Tom Savage: Surveying the Coastline of Point Hope, Alaska, August 12, 2018

NOAA Teacher at Sea

Tom Savage

Aboard NOAA Ship Fairweather

August 6 – 23, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, northwest Alaska

Date: August 12, 2018

Weather data from the Bridge

Wind speed 8 knots
Visibility: 10 nautical miles
Barometer: 1010.5 mB
Temp:  8.5 C     47 F
Dry bulb 8   Wet bulb 6.5
Cloud Height: 5,000 ft
Type: Alto Stratus
Sea Height 2 feet

Science and Technology

Why is NOAA taking on this challenging task of mapping the ocean floor?  As mentioned in an earlier blog, the ocean temperatures worldwide are warming and thus the ice in the polar regions are melting. As the ice melts, it provides mariners with an option to sail north of Canada, avoiding the Panama Canal. The following sequence of maps illustrates a historical perspective of receding ice sheet off the coast of Alaska since August 1857.  The red reference point on the map indicates the Point Hope region of Alaska we are mapping.

This data was compiled by NOAA using 10 different sources. For further information as how this data was compiled visit https://oceanservice.noaa.gov/news/mar14/alaska-sea-ice.html. 

The light grey indicates  0-30% Open Water – Very Open Drift.  The medium grey indicates 30 – 90 % Open drift – Close Pack.  The black indicates 90 – 100% very close compact.

Sea Ice Concentration August 1857

Sea Ice Concentration August 1857

Ice Concentration August 1957

Ice Concentration August 1957

Sea Ice Concentration August 2016

Sea Ice Concentration August 2016

Ships that sail this region today rely on their own ships sonar for navigating around nautical hazards and this may not be as reliable especially if the ships sonar is not properly working (it’s also problematic because it only tells you how deep it is at the ship’s current location – a sonar won’t tell you if an uncharted hazard is just in front of the ship). Prior to mapping the ocean floor in any coastal region, it requires a year of planning in identifying the exact corridors to be mapped. Hydrographers plot areas to be mapped using reference polygons overlaid on existing nautical charts.  Nautical charts present a wealth of existing information such as ocean depth, measured in fathoms(one fathom is equal to six feet) and other known navigation hazards.

As mariners sail closer to the shorelines, the depth of the ocean becomes increasingly important.  Because of this uncertainty in the depth, the Fairweather herself cannot safely navigate safely (or survey) close to shore.  In order to capture this data, small boats called “launches” are used. There are a total of four launch boats that are housed on the boat deck of the Fairweather. Each boat can collect data for up to twelve hours with a crew of 2-5. Depending on the complexity of the area, each daily assignment will be adjusted to reasonably reflect what can be accomplished in one day by a single launch. Weather is a huge factor in the team’s ability to safely collect data. Prior to deployment, a mission and safety briefing is presented on the stern of the ship by the Operations Officer. During this time, each boat coxswain generates and reports back to the operations officer their GAR score (safety rating) based on weather, crew skills and mission complexity (GAR stands for Green-Amber-Red … green means low risk, so go ahead, amber means medium risk, proceed with caution; red means high risk, stop what you’re doing).  In addition, a mission briefing is discussed outlining the exact area in which data will be collected and identified goals.

 

Safety Briefing

Safety Briefing by LT Manda – photo by Tom Savage

 

Deploying a launch boat

Deploying a launch boat – photo by Tom Savage

The sonar equipment that transmits from the launch boats is called EM2040 multi beam sonar. A multi beam sonar is a device that transmits sound waves to determine the depth of the ocean. It is bolted to the hull that runs parallel to the boat, yet emits sound perpendicular to the orientation of the sonar. In the beginning of the season, hydrographers perform a patch test where they measure the offsets from the sonar to the boat’s GPS antenna, as well as calculating any angular misalignments in pitch, roll or yaw. These measurements are then entered in to software that automatically corrects for these offsets.

deploying CTD

TAS Tom Savage deploying the conductivity, temperature and density probe ~ photo by Megan Shapiro

The first measurement to collect is the ocean’s conductivity, temperature and depth. From this information, the scientists can determine the depths in which the density of the water changes. This data is used to calculate and correct for the change in speed of sound in a given water column and thus provide clean data. The boats travel in pre-defined set lines within a defined polygon showing the identified corridor to be collected. Just like mowing a lawn, the boat will travel back and forth traveling along these lines. The pilot of the boat called the Coxswain, uses a computer aided mapping in which they can see these set lines in real time while the boat moves. This is an extremely valuable piece of information while driving the boat especially when the seas are rough.

Coxswain

Coxswain Zucker – photo by Tom Savage

The coxswain will navigate the boat to the position where data collection will begin inside a defined polygon. Since the multibeam echosounder transmits sound waves to travel through a deep column of water, the area covered by the beam is wide and takes longer to collect. In such stretches of water, the boat is crawling forward to get the desired amount of pings from the bottom needed to produce quality hydrographic data. The reverse is true when the boat is traveling in shallow water. The beam is very narrow, and the boat is able to move at a relatively fast pace. The boat is constantly rolling and pitching as it travels along the area.

 

 

 

 

Hydrographer Megan analyzing the data

Hydrographer Megan analyzing the data

As the boat is moving and collecting data, the hydrographer checks the course and quality of the data in real time. The depth and soundings comes back in different colors indicating depth. There is at least four different software programs all talking to one another at the same time. If at any point one component stops working, the boat is stopped and the problem is corrected.  The technology driving this collection effort is truly state of the art and it all has to operate correctly, not an easy feat. Every day is different and provides different challenges making this line of work interesting.  Troubleshooting problems and the ability to work as a team is crucial for mission success!

 

Personal Log

I have found the work on the Fairweather to be extremely interesting. The crew onboard has been exceptional in offering their insights and knowledge regarding everything from ship operations to their responsibilities.  Today’s blog marks my first week aboard and everyday something new and different is occurring. I look forward in developing new lesson plans and activities for my elementary outreach program. Prior to arriving, I was expecting the weather to be mostly overcast and rainy most of the time. However, this has not been the case. Clear blue skies has prevailed most days; in fact I have seen more sun while on the Fairweather than back home in Hendersonville in the entire month of July!  For my earth science students, can you make a hypothesis as to why clear skies has prevailed here? Hint, what are the five lifting mechanisms that generate instability in the atmosphere and which one(s) are dominant in this region of Alaska?

Question of the day.  Can you calculate the relative humidity based on the dry and wet bulb readings above?      Data table below……    Answer in the next blog

What is the relative humidity?

What is the relative humidity?

 

Until next time, happy sailing !

Tom

Eric Koser: Concluding Matters, July 17, 2018

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 22-July 9, 2018

Mission: Lisianski Strait Survey, AK

Geographic Area: Southeast Alaska

Date: July 17, 2018: 900 HRS

 

Weather Data From the Front Porch
Lat: 44°9.48’          Long: 94°1.02’
Skies: Clear
Wind 6 knots, 50°
Visibility 10+ miles
Seas: no seas!
Water temp: no precip to measure
Air Temp: 22°C Dry Bulb

 

Science and Technology Log

Hydrography matters. It allows mariners to travel safely. It allows many of the goods that arrive here in Minnesota to get here! Containers of goods arrive in Minnesota by truck and train from both coasts as well as the great lakes and by barge on the Mississippi river. Right here in Mankato, we often see shipping containers on trucks and trains. But I wonder if many people stop to consider what it takes to assure that the goods they desire arrive safely.

 

These trains carry containers that likely come from one of the coasts on a ship. The containers often transfer to semi trucks to go to their final destinations.

Intermodal Truck

Shipping containers like this one are very common on Minnesota roadways and railways!

In Minnesota, it’s very common to see containers on trucks. The more I am aware, the more often I realize there are shipping containers all around. I wonder how many people stop to consider that trip that some of the containers here on trucks have taken. I would guess that many of them have traveled on the ocean and many across international waters.

 

 

 

Intermodal Truck

Many carriers distribute merchandise via the intermodal system.

 

Seafood matters. People enjoy Alaskan fish, even here in the Midwest. Fishing boats are successful in part due to safe navigation made possible by current charts. The ledges and shoals identified by the hydro scientists on Rainier keep mariners safe, and ultimately support the commerce that many enjoy around the world.

Salmon isn't native to Minnesota!

This looks like a tasty ocean treat!

Navigation matters in many areas! All mariners in the US have free access to the latest navigational charts for inland and coastal waterways, thanks to the work of NOAA’s hydrographers aboard ships like Rainier. The updates we made in Alaska that are most pertinent to safety will be posted in a matter of weeks as “Notice to Mariners.” Here is an example. The general chart updates made by the team will be in the online charts within a year.

——-

It’s been both exciting and rewarding to be a part of this work. I’ve developed a good understanding of the techniques and tools used in basic ocean hydrography. There are so many great applications of physics – and I’m excited to share with my students.

One of the key take-aways for me is the constant example of team work on the ship. Most everywhere I went, I witnessed people working together to support the mission. In the engineering department, for example, Ray, Sara, Tyler, and Mike have to communicate closely to keep the ship’s systems up and running. More often than not, they work in a loud environment where they can’t speak easily to each other. Yet they seem to know what each other needs – and have ways to signal each other what to do.

On the bridge, one way the teamwork is evident in the language used. There is a clearly established set of norms for how to control the ship. The conn gives commands. The helm repeats them back. The helm reports back when the command is completed. The conn then affirms this verbally. And after a while, it all seems pretty automatic. But this team work is really at the heart of getting the ship’s mission accomplished automatically.

Hydro Team

Here the hydrographers work together with the cox’n to assure our launch captures the needed data.

The hydrographers aboard Rainer sure have to work together. They work in teams of three to collect data on the launches – and then bring that back to the ship to process. They need to understand each other’s notes and references to make accurate and complete charts from their observations. And when the charts are sent on to NOAA’s offices, they need to be clear. When running multibeam scanning, the hydrographer and the cox’n (boat driver) have to work very closely together to assure the launch travels in the right path to collect the needed data.

Even the stewards must be a team. They need to prepare meals and manage a kitchen for 44 people. And they do this for 17 days straight—no one wants to miss a meal! The planning that happens behind the scenes to keep everyone well fed is not a small task.

Ocean Sunset

Sunset on the ocean is an occasion in itself! Its easy to be captivated by such beauty at sea!

I look forward to sharing lots about my experiences. I have been asked to speak at a regional library to share my story and photos. I also will present at our state conference on science education this fall. And surely, my students will see many connections to the oceans!  Kids need to understand the interconnectedness of our vast planet!

Finally, I’m very appreciative of NOAA both for the work that they do and for the opportunities they provide teachers like myself to be involved!

Teacher at Sea

This Teacher at Sea has had a great experience!

 

Meredith Salmon: Xtreme XBTs, July 14, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

 

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Geographic Area:  Atlantic Ocean, south of Bermuda

Date: July 14, 2018

Weather Data from the Okeanos Explorer Bridge – July 14, 2018

Latitude: 28.58°N

Longitude: 65.48°W

Air Temperature: 27.4°C

Wind Speed:  13.96 knots

Conditions: Rain and clouds

Depth: 5183 meters

 

Science and Technology Log

Temperature and salinity are two main variables when determining the density of water. The density of water or any acoustic medium is a very important factor in determining the speed of sound in water. Therefore, temperature data collected by Expendable Bathythermograph (XBT) probes, as well as historical salinity profiles from the World Ocean Atlas, are used to create sound velocity profiles to use to correct for sound speed changes in the water column.

Expendable Bathythermograph (XBT) probes are devices that are used to measure water temperature as a function of depth. Small copper wires transmit the temperature data back to the ship where it is recorded and analyzed. At first, I was surprised to learn that temperature data is such an important component of multibeam mapping operations; however, I learned that scientists need to know how fast the sound waves emitted from the sonar unit travel through seawater. Since these probes are designed to fall at a determined rate, the depth of the probe can be inferred from the time it was launched. By plotting temperature as a function of depth, the scientists can get a picture of the temperature profile of the water.

On our expedition, we have been deploying XBTs on a schedule as the ship is making its way to the survey area. The XBT Launcher is connected to a deck box, which translates information to computer systems onboard so the data can be logged when the probes are deployed into the water. Aboard the Okeanos Explorer, up to 8 tubes can be loaded at one time and launched by scientists.

XBT closet in the Dry Lab

XBT closet in the Dry Lab

 

XBT Launcher

XBT Launcher on the Okeanos

xbt 2

Loading the XBT Launcher

 

 

xbt 1

Savannah and I after a successful XBT load

 

XBT Data

XBT Data from a launch aboard the Okeanos Explorer. The colors on the graph indicate the XBT number and the data is plotted on a temperature and depth scale.

 

 In addition to launching XBTs and collecting data, we completed a Daily Product so that we can communicate the data we have collected to anyone on shore. The Daily Products are completed not only to ensure that the hydrographic software systems are working correctly but to also inform the public our current location, where we have collected data, and if we are meeting the objectives of the mission. Once onshore, NOAA uses this information to analyze the quality of the data and use it for analysis for dive planning. In order to generate the Daily Field Products, we use hydrographic computer systems such as QPS Qimera for advanced multibeam bathymetry processing, Fledermaus for 4D geo-spatial processing, and Geocap Seafloor for digital terrain modeling. In addition, the Daily Field Products allow us to double check the quality of the data and search for any noise interferences due to the speed of the ship or the type of seafloor bottom (hard vs soft).

 

Personal Log

One of the coolest parts of learning aboard the Okeanos Explorer is the fact that I am a part of scientific exploration and discovery in real time.  Known as “America’s Ship for Ocean Exploration,” the Okeanos Explorer is the only federally funded U.S. ship assigned to systematically explore our largely unknown ocean for the sole purpose of discovery and the advancement of knowledge. This is the first U.S.-led mapping effort in support of the Galway Statement on Atlantic Ocean Cooperation and all of this information is going to be available for public use. Not only do I get the opportunity to be involved with “real-time” research, but I am also responsible for communicating this information to a variety of different parties on shore.

Being immersed in the “hands-on” science, learning from the survey techs and watch leads, and observing all of the work that is being done to collect, process, and analyze the data is a really exciting experience. I am definitely out of my element when it comes to the content since I do not have any prior experience with seafloor mapping, sonars, etc., but I am really enjoying playing the role as the “student” in this situation. There is definitely a lot to learn and I am trying to soak it all in!

 

Did You Know?

XBTs contain approximately 1,500 meters of copper wire that is as thin as a strand of hair!

 

Resources: 

http://www.aoml.noaa.gov/phod/goos/xbtscience/news.php

https://oceanexplorer.noaa.gov/facts/xbt.html

Taylor Planz: Safety First!, July 15, 2018

NOAA Teacher at Sea
Taylor Planz
Aboard NOAA Ship Fairweather
July 9 – 20, 2018

 Mission: Arctic Access Hydrographic Survey
Geographic Area of Cruise: Point Hope, Alaska and vicinity
Date: July 15, 2018 at 8:46am

Weather Data from the Bridge
Latitude: 68° 22.310′ N
Longitude: 167° 07.398′ W
Wind: 3 knots W, gusts up to 20 knots
Barometer: 753.06 mmHg
Visibility: 5 nautical miles
Temperature: 10.8° C
Sea Surface 9° C
Weather: Overcast, light rain

Science and Technology Log
I was in my stateroom on Friday afternoon when I heard one continuous alarm sound, followed by an announcement that white smoke had been detected on board. My first thought was Oh no! What’s wrong with the engine now??? As I walked out of my room, I noticed smoke permeating through the halls near the ceiling. My muster station was the forward mess, so I walked there to meet up with my group. Two PICs (people in charge) had already laid out a map of the ship, and they were assigning pairs of people to search different sections of the ship looking for smoke and/or hot spots on doors or walls. Each “runner” group took a radio and reported their findings, and the results were written on the map. I was runner group 4 with an intern named Paul, and we were assigned the E level just below the bridge. We saw a small amount of smoke but no hot spots. One runner group opened an escape hatch to the fan room to find smoke EVERYWHERE. After finding the source of the fire, it was put out as quickly as possible and the smoke ventilated out of the ship. If you haven’t guessed it yet, this was our first fire drill.

Safety is always the first priority on all NOAA vessels. Working on a ship is much different than working on land. In the event of an emergency, everyone on board has to be prepared to be a first responder. If one serious accident happens, it could affect all 45 people on board. To ensure emergency preparedness, drills take place on a regular basis. Each drill is treated as though the emergency were happening in real life. Fire drills and abandon ship drills take place weekly, and man overboard drills and hazardous materials drills take place every three months.

An announcement to abandon ship happens as a last resort if there is no possible way to save the ship. If this were to happen, we would hear seven or more bursts of the alarm followed by an announcement. We would then grab our immersion suit and PFD (personal flotation device) as quickly as possible and meet at our muster stations. My muster station is on the port (left) side of the ship at fire station 24. There are life rafts on each side of the ship that can be deployed into the water. Right now, the water in the Arctic Ocean is a chilly 9° C. To protect ourselves from hypothermia, we must don an immersion suit within 60 seconds of arriving at our station. New people to the ship must practice this during our first few days on board.

The immersion suits would be used to keep warm in the event we had to abandon ship

The immersion suits would be used to keep warm in the event we had to abandon ship

In addition to drills, an operational risk assessment (or GAR score) is calculated for the mission each day. GAR stands for Green, Amber, or Red, and it determines whether the mission is safe to pursue that day. The GAR score consists of the following sections: resources, environment, team selection, fitness, weather, and complexity. Each section is given a rating of 1 – 10, with 1 being the best and 10 being the worst. Many of the sections are variable depending on the day, so sometimes a mission will be delayed until the weather improves, and other times assigning different personnel to the task may be enough to make the mission safe. The total score is the sum of the six sections. If the score is 45 or above (red zone), then the mission will not happen that day. If the score is between 24 and 44 (amber zone), it means extra caution is advised, and a low GAR score of 0 – 23 is green. The best case scenario is for the mission to be in the green zone.

Some other examples of safe practices on board NOAA Ship Fairweather are detailed below.

LT Manda gives a safety brief before deploying the small boats for the day. Once deployment begins, everyone must wear hard hats and a PFD for safety

LT Manda gives a safety brief before deploying the small boats for the day. Everyone participating in the boat deployment must wear hard hats and a PFD

Many hands are needed to safely deploy a small boat

Many hands are needed to safely deploy a small boat

The small boats are equipped with life jackets, immersion suits, first aid kids, and other safety equipment

The small boats are equipped with life jackets, immersion suits, first aid kids, and other safety equipment

Personal Log
I’m learning what it truly means to be flexible during my time with NOAA Ship Fairweather. Weather can make or break a day of surveying on the sea. The water experiences surface waves from both the wind and swell. Swells are the large waves that originate elsewhere and have a definite direction whereas the surface waves are caused by wind and are much smaller. The surface waves in combination with the swell produce a total wave height, and the NOAA Corps looks at the total wave height when deciding the plan of the day. Unfortunately, waves of up to 14′ are predicted in the Point Hope region this week, which will make it incredibly difficult to launch the small boats. Not only do the large waves create hazardous conditions on the boat, they make it harder to acquire good soundings with the MBES. If the data collected will be of poor quality, it is better to delay the mission and wait for better conditions. The poor weather in combination with the mechanical delay we experienced during the first week of the leg has made it difficult to collect very much data around Point Hope.

Not only do the large waves slow down the ship’s data collection, they make me queasy! I felt lucky coming in to the Arctic Ocean on Friday because the sea was calm and beautiful! It was almost eerily quiet. The most amazing part was that the horizon seemed to disappear as the sky and the ocean gently blurred into one. The serenity was short-lived however, and taking the small boats out Saturday morning was quite the adventure! I am so glad I brought motion sickness medication with me!

The Arctic Water was calm and beautiful Saturday morning

The Arctic Water was calm and beautiful Saturday morning

Did You Know?
Did you know NOAA Ship Fairweather weights 1,591 tons? Since one ton is the same as 2,000 pounds, the ship weighs 3,182,000 pounds! The ship stays afloat, so that means the buoyant force it experiences is equal and opposite to its weight. If the buoyant force were any less, the ship would sink!

Question of the Day
How does a personal flotation device (PFD) keep a person from sinking?

Answer to Last Question of the Day:
How many nautical names can you think of for rooms/locations on the ship, and what would their equivalent name be on land?
These are the ones I have learned so far:
Stateroom = Dorm or bedroom
Galley = Kitchen
Mess = Dining room
Scullery = Dish washing room
Head = Bathroom
Gangway = ramp (to get off boat)
Sick Bay = doctor’s office/patient room
Do you know of any that I missed? Feel free to answer in the comments!

 

Brandy Hill: First Leg (hopefully not the last!) at Sea Complete: July 12, 2018

NOAA Teacher at Sea

Brandy Hill

Aboard NOAA ship Thomas Jefferson

June 25, 2018 – July 6, 2018

 

Mission: Hydrographic Survey- Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 12, 2018

 

Personal Conclusion

It was wonderfully impressive listening to ENS Jacquelyn Putnam’s orders to the Bridge while docking the ship. She and Lt. Klemm stood just outside the doors to the Bridge with a clear view of the dock at Pier 21. As she called out orders, the Bridge team would respond by making adjustments to the rudder, speed, or direction. I hadn’t realized how much of a team effort docking the ship would be. It was like parallel parking a car in busy downtown Portland on a much larger scale.

FishingVessel.jpg

We arrived at Pier 21 in Galveston, Texas early Friday morning on July 6th. There were several fishing vessels flocked with birds. Sometimes you could see dolphin fins peeking up through the water around the boat.

After we were safely docked, all shipmates met in the mess where CDR Chris van Westendorp gave a speech of recognition and appreciation for his crew. These last couple legs at sea are especially meaningful for CO as they symbolize a transition of many years at sea to an upcoming land assignment. There were also several people taking much-deserved leave, or moving onto other job assignments.

 

 

SunsetBow.jpg

Sunset from the bow during my two weeks aboard NOAA ship Thomas Jefferson.

I am so grateful to have been able to participate as a teacher at sea on the Thomas Jefferson. I knew it would be a learning experience, but I didn’t realize how impactful my relationships and interactions with the crew would be. There is something truly inspirational about being around a well-functioning team of people serving a meaningful purpose. People are excited to work for NOAA and to be a part of a higher scientific mission.

I also hadn’t realized the direct relationship between hydrographic surveys and hurricane relief. After a hurricane, the sea floor can shift and change/block major pathways for delivering supplies like oil and water. Last year, NOAA ship Thomas Jefferson responded to Hurricane Maria in Puerto Rico,  “NOAA Ship Thomas Jefferson spent the last three weeks in Puerto Rico and the U.S. Virgin Islands surveying ports and bays in response to Hurricane Maria. Over the three week period, the crew surveyed 13 areas and no fewer than 18 individual port facilities, as well as conducted emergency repairs to three tide and weather stations.” (NOAA Office of Coast Survey, October 2017)

Looking towards next school year, I am excited to bring my experience into the classroom and provide students with meaningful learning opportunities. I am looking into using Citizen Science, ways of incorporating the Ocean Literacy Principles, and reaching out to have more diverse professionals interact with my classroom. One of my goals as a science and math teacher is to provide students with many opportunities to ask questions, explore, think critically, and be inspired to continue a lifelong journey of learning and growth.

My experience with NOAA and NOAA ship Thomas Jefferson will forever have an impact on my classroom and for that, I am extremely grateful.

RiceCrispieFlag.jpg

4th of July goodies made by ENS Sydney Catoire, Julia Wallace, and Kevin Brown.

BowlineKnot.png

I practiced my Bowline knots on the long trek home.

Taylor Planz: Rocks are Red, Valleys are Blue, July 10, 2018

NOAA Teacher at Sea

Taylor Planz

Aboard NOAA Ship Fairweather

July 9 – 20, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, Alaska and Vicinity

Date: July 10, 2018 at 5:30pm

Weather Data from the Bridge
Latitude: 64° 29.691′ N
Longitude: 165° 26.276′ W
Wind: 5 knots SW, gusts up to 12 knots
Barometer: 749.31 mmHg
Visibility: 10+ nautical miles
Temperature: 16.0° C
Sea Surface Temperature: 11.9° C
Weather: Cloudy, no precipitation

Science and Technology Log

The City of Nome from NOAA Ship Fairweather

The City of Nome from NOAA Ship Fairweather

Welcome to Nome

The center of town features a sculpture of a gold pan because Nome is historically known for gold panning and dredging.

I arrived in Nome on Saturday, July 7th around 7:30pm. The weather was a beautiful 65° F with just a few clouds in the sky! By the time I settled in my stateroom (bedroom) and unpacked my belongings, it was raining! According to the Western Regional Climate Center (WRCC), Nome receives and average of 16″ of rainfall each year and 60″ of snow. Despite this fairly low rainfall total, precipitation is a frequent
occurrence in Nome. Usually, the precipitation falls as more of a light drizzle in the summer, so the accumulation over the course of a year is very small.

I am here in Nome to join NOAA Ship Fairweather on a Hydrographic Survey of the vicinity of Point Hope, Alaska. Nome is the northernmost city in Alaska with a deep enough draft dock and facilities (such as sewage disposal and fresh water) for a ship. Therefore, we will start and end our trip in Nome. The ship has been experiencing some technical difficulties, so we were not able to go underway on our scheduled day of July 9. Over the weekend, engineers discovered a leak in the exhaust from one of the ship’s engines. Left untreated, black smoke could escape into the ship and personnel could be exposed to the unhealthy fumes. As of today, the exhaust pipe has been fixed, but there are a few parts that need to be shipped to Nome to finish the job. Hopefully NOAA Ship Fairweather will be underway later this week.

on a small boat

Here I am aboard one of the small boats with NOAA Ship Fairweather in Background at the Nome Harbor.

Once we are underway, the trip to Point Hope will take approximately 22 hours. That means we must reserve a full day on each end of the leg (another name for the trip) for travel. In order to maximize our limited time near Point Hope, NOAA Ship Fairweather will deploy up to four 28′ boats to work at the same time. There are also enough personnel onboard to allow data to be collected on the small boats for up to 24 hours per day. Two of the four 28′ boats are shown below.

Launch 2805

Two 28′ boats with hydrographic instruments can be found on each side of NOAA Ship Fairweather.

So what are these boats all doing anyways? As previously mentioned, NOAA Ship Fairweather and its small boats are designed for hydrographic research. “Hydro” is a prefix meaning “water”, and “graph” is a root word meaning “to write”. The boats will map the sea floor (i.e. – “write” about what is under the water) and any of its contents with sonar devices. Sonar is an acronym that stands for SOund Navigation And Ranging. The main sonar device used on this ship is a multibeam echosounder (MBES for short), which can be found on the underside of the ship as seen below. Sound waves are emitted from the front of the device, known as the transmitter. The sound waves travel through the water column, bounce off the sea floor, and then get picked up by a receiver adjacent to the transmitter.

Multibeam Echosounder

Multibeam Echosounder on NOAA research vessel (Photo courtesy: NOAA)

Conductivity, Temperature, and Depth Sensor (CTD)

Conductivity, temperature, and depth sensor (CTD)

There is a lot of math involved both before and after sound wave data is collected! The photo below is a CTD instrument, which stands for conductivity, temperature, and depth. Conductivity is a measure of how well an object conducts electricity. This instrument is lowered through the water column, collecting data on all three parameters listed above. The speed of sound varies based on conductivity and temperature, so the sonar data can be adjusted based on the results. For each individual data point collected along the sea floor, the actual speed of sound is multiplied by half of the time it took the sound wave to travel from transmitter to receiver. Using the equation distance = rate x time, one can find the distance (i.e. – depth) of each point along the sea floor. Put a bunch of those results together, and you begin to see a map!

Workstation

Many screens are needed to put all of the data together into an accurate sea floor map.

Sea floor maps use color to show different depths. The most shallow areas are colored with red, while the deepest areas are colored with blue. The remaining colors of the rainbow form a spectrum that allows us to see slopes. Today, we took a small boat out and surveyed the harbor where NOAA Ship Fairweather is docked. The harbor was very shallow, so every large rock in the harbor showed up as red on the map. The deeper areas showed up as blue. Hence my blog title! In my next blog, I will include pictures of maps that have recently been completed! Stay tuned!

Personal Log

Sea glass and rock treasures

Sea glass and rock treasures from the Bering Sea

Living on a ship that is docked in a tiny town with little to no cell phone service is fairly challenging. However, everyone on the ship finds creative solutions to keep themselves and others entertained. It is not uncommon for groups to form in the conference room to watch a movie on the big projector screen or to host a game night. There is also a fitness room onboard with plenty of exercise options! The Bering Sea and a long beach are a short, five minute walk from the ship. We had a campfire with marshmallows the first night that everyone returned to the ship from their time off. One person in our group found a whale bone on the beach! See the picture below. I spent some time walking the water line looking for sea glass. I actually found a few pieces, in

Whale bone

This is a whale bone that was found on the beach near NOAA Ship Fairweather

addition to a couple of rocks I thought were quite pretty! Sea glass is made from containers, bottles, and other glass objects that end up in the ocean. Over time, these objects break into smaller pieces, and the sandy and/or rocky sea floor erodes them. By the time they reach the beach, the pieces of glass have smooth edges and a translucent color. They are fun to collect as they come in many different colors, shapes, and sizes!

Did You Know?
Ocean water has a high conductivity, or ability to conduct electricity, because of all of the dissolved salts in sea water. The ions that form from dissolved salts cause ocean water to be about 1,000,000 times more conductive than fresh water!

Question of the Day
If a CTD determined that the speed of sound in an area was 1,504 m/s and the time it took for the sound wave to travel from the ship’s transmitter to receiver was 0.08 seconds, how deep was the water in that specific area? Make sure to use proper units, and remember that the total time is two ways and not just one way!
(Answer in the next blog post)

Victoria Obenchain: NOAA Corps Officers, July 3, 2018

Teacher at Sea Blog

Victoria Obenchain

Aboard NOAA Ship Fairweather

June 25th-July 6th, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Northwest, Alaska

Date: July 3, 2018

Weather Data from the Bridge

  • Lat.: 54o 53.1’ N
  • Long.: 162o 30.8’ W
  • Sea wave height: 1 foot
  • Wind speed: 29 knots
  • Wind direction: East, southeast
  • Temperature: 10.0oC
  • Visibility: 4 nautical miles
  • Sky Conditions: Overcast/Hazy

Personal Log

I am writing my personal log first this time, because I am just in awe of the beauty around me. We pulled in to Kodiak, AK on Sunday to pick up an Autonomous Surface Vehicle (ASV) which will be used later in the summer, and to refuel. The scenery here is just amazing, I spent the day on the Flying Bridge (the highest point I am allowed to stand) and just took in the sun, scenery and beauty. The water was a crystal royal blue, the mountains a bright green topped with white snow; and as we finally pulled out, fascinating sea life appeared all around us. From jellyfish, sea otters, porpoises, whales and puffins; it was beautiful. While I was not fast enough with my camera when an animal decided to grace my presence, here are some pictures of the scenery.

Science and Technology Log

Aboard NOAA Ship Fairweather, officers of the NOAA Corps work hard to keep our ship on course and accomplish the ship’s mission. The ship has a wide range of officers; senior officers who are within a few years of retirement, officers who have worked on multiple assignments and are working their way up the ranks to one day being a commanding officer (CO) of their own ship, down to junior officers who have just joined NOAA a few months ago and are still learning all they need to know to be a part of this amazing team.  They are an incredible example of respect, self discipline, perseverance and teamwork.

20180702_112937.jpg

Officers on the bridge of NOAA Ship Fairweather

Today, the newer junior officers had a chance to take part in a docking and launching ship simulation. The XO designed a Playstation ship game to have the officers practice commands for the rudder, bow thrusters, and forward and back engines. The junior officers had to then try docking, turning, walking and driving the ship in different sea conditions. The officers yelled out the commands and the other players responded accordingly, much like they would do as an Officer on Duty. The ship on the screen then would move as it would in the sea. Junior officers could then see how a ship would respond to their calls. Docking and launching are done very little once on a mission, so junior officers might not get too many chances to practice this important skill. This seemed to get everyone a bit involved.

Every few years, officers rotate between ship deployments and land assignments. While an officer may really love their current assignment or position, this change in location and assignment allows them to learn new skills and develop as NOAA officers. NOAA’s commitment to science and technology has attracted some of the most passionate and scientifically-minded individuals to this career path; developing their skills and challenging them to grow within their field seems to be something NOAA has excelled at. On board NOAA Ship Fairweather, officers are constantly learning, pushing or supporting each other and following a chain of command with the highest respect.  I am constantly impressed with their knowledge of the ship, the engines, native sea life, navigational skills, safety protocols, survey planning (yes they do surveys, too!) and patience, especially with a very interested and inquisitive Teacher at Sea.

20180703_082655.jpg

ENS Lawler and ENS Junge keeping us on course.

NOAA Corps is the smallest of the seven uniform services in our country. NOAA’s mission has a scientific focus, so all officers have an undergraduate degree in a scientific field and some level of science expertise. While many are excited to join this amazing team, there are some challenges outside the work itself. A ship assignment is not the easiest of jobs; to be in a self-contained area which serves as both your work and your home, one that may offer you little privacy and connections to the outside world when cell service is not available or wifi is slow, and yet together they lift each other up, help each other succeed and move past disagreements quickly, as they are all going through some of the same issues.

I have spent some time talking to a few of the newer officers about why they joined NOAA Corps. They are all so passionate about their job, yet, only one of them, when they were in middle school or high school, even thought this would be where they are today.  For time and space reasons, not to mention for my students’ attention spans, I will paraphrase a few of them below.

What was appealing about joining NOAA Corps?

-I really wanted to go to sea, and do science. I didn’t want to be sitting behind a desk. – ENS Kevin Tennyson

-NOAA Corps moves you around every few years, between land and sea assignments. This allows you to never get stagnant in your skills, you are always learning. – LT Steve Moulton

-Before this I was in the Coast Guard reserves and working on my science graduate degree, and this seemed like a good next step. What cemented it for me was when I got to go to Antarctica for some research on a ship for 37 days, it made me realize this was what I wanted to do. -ENS William Abbott

What are the best days like on the ship and in NOAA Corps?

-Driving the ship in cool places and in interesting, challenging passes. – ENS Patrick Lawler

-I like doing the small boat surveys; small boat operations and data collection, and getting diving practice in when possible. – ENS Peter Siegenthaler

-Just being on the bridge, orienting yourself with where you are, and figuring out the big picture when it comes to the ship. – ENS William Abbott

-Being on the bridge with your co-workers, figuring things out together, it can be really fun. -ENS Jeff Calderon

What challenges are there to working on the ship and in NOAA Corps?

-It can be a lot of pressure to perform your job well. You are responsible for those on board. – ENS Kevin Tennyson

-Being on a ship for so long, it starts to feel small, and you miss things like gardening and just the land in general. – ENS Linda Junge

-There is a lot of electronic equipment to become acquainted with and know how to work without thinking about. – ENS Cabot Zucker

What are you looking forward to in your NOAA Career?

-My next assignment is in Maryland, I’ll be doing small boat surveys and mapping in the Chesapeake Bay. It will be nice to be closer to home. – ENS Patrick Lawler

– Hopefully getting sent to Antarctica, they have a station there. It would be cool to work there for a bit. – ENS Jackson Vanfleet-Brown

-Hopefully going to dive school. I also like that throughout this job I will be constantly learning. – ENS Cabot Zucker

-I hope to be getting into pilot training/flight school within a few years.- ENS Jeff Calderon

What did you want to be growing up or what did you see yourself doing when you were older?

-Totally wanted to be a baseball player… or I guess something with Marine Biology or Marine Science, doing field research. – ENS Patrick Lawler

-Was very interested in being a pilot for a bit of a time. Sometimes I was unsure, but definitely knew I wanted to travel! – ENS Linda Junge

-I wanted to be on a ship, my Mom and Godmother worked on ships, this was kind of where I saw myself. – ENS Jackson Vanfleet-Brown

– The stereotypical mad scientist. Yep, that’s what I thought. – ENS Kevin Tennyson

Is there anything else you would tell someone about this job, in particular some adorable science loving, students who maybe have not heard much about this type of career?

-This is a lot of fun! It’s a good mix of science, active and outside work, and you get to see the world. –ENS Kevin Tennyson

– I definitely did not know about this growing up! I would say to look at Maritime Academies for those who might be interested. There are a lot of ship jobs out there that pay well and offer you fun interesting work that is not behind a desk. – ENS Peter Siegenthaler

– A ship is a cool environment to work in, not just for NOAA, any ship job can be great. If you are interested in research options to more exotic or isolated places, employers like those who have ship work skills. Those people can usually be resourceful and diffuse stressful situations; because, well you have to be able to. And it’s cool… so why not be on a ship? – ENS Linda Junge

– This job is all about adventure, it will definitely challenge you! – LT Steve Moulton

One last thing: I got a very short video of some porpoises, check them out!