurricane Katrina.)  Lisa’s interest in dog training and agility trial competition helps her recharge her energy and enthusiasm each winter so she is ready to go back to sea in the spring.  Her big goal is to make it to the national agility dog competition trial with her Aussies.

Lisa’s advice for students interested in a marine science career is to do well in math and science, but do not neglect developing good research and communication skills: reading, writing and speaking.  In a science career you will need to be able to work as a team member, report on your work and develop applications for grant funding.  While you are young, get out and volunteer to get experience.  Take internships, volunteer at an aquarium, a science camp or as a field work helper.  Getting good field work experience is important even if you don’t plan a research career.  It is hard to run support for researchers and set policy for others if you don’t have a fairly deep understanding of their jobs.  “Always ask questions.  Demonstrate your interest.  The only stupid question is the one you don’t ask.”

Lisa has been my go-to person for everything I needed to know about living and working on the OREGON II.  From making sure I met everyone, to teaching me to use and care for our equipment, to teaching me to cut mackerel and bait hooks, she has been right there.  The success of this experience for me has been mostly due to having good teachers and being with a group of people willing to share their experience and expertise.

Kevin Rademacher, Fisheries Research Biologist, started out riding dolphins at Marine Life in Gulfport, Mississippi!  He spent several years doing dive shows and working with performing marine mammals before he got into research work.  Kevin was graduated from University of Southern Mississippi with major emphasis in biology and fisheries science and a minor in chemistry.  After graduation he worked restoring antiques with his father while he applied for jobs in the marine science industry.

Kevin started out on NOAA Ship CHAPMAN, a 127’ stern trawler.  In 1988 he spent 240 days at sea as a survey technician while earning certifications with survey equipment, deck equipment, as a diver, an EMT, worked the helm watch and corrected charts.  Then he moved into the lab working with the marine mammal group, ground fish and reef surveys.  He has chosen to continue working on reef fish surveys because it gives him the opportunity to work with cutting edge equipment like underwater cameras as they have evolved from simple video to using sophisticated arrays of four sets of camera groups, each cluster including a stereo black and white set and one color camera to give the fullest possible depth and detail 360⁰ images.  Underwater work is Kevin’s main interest, but there are only so many research biologists so his job assignments have been varied.  It was fortunate for me that he was assigned to work on the long-line survey this trip so I could learn from him.

During my time on the OREGON II Kevin has been a willing source of any information I request about the marine life we are seeing.  He has a copious memory for facts and an encyclopedic knowledge of the appearance, habits, and names of the animals in the ocean.  No matter what we brought up on our hooks, bony fish, sharks, algae, coral or shellfish, he knew them by common and scientific name and provided interesting facts to help me remember them.  Kevin’s passion for his job is obvious in the way he attends to details and shares his knowledge.  His irrepressible sense of humor made the afternoons baiting hooks with smelly fish in the hot sun an adventure instead of a chore.

the-day-shift-science-crew-kevin-rademacher-teacher-at-sea-barney-peterson-lisa-jones-mike-cyrana-and-kasea-price
The Day Shift Science Crew – Kevin Rademacher, TAS Barney Peterson, Lisa Jones, Mike Cyrana, and Kasea Price

Trey Driggers, Research Fisheries Biologist, first got interested in aquatic animals because of alligators.  Growing up on a lake in Florida he was constantly warned to stay away from the water because there were alligators…the kind of warning guaranteed to intrigue any curious youngster.  About then, the movie “Jaws” was released and the media blitz that accompanied it drew his imagination toward an even scarier predator.  His interest grew and he remembers two books in particular that kept it alive: “The Dictionary of Sharks” and “Shark Attack.”  From that point on his career path seemed to point straight toward marine biology.

Trey put in four years studying a basic liberal arts program at Clemson University.  He remembers a Smithsonian presentation called “Shark in Question,” which had a chapter addressing the question “How can people become shark experts.”  He entered the University of South Carolina and spent 2 years taking nothing but science courses to get enough credits and background knowledge to enter a Master’s program in Marine Science. He began working as a volunteer in labs and on commercial fishing boats to gain experience.   Trey completed his thesis on yellowfin tuna and was ready to move on.  Advisors warned him away from focusing on charismatic marine fauna, but his father had taught him to push back against barriers and pursue his goals.  He began working as a volunteer in labs and on commercial fishing boats to gain experience.  He spent 3 years earning his Ph.D. and worked in a post-doctoral position while looking for a research job.  His previous volunteer work on surveys gathering information on blacknose sharks helped him get a foot in the door to get a contract position at the NOAA Fisheries Research Lab in Pascagoula.  He continues research to add to our understanding of sharks and enjoys his job because he loves the challenge of not knowing all the answers.

Trey’s advice to young people is to get involved in volunteering in a variety of ways so you can discover where your interests lie.  That volunteer experience can demonstrate interest that will set you apart from other applicants when it comes to applying for the limited number of positions that may be available in your chosen field.

trey-driggers-head-of-the-night-shift-science-team-working-in-the-dry-lab
Trey Driggers, head of the Night Shift Science Team, working in the dry lab

VOLUNTEERS

There were six unpaid volunteers aboard the ship this cruise.  They provide important manpower to get the research done while gaining knowledge and experience to transfer to other areas of their lives.  Most often they are students who are gathering data to use for research projects, working toward advanced degrees.  Sometimes there will be a volunteer like me, a very lucky Teacher at Sea who has been chosen by NOAA…….. to participate in the cruise to learn about the work and careers in NOAA to take that knowledge back and share it with our students and the general public.

Mike Cyrana is a Post-Doctoral Student at Tulane University, working toward his PhD in Marine Biology.  This is the second year he has worked with fisheries crews in the Gulf as he compiles data for his research.  Mike was on my watch so we worked together 12 hours each day and got to swap stories and share information.  He shows a passion for his work that lets you know he has chosen a career he loves.  Mike is to blame for introducing me to chocolate tacos….my newest vice!

mike-showing-off-the-catch
Mike showing off the catch

Lydia Crawford is also a Post-Doctoral Student at Tulane University.  She is doing research about sharks for her PhD in Ecology and Evolutionary Biology.  Lydia was on the midnight to noon shift so our paths crossed very seldom.  She is knowledgeable and willingly shared what she knows to help make our jobs easier.  She also has been out on research cruises as a volunteer before and helped us newbies learn the ropes.

night-crew-before-shift-change-trey-chrissy-lydia-and-toni
The Night Shift at work – Trey, Chrissy, Lydia, and Toni

Kasea Price, working for her MS at University of Southern Mississippi was on day shift with me and helped me wrangle sharks, dissect for otoliths and collect any number of specimens to bring home to my class.  On one of our last days working together she found out that she has been hired to work for one of her professors at school, a job that will make it possible for her to complete her degree without piling up huge loans.  We all celebrated for Kasea.

kasea-price-showing-off-a-large-red-grouper
Kasea Price showing off a large Red Grouper

Toni Mancinelli is the youngest of the volunteers.  She is an undergraduate, just starting her junior year at The University of Tampa.  She felt very fortunate to be accepted for this cruise and worked hard to learn and contribute while she participated.  Her happy attitude and willingness to help made her a pleasure to know and work with.

 

Barney Peterson: Who Works on NOAA Ship OREGON II? Part 1

NOAA Teacher a Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHO WORKS ON NOAA SHIP OREGON II? (Part 1)

In the last few days I have had the opportunity to become better acquainted with some of the great people aboard the OREGON II.  The variety of backgrounds and experiences provides richness to the culture we work in.

Firstly, there is our Commanding Officer, David Nelson.  Upon meeting him when I came aboard I felt immediately welcomed by his warm, informal greeting, “Hi Teach.” His drawl gives him away as a life-long southerner.  His friendliness and casual manner in conversation make it easy to see him as just one of the people who work here. BUT, make no mistake: Dave Nelson is a smart, perceptive, capable leader who understands ships and crews from the keel up.

CO Dave Nelson’s route to command has not been the typical college to NOAA Corp Officer track.  He got where he is today by working through the ranks.  After high school graduation he worked on commercial long-line and shrimp boats in the Gulf, gradually moving on to oil field supply boats.  At some point he decided to look into marine work that offered worker benefits and more chance of vertical advancements.  Dave had earned his card as an AB (Able Bodied Seaman) and been captain of fishing boats. He hired on as a Skilled Fisherman at NOAA and began a new phase of his career.  His skills set matched the needs of NOAA well enough that he moved from deck hand to deck boss to 3rd, then 2nd officer and in 1998 he got his First Mate’s papers and became part of the wheel team.

Advancement at that point began to require more formal training and certification.  He had had to invest 700 days at sea with NOAA to get that first license.  The big prize became the Master rank requiring an additional 1000 days at sea and rigorous formal testing.  He headed to Seattle where he enrolled at Crawford Nautical School, lived aboard NOAA Ship RAINIER at Sand Point, and spent seven days a week for 10 weeks immersed in preparing to take tests for the Master rank.  It was a proud day in 2003 when he called his family to report success.

Today, Dave is one of only two people in command of NOAA ships who are not NOAA Corps officers.  He brings to his job a depth of knowledge that positions him well to understand the challenges and rewards at every level on his ship.  He appreciates the continuity possible for him because he is not subject to the mandatory rotation of postings every 2 or 3 years as are members of the Corps.  He has the first-hand experience to know where the rough spots may be and to address those proactively.  I am not saying other ship’s Captains don’t have those same abilities, but CO Nelson has truly earned his position working from the bottom up.

captain-dave-nelson-on-the-bridge
Captain Dave Nelson on the bridge as we came into Gulfport, Mississippi

Executive Officer Lieutenant Commander Lecia Salerno, born in Halifax, PA, has loved the ocean for as long as she can remember, back to family vacations at Delaware beaches in her early childhood.  She vividly recalls running joyfully into the water and being lifted high in the air by family members so the waves wouldn’t crash over her head!  Later, a family visit to Sea World may have been the start of her fascination with marine mammals.

In her soft southern accent, no doubt developed during her undergraduate years in college at Myrtle Beach, SC, she tells of graduating with a degree in Marine Biology in 2001.  She returned to Pennsylvania where she spent the summer as a volunteer at Hershey Park before moving on to Gulfport, MS, in 2002.  There she trained sea lions which she remembers as uniquely intelligent and interesting to work with.  Training dolphins: not so fun and that changed her attitude about working with captive animals.   She began to see that type of work as a dead-end so she started looking at other options.  That is when she discovered NOAA Corps.  For her it seemed the perfect mix of military-style structure and science at sea.

Now, several years into her NOAA career, she views her role as being a “science facilitator.”  Her daily work is with management of people and resources.  She is mostly in an office and does not work in the science lab.  Rather, she helps organize the support necessary to make the science at sea possible.

               Lieutenant Reni Rydlewicz worked a lot of jobs in a lot of places before she became a NOAA Corps Officer.  Raised in Milwaukee, Wisconsin, she attended the University of Wisconsin – Whitewater and graduated with a degree in Ecology Field Biology.  An early goal of hers was a move to Alaska so after graduation she worked as a contracted observer on commercial fishing boats in the Bering Sea and Gulf of Alaska.  NOAA Fisheries employs regional contractors all over the country so next she moved to Chincoteague, Virginia, where she also worked as an observer on fishing boats. Then, for a few years, she was back in Wisconsin conducting seasonal work for the state Department of Natural Resources collecting data on recreational catches on Lake Michigan including salmon and steelhead.

Eventually Reni moved to New Jersey to a position as a coordinator for the mid-Atlantic observer program, working hand in hand with the commercial fleets and managing biologists aboard the vessels to gather data for NOAA Fisheries.  After a change in contractors a few years later, she again found herself in Virginia, this time working as a dockside monitor for recreational species.

By this time Reni had spent almost a decade as a contract worker on NOAA jobs.  A retired NOAA Corp Captain in her local American Legion suggested that she apply to NOAA Corps based upon her experience.  With that encouragement she met with a NOAA recruiter on a trip to Washington DC and has now been working on fisheries research ships as a NOAA Corps Officer for over seven years. She is currently the Operations Officer aboard NOAA Ship Oregon II.  Reni has considered returning to college to earn an advanced degree, but juggling work and school can sometimes be a difficult process.  She will soon be due to rotate to a land-based assignment for the next three years and is considering positions on the West Coast, continuing her work with NOAA Fisheries.

Reni’s advice to students is to take lots of science and math classes.  Science is a broad subject and can be applied in many different ways to so look around and find what really captures your interest. Finding jobs in science fields can be very competitive so get as much education and experience as you can.  A career in science can be one that you really love, but it likely will not ever make you rich.  How do you decide what to study?  “Well,” she says, “Think of something you want to know more about and then go to work finding answers to your own questions.  Go with you interests!”

Ensign Brian Yannutz is another young person from the central part of the United States who has chosen marine science as a career.   Raised in Colorado, he went to University of Hawaii with assistance from the NOAA Ernest F. Hollings Undergraduate Scholarship Program.  He earned his degree and presented his work in Washington DC, then returned to Hawaii where he worked on a temporary job in the NOAA Marine Debris Program.  In 2014 he applied to NOAA Corps and was graduated from the Coast Guard Academy in December 2014.

Brian’s first assignment is the OREGON II where he will be until December of this year.  His land-based assignment will be as an Operations Officer at the Monterey Bay National Marine Sanctuary in California.  His job there will have him working with schedules and boat maintenance.  He will be the officer in charge of deployments on the two research boats stationed there, one a fisheries boat and the other a diving platform.

Outside of his work for NOAA, Brian is an enthusiastic runner.  He ran cross country in school and since then has run marathons and ironman races.  His advice to young people getting ready to find a career is to “follow your dreams and passions.”  His have led him to a career in NOAA where he can travel, learn and grow with his job.

Ensign David Reymore can be described as the “renaissance man.”  He grew up mostly on a small family ranch in Tonopah, NV.  His high school years were spent rodeo riding: team roping, calf roping and saddle bronc riding.  After high school he continued to enjoy rodeo as he worked as a farm mechanic rather than enter the family construction business.  Eventually he enrolled at Embry Riddle Aeronautical University and earned a degree in aeronautical science.  While in college he joined Air Force ROTC, but after a visit from a Navy ROTC recruiter, he switched to the Navy and earned a scholarship to Officer Candidate School.   Dave remained in with the Navy, on active duty, and then as a civilian flight test engineer until 2008.

The next step was to enroll in premed training at University of West Virginia, but the demands of supporting his young and growing family made it more important to settle immediately into a job with benefits and advancement opportunities.  For the next several years, after completing training, he worked as an engineer for Burlington Northern Santa Fe Railroad, running mainly between Vancouver, Tri-Cities, Wenatchee, and Seattle, WA.

Still eager to learn and grow, NOAA Corps caught his eye and he spent 5 months at the US Coast Guard Academy in officer corps training to become an Ensign in NOAA Corps.  What’s next?   Dave has his heart set on getting back in the air and has been accepted into training to join the NOAA Aviation team.  Maybe he will be flying small planes that do aerial surveys of marine mammals, using helicopters, or even flying with the Hurricane Hunters.  At this point, the sky is the limit.

 

Barney Peterson: What Are We Catching? August 28, 2016

NOAA Teacher at Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHAT ARE WE CATCHING?

This is a long-line survey.  That means we go to an assigned GPS point, deploy hi-flyer buoys, add weights to hold the line down, add 100 baited hooks, leave it in place for an hour, and retrieve everything.

mackerel-bait-fish
Mackerel is used to bait the hooks.

As the equipment is pulled in we identify, measure and record everything we catch.  Sometimes, like in the case of a really large, feisty shark that struggles enough to straighten or break a hook or the lines, we try to identify and record the one that got away.  We tag each shark so that it can be identified if it is ever caught again.  We tally each hook as it is deployed and retrieved, and the computer records a GPS position for each retrieval so scientists can form a picture of how the catch was distributed along the section we were fishing.  The target catch for this particular survey was listed as sharks and red snapper.  The reality is that we caught a much wider variety of marine life.

We list our catch in two categories: Bony fish, and Sharks.  The major difference is in the skeletons.  Bony fish have just that: a skeleton made of hard bone like a salmon or halibut.  Sharks, on the other hand, have a cartilaginous skeleton, rigid fins, and 5 to 7 gill openings on each side.  Sharks have multiple rows of sharp teeth arranged around both upper and lower jaws.  Since they have no bones, those teeth are embedded in the gums and are easily dislodged.  This is not a problem because they are easily replaced as well.  There are other wonderful differences that separate sharks from bony fish.

Bony Fish we caught:

The most common of the bony fish that we caught were Red Groupers (Epinephelus morio), distinguished by of their brownish to red-orange color, large eyes and very large mouths.  Their dorsal fins, especially, have pointed spikes.

chrissy-with-enormous-grouper
Chrissy holding an enormous grouper

We also caught Black Sea Bass (Centropristus striata) which resemble the groupers in that they also have large mouths and prominent eyes.

sea-bass
Black Sea Bass

A third fish that resembles these two is the Speckled Hind (Epinephelus drummondhayi).  It has a broad body, large mouth and undershot jaw giving the face a different look.  Yes, we did catch several Red Snapper (Lutjanus campechanus), although not as many as I expected.  Snappers are a brighter color than the Red Groupers, and have a more triangular shaped head, large mouth and prominent canine teeth.

red-snapper
Red Snapper

The most exciting bony fish we caught was barracuda (Sphyraena barracuda).  We caught several of these and each time I was impressed with their sleek shape and very sharp teeth!

barracuda
TAS Barney Peterson with a barracuda

Most of the bony fish we caught were in fairly deep water.

 

Sharks:

We were fortunate to catch a variety of sharks ranging from fairly small to impressively big!

The most commonly caught were Sandbar Sharks (Carcharhinus plumbeus): large, dark-gray to brown on top and white on the bottom.

sandbar-shark
Sandbar Shark

Unless you really know your sharks, it is difficult for the amateur to distinguish between some of the various types.  Experts look at color, nose shape, fin shape and placement, and distinguishing characteristics like the hammer-shaped head of the Great Hammerhead (Sphyrna mokarran) and Scalloped Hammerhead (Sphyrna lewini) sharks that were caught on this trip.

great-hammerhead
Great Hammerhead Shark

The beautifully patterned coloring of the Tiger Shark (Galeocerdo cuvier) is fairly easy to recognize and so is the yellowish cast to the sides of the Lemon Shark (Negaprion brevirostris).

Other sharks we caught were Black-nose (Carcharhinus acrontus), Atlantic Sharp-nosed (Rhizoprionodon terraenovae), Nurse Shark (Ginglymostoma cirratum), Blacktip (Carcharhinus limbatus) and Bull Sharks (Carcharhinus leucus).

Several of the sharks we caught were large, very close to 3 meters long, very heavy and very strong!  Small sharks and bony fish were brought aboard on the hooks to be measured against a scaled board on the deck then weighed by holding them up on a spring scale before tagging and releasing them.  Any shark larger than about 1.5 meters was usually heavy and strong enough that it was guided into a net cradle that was lifted by crane to deck level where it could be measured, weighed and tagged with the least possibility of harm to either the shark or the crew members.  Large powerful sharks do not feel the force of gravity when in the water, but once out of it, the power of their weight works against them so getting them back into the water quickly is important.  Large powerful sharks are also pretty upset about being caught and use their strength to thrash around trying to escape.  The power in a swat from a shark tail or the abrasion from their rough skin can be painful and unpleasant for those handling them.

PERSONAL LOG

The Night Sky

I am standing alone on the well deck; my head is buzzing with the melodies of the Eagles and England Dan.  A warm breeze brushes over me as I tune out the hum of the ship’s engines and focus on the rhythm of the bow waves rushing past below me.  It is dark! Dark enough and clear enough that I can see stars above me from horizon to horizon: the soft cloudy glow of the Milky Way, the distinctive patterns of familiar favorites like the Big Dipper and the Little Dipper with its signature bright point, the North Star.  Cassiopeia appears as a huge “W” and even the tiny cluster of the “Seven Sisters” is distinct in the black bowl of the night sky over the Gulf of Mexico.  The longer I look the more stars I see.

This is one of the first really cloudless nights of this cruise so far.  Mike Conway, a member of the deck crew came looking for me to be sure I didn’t miss out on an opportunity to witness this amazingly beautiful show.  As I first exited the dry lab and stumbled toward the bow all I could pick out were three faint stars in the bowl of the Big Dipper.  The longer I looked, the more my eyes grew accustomed to the dark, and the more spectacular the show became.  Soon there were too many stars for me to pick out any but the most familiar constellations.

As a child I spent many summer nighttime hours on a blanket in our yard as my father patiently guided my eyes toward constellation after constellation, telling me the myths that explained each one. Many years have passed since then.  I have gotten busy seeing other sights and hearing other stories.  I had not thought about those long ago summer nights for many years.  Tonight, looking up in wonder, I felt very close to Pop again and to those great times we shared.

 

Barney Peterson: What is NOAA? August 20, 2016

Barney Peterson
Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: August 20, 2016

Weather Data from the Bridge:

Latitude: 28 10.999 N

Longitude:  084 09.706 W

Air temperature: 90.68 F

Pressure: 1020.05 Mb

Sea Surface Temperature: 32.6 C

Wind Speed: 4.74 Kt

Science Log:

Teacher at Sea
Teacher at Sea Barney Peterson working on line long deployment aboard the OREGON II.

 

NOAA is a big organization!  To say I am working for NOAA this summer is like saying I am visiting the USA…way too non-specific to mean much.

NOAA (National Oceanic and Atmospheric Administration) is a part of the US Department of Commerce.  The NOAA mission: Science, Service and Stewardship, is further stated simply as to understand and predict changes in climate, weather, oceans and coasts; to share that knowledge and information with others; to conserve and manage coastal and marine ecosystems and resources.

To carry out that mission NOAA is further split into divisions that use a broadly diverse set of skills and abilities including satellite systems, ships, buoys, aircraft, research, high performance computing, and information management and distribution systems.*  In later posts I will introduce you to some of the people who use those resources as they perform their jobs.

As a Teacher at Sea I am working under NOAA Fisheries.  This program (TAS) “is designed to give teachers a clearer insight into our ocean planet, a greater understanding of maritime work and studies and to increase their level of environmental literacy by fostering an interdisciplinary research experience.”*

This summer I am assigned to NOAA Ship Oregon II, a fisheries research vessel of the National Marine Fisheries Service.  We are conducting a long-line survey of fish in the Gulf of Mexico.  The information we gather on species diversity and abundance will help the Service make decisions for management of our marine resources. What this boils down to for the average citizen may seem like what you are allowed to catch where, when, and how many; really the results are much, much more important.  These decisions will be part of a plan to respond to changes in the health of our planet and the needs of all of us who inhabit it.  “There is just one big ocean.”*

To understand what that last statement means, find a globe or an inflatable Earth Ball™.  Put your index finger on a point in the Arctic Ocean.  Now move your finger around the globe, always moving to your right, maybe a little up or down sometimes, until you get back to where you started.  Your finger should never leave the “water” as it moves around the world.  See!  JUST ONE BIG OCEAN!

one ocean
There is just one big ocean.

*1) ppi.noaa.gov              *2)teacheratsea.noaa.gov           *3)oceanexplorer.noaa.gov/facts/bigocean.html

Barney Peterson: Rescue at Sea, August 23, 2016

NOAA Teacher at Sea
Barney Peterson

Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Tuesday, August 23, 2016

Weather Data from the Bridge:

Latitude: 28 10.999 N

Longitude:  084 09.706 W

Air temperature: 90.68 F

Pressure: 1020.05 Mb

Sea Surface Temperature: 32.6 C

Wind Speed: 4.74 Kt

Science Log:

Rescue At Sea!

About mid-morning today the ship’s electrician found me to tell me that the night shift crew had just reported seeing a Sea Turtle near the line that they were currently deploying.  The turtle swam over the line and then dove toward the baited hooks some 30 meters down near the bottom.  Nobody is supposed to catch Sea Turtles; the stress of being on the hook can be fatal so immediate recovery and release is required in the case of an accidental catch.  The crew went into immediate pro-active rescue mode!

Loggerhead Turtle
File photo of a Loggerhead Turtle.

The deployment was stopped. The line was cut and a final weight and a second hi-flyer were deployed to mark the end of the set for retrieval.  The Captain altered course to bring the ship back around to a point where we began retrieving the line.  Crew moved to the well deck and prepared the sling used to retrieve large sharks; it would be used to bring a turtle gently to the deck in the event that we had to remove a hook.

As retrieval started and gangions were pulled aboard, it became obvious that this set was in a great location for catching fish.  8 or 9 smallish Red Grouper were pulled in, one after another. Many of the other hooks were minus their bait.  The crew worked the lines with a sense of urgency much more intense than on a normal retrieval!  If a turtle was caught on a hook they wanted it released as quickly as possible to minimize the trauma.

As the final hi-flyer got closer and the last of the gangions was retrieved, a sense of relief was obvious among the crew and observers on the deck.  The turtle they spotted had gone on by without sampling the baited hooks.

On this ship there are routines to follow and plans in place for every emergency.  The rescue of an endangered animal is attended to with the same urgency and purpose as any other rescue.  The science and deck crews know those routines and slip into them seamlessly when necessary to ensure the best possible result.  This is all part of how they carry out NOAA’s mission of stewardship in our oceans.

Personal Log:

Here is Where I Live

I am assigned a bunk in a stateroom shared with another science crew member.  I am assigned to the top bunk and my roomie, Chrissie Stepongzi, is assigned to the bottom.  Climbing the ladder to the top bunk when the ship is rolling back and forth is like training to be an Olympic gymnast!  But, I seem to have mastered it!  Making my bed each morning takes determination and letting go of any desire for perfection: you just can’t get to “no wrinkles!”

stateroom
Find the Monroe Eagle in my nest aboard the OREGON II

Chrissie works the midnight to noon shift and I work noon to midnight so the only time we really see each other is at shift change.  Together, we are responsible for keeping our space neat and clean and respecting each other’s privacy and sleep time.

I eat in the galley, an area open to all crew 24/7. Meals are served at 3 regular times each day.  The food is excellent!  If you are on shift, working and can’t break to eat at meal time, you can request that a plate be saved for you.  The other choice for those off-times is to eat a salad, sandwich, fruit or other snack items whenever you need an energy boost.  We are all responsible for cleaning up after ourselves in the galley.  Our Chief Steward Valerie McCaskill and her assistant, Chuck Godwin, work hard to keep us well-fed and happy.

Galley
Everyone on the ship shares space in the galley where seats are decorated with the symbol of the New Orleans Saints… somebody’s favorite team.

There is a lounge, open to everyone for reading, watching movies, or hanging out during down time.  There is a huge selection of up-to-date videos available to watch on a large screen and a computer for crew use.  Another place to hang out and talk or just chill, is the flying deck.  Up there you can see for miles across the water while you sit on the deck or in one of two Adirondack chairs.  Since the only shade available for relaxing is on this deck it can be pretty popular if there is a breeze blowing.

Lounge
During off-duty times we can read, play cards or watch movies in the lounge.
Flying Bridge
The flying bridge is a place to relax and catch a cool breeze when there is a break in the work.

My work area consists of 4 stations: the dry lab which has computers for working with data, tracking ship movements between sample sites, and storing samples in a freezer for later study;

Dry Lab
The dry lab where data management and research are done between deployments

the wet lab which so far on this cruise, has been used mainly for getting ready to work on deck, but has equipment and storage space for processing and sampling our catch; the stern deck where we bait hooks and deploy the lines and buoys; the well deck at the front of the ship where lines and buoys are retrieved, catch is measured and released or set aside for processing, and the CTD is deployed/stored for water sampling.

We move between these areas in a rhythm dictated by the pace of our work.  In between deployments we catch up on research, discuss procedures, and I work on interviews and journal entries.  I am enjoying shipboard life.  We usually go to bed pretty tired, that just helps us to sleep well.  The amazing vistas of this ocean setting always help to restore my energy and recharge my enthusiasm for each new day.

sunset
Beautiful sunsets are the payoff for hot days on the deck.

 

Barney Peterson: Cut Bait and Fish! August 17, 2016

NOAA Teacher at Sea
Barney Peterson

Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Wednesday, August 17, 2016

Weather Data from the Bridge:

Latitude: 25 29.664 N

Longitude: 082 02.181 W

Air temperature: 84.56 F

Pressure: 1018.13 Mb

Sea Surface Temperature: 30.5 C

Wind Speed: 13.54 Kt    East 12.72 degrees

Science Log:

The fishing process on the ship repeats itself in a well-defined cycle: cut bait, bait 100 hooks, drop hi-flyer, drop weight,  attach 50 tags and baited hooks, drop weight, attach 50 more tags and hooks, drop weight, deploy hi-flyer.  Put the CTD over the side and retrieve for water quality data.  Wait an hour.  Retrieve hi-flyer, retrieve weight, pull in first 50 hooks and detach tags logging any catch as they come in, retrieve weight, pull in next 50 hooks and detach tags logging any catch as they come in, retrieve last weight, retrieve last hi-flyer.  Process the catch as it comes in, logging tag number, gender, species, lengths at 3 points, life stage, and tag number if the catch is a shark that gets tagged, return catch to water alive as quickly as possible. Transit to the next sample site.  Wash, rinse and repeat.

That boils it down to the routine, but long line fishing is much more interesting and exciting than that!  Bait we use is Atlantic Mackerel, caught farther north and frozen, thawed just before use and cut into 3 pieces per fish.  A circle hook is inserted through each piece twice to ensure it will not fall off the hook…this is a skill that takes a bit of practice.  Sometimes hooks are pulled in with bait still intact. Other times the bait is gone and we don’t know if it was eaten without the hook catching, a poor baiting job, or more likely eaten by smaller fish, too little to be hooked.  When we are successful we hear the call “FISH ON!” and the deck comes alive.

The line with a catch is pulled up as quickly and carefully as possible.  Some fish are not securely hooked and are lost between the water and the deck…not what we want to happen.  If the catch is a large shark (generally 4 feet or longer) it is raised to the deck in a sling attached to the forward crane to minimize the chance of physical injury.  For large sharks a camera with twin lasers is used to get a scaled picture for estimating length.  There is a dynamometer on the line between the sling and the crane which measures pressure and converts it to weight.  Both of these processes help minimize the time the shark needs to be out of water with the goal of keeping them alive to swim away after release.  A tag is quickly attached to the shark, inserted under the skin at the base of the second dorsal fin.  A small clip is taken from a fin, preferably from the pelvic fin, for DNA studies. The sling is lowered back to the water and the shark is free to swim away.  All data collected is recorded to the hook-tag number which will identify the shark as to geographic location of the catch.

Shark in sling
A sandbar shark being held in the sling for measurements.

Sometimes the catch is a smaller shark or a bony fish:  a Grouper, a Red Snapper, or any one of many different types of fish that live in this area.  Each of these is brought onto the deck and laid on a measuring board. Species, length, and weight are recorded. Fin clips are taken.  Many of them are on the list of species of recreational and commercial importance.  These fish are retained for life history studies which will inform future management decisions.  In the lab they are dissected to retrieve otoliths (ear stones) by which their age is determined.  Depending upon the species, gonads (the reproductive organs) may be saved for study to determine the possibilities of future reproductive success.  For certain species a good-sized piece of flesh is cut from the side for fraudulent species voucher library use.

After the smaller sharks are measured, fin clipped, gender identified, life stage is determined and weight is taken, they are tagged and returned to the water as quickly as possible.  Tags on these sharks are a small, numbered plastic tag attached by a hole through the first dorsal fin.

This is a lot to get done and recorded and it all happens several times each shift.  The routine never varies.  The amount of action depends upon the success of the catch from any particular set.  This goes on 24 hours per day.  The only breaks come as we travel between the sites randomly selected for our sets and that time is generally spent in the lab.

(Thanks go to Kevin Rademacher, Trey Driggers and Lisa Jones, Research Fisheries Biologists, for contributing to this entry.  File photo NOAA/NMFS)

Personal Log:

I do not need 12 hours of sleep.  That means I have several hours at the start or end of each shift to write in my journal, talk to the other members of the crew, take care of personal business such as laundry and communicate with home via email.  Even so, every day seems to go by very quickly and I go to bed thinking of all the things I have yet to learn.  In my next posts I will tell more about the different kinds of sharks and introduce you to some of the other people on the ship.  Stay tuned.

Barney Peterson:Welcome to OREGON II, August 14, 2016

NOAA Teacher at Sea
Barney Peterson

Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: August 14, 2016

Weather Data from the Bridge:

Latitude: 25 23.297 N

Longitude: 083 40 .794 W

Air temperature: 87.6 F

Pressure: 1017.04 Mb

Sea Surface Temperature: 30.6 C

Wind Speed: 16.6 Kt    East 86.74 degrees

Science Log:

We will set clocks tonight SHIP WIDE.  At 0100 it will become 0000.  Please plan accordingly.

What this translates to is that when we moved into the Gulf of Mexico we went to the Central Time Zone.  That means only a 2-hour difference between the ship and my home in the Pacific Northwest.  That also means I, who am on the noon-to-midnight shift, got one more hour to sleep (or whatever) Sunday night.

I am busy learning about schedules on the ship. The science group is split into 2 shifts.  We work days: noon to midnight; or nights: midnight to noon.  These hours rule our lives. Meals are served at 0630, 1100, and 1700.  You eat your first meal before you go on shift and your last at shift’s end.  During the 12 hours you are off shift your stateroom is yours and your roommate is expected to stay away and let you sleep.  The opposite is true for your time on: take everything you may need with you when you leave.  Showers, laundry and personal business are fit into your 12 hours off.  Shipboard courtesy requires that we keep voices low in the passageways and be careful not to let doors slam.  Somebody is always trying to sleep.  There is always a quiet spot somewhere to relax for a moment if you get the time: on the flying bridge, at the table on the stern, in the lounge or at a galley table.

Sunday, at 1230 hours, we had safety drills, required for all personnel within 24 hours of departure and once a week thereafter on every cruise.  Reporting stations for 3 different types of drills are posted in staterooms and throughout the ship.  Nobody is exempt from participation.

The signal sounds: a 10 second ringing of the bell: FIRE!  The PA announces a drill: “All hands report to assigned stations.”  Members of the science team quickly make their way to the stern.  By the galley stands a crew member with a sign reading: Fire ahead – detour.  After we arrive at our station, get checked off and, when all crew have been accounted for, return to our staterooms.

Next – 7 short and one long ring on the bell: ABANDON SHIP!  Announcement: “Drill.  All hands report to the bow with PFD’s and survival suits.”  We grab our life jackets and “Gumby suits” and head to the bow where we are checked off as we arrive.  We are required to don our “Gumbies” in 2 minutes or less – not impossible, but not simple either.  I’ve done it before.  The hardest part is getting the hood on and zipping up with your hands jammed into the lobster-claw gloves and your shoes and hat crammed into the suit with you…that’s when you discover just how much too long the arms and legs are.  It isn’t pretty, but if we actually end up in the water, those neoprene suits will be our best protection against the deadly, energy-sapping effects of hypothermia!

Just after we have stripped out of the “Gumby” suits, rolled them up and stowed them and our life jackets back in staterooms, we get the next signal.

3 long bells: “MAN OVERBOARD!” This drill is important too, but feels almost like an anti-climax.  It could mean the difference between life and death to a fellow crew member who falls into the water when the ship is moving.  Science team reports again to the stern and, in a real emergency, would receive instructions for participating in spotting or assisting in a rescue.  This time we stay and listen to a safety talk about our work with long lines, hooks, bait, and our possible catch which could include all kinds of fish and sharks.  There are very definite rules and procedures to ensure crew are safe and our catch is handled with care and respect.  If all goes well…our first lines will be set Monday night!

Personal Log:

Sitting on the flying bridge about 1900 Sunday evening, 3 of us spotted a small boat about ½ mile away that seemed to be drifting aimlessly.  There were two enormous cruise ships coming up behind us and they went around it on either side after cutting their engines to reduce their wake.  A crew member from the bridge watched from our deck as somebody on the boat fired a flare.  We were informed that radio contact was established: the boat was adrift, out of fuel, and we would stand by until the Coast Guard arrived. The OREGON II cut speed and circled back to stay closer to the small boat.  One of the cruise ships was also standing by while the other went on its way.  After about 20 minutes the white and red Coast Guard ship appeared and, when it reached the small boat, we were released to go on our way.

Seeing this response to another vessel in need of help put emphasis upon the importance of participating fully in our drills and understanding the measures in place to keep us safe and aid other ships sharing this big ocean.

Did You Know?  What is the largest shark found in the Gulf of Mexico?

going aboard
Teacher at Sea Barney Peterson about to board NOAA ship OREGON II

Cathrine Prenot: Why Math Matters. July 29, 2016.

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 29, 2016

Weather Data from the Bridge

Lat: 4901.93N (We’re in Canada!)
Lon: 12651.64W
Speed: 5.7 knots
Windspeed: 34.2 deg/knots
Barometer: 1018.10 mBars
Air Temp: 15.0 degrees Celsius
Water Temp: 13.92 degrees Celsius

Science and Technology Log

IMG_4287
Panoramic view of the back deck of the Bell M. Shimada from the wet lab.

There is a book on the bridge of most sailing vessels called “The American Practical Navigator.” Most people call it Bowditch, for short. It is a thick tome, and has an insane wealth of information in it, as Nathanial Bowditch vowed to “put down in the book nothing I can’t teach the crew.” He evidently thought his crew could learn anything, as Bowditch is an encyclopedia of information. You can find distances to nearby planets, how magnetic fields change around iron vessels, what to do if you are lost at sea, what mirages are, and rules to navigate around hurricanes. It’s been updated multiple times since Bowditch’s version in 1802, but one fact has remained. There is math—oodles and oodles of geometry and algebra and calculus—on every page. In fact, a lot of the Bell M. Shimada runs on math—even our acoustic fishing is all based on speed and wavelengths of sound.

transfer
Screenshot from the Bell M. Shimada’s Acoustics Lab showing the visual rendition (left to right) of 18,000Hz, 38,000Hz, and 120,000Hz.  The ocean floor is the rainbow wavy line 250-450meters below.  This was transect #38; we fished the red/orange splotches approx 150 meters deep.  They were all hake!

Sonar was first used in World War I to detect submarines, and began to be used to sense fish soon after the war ended, with limited success. Sonar advanced rapidly through World War II and fishermen and scientists modified surplus military sonar to specifically detect ocean life. Since sound will bounce off “anything different than water,” we can now use different frequencies and energy to determine an incredible amount of information on a fish’s life. We can “try to tell what kind of fish, where they are, map vertically what they do, and determine their density.” The chief scientist, Dr. Sandy Parker-Stetter says it best. “My job is to spy on fish.” In my opinion, Sandy seems good enough to be in the Acoustics CIA. Click on Adventures in a Blue World; Why Math Matters, to learn all about fish spying and other reasons you should pay attention in algebra class.

Adventures in a Blue World, CNP. Why Math Matters.
Adventures in a Blue World, CNP. Why Math Matters.

 

Personal Log

Life onboard continues to be interesting and fun. The wind has picked up a bit, which has translated into higher seas. I tried to film the curtains around my rack last night opening and closing of their own accord, but every time I’d pick up the camera, they’d stop. I did get a few seconds of some wave action outside the workout room; riding a bike is now much easier than running on the treadmill. Pushups are insanely easy when the ship falls into the waves, and ridiculously difficult when rising.

Porthole video.

I’ve also been involved in a chemical spill drill (that does say drill), and was lucky to be given the helm for a brief moment on the Bell Shimada.

Staging a chemical spill for the crew's spill drill
Staging a chemical spill for the crew’s spill drill
Prenot at the Helm
Prenot at the Helm

 

Did You Know?

NOAA has been around since 1970! Thanks to our great Survey Tech Kathryn Willingham for keeping our science team working so seamlessly. Well… …and making it fun too.

Kathryn
Kathryn Willingham

 

Resources: 

Ocean frequencies: explore sound in the ocean.
Check out this great TED talk about the importance of mathematics at sea.

Cathrine Prenot: Sea Speak. July 25, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Sunday, July 24, 2016

Weather Data from the Bridge

Lat: 47º32.20 N
Lon: 125º11.21 W
Speed: 10.4 knots
Windspeed: 19.01 deg/knots
Barometer: 1020.26 mBars
Air Temp: 16.3 degrees Celsius
Water Temp: 17.09 degrees Celsius


Science and Technology Log

Typical evening view from the flying bridge of the Bell M. Shimada
Typical evening view from the flying bridge of the Bell M. Shimada

We have been cruising along watching fish on our transects and trawling 2-4 times a day. Most of the trawls are predominantly hake, but I have gotten to see a few different species of rockfish too—Widow rockfish, Yellowtail rockfish, and Pacific Ocean Perch (everyone calls them P.O.P.)—and took their lengths, weights, sexes, stomachs, ovaries, and otoliths…

…but you probably don’t know what all that means.

The science team sorts all of the catch down to Genus species, and randomly select smaller sub-samples of each type of organism. We weigh the total mass of each species. Sometimes we save whole physical samples—for example, a researcher back on shore wants samples of fish under 30cm, or all squid, or herring, so we bag and freeze whole fish or the squid.

For the “sub samples” (1-350 fish, ish) we do some pretty intense data collection. We determine the sex of the fish by cutting them open and looking for ovaries or testes. We identify and preserve all prey we find in the stomachs of Yellowtail Rockfish, and preserve the ovaries of this species’ females and others as well. We measure fish individual lengths and masses, take photos of lamprey scars, and then collect their otoliths.

Fish Otolith showing concentric growth rings from here.

Otoliths are hard bones in the skull of fish right behind the brain. Fish use them for balance in the water; scientists can use them to determine a fish’s age by counting the number of rings. Otoliths can also be used to identify the species of fish.

Here is how you remove them: it’s a bit gross.

Otolith instructions from here.
Cod, Redfish, and Hake otoliths from here.

 

A bigger fish species does not necessarily mean a larger otolith. From here.

If you want to check out an amazing database of otoliths, or if you decide to collect a few and want to see what species or age of fish you caught, or if you are an anthropologist and want to see what fish people ate a long time ago? Check out the Alaska Fisheries Science Center—they will be a good starting spot.  You can even run a play a little game to age fish bones!

Pacific Ocean Perch, or P.O.P.
Pacific Ocean Perch, or P.O.P.

 

Personal Log

I haven’t had a lot of spare time since we’ve been fishing, but I did manage to finagle my way into the galley (kitchen) to work with Chief Steward Larry and Second Cook Arlene. They graciously let me ask a lot of questions and help make donuts and fish tacos!  No, not donut fish tacos.  Gross.

How to make friends and influence people
How to make friends and influence people

Working in the galley got me thinking of “ship jargon,” and I spent this morning reading all sorts of etymology.  I was interested to learn that the term crow’s nest came from the times of the Vikings when they used crows or raven to aid navigation for land.  Or that in the days of the tall ships, a boat that lost a captain or officer at sea would fly blue flags and paint a blue band on the hull—hence why we say we are “feeling blue.”  There are a lot more, and you can read some interesting ones here.

You can also click on Adventures in a Blue World below (cartoon citations 1 and 2).

TAS Cat Prenot 2016 cartoon4 v2

And here is a nautical primer from Adventures in a Blue World Volume 1:

A Nautical Primer part I from 2011 aboard the Oscar Dyson
A Nautical Primer from 2011 aboard the Oscar Dyson

 

Did You Know?

Working in the wet lab can be, well, wet and gross. We process hundreds of fish for data, and then have hoses from the ceiling to spray off fish parts, and two huge hoses to blast off the conveyor belt and floors when we are done. But… …I kind of love it.

Yay Science!
Yay Science!

Resources

Etymology navy terms: http://www.navy.mil/navydata/traditions/html/navyterm.html

Interestingly enough, the very words “Sea Speak” have a meaning.  When an Officer of the Deck radios other ships in the surrounding water, they typically use a predetermined way of speaking, to avoid confusion.  For example, the number 324 would be said three-two-four.

 

Cathrine Prenot: Lights in the Ocean. Thursday, July 21, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 21, 2016

Weather Data from the Bridge
Lat: 46º18.8 N
Lon: 124º25.6 W
Speed: 10.4 knots
Wind speed: 12.35 degree/knots
Barometer: 1018.59 mBars
Air Temp: 16.3 degrees Celsius

 

Science and Technology Log

The ship’s engineering staff are really friendly, and they were happy to oblige my questions and take me on a tour of the Engine Rooms. I got to go into the ‘belly of the beast’ on the Oscar Dyson, but on the tour of the Shimada, Sean Baptista, 1st assistant engineer, hooked us up with headsets with radios and microphones. It is super loud below decks, but the microphones made it so that we could ask questions and not just mime out what we were curious about.

I think the job of the engineers is pretty interesting for three main reasons.

On the way to see the bow thruster below decks
On the way to see the bow thruster below decks

One, they get to be all over the ship and see the real behind-the-scenes working of a huge vessel at sea. We went down ladders and hatches, through remotely operated sealed doors, and wound our way through engines and water purifiers and even water treatment (poo) devices. Engineers understand the ship from the bottom up.

One of four Caterpillar diesel engines powering the ship
One of four Caterpillar diesel engines powering the ship

Second, I am sure that when it is your Job it doesn’t seem that glamorous, but an engineer’s work keeps the ship moving. Scientists collect data, the Deck crew fish, the NOAA Corps officers drive the ship, but the engineers make sure we have water to drink, that our ‘business’ is treated and sanitary, that we have power to plug in our computers (the lab I am writing in right now has 6 monitors displaying weather from the bridge, charts, ship trackers, and science data) and science equipment.

I did not touch any buttons. Promise.
I did not touch any buttons. Promise.

Finally, if something breaks on the ship, engineers fix it. Right there, with whatever they have on hand. Before we were able to take the tour, 1st Assistant Engineer Baptista gave us a stern warning to not touch anything—buttons, levers, pipes—anything. There is a kind of resourcefulness to be an engineer on a ship—you have to be able to make do with what you have when you are in the middle of the ocean.

The engineers all came to this position from different pathways—from having a welding background, to being in the navy or army, attending the U.S. Merchant Marine Academy, or even having an art degree.  The biggest challenge is being away from your family for long periods of time, but I can attest that they are a pretty tight group onboard.

 

In terms of the science that I’ve been learning, I’ve had some time to do some research of some of the bycatch organisms from our Hake trawls. “Bycatch” are nontargeted species that are caught in the net.  Our bycatch has been very small—we are mostly getting just hake, but I’ve seen about 30-40 these cute little fish with blue glowing dots all over their sides. Call me crazy, but anything that comes out of the ocean with what look like glowing sparkling sapphires is worthy of a cartoon.

So… …What is small, glows, and comprises about 65% of all deep-sea biomass? Click on the cartoon to read Adventures in a Blue World 3.

Adventures in a Blue World, CNP. Lights in the Ocean
Adventures in a Blue World, CNP. Lights in the Ocean

 

Personal Log

The weather is absolutely beautiful and the seas are calm. We are cruising along at between 10-12 knots along set transects looking for hake, but we haven’t seen—I should say “heard” them in large enough groups or the right age class to sample.  So, in the meanwhile, I’ve taken a tour of the inner workings of the ship from the engineers, made an appointment with the Chief Steward to come in and cook with him for a day, spent some time on the bridge checking out charts and the important and exciting looking equipment, played a few very poor rounds of cornhole, and have been cartooning and reading.

I was out on the back deck having a coffee and an ice cream (I lead a decadent and wild life as a Teacher at Sea) and I noticed that the shoreline looked very familiar. Sure enough—it was Cannon Beach, OR, with Haystack Rock (you’ll remember it from the movie The Goonies)! Some of my family lived there for years; it was fun to see it from ten miles off shore.

Chart showing our current geographic area. Center of coast is Cannon Bean, Oregon.
Chart showing our current geographic area. Center of coast is Cannon Beach, Oregon.
View of Tillamook Head and Cannon Beach. It looked closer in person.
View of Tillamook Head and Cannon Beach. It looked closer in person.

 

Did You Know?

One of the scientists I have been working with knows a lot about fish. He knows every organism that comes off the nets in a trawl down to their Genus species. No wonder he knows all the fish—all of the reference books that I have been using in the wet lab were written by him. Head smack.

Dan Kamikawa, our fish whisperer
One of the books written by Dan Kamikawa, our fish whisperer

 

Resources

My sister (thank you!) does my multi media research for me from shore, as I am not allowed to pig out on bandwidth and watch lots of videos about bioluminescence in the ocean.  This video is pretty wonderful.  Check it out.

If you want to geek out more about Lanternfish, read this from a great site called the Tree of Life web project.

Interested in becoming a Wage Mariner in many different fields–including engineering?  Click here.

Cathrine Prenot: A Fish Tale, Too Big to Fail. July 18, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard the Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: July 18, 2016

Weather Data from the Bridge:
Lat: 45º19.7 N
Lon: 124º21.6 W
COG: 11.2
Speed: 17.1 knots
Air Temp: 16.4 degrees Celsius
Barometer (mBars): 1019.54
Relative Humidity: 84%

Science and Technology Log

It is exciting to be out to sea on “Leg 2” of this cruise! The official title of our research is “2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem.” One of the key portions of this leg of the trip is to collect data on whether or not a piece of equipment called the “Marine Mammal Excluder Device” (MMED) makes any difference in the fish lengths or the species we catch. Here is how it works (all images from Evaluation of a marine mammal excluder device (MMED) for a Nordic 264 midwater rope trawl):

The catch swims towards the codend of the net and encounters the MMED
The catch swim towards the codend of the net and encounter the MMED
The catch encounters the grate; some go through the grate while others escape the net through the hatch (shown by the orange buoy).
Some of the catch go through the grate (to the codend) while others escape the net through the hatch (shown by the orange buoy).

Why is this important?  For example, if all of one type of fish in a trawl escape through this MMED, we would be getting a different type of sample than we would if the equipment was off the nets.  Our lead scientist, Dr. Sandy Parker-Stetter explained: “If all the rockfish go out the top escape panel, how will we know they were there?”   To collect data on this, we will be doing a lot of trawls—or fishing, for those non-sea faring folk—some with the MMED and others without it. These will be small catches, we need about 300-400 fish, but enough to be able to make a determination if the equipment effect the data in any way.

We have done a few trawls already, and here are some of the photos from them:

'Young of the Year' Hake
‘Young of the Year’ Hake
Pacific Hake sample
Pacific Hake sample
Wanted: must love fish. And science.
Wanted: must love fish. And science.

All of this reminds me of why we are so concerned with accurately estimating the population of a little fish. To illustrate, let me tell you a story—a story of a fishery thought too big to fail—the Great Banks Atlantic Cod fishery. Why don’t you click on Issue 2 of Adventures in a Blue World: A Fish Tale, Too Big to Fail.

Adventures in a Blue World, CNP. A Fish Tale: Too Big to Fail
Adventures in a Blue World, CNP. A Fish Tale: Too Big to Fail

Cod populations decreased to such a degree (1% of previous numbers), that the Canadian Government issued a moratorium on Cod fishing in 1992.  Our mission—to investigate of hake survey methods, life history, and associated ecosystem—is designed to prevent such a devastating result. We don’t want Hake or other species to go the same route.

Atlantic Cod circa 1920s: from here

Personal Log

We left the left the dock on Sunday at 1145, and made our way under the Newport Bridge and out to sea. It was really wonderful to watch the ship leave the harbor from way up on the Flying Bridge—the top-most deck of the ship. There are four tall chairs (bolted to the deck) at the forward end of the deck, an awning, and someone even rigged a hammock between two iron poles. It is rather festive, although again, there were no drinks with umbrellas being brought to us.

View of Newport, OR from the flying bridge of the Shimada
View of Newport, OR from the flying bridge of the Shimada

I didn’t have any problems with seasickness on my last voyage, but I did take some meds just in case. One of the researchers said that he doesn’t take any meds any more, he just gets sick once or twice and then feels much better. If you are interested, here is a link to my previous cartoon about why we are sea-sick, and how and why ginger actually works just as well as other OTC drugs. All I can say now is that I’m typing this blog in the acoustics lab, and the ship does seem to be moving rather alarmingly from fore to aft–called pitching.  Maybe I should find a nice porthole. In the meanwhile, you can read “Why are we seasick.”

 

Did You Know?

The end of the fishing net is called the codend.  Who knew?  This and many more things can be learned about fishing from reading this handy reference guide.

Cathrine Prenot: Introduction, July 8, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard the Bell M. Shimada
July 17-July 30, 2016

Mission: Pacific Hake Research
Geographic area of cruise:
Newport, OR – Seattle, WA
Date:
Friday, July 8, 2016
Weather Data from the Bridge: N/A

Personal Log
In 2011 I was honored to learn and work aboard the NOAA ship the Oscar Dyson in Alaska as a Teacher at Sea, and I can’t tell you how many people told me that it was the trip of a lifetime.  Imagine my excitement to learn that I get to return to sea as a Teacher at Sea alumni aboard the Bell M. Shimada.  The way I see it is that I get two trips of a lifetime, in one lifetime!  I feel pretty lucky.

On my first Teacher at Sea voyage, I documented my trip via a cartoon series called Adventures in a Blue World, a tribute to Sylvia Earle’s book The World is Blue.  This time I will once again do my best to bring to life my Teacher at Sea experiences via a second volume of cartoons.  You can read the introduction below on being selected as a Teacher at Sea, Hake, and the beginning of this next adventure.  (Cartoon citations 1, 2, and 3)

Adventures in a Blue World, CNP, 2016
Adventures in a Blue World, CNP, 2016 Click on the image to open in a new window

I have been an educator for nineteen years, and now live and work in West Texas–on the Llano Estacado–in Lubbock.  I’m a science instructional coach at Estacado High School, which basically means that I get to collaborate with teachers and students to develop great labs and activities.  It is a wonderful job, and I am looking forward to bringing back real-world research and developing curriculum for our students.

I am going to miss my family, Ike, Madalyn, and Eva.  The girls love the water (even bringing inflatable fish into the house…), and Ike has run rivers all over the Southwest, but I get to go where no family and friends are allowed–from Newport, Oregon, to Seattle, Washington on the NOAA ship the Bell M. Shimada.  They will also be following along with me remotely.

Gulf of Mexico, 2014
Gulf of Mexico, 2014
The girls 'water' the garden
The girls ‘water’ the garden
Found Nemo: in living room
Found Nemo: in living room

Did you Know?

Some quick math for you: since its inception in 1990, Teachers at Sea have logged over 100,000+ hours of research on 8,200+ days at sea.  Crunching some quick numbers, this equals about 67 school years of professional development in Real Science-Real Research-and Real Experience.  Pretty nifty, eh?  See this link for more.

Until our next adventure,

Cat

Lynn Kurth: The Ocean and Humans are Inextricably Interconnected, July 1, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude:  58˚03.973 N   Longitude:  153˚34.292 W

Date:  July 4, 2016

Weather Data from the Bridge
Sky:  Cloudy
Visibility: 10+ Nautical Miles
Wind Direction: 010
Wind Speed: 10 Knots
Sea Wave Height: 0-1 ft. (no swell)
Sea Water Temperature: 11.1° C (51.9° F)
Dry Temperature: 12° C (53.6° F)
Barometric (Air) Pressure: 1013.3 mb


Science and Technology Log

Throughout my experience as a Teacher at Sea, it has been evident that the ocean and humans are inextricably interconnected.  This was apparent from my very first evening in Homer when I came across an eagle poised next to its colossal nest assembled in the middle of three rusty pier pilings.  An illustration of nature conforming to our presence on the water and what we deem to be acceptable for our environment.

 

eagle
Eagle with nest located in deep water port of Homer, AK

But, humankind must sometimes accept and conform to nature.   The fishermen of Uganik Bay have built their fishing camps above the tidal line and strung out their nets where the fish traditionally run.  Most of the men and women who live here have chosen to do so because this is where the fish are found.  One such gentlemen is Toby Sullivan, a commercial fisherman, who in 1975 headed to Alaska from Connecticut to work on the Alaskan pipeline.  Instead, he found himself fishing vs. working on the pipeline and to this day is still gill-netting salmon to make a living.  Toby’s fishing camp, East Point, located on the south shore of the Uganik Bay, has had a net on the site for the past 80 years.  And, unfortunately, we drifted into that site when a strong current took us by surprise while we were gathering water quality data over the side of the small sonar vessel.  When this happened, Toby and his crew worked swiftly and diligently to secure their fishing gear while NOAA divers were summoned from the Rainier to safely help our vessel leave the area.

 

enhancedtoby
Toby Sullivan and crew work to install an additional line on their fishing set

A few evenings later, Mr. Sullivan and his crew came on board the Rainier as dinner guests and a rich discussion of hydrographic work and fishing gear followed.  He explained in detail how he sets his fishing gear and offered the idea that a radio channel be utilized between NOAA’s small vessels that are working around fishing gear and the local fisherman, in order to facilitate better communication.

 

discuss
Toby Sullivan and XO (executive officer) Jay Lomincky

As I watched the exchange of ideas between Commanding Officer E.J. Van Den Ameele and Mr. Sullivan it appeared that both men recognized that both parties were interested in Uganik Bay because the ocean and humans are inextricably interconnected.  The Rainier’s primary mission in Uganik Bay is to gather the necessary data to create accurate and detailed charts for navigational use by the local fisherman and other mariners.  As a commercial fisherman, Mr. Sullivan’s primary interest is to keep his gear and crew safe while continuing to make a living from the harvest of local fish.

toby
Toby Sullivan shares information about how he sets his fishing gear

Today the Rainier continues on with its mission of hydrographic work at sea using the multibeam sonar which is located on the hull of the Rainier.  The swath that multibeam sonar on the Rainier covers is similar to the swath of the multibeam sonar on the smaller boats; the coverage area depends on the depth of the water.  For example, at our current water depth of 226 meters, the swath of each pass that the multibeam sonar makes an image of  is 915 meters wide.  This evening, upon the completion of the work with the Rainier’s multibeam sonar we will depart the area and be underway for Kodiak, AK.


All Aboard!

Michael Bloom serves as as survey technician aboard the Rainier and kindly took some time with me to discuss his background and work aboard the Rainier.

DSCN0300
Survey Technician Michael Bloom completes the collection of a bottom sample in Uganik Bay

Tell us a little about yourself:

I grew up in a military family, so I was actually born in England and have lived in Florida, Nebraska, Montana, Oregon and Washington.  I went to college at Oregon State University located in Corvallis, OR and majored in earth systems with a focus on marine science.

How did you discover NOAA?:  

Ever since I was a little kid instead of having posters of bands etc… I had posters of maps.  NOAA Corps participated in career fairs at my university.  I stopped at their booth my sophomore year and again my junior and senior year to learn more about their program.  After learning more about NOAA I also focused on the marine aspect of earth science because I knew I wanted to work with them.  Initially I didn’t know about the civilian side of NOAA, so I applied for the NOAA Corps two times and wasn’t accepted into the program, although I was an alternate candidate once.  At some point, when speaking with an officer he told me to apply for a civilian position with NOAA.  So, I applied and was accepted.

I’m happy to be on the civilian side because I get to work on the science side of the operations all of the time and I get to keep my beard!

 

DSCN0393 (2)
Survey Technician Michael Bloom monitors the settings of the Rainier’s multi beam sonar

What are your primary responsibilities when working on the ship?:

I am survey tech and my primary duties include data acquisition and data processing.  We can work to become the Hydrographer in Charge on the surveys after enough time working in the field and, if after the Field Operations Officer observes us, he feels confident that we are ready. Eventually I’d like to work for NOAA as a physical scientist, a job that would have me going out to sea several times a year but one that is primarily land based.

What do you love about your work with NOAA?:

I get paid to travel!  I go to places that people pay thousands of dollars to visit and I actually get paid thousands of dollars to go there.  I enjoy that I can see the real world application of the work that I do.  Scientists are using our data and ultimately we could be saving lives by creating such accurate charts.


Personal Log

NOAA’s website for the Rainier states that the Rainier is one of the most productive and advanced hydrographic ships in the world.  After spending two weeks working on board the Rainier, I couldn’t agree more.  However, I don’t believe that it is only the cutting-edge technology that makes the Rainier one of the best hydrographic ships in the fleet.  But rather a group of outstanding people at the helm of each of the different technical aspects of hydrography.  Hydrographic surveying has many steps before the end product, a chart, is released.  The people I met on board who are part of that process are teaching each other the subtle nuances of Rainier’s hydrographic mission in order to become even better at what they do.  I am grateful for the time that the crew and Officers have graciously given me while I have been on board.  I felt very welcome from the moment a NOAA Corps member picked me up at the airport throughout my stay on the Rainier as I continued to pepper everybody with questions.  Thank you Rainier!  I am confident that when I return to my classroom your efforts to help me better understand your work of hydrographic surveying will pay off.   You have given me the gift of new knowledge that, when shared with my students has the potential to ignite in them the same excitement and passion for science that so many of you possess.

DSCN0398 (2)
Teacher at Sea Kurth on the middle deck of the ship

Julia Harvey: That’s a Mooring: June 29th, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3rd 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 29th, 2016

 

Weather Data from the Bridge

(June 29th, 2016 at 12:00 pm)

Wind Speed: 12 knots

Temperature: 26.3 C

Humidity: 87.5%

Barometric Pressure: 1017.5 mb

 

Science and Technology Log

Approaching Weather
Approaching Weather

When an anchor is dropped, forces in the ocean will cause this massive object to drift as it falls.  Last year, after the anchor of mooring 12 was dropped, an acoustic message was sent to the release mechanism on the anchor to locate it.  This was repeated in three locations so that the location of the anchor could be triangulated much like how an earthquake epicenter is found.  This was repeated this year for mooring 13 so next year, they will know where it is.  From where we dropped the anchor to where it fell, was a horizontal distance of 3oo meters.  The ocean moved the 9300 pound anchor 300 meters.  What a force!

The next morning as the ship was in position, another acoustic message was sent that triggered the release of the glass floats from the anchor. Not surprisingly, the floats took nearly an hour to travel up the nearly 3 miles to the surface.

Float recovery
A small boat went to retrieve the mooring attached to the floats

Once the floats were located at the surface, a small boat was deployed to secure the end of the mooring to the Hi’ialakai. The glass floats were loaded onto the ship.  17 floats that had imploded when they were deployed last year.  Listen to imploding floats recorded by the hydrophone.  Implosion.

Selfie with an imploded float.
Selfie with an imploded float.

Next, came the lengthy retrieval of the line (3000+ meters). A capstan to apply force to the line was used as the research associates and team arranged the line in the shipping boxes. The colmega and nylon retrieval lasted about 3 hours.

Bringing up the colmega line.
Bringing up the colmega line and packing it for shipping.

Once the wire portion of the mooring was reached, sensors were removed as they rose and stored. Finally the mooring was released, leaving the buoy with about 40 meters of line with sensors attached and hanging below.

Navigating to buoy.
Navigating to buoy.

The NOAA officer on the bridge maneuvered the ship close enough to the buoy so that it could be secured to the ship and eventually lifted by the crane and placed on deck. This was followed by the retrieval of the last sensors.

Buoy onboard
Bringing the buoy on board.

 

 

 

 

 

 

 

 

 

The following day required cleaning sensors to remove biofoul.  And the buoy was dismantled for shipment back to Woods Hole Oceanographic Institution.

Kate scrubbing sensors to remove biofoul.
Kate scrubbing sensors to remove biofoul.

 

Dismantling the buoy.
Dismantling the buoy.

 

 

 

 

 

 

 

 

 

 

Mooring removal was accomplished in seas with 5-6 feet swells at times. From my vantage point, everything seemed to go well in the recovery process. This is not always the case. Imagine what would happen, if the buoy separated from the rest of the mooring before releasing the floats and the mooring is laying on the sea floor? What would happen if the float release was not triggered and you have a mooring attached to the 8000+ pound anchor?  There are plans for when these events occur.  In both cases, a cable with a hook (or many hooks) is snaked down to try and grab the mooring line and bring it to the surface.

Now that the mooring has been recovered, the science team continues to collect data from the CTD (conductivity/temperature/depth) casts.  By the end of tomorrow, the CTDs would have collected data for approximately 25 hours.  The data from the CTDs will enable the alignment of the two moorings.

CTD
CTD

The WHOTS (Woods Hole Oceanographic Institution Hawaii Ocean Time Series Site) mooring project is led by is led by two scientists from Woods Hole Oceanographic Institution;  Al Plueddeman and Robert Weller.  Both scientists have been involved with the project since 2004.  Plueddeman led this year’s operations and next year it will be Weller.  Plueddeman recorded detailed notes of the operation that helped me fill in some blanks in my notes.  He answered my questions.  I am thankful to have been included in this project and am grateful for this experience and excited to share with my students back in Eugene, Oregon.

Al Plueddeman
Al Plueddeman, Senior Scientist

The long term observations (air-sea fluxes) collected by the moorings at Station Aloha will be used to better understand climate variability.  WHOTS is funded by NOAA and NSF and is a joint venture with University of Hawaii.  I will definitely be including real time and archived data from WHOTS in Environmental Science.

Personal Log

I have really enjoyed having the opportunity to talk with the crew of the Hi’ialakai.  There were many pathways taken to get to this point of being aboard this ship.  I learned about schools and programs that I had never even heard about.  My students will learn from this adventure of mine, that there are programs that can lead them to successful oceanic careers.

Brian Kibler
Brian Kibler

I sailed with Brian Kibler in 2013 aboard the Oscar Dyson up in the Gulf of Alaska.  He completed a two year program at Seattle Maritime Academy where he became credentialed to be an Able Bodied Seaman.  After a year as an intern aboard the Oscar Dyson, he was hired.  A few years ago he transferred to the Hi’ialakai and has now been with NOAA for 5 years.  On board, he is responsible for rigging, watch and other tasks that arise.  Brian was one of the stars of the video I made called Sharks on Deck. Watch it here.

Tyler Matta
Tyler Matta, 3rd Engineer

Tyler Matta has been sailing with NOAA for nearly a year.  He sought a hands-on engineering program and enrolled at Cal Maritime (Forbes ranked the school high due to the 95% job placement) and earned a degree in maritime engineering and was licensed as an engineer.  After sailing to the South Pacific on a 500 ft ship, he was hooked.  He was hired by NOAA at a job fair as a 3rd engineer and soon will have enough sea days to move to 2nd engineer.

 

 

There are 6 NOAA Corps members on  the Hi’ialakai.  They all went through an approximately 5 month training program at the Coast Guard Academy in New London, CT.  To apply, a candidate should have a 4 year degree in a NOAA related field such as science, math or engineering.  Our commanding officer, Liz Kretovic, attended Massachusetts Maritime Academy and majored in marine safety and environmental protection.  Other officers graduated with degrees in marine science, marine biology, and environmental studies.

Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.
Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.
ENS Chappelle
NOAA Ensign Nicki Chappelle

Ensign (ENS) Nikki Chappelle is new to the NOAA Corps.  In fact, this is her first cruise aboard the Hi’ialakai and second with NOAA.  She is shadowing ENS Bryan Stephan for on the job training.  She spent most of her schooling just south of where I teach.  I am hoping that when she visits her family in Cottage Grove, Oregon that she might make a stop at my school to talk to my students.  She graduated from Oregon State University with degrees in zoology and communication.  In the past she was a wildfire fighter, a circus worker (caring for the elephants) and a diver at Sea World.

All of the officers have 2 four hour shifts a day on the bridge.  For example ENS Chappelle’s shifts are 8am to 12pm and 8pm to 12am.  The responsibilities of the officers include navigating the ship, recording meteorological information, overseeing safety.  Officers have other tasks to complete when not on the bridge such as correcting navigational maps or safety and damage control. ENS Stephan manages the store on board as a collateral assignment.  After officers finish training they are sent to sea for 2-3 years (usually 2) and then rotate to land for 3 years and then back to sea.  NOAA Officers see the world while at sea as they support ocean and atmospheric science research.

Frank Russo
ET Frank Russo

Electronics technician (ET) seem to be in short supply with NOAA.  There are lots of job opportunities.  According to Larry Wooten (from Newport’s Marine Operation Center of the Pacific), NOAA has hired 7 ETs since November.  Frank Russo III is sailing with NOAA for the first time as an ET.  But this is definitely not his first time at sea.  He spent 24 years in the navy, 10 at Military Sealift Command supporting naval assets and marines around the world.  His responsibilities on the Hi’ialakai include maintaining navigational equipment on the bridge, making sure the radio, radar and NAVTEX (for weather alerts) are functioning properly and maintaining the server so that the scientists have computer access.

I have met so many interesting people on the Hi’ialakai.  I appreciate everyone who took the time to chat with me about their careers or anything else.  I wish I had more time so that I could get to know more of the Hi’ialakai crew.  Thanks.  Special thanks to our XO Amanda Goeller and Senior Scientist Al Plueddeman for reviewing my blog posts.  And for letting me tag along.

 

Did You Know?

The buoy at the top of the mooring becomes a popular hang out for organisms in the area. As we approached mooring 12, there were several red-footed boobies standing their ground. There were also plenty of barnacles and other organisms that are planktonic in some stage of their lives. Fishing line is strung across the center of the buoy to discourage visitors but some still use the buoy as a rest stop. The accumulation of organism that can lead to corrosion and malfunction of the equipment is biofoul.

Boobies to be Evicted
Red-Footed Boobies
Biofoul prevention
Wires and line to prevent biofoul.

 One More Thing

South Eugene biology teacher Christina Drumm (who’s husband was  Ensign Chappelle’s high school math teacher) wanted to see pictures of the food.  So here it is.  Love and Happiness.

Lobster for Dinner
Lobster for Dinner

 

Last supper
Last supper on the Hi’ialakai

 

 

 

 

 

 

 

 

 

Colors of the sea
I love the colors of the sea.
Sea colors
Sea colors

Barney Peterson: Spreads Like A Ripple, July 1, 2016

Field studies of salmon habitat with 4th grade students

NOAA Teacher at Sea

Barney Peterson

(Soon to be) Aboard NOAA Ship Oregon II

August 13-28, 2016

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 1, 2016

Spreads Like a Ripple

“Yep, sounds exciting, but you teach about Pacific Salmon, so how useful is learning about Hammerhead Sharks in the Gulf of Mexico really going to be?” my friend asked.

Her reaction was not unusual. I am a 4th grade teacher with 26 years of experience in the Everett Public Schools in Washington State. I have put some serious thought into using my Teacher At Sea experiences to open eyes and minds to the world around us. I think the possibilities are endless.

My first Teacher at Sea assignment was summer 2006 aboard NOAA ship, RAINIER, on a hydrographic survey mission in the Shumagin Islands, Gulf of Alaska. From this I developed lessons on making contour maps using sticks and a sounding box. I grew my understanding of how weather systems that develop in the Gulf of Alaska influence our weather in Puget Sound. I used that knowledge to help students understand relationships between geography, weather and climate. I learned about birds, mammals and fish in the ocean food chain and inserted that learning into helping students understand the life cycle of the salmon we raise in our classroom.

In 2008 I had the opportunity to share a Teacher in the Air experience with fellow TASA Dana Tomlinson from San Diego, California. We flew with a winter storm research crew from Portland, Oregon; traveling 1800 miles out over the Pacific Ocean and back tracking developing weather systems. We created lessons that helped students understand the importance of using accurate global positioning information to follow low pressure systems as they moved across the ocean toward the west coast of North America. We put together a unit to help them understand how air pressure, relative humidity, and wind speed and direction are measured and how that data is used to understand and predict weather patterns. My students still use those lessons as we participate in the GLOBE program, sending data in every day of the school year.

That was then, and this is now:

Field studies of salmon habitat with 4th grade students
Field studies of salmon habitat with 4th grade students

At school, I have students use globes and inflatable Earth Balls to track from the Arctic Ocean through every other ocean and back to the Arctic without taking their pointer-fingers off ocean surface. Then they start to get it… the connections: there is really just one big ocean! We learn about the water cycle and I challenge them to explain “where the water comes from.” We learn about food webs and energy flow. Our salmon studies teach them about producers, consumers and decomposers. They get the idea of cycles and systems and how all parts must work together. They learn to consider what happens when one step of a cycle fails or one part of a system is missing. We learn about organisms labeled “indicator species” that help scientists track changes in the health of ecosystems.

True, all of this is presented with a focus on where we live in the Pacific Northwest. But…that is just one place on the edge of our one ocean. Time comes to broaden the view. There are many life cycles depending upon the continual efficient functioning of Earth’s systems. Since there is just one ocean, nothing really happens in isolation. The same kinds of events that disrupt life cycles in one place will certainly disrupt them in another.

In August I will be aboard the NOAA ship, OREGON II, in the Gulf of Mexico. Our mission is to investigate and gather data about Scalloped Hammerhead Sharks and Red Snapper. They share an ecosystem and participate in the same food web. They are subject to consequences of the same environmental changes and catastrophes that happen in other parts of our ocean.

Drop a pebble into the water anywhere and ripples spread until they reach the outermost boundaries. We all share one ocean. Where does the ripple stop?

Sandra Thornton: Preparing for The Chukchi Sea Borderlands Expedition, June 23, 2016.

NOAA Teacher at Sea

Sandra Thornton

(Soon to be) Aboard USCGC Healy

July 1, 2016 – August 11, 2016

Mission:  Chukchi Sea Borderland

Geographical Area of Cruise:  Chukchi Sea Borderland (CBL)

Date:  Thursday, June 23, 2016

Weather Data from the Bridge: Today I am reporting from Wachapreague, Virginia where it is stormy and humid with an expected high temperature of 82 F.

Science and Technology Log

I will soon be working with a group of researchers, including Dr. Katrin Iken and Dr. Russell Hopkroft, aboard the USCGC Healy. The team will be working in the Chukchi Sea Borderlands (CBL) area. In this area, water masses from the Arctic, Pacific and Atlantic oceans meet. Over past decades, the CBL has seen dramatic summer sea ice meltdowns, and scientists want to find out how this affects marine communities in the area. Researchers will be exploring a wide range of organisms and parameters during the expedition, including microbes, marine mammals, sea ice, seafloor, and chemistry.  Of special interest is the use of an ROV during the expedition.

Photo by Bill Schmoker; courtesy of ARCUS/PolarTREC.

Personal LogS. Thornton preparing for an Arctic expedition.

My home is located on the small strip of land that separates the Chesapeake Bay from the Atlantic Ocean. These marine resources have a strong impact on residents of the Eastern Shore of Virginia, and I am excited to be able to compare Arctic ecosystems to those of coastal Virginia. I teach high school science courses at Broadwater Academy, and I am looking forward to sharing my experiences with my students and others in my community.

 

Did You Know?

The USCGC Healy is an icebreaker that can break through 1.4m of ice (4.6 feet) when traveling at a speed of 3 knots and 2.44m (8 feet) of ice when backing and ramming. The Healy was built to provide support for research in Polar regions as well as “traditional” duties including search and rescue and ship escort.

To read more about this cruise and my adventure, visit https://www.polartrec.com/expeditions/chukchi-sea-borderland 

Julia Harvey: The Nearest Land is 3 Miles Down, June 28, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3, 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 28th, 2016

 

Weather Data from the Bridge
(June 28th at 2pm)

Wind Speed: 12 knots

Temperature: 26.2 C

Humidity: 81%

Barometric Pressure: 1016.3 mb

 

Science and Technology Log

The Aloha Station is about 100 miles north of Oahu, Hawaii and was selected because of its closeness to port but distance from land influences (temperature, precipitation etc).  The goal is to select a site that represents the north Pacific, where data can be collected on the interactions between the ocean and the atmosphere. Woods Hole Oceanographic Institution Hawaii Ocean Time Series (WHOTS) has used this site for research since 2004.  You can find real time surface and meteorological data and archived data at the WHOTS website.

We are stationed in the vicinity of mooring 12 and 13 in the Aloha Station to begin intercomparison testing.  CTD (conductivity/temperature/depth) casts are conducted on a regular schedule. This data will help align the data from mooring 12 to mooring 13. If CTDs don’t match up between the two moorings then efforts will be made to determine why.

Mooring 13 is being inspected to make sure sensors are working. Photographs have been taken to determine measurement height of the instruments and where the water line is.

When I was aboard the Oscar Dyson, there were multiple studies going on besides the Walleye Pollock survey. The same is true on the Hi’ialakai. The focus is on the mooring deployment and recovery but there are a professor and graduate student from North Carolina State University who are investigating aerosol fluxes.

Professor Nicholas Meskhidze earned his first Physics degree from Tbilisi State University (Georgia).  He completed his PhD at Georgia Institute of Technology (USA).  He is now an Associate Professor at NC State University Department of Marine Earth and Atmospheric Sciences.

Meskhidze’s study on this cruise is looking at sea spray aerosol abundance in marine boundary layer and quantifying their flux values. Sea spray is formed from breaking waves. Sea spray analysis begins by collecting the aerosol. Using electrical current, particles of a given size (for example 100 nanometer (nm)) are selected for. This size represents the typical size of environmental climatically important particles (70-124 nm). The next step is to remove all other particles typically found in the marine boundary layer, such as ammonium sulfate, black carbon, mineral dust and any organics. The remaining particles are sea salt.

Sea spray analysis
Dr. Nicholas Meskhidze with the sea spray analysis equipment

Meskhidze is looking at the fluxes of the salt aerosols.  Sea salt aerosols are interesting.  If a salt aerosol is placed in 80% humidity, it doubles in size.  But then placed in 90% humidity, it quadruples in size. Due to their unique properties, sea salt aerosols can have considerable effect on atmospheric turbidity and cloud properties.

Aerosols are key components of our climate but little is known about them. Climate models are used to predict future climatic change, but how can one do this without understanding a key component (aerosols)?

little is known
Source: IPCC Fourth Assessment Report, Summary for Policy Makers

 

Personal Log

The galley (ship’s kitchen) is a happening place three times a day.  The stewards are responsible for feeding 30-40 people.

Chief Steward Gary Allen is permanently assigned to the Hi’ialakai. He has worked for NOAA for 42 years and he has stories to tell. He grew up in Tallahassee, Florida and his early work was at his father’s BBQ stand. He attended Southern University on a football scholarship and majored in food nutrition. After an injury, he finished school at Florida A & M. He worked for a few years in the hotel food industry, working his way up to executive chef. Eventually he was offered the sous chef job at Brennan’s in New Orleans. He turned it down to go to sea.

Chief Steward Allen Gary
Chief Steward Allen Gary

In 1971, he sailed for the first time with NOAA. The chief steward was a very good mentor and Gary decided to make cooking at sea his career. He took a little hiatus but was back with NOAA in 1975, where he would spend 18 years aboard the Discoverer and would become chief steward in 1984. He would sail on several other ships before finding his way to the Hi’ialakai in 2004.

In the 42 years at sea, Gary has seen many changes. Early in his career, he would only be able to call home from ports perhaps every 30 days. Now communication allows us to stay in contact more. He is married to his wife of 43 years and they raised 3 daughters in Seattle.

I asked him what he enjoys the most about being at sea. He has loved seeing new places that others don’t get to see. He has been everywhere, the arctic to Antarctica. He enjoys the serenity of being at sea. He loves cooking for all the great people he meets.

I met Ava Speights aboard the Oscar Dyson in 2013 when she was the chief steward and I was participating in the walleye pollock survey as a Teacher at Sea. She has been with NOAA for 10 years.

Ava Speights (on the right) and me
Ava Speights (on the right) and me

She and a friend decided to become seamen. Ava began working in a shipyard painting ships. In 2007, she became a GVA (general vessel assistant) and was asked to sail to the Bahamas for 2 weeks as the cook. This shifted her career pathway and through NOAA cooking classes and on the job training, she has worked her way up to chief steward.

She is not assigned to a specific ship. She augments, meaning she travels between ships as needed. She works 6 months of the year, which allows her to spend time with her 2 daughters, 1 son, 2 stepdaughters and 4 grandchildren. Her husband is an engineer with NOAA. Her niece is an AB (able bodied seaman) on deck. Her son is a chief cook for Seafarer’s.  And her daughter who just graduated high school will be attending Seafarer’s International Union to become a baker.  Sailing must run in her family.

She loves to cook and understands that food comforts people. She likes providing that comfort.  She has also enjoyed traveling the world from Africa to Belgium.

2nd Cook Nick Anderson
2nd Cook Nick Anderson

Nick is 2nd cook and this is his first cruise with NOAA. He attended cooking school in California and cooked for the Coast Guard for 6 years where he had on the job training. In 2014, he studied at the Culinary Institute of America and from there arrived on the Hi’ialakai. He also is an augmenter, so he travels from ship to ship as Ava does.

 

 

 

Did You Know?

The Hi’ialakai positioned mooring 13 in an area with a 6 mile radius known as the Aloha Station. Check out all of the research that takes place here at Station Aloha. There is a cabled observatory 4800 meters below the ocean surface. A hydrophone picks up on sounds and produces a seismograph. Check the results for the night the anchor was dropped.

Seismograph
Seismograph during Mooring Deployment

Click here to hear whales who pass through this area in February.

Pacific Sunset
Pacific Sunset

Lynn Kurth: Time and Tide Wait For No Man, June 28, 2016

 

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude:  57˚57.486 N   Longitude:  152˚55.539 W  (Whale Pass)

Date:  June 28, 2016

Weather Data from the Bridge
Sky:  Overcast
Visibility: 15 Nautical Miles
Wind Direction: 164
Wind Speed: 8 Knots
Sea Wave Height: 1 ft. (no swell)
Sea Water Temperature: 8.3° C (46.94° F)
Dry Temperature: 12.° C (53.6° F)
Barometric (Air) Pressure: 1019.6 mb


Science and Technology Log

The ocean supports many ecosystems which contain a diversity of living things ranging in size from tiny microbes to whales as long as 95 feet.  Despite the fact that I am working on a hydrographic ship, when out on a skiff or while in port, I have had the opportunity to view some of these ecosystems and a number of the species found in them.

While the Rainier was in port in Homer, I spent some time at the Kachemak Bay National Estuarine Research Reserve which, like other estuaries, is among the most productive ecosystems in the world.  An estuary, with accompanying wetlands, is where the freshwater from a river meets and mixes with the salt water of the sea.  However, there are some estuaries that are made entirely from freshwater.  These estuaries are special places along the Great Lakes where freshwater from a river, with very different chemical and physical characteristics compared to the water from the lake, mixes with the lake water.

Because estuaries, like the Kachemak Bay Estuary, are extremely fragile ecosystems with so many plants and animals that rely on them, in 1972 Congress created the National Estuarine Research Reserve System which protects more than one million estuarine acres.

ESTRE
Kachemak Bay National Estuarine Research Reserve

All estuaries, including the freshwater estuaries found on the Great Lakes, are affected by the changing tides.  Tides play an important part in the health of an estuary because they mix the water and are therefore are one of several factors that influence the properties (temperature, salinity, turbidity) of the water

Prior to my experience in Alaska, I had never realized what a vital role tides play in the life of living things, in a oceanic region.  Just as tides play an important role in the health and function of estuaries, they play a major role in the plants and animals I have seen and the hydrographic work being completed by the Rainier.  For example, the tides determine when and where the skiffs and multi beam launch boats will be deployed.  Between mean low tide and high tide the water depth can vary by as much as 12 feet and therefore low tide is the perfect time to send the skiffs out in to document the features (rocks, reefs, foul areas) of a specific area.

DSCN0069 (2)
Rock feature in Uganik Bay (actually “the foot” mentioned in previous blog) Notice tidal line, anything below the top of that line would be underwater at high tide!

In addition to being the perfect time to take note of near shore features, low tide also provides the perfect opportunity to see some amazing sea life!  I have seen a variety of species while working aboard the Rainier, including eagles, deer, starfish, dolphins, whales, seals, cormorants, sea gulls, sea otters and puffins.  Unfortunately, it has been difficult to capture quality photos of many of these species, but I have included some of my better photos of marine life in the area and information that the scientists aboard the Rainier have shared with me:

Tufted Puffins:  Tufted Puffins are some of the most common sea birds in Alaska.  They have wings that propel them under water and a large bill which sheds its outer layer in late summer.

puff2

Double Crested Cormorants:  Dark colored birds that dive for and eat fish, crabs, shrimp, aquatic plants, and other marine life.  The birds nest in colonies and can be found in many inland areas in the United States.  The cormorants range extends throughout the Great Lakes and they are frequently considered to be a nuisance because they gorge themselves on fish, possibly decimating local fish populations.

cormor
Cormorant colony with gulls

Pisaster Starfish:  The tidal areas are some of the favorite areas starfish like to inhabit because they have an abundance of clams, which the starfish love to feed on.  To do so, the starfish uses powerful little suction cups to pull open the clam’s shell.

Kurthstar1
Teacher at Sea Kurth with a starfish that was found during a shore lunch break while working on a skiff.
tidestarfish
Starfish found in tidal zone

Glaucous-winged Gull:  The gulls are found along the coasts of Alaska and Washington State.  The average lifespan of Glaucous-winged Gull is approximately 15 years.

birdstheword285
Glaucous-winged Gull watching the multi beam sonar boat

The hydrographic work in Uganik Bay continues even though there are moments to view the wildlife in the area.  I was part of the crew on board a boat equipped with multi beam sonar which returned to scan the “foot feature” meticulously mapped by the skiff.  During this process, the multi beam sonar is driven back and forth around the feature as close as the boat can safely get.  The multi beam does extend out to the sides of the boat which enables the sonar to produce an image to the left and right of the boat.  The sonar beam can reach out four times the depth of the water that the boat is working in.  For example, if we are working in six feet of water the multi beam will reach out a total of 24 feet across. Think of the sonar as if it was a beam coming from a flashlight, if you shine the light on the floor and hold the flashlight close to the floor, the beam will be small and intense.  On the other hand, if you hold the flashlight further from the floor the beam of light will cover a wider area but will not be as intense. The sonar’s coverage is similar, part of why working close to the shore is long and tedious work: in shallow water the multi beam does not cover a very wide area.

foot3
“The foot” feature (as discussed in previous blog) being scanned by multi beam sonar

 

thefoot
Image of “the foot” after processing in lab. The rocks are the black areas that were not scanned by the multi beam sonar.

All Aboard!

I met Angelica on one of the first days aboard the Rainier and later spent some time with her, asking questions as she worked .  Angelica is very friendly, cheerful and a pleasure to talk with!  She graciously sat down with me for an interview when we were off shore of Kodiak, AK before returning to Uganik Bay.

IMG_1835
Assistant Survey Technician Angelica Patyten works on processing data from the multi beam sonar

Tell us a little about yourself:

I’m Angelica Patyten originally from Sacramento, CA and happy to be a part of NOAA’s scientific mission!  I have always been very interested in marine science, especially marine biology, oceanography and somewhat interested in fisheries.  Ever since I was a little kid I’ve always been interested in whales and dolphins.  My cousin said that when I was really young I was always drawing whales on paper and I’d always be going to the library to check out books on marine life.  I remember one of the defining moments was when I was in grade school, we took a trip to see the dolphins and orca whales and I thought they were amazing creatures.

As far as hobbies, I love anything that has to do with water sports, like diving and kayaking.  I also want to learn how to surf or try paddle boarding as well.

How did you discover NOAA?:

I just kind of “stumbled upon” NOAA right after I had graduated from college and knew that I wanted to work in marine science.  I was googling different agencies and saw that NOAA allows you to volunteer on some of their vessels.  So, I ended up volunteering for two weeks aboard the NOAA ship Rueben Lasker and absolutely loved it.  When I returned home, I applied online for employment with NOAA and it was about six months before I heard from back from them.  It was at that point that they asked me if I wanted to work for them on one of their research vessels.  It really was all good timing!

What are your primary responsibilities when working on the ship? 

My responsibilities right now include the processing of the data that comes in from the multi beam sonar.  I basically take the data and use a computer program to apply different settings to produce the best image that I can with the sonar data that I’m given.

What do you love about your work with NOAA?

I love the scenery here in Alaska and the people I work with are awesome!  We become like a family because we spend a lot of time together.  Honestly, working aboard the Rainier is a perfect fit for me because I love to travel, the scenery is amazing and the people I work with are great!


Personal Log:

Geoffrey Chaucer wrote, “time and tide wait for no man.”  Chaucer’s words are so fitting for my time aboard the Rainier which is going so quickly and continues to revolve around the tides.

Julia Harvey: More to a Mooring than meets the Eye, June 26, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3, 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 26th, 2016

Weather Data from the Bridge

Wind Speed: 15 knots

Wind Direction: 100 degrees (slightly east southeast)

Temperature: 24.5 degrees C

Barometric Pressure: 1014.7 mb

Science and Technology Log

One of the primary objectives of this WHOTS project is to deploy WHOTS-13 mooring. This will be accomplished on our second day at sea.

Site of Mooring-13 courtesy of WHOTS Project Instructions
Site of Mooring-13
(courtesy of WHOTS Project Instructions)

The mooring site was chosen because it is far enough away from Hawaii so that it is not influenced by the landmasses. Mooring 13 will be located near mooring 12 in the North Pacific Ocean where the Northeast Trade Winds blow. Data collected from the moorings will be used to better understand the interactions between the atmosphere and the ocean. Instruments on the buoy record atmospheric conditions and instruments attached to the mooring line record oceanic conditions.

A look at interactions between the atmosphere and the ocean.
A look at interactions between the atmosphere and the ocean. [R. Weller, WHOI]

 

 

 

 

 

There is a lot more going on than just plopping a mooring in the sea. Chief Scientist Al Plueddemann from Woods Hole Oceanographic Institution and his team began in-port prep work on June 16th. This included loading, positioning and securing the scientific equipment on the ship.  A meteorological system needed to be installed on the Hi’ialakai to collect data critical to the mission.  And then there was the assembly of the buoy which had been shipped to Hawaii in pieces.  Once assembled, the sensors on the buoy were tested.

Meteorological Station on the Bow
Meteorological Station

As we left Oahu, we stopped to perform a CTD (conductivity/temperature/depth) cast. This allowed for the testing of the equipment and once water samples were collected, the calibration of the conductivity sensors occurred.

Sunday, June 26th, was the day of deployment. Beginning very early in the morning, equipment was arranged on deck to make deployment efficient as possible. And the science team mentally prepared for the day’s task.

Predeployment
The deck before deployment began. The buoy is the blue item on the left.

Promptly at 7:30 am, deployment began. The first stage was to deploy the top 47 meters of the mooring with sensing instruments called microcats attached at 5 meter intervals. A microcats has a memory card and will collect temperature, conductivity and pressure data about every three minutes until the mooring is removed next year.

Sensing instruments for the morring
Microcats for recording oceanic conditions
readied microcats
Microcats readied for deployment. They are lined up on the deck based on their deployment depth.

This portion of the mooring is then attached to the surface buoy, which is lifted by a crane and lowered overboard. More of the mooring with instruments is lowered over the stern.

The remainder of the mooring is composed of wire, nylon, 68 glass balls and an anchor.  At one point, the mooring wire became damaged. To solve this problem, marine technicians and crew removed the damaged portions and replaced the section with wire from a new spool. This process delayed the completion of mooring deployment but it showed how problems can be solved even when far out at sea.

After dinner, the nylon section of the rope was deployed. Amazingly, this section is more than 2000 meters long and will be hand deployed followed by a section of 1500 m colmega line. It was dark by the time this portion was in the water. 68 glass floats were then attached and moved into the water. These floats will help in the recovery of the mooring next year. The attachment to the anchor was readied.

glass floats for recovery
These glass floats will help when the mooring is recovered next year.

The anchor weighs 9300 pounds on deck and will sit at a depth of 4756 meters. That is nearly 3 miles below the ocean surface. The crane is used to lift the anchor overboard. The anchor will drop at 1.6 m/s and may take about 50 minutes to reach the bottom.  As the anchor sinks, the wire, nylon and the rest of the mooring will be pulled down. Once it reaches the bottom, the mooring will be roughly vertical from the buoy to the anchor.

 

Mooring Structure
Mooring Structure

Personal Log

I sailed aboard NOAA ship Oscar Dyson in 2013 so I already had a general idea of what life aboard a ship would be. Both ships have workout areas, laundry facilities, lounges, and of course messes where we all eat. But on the Hi’ialakai, I am less likely to get lost because of the layout. A door that goes up is near a door that goes down.

On our first day aboard, we held two safety drills. The first was the abandon ship drill. As soon as we heard 6 short and 1 long whistles, we grabbed our life jacket, survival suit and a hat. We reported to our muster stations. I am assigned to lifeboat #1 and I report the starboard side of 0-3 deck ( 2 levels up from my room). Once I arrived, a NOAA officer began taking role and told us to don the survival suit. This being my first time putting the suit on, I was excited. But that didn’t last long. Getting the legs on after taking off shoes was easy as was putting one arm in. After that, it was challenging. It was about 84 F outside. The suit is made of neoprene. And my hands were the shapes of mittens so imagine trying to zip it up. I finally was successful and suffered a bit to get a few photos. This was followed by a lesson for how to release the lifeboats. There are enough lifeboats on each side of the ship, to hold 150% of the capacity on board.

Survival Suit & Julia
Abandon Ship drill with Survival Suit

Safety is an important aspect of living aboard a NOAA ship. It is critical to practice drills just like we do at school. So when something does happen, everyone knows what to do. A long whistle signals a fire. All of the scientists report to the Dry Lab for a head count and to wait for further instruction.

I am reminded of how small our world really is.  At dinner Saturday, I discovered one of the new NOAA officers was from Cottage Grove, Oregon. Cottage Grove is just a short drive south of Eugene. She had a friend of mine as her calculus teacher.  Then a research associate asked me if I knew a kid, who had graduated from South Eugene High School and swam in Virginia. I did. He had not only been in my class but also swam with my oldest son on a number of relay teams growing up. Small world indeed.

 

Did You Know?

The Hi’ialakai was once a Navy surveillance ship (USNS Vindicator) during the Cold War. NOAA acquired it in 2001 and converted it to support oceanic research.

 

 

 

Lynn Kurth: Goodbye “Toes”, June 26, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude: N 57˚23  Longitude: W 153˚20  (North Coast of Kodiak Island)

Date:  June 26, 2016

Weather Data from the Bridge:
Sky: Fog
Visibility: 1 Nautical Mile
Wind Direction: 085
Wind Speed: 12 Knots
Sea Wave Height: –
Sea Water Temperature: 12.2° C (54° F)
Dry Temperature: 12.6° C (54.7° F)
Barometric (Air) Pressure: 1008.6 mb


Science and Technology Log

As I was looking up at the stars over the ship one evening, I was thinking about the study of space and the 1980’s Teacher in Space program.  It’s difficult to believe that as of this past January it has been thirty years since the Space Shuttle Challenger disaster, which took the life of educator Christa McAuliffe and six other astronauts.  Christa had been selected to become the first teacher in space, which offers such opportunity to learn and grow.  I admire Christa McAuliffe because of this and the fact that she recognized that the study of space offers the opportunity for discovery, innovation and investigation.

kurthblog2
Kurth at Sea (Uganik Bay, Alaska)

I love being a Teacher at Sea because the ocean is similar to space in that it is largely unexplored and offers the chance to discover, innovate and investigate.   In fact, less than 5% of earth’s ocean has been explored even though new technologies have expanded our ability to explore.  Scientists like those I am working with on the Rainier use a variety of this new technology such as satellites, complex computer programs, and multi beam sonar to explore and carry out their hydrographic work.  Over the past week, I have been fortunate to work with these scientists in Uganik Bay and gain a better understanding of how they use these technologies in their work.

DSCN0035 (2)
Out on the skiff with Chief Jim Jacobson and crew

Before the surveying work using the multi beam sonar system can begin, a small crew is sent off the Rainier in a skiff, a shallow flat-bottomed open boat, to complete near shore work.  During this work, the crew on the skiff meticulously examines the features of the coastline while comparing what they see to any available charts and other sources of information about the area.  The depth of Uganik Bay was last surveyed and charted in 1908 but the area does have some additional charting of shoreline features documented throughout the years via aerial photography and information shared by local mariners.  The skiff used for the near shore work is equipped with a GPS (global positioning system) unit and a computer program which continually maps where it travels.  The skiff moves slowly along the shoreline while circling rocks and other features (reefs, islands, kelp beds, fishing gear) in order to accurately determine their size and location.  The scientists record all of their findings on a sheet illustrating the area they are working in and enter the revisions into a computer program when they return to the Rainier.   These revisions frequently include adding features not previously documented, modifying information on existing features or suggesting possible features to be eliminated when they are not found and verified.

DSCN0112
Chief Jim Jacobson enters updated information from near shore work documented while on the skiff.

For example, one of the days while I was working with a crew on a skiff, part of our work involved verifying whether or not a series of rocks existed where they had been previously charted.  Oddly enough, when looking at the chart the formation of rocks looked like a giant left footprint.  This particular feature on the chart, was flagged for us to investigate and verify because each of the rocks that made up “the little toes” seemed to be too equally spaced to be natural features.  When we examined the area we found that there was only one rock, “the big toe”, at the top of the formation vs. a total of five.  The suggested updates to this feature were supported with the documentation of photographs and measurements.  In other words, the scientists suggested that the final revisions completed by NOAA staff in Seattle would include the “amputation” of the four “little toes” from the charts.

footblog1
Sheet used on skiff to document suggested revisions. Notice the “foot” feature?

 


All Aboard!

I have really enjoyed chatting with the people on board the Rainier because they have interesting stories to share and are happy to share them. Erin Earley, member of the engine utility crew, was one of those people who graciously gave me some of her time for an interview.

DSCN0198
Erin Earley (right) discusses ship operations with Ensign Bethany McAcy (left)

Tell us a little about yourself:

I’m Erin Earley from Sacramento, California and was a social worker prior to working for NOAA (National Oceanic Atmospheric Administration).  I enjoy water color painting, creating multi-medium sculptures, and anything to do with designing gardens.  And I love dogs, Shelties in particular.

How did you discover NOAA and what do you love the most about your job with NOAA?:

As a social worker I had a couple of young adults in the child protection system who wanted to find a different career.  When looking at career options for them I came across a maritime program for youth in Sacramento that seemed to meet their needs.  So, I went to a parent night to learn more about the program and when I heard about the rate of pay and opportunity to travel I asked if they were considering an option for adults to join the program. They said that they were and I registered for the program and began with the AB (able bodied seaman) program for deck work but after watching the Deadliest Catch I decided that wasn’t for me.  So, I decided to complete the engineering program to be qualified for engine room work.  The course work included survival work, emergency ship repair work and fire fighting skills.

I love my job with NOAA because for the most part I’m working with a small group of people, we all know our duties, and we all help each other out.  I enjoy seeing jobs get completed and things getting fixed.  And, the most important reason I love my job is that I don’t have to drive to work and dress up.  I come from Sacramento, and here I don’t have to wait for traffic coming across town and wait at Starbucks for an hour.  On a ship you become a minimalist, you learn what is important and what is not.   I love meeting new people, trying new foods and seeing new things!

DSCN0194
Erin Earley takes a sounding of a fuel tank

What are your primary responsibilities when working on the ship?  

My primary responsibilities at sea include monitoring the oil levels of the equipment, making sure that everything is running properly, reporting to the engineer anything that might be a problem, making sure the bow thruster has proper fluids, and making sure there’s no excess water in any of the places.  We’re floating on a huge ocean and we want to make sure none of it’s coming in!

What kind of background and/or education do you need to have this job?

It would help to go to a maritime school and a lot of major coastal cities have these schools that offer these programs.  If you want a four year college education you could go to a maritime academy (San Francisco, New York and Baltimore ) to get a degree in mechanical engineering and then you could work on a ship or on the shore side at a port.  If you don’t want to go to a four year college you can still work in engineering but you would have to take certification courses and work your way up.  I think for a young person the adventure of working for NOAA is fun but you should always have a plan as far as where you might want to go.  Keep your options open!


Did You Know?

DSCN0185 (2)
The Rainier, Uganik Bay

The Rainier:

  • has 26 fuel tanks
  • uses 500 gallons of fuel a day while at anchor
  • uses 100 gallons of fuel each hour while underway (2400 gallons/day)
  • goes through approximately 50 lbs of beef and 30 lbs of chicken each week
  • uses 8 different kinds of milk (lactose free, soy, almond, cashew, 1%, 2%, whole, and skim)

 

 

Donna Knutson: Last Leg of Leg III Atlantic Sea Scallop Survey 2016, June 24, 2016

NOAA Teacher at Sea Donna Knutson
Aboard the Research Vessel Sharp
June 8 – June 24, 2016

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 24, 2016

Last Leg of Leg III Atlantic Sea Scallop Survey 2016

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Science and Technology:DSCN7770 (2)me best

Latitude:  41 29.84 N

Longitude:  070 38.54 W

Clouds:  partly cloudy

Visibility: 5-6 nautical miles

Wind: 3.58 knots

Wave Height: 6 in.

Water Temperature:  53  F

Air Temperature:  67 F

Sea Level Pressure:  30.0 in of Hg

Water Depth: 26 m

 

It has been an action packed two weeks.  The men and women who dedicate themselves to the scallop survey are extremely hard working scientists.  It is not an easy job.  The sorting of the dredged material is fast and furious, and it needs to be in order to document everything within the catch before the next one comes in.  The baskets are heavy and it takes a strong person to move them around so quickly.

DSCN8159 (2) dredge team
Han, Jill, Mike, Vic, Me and Ango

In small catches every scallop is measured.  In dredges with many baskets of scallops, a percentage is measured.  It is a random sampling system, taking some scallops from each of the baskets to get a general random sample of the whole.  Mike led an efficient team, he told us what to look for and oversaw the measuring.

DSCN7780 (2)mike and nicki
Mike and Nikki

He often set samples aside to show me later, when we were not as busy. A few examples were how to tell the difference between the red and silver hake or the difference between the Icelandic and Atlantic sea scallop.  He showed me how the little longhorn sculpin fish, “buzz bombs” known to fisherman, vibrate when you told it in your hand.

DSCN8008 (2)buzz
Longhorn sculpin

Mike even took the time to dissect some hake and to show me the differences in gonads, what they were feeding on by opening their stomach, and the otolith within the upper skull.  The otolith is a small bone in the inner ear that can be used to identify and age the fish when in a lab looking through a microscope.  Mike answered my many questions and was always eager to teach me more.

Another helpful team member was Vic.  Vic taught me how to run the HabCam.  He has been involved in the HabCam setup since it started being used four years ago.  There is a lot of work to do to set up the multiple monitors and computers with servers to store all the images collected by the HabCam.  Vic overlooks it all from the initial set-up to the take down.  I admire Vic’s work-ethic, he is always going 100% until the job is completed.  Sometimes I just needed to get out of his way, because I knew he was on a mission, and I didn’t want to slow him down.

DSCN8132 (2) monitors
Control center for Habcam and Dredging

When we weren’t dredging, but rather using the HabCam, there was a pilot and copilot watching the monitors.  The HabCam, when towed behind the ship, needs to be approximately 1.7 m off the ocean floor for good resolution of the pictures, and keeping it at that elevation can be a challenge with the sloping bottom or debris.  There is also sand waves to watch out for, which are like sand bars in a river, but not exposed to the surface.

When not driving HabCam there are millions of pictures taken by the HabCam to oversee.  When you view a picture of a scallop you annotate it by using a measuring bar.  Fish, skates and crabs are also annotated, but not measured.  It takes a person a while to adjust to the rolling seas and be able to look at monitors for a long period of time.  It is actually harder than anticipated.

DSCN7768 (2)skate
HabCam Picture of a skate.

Han was making sure the data was collected from the correct sites.  She works for the Population Dynamics branch of NOAA and was often checking the routes for the right dredges or the right time to use the HabCam.  Between the chief scientist Tasha and Han, they made sure the survey covered the entire area of the study as efficiently as possible.

DSCN7839 (2)tash han mike
Tasha, Han and Mike discussing the next move.

Dr. Scott Gallager was with us for the first week and taught me so much about his research which I mentioned in the previous blogs.  Kat was with us initially, but she left after the first week.  She was a bubbly, happy student who volunteered to be on the ship, just to learn more in hopes of joining the crew someday.  Both vacancies were replaced by “Ango” whose real name in Tien Chen, a grad student from Maine who is working on his doctoral thesis, and Jill who works in Age and Growth, part of the Population Biology branch of NOAA.  Both were fun to have around because of their interesting personalities.  They were always smiling and happy, with a quick laugh and easy conversation.

DSCN8131 (2)the three
Jill, Ango and Han after dredging.

The Chief Scientist, Tasha, was extremely helpful to me.  Not only does she need to take care of her crew and manage all the logistics of the trip, plus make the last minute decisions, because of weather or dredges etc, but she made me feel welcome and encouraged me to chat with those she felt would be a good resource for me.  On top of it all, she helped me make sure all my blogs were factual.  She was very professional and dedicated to her work, as expected from a lead scientist leading a scientific survey.

DSCN8146 (2)tash and jim
Evan, Tasha and Jimmy discussing route.

I spent as much time as possible getting to know the rest of the crew as well.  The Master, Captain James Warrington “Jimmy” always welcomed me on the bridge.  I enjoyed sitting up there with him and his mates.  He is quick witted and we passed the time with stories and many laughs.  He tolerated me using his binoculars and searching for whales and dolphins.  There were a few times we saw both.

He showed me how he can be leader, responsible for a ship, which is no small feat, but do so with a great sense of humor, which he credits he inherited from his grandmother.  The other captains, Chris and Evan, were just as friendly.  I am sure all who have been lucky enough to travel with them would agree that the RV Sharp is a good ship to on because of the friendly, helpful crew and staff.

DSCN7785 (2)KG
KG, oceanic specialist, helped with dredges.

Because this was my second experience on a survey, the first was a mammal survey, I have really come to appreciate the science behind the study.  It is called a survey, but in order to do a survey correctly, it takes months of planning and preparation before anyone actually gets on a ship.

There is always the studying of previous surveys to rely on to set the parameters for the new survey.  Looking for what is expected and finding, just that, or surprising results not predicted but no less valued, is all in a scientist’s daily job.  I admire the work of the scientist. It is not an easy one, and maybe that is why it is so much fun.  You never know exactly what will happen, and therein lies the mystery or maybe a discovery to acquire more information.

DSCN8127 (2)big goose
I had to hold the largest goose fish we caught!

It was a challenging two weeks, but a time I’m so glad I had the opportunity to have with the members of Leg III of the 2016 Atlantic Sea Scallop Survey.

Lynn Kurth: The Earth has One Big Ocean, June 22, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude: N 57˚50 Longitude: W 153˚20  (North Coast of Kodiak Island)

Date:  June 23, 2016

Weather Data from the Bridge:
Sky: Clear
Visibility: 10 Nautical Miles
Wind Direction: 268
Wind Speed: 14 Knots
Sea Wave Height: 2-3 ft. on average
Sea Water Temperature: 12.2° C (54° F)
Dry Temperature: 16° C (60.8° F)
Barometric (Air) Pressure: 1023 mb


Science and Technology Log

I’m continually searching for ways to connect what I am learning to what is relevant to my students back home in the Midwest.  So, as we left Homer, AK for our survey mission in Kodiak Island’s Uganik Bay, I was already thinking of how I could relate our upcoming survey work to my students’ academic needs and personal interests.  As soon as the Rainier moved away from Homer and more of the ocean came into view, I stood in awe of how much of our planet is covered with water.  It’s fascinating to think of our world as having one big ocean with many basins, such as the North Pacific, South Pacific, North Atlantic, South Atlantic, Indian, Southern and Arctic.  The study of ocean and its basins is one of the most relevant topics that I can teach when considering the following:

  • the ocean covers approximately 70% of our planet’s surface
  • the ocean is connected to all of our major watersheds
  • the ocean plays a significant part in our planet’s water cycle
  • the ocean has a large impact on our weather and climate
  • the majority of my students have not had any firsthand experience with the ocean

 

IMG_1675
Earth’s One Big Ocean as seen from outside of Homer, AK

 

Each of the ocean basins is composed of the sea floor and all of its geological features which vary in size and shape.  The Rainier will be mapping the features of the sea floor of the Uganik Bay in order to produce detailed charts for use by mariners.  The last survey of Uganik Bay was completed in 1908 when surveyors simply deployed a lead weight on a string over the edge of a boat in order to measure the depth of the water.  However, one of the problems with the charts made using the lead line method, is that the lead line was only deployed approximately every 100 meters or more which left large gaps in the data.  Although not in the Uganik Bay, in the 1930s NOAA began using single beam sonar to measure the distance from a ship’s hull to the sea floor which made surveying faster but still left large gaps in the data. Fast forward from approximately 100 years ago when lead lines were being used for surveying to today and you will find the scientists on the Rainier using something called a multibeam sonar system.  A multibeam sonar system sends out sound waves in a fan shape from the bottom of the ship’s hull.  The amount of time it takes for the sound waves to bounce off the seabed and return to a receiver is used to determine water depth.  The multibeam sonar will allow our team on the Rainier to map 100% of the ocean’s floor in the survey area that we have been assigned.

nNTC_Hydro
Evolution of Survey Techniques (Illustration Credit: NOAA)

 

 

DSCN0006
NOAA Ship Rainier June 22, 2016 in Uganik Bay off of Kodiak Island

 All Aboard!

IMG_1814
NOAA Corps Junior Officer Shelley Devereaux

The folks I am working with are some of the most knowledgeable and fascinating people that I have met so far on this voyage and Shelley Devereaux from Virginia is one of those people.  Shelley serves as a junior officer in the NOAA  (National Oceanic and Atmospheric Administration) Corps and has been working aboard the Rainier for the past year.  The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States and trains officers to operate ships, fly aircraft, help with research, conduct dive operations, and serve in other staff positions throughout NOAA.

Here is what Shelley shared with me when I interviewed her one afternoon.

Tell us a little about yourself:  I’m originally from the rural mountains of Appalachia and moved to Washington DC after college.  I lived in DC for about seven years before I joined the NOAA Corps and while in DC I really enjoyed cycling, hiking, cooking, baking and beer brewing.

How did you discover NOAA Corps and what do you love most about your job in the NOAA Corps?

I went to Washington DC after I received my undergraduate degree in math and worked a lot of different jobs in a lot of different fields.  In time, I decided to change careers and went to graduate school for GIS (Geographic Information Systems) because I like the data management side of the degree and the versatility that the degree could offer me.  I was working as a GIS analyst when my Uncle met an officer in the NOAA Corps who talked with my Uncle about the NOAA Corps.  After that, my Uncle told me about NOAA Corps and the more I found out about NOAA Corps the more I liked it.  Especially the hydro side!  In the NOAA Corps each of your assignments really develops on your skill base and you get to be involved in a very hands on way.  Just this morning I was out on a skiff literally looking to determine what level a rock was in the water.  And, later in my career I can serve an operations officer.  So I loved the fact that I could join the NOAA Corps, be out on ship collecting data while getting my hands dirty (or at least wet!), and then progress on to other interesting things.  I love getting to be part of all the aspects of ship life and being a surveyor.   It’s a wonderful feeling knowing that what we do here has a tangible effect on the community and the public because we are making the water safer for the people who use it.

DSCN0011
NOAA Corps Junior Officer Shelley Devereaux manages her sheets during near shore work in Uganik Bay

What are your primary responsibilities when working on the ship?  

I am an ensign junior officer on a survey ship.  Survey ships operate differently than other ships in the NOAA fleet with half of my responsibilities falling on the junior officer side of ship operations which includes driving the ship when we are underway, working towards my officer of the deck certification, working as a medical officer, damage control officer and helping with emergency drills.  The other half of what I get to do is the survey side.  Right now I am in charge of a small section called a sheets and I am in charge of processing the data from the sheets in a descriptive report about the area surveyed.  So, about half science and half ship operations is what I do and that’s a really good mix for me.  As a junior officer we are very fortunate that we have the opportunity to and are expected to learn the entire science of hydrography.

IMG_1819
Junior Officer Shelley Devereaux checks the ship’s radar

What kind of education do you need to have this job and what advice do you have for young people interested in a career like yours?

You need a college degree with a lot of credits in science and/or math.  Knowing the science that is happening on the ship is important to help your understanding of the operations on the ship which helps you be a better ship operator. Realize that there are a lot of opportunities in the world that are not always obvious and you need to be aggressive in pursuing them.


Personal Log

You didn’t think I’d leave out the picture of Teacher at Sea in her “gumby suit” did you?  The immersion suit would be worn if we had to abandon ship and wait to be rescued.

IMG_1760
Teacher at Sea (TAS) Kurth Hi Mom!

 Happy Solstice!  Quirky but fun:  For the past six years I have celebrated the solstice by taking a “hand picture” with the folks I am with on the solstice.  I was thrilled to be aboard the Rainier for 2016’s summer solstice and include some of the folks that I’m with on the ship in my biannual solstice picture.

IMG_0989
Winter Solstice 2015 with Sisu (family pet) and my husband James
IMG_1820
All Hands on Deck! Summer Solstice 2016

Did You Know?

Glass floats or Japanese fishing floats are a popular collectors’ item.  The floats were used on Japanese fishing nets and have traveled hundreds and possibly thousands of miles via ocean currents to reach the Alaskan shoreline. The floats come in many colors and sizes and if you’re not lucky enough to find one while beach combing, authentic floats and/or reproductions can be found in gift shops along the Alaskan coast.

floats(2)
Japanese Fishing Floats

 

Donna Knutson: The Atlantic Sea Scallop – More Than Meets the Eye, June 21, 2016

NOAA Teacher at Sea Donna Knutson

 Aboard the Research Vessel Hugh R. Sharp

June 8 – June 24, 2016

 

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise:
Northeastern U.S. Atlantic Coast
Date:
June 21, 2016

The Atlantic Sea Scallop – More Than Meets the Eye

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Science and Technology:

Latitude:  41 16.296 NIMG_3250 (2)better me

Longitude:  68 49.049 W

Clouds: overcast

Visibility: 5-6 nautical miles

Wind: 21.1 knots

Wave Height: 4-6 occasional 8

Water Temperature:  59 F

Air Temperature:  64 F

Sea Level Pressure:  29.9 in of Hg

Water Depth: 101 m

Science Blog:

Sea scallops are unique from clams, molluscs and other bivalves.  All of them are filter feeders, but the sea scallop filters out larger sized particles such as diatoms and large protozoans that are larger than 50 micrometers. Clams filter feed on smaller animals and particles that are too small for the scallop to retain and therefore flow right through their digestive system.

Older scallop found in a protected area.
Older scallop found in a protected area.

Dr. Scott Gallager is looking inside the stomachs of scallops.  His hypothesis is that microplastics are traveling down to the bottom of the ocean, and if they are, the scallop will siphon them into their stomach along with their food.

Microplastics are, as the name suggests, small pieces of plastic measured in micrometers.  They may enter the ocean as an object such as a plastic water bottle, but over time with the turbulence of the ocean and the sun’s ultraviolet radiation break down into smaller and smaller pieces.

Another way microplastics are entering the ocean is through the cleaning products we use.  Many shampoos, detergents and toothpastes have small beads of plastic in them to add friction which aid the products cleaning potential.  Untreated water, such as runoff, has the likelihood of flowing into the ocean bringing microplastics with it.

Small colorful scallops.
Small sea scallops.

If a sea scallop ingests microplastics the same size as its food, the scallop will not be getting the nutrients it requires.  Large quantities of micro plastics falling to the bottom of the ocean would obviously cause the health of scallops to deteriorate.

Another interesting story of the sea scallop is its “attachment” to the red hake.  It is not a   physical attachment.  There appears to be a sentimental attachment between the two even though that is obviously not possible.

The red hake is a fish that starts out its life as a small juvenile without any protection.  It finds a home and refuge inside a sea scallop shell.  The sea scallop almost befriends the little red hake and allows it to live behind its photoreceptive eyes, next to the mantle.

The fish curls its body into the same contour shape as the scallop.  The little fish can swim in at times of danger and the scallop will close its shells to protect them both.  After the threat has passed the scallop opens its shells and the little red hake can swim out.

Red hake did not make it in before closing time.

There seems to be some commensalism between the two.  Commensalism is the relationship between two different species where each live together without any one feeding off of the other.  They live in harmony with each other neither hurting the other.  It is not known whether the fish feeds on the scallops’ parasites or if they just coexist together.

It is clear something is happening between the two, because after the red hake grows and no longer fits inside the shell, the fish will still live next to the scallop.  It now will curl itself around the outside of the shell.  Looking at HabCam pictures, it appears to curl around a scallop even if the scallop is no longer alive.  Could it really be the same scallop it lived in as a minnow?

DSCN7843 (2)RED HAKE AND SCALLOP
Red hake curled around its scallop. Picture taken from the HabCam.

Red hake numbers increase in areas where there are larger, more mature, sea scallops present.  What connects two together?  Is there some chemical connection where the fish can identify the scallop it “grew up” with? 

Why is the red hake red?  The red hake is part of the cod family.  The other fish such as the silver hake, spotted hake, white hake and haddock do not act like red hake.  Red hake are the same color as the scallop. Coincidence?  Maybe.

Is the red hake now protecting the scallop as it curls around it?  The scallop protected the young fish for as long as it could, so now is the Red hake returning the favor?  The main predator of the scallop is the starfish.  A starfish would have to climb over the fish to get to the scallop.  The red hake would not allow the starfish to get that far.

Red hake have a swim bladder that erupt when brought to the surface.
Red hake have a swim bladder that erupt when brought to the surface.

Is the red hake still just protecting itself?  When curled around the scallop, the fish blends in with the scallops red color and is in a sense camouflaging itself from its enemies. In this sense, the scallop is still allowing the red hake to hide, but this time in plain sight.

The Atlantic sea scallop is more interesting than expected.  It is curious how the scallop seems to realize how close it is to other scallops.  Without having a fully functioning brain, just groupings of neural ganglia, acting as a control center for a bodily functions or movement, how can the scallop decide the best place to live?  Do they move in search of a better habitat?  How do they know to disperse within their area so they are relatively the same distance apart as seen on the HabCam?  Is it competition for food?

Could it be their photosensitive eyes can’t tell the difference of movement of a predator to that of another scallop?  They seem to be able to tell the difference between a sea fish predator and one that is not.  Why are they so tolerant of the red hake?  More questions than answers.

The HabCam is a wonderful tool for studying these questions and more.  So little is understood about the habitats within the oceans.   It has been easier to study space than to study the depths of our own planet.  This is a very exciting time in oceanic research.  The HabCam will reveal what has been covered with a blanket of water.

Personal Blog:

We spent a little more time at Woods Hole.  Jim, the ship’s captain, hired a crew of scuba divers to scrub off the barnacles growing on the rudder.  I was lucky enough to find a tour of some of the labs at Woods Hole.  Scott called around to his colleagues and discovered there was a tour for teachers occurring at that moment when we arrived.

Alvin the deep sea submersible in dry dock.
Alvin the deep sea submersible in dry dock.

I quickly was sent on a campus bus with Ken, a man working in the communications department, also with a science degree.  I think he said it was in physical geology.  Everyone around here has multiple degrees and they are often opposite what you would imagine.  Such diversity makes some very interesting people to chat with.

In the teacher tour was a former TAS (Teacher at Sea). She was here because she won a touring trip to Woods Hole, so we had some time to chat over lunch about our experiences.  We agreed the TAS is one of the best teacher development opportunities out there for all teachers and I think we convinced a third to apply for next year.

I never got the long walk I had planned on, but a much better one learning more about Woods Hole.  Ken even took me to see Alvin, the deep sea submersible that lives on the Atlantis.  The Atlantis was leaving Alvin behind on its latest mission so Ken showed it to me.  The navy is using it this time.

I’ve been feeling great and even got on the exercise bike.  Today we will be HabCaming the entire day.  It is a nice rest compared to the physical work of dredging from the last two days.  Both HabCam and dredging have their benefits.  Together they create a much better understanding of what’s below us.DSCN7966 (2) lobsters

While I’ve been writing this the wind has picked up 10 knots.  The waves are 4-6 ft high with an occasional 8ft and it doesn’t look like it will let up.  The HabCaming continues but it is harder to keep it level.  They are considering going in early if the weather continues to get worse.  I believe Tasha said we were a bit ahead of schedule so that wouldn’t be so bad for the survey.  Before that happens, there is more dredging to do.

Julia Harvey: Here I Go Again/Getting Ready to Sail

NOAA Teacher at Sea
Julia Harvey
NOAA Ship Hi’ialakai
June 25 – July 3, 2016

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Station Thirteenth Setting
Geographical Area: Pacific Ocean North of Hawaii

Grand Canyon
My boys and I at the Grand Canyon in March 2016.

My name is Julia Harvey and I currently teach biology and environmental science at South Eugene High School in Eugene, Oregon. Next year I will also be teaching AP Biology. I have been teaching for 25 years beginning on the island of Vava’u in the Kingdom of Tonga. Some of my students have now become science teachers.

Julia with Sea Urchin copy
Early interest in marine sciences.

Eugene is at the southern end of the Willamette Valley and just about an hour away from the Pacific Ocean. In the valley, we are closely connected to the Pacific Ocean. The salmon that swim up our McKenzie River have made their way from the Pacific. Our wet and rainy climate is the result of weather patterns that originate off shore. And when it gets to hot in the valley, we head over to cool off on the beaches of the Pacific.

In 2013, I sailed aboard the Oscar Dyson on the Gulf of Alaska out of Kodiak. I was part of the third leg of the Pollock fish survey. Pollock is the fish used to make fish sticks and imitation crab. I didn’t know until this cruise, that the Pollock fishery is the one of the largest fisheries in the world. And I had never even heard of a Pollock until I was going to be sailing on the Oscar Dyson. I worked with amazing scientists on board who kindly helped me learn the process for finding schools of fish in the water using acoustics and then how to process the catch in order to provide information about the health of the fishery.

Pollock Survey
Happily surveying pollock

There were other studies going on the Oscar Dyson.  One involved surveying the ocean bottom and another involved counting  krill.

Enlarged Sorting Krill copy

Preparing to count krill.

I leave aboard the Hi’ialakai (easy to say after learning Tongan) in a few days. We will be at sea for 9 days, north of Hawaii.   The Chief Scientist is affiliated with Woods Hole Oceanographic Institute and other scientists are from University of Hawaii, NOAA Earth System Research Laboratory, and North Carolina State University. The main purpose of the study is to recover and deploy WHOTS moorings while collecting CTD (conductivity/temperature/depth) casts and data from shipboard sensors. I am especially interested to learn more about the sea spray analysis and how it relates to climatic effects.

This will be my first physical oceanography cruise. All of the studies I did aboard the Vantuna at Occidental College were biological as was the work done on the Oscar Dyson. I am excited to take my learning in a different direction.

I found it more difficult to pack for the cruise out of Hawaii then out of Alaska. This time, there is a larger range of weather that could be expected. Beginning on Oahu (shorts and tank tops) to the open ocean (steel toe boots and layers of clothes). But there are a few items that are making the trip with me again. I could not leave the Go Pro behind. I captured Dall porpoises bow surfing in 2013 as well as the processing of thousands of fish. And of course I have the anti-seasickness medication. It was wonderful to feel good the whole cruise last time. I will not be streaming videos but I will be entertained with a few books I packed.

I will be blogging several times while I am at sea and I hope you will continue to follow my journey at sea.

 

 

 

Donna Knutson: Dredging, June 16, 2016

NOAA Teacher at Sea Donna Knutson
Aboard R/V Hugh R. Sharp
June 8 – June 24, 2016

 

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 16, 2016

 

Dredging

 

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Me hat

Science and Technology:

Latitude:  40 32.475 N

Longitude:  67 59.499 W

Clouds: overcast

Visibility: 5-6 nautical miles

Wind: 7.4 knots

Wave Height: 1-4 ft.

Water Temperature:  53 F

Air Temperature:  63 F

Sea Level Pressure:  29.9 in of Hg

Water Depth: 103 m

 

Science Blog:

Paired with the HabCam, dredging adds more data points to the scallop survey and also to habitat mapping.   Various locations are dredged based on a stratified random sampling design.  This method uses the topography of the ocean bottom as a platform and then overlays a grid system on top. The dredged areas, which are selected randomly by a computer program, allow for a good distribution of samples from the area based on topography and depth.

Vic and Tasha sewing up the net on the dredge.
Vic and Tasha sewing up the net on the dredge.

A typical dredge that used for the survey is similar to those used by commercial fisherman, but it is smaller with a width of 8 ft. and weight of 2000 lbs.  It is towed behind a ship with a 9/16 cable attached to a standard winch.  Dredges are made from a heavy metal such as steel and is covered in a chain mesh that is open in the front and closed on the other three sides making a chain linked net made of circular rings.

A fisherman’s dredge has rings large enough for smaller animals to fall through and become released to the bottom once again.  The dredge in a survey has a mesh lining to trap more creatures in order to do a full survey of the animals occupying a specific habitat.

There are three categories of catch received in a dredge: substrate, animals and shell.  A qualitative assessment on percent abundance of each is done for every dredge.  Not all animals are measured, but all are noted in the database.

Dredge being dumped on sorting table.
Dredge being dumped on sorting table.

A length measurement is taken for every scallop, goosefish (also called monkfish), cod, haddock, as well as many types of flounder and skate. A combined mass is taken for each species in that dredged sample.  Some animals are not measured for length, like the wave whelk (a snail), Jonah crab, and fish such as pipefish, ocean pout, red hake, sand lance; for these and several other types of fish, just a count and weight of each species is recorded.

Sorting the dredged material.
Sorting the dredged material.

Other animals may be present, but not

counted or measured and therefore are called bycatch.  Sand dollars make up the majority of bycatch. Sponges, the polychaete Aphrodite, hermit crabs, shrimp and various shells are also sorted through but not counted or measured.

Ocean pout
Ocean pout

All of the dredge material that is captured is returned to the ocean upon the required sorting, counting and measuring.  Unfortunately, most of the fish and invertebrates do not survive the ordeal.  That is why it is important to have a good sampling method and procedure to get the best results from the fewest dredge stations needed.

Goosefish, often called Monkfish, eat anything.
Goosefish, often called Monkfish, eat anything.

The dredge is placed on the bottom for only fifteen minutes.  There are sensors on the frame of the dredge so computers can monitor when the collection was started and when to stop.  Sensors also make certain each dredge is positioned correctly in the water to get the best representation of animals in that small sample area.

Entering the name of the animals to be measured.
Entering the name of the animals to be measured.

Even with sensors and scientists monitoring computers and taking animal measurements, the dredging can only give a 30-40% efficiency rating of the actual animals present. Dredging with the aid of the HabCam and partnerships with many scientific organizations, along with data from commercial fisherman and observer data, create a picture of abundance and distribution which can be mapped.

Adductor muscle the "meat" of the scallop. This on is unhealthy.
Adductor muscle the “meat” of the scallop. This one is unhealthy.

In the scallop survey the emphasis is on where are the most scallops present and this aids fisherman in selecting the best places to fish.  The survey also suggests where areas should be closed to fishing for a period, allowing scallops to grow and mature before harvesting.

This management practice of opening closed areas on a rotational basis has been accepted as beneficial for science, management, and fishermen. This method of balancing conservation and fishing protects habitats while still supplying the world with a food supply that is highly valued.

Personal Blog:

Being part of a dredging team is exciting.  It is a high energy time from the moment the contents are dropped on the sorting platform to the end when everything is rinsed off to get ready for the next drop.

Katryn "Kat" Delgado
Kateryn “Kat” Delgado

I wanted to take pictures of everything, but with gloves on it was hard to participate and help out or just be the bystander/photographer. Kateryn Delgado from Queens NY, a volunteer/student/scientist/yoga instructor/photographer, was very helpful.  She was involved in other surveys and often took pictures for me.

I did find it sad that the animals we sorting were not going to live long once returned to sea, but that is a part of the dredging that is inevitable.  Raw data needs to be collected.  After measuring, a percentage of the scallops were dissected to get their sex, abductor muscle (meat), and stomach.  Shell size was compared to the meat and gonad mass and is also used to age the scallop.  The stomach was removed to test for microplastics.  Dr. Gallager and his research team are studying microplastics in the ocean.   Scallops filter relatively large particles for a filter feeder, and therefore are a good species to monitor the abundance of plastics at the bottom of the ocean.DSCN7891 (2)sunset

The weather has been nice, not very warm, but the waves are low.  Just the way I like them.  We are making our way back to Woods Hole to refuel and get groceries.  I didn’t realize we would split up the leg into two parts.  We should be in around 10:00 a.m.  I’m going to go for a long walk since there is not a lot of opportunity for exercise on the ship.  Hope it’s sunny!

 

Spencer Cody: Farewell Fairweather, June 18, 2016

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 18, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 18, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 20.643′ N

Longitude: 131˚ 37.505′ W

Air Temp: 20˚C (68˚F)

Water Temp: 13˚C (55˚F)

Ocean Depth: 30 m (100 ft.)

Relative Humidity: 65%

Wind Speed: 9 kts (11 mph)

Barometer: 1,022 hPa (1,022 mbar)

Science and Technology Log:.

111_0798 (2)
In order to check whether the tide gauge is working or not, a tidal observation needs to take place.  Over the course of several hours, the tide is measured as it rises or falls on graduated staffs and is recorded and compared to our tidal gauge data.  Credit Brian Glunz for the photo.

While horizontal control base stations are used to improve the accuracy of the positions of all points on a surface by providing a fixed known location to compare to GPS coordinates, constantly changing tides present another challenge in of its own.  With tides in the survey area ranging 3 to 6 meters (10 to 20 ft.), depths can vary widely for various shallow-water hazards depending on the strength of the tide.  Consequently, accurate tide data must be recorded during the survey and in close proximity of the survey site since tides vary widely depending on topography, weather systems, and other factors.  This is where tide stations come into play and are necessary to accurately gauge the vertical level of water throughout the survey area.

111_0930 (2)
Surveying equipment is used to check benchmarks near the tide station in the upper left for any movement.  Hydrographic Assistant Survey Technician Hannah Marshburn is recording data from the leveling process with Ensign Matthew Sharr sighting a staff held in place by Ensign Mason Carroll and Hydrographic Senior Survey Technician Clint Marcus.

Before a survey is started in an area, a tide station can be set up within the survey area to measure local tides. The tide stations use solar cells to generate electricity to power a small compressor on land that sends air through a hose that is attached to the ocean bottom in a near-shore environment.  The tide gauge can measure how much pressure is needed to generate a bubble out the end of the hose, the greater the pressure, the deeper the water.  These pressure gradients correlate to a certain depth of water while the depth of the water is tied to a nearby benchmark of surveyed elevation.  This information is then transmitted out to tide reporting sites online.  For additional data on tide patterns, the information on tide levels can be downloaded from the gauge in refining survey data.  In order to ensure that a tide gauge is working correctly, manual tide observations are periodically made at the same location. Additionally, the benchmarks near the tide gauge go through a process called “leveling.” This is survey work that compares all of the secondary benchmarks in the area to the primary benchmark.  If none of the benchmarks have moved relative to each other, it is safer to assume that the benchmarks still represent the elevation that they were originally surveyed.  Once the survey in the area is completed, the tidal gauge is packed up to be used at another location.  Since the portion of the tidal gauge that releases the pressurized bubble is under the entire tidal water column, a dive team is required to remove the remaining equipment.  The entire tidal gauge site is returned to how it looked before the station was set up.  Only the survey benchmarks remain for future use.

Personal Log:

107_0553 (2).JPG
From left to right Ensign Tyler Fifield charts our course while Able Seaman Godfrey Gittens has the helm with Ensign Lander Van Hoef controlling the power to propulsion.  Bridge usually has at least one officer and one deck member on watch at all times.  Ensign Fifield has been in NOAA and on the Fairweather for two years and has a background in marine safety and environmental protection.  AB Gittens spent 4 years in the Navy, 20 years on commercial and military marine contracted vessels, and has now worked for NOAA for a couple of months.  Ensign Van Hoef has a background in mathematics and has been on the Fairweather for six months.

Dear Mr. Cody,

On our cruise ship there are officers that wear uniforms who run the ship.  They also look out for the safety of everyone onboard.  They are very nice and know a lot about how to keep the ship running and get the cruise ship to each stop on our vacation.  They work with each department on the ship to make sure everything runs properly and people stay safe.  It has been a great trip to Alaska, and now we are at our last stop.  Goodbye Alaska!  (Dillion is one of my science students who went on an Alaska cruise with his family in May and has been corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The Fairweather also has officers, the NOAA Corps, to help run the ship and carry out NOAA’s mission by utilizing NOAA’s fleet of ships and aircraft and by staffing key land-based positions throughout the organization.  The NOAA Corps ensures that trained personnel are always available to carry out NOAA’s missions using cutting-edge science and technology.  This gives NOAA the flexibility it needs to complete many types of varied research since officers are trained to fulfill many types of missions.  This gives NOAA the ability to respond quickly to scientific and technological needs and helps retain a continuity of operations and protocol throughout the vast fleet and area of operations.  In order to be considered for acceptance into the NOAA Corp, applicants must have at least a four year degree in a field of study relating to NOAA’s scientific and technological interests.  Once accepted into the program, they go through five months of training at the United States Coast Guard Academy where they develop an understanding of NOAA’s mission, maritime and nautical skills, and general ship and boat operation skills.  After successful completion of the training, NOAA officers are placed on a ship in the fleet for three years of sea duty to begin their new career.

109_0606 (2)
Chief Electronics Technician Sean Donovan performs his daily check of communications systems on the bridge.  CET Donovan served as a naval service ground electronic technician for 11 years in the Navy and has been in NOAA for 8 months.

On the Fairweather NOAA Corp officers help run and manage the ship and launch boats.  They navigate the ship and stand watch on the bridge.  They work with the other departments to ensure that the mission is accomplished and everyone remains safe during the mission.  On a hydrographic survey ship such as the Fairweather, Corps officers commonly have the position of sheet manager for hydrographic survey regions as collateral duties allowing them the opportunity to plan the logistics of hydrographic survey areas and learn how to use software associated with hydrographic data collection and analysis. Additionally, officers will be assigned to other scientific missions as they arise since the Fairweather will participate in a variety of scientific projects throughout the year.

109_0599 (2)
Able Seaman Carl Coonce controls the hydraulic system that is picking up a launch boat from a survey mission.  AB Coonce has been in NOAA for 12 years.  He was also on the NOAA ships Albatross and Bigalow.  He has been on the Fairweather for five years.  He started out in NOAA as a second cook and then a chief steward, but he wanted to learn more about ships; so, he made the move to the deck department commenting, “When you go out on deck, all differences are set aside.  We lookout for each other.”

A hydrographic ship such as the Fairweather requires many departments to work together  including the NOAA Corps officers to accomplish the mission.  There is the deck department and engineering department and the steward department as I have discussed their role in previous posts.  However, there are also electronic technicians that assist the survey in all of its technological aspects including the ship’s servers, electronics, radar, and communication systems.  Since technology plays a critical role in the collection and analysis of data, a hydrographic ship depends on these systems to carry out its scientific research.

109_0601 (2)
Acting Chief Hydrographic Survey Technician John Doroba prepares a boat launch for another portion of the hydrographic survey.  ACHST Doroba is the lead survey technician for this leg.  He has a background in geography, physical science, and information systems with a decade of work experience in and out of NOAA relating to surveying and related technology.

The survey department does the bulk of the collection and analysis of hydrographic data.  Depending on experience and education background, someone in survey may start out as a junior survey technician or assistant survey technician and advance up to a survey technician, senior survey technician, and possibly a chief survey technician.  With each step more years of experience is required because a greater amount of responsibility comes with each position concerning that survey.  Survey technicians generally need to have a background in the physical sciences or in computer science.  Technology and physical science go hand-in-hand in hydrographic survey work by applying and analyzing scientific data through the lens of advanced technology and software.  One needs to be capable in both areas in order to be proficient in the survey department.

104_0414 (2)
Hydrographic Assistant Survey Technician Steve Eykelhoff collects hydrographic data during a launch.  HAST Eykelhoff has a background in geology and hydrology.  He has worked on many mapping projects including mapping the Erie Canal and the Hudson River.

It really comes down to people working together as a team to get something done.  In the case of the Fairweather, all of this talent and dedication has been brought together in a team of NOAA Corps, engineers, deck, survey, technicians, and stewards to carry out a remarkable array of scientific work safely and efficiently.  This team is always ready for that next big mission because they work together and help each other.  Yes, Dillion, my time here on the Fairweather is also drawing to a close.  I have enjoyed the three weeks onboard and have learned a lot from a very friendly and informative and driven crew.  I thank all of those who were willing to show me what their job in NOAA is like and the underlying concepts that are important to their careers.  I learned a great deal concerning NOAA careers and the science that is carried out onboard a NOAA hydrographic ship.  Thank you!

Did You Know?

The NOAA Commissioned Officer Corps is one of seven uniformed services of the United States consisting of more than 300 officers that operate NOAA’s fleet of 16 ships and 9 aircraft.

Can You Guess What This Is?111_0918 (2)

A. a ship  B. a hydrographic survey  C. a NOAA vessel  D. a final farewell to an amazing ship and crew

You should already know the answer if you have been following this blog!

(The answer to the question in the last post was C. an azimuth circle.  The Fairweather has an azimuth circle onboard.  While it is not typically used for navigation, it is yet another technology that remains as a holdover from earlier seafaring times and as a potential navigation tool available when all modern equipment has failed.  The azimuth circle can be used to measure the position of a celestial body for navigation purposes or to get a bearing on an object visible from the ship.)

Spencer Cody: What Remains Unseen, June 17, 2016

NOAA Teacher at Sea

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 17, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 10.643′ N

Longitude: 132˚ 54.305′ W

Air Temp: 16˚C (60˚F)

Water Temp: 12˚C (54˚F)

Ocean Depth: 30 m (100 ft.)

Relative Humidity: 81%

Wind Speed: 10 kts (12 mph)

Barometer: 1,013 hPa (1,013 mbar)

Science and Technology Log:

106_0507 (2)
Hydrographic Senior Survey Technician Clint Marcus is cataloguing all of the discreet hazards and objects by location and by photographic evidence that will be available for the new nautical charts once the survey is complete.

Uncovering potential dangers to navigation often requires more that acoustic equipment to adequately document the hazard.  Many hazards are in water that is shallow enough to potentially damage equipment if a boat were to be operating in that area and may also require special description to provide guidance for those trying to interpret the hazard through nautical charts and changing tides.  This is one of the key reasons so much planning must be placed into assigning survey areas determining the size and extent of polygons for mapping.  Depending on the complexity of the area’s structures, the polygon assignment will be adjusted to reasonably reflect what can be accomplished in one day by a single launch.  Near-shore objects may require a smaller boat to adequately access the shallow water to move in among multiple hazards.  This is where a smaller boat like the Fairweather’s skiff can play a role.  The skiff can be sent out to map where these near-shore hazards are using equipment that that will mark the object with a GPS coordinate to provide its location.  Additionally, a photograph of the hazard is taken in order to provide a greater reference to the extent of the object and what it looks like above or below the water.  This information is collected and catalogued; so, the resulting nautical chart will have detailed resources and references to existing nautical hazards.

104_0445 (2)
Ensign Pat Debroisse covers nautical hazards such as rocks and kelp indicated throughout a very shallow and hazardous inlet.

Nautical hazards are not the only feature found on charts.  Nautical charts also have a description of the ocean bottom at various points throughout the charts.  These points may indicate a rocky bottom or a bottom consisting of silt, sand, or mud.  This information can be important for local traffic in terms of boating and anchoring and other issues. In order to collect samples from the bottom, a launch boat drops a diving probe that consists of a steel trap door that collects and holds a specimen in a canister that can be brought up to the boat.  Once the sample is brought up to the boat, it is analyzed for rock size and texture along with other components such as shell material in order to assign a designation.  This information is collected and catalogued so that the resulting nautical chart update will include all of the detailed information for all nautical hazards within the survey area.

109_0712 (2)
Bottom samples are taken with a heavy steel torpedo-shaped probe that is designed to sink quickly, dive into the ocean bottom, clamp shut, and return a sample to the boat.  Credit Ensign Joseph Brinkley for the photo.

Personal Log:

Dear Mr. Cody,

The food on the cruise ship is great. They have all of our meals ready and waiting.  There are many people who prepare and serve the food to us to make our trip enjoyable.  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The food onboard the Fairweather is also very good.  Much of the work that they do happens so early in the morning that most never see it take place.  Our stewards take very good care of us by providing three meals a day, snacks, and grab bag lunches for all of our launches each day.  They need to start early in morning in order to get all of the bagged lunches for the launches prepared for leaving later that morning and breakfast. They start preparing sandwiches and soup for the launches at 5 AM and need to have breakfast ready by 7 AM; so, mornings are very busy for them.  A morning snack is often prepared shortly after breakfast for those on break followed by lunch and then an afternoon snack and finally dinner.  That is a lot of preparation, tear down, and clean up, and it all starts over the next day.  The steward department has a lot of experience in food preparation aiding them in meeting the daily demands of their careers while preparing delicious and nutritious food that the crew will enjoy.

106_0469 (2)
What are you doing at 5:15 in the morning?  Mornings are very busy for the steward department preparing lunches for the day’s hydrographic launches and breakfast for the entire crew.  From left to right, Chief Steward Frank Ford, Chief Cook Ace Burke, Second Cook Arlene Beahm, and Chief Cook Tyrone Baker.
106_0477 (2)
Chief Steward Frank Ford is preparing a delicious mid-morning snack for the crew.

Frank Ford is the chief steward. He has been in NOAA for six years.  Before joining NOAA he had attended culinary school and worked in food service for 30 years in the restaurant and hotel industry.  “I try to make meals that can remind everyone of a positive memory…comfort food,” Frank goes on to say, “Having good meals is part of having good morale on a ship.”  Frank and the others in the steward department must be flexible in the menu depending on produce availability onboard and available food stores as the mission progresses.

 

106_0473 (2)
Chief Cook Tyrone Baker helps prepare breakfast.

Tyrone Baker is the chief cook onboard. He has been in NOAA for 10 years and has 20 years of food service experience in the Navy.  Ace Burke has been with NOAA since 1991 and has served in many positions in deck and engineering and has been a steward for the last 15 years.  He came over from the NOAA ship Thomas Jefferson to help the steward department as a chief cook. Arlene Beahm attended chefs school in New Orleans.  She has been with NOAA for 1 ½ years and started out as a general vessel assistant onboard the Fairweather and is now a second cook.

 

Did You Know?

Relying on GPS to know where a point is in the survey area is not accurate enough.  It can be off by as much as 1/10 of a meter.  In order to increase the accuracy of where all the points charted on the new map, the Fairweather carries horizontal control base stations onboard.  These base stations are set up on a fixed known location and are used to compare to the GPS coordinate points.  Utilizing such stations improves the accuracy of all points with the survey from 1/10 of a meter of uncertainty to 1/100 of a meter or a centimeter.

Can You Guess What This Is?109_0609 (2)

A. an alidade  B. a sextant  C. an azimuth circle  D. a telescope

The answer will be provided in the next post!

(The answer to the question in the last post was D. a CTD.  A CTD or Conductivity, Temperature, and Depth sensor is needed for hydrographic surveys since the temperature and density of ocean water can alter how sound waves move through the water column. These properties must be accounted for when using acoustic technology to yield a very precise measurement of the ocean bottom.  The sensor is able to record depth by measuring the increase of pressure, the deeper the CTD sensor goes, the higher the pressure.  Using a combination of the Chen-Millero equation to relate pressure to depth and Snell’s Law to ray trace sound waves to the farthest extent of an acoustic swath, a vertical point below the water’s surface can be accurately measured.  Density is determined by conductivity, the greater the conductivity of the water sample running through the CTD, the greater the concentration of dissolved salt yielding a higher density.)

Donna Knutson: Atlantic Sea Scallop Research Progressed into Habitat Modeling, June 13, 2016

NOAA Teacher at Sea Donna Knutson
Aboard R/V Hugh R. Sharp
June 8 – June 24, 2016

 

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 13, 2016

Mission and Geographical Area:  

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Science and Technology:

Weather Data from the BridgeTas habcam 055 (4) color

Latitude:  40 43.583 N
Longitude:  67 04.072 W
Clouds:
50% cumulous
Visibility
: 6 nautical miles
Wind: 296 degrees 11 knots at cruise speed of 6.5 knots
Wave Height: 1-3 ft.
Water Temperature:  52 ºF
Air Temperature:  56 ºF
Sea Level Pressure:  29.4 in of Hg
Water Depth: 107 m

Scientific Blog

During the 1970’s fishermen made the observation that the Atlantic sea scallop was becoming hard to find.  Overfishing had depleted the numbers and they were not repopulating at a steady rate.  In the early 1980’s after noticing that nature wasn’t going to be able to keep up with man’s demands of the scallop, programs were set up to monitor the scallop fishing industry and to also set catch limits.

Live video from rear sonar devices
Live video from rear sonar devices

In 1997 NOAA and the New England Fishery Management Council determined that the Atlantic sea scallops were still being overfished and by 1998 a new plan for allowing the scallop to increase their numbers was implemented.

The guidelines for fishermen proved to be useful and the scallop industry had great success.  It was reported that the scallop biomass harvested had increased eighteen times higher than the previous level between 1994 – 2005.

The demand for the Atlantic sea scallop did not decrease.   The sea scallop adductor muscle, the muscle that holds the two shells together and allows the animal to open and close the two shells, is harvested for food.  The muscle is typically 30 – 40 mm in diameter in adult sea scallops.  The demand for this tasty muscle has made the Atlantic sea scallop fishing industry into a very powerful and prosperous billion-dollar industry.

Live forward sonar scanner
Live forward sonar scanner

Fisherman will agree that science is essential to the health of their industry.  It was determined that rotational management was needed for the scallops to replenish, much like crop rotation on land.  After a period of time, areas need to rest without any activity and other areas can be reopened to scallop fishing after a period of time.

 

What that time period for rest is and what areas need to rest while other areas are opened to fishing is the science behind the industry.  The industry recognizes that the science is essential to keep a healthy population of Atlantic sea scallops and, through a special research set-aside program, invests 25% of the scallops to research.  The market value of the scallop, usually $10 -$14 per pound, determines the funding scientists can invest into research.

Resource management is not a new idea.  Resources are managed at all levels whether they are animals such as scallops or deer, minerals or elements mined such as aluminum or coal, or even plants such as trees. Without management practices in place, there is a good possibility of endangering the resource for later use, and in the case of living animals, endanger their future viability.

RSCN7757
Dr. Scott Gallager

Some of the “Research Set-Aside” monies given by the commercial fisherman have allowed the development of a special habitat mapping camera, affectionately called the HabCam.  Dr. Scott Gallager has combined his two areas of expertise, biology and electronics and developed a series of cameras used for studying underwater habitats.  NOAA has contracted Dr. Gallager to oversee the HabCam during the annual sea scallop survey.

While the original HabCam is being used by the commercial fishing industry on scallop vessels, a fourth generation HabCam is used by NOAA on the R/V Sharp to help with the annual Atlantic scallop survey.  It has two sonar devices, one forward and one rear sonar scans a 50 meter swath on each side of the vehicle. It is equipped with four strobe lights that allow two cameras to take photographs.  Each camera takes six pictures a second.  The HabCam has a sensor called the CTD (Conductivity, Temperature, Depth) to measure physical properties such as salinity, temperature, depth, and dissolved oxygen.  Two other sensors are used to measure turbidity, and a device that measures the scattering and absorption of light at that depth.  Measuring absorption allows the computer to make color corrections on the pictures so the true colors of the habitat are seen.  The vehicle is 3700 lbs. and made of stainless steel.  It is actually towed through the water but is “driven” by using the metal jacketed fiber-optic tow cable which pulls it through the water.  The HabCam relays the real-time images and data directly to the ship where it is processed by computers and also people monitoring the pictures. Computer Vision and Image Processing tools are also being developed to count and size scallops automatically from the images as the vehicle is being towed. This will allow managers in the future to use adaptive sampling approaches whereby the sampling track is actually changed as the vehicle is towed to optimize the survey.

HabCam on Right Side
HabCam on Right Side

By analyzing the data from the HabCam and doing dredges over mapped areas of the ocean, scientists can relay their findings to fisherman with suggestions on the best places to harvest Atlantic sea scallops.  It is important to keep in mind the other animals in the area that may be affected by scallop fishing.  The Yellowtail flounder is one such animals that could be better monitored with the aid of the HabCam.  The flounder often is found living in areas that have a high density of sea scallops, but by identifying areas of high scallop and low yellowtail densities, fishermen may be better able to avoid yellowtail bycatch.  Unfortunately, many bycatch fish do not survive the dredging and are often dead upon being returned to the sea.

While scallops and fish are certainly important to the commercial fishing industry, understanding the habitat that supports these organisms is paramount to their effective management. HabCam collects images that contain a huge amount of information on habitat factors such as temperature, salinity, chlorophyll, seafloor roughness, and substrate type (mud, sand, gravel, shells, boulders, etc). Habitat for one organism is not necessarily the same for the next so we need to put together maps of where certain habitats allow each species to exist and where they co-exist to form communities. Understanding this, we can simulate how communities will respond to climate change and other changing environmental factors such as Ocean Acidification (i.e., low ph), which all contribute to habitat.

Dr, Gallager worling on the HabCam
Dr. Gallager working on the HabCam

Because of the success of the HabCam and other habitat monitoring/mapping devices, HabCams I – VI have been built.  There are four different vehicles used now for specialized data collection depending on what the survey priorities are.

HabCam is a unique, and high-end technology, but at the same time is being upgraded to provide habitat data on a variety of sampling platforms such as high speed torpedo-like systems that are towed at 10 kts or greater and on robotic Autonomous Underwater Vehicles (AUV) that will carry the stereo cameras and sonar systems currently on HabCam. The combination of robotics with underwater sampling provides a window into the ocean universe that humans have not been able to effectively explore and sample because of the great pressure and low temperature of the deep sea. Abyssal habitat (deeper than 3000m) is very difficult to sample and more and more oceanographers are looking to develop and use robots to get to where observations and samples need to be taken.

Monitoring the screens for obstacles

While the HabCam was initially developed for the scallop fishing industry, it has clearly made an invaluable contribution to the study of habitats that have so long been inaccessible to us.  There are many cameras throughout the world used to take pictures of the ocean bottom and even animals therein, but the HabCam series that was developed out of Woods Hole Oceanographic Institution (WHOI) is integrating many different data types to develop a more comprehensive understanding of fauna and flora (animals and plants) in their habitats worldwide.  It is an exciting time for oceanic research!

Driving the HabCam
Driving the HabCam

Sources:

National Marine Fisheries Services (www.nmfo.noaa.gov)

Dr. Scott Gallager PhD, tenured Associate Scientist, Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, Visiting Professor, Okinawa Institute of Science and Technology, Okinawa, Japan.

 

Personal Blog:

I am feeling great and meeting so many fascinating people!  Dr. Gallager, or Scott to the scientists on board, has taught me so much in the very short time I’ve been on the ship.  He has many great stories as he has been involved in oceanic research for many years.  He was asked to study the teak wood that the Titanic was made of because “Bob” Ballard saw so little of it even though all the decks and ornamentations were made of it.  So Bob asked Scott to study it and Scott wrote a paper on the polychaete worm that was able to break down the tough cellulose tissue.

After our dredging yesterday resulted in many scallops, you will never guess what we are having for our 12:00 p.m. meal.  I said 12:00 p.m. meal because for some of us it is breakfast and for others it is supper.

Dogfish on the bottom of the ocean, Picture taken by the Habcam.
Dogfish on the bottom of the ocean, Picture taken by the Habcam.

Me and the other five scientists are now done with our 12 hour shift and the new group just took over. We were running the HabCam all day and then looking at random still photos from the HabCam to identify the life forms that are present.  Dr. Gallager is working on a computer image recognizing HabCam, but he feels it is important to have humans involved as well.   I am so thankful I am on the same crew as Dr. Gallager.  I am actually getting better with the whole time schedule shock.  Not really a big deal once you try it.  (Like most things in life.)

Skate on the bottom of the ocean. Picture taken by the HaabCam.
Skate on the bottom of the ocean. Picture taken by the HabCam.

 

 

 

 

 

 

Spencer Cody: Killing the Dots, June 13, 2016

NOAA Teacher at Sea

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 13, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 10.643′ N
Longitude: 132˚ 54.305′ W
Air Temp: 19˚C (66˚F)
Water Temp: 14˚C (58˚F)
Ocean Depth: 33 m (109 ft.)
Relative Humidity: 50%
Wind Speed: 6 kts (7 mph)
Barometer: 1,014 hPa (1,014 mbar)

Science and Technology Log:

104_0366 (2)
“Killing dots” or manually flagging data points that are likely not accurately modeling hydrographic data is only the beginning of a very lengthy process of refining hydrographic data for new high-quality nautical charts.  Credit Hannah Marshburn for the photo.

In the last post, I talked about how we collect the hydrographic data.  The process of hydrographic data collection can be a challenge in of itself with all of the issues that can come up during the process.  But, what happens to this data once it is brought back to the Fairweather?  In many ways this is where the bulk of the work begins in hydrography.  As each boat files back to the ship, the data they bring back is downloaded onto our servers here on the ship to begin processing.  Just the process of downloading and transferring the information can be time consuming since some data files can be gigabytes worth of data.  This is why the Fairweather has servers with terabytes worth of storage to have the capacity to store and process large data files.  Once the data is downloaded, it is manually cleaned up.  A survey technician looks at small slices of hydrographic data and tries to determine what is the actual surface of the bottom and what is noise from the multibeam echosounder.  Leaving too many false data points in the slice of hydrographic data may cause the computer software to adjust the surface topography to reach up or below to something that in reality does not exist. The first phase of this is focused on just cleaning the data enough to prevent the hydrographic software from recognizing false topographies.  Even though the data that does not likely represent accurate hydrographic points are flagged and temporarily eliminated from the topographic calculation, the flagged data points are retained throughout the process to allow for one to go back and see what was flagged versus what was retained. It is important to retain this flagged data through this process in case data that was thought to be noise from the echosounder really did represent a surface feature on the bottom.

104_0365 (2)
Hydrographic Assistant Survey Technician Sam Candio is using a three dimensional viewer to clean the hydrographic data collected from that day’s launches.

Once this process is complete, the day’s section is added to a master file and map of the target survey area.  This needs to happen on a nightly basis since survey launches may need to be dispatched to an area that was missed or one in which the data is not sufficient to produce quality hydrographic images.  Each launch steadily fills in the patchwork of survey data; so, accounting for data, quality, and location are vitally important.  Losing track of data or poor quality data may require another launch to cover the same area.  After the survey area is filled in, refinement of the new map takes place.  This is where the crude cleanup transitions into a fine-tuned and detailed analysis of the data to yield smooth and accurate contours for the area mapped.  Data analysis and processing are the parts of hydrographic work that go unnoticed.  Since this work involves many hours using cutting-edge technology and software, it can be easy to underappreciate the amount of work survey technicians go through to progress the data through all of these steps to get to a quality product.

Personal Log:

20160513_113539 (2)
Dillion and family in Hoonah, Alaska.

Dear Mr. Cody,

Today we docked in Hoonah, Alaska.  We had a whale show right under our balcony!  They are incredible to watch.  There is so much to see for wildlife in Alaska. (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

104_0408 (2)
A friendly humpback is keeping our survey launch company as we map our assigned polygon.

I know what you mean about the wildlife.  I am seeing wildlife all over the place too.  On our transit to our survey site from Juneau, I saw numerous marine mammals: hump back whales, dolphins, and killer whales.  On our last survey launch, we had two humpbacks stay within site of the boat the entire morning.  They are remarkable creatures.  Whenever we locate a marine mammal, we fill out a marine mammal reporting form allowing various interests to use these reports to estimate the population size and range of these animals.  The waters off the Alaskan coast are full of marine life for a reason.  It is a major upwelling area where nutrients from the ocean bottom are being forced up into the photic zone where organisms such as phytoplankton can use both the nutrients and sunlight to grow.  This provides a large amount of feed for organisms all the way up the food chain.  This area is also known for its kelp forests.  Yes, if you were on the sea bottom in these areas dominated by kelp, it would look like a forest!  Kelp are a very long- and fast-growing brown algae that provide food and habitat for many other marine organisms.

104_0437 (2)
Kelp forests form on relatively shallow rocky points and ledges allowing for the holdfasts to form and latch onto the bottom giving the resulting algae growth the opportunity to toward the surface to collect large amounts of sunlight for photosynthesis.

Did You Know?

The RESON 7125sv multibeam echosounders found onboard the survey launches use a 200 kHz or 400 kHz sound frequency.  This means the sound waves used fully cycle 200,000 or 400,000 times per second.  Some humans can hear sounds with pitches as high as 19 kHz while some bat and dolphin species can hear between 100 and 150 kHz.  No animal is known to have the capability to audibly hear any of the sound waves produced by the multibeam onboard our survey boats.  Animals that use echolocation tend to have much higher hearing ranges since they are using the same premise behind acoustic mapping in hydrography but to detect food and habitat.

Can You Guess What This Is?

104_0410 (2)

A. a marker buoy  B. a water purification system  C. an electric bilge pump  D. a CTD sensor

The answer will be provided in the next post!

(The answer to the question in the last post was A. a search and rescue transponder.  If a launch boat were to become disabled with no means of communication or if the boat needs to be abandoned, activating a search and rescue transponder may be the only available option left for help to find someone missing.  When the string is pulled and the cap is twisted, a signal for help is sent out in the form of 12 intense radar screen blips greatly increasing the odds for search and rescue to find someone in a timely manner.  The radar blips become arcs as a radar gets closer to the transponder until the radar source gets within a nautical mile in which the arcs become full circles showing rescue crews that the transponder is nearby.)

Donna Knutson: The Absolutely Amazing Atlantic Sea Scallop, June 12, 2016

NOAA Teacher at Sea Donna Knutson
Aboard R/V Hugh R. Sharp
June 8 – June 24, 2016

 

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 12, 2016

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Weather Data from the Bridge

Latitude:  40 26.375 N
Longitude:  68 19.266 W
Clouds: overcast
Visibility: 5-6 nautical miles
Wind: 21 knots at cruise speed of 4 knots
Wave Height: 4-6 occasional 8 ft.
Water Temperature:  56 °F
Air Temperature:  70 °F
Sea Level Pressure:  29.7 in of Hg
Water Depth: 100 m

Science and Technology Log

! TAS 010There are four types of scallops that are found around the United States.  The Sea Scallop is the largest and found primarily along the Eastern coast.  Therefore, it is called the Atlantic Sea Scallop.  Bay scallops are smaller, found closer to shore and are not usually harvested.  The Calico mollusk is the smallest and rare, and is primarily located around the coast of Florida.  The Icelandic scallop is also occasionally sighted around the United States.

The Atlantic Sea Scallop Placopecten magellanicus  is a deep sea bivalve mollusk.  It has a smooth shell and edges.  Young scallops have a pink/red color with darker stripes radiating outward form the hinge. The older sea scallop is more orange in coloration and may fade into white.  Photoreceptive eyes along their pale pink mantle, allow the scallop to sense changes in light allowing it to protect itself from possible dangers such as incoming predators.

Alantic sea scallop
Atlantic sea scallop

Some mollusks are hermaphroditic meaning they have both sex organs in the same animal, but the Atlantic sea scallop has two distinct sexes.  It is impossible to tell what the sex of a scallop is from its outward appearance.  When looking inside at the gonads it is easy to detect.  The male gonads are creamy white and the female gonads are pink/red in color.

The female can reproduce after they are one-year-old, but four year olds release many more eggs.  The older scallop may emit one to two hundred seventy million eggs at one time.  Spawning occurs twice a year, once in the spring and another in the fall.  Males will release their sperm into the water where the eggs have been released, and then the fertilized egg sinks to the bottom of the ocean to develop in groupings called beds.

Adult scallops will filter feed on phytoplankton and microscopic zooplankton.  The immature larva are filter feeders as well, but can also absorb nutrients though their tissues.

Atlantic sea scallops play an important role in the ecosystem as they become food for other animals such as starfish, crabs, lobsters, snails, and fish such as cod, American plaice, wolfish, and winter flounder.

Sources:

Wikipedia, May 30, 2016

US Atlantic Sea Scallop, March 31, 2013

 

Personal Log

Leg III of the Atlantic Scallop/Benthic Habitat Survey started out a bit rough, bad weather came in from Hurricane Collin and caused a few delays.  The lead scientist Tasha O’Hara decided to push back the departure times in hope of gentler seas.

We set sail on Thursday June 12, 2016 around 7 p.m. from NOAA’s Northeast Fisheries Science Center in Woods Hole.  The Sharp started the third leg of four on the scallop survey.  The last leg will end on June 24, 2016.  The survey team will use a camera to take pictures of the bottom called a HabCam, which stands for Habitat Mapping Camera, and also dredge the ocean bottom periodically for physically counting and measuring specimens.

I have been allowed to participate in the driving of the HabCam and also the sorting, measuring and recording of animals brought up from the dredges.  My blogging got a bit behind as I was trying to immerse myself in the new experiences when the sea sickness hit.

Goosefish
Donna holds a Goosefish

I did not get sick once on the last month long experience, but conditions here are a bit different.  The captain of the Sharp, James Warrington, explained the gyre (oceanic current pattern) is unique here.  We are in a cruising within circular gyre and with weather conditions forcing high waves into the flat bottomed boat, we are getting a lot of motion.  So, yes, I now know what sea sickness is like.  Today the wind has died down a bit so the waves are not as high, and I feel much better.  I have been placed on the midnight to noon crew so that has been an adjustment as well.  I’m sure you morning classes will agree I’m more active in the afternoon.  Not really a morning person. J

Snake eel
Snake eel

Everyone is so great to me here.  They were very considerate during my seasick time.  I actually have been sitting up on the bridge with Captain Jimmy.  I can see the horizon and feel more stable.  Otherwise we are below decks looking at computer screens for the HabCam or working on the back deck looking at the dredged creatures.

Today we are doing some back tracking to get a start on more dredging and that has allowed me to get this blog in.  I really wanted it to be sooner, but that’s the story.

 

 

 

 

 

 

Spencer Cody: Filling in the Asterisk, June 10, 2016

NOAA Teahcer at Sea

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 10, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 10.643′ N

Longitude: 132˚ 54.305′ W

Air Temp: 19˚C (66˚F)

Water Temp: 12˚C (54˚F)

Ocean Depth: 33 m (109 ft.)

Relative Humidity: 60%

Wind Speed: 4 kts (5 mph)

Barometer: 1,014 hPa (1,014 mbar)

Science and Technology Log:

102_0137
Goodbye Juneau, we are off to our survey site just west of Prince of Wales Island in the southernmost part of Southeast Alaska.

On Sunday with everyone who needed to be here for the next leg of the hydrographic survey onboard, we set off for the survey site.  Transiting through Alaskan fjords and associated mountains is a real treat to say the least.  The abundance of wildlife and picturesque views of glaciers, mountains, and forests lend one easily susceptible to camera fatigue.  Every vista resembles a painting or photograph of significance.  The views are stunning and the wildlife breathtaking.  After a day’s worth of transiting, we arrived in our survey area just west of Prince of Wales Island on the southern tip of Southeast Alaska and its Alexander Archipelago.  The chain of islands that makes up the Alexander Archipelago represent the upper reaches of the submerged coastal range of mountains along the Pacific.  A mere 20,000 years ago, the sea level was roughly 120 meters (400 ft.) lower than what it is today as our planet was in the grips of the last major ice age.  To put that into perspective, the Fairweather is currently anchored in a calm bay with about 30 meters (100 ft.) of water.  During the recent ice age, this entire ship would be beached hanging precariously next to ledges dropping 100 meters (300 ft.) to the ocean below.  The mountains and steep island banks continue down to the sea floor providing for wildly changing topography below sea level.  This type of environment is perfectly geared toward Fairweather’s capabilities.

While mapping survey areas that include shallow near-shore water, the Fairweather anchors in a calm bay maximizing ideal conditions for launching and retrieving boats whenever possible.  Survey launches are dispatched out to their assigned polygons with the survey area while a skiff boat carries out near-shore marking of rocks and obstructions.  Each of the four survey launches have a RESON 7125sv multibeam echosounder to collect data for mapping.  Survey launches are sent out for much of the day and return with hydrographic data concerning their assigned area.  All of the data is compiled into one file after extensive processing and quality control.

Personal Log:

20160512_154154 (2)
Dillion enjoying Sitka, Alaska.  Credit Suzi Vail for the photo.

Dear Mr. Cody,

We arrived in Sitka, Alaska, with bald eagles flying overhead.  The islands with the tall mountains are amazing.  Some even have snow on them still.  They have a lot of trees and wildlife.  The mountains are all over the island and come right down to the ocean with a very tall dormant volcano across the sound from Sitka.  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

102_0213 (2)
Assisting Ensign Joseph Brinkley in lowering a Conductivity, Temperature, and Depth (CTD) sensor.  The CTD records temperature, salinity, and density.  All of these factors affect the speed of sound and must be factored into our data collection.  Credit Todd Walsh for the photo.

Dear Dillion,

We are not that far to the southeast of you in our survey area.  That is part of the challenge of mapping this area and ensuring that nautical maps are accurate and up to date.  Those tall mountains that you see so close to your ship really do continue down into the ocean in many places.  I was able to go out on one of our survey launches to see how hydrographic data is collected using the Fairweather’s fleet of survey launch boats.  It started with a mission and safety briefing before the launches were turned loose.  Our operations officer went over the assigned polygon mapping areas with us.  We were then reminded of some of the hazards that a small boat needs to be cognizant of such as the log debris in the water and the potential of grounding a boat on rocks.  Both our commanding officer and executive officer repeatedly stressed to us the importance of being careful and alert and always defaulting to safety versus more data collection.  Once the briefing was over, our boats were launched one at a time to our assigned survey polygons.  We were to map the area just north of the McFarland Islands.  Parts of the this area had known hazards hidden just below sea level.  Complicating matters was the fact that many of these hazards marked on existing maps were instances in which someone hit a rock but did not know the exact location or a rock was potentially spotted at low tide.  It was our job to carefully map the area without damaging the boat or putting any of the passengers in harm’s way.

102_0185 (2)
Keeping the boat on course as we collect a swath of hydrographic data in deep water devoid of rocks, kelp, or logs.  Credit Todd Walsh for the photo.

Mapping an assigned area can be anywhere between the two extremes of incredibly uneventful to nimbly avoiding obstacles while filling in the map.  Since the multibeam echosounder requires sound waves to travel farther through a deeper column of water, the swath covered by the beam is wider and takes longer to collect.  In such stretches of water, the boat is crawling forward to get the desired amount of pings from the bottom needed to produce quality hydrographic data.  When the boat is in shallow water, the reverse is true.  The beam is very narrow, and the boat is able to move at a relatively fast pace.  This makes mapping shallow regions challenging.  The person navigating the boat must work with a narrower beam at faster speeds while avoiding the very hazards we were sent to map.  Additionally, in this area kelp forests are very common.  The long brown algae forms a tangled mass that can easily bind up a boat propeller.  Add massive floating logs from all the timber on these islands, and now you have a situation in which a trained driver needs to have all their wits about them.

102_0253 (2)
Narrowing the data collection to a range of depths in which the entire swath can be recorded minimizes the cleanup of false data points while not losing any of the pertinent hydrographic data.  Credit Amber Batts for the photo.

While the person navigating the boat tries to orderly fill in the polygon with a swath of hydrographic data, a person must be stationed at a work station inside the cabin modifying the data stream from the beam to help keep out noise from the data making the survey data as clean as possible.  Sloppy data can result in more time in cleanup during the night processing of data once the boats return to the Fairweather.  In addition, to control what is recorded, the station also determines when the multibeam echosounder is on or off.  It takes some practice to try to keep multiple tasks on multiple screens functioning within an acceptable range.  The topography in the map area also adds to the challenge since drop offs are commonplace.  There were many times were the difference from one end of the beam to the other end was 100 meters or more (300 feet or more).  It was like trying to survey the cliff and bottom of the canyon including the wall of the canyon in one swipe.  Sometimes the ridges are so steep underwater that shadows are produced in the data were the sound waves were blocked by the ridge and our relative angle to it preventing a complete swath.  This requires us to move over the ridge on the other side to map the gap.

102_0200 (2)
Slowly but surely, we are painting over the existing map with a detailed color-coating of contours of depth.

There is something inherently exciting about being the first to see topography in such detail.  Much of this area was last surveyed by lead line and other less advanced means of surveying than our current capabilities.  In many respects they were accurate, but as we filled in our data over the existing maps, one could not help but to feel like an explorer or as much as one can feel like an explorer in this modern age.  We were witnessing in our little assigned piece of the ocean something never seen before: land beneath the water in striking detail.  The rocks and navigational hazards no longer resembled mysteriously vague asterisks on a navigation map to be simply avoided.  We were replacing the fear of the unknown with the known by using science to peer into those asterisks on the map and paint them in a vivid array of well-defined contours later to be refined and made ready for the rest of the world to utilize and appreciate through upgraded navigation charts.  Once our assigned polygon was filled to the best of our abilities, we moved on to the next and so on until it was time to head back to the Fairweather completing another successful day of data collection.

Did You Know?

Kelp is a long brown algae that forms underwater forests that serve as an important habitat for many marine organisms.  Kelp is one of the fastest growing organisms on the planet.  Some species can grow a half a meter (1.5 ft.) per day reaching lengths of 80 m (260 ft.) long.

Can You Guess What This Is?

152_3283 (2)A. search and rescue transponder  B. an emergency flashlight  C. a marker buoy  D. a flare gun

The answer will be provided in the next post!

(The answer to the question in the last post was B. an oil filter.  Getting an oil filter change for the Fairweather is a little different than for your car though the premise is similar.  The four long filters used for each of the two diesel engines onboard are many times larger to accommodate the oil volume and are more durable to handle circulating oil 24 hours a day.)

Spencer Cody: No Survey, No Problem, June 8, 2016

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 8, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 10.643′ N

Longitude: 132˚ 54.305′ W

Air Temp: 17˚C (63˚F)

Water Temp: 11˚C (52˚F)

Ocean Depth: 33 m (109 ft.)

Relative Humidity: 52%

Wind Speed: 10 kts (12 mph)

Barometer: 1,014 hPa (1,014 mbar)

Science and Technology Log:

155_3353 (2)
Refrigeration, boiler, and compressed air are just three of the many systems that are monitored and maintained from engineering.

With much of the survey team either on leave or not yet here for the next leg of the hydrographic survey, it can be easy to be lulled into the sense that not much is going on onboard the Fairweather while she is in port, but nothing could be further from the truth.  Actually, having the ship docked is an important time for departments to prepare for the next mission or carry out repairs and maintenance that would be more difficult to perform or would cause delays during an active survey mission.  On that note while the Fairweather was docked was a perfect time to see the largely unseen and unappreciated: engineering.  Engineering is loud and potentially hazardous even when the engines are not running, much less, when we are underway.  One of the key purposes of engineering is to monitor systems on the ship to make sure many of the comforts and conveniences that we take for granted seemingly just happen.  Sensors constantly monitor temperature, pressure, and other pertinent information alerting the crew when a component drifts outside of its normal range or is not functioning properly.  Catching an issue before it progresses into something that needs to be repaired is a constant goal.  Monitoring in engineering includes a wide array of systems that are vital to ship operations, not just propulsion.  Sanitation, heating, refrigeration, ventilation, fuel, and electric power are also monitored and regulated from engineering.  Just imagine spending the day without any of these systems while the loss of all of them would send us reeling to earlier seafaring days when humanity was entirely at the mercy of nature’s whim.

155_3424 (2)
Tommy Meissner, an oiler in the engineering department, is giving me a tour and overview of engineering.  The day after this photo was taken, he took and passed his junior engineer certification exam.  Congratulations Tommy!

Two diesel generators can produce enough power to power a small town.  Water systems pressurize and regulate water temperatures for use throughout the ship while filtration systems clean used water before it is released according to environmental regulations.  Meanwhile, enough salt water can be converted to freshwater to meet the needs of the ship and crew.  The method of freshwater production ingeniously uses scientific principles from gas laws to our advantage by boiling off freshwater from salt water under reduced air pressures increasing freshwater production while minimizing energy consumption.  Steam is generated to heat the water system and provide heat for radiators throughout the ship, and of course the two large diesel engines that are used to provide propulsion for the ship are also located in engineering.

150_2981 (2)
Chief Engineer Bill Ness using the ship’s crane to unload a crate of materials and equipment onto the pier.

How does one get to work in engineering onboard a ship like the Fairweather?  There are several different positions in the ship’s engineering department.  An oiler is largely responsible for maintenance, repair, and fabrication and must pass a qualifying test for this designation focusing on boilers, diesel technology, electrical, and some refrigeration.  Once the qualifying test is passed, the Coast Guard issues a Merchant Mariner credential.  Only then can one apply for that position.  Junior engineers must pass a test demonstrating that they have the working knowledge of the systems involved with engineering especially in areas of auxiliary systems and repair.  Junior engineers generally need less supervision for various operations than oilers and have a greater scope in responsibility that may also include small boat systems and repair.  The scale of responsibility does not stop there, but continues through Third, Second, and First Engineers.  Each involving a qualifying test and having more requirements involving education and experience.  Finally, the Chief Engineer heads the department.  This too requires a qualifying test and certain experience requirements.  There are two different ways in which one can progress through these different levels of responsibility.  They can attain the formal education or they can document the job-related experience.  Usually both play a role in where someone is ultimately positioned determining their role onboard the ship as part of an engineering team.

Personal Log:

100_0019 (2)
Deck crew Terry Ostermyer (lower, right) with Jason Gosine (middle) and I (left) degreasing cables for the hydraulic boat launching system.  It really needs a before and after photo to be appreciated.  Credit Randy Scott for the photo.

Dear Mr. Cody,

The crew is very friendly.  They take care of everything that we need on our trip to Alaska.  They also take care of the ship.  They must have to do a lot of work to keep such a large ship going and take care of this many people on vacation at sea.  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The Fairweather also has a crew that takes care of the ship and its very own fleet of boats.  While in port, I worked with our deck department to get a very small sense of what they do on a day-to-day basis to keep the ship running.  The pitfall of having a lot of equipment and having the capability of doing many multifaceted missions is that all of this equipment needs to be maintained, cleaned, repaired, and operated.  This includes maintaining both the ship’s exterior and interior, deployment and retrieval of boats, buoys, arrays, and various other sampling and sensory systems.  When not assisting with carrying out a component of a mission such as launching a boat, the deck crew is often performing some sort of maintenance, standing watch, mooring and anchoring the ship, unloading and loading supplies, and stowing materials.  Depending on years of experience and whether they have a Merchant Mariner’s certification or not will determine the level of responsibility.  On a survey ship, the deck department specializes in boat launches and maintenance; so, the levels of responsibility reflect that central area of concern.  Beginning experience starts with general vessel assistant and ordinary seaman progressing through able seaman with Merchant Mariner’s certification and seaman surveyor or deck utility man to boatswain group leader to chief boatswain.  The chief boatswain is in charge of training and supervision regarding all of the areas pertinent to the deck department.  This is a stark contrast compared to the deck department on the Pisces that specialized in techniques associated with fish surveys.

100_0033 (2)
Cannot paint because of a rain delay?  No problem.  There is always something else to do like heads and halls.  Deck crewmember Denek Salich is in the background.  Credit Randy Scott for the photo.

When I was with the Fairweather’s deck crew, they were working on taking an old coating of grease off cables and applying a new coating back on.  The cables are used to raise and lower the 28’ long hydrographic survey launches.  This will be a system that will be in use throughout the next leg; so, now is a great time to clean and replace that grease!  After using rags and degreasing agents to strip the old grease off, a new coating was added to the cables.  The crew is always conscientious about using chemicals that are friendly to the environment and proper containment strategies to prevent runoff from the deck directly into the ocean.  Deck crew need to be very flexible with the weather.  Since the weather was not cooperating for painting, we moved indoors and did “heads and halls,” sweeping and mopping hallways and stairs and cleaning bathrooms.  The Fairweather resembles an ant colony in its construction; so, heads and halls can be a lot of work even for a whole team of people, but as I am reminded by one of our deck crew, “Teamwork will make the dream work.”  It is, indeed, teamwork that makes Fairweather’s missions, not only possible, but successful.

Did You Know?

The boiler system produces steam that provides a heat source for the water system and the heating system.

Can You Guess What This Is?

155_3411 (2)A. an ocean desalinization unit  B. an oil filter  C. a fuel tank  D. a sewage treatment unit

The answer will be provided in the next post!

(The answer to the question in the last post was C. an incinerator.  You may not think of it as being a major problem, but one person can produce a lot of trash over the course of a week or weeks.  Imagine this same problem times 50!  Since the Fairweather must utilize its storage and equipment spaces efficiently, burnable wastes must be incinerated; otherwise, we would be stacking the trash to the ceiling in every available space.)

Lynn Kurth: Solstice at Sea!, June 8, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Assigned to:  NOAA Ship Rainier

June 20th-July 1st, 2016

Personal Log: 

My name is Lynn Kurth and I teach at Prairie River Middle School located in Merrill, WI.  I am honored to have the opportunity to work aboard NOAA Ship Rainier as a Teacher at Sea during the summer solstice.  Over the past twenty years of my teaching career I have had some amazing experiences, such as scuba diving in beautiful coral reefs, working aboard research vessels on Lake Superior and the Atlantic, and whitewater canoeing rivers in the United States and abroad.  The one thing that all of these experiences have in common is water and because of this I have come to appreciate what a truly important natural resource water is.

download

Me aboard the Oregon II for a Long Line Shark and Red Snapper Survey in 2014

Because my students are the next generation of caretakers of this important natural resource, I recognize how vital it is to bring water issues into the classroom:  Most recently I worked with my 7th and 8th grade middle school students to improve local water quality by installing a school rain garden.  During the project students learned about the importance of diverting rain water out of the storm sewer when possible and how to do it in an effective and attractive way.  Other projects included the restoration of our riverbank last year and using a Hydrolab to monitor the water quality of the Prairie River, which runs adjacent to our school.  So, sailing aboard NOAA Ship Rainier to learn more about hydrography (the science of surveying and charting bodies of water) seems like a most natural and logical way to move forward.

IMG_0867 (1)

Eighth grade science students jumping for joy during the fall testing of the Prairie River with the Hydrolab. Notice the fellow in waders holding the Hydrolab with great care!

I will be sailing aboard NOAA Ship Rainier from Homer, Alaska, on June 20th.  Until then I have a school year to wrap up, a new puppy to train, a project with Wisconsin Sea Grant to work on and packing to get done.  There are days I’m a bit nervous about getting everything done but when NOAA Ship Rainier casts off from the pier in Homer I will be 100 percent focused on gathering the knowledge and skills that will enhance my role as an educator of students who are part of the next generation charged with the stewardship of this planet.

IMG_1564Newest addition to our family: Paavo a Finnish Lapphund Photo Credit: Lynn Drumm, Yutori Finnish Lapphunds

 

Spencer Cody: Fairweather in Transition – June 5, 2016

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

 

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 5, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 58˚ 17.882′ N

Longitude: 134˚ 24.759′ W

Air Temp: 15˚C (59˚F)

Water Temp: 8.9˚C (48˚F)

Ocean Depth: 9.7 m (31.8 ft. at low tide)

Relative Humidity: 67%

Wind Speed: 5.2 kts (6 mph)

Barometer: 1,025 hPa (1,025 mbar)

Science and Technology Log:

Fairweather
Yes, the Fairweather needs to be prepared for everything imaginable:  spare parts, lines, tanks, survey equipment, safety equipment, tools, and more.  Preparedness is key to successful mission completion.

Now that I have been on the Fairweather for a few days I have had the opportunity to see much of the ship and learn about how it operates.  If ever there were an embodiment of the phrase newer is not always better, it might be the Fairweather.  Even though the Fairweather is approaching 50 years old, one cannot help but to attain an appreciation for the quality of her original construction and the ingenuity behind her design.  Rooms, compartments, and decks throughout the ship are designed to be watertight and to maximize fire containment.  Multiple compartments can be flooded without putting the entire ship in danger.  The ship is also designed to withstand sea ice due to its densely ribbed construction and extra think hull.  This makes the hull remarkably strong allowing the ship to cut through ice and withstand the additional pressure of ice-covered seas.

 

155_3414 (2)
One of the two massive Detroit electro-motive diesel engines that propel the ship.  Credit Tommy Meissner for the photo.

The Fairweather is built on redundancy for safety and practicality.  If one system gives out, another can be relied upon to at least allow the ship to get back to port or depending on the system continue the mission.  There are redundant systems throughout the ship involving everything from communications to essentials for sustaining the crew to navigation.  There are even redundant servers in case one set of survey data is compromised or physically damaged the other server may remain untouched.  Storage space is a premium on a ship that needs to be self-sufficient for weeks at a time to address foreseeable and unforeseeable events.  Every free space has a purpose for storing extra equipment, tools, parts, and materials.  Utility and efficiency are running themes throughout the ship.

Personal Log:

152_3311 (2)
The incoming and outgoing commanding officers read off their orders to signify the official change of command of the ship.

Dear Mr. Cody,

Onboard our ship the captain is in charge of the entire crew and ship.  People follow his orders and the chain of command to take care of the ship and its passengers.  It takes a very large crew to take care of all the passengers on a cruise ship and on such a long trip to Alaska and back.  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The Fairweather also has a captain whose ultimately responsible for the fate of the crew and the ship. While we are in Juneau, the Fairweather is undergoing a change of command.  On Wednesday we had a change of command ceremony.  It was a day of celebration and reflection on Fairweather‘s accomplishments.  As high-level officials throughout NOAA and other organizations arrived, their arrival was announced or “piped” throughout the entire ship over the intercom system.  Later in the day we had the official change over in a special ceremony attended by all of these dignitaries and guests with NOAA Corps officers dressed in full uniform.

152_3289 (2)
The Fairweather welcoming dignitaries and guests to the Change of Command ceremony.

After everyone read their remarks on the occasion, the time of the official change over was at hand.  The Reading of Orders ceremony was carried out where both the outgoing and incoming commanding officers read their orders for their new assignments.  Insignia on each officer’s uniform was changed by the spouses officially indicating the new commanding officer and the outgoing commanding officer.  With that Lieutenant Commander Mark Van Waes replaced Commander David Zezula as the CO for the Fairweather becoming its 18th commanding officer.  As the new CO gave his arriving remarks, he reminded us that “Command of a ship is many things…it is an honor to know that the leadership of this organization places special trust in your skills and abilities to hold this position…command is a privilege; of the hundreds of those who have served aboard the Fairweather, only 18 have been the commanding officer…command is a responsibility…for the ship…to the mission…and to the people.”  The Dependents Day Cruise and Change of Command Ceremony made for an eventful week while in port in Juneau.  Now we prepare for our first hydrographic mission with our new CO.

Did You Know?

The Fairweather has a total tonnage of 1,591 tons, displacement of 1,800 tons, a length of 231 feet, and is A1 ice rated meaning it can safely navigate ice covered seas with the assistance of an ice breaker.

Can You Guess What This Is?

TrashA. power generator  B. heat sensor  C. an incinerator  D. RESON multibeam echosounder

The answer will be provided in the next post!

(The answer to the question in the last post was B. a speaking tube.  Speaking tubes or voice pipes were commonly used going back to the early 1800s to relay information from a lookout to the bridge or decks below.  They were phased out during the 20th century by sound-powered telephone networks and later communication innovations.  They continue to be used as a reliable backup to more-modern communication methods.)

Spencer Cody: Of Geology, Time, and Ice, June 2, 2016

NOAA Teacher at Sea
Spencer Cody
Onboard the NOAA Ship Fairweather
May 29 – June 17, 2016

Mission:  Hydrographic Survey
Geographical Area of the Cruise:  along the coast of Alaska
Date: June 2, 2016
Observational Data:
Latitude:  58˚ 17.882′ N
Longitude:  134˚ 24.759′ W

Weather Data from the Bridge:  
Air Temp: 16˚C (61˚F)
Water Temp: 8.9˚C (48˚F)
Ocean Depth:  9.7 m (31.8 ft. at low tide)
Relative Humidity:  56%
Wind Speed:  18 kts (21 mph)
Barometer:  1,006 hPa (1,006 mbar)

 

Science and Technology Log: After a full day of flying, I arrived in Juneau, Alaska, on Sunday.  The Fairweather came into dock early the next morning to host a very special occasion for friends, family, and the public.  It was a Dependents Day Cruise to go with the Memorial Day celebration.  It was an opportunity for those

151_3083 (2)
The NOAA Ship Fairweather in the bottom center docked in Juneau, Alaska, preparing for her next hydrographic leg.

who work onboard the Fairweather to show others outside of NOAA what they do while the crew, friends, family, and guests sailed onboard to the Taku glacier in Taku Inlet and back to dock in Juneau.  The day was filled with demonstrations on what the crew does in order to complete their missions and the significance of having a ship such as the Fairweather fulfill its assigned tasks.  We were split up into multiple groups in order to cover the basics of ship operations and the science and research carried out by the crew.  Guests were treated to demonstrations of bridge operations, hydrographic survey techniques and equipment, dive operations and control station demonstrations.  One highlight of the many demonstrations that were carried out

150_2900 (3)
The crew demonstrate a launch and retrieval of one of the hydrographic survey launches.  The Fairweather has four of these 28′ boats including three additional boats for fast rescue and utility purposes.

was the showing of how the launch boats are lowered into the water and then retrieved.  The Fairweather was maneuvered in such a way that the launch boat was provided a small patch of sea that was calm, a “duck pond,” by blocking the oncoming waves for the launch boat.  While this was not necessary for the weather that day, it did drive home the point about the many ingenious methods that must be employed in carrying out day-to-day operations on a vessel like the Fairweather.  By the time these demonstrations and tours were concluded, we had arrived at the Taku Inlet to see the Taku glacier.

Seeing something that is massive enough to carve solid rock such as the Taku glacier was awe inspiring.  This brings us to one of the key reasons for the complexity of the local geology and the sea channels that the Fairweather will be mapping on the next leg.  After periods of uplift and mountain building, the terrain was recently sculpted with rivers of ice flowing outward to lower sea levels from the ice fields above.  Glaciers encapsulated much of Southeastern Alaska up until the Wisconsin glaciation came to an end about 14,000 years ago.  During this same time, the Laurentide continental glacier still covered much of East River South Dakota.  As the glaciers receded, the ocean levels rose to accommodate the global deluge of melt water.  What was once

150_2940 (2)
The Taku glacier at the end of Taku Inlet displays the forces of erosion at a remarkable scale.

glaciated land is now well below sea level.  Since glaciers have a remarkable power of erosion, U-shaped valleys have been carved throughout this region.  Where these valleys dip below sea level, they frequently end up becoming important bays or passageways for commercial and private traffic.  Glaciation has also given these passageways some unique characteristics that makes having reliable navigation mapping critical.  Many of the navigable passageways in Southeastern Alaska are your characteristic fjords.  They have been carved deeply by the weight of hundreds or even thousands of feet of ice; yet, they are usually narrow with valley walls that run vertically straight into the air.  This topography largely continues below sea level meaning that in many locations the passageways, straits, and canals formed by glacial action can quickly deviate from hundreds of feet deep to shoals in a matter of very short distances.  The complexity and potential hazards of these fjords is enhanced through the process of glacial isostatic adjustment when the earth shifts back upward after the massive weight of a glacier subsides.  Take these relatively recent geological and climatological