Laura Grimm: Who are these people in uniform? July 13, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: July 13, 2022

Weather Data from the Bridge

Latitude: 42 10.30’ N

Longitude: 080 17.60’ W

Sky Conditions: Few clouds

Visibility: 10+ miles

Wind Speed: 6.1 knots

Wind Direction: 288 W

Lake Temperature: 22.0 C

Wave Height: 1 foot

Dry Bulb: 21.1 ᵒC

Wet Bulb: 17.7 ᵒC

Calculated Relative Humidity: 75%

Electronic nautical chart showing many folding-over parallel lines marking the back and forth track of NOAA Ship Thomas Jefferson off Presque Isle
We are making great progress! This is an Electronic Chart Display and Information System (ECDIS) display of our current hydrographic survey progress. ECDIS is a system used for nautical navigation that serves as an alternative to paper nautical charts. The colorful lines indicate where we have used the Multibeam Echo Sensor (MBES) to measure the depth and physical features of the lake bottom.

Science and Technology Log

Seeing several people aboard in uniform caused me to ask, “Is NOAA part of the military?”

illustration of the NOAA Corps insignia; an eagle stands on a globe with two ship anchors crossed behind it. the eagle has a shield with blue stars and red and white stripes. it reads: NOAA COMMISSIONED CORPS 1917
NOAA Commissioned Corps Insignia

According to the NOAA Corps website, “The NOAA Commissioned Officer Corps (NOAA Corps) is one of the nation’s eight uniformed services. NOAA Corps officers are an integral part of the National Oceanic and Atmospheric Administration (NOAA), an agency of the U.S. Department of Commerce, and serve with the special trust and confidence of the President.”

The National Oceanic and Atmospheric Administration Commissioned Officer Corps, known as the NOAA Corps, is one of just two uniformed services with no enlisted or warrant officers. The Corps is made up of engineers, oceanographers, geologists, and meteorologists (among others) who support federal departments in earth science projects. The officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA. Prior to going out to sea, NOAA Corps officers attend 18 weeks of training at the US Coast Guard Academy’s Officer Candidate School (OCS) in New London, CT. They are not always out to sea; NOAA Corps officers who work on ships rotate between driving the ship for two years and supporting science missions ashore for three years. NOAA Corps officers enable NOAA to fulfill mission requirements, meet changing environmental concerns, take advantage of emerging technologies, and serve as environmental first responders. 

The history of the NOAA Corps can be traced back to 1807 when Thomas Jefferson signed a bill establishing the “Survey of the Coast,” which charted the country’s coasts and waterways. Their mission has expanded well beyond coastal mapping. It currently has 320+ officers who oversee more than a dozen ships and nine specialized aircraft, including the Hurricane Hunters.

Aboard NOAA Ship Thomas Jefferson, ~ 30% or 10 out of 34 souls aboard are part of the NOAA Corps. The positions of Commanding Officer (CO), Executive Officer (XO), Operations Officer (OPS), and Operations Officer in Training (OPS IT) are all filled with members of the NOAA Corps. The OPS is also called a Field Operations Officer (FOO). (OPS = FOO) The Medical Officer (MO) is often an ensign, however, on TJ, our MO is a professional mariner. All officers are trained to be an Officer of the Deck (OOD); prior to qualification they serve as a Junior Officer of the Deck (JOOD). These are the people who drive, or are learning to drive, the ship. Other duties the Junior Officers serve are Navigation Officer (Nav-O), Damage Control Officer (DCO), and the Environmental Compliance Officer (ECO).

TJ serves as a training ground for Ensigns. These are people new to the Corps. Some have attended maritime academies, or been in prior service, such as the U.S. Navy. However, their prior experience must include a baccalaureate degree, and completion of at least 48 semester hours in science, technology, math, or engineering course work pertaining to NOAA’s missions. They become ensigns after graduation from OCS, also known as NOAA’s Basic Officer Training Class (BOTC). You see them all over the ship. They are eager to learn and seem to train or study non-stop! No wonder! There is so much to learn. Ensigns fill many “collateral positions” such as Medical Officer (MO) and Damage Control Officer (DCO). The DCO are on the fire and emergency squad.

ensigns pose casually for a photo on an upper deck of NOAA Ship Thomas Jefferson. they are all wearing the Corps-issued navy pants or shorts, and NOAA Corps t-shirts.
Currently, there are five NOAA Corps Ensigns on Thomas Jefferson.  From left to right are ENS Geiger, ENS Brostowski, ENS Castillo, ENS Foxen, and ENS Meadows. They are all very fun-loving, dedicated, knowledgeable, and eager to learn.

The maritime academies in the United States are listed below.  Click on the links below if you wish to learn more about any of these institutions.

College Degree granting institutions offering maritime degrees and USCG-approved courses include:

I wish I had known about the NOAA Corps when I was making career decisions.  It has the discipline and culture of the armed services, yet it is focused on the sciences.  The upper age limit to enter the Corps is 42 years old.  I guess at this point, I can only encourage others to consider the NOAA Corps as a career option.  😊

Click here &/or watch the following video for more information about the NOAA Commissioned Officer Corps.

NOAA Corps Recruiting Video

Personal Log

I have been asked to give a presentation to the crew about the Dalton Local School’s STEAM program.  They also would like to know possible lesson ideas I will develop in the future and “takeaways” from the Teacher at Sea experience.

The following is a slide show of my presentation.

  • title slide reads: NOAA Teacher at Sea: Laura Grimm, Dalton Local School District, Dalton, Ohio
  • slide reads: Kindergarteen through 8th grade STEAM. photos: students beneath the sign to Dalton Local Elementary & Middle School, and a bulldog.
  • slide reads: 8th grade - Robotics & 3D printing. images of a robot, 3-d printed objects.
  • slide reads: 7th grade - Energy and Inventions. photos of a Maker Space toolbox, students building things.
  • slide reads: 6th Grade - Greenhouse & Life Cycles. photos of students in a vegetable garden, illustrations of flowers, chicks, fish fry.
  • slide reads: 5th Grade - Plan a Trip to Mars: - Getting to Mars - Entering the Atmosphere - Landing - Roving - Building a Satellite - Colonizing the Surface - Mission Patch. photos.
  • slide reads: Kindergarten through 4th Grade Support Science Curricula with STEAM Activities. photos of students.
  • "You learn if you want to, so you've got to want to learn." - Katherine Johnson
  • photo of NOAA Ship Thomas Jefferson in front of Statue of Liberty. NOAA logo.
  • Possible Future MIddle School Lessons: Design, build & program robotic davits with sensors and articulated arms, How far can you see the horizon? etc.
  • Possible Future Elementary School Lessons: program Bee Bot robots to pick up holidays, finding the shortest distance between holidays, etc.
  • Take Aways... New knowledge of science and technology, How this science and tech interfaces with real-life situations, respect for all who work/live on ship, etc.
  • Thank you for this awesome opportunity! photo of crewmembers presenting Laura the flag, Thank You graphic

Human Interest Poll (HIP)

Recently, I started a Human-Interest Poll (HIP) where I post a question on the bulletin board outside of the lounge and give the crew 2-3 days to respond.  The latest question was, “Where was the coolest place you have gone on a ship?”  See their responses below.

outline of the world continents with the letters A-M imposed on the locations listed below. Caption: Where was the coolest place you have gone on a ship?
Results of Human-Interest Poll. It is so HIP!

A = The Channel Islands    

B = San Juan Islands                                       

C = Japan

D = Guam                                                           

E = Norfolk, VA (Home)                                

F = Bering Sea in Winter

G = Point Hope, AK                                         

H = Panama Canal                           

I = Little Diomede Island, AK

J = St. Lawrence Seaway                               

K = Bali                                                                 

L = Adak, AK

M = The Equator                                              

N = Ocean View, DE

Stay tuned!  The next HIP is, “What were the highest seas you have ever experienced?  Where?”

For the little Dawgs . . .

Q: Where is Dewey today?  Hint: Athletes like to use this room.

Dewey the beanie monkey hangs from exercise equipment
Dewey likes to move around, stretch and strengthen his muscles.  After All, he is a monkey.

A: Dewey is in the Exercise Room.  This room is in the bottom floor of the ship.  I heard that it is one of the best exercise rooms in the NOAA fleet of ships!  Even though this is a large ship, you really do not get many “steps” each day.  Exercising is part of staying healthy.  I try to work out each day.  It is an interesting experience to use the treadmill when we are experiencing 4–6-foot waves!

  • room nameplate: Exercise Room 3-22-0
  • Dewey is hanging from a piece of exercise equipment.
  • Dewey the beanie monkey sits on a barbel
  • Dewey the beanie monkey sits on a barbel (wider view)
  • Dewey the beanie monkey sits on a control panel
  • Dewey the beanie monkey sits on the control panel of the treadmill (wider view)
  • exercise bike and elliptical trainer
  • Dewey the beanie monkey sits on a rack of hand weights
  • flag of the Thomas Jefferson exercise room. THOMAS JEFFERSON, illustration of eagle lifting weights, S-222

Joke of the Day

Q: Where do ghosts go to sail?

A Lake Eerie!

Laura shows off her NOAA Ship Thomas Jefferson sweatshirt (and NOAA Teacher at Sea hat)
I am one very happy NOAA Teacher at Sea!

I am enjoying sharing my NOAA Teacher at Sea experience with you.  I am looking forward to sharing it with my K-8 STEAM students in the fall!

Laura Grimm: How Do We Communicate?, July 12, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: July 12, 2022

Weather Data from the Bridge

Latitude: 42 11.79’ N

Longitude: 080 07.79’ W

Sky Conditions: Few clouds

Visibility: 10+ miles

Wind Speed: 13.9knots

Wind Direction: 245ᵒ E

Lake Temperature: 22.3 ᵒC

Wave Height:  2-4 ft. ***

Dry Bulb:  24.3 C

Wet Bulb:  22.1 C

Relative Humidity: 84 %

(*** As the wave height increases, going up or down stairs is a lot like being on a roller coaster. As the ship moves up on a wave, you feel somewhat weightless. As the ship moves down, the G-forces (gravity) make you feel “heavy”. It is fun – until you run into the wall!)

Science and Technology Log

Standing on the bridge, one hears a lot of radio communication between boats and occasionally the Coast Guard.  The bridge also communicates frequently with the survey technicians via an intercom.  

This made me start to wonder about how the ship communicates in other ways.  Let me tell you, there are many other ways for the ship to communicate other than radio.  One way is via Morse code.   According to Kiddle Encyclopedia, “Morse code is a type of code that is used to send telegraphic information using rhythm. Morse code uses dots and dashes to show the alphabet letters, numbers, punctuation and special characters of a given message. When messages are sent audibly (with sound) by Morse code, dots are short beeps or clicks, and dashes are longer ones.”

Morse code is named after Samuel Morse, who helped invent it. It is not used as much today as it was in the 19th and 20th centuries.  Some people still use Morse code to communicate on amateur radio.  I have a friend who is an amateur radio operator.  He communicates with people all over the world using Morse Code.  (He even signs birthday cards in Code!)  In Girl Scouts, we were encouraged to learn Morse code.  All I remember is the distress code: SOS (. . . – – – . . .). 

International Morse Code chart of letters and numbers

Another way the ship can communicate is with a signal light.  The operator opens and closes louvers in front of the light using the same Morse code dot & dash patterns.

a NOAA Corps Officer closes blinds over a large circular light on a rotating stand
Morse code is still used on ships using lights.

Messages can be relayed via the ship’s horn.  I discussed in a previous post the ship’s alarm signals that indicate a fire or other emergency, man overboard, or abandon ship. However, the ship also has bells and whistles (different types of horns) that can be used for additional communication; these broadcast a message to a wider audience.  There are rules that regulate horn usage in inland and international waters.  These signals can communicate navigation or emergency information – and so much more.

Example: two prolonged blasts followed by one short blast = “I intend to overtake you on your starboard side”

If you are in distress, other ways to communicate include lights; a rocket parachute flare or a hand flare showing a red light; guns or other explosive devises; flames on the vessel (as from a burning tar barrel, oil barrel, etc.); a smoke signal giving off orange-colored smoke; slowly and repeatedly raising and lowering arms outstretched to each side; etc.

Flags are also used to communicate with other ships or people ashore.  They consist of flags and pennants of varying colors, shapes, and markings. The flags have independent meanings; however, when used together they can spell out words and communicate complex messages.  The book International Code of Signals lists literally hundreds of 1-3 flag combinations that mean everything from describing medical conditions of crew members to issues regarding safe maritime travel.  The International Code Signal of distress is indicated by the flags that represent the letter “N” followed by the letter “C”.

two flags representing the letters "N" and "C." The "N" flag is checkered with navy and white squares. the "C" flag has five horizontal stripes: navy, white, red, white, navy.
N C = International Code Signal of Distress
a chart of flags (representing letters) and pennants (representing numerals)
International Flags and Pennants sometimes referred to as the Nautical Alphabet.

Something else you should know about communicating on a ship (or as an airplane pilot), each letter is represented by a word.  A = Alfa, B = Bravo, C = Charlie, D = Delta, etc.  To learn more, see the International Flags and Pennants illustration above.

For the little Dawgs . . . (and older)

Q: Where is Dewey today?  Hint: People on the ship use these to communicate.

Dewey the beanie monkey is tucked into a cubby storing flags and penants (close-up)
I’m not sure where you are, Dewey!  But it looks like you have found a very colorful playground.

A: Dewey is in the signal flag storage area.

Dewey the beanie monkey is tucked into a cubby storing flags and penants (wide view)
Signal flag storage area

The radio call sign of NOAA Ship Thomas Jefferson is WTEA (Whiskey Tango Echo Alfa).  Do you see the flags flying from our mast in the pictures below?  The triangle pennant above the flags that indicate our radio call sign is called our commissioning pennant- indicating a government vessel (NOAA ship) in commission.  The triangles on this pennant symbolize a concept in navigation called triangulation.  According to Wikipedia, “triangulation is the process of determining the location of a point by forming triangles to the point from known points”.  It is a perfect pennant for a hydrographic vessel.

on the tower of NOAA Ship Thomas Jefferson, we can see four rectangular flags (corresponding to the call sign, WTEA) and one skinny commissioning pennant
Radio call signs for NOAA Ship Thomas Jefferson WTEA (Whiskey Tango Echo Alfa)
four rectangular flags (corresponding to the call sign, WTEA) and one skinny commissioning pennant
Radio Call Sign Flags

Students, I challenge you draw out your name using International Flags.

image of five letter flags in a row
These flags spell out, “GRIMM” (Golf, Romeo, India, Mike, Mike)
image of six letter flags in a row
These flags spell out, “DALTON” (Delta, Alfa, Lima, Tango, Oscar, November)

Click on this link and/or watch the video below for more information about International Flags and Pennants.

International Code of Signal Flags

Ship Joke of the Day 

How do boats say hello to one another?  (They wave!) . . . Or, do they wave their flags?

Personal Log

Speaking of flags, I had very meaningful thing happened today.  I was just hanging out in the bridge.  I like to see how they navigate and steer the ship.  (It is also a great place to bird watch.)  Operations Officer, LT Levano, asked me if I would like to have a flag that flew over the NOAA Ship Thomas Jefferson.  Whenever a flag becomes a bit tattered or torn, they take it down and replace it with a new one.  They usually give the old flag to the Boy Scouts of America for disposal.  This time, however, they gave it to me!  It brought me to tears.  It was a very special moment for me as a Teacher at Sea.

Able Bodied Seaman (AB) Kinnett and ENS Brostowski folded the flag and made the formal presentation.

  • two crewmembers hold an old American flag out by its corners to prepare for folding
  • two crewmembers folding the flag lengthwise
  • one crewmember holds a folded edge while the other folds his side over in right triangles
  • crewmembers folding a flag
  • crewmembers stand holding the old American flag as a folded triangle

Previews of coming attractions:

  • Tonight, is movie night in the lounge.  Word has it that the featured film will be Monty Python and the Holy Grail!  Woo Hoo!  That is one of my favorites! 
  • Also, the Plan of the Day (POD) for tomorrow states that the crew will be deploying and recovering the Fast Rescue Boat (FRB).  Sounds like fun!
  • I will share the results from the first Human-Interest Poll (HIP) of the crew.

Laura Grimm: Most Valuable Player? July 9, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: July 9, 2022

Weather Data from the Bridge 

Latitude: 42ᵒ 08’3N

Longitude: 080 16’2W

Sky Conditions: Few clouds

Wind Speed: 23.0 knots

Wind Direction: 030 NNE

Lake Temperature: 21.4 C

Wave Height: 4 -6 feet

Dry Bulb: 19.7 C

Wet Bulb: 16.6 C

Calculated Relative Humidity: 74%

Visibility: 10+ miles

screenshot of software displaying a nautical chart and many parallel colored lines
An Electronic Chart Display and Information System (ECDIS) display of our current hydrographic survey progress. ECDIS is a system used for nautical navigation that serves as an alternative to paper nautical charts. The colorful lines indicate where we have used the Multibeam Echo Sensor (MBES) to measure the depth and physical features of the lake bottom.

Science and Technology Log

As explained in a previous blog, hydrographic survey uses sound energy.  NOAA hydrographers use various tools to measure the speed of sound from the time it is sent out to the time it is received as an echo.  Sound waves traveling through water of different density cause refraction (or bending) of the energy wave.  The density of water is affected by the salinity, temperature, and depth of the water. Scientists need to measure these parameters (things) and then use this knowledge to correct the data depending upon the properties of the water the sound is traveling through. (If you have been following this blog, nothing so far is new.

Today’s question is how is the temperature and salinity of a column of water measured?  Hydrographers use different types of tools to measure the temperature, salinity, and water depth.  As a group, these tools are called “sound velocity profilers”.  A conductivity, temperature, and depth sensor (CTD) can measure these three things in a column of water and then it calculates the speed of sound in water using a formula called the Chen-Millero equation.  (I do not claim at all to understand this equation!)

To make matters more interesting, there are two (I’m sure there are more than two, however, to simplify things, we will assume that there are only two) types of CTDs.  One type is sent overboard when the ship is not moving.  The other type can be used when the ship is moving.  Using a CTD while the ship is moving is a great thing, because to get good data, CTD data must be taken frequently (every 1-4 hours) and this big ship is difficult to stop!

a digital illustration of an award ribbon reading "MVP"
Most Valuable Player Award

NOAA Ship Thomas Jefferson has both types of CTD sensors.  They rely heavily on the type that can be used when the ship is moving.  In fact, it is so important that we call it our MVP.  This does not stand for Most Valuable Player – although it is extremely important!  A moving vessel profiler (MVP) can be used to measure the water column when the ship is moving at regular survey speeds (8-10 knots).  It kind of looks like a torpedo.  The MVP system can be set up to drop to a given depth determined by the hydrographers in charge of the project – not to shallow & not too deep . . . just right. 

a moving vessel profiler sitting on deck of NOAA Ship Thomas Jefferson. It looks like a small torpedo standing on end. A life preserver ring is mounted on the rail in the background.
Moving Vessel Profiler (MVP) utilized by NOAA field units.
close-up of a label on the moving vessel profiler control station, which reads: AML Oceanographic, www.AMLoceanographic.com, +1 250 656 0771, MVP Moving Vessel Profiler
Here is the information should you want to order a MVP.   :o)
a control panel for the moving vessel profiler: we see buttons, knobs, what looks like a joystick
After the MVP is put in the water, it can deployed and controlled with a computer in the Plot Room.
a crane lowers the moving vessel profiler into the water
The MVP is placed overboard and into the water using a crane.

It can be controlled remotely with a computer without needing someone to be on deck.  Deploying the MVP is called a “cast”.  The benefit of deploying a sound speed profiler like the MVP while the ship is moving is significant.  It is a real time-saver!  Surveyors do not need to stop the ship at regular intervals – this makes their time at sea much more efficient.

Yesterday, I got the opportunity to deploy the MVP.  From the acquisition desk in the plot room, one first needs to get permission from the bridge (the “upstairs office” filled with people driving and navigating the ship), to take a “cast”.  The conversation over the intercom goes something like this:

Laura: “Bridge, this is Survey.”

Bridge: “Go ahead Survey.” 

Laura: “May I please take an MVP cast?”

Bridge: (If the area is clear of small boats and obstructions, they will respond,) “Go ahead Survey.”

Laura: (Once permission is granted, all you need to do is to push the “start” button.  A lot of cable attached to the MVP automatically pays out and it drops to a set depth, a few meters above the bottom.  Once this started to happen, I informed the Bridge by saying,) “Fish is away.” 

Bridge: “Copy.”

Laura: (After reaching the designated depth, the cable drum turns quickly in reverse and hauls the MVP back up to near the surface.  I finished by saying,) “Cast complete”. 

I was a bit nervous talking to the bridge, but I think I did okay.

screenshot of a computer screen with readout from the moving vessel profiler, including a graph showing the depth over time
This is the computer that controls the MVP.  The Hydrographer In Charge (HIC) does this from the acquisition desk in the Plot Room.  The blue line above shows the movement of the MVP and its location in the water column.  It was sent down to 1.5 meters above the floor of the lake.

Meet the Crew

Sydney peers into a compass mounted on a post on deck
Sydney Catoire is using a gyro compass to get a visual reading on a prominent antenna near Erie, PA.

Sydney Catoire is a Lieutenant in the NOAA Corps. (More about the NOAA Corps in a future blog post.) She is an Operations Officer in Training (OPS IT). Sydney comes from a Navy family and grew up on Virginia Beach, VA. Ms. Catoire studied marine biology and mathematics at Old Dominion University in Norfolk, VA. Wanting to combine aspects of the Navy as well as work as a scientist led her to apply to the NOAA Corps. She received her Master of Science in Geospatial Information Sciences (GIS) while working for the Office of Coast Survey.

Why is your work important? The safety of navigation is our primary goal as hydrographers. We use the data to update nautical charts to make it safe to sail. The bathymetric products provided are open source (free for anyone to download and use) and are used for ocean and lake bed mapping. For example, the data can be used for tsunami storm surge modeling, coastal erosion, and habitat mapping. All this data is super critical and is used by a wide variety of scientific organizations and research institutions.

How will your job change once you become an Operations Officer (OPS)? She will still be involved with the day-to-day workings of the hydrographic survey, however, once she becomes an OPS, she will take a leadership role in the survey, assigning sheets (areas to survey), and mentoring sheet managers who develop the line plans (the path that the ship travels to complete the survey). In other words, she will decide on the most efficient methods to “mow the lawn.” She will also help to train junior officers, organize the processing of the data, and work directly with the Office of Coast Survey Hydrographic Division.

What is the thing about your job you like the most? She likes being on the bridge, navigating and driving the ship, as well as looking out the window for marine life – which lately has been very limited since we are sailing on the Great Lakes.

Tell us a few things about yourself outside of being an OPS IT. Sydney and her sister have a dog named, Max. She likes to scuba dive, hike, and hang out with her family and nephews when she is on shore.

Good Luck, Sydney as you strive to become an Operations Officer! For not originally knowing about this career path you sure have excelled and are an example for others with similar interests.

Personal Log

All the people on TJ have been very nice and hospitable.  They freely answer my questions and are fun to hang out with during meals.  There are three people, however, who are super important to the smooth sailing of TJ.  They are the stewards, Ace & Brent and the Chief Steward, Miss Parker.  I never imagined that the food would be so varied and tasty!  A well-fed crew = a happy crew!

Menu for Monday 5 July 2022: Breakfast: Egg to Order, etc. Lunch: Chicken Cordon Blue, Soft Shell Crab Portabella Mushroom, etc. Dinner: Prime Rib w / Au Jus, Baked salmon w/ brown sugar glaze, fried tofu, etc.
Each day the menu is posted outside of the galley.  Just look at Tuesday’s offerings!
plate of food and place settings
Roasted duck, grilled vegetables, and wild rice.  Just a normal meal on the TJ.
cake
Beautifully decorated three-layer cake with strawberry icing and filling.
three stewards stand in the galley behind a serving line. Ms. Parker and Ace wear aprons.
The Heroes of the Galley (from left to right): Brent, Miss Parker, and Ace.

For the little Dawgs . . .

Q: Where is Dewey today?  Hint: it is the back of the ship.

Dewey the beanie monkey perches on a rail of some sort, with a pole behind him, and the wake of the ship visible in the water
Be careful, Dewey!  We don’t want you to fall into the water!

A: Dewey is sitting on the stern of the ship.  The propellers are under the stern.

Dewey the beanie monkey sits on the rail on the ship's stern, and the wake of the ship is visible behind
Dewey is sitting on the stern of the ship.  “Stern” rhymes with “learn”.  We are learning the different parts of the ship.

Well, that’s all for today.  Spending time aboard NOAA Ship Thomas Jefferson has been a terrific learning experience.  I am so thankful for the opportunity!

Laura Grimm: Heavy Lifting, July 8, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: July 8, 2022

Weather Data from the Bridge 

Latitude: 42ᵒ 11’3 N

Longitude: 080ᵒ 13’0 W

Sky Conditions: Few clouds

Wind Speed: 5 knots

Wind Direction: 208ᵒ SW

Lake Temperature: 21.8 C

Wave Height: <1 foot

Dry Bulb: 21.4 C

Wet Bulb: 20.3 C

Calculated Relative Humidity: 91%

Visibility: 10+ miles

view of a computer screen showing a nautical chart with depth readings and colored lines where the ship has surveyed
An Electronic Chart Display and Information System (ECDIS) display of our current hydrographic survey progress. ECDIS is a system used for nautical navigation that serves as an alternative to paper nautical charts. The colorful lines indicate where we have used the Multibeam Echo Sensor (MBES) to measure the depth and physical features of the lake bottom.

Science and Technology Log

The Great Lakes system including all five lakes plus the St. Lawrence Seaway is one of the largest concentrations of freshwater on Earth.  It carries billions of dollars of cargo to and from the Atlantic, has about 10,000 miles of coastline, hosts a $7 billion fishing industry, and heavily influences the climate in the region.

Vessels that sail on the Great Lakes are getting bigger and are super important to the US economy.  For these ships to travel safely they need a certain depth of water.  If the water is too shallow, they run aground and essentially get stuck.  “Draft” is the vertical height between the waterline and the lowest point of the hull. It is how deep the hull can go, allowing the boat to float freely and without touching the bottom of the body of water such as the sea, ocean, or lake.  NOAA Ship Thomas Jefferson has a draft of 14 feet + the equipment secured to the hull making the working draft 15.5 feet. 

Those individuals navigating the ship use a huge variety of tools.  One of them is a navigation map, also known as a nautical chart, on which has listed the water depthat various locations.   Just like you and your family might use a map to get from Cleveland to Boston, those navigating a ship use a chart to cross lakes and oceans.    

(* Most of these numbers were made using ancient technology called “lead lines”.  They are old data, but apparently, they are pretty accurate considering the technology hydrographers had at the time.)

part of a nautical map of Presque Isle off of Erie, PA
The above is part of a nautical map of Presque Isle off of Erie, PA.  Do you see the small numbers in the blue portion of this map? These are water depth measurements. It is very important to look at the unit of measure.  It could be in feet, meters, or fathoms.  A fathom is equal to one 2 yards or 6 feet. The above unit of measure is meters.
road map of Presque Isle
A road map of Presque Isle.  How are “on land” maps similar to “on water” maps?  How are they different?  What symbols would they have in common?  What symbols would be unique?

A great amount of data on nautical charts of the Great Lakes is more than 50 years old, and only about 5 to 15 percent of the Great Lakes are mapped to modern standards.

One of NOAA’s missions for 2022 is to conduct several hydrographic survey missions on the Great Lakes. 

“Missions” are broken down into field survey “projects”, which in 2022 include surveying Western Lake Michigan, the Thunder Bay National Marine Sanctuary in Western Lake Huron, the Detroit River (Michigan) between Lake St. Clair and Lake Erie, and the Cleveland area as well as the vicinity of South Bass Island and Presque Isle (Pennsylvania).

In collaboration between the Office of Coast Survey and the ship’s command, projects are broken down into “Sheets”.  Survey ships will work at completing one sheet at a time.  The number of sheets per project various greatly depending on a myriad of factors.

a geographic map of Lake Erie with blue outlines marking different "sheets" in the project
Sheets around the Cleveland area surrounded by blue.  There are 13 sheets in this project.

Sheets are further divided into “polygons”.  Polygons are a more manageable “chunk” to work on . . . one polygon at a time. 

So overall, the order of magnitude and size in each assignment from largest to smallest is thus: Mission, Project, Sheet, and finally Polygon

When working on polygons, the survey is done either by the ship itself or by smaller boats called “Launches”.  Launches work on the part of the polygon that is in shallow water &/or close to shore.  NOAA Ship Thomas Jefferson has two launches, 2903 & 2904.  These smaller boats are stowed onboard the main ship.  The launch is a smaller vessel than the TJ, only 28 feet in length, with a 10-foot beam (width) and draft of 4 feet 8 inches.  They are equipped with survey equipment similar to TJ. 

a small boat in the water. we can see two crewmembers on the aft deck.
TJ launch #2904
two small boats in the water; the rail of NOAA Ship Thomas Jefferson and a few crewmembers on board are just visible in the lower right corner
Both launches come alongside the TJ.

So, today’s question is how do they get these smaller boats (launches) on and off the main ship?  This is accomplished by an awesome hydraulic piece of machinery called a davit.  Vestdavit, a company from Norway, makes the davits that are on the TJ. Taking the launches off or putting them back on the TJ is a team effort!  It can be dangerous so everyone helping wears personal floatation devices (PFDs) and hardhats.

small boat secured on board the NOAA Ship Thomas Jefferson; we can see the brand name Vestdavit on the davit
Launch secured in the davit.
above view of small boat in "cradle" on NOAA Ship Thomas Jefferson
The launch is sitting in its cradle. It is snug as a bug in a rug!

Notice that the launch in the previous pictures is secured to the davit by bow ropes, cables & hooks, ratchetted straps, and bumpers.  Ships move around a lot.  We don’t want the launches swinging and slamming into the davit.  As mentioned previously, this piece of machinery uses hydraulics.  Unlike the hydraulics we use in STEAM class, these use oil as the hydraulic fluid and not water.  The hydraulic fluid used by NOAA is very environmentally friendly.

The following videos and pictures will show how the davit is used to capture and raise the launch from the water and back onto the TJ:

Step #1 – Get the launch close to the side of the ship where it will be stored.  (2903 is stored on the starboard side (right side when looking toward the bow) of the ship.  2904 is stored on the port side (left side when looking toward the bow) of the ship.)

Coming along the side of Thomas Jefferson.

Step #2 – Get the lines ready and attach the painter line to the bow. The painter line is the white line in the video below.

Securing the painter line.

Step #3 – Attach the davit clip to the hook on the bow.

Attaching the davit clip.

Step #4 – Engaging the hydraulics will start to raise the boat out of the water.  Notice that the large orange bumpers on the side of the launch help to protect the boat from bumping into the side of TJ.  At this point, it is safe for the crew to disembark (get off) the launch.

Engaging the hydraulics.

Step #5 – The davit lifts the launch and places it in its hold or cradle.

Final lift of the davit.

Step #6 – Finally, secure the launch with a ratchetted straps or webs.

  • a crewmember wearing a helmet and life vest pulls on a yellow strap
  • a crewmember wearing a helmet and life vest pulls a yellow strap across the bow of the small vessel to secure it back on board
  • a crewmember wearing a helmet and life vest lowers or pulls a yellow strap at hte right side of the small vessel to secure it back on board

Unfortunately, they are having some difficulty with the davits aboard Thomas Jefferson.  No launches will be deployed until they can get the issue resolved.  In the meantime, data will continue to be taken using the Mulitbeam Echo Sounder (MBES) and other technology on Thomas Jefferson.  I read recently that the CO (Commanding Officer) always puts personal safety before data acquisition.  He and the crew really mean it!

Personal Log

Yesterday morning, I enjoyed watching the crew deploy both launches to do surveys close to the shore.  It was choppy with 3-5 ft waves.  I have not felt seasick on TJ, but choppy seas on a small boat would have made me revisit my breakfast.  The launches came back in earlier than expected due to the rough water.  It was exciting to see how efficient the crew was at deploying and recovering the launches . . . like a well-greased machine. 

Operations Officer (OPS), Michelle, asked me to work with Operations Officer in Training (OPS IT), Sydney in the Plot Room.  She will teach me all I need to learn about hydrographic data acquisition.  (More on that in a later blog).  There is so much to learn!  If you are interested in math &/or science, you might want to look for a job at NOAA!

view of a computer screen displaying the output of hydrographic software; there is a nautical map on the left and additional panels to the right
Image created by Hypack, the hydrographic software used by TJ.

My time in the Plot Room was cut short because we had a fire drill followed immediately by an abandon ship drill.  At school we have a variety of drills (fire, wind, lock down).  Sometimes we take these drills for granted.  We get lazy. Let me tell you!  I was not prepared for the ship drills!  Each drill is announced by the ship’s whistle.  This is great and heard everywhere – however, it is worthless of you have not done your homework and learned what the whistles mean!  I am guilty of not doing my homework!  I was running around like a crazy person!  Suddenly, I could not find my way around the ship!  What was the drill?  What did the whistles mean?  What should I bring?  Where should I go?

a muppet, screaming.
I think this is what I must have looked like!

From now on, I WILL do my homework.  I will be prepared, and I will no longer take drills at school for granted.  They are important!

AlarmSignalWhere to reportWhat to bring
Fire or Other EmergencyContinuous sounding of general alarm or ship’s whistleMain deck, port side, outside of the damage control pathwayNothing, egress ASAP
Abandon Ship6 short blasts of ship’s whistle followed by one prolonged blast02 deck, starboard side, by raft #3Must wear PFD (life preserver), hat, long sleeves and carry survival suit (affectionately known as the Gumby Suit)
Man Overboard3 prolonged blasts of ship’s whistle02 deck, starboard side, watch aftNothing, egress ASAP
I made a table to help me organize my “homework”!

For the little Dawgs . . .

Q: Where is Dewey today?  Hint: it is usually underwater and helps move the boat.

Dewey the beanie monkey perched on the propeller of one of the small boats (out of the water, stored on board)
This part of the boat is usually under water.

A: Dewey is sitting on the propeller, also known as the prop.  The motor of the boat spins the prop which makes the boat go forward, or if it is spun in the opposite direction, the boat goes backward.

the propeller of the small boat or launch. since the vessel is out of the water, stored in its cradle, we can see Lake Erie and a dock in the background
This is the prop of the small boat or launch.  The propeller on the Thomas Jefferson is much larger! Behind the propeller is the rudder.  This can be moved side to side allowing the boat captain to steer in one direction or the other.

One of the TJ’s engineers shared this picture of the Thomas Jefferson’s propeller.  It was taken in the past when the ship was in “dry dock” undergoing repairs.

an engineer, wearing a hard hat, stands underneath the hull and the propeller of NOAA Ship Thomas Jefferson when it is in dry dock, i.e., completely out of the water
Just look at the size of the propeller and rudder of NOAA Ship Thomas Jefferson compared to the size of a man!

Well, that is all for now.  I am assigned to be in the Plot Room again tomorrow morning from 6:00-8:00 am (0600-0800)*.  I hope things go a bit more smoothly tomorrow.  These wonderful scientists have so much knowledge + they do not mind me asking many, many questions = a great learning experience!  Thank you, NOAA!

(*The ship runs on a 24 hour clock. Examples: 9:00 am = 0900. 3:00 pm = 1500. It’s easy once you get used to it. Also, I found out this morning that if you are scheduled for 0600, you really are supposed to show up at 0530. Oops! I try to keep a growth mindset in all I do!)

Laura Grimm: Echoes and Flares, July 7, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: July 7, 2022

Weather Data from the Bridge

Latitude: 42 08.7

Longitude: 080 16.9

Sky Conditions: few clouds

Wind Speed: 14.9 knots

Wind Direction: 040 NE

Lake Temperature: 22 ᵒC

Wave Height: 1 ft.

Dry Bulb: 20.6 C

Wet Bulb: 18.6 C

Relative Humidity: 83% (calculated using the following table)

Relative Humidity Conversion Table. Rows: Dry-bulb temperature, ranging from 10 degrees C to 30 degrees C in increments of 1 degree. Columns: Dry-bulb temperature minus wet-bulb temperature, ranging from 1 to 10 degrees C in increments of 1 degree.
Once you know the wet-bulb and dry-bulb temperatures, you can use the conversion table above to calculate the relative humidity.

Science and Technology Log

The mission of a NOAA hydrographic survey is to make bathymetric maps of the floors of bodies of water.  Bathymetry is the study of the “beds” or “floors” of water bodies, including the ocean, rivers, streams, and lakes.  So, what is the difference between bathymetry and topography?  Topographic maps show elevation of landforms above sea level; bathymetric maps show depths of landforms below sea level.

NOAA ships are equipped with lots of different types of equipment to make such maps.  One of these is the Multibeam Echo Sounder (MBES).  It is used to survey large swaths or bands of the floor of oceans and lakes.  This type of technology collects a tremendous amount of bathymetric data.

Multibeam Echo Sounders (MBES) gather information about how deep a body of water is, the physical features of the seafloor, and how close to the surface items like wrecks and obstructions are that might make it dangerous to maritime travel.  Obstructions are things sticking up from the floor.

Multibeam Echo Sounders send out sound energy and analyze the return signal (echo) that bounces off the lakebed, seafloor, or other objects.  Multibeam sonars emit (send out) sound waves from directly beneath a ship’s hull to produce fan-shaped coverage of the seafloor. These systems measure and record the time for the sound energy to travel from the sonar to the seafloor (or object) and back to the receiver. The longer it takes, the deeper the water.  Multibeam sonars produce a “swath” of soundings (i.e., depths) to ensure full coverage of an area. This is sometimes referred to as “mowing the lawn”.  Scientists want to be sure that they don’t miss anything!

underwater, a diver checks out a multibeam sonar apparatus attached to the hull of a ship
Multibeam sonars are secured to the bottom or the hull of the vessel to collect data.

an illustration of a multibeam sonar swath spreading out from the base of a NOAA ship (above the water), revealing the modeled bathymetry of the seafloor (below the water)
MBES Data showing seafloor topography

Multibeam Echo Sounder (MBES) showing bathymetric data, also known as, seafloor topography.  Bathymetry is the study of the “beds” or “floors” of water bodies, including the ocean, rivers, streams, and lakes.  Topography is a detailed description or representation on a map of the natural and artificial features of an area.

modeled bathymetry shows a small boat resting on the seafloor.
Small wreck found using multibeam sonar.

When looking at a hydrographic image, keep in mind that blue = deep water, red = shallow water.

view of a small boat mounted on NOAA Ship Thomas Jefferson; the hull is visible
This is one of the launches (small boats) that is used to collect hydrographic data close to shore.  A Multibeam Echo Sounder (MBES) is attached to the hull (bottom) of the boat.
close-up of the multibeam echosounder mounted on the hull of the small boat
The black and red piece of technology is the MSEB
close-up of the multibeam echosounder mounted on the hull of the small boat; it looks like a black box with red panels
A close up of the MBES that is secured to the hull of the launch.

The red rectangle in the foreground is the transmitter.  It sends out the sound energy.  The other red rectangle is the receiver.  It “hears” or receives the echo of the sound.  This information is then sent to a computer that analyzes how long the echo took and then calculates the depth. 

The small silver latch-looking piece of equipment is the sound speed indicator.   It calculates the actual speed of sound in the conditions under which the measurement it taken.  A “ping” is sent out from one end and is received at the other end.  The speed of sound is then calculated. 

I always thought that the speed of sound was a constant number.  I guess not!  So why is calculating the speed of sound so important?  The speed of sound in water is affected by the temperature and salinity of the water.  The warmer the water, the faster sound energy travels.  Once a molecule starts to vibrate, it passes this energy on to the next molecule, and to the next, and so forth.   Water molecules in warmer water are moving quicker so sound energy transmits faster; cold water is more dense and therefore the sound transmits slower.  The colder the water, the slower sound energy travels.

Salinity also affects the speed of sound.  Salinity is the measure of dissolved salts in water. This accounts for all salts, not just sodium chloride (table salt).  The salinity of fresh water is very low compared to that of the salt water in the oceans.  Water that has a lot of salts dissolved within will transfer sound energy more quickly.  Electroconductivity is a measurement of salinity.  (Students – you may remember that we use an electroconductivity probe to help us understand how much fertilizer is in the water used to grow plants hydroponically in the greenhouse.)  Knowing the speed of sound in water helps hydrographers interpret the data from the MBES more accurately.   

Something to think about . . .

How is a Multibeam Echo Sounder like and unlike echolocation that is used by bats?

For the little Dawgs . . .

Q: Where is Dewey today?  Here is a hint.  It is also called the “front” of the ship.

Dewey, a beanie monkey, sits on a white surface with water in the background
Where is Dewey today?  Here is a hint.  It is also called the “front” of the ship.

A: Dewey is on the bow of the ship.  “Bow” rhymes with “cow”. 

a view of the ship's bow with the beanie monkey perched on a rail
Do you see Dewey? He is sitting on the bow of the ship.

Dewey is sitting on the bow by the Jackstaff (flagpole).  The Jackstaff is a flagpole that flies a maritime flag called the Union Jack of the United States whenever it is at anchor or in port.

50 white stars on a blue background
Union Jack of the United States. Just the stars and not the stripes.

.

Laura on the bow, with Dewey the beanie monkey perched on her shoulder. Laura is wearing a Teacher at Sea hat. we can sea the anchor behind her.
Dewey and I are enjoying the fresh air on the bow.

Personal Log

We had fun last evening.  Patrick, a Seaman Surveyor, told us that he had several flares that had expired.  Instead of throwing them away, he decided to have us light them.  What a great thing to do around the 4th of July!

  • a seaman holds a lit flare toward the fantail
  • Laura preps a flare
  • Laura holds lit flare over the edge
  • Laura and lit flare
  • Two other crewmembers hold lit flares over the edge
  • A crewmember holds a lit flare over the side of the ship
  • Several crewmembers holding lit flares; orange smoke billows out
  • Two crewmembers shoot small flare guns into the air
  • Laura points a flare gun into the air; Patrick instructs
  • Laura fires flare gun

Because we were surveying near Lake Erie, we had the opportunity to watch the 4th of July fireworks over Cleveland and surrounding communities. Such a lovely way to spend Independence Day.

Around 2300 (11:00 p.m.) we started to transit (move) toward Erie, PA. It’s been a good day. I look forward to waking up in the waters near Presque Isle.

Laura Grimm: Finally! July 4, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: July 4, 2022

Weather Data from the Bridge

Time: 1600 (4:00 pm)

Latitude: 41ᵒ 34.45 N

Longitude: 081ᵒ 46.7 W

Sky Conditions: Overcast

Visibility: 10+ nautical miles

Wind Direction: 343ᵒ NNW

Wind Speed: 6 knots

Lake Water Temperature: 24.2 ᵒC

Dry Bulb: 25.7 ᵒC

Wet Bulb: 22.1 ᵒC

Science and Technology Log

Welcome from NOAA Ship Thomas Jefferson! 

Laura Grimm stands near the bow (front end) of the ship.
I am standing near the bow (front end) of the ship.

This experience started on land.  NOAA provided a lot of information and training that needed to be read, studied, and completed prior to even setting foot on the ship.  (Like I said previously: I am going to be more of a student and less of a teacher on this voyage!) 

I found this statement on the “Standing Orders” to be very inspiring.  It is from the Commanding Officer:

Command Expectation/Philosophy 

“Thomas Jefferson is an ocean mapping platform that surveys the Exclusive Economic Zone of and for the United States.  As such, we are responsible for maintaining and developing the Nation’s hydrographic expertise and technological capacity, as well as for producing timely quality surveys that can be efficiently used for many purposes, but primarily for updating NOAA’s suite of nautical charts.  By sailing aboard Thomas Jefferson, you are part of this.  Everyone aboard should be working to help Thomas Jefferson fulfill this role to the best of her ability, regardless of their individual role on the ship.  To do this, we must work together to take care of ourselves, take care of each other, and take care of the ship.  Be kind to yourself and to others; and work to build and keep the trust you earn from each other and the Command.  This work of measuring our ocean territory is noble, challenging, unique, arduous, and ultimately rewarding.”  

This is a hydrographic survey vessel. So just what is hydrography?

Hydro = water; Graphy = to write or record

Hydrography is the science that measures and describes the physical features of those areas on Earth that can be navigated by ships. These areas include oceans, lakes, seaways, and coastal areas. Hydrographic surveyors study these bodies of water to see what the “floor” looks like. NOAA’s Office of Coast Survey is concerned about the safe passage of ships traveling to and from ports. Hydrographic surveys measure how deep the water is and make sure the coastal regions of the United States are safe for boats and ships to navigate. Surveyors pay particular attention to mapping locations of shallow areas and various obstructions (things sticking out of or sitting on the seafloor). Surveys also determine what the sea floor is made of (i.e. sand, mud, rock). This is important for anchoring, dredging, structure construction, pipeline and cable routing, and fish habitat. NOAA uses all this data to update nautical charts and develop hydrographic models.

a bathymetric map of the Great Lakes. We see the topography of the surrounding land, a few major cities (Toronto, Detroit, Chicago, Cleveland) marked as dots, and the waters of the lakes colored to depict depth. Lake Superior is the deepest, and Lake Erie is the most shallow.
This is a hydrographic map of the Great Lakes. When looking at a hydrographic image, keep in
mind that blue = deep, red = shallow.

Can you tell from this image which lake is the deepest? Which lake is most shallow? Why do you think that the coasts of lakes look like rainbows?


This ship does very important work! By mapping water depth, the shape of the seafloor and coastline, the location of various obstructions, and physical features of bodies of water, hydrography helps to keep our maritime transportation system moving safely and efficiently.


What equipment and technology is used to do a hydrographic survey?


LOTS! I will include more information about the equipment and technology hydrographers use to get all of this data in a future blog post.

Personal Log

Yesterday was so very exciting! My husband drove me to the port of Cleveland.

Sign and the entrance to the Port of Cleveland.  Downtown Cleveland is in the background.
Port of Cleveland. Downtown Cleveland is in the background. The Brown’s stadium in immediately to the left.
Laura points to NOAA Ship Thomas Jefferson, in port, from a distance
There it is!

Thomas Jefferson is docked at Pier 26. After all this time, it was wonderful to finally see the ship. I contacted the Officer of the Deck (OOD), he gave me permission to come aboard and immediately gave me a COVID test. Negative test = I can sail! I was never so happy to be
negative!

He showed me to my stateroom or berth. I have the upper bunk and a porthole! My roommate (you will meet her later) is a Hydrographic Senior Survey Technician (HSST). We share a bathroom (toilet and shower) “Jack and Jill” style with the room next door. On a ship, the bathroom is known as the “Head”.

close up of a sign that reads: "CREW SR 2-39-1"
This is the number on my stateroom.

2 = I am on the second deck. Each deck on a ship is numbered. The numbers from lowest to highest are 4, 3, 2, 1, 01, 02, and 03.

39 = the bulkhead the stateroom is closest to. A bulkhead is a dividing wall or barrier between compartments in a ship, aircraft, or other vehicle. The ship has about 100 bulkheads. They are numbered 1-100 from the bow (front end) to the stern (back end).


1 = This means that I am on the starboard (right side if standing on the ship looking toward the bow) side of the ship. If the last number was a 2, that would mean that my stateroom was on the port (left side if standing on the ship looking toward the bow).

view of stateroom; we can see two bunks and a dresser, some small rugs on the floor, hanging lights
This is my stateroom. I sleep on the upper bunk.
view of a shower stall and toilet
This is the “Head”.

The OOD then gave me a quick tour of the ship showing me the “Mess” (where we eat), the galley (kitchen), lounge, plot room (where they take the data that is collected during the day and where the data is made in to hydrographic “pictures”), laundry, and exercise room. He also took me to the bridge (where they pilot or drive the ship) and on all the decks. Later, I met one of the engineers and he took me on a tour of the engine room. So cool! I will include more information about these places on the ship in future blog posts.

Happy to be here! Happy to learn all about the important work being done by the National Oceanic and Atmospheric Administration (NOAA).

Laura, wearing Teacher at Sea hat and shirt, poses for a photo next to NOAA Ship Thomas Jefferson in port; we can see the NOAA logo and the ship's number, S 222
NOAA Ship Thomas Jefferson and me – the very excited Teacher at Sea (TAS)

For the Little Dawgs!
Attention students in grades Kindergarten – 2nd grade. This section will be written just for you! I want to introduce you to my friend, Dewey. Dewey has been with me ever since my first year of teaching.

Dewey is a plush (perhaps beanie) monkey. He sits on a cushion wearing a paper sailor's hat that Laura made for him
My travel companion, Dewey. See his sailor hat!

He will help you understand what I am doing on this big ship! He is excited to be on NOAA Ship Thomas Jefferson. He is also very thankful that we have a porthole in our bedroom. A porthole is a round window. I wonder why many of the windows on a ship are round?

Dewey looks out the porthole window
Here is Dewey looking out of the porthole window.

Q: Where is Dewey?

a toy monkey sits on a grated surface
Look at the surface. Can you tell where he is? Hint: You walk on it to get on to the ship.
a beanie monkey sits on the gangway leading up to NOAA Ship Thomas Jefferson from the port
Dewey is on the gangway!

A: Dewey is on the gangway. The gangway is the name of the ramp that you walk on to get on the ship.

Well, that is all for now. Later tonight the crew will have the opportunity to watch the 4th of July fireworks over Cleveland.

A photo of the American flag flying, with downtown Cleveland visible behind it
This picture was taken from the stern (back end) of the ship.
a red, white, and blue banner in the mess hall reads "Happy 4th of July"
Happy 4th of July! Miss Parker, Chief Steward, decorated the Mess Hall for the holiday.
a view of tables and chairs in the mess hall, with red white and blue bunting, garlands, and American flags
Decorated Mess Hall

During the night, we will head toward Erie, PA to map the area around Presque, Isle.

white board reading: "NOAA Ship Thomas Jefferson; Depart Port of Cleveland; Day & Time Monday @ 1400; Date July 4, 2022; Destination Presque Isle
Sailing Board for July 4, 2022
Sunset over Lake Erie
Sunday’s sunset over Lake Erie

Oktay Ince: Driving the NOAA Ship Thomas Jefferson and Seasickness!, June 26, 2022

NOAA Teacher At Sea

Oktay Ince

Aboard NOAA Ship Thomas Jefferson

June 20- July 1, 2022

Mission: Hydrographic Survey

Geographic Area of Cruise: Lake Erie

Date: Sunday, June 26, 2022

Latitude: 41° 31.9′ N
Longitude: 81° 57.3′ 00 W
Altitude: 138 m

Weather Data from Bridge

Wind Speed: 8 kts
Surface Water Temperature: 23 °C
Air Temperature (Dry Bulb Temperature): 25 °C
Wet Bulb Temperature: 21 °C
Relative Humidity: 78 %
Barometric Pressure: 1014 mb

Science and Technology Log

Today, I am going to talk about anchoring the ship in Lake Erie, and some multibeam and side-scan images that NOAA Ship Thomas Jefferson obtained a while ago from different assignments. 

The ship is mostly done scanning offshore portions of Lake Erie (2-7 nautical miles) from Lorain to Cleveland, OH, except near the shoreline. Waters near the shore are harder to scan for a ship like Thomas Jefferson because the water is shallower towards the coastline. Therefore, the ship decided to anchor closer inshore and launch its two boats to scan those areas. As I said before, the same multibeam and side-scan sonar beam technology is also in these boats. For the next couple of days while the ship is anchored, the boats will collect nearshore bathymetric data outside of Cleveland, OH. 

The anchor is made of metal and is attached to the ship by a metal chain. First, it is important to decide where to anchor by looking at the chart. It’s usually preferred to anchor in sandy locations for stronger holding of the ship. However, most of the area we are surveying has a mud bottom, which is also okay for holding the anchor. The weight of the anchor is 3,500 lbs.!  Once the ship was anchored, it swung around the chain due to the wind. The engine was off and we stayed there for about 4 days. Even though the engine was off, the generators were on. I will talk more about engines and generators in my next post. 

Okay, let’s go back to multibeam and side-scan sonar. When the multibeam sonar scans to evaluate the depth of the water, the results can be shown in color schemes based on depth ranges.  For example, during data acquisition we determined that 0-3.5 meters is black, 3.5- 5 meters is red, 5-10 is green and so on and so forth. This color coding is arbitrary as long as we have a legend at the bottom of the image that shows the depth of each color. 

a computer screen displays depth data
Scanning the water (color-coded legend on the left). The depth of water is not less than 5m.

There was one interesting thing I learned today. Side-scan sonar can also show the presence of fish. During our data collection, we found schools of fish that are both small and big. How do we know the object we found is a school of fish? Well, often the shadow of an object in a sonar image can tell more information than the image of the object itself. If the object’s image has a shadow that is not attached to the object then it may be fish. Since the fish is swimming in the water, its shadow would look unattached in the image. We not only found a school of smaller fish, but also found a school of bigger fish. How do we know that they are big?  The shadow can tell you!  When looking at the image, we can identify individual fish as a dot, and the shadow can be measured to determine the size. 

photo of a computer screen showing side scan sonar image when no objects are detected; the lake bottom looks grainy orange
Scan scan sonar image- There is no object detected. Use this image as a reference to interpret the following side scan images.
a side scan sonar image with specks of light and specks of shadow, offset to the right. theses objects and their shadows are highlighted in a blue rectangle. an additional caption reads: "Larger fish - can see individual bright spots and individual shadows"
Side scan sonar image shows larger fish presence in Lake Erie (Credit: NOAA Ship Thomas Jefferson).
a side scan sonar image with two objects that look like balls of light, and their offset shadows. caption reads: "Schools of small bait fish"
Side scan sonar image shows schools of small bait fish presence in Lake Erie. (Credit: NOAA Ship Thomas Jefferson)
side scan sonar image of shipwreck, multibeam bathymetry model of shipwreck
Both side scan and multibeam sonar imagery of a ship wreck from PREVIOUS mission of NOAA ship Thomas Jefferson. (Credit: NOAA Ship Thomas Jefferson)
comparison of sidescan and multibeam sonar imaging of lake bottom
Both side scan and multibeam sonar imagery of bottom near Rocky River, Ohio during our this leg of acquisition. (Credit: NOAA Ship Thomas Jefferson)

Personal Log

I am almost halfway through my expedition in Lake Erie. When I say I am learning, I do not mean that I am listening and observing what others say, and jotting down what I heard. I mean that I am hands on, doing what others do on the ship. My title on the small boat is “Crew-IT,” meaning crew in-training, and they teach me everything that I need to know. I was even on the deck (ship control center) navigating the ship for about 10 minutes. It wasn’t that complicated to navigate a 208 ft long NOAA ship after all! 

Oktay stands at the helm of NOAA Ship Thomas Jefferson; three other crewmembers on bridge
Driving NOAA Ship Thomas Jefferson
Oktay stands at a navigation table on the bridge, looking over a clipboard; water visible out the bridge windows
Checking ship’s daily logs

I am not the only one who is training. There are many others, too: NOAA Corps officers, technicians, visitors, etc. The ship is not only completing its mission, but is constantly a training ground for others. 

Okay, let me talk about my first time being sea sick. Except, I didn’t know what it was until somebody told me so the next day. So, I woke up earlier than usual that morning around 6 am. Because I had a full day boat assignment, I had to be fully ready. I packed a book to read, my camera, selfie stick and my notebook. I put on my sunscreen, and of course, my long pants. After eating my scrambled eggs with light roasted coffee, I quickly went down to my state room to brush my teeth to make sure I was on time for the 8 am safety briefing in the survey room. A safety briefing happens every day the small boats go out. We go over what work needs to be done for the day (general overview), what the weather will be like, and what the following days will look like. It takes about 15 minutes. At 8:15 am, we put on our safety gear (always confused whether to wear a crash helmet or hard hat), and lined up to be boarded. In about 10 minutes, we were on the boat, did routine safety checks, and started to survey. The weather was so hot and the bugs were of course in full bloom. Besides the hot “bug-gy” weather, the Lake was churning so bad that I couldn’t stand still. I had to either sit or stand while holding onto something. On that day, we were out until 7 pm. When we got back on the ship, I was so hungry but also so tired that I could not eat much. When people are late for the dinner which is eaten between 4:30pm to 5:30 pm, you make your orders before you leave for the boat, and they prepare your plate and put it in the fridge. I couldn’t eat anything that I ordered. Instead I ate an apple and went straight to bed. 

I started to have a headache that I knew would eventually turn into a migraine. It was 10 pm, and my headache turned into a migraine. My migraine was so bad that my lids became so heavy that I could not open it. I was constantly turning in the bed, thinking that it would eventually go away once I slept. Nope! Nothing worked. I woke around 2 in the morning, took a shower and decided to take some ibuprofen. The medicine kicked in quickly and the next thing I remember was waking up at 7:30 am. I talked to my friend Justin that morning about what happened to me last night. He said that some people experience sea sickness in the form of a headache and suggested that I take the seasick medicine and eat a good, solid breakfast next time. I guess this is what I am going to do from now on when I have a boat assignment! 

Did you know?

  • NOAA Ship Thomas Jefferson is holding about 130,000 gallons of fuel which could last about 45 days. The ship has 33 tanks across the ship that includes fuel, drinking water, sewage, dirty water, etc. 
  • There is a “speed limit” on waterways? For example; Canada allows speed limit of 10 knots (11.5 miles/18.5 kilometers) in areas where the North Atlantic right whale have been reported in Gulf of Saint Lawrence which connects the Great Lakes to the Atlantic Ocean. The North Atlantic right whale, which is much larger than a humpback or a gray whale, is one of the most endangered whale species. More information about the species can be found here. Lake Erie doesn’t have speed regulation on open water unless there is a violation of marine laws or criminal activity.
illustration of a North Atlantic right whale
The North Atlantic right whale (Credit: NOAA fisheries)

Oktay Ince: How Much You can Get From Bottom Sampling in Water Surfaces, June 24, 2022

NOAA Teacher At Sea

Oktay Ince

Aboard NOAA Ship Thomas Jefferson

June 20- July 1, 2022

Mission: Hydrographic Survey

Geographic Area of Cruise: Lake Erie

Date: Friday, June 24, 2022

Latitude: 41° 31′ 52 N

Longitude: 82° 12′ 00 W

Altitude: 138 m

Weather Data from Bridge

Wind Speed: 6 kts

Surface Water Temperature: 23.9 °C

Air Temperature (Dry Bulb Temperature): 22.4 °C

Wet Bulb Temperature: 16.9 °C

Relative Humidity: 62 %

Barometric Pressure: 1018 mb

Science and Technology Log

I believe you have a pretty good idea what we are doing on the ship. We are mapping Lake Erie. We are all familiar with general maps, right? The ones we see in schools, maybe having a nice globe on our writing desk, or even every day on TV when meteorologists forecast what the weather looks like. Maps are everywhere.  Those maps are simple visual representations of any information we are interested in, such as cities, countries, mountains, rivers, oceans, roads etc. 

Similarly, we also have a map for oceans, seas and lakes so that whoever wants to use Lake Erie “road” will use this map to navigate themselves safely. In the science of hydrography, these maps are called nautical charts. During my past two blogs, I have kind of explained how scientists map the waters. They use multibeam sonar to get the depth of the water and side scan sonar to take images of the bottom. I also described the condition of water such as salinity and temperature.

Lowering Down CTD instrument manually

Now, you may wonder what other data hydrographers collect that goes on the chart. The field units collect data on what material is at the bottom. The easiest way to do it is bottom sampling. They simply send a clamp-like instrument with a rope attached over the side of the boat, and when it hits the bottom it automatically closes itself and catches whatever it is at the bottom. And then, you pull up the rope and examine what type of materials are at the bottom.  This information is so crucial for many reasons. For example, ships need to know where to anchor near the shore. Thomas Jefferson prefers sandy places so that the sand holds the anchor very strong. They stay away from rocky, boulder places to prevent the anchor from getting snagged. So, when a ship comes closer to Cleveland, not only do they know how to navigate the ship safely but also where to anchor. If it can’t anchor it poses a great risk not only for the ship but also for the public at the coastal region. You get the idea! The bottom sampling information is important. It seems simple to do, correct? Yes it is! But the information it provides is extremely important for government and public stakeholders. 

Bottom sampling can be used for other purposes such as what kind of organisms live there, what is the chemical and mineral composition, or even to know what life was like in the past. You can time travel by just looking at the sediment sampling of the sea/lake floor. However, the mission of NOAA Ship Thomas Jefferson is to find what material is at the bottom and navigationally significant, and ships use this information to use where to anchor. 

Let’s go back and discuss more about the importance of studying seafloor composition. The more I research this topic the more I find it fascinating to get how much information we can obtain. I came across an article titled “ THE FUTURE BURIED in the DEEP ” by Jeremy Schwab, and it has very interesting information about why bottom sampling information is used. It is even used by NASA scientists who are studying conditions on other planets and moons that might support life. What mind-blowing research to do. I guess now I am interested in studying bottom sampling!

Personal Log

Speaking of bottom sampling, yah yah yah! You are tired of me repeating that. You may say “We got it Oktay, it is important. Tell me something else.” Well, I am going to share how one experience I had in the past came in handy, and how it led to something I never thought of.

When you do bottom sampling, sometimes you get mud, but if you are lucky you also get benthic organisms which live at the bottom of the lake/sea. In the case of Lake Erie, all we got is mud. Nothing else. Of course, it raises the question, why? I will leave you with that. 

You may argue that even though there is no visible biology, there are tons of microorganisms potentially living in that mud. Yes, you are right. However, since we are not doing microbiological studies, and I don’t have my microscopes to see what is in there, I can’t see those microorganisms. So it looked boring to me, and I went straight back inside of the ship. Plus, I was tired of bugs that were eating me all over. I swear I think they were “Superbugs”, resistant to bug spray. I put bug spray all over me including my clothes, and they still bit me! Who knows, they might be mutated by all the industrial chemicals around Lake Erie, and compared to the chemical composition of bug spray, they were like “Is that all you got, Oktay!” 

a white wall of the ship covered in small dark specks (bugs)
Swarm of bugs all over the ship

Sitting at a desk in the survey room, there was a call asking “Is the Teacher at Sea around? Could you please tell him to come down to the deck? We found an interesting bottom sample we think he should see ”. The officer responded, “Yes he is here and coming over”. I rushed to the deck and checked out what it was. The sample they took consists completely of mussels. Immediately, I took several pictures of them and wondered about what kinds of species they were. Then, it clicked! I can use my “Seek app” to identify them and put them into the “iNatural” database. Now, here is the good part. I learned about these two apps from naturalists and scientists who studied biodiversity in Acadia National Park, Maine last summer when I was an Earthwatch teacher fellow. You may know that the Gulf of Maine is one of the fastest warming bodies of water in the world and scientists are studying the effects of climate change in this place.  I guess there is homework for you in there. Read about how climate change affects biodiversity in Acadia National Park and the Gulf of Maine, and what it means to the rest of the U.S. and the world. 

Anyway, I took my phone and identified the species by using the Seek app. They were all zebra mussels. Then, I added my observation into the iNatural database. Since there were millions of bugs there, I decided why not identify these creatures as well!  I found out that almost all of them are Giant Mayflies. Quite a few of them belong to the Genus called Chironomus, but the Seek app could not identify its species name. Of course, I put those observations into the iNaturalist database, too. At the end, I had a sense of relief because at least I knew what they were. By the way, zebra mussels are an invasive species and based on my research it was first seen back in the 90s in Lake Erie. Zebra mussels are filtering Lake Erie for sure, which is a good thing, but I wonder what environmental changes it created here since they are an invasive species.

Shortly after I logged my observations in iNaturalist, there was an email starting with a title  “A new update in the last 24 hours from iNaturalist”. Usually I receive any emails relating to activity in my iNaturalist – whether somebody comments on what I posted or giving species identification, etc. I opened up my email and it said that “Lower Lake Erie Region CSI” curators added some of your observations.” That means, the observations I made ended up in their project as well. The aim of the Lower Lake Erie Region Citizen Science Initiative is to identify the various species living (biodiversity) in the southern Lake Erie region. Having a feeling of contributing something to science made me feel accomplished against these voracious bugs! At least for now. 

Why am I talking about all of this! I wanted to make sure you know that if I hadn’t participated in the study back in Maine, I wouldn’t have known about these apps, and I wouldn’t have made my observations while doing something else on the ship that could help some other scientists! 

I guess this experience also made me realize how important it is to have been exposed to different environments and learning different things as a human being. You never know when, where, and how you will use what you know. I strongly believe that the more you know and experience different things, the more you make informed decisions. In other words, when you are at a point where you need to make a choice (life is all about choices), your decision would be closer to the truth than someone who has not experienced what you experienced. 

Hahaha! Sorry for my philosophical thoughts. These are the emotions I have while typing this blog post, while comfortably sitting on my table in my “office” (remember it is located in the mess deck where food is eaten), with a cup of hot bergamot oil flavored early gray black tea on my right side. 

You may ask the same question as some of my colleagues ask me. What on earth are you doing on a research vessel for twelve days, learning all these sciences, technologies, skills, and tools that you may never use in your classroom or teaching career? Or I was once asked, why are you spending your summer with these programs? Why don’t you enjoy your much needed summer break? They may even say, why are you thinking about school work? I am not sure what they mean about “school work”? Clearly, there is a different interpretation of school work among educators. 

My answer is always this – “I love to learn, and I love to experience new things.” For me, learning is everywhere at any time. Whether it is in school, home, holidays, summer breaks… it doesn’t matter. If a learning opportunity comes up, I get excited and try to experience it – that’s it. When you have that mindset, it doesn’t matter whether you are teaching in school, playing at home with your kids, or sailing on a ship exploring the water!

As a concluding remark, I suggest you do the same thing. No matter what profession you have, always be curious, be a life-long learner, and be out of your comfort zone. 

Hope to see you in my next post. 

Did you know?

  • Lake Erie is the warmest of all of the Great Lakes (southernmost positioned of all the other lakes), but it also freezes over more than other lakes (because it is the shallowest of all). 
  • The water in Lake Erie was so polluted that it created “dead zones” due to algae blooms by the 1960s, and in 1969, the Cuyahoga River, which flows through Cleveland, Ohio, caught fire.

Oktay Ince: Happy Summer Solstice Day and World Hydrography Day! June 21, 2022

NOAA Teacher At Sea

Oktay Ince

Aboard NOAA Ship Thomas Jefferson

June 20- July 1, 2022

Mission: Hydrographic Survey

Geographic Area of Cruise: Lake Erie

Date: Tuesday, June 21, 2022

Latitude: 41° 31′ 52 N

Longitude: 82° 12′ 00 W

Altitude: 138 m

Weather Data from Bridge

Wind Speed: 21 kts

Surface Water Temperature: 22 °C

Air Temperature (Dry Bulb Temperature): 23.5 °C

Wet Bulb Temperature: 22.9 °C

Relative Humidity: 55 %

Barometric Pressure: 25.5 in

Science and Technology Log

Learning is in full swing on NOAA Ship Thomas Jefferson. Previously, I talked about the multibeam sonar that the ship uses to map the bottom of Lake Erie. I also talked about how this technology related to other real-world applications. I hope I inspired you there. 

Now, I am going to talk about another technology that Thomas Jefferson uses- side scan sonar. The technology basically detects and creates images of objects on the lake/ocean floor. The ship concurrently uses both technologies. Side scan sonar technology takes images of the bottom of Lake Erie and multibeam sonar records the depth;  the seafloor/lakebed data is also known as bathymetry. For instance, if there is a big obstacle or a shipwreck in Lake Erie, side scan sonar would show an image.  Then, multibeam sonar  would be used to get the  depth of the obstacle. 

How does side scan sonar work differently than multibeam sonar?

If you remember from my previous post, multibeam sonar sends sound waves down towards the lake bottom. Side scan sonar also sends out sound waves, but from both sides of its transducer, sweeping the seafloor like a fan-shaped beam of a flashlight. So, the data needs to be composed of both the image and depth which allows a more comprehensive map of the seafloor. 

A third technology used with the multibeam and side scan sonars is called “moving vessel profiler (MVP)”. The MVP is similar to a conductivity, temperature, depth (CTD) cast as it collects electrical conductivity, temperature, and pressure (to get depth) of water. The benefit of the MVP is that the ship can continue moving and receive sound speed information, rather than coming to a complete stop to deploy a CTD. This improves efficiency, allowing the ship to collect more data. 

The MVP is a metal structure that looks like a big fish- also known as a towfish-  located at the tail of the ship. As the ship moves, the instrument trails behind it, about a meter below the water’s surface. Sensors to collect sound speed information are located inside the towfish. When the MVP is deployed, the towfish free falls to the lake/sea bottom, before being automatically brought to the surface by the ship’s winch.  Then, the ship receives a profile of the water column’s salinity and temperature, and can apply the sound speed measurements to the multibeam data. This information is critical for ensuring acquired depth measurements are in the proper location on the lakebed/seafloor. For the sake of Thomas Jefferson’s mission, CTD data is enough to process multibeam. However, other research vessels could have additional sensors within the MVP including some that measure chemical and biological parameters such as dissolved oxygen and chlorophyll fluorescence, etc. 

The MVP Training; Deployment of Towfish

  • Oktay, in a hard hat and life vest and Teacher at Sea shirt, poses for a photo on deck as other crewmembers stand around in the background
  • Oktay and other crewmembers stand around on deck
  • Oktay, wearing hard hat and life vest, stands at a control panel; other crewmembers look on
  • Oktay, wearing hard hat and life vest, operates a lever on a control panel on the back deck of NOAA Ship Thomas Jefferson
  • Oktay, wearing hard hat and life vest, speaks into a radio

Let’s elaborate a few science concepts here. Conductivity is a measure of water’s capability to pass electrical flow. It does that based on how many ions are in the water. Therefore, the more ions present, the higher the conductivity of water. Ions are mainly coming from dissolved salts and inorganic materials such as alkalis, chlorides, sulfides, and carbonate compounds. These ions (positive/negative charges) in the water create electric current, so it conducts electricity. 

Using the concept of electrical properties of dissolved salts, scientists measure the electrical conductivity of water so that they know the amount of salt present in the water (salinity). As you would expect, Lake Erie is freshwater so salinity is essentially zero. 

Conductivity is one of the most useful and commonly measured water quality parameters. Knowing changes of dissolved solids in the water is an indicator of change in a water system. Different life forms adapted to different salt concentrations in the water. Even a slight change to this parameter could have a disastrous effect on life forms in water which creates a cascade of effects in other systems. 

Personal Log

It was my second day on ship, and also the summer solstice. Today, sunrise was at 5:55 am and sunset was at 9:07 pm. It was the longest day for Lake Erie, indeed! It was also World Hydrography Day, yay! I am honored and humbled to be a part of Thomas Jefferson’s crew and to be the first Teacher at Sea on Great Lakes, especially on the longest day of the year and on World Hydrography Day in Lake Erie!

After eating my breakfast, I headed to MVP training. It sounded complicated but once I was on it, it was easy to navigate the instrument at sea. Then, I was called for my first boat ride. The ship has several “small” boats to assist in data collection, and they are beneficial for transiting and collecting bathymetry in more shallow places on the water. We had three people on the boat, doing side scan data collection closer to the shorelines. We also did several CTD casts, for nearshore sound speed profiles! On the ship the MVP can collect CTD data more frequently, whereas on the boat, we had to manually put it in the water every 4 hours. The boat was amazing, and I felt like I was on a private vacation boat! However, in this case, I was not only having fun, but also doing citizen science. I learned so much about the side scan, why it is used, and how the data helps the overall mission of Thomas Jefferson

Deployment of our launch vessel
Recovery of our launch vessel

In this personal blog, instead of just including all the cool things I have done on the ship, I want to share some of my opinions about what I feel about my experience so far. 

I would say about one-third of the crew on the ship are women  in their twenties and thirties. Many of them are NOAA Corps officers and survey technicians/scientists. What an inspiring environment for women in STEM! They are involved in everything from navigating the ship to collecting data, from driving the boat to doing hands-on activities. I strongly believe that our female crew members are such an inspiration for future generations who will make things better!

Another feeling I have is how people are passionate about what they do. For example, I never thought a Commanding Officer (CO) and Executive Officer (XO) would be so friendly and approachable . I’m glad Thomas Jefferson has a great executive team. I’ve been having great conversations during lunch or any place I go on the ship. In one of our lovely conversations, both CO and XO strongly encouraged me to bring my students to visit the ship to give a tour. I said “This is exactly what I am here for!” I want to bring back my experiences to my school and community, and I can’t wait to bring them to the ship! They will absolutely love it. 

In my last note, I should say that people who choose their careers based on their passion, are the ones who are successful, and also constantly inspire others to follow their footsteps. I have seen this in many professions across different fields. It is especially obvious when you have a public service job like educators, officers, doctors… You always have to do more than what your job asks you to do. If this is not something you are passionate about then the job becomes torture rather than enjoying. 

Here, on Thomas Jefferson, seeing these men and women on a research vessel, working tirelessly around the clock, collecting data, once again proved to me that you have to be passionate about what you do. 

Anyway, I think it is enough for me to stop talking about what I feel. But, you should know this – always follow your passion. That’s when you will find your real purpose in life. 

Do you know?

  • The National Oceanic and Atmospheric Administration Commissioned Officer Corps, known as the NOAA Corps, is one of the eight federal uniformed services of the United States. Those officers are made up of scientifically and technically trained officers. It is one of two U.S. uniformed services (the other being the U.S. Public Health Service Commissioned Corps) that consists only of commissioned officers, with no enlisted or warrant officer ranks. 
  • To become a NOAA Corps officer, applicants must hold a baccalaureate degree, preferably in a major course of study related to NOAA’s scientific or technical activities. When selected for appointment, officer candidates must satisfactorily pass a mental and physical examination. For more information check out NOAA Corps eligibility requirements here.

Laura Grimm: Happy World Hydrography Day! June 21, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: June 21, 2022

Current Location: Dalton, Ohio

Latitude: 40ᵒ 47’57” N
Longitude: 81ᵒ 41’49”” W
Elevation: 1102 ft.

Weather in Dalton, Ohio – Finally Summer!  Hot, humid, and a chance of afternoon thundershowers.

Personal Log

Did you know that every year on June 21 people across the world celebrate World Hydrography Day?  So just what is hydrography and why am I excited about it?

Greetings from Dalton, Ohio!  My name is Laura Grimm, and I am the STEAM (Science, Technology, Engineering, Arts and Math) teacher for all the wonderful, enthusiastic students in kindergarten through 8th grade at Dalton Local Elementary and Middle School. Dalton is a rural village in Wayne County in Northeast Ohio.  Our school district is small (less than 900 students), yet mighty!  We serve the Dalton and Kidron communities and are fiercely proud of our students. Bulldog Pride district wide! 

I have always “yearned to learn”. So, in the fall 2019, I applied to be a Teacher at Sea (TAS) with the National Oceanic and Atmospheric Administration (NOAA). NOAA has been sending teachers to sea for 30 years! 

Why does NOAA send teachers to sea?

I was accepted to be a TAS and was assigned to a fisheries expedition in the Gulf of Maine in April 2020.  Do we all remember what happened in the spring of 2020?  Yes, COVID caused this plan to be postponed . . . twice.  I was very disappointed, yet I remained optimistic for the future.

In late April this year, I got the news that I would be sailing on NOAA Ship Thomas Jefferson to help scientists do a hydrographic survey of Lake Erie! 

NOAA Ship Thomas Jefferson with the Statue of Liberty in the background
NOAA Ship Thomas Jefferson

Go to this link if you would like to learn more about NOAA Ship Thomas Jefferson.

I will be helping scientists (hydrographers) map the floor of Lake Erie in the vicinity of Cleveland, South Bass Island and Presque Isle, PA.  The survey will identify hazards and changes to the lake floor and provide data for updating NOAA’s nautical charts to make it safe for maritime travel.  

Watch this video to learn more about the science of hydrography.

I grew up only 20 miles from the Port of Cleveland.  As a child, my family spent a week each summer on Middle Bass Island where I learned to swim and fish for walleye and perch.  My daughter and I vacationed on Kelleys Island for many summers.  I even took an oceanography class on Gibraltar Island.  These islands are in Lake Erie and are close to South Bass Island which will be included in this summer’s hydrographic survey.  I am very excited to learn more about the Lake of my childhood. 

While I am “at sea” – actually, on the lake – I will post 2 to 4 blogs per week.  My blogs will include information about the science and technology I am learning and what it is like to live on a NOAA research vessel.  I will pose questions, define new terms, and give you things to think about.  I encourage you to communicate with me via email (lgrimm@daltonlocal.org).  I will be very busy on the ship and the internet may be spotty, so be patient with me; I will try my best to post answers to your questions on my next blog.

I couldn’t be more excited!  I have so much to learn.  It looks like I will be more of a student this summer than a teacher! Connecting children with nature, promoting STEAM education, and being a lifelong learner are three of my life goals.  This research opportunity will check all three boxes.  I am more than ready to board NOAA Ship Thomas Jefferson!  May the learning begin!

P.S. Happy World Hydrography Day!

Linda Kurtz: Women in STEM-(at sea): Meet Bekah Gossett, August 22, 2019

NOAA Teacher at Sea

Linda Kurtz

Aboard NOAA Ship Fairweather

August 12-23, 2019


Mission: Cascadia Mapping Project

Geographic Area of Cruise: Northwest Pacific

Date: 8/22/2019

HSST Beka Gossett
HSST Bekah Gossett

HSST Rebekah Gossett

  1. When you were a child, what was your dream career?

As a child, I always wanted to draw. I was drawing constantly and I wanted to somehow make my love for creating art into a career, whether that meant being a studio artist myself or helping to teach others to make art.

2. What was your favorite (and least favorite) subject in school?

Believe it or not, science! I grew to really enjoy my science classes starting in middle school and through high school, especially participating in the science fairs. My love for science was inversely related to my love for math. I started to dread all my mathematics courses as I went through high school, and really up into my earlier college years which often made my science courses difficult. During my junior year in college I took calculus taught by a great professor and things finally clicked!

3. At what point in your life did you realize you wanted to do the work you are doing now?

Sometime in between my junior and senior years in college, I realized I wanted to do what is I’m doing now. That’s when I was introduced to hydrography.

4. What do you enjoy the most (and the least) about your work?

I really enjoy working on the ocean and with small boats. It’s a really dynamic platform. The lifestyle that comes with living on a ship can be difficult. It’s a lot of traveling and spending time away from home.

5. Where do you do most of your work?

Most of my work is done on the ship in the Plot Room. It’s a big room on the ship where most of our processing systems live.

6. What tool do you use in your work that you could not live without?

A computer! Computers are used for data acquisition, processing, and delivery. Everything is done via some sort of processing/work station.

7. What part of your job with NOAA did you least expect to be doing?

I never thought I would be a NOAA Diver. I didn’t even know that NOAA had a dive program. Learning to be a working diver was an awesome experience and opportunity that I don’t think I would have ever had, or even would want to have outside of NOAA.

8. How could teachers help students understand and appreciate NOAA science?

Teachers could help students understand and appreciate NOAA science by sharing some of the awesome work we do that’s applicable to their classroom. NOAA is such a big administration with tons of cool science going on so by picking some interesting topics that are more relatable to their classroom audience might help engage their students.

9. What is your favorite part of your day when you are working and why?

When acquiring data, my favorite part of the day is the end, when the data is transferred and being processed. It’s not because the day’s over, but because I get to see all of the data we’ve collected throughout the day and remember the work that went into it. It’s also the beginning of the next stage of work for that dataset, the quality control stage.

10. What do you think you would be doing if you were not working for NOAA?

It’s hard to say, but I’m not sure I would be doing anything hydrography related. NOAA has been a great learning platform for me to become the hydrographer I am now. NOAA has really taught me to appreciate ocean science.

11. Do you have an outside hobby?

My outside hobby is painting. It can be hard to find space on the ship to paint, but traveling around Alaska and being on the water always inspires me to be more creative.

12. What is your favorite animal?

Picking one is pretty difficult, but I’m really into jellyfish right now. They seem like they have a low-stress lifestyle.

13. If you could go back in time and tell your 10 year old self something, what would it be?

“Relax, being 10 is way cooler than you think.”

14. Have you traveled anywhere interesting travels while studying Geology?

I traveled to Northern India as my field study in college. We were studying the water quality and management stemming from the Ganges River. Also, most of my geology labs in college were trips to the field which often meant the beach. Traveling and being outside is an added bonus while studying geology.

Interested in learning more about Hydrography and NOAA? Check out the resources below:

HYDROGRAPHY CAREERS NOAA 1

HYDROGRAPHY CAREERS NOAA 2

NOAA EDUCATIONAL RESOURCES

SCIENCE ON A SPHERE

OCEAN TODAY-“TRASH TALK”

Meg Stewart: What Does the Seafloor Look Like? Hydrography Can Tell Us, July 11, 2019

NOAA Teacher at Sea

Meg Stewart

Aboard NOAA Ship Fairweather

July 8 – 19, 2019


Mission: Cape Newenham Hydrographic Survey

Geographic Area of Cruise: Bering Sea and Bristol Bay, Alaska

Date: July 11, 2019

Weather Data from the Bridge
Latitude: 58° 36.7 N
Longitude: 162° 02.5 W
Wind: 1 knot N
Barometer: 1011.0 mb
Visibility: 10 nautical miles
Temperature: 58° F or 14° C
Weather: Partly cloudy, no precipitation

Red Sky
“Red sky at night, sailors’ delight. Red sky in morning, sailors take warning.” This old mariner’s adage did NOT prove to be true when I saw this sunrise viewed from NOAA Ship Fairweather at 5:21am yesterday. It turned out to be a perfect delight for a surveying day!


What is NOAA and the Teacher at Sea program?

You may be wondering what, exactly, am I doing going “to sea” with NOAA. First off, NOAA stands for the National Oceanic and Atmospheric Administration and originates back to 1807 with Thomas Jefferson founding the U.S. Coast and Geodetic Survey (as the Survey of the Coast) with a mission to provide nautical charts to the maritime community for safe passage into American ports. Over time, the Weather Bureau was added and then the U.S. Commission of Fish and Fisheries was developed. In 1970, these three agencies were combined under one umbrella organization and named NOAA, an agency that supports accuracy and precision of physical and atmospheric sciences, protection of life and property, and stewardship of natural resources. NOAA is within the Department of Commerce.

Meg on flying bridge
I am standing on the flying bridge of the Fairweather where you get a fantastic 360° view.

NOAA’s Teacher at Sea (TAS) program has existed since 1990, sending over 800 teachers on NOAA research cruises. The TAS mission is “to give teachers a clearer insight into our ocean planet, a greater understanding of maritime work and studies, and to increase their level of environmental literacy by fostering an interdisciplinary research experience.”  There is usually just one teacher sent per leg of a mission, that way the TAS gets full exposure to the research process and attention from the crew, scientists and staff on the ship. And it is true, everyone onboard has been friendly, helpful, welcoming, and willing to answer any question I might have, like, where is C deck? (That’s where my stateroom is located).


Science and Technology Log

Now that you understand NOAA’s mission, it should not surprise you that I am on a research cruise that is mapping a part of the seafloor that has not had detailed soundings. “Soundings” means the action or process of measuring the depth of the sea or other body of water. See the map below as that is where I am right now, in Bristol Bay. By the way, NOAA nautical charts are available for free at this NOAA site.

Bristol Bay nautical chart
The NOAA nautical chart of Bristol Bay, Cape Newenham and Hagemeister Strait. Note that where there are small numbers in the white and blue sections of the chart (that is all water), you can see the sounding depths to surface shown in fathoms. The red polygon is drawn on by me. We are working in the upper, northwest part of that “poorly mapped” section. Notice that there are essentially no soundings in that region.

When I’ve told friends, family and students that I was chosen to be on a NOAA research vessel that was compiling a detailed map of the sea floor off of Alaska, it was met with great surprise. “The ocean floor hasn’t been mapped before? How could that be?” In fact, more than 80 percent of the ocean bottom has not been mapped using modern, highly precise technologies.  But we do have a very coarse ocean floor – or bathymetric – map, created in the early 1950s by Marie Tharp using sounding data collected by the U.S. military and her collaborator Bruce Heezen. Tharp’s early map of the sea floor beautifully revealed the Mid-Atlantic Ridge and added another piece of evidence in support of the theories of continental drift plate tectonics. There’s a terrific Cosmos: A Spacetime Odyssey episode featuring Tharp.

1977 colorized ocean floor map
This is the Tharp and Heezen (1977) colorized ocean floor map. This map is used under the Creative Commons license.

Why we need a more detailed bathymetry map than the one created by Tharp and Heezen can be explained by the original mission of the early version of NOAA. Jefferson wanted to build a “…survey to be taken of the coasts of the United States…” in order to provide safe passage of ships to ports within the navigable waters of the U.S. As the Bristol Bay chart above shows, there are still coastal areas that have limited to no data. Without detailed charts, mariners cannot know where the shallower waters are (called shoals), or rock obstructions, shifted underwater sand bars, shipwrecks, or other hindrances that cause safety concerns to the movement of boats.

The hydrographic Survey Team on the NOAA Ship Fairweather use several 30 foot boats, called launches, with a multibeam echosounder attached to the hull (the bottom of the ship). The multibeam echosounder uses sonar and is a device useful for both shallow and deep water. In a nutshell, depth measurements are collected by calculating the time it takes for each of the sound pulses to travel from the echosounder through the sea water to the ocean floor and back again. The distance from the instrument to the seafloor is calculated by multiplying the travel time by the speed of sound through seawater, which is about 1,500 meters/second or 4,921 feet/second. Right before a hydrographic survey is started, the team collects information on the conductivity, temperature and depth of the sea water, as temperature and salinity will modify the density and change the travel time of the sonar pulses. The video below can explain the process further.

This NOAA video explains multibeam sounding and hydrographic operations.
launch with echosounder
A launch on a lift right before going out to survey. The multibeam echosounder is permanently fixed to the bottom of the hull. It’s a square, rigid box that sits flat against the hull in front of the keel.
Ali in a launch
This is Ali Johnson in the cabin of a launch. She is a hydrographic survey technician and is analyzing the multibeam echosounder data as it is being collected. The length of a launch is 32 feet, and all the technology needed for the hydrographic surveys are directly on boats in the cabin. Post-processing, or stitching the completed surveys into one comprehensive product, is done “back in the office” on Ship Fairweather.

The software used to collect the soundings is created by the multibeam echosounder manufacturer, so the collection of millions of points on a transect is seamless. Data collection runs are taken over multiple days and several “legs” or extended periods of time when the crew are all out at the same time on the Fairweather.  Following collection transects, the data are then post-processed using Caris HIPS and SIPS, which is the software that the Fairweather hydrographers use for data processing.

screen showing bathymetry
A close-up of one of the monitors that shows what the sounding data look like. By looking at these data returns, the hydrographers can tell immediately if something is not right with the equipment. The two windows that show maps colored red to yellow to blue (top right and bottom left) show the bathymetry. The red areas are shallow depths and the blue are deeper depths, relatively speaking. Also notice the window at the bottom right with a triangle and circle within the triangle; that is showing the fan-shape of the echosoundings.


Personal Log

We’ve motored to a new location, Cape Newenham, which is the name of this mission, so we will be here for about a week. When we got underway, the ship got to really rocking and my stomach could not handle it. I had one bad night but I am now fine and ship shape!

Cape Newenham is at latitude 58°N so we are up close to the Arctic Circle (66.5°N). At this time of year, there are about 5 hours of darkness per night here in Alaska, which is really cool. Compare that what we have in New York…

Anchorage v NYC
For July 11, 2019, the number of daylight hours in Anchorage, AK (closest large city to where I am now) is 18 hours and 41 minutes. Times of sunrise and sunset are also given….the sun sets at 11:25pm today! And in NYC, NY (where my school is located), you are getting four fewer daylight hours, or about 15 hours of light. Again, times of sunrise and sunset are shown. Source for both: https://www.timeanddate.com/sun/usa
Launches and Fairweather
Launches waiting to get underway. All boats going out for surveys stay close to the Fairweather until everyone is securely in their boat, just in case of MOB (man overboard).
Fairweather anchored
This is where Ship Fairweather is anchored for the next few days, as the survey crews transect the project area. We are on the southern side of Cape Newenham. Again, the terrain is tree-less, though we are now adjacent the mainland of Alaska. I’ve seen so many types of sea birds, but the puffins are the best because they seem to not have figured out how to fly. I hear there are walrus in the area, but I haven’t spotted one as yet.


Did You Know?

You probably know that Charles Darwin was the naturalist on board the HMS Beagle which set sail on December 27,1831. Over the nearly five years the Beagle was at sea, Darwin developed his ideas on natural selection and evolution of species. But what you might not know is that the captain of the Beagle, Robert FitzRoy, was an officer in the Royal Navy, a meteorologist and hydrographer. In fact, the primary mission of the Beagle was to survey the coastline of South America and, in particular, the Strait of Magellan, at the southernmost tip. Better, more accurate charts were needed by the British government, to navigate the treacherous, rough waters of the channels. In addition, FitzRoy was a protégé of Francis Beaufort (who developed the Wind Force Scale which is still used to help explain wind speed) and both worked together to create the science of weather forecasting.


Quote of the Day

“In every outthrust headland, in every curving beach, in every grain of sand there is the story of the earth.” – Rachel Carson

Meg Stewart: Getting Ready for an Adventure in Alaska

NOAA Teacher at Sea

Meg Stewart

Aboard NOAA Ship Fairweather

July 8 – 19, 2019

Mission: Cape Newenham Hydrographic Survey
Geographic Area of Cruise: Bering Sea, Alaska
Date: June 25, 2019

Introduction

I am so excited about my upcoming experience as a NOAA Teacher at Sea. I will be on the NOAA Ship Fairweather from July 8 to 19 and will be participating on a hydrographic research cruise, one that is mapping the sea-floor in detail; more about that soon. We will embark from and return to Dutch Harbor, Alaska, which is part of the Aleutian Islands. If you are my current or former student, or you are a friend or colleague of mine, or you are an admirer of the Teacher at Sea program, I hope you will follow along on this ocean adventure as I post about my experiences while at sea.

Meg on catamaran
This is me on a catamaran off the coast of Barbados.

A little about me

I am originally from California. I went to the beach often to body surf and splash around, maybe sunbathe (I don’t do THAT anymore).   It was in California where I got interested in geology. I was pretty young when I experienced the 1971 San Fernando 6.5M earthquake and after that, earthquakes were a regular occurrence for me. When I moved to Hayward, California, in early 1989 to complete my bachelor’s degree in geology at California State University East Bay, I was living off-campus and had the “pleasure” of rocking and rolling through one of the longest earthquakes I every felt when the 6.9M Loma Prieta earthquake hit.  I moved on from there to the desert of Las Vegas, Nevada, to earn my Master’s in Structural Geology at the University of Nevada, Las Vegas. I didn’t feel any earthquakes in Nevada, but I did do my research on an active fault in southwestern Utah. I like to think of myself as a “boots-on-the-ground” kind of scientist-educator.

Meg teaching
Teaching graduate students about digital mapping.

My work and life experiences are such that for five years after grad school, I was a staff geologist at a large environmental consulting company. I loved that job and it took me all around the U.S.  One of the assignments I had was to manage a mapping project involving data from New York and New Jersey harbor area. From that experience I became interested in digital mapping (known as Geographic Information Systems or GIS) and switched careers. I went to work at a small liberal arts college as the GIS support person within the instructional technology group. In addition to helping teach professors and college students how to work with the GIS software, I helped teach about use of social media in teaching, use a mobile devices for data collection, integrating alternative assessments like using of audio and video, and I maintained two computer labs. While I was involved in those two different careers, I gained some adjunct teaching experiences at several different colleges and grad schools, teaching geology, environmental science and GIS.

Meg at University of the West Indies
At the University of the West Indies, Centre for Resource Management and Environmental Studies

Another professional experience that I’ve had that I am most proud of is I was a Fulbright Scholar in 2009-2010 to Barbados. My family and I lived in Barbados for a year while I was worked with the University of the West Indies, Centre for Resource Management and Environmental Studies (CERMES) I taught GIS to graduate students, I worked with some of the students on research projects, I traveled to Belize as a field assistant on a field studies trip with faculty members and CERMES students, and I had the privilege of working on a marine-based, community-driven mapping research project with a then PhD student (who has since earned her degree). My part of the project was to take the spatial data, organize it and create a user-friendly Google Earth KML file. She and I got to travel around St Vincent and the Grenadines and Grenada, teaching community members about the work, the available data, and how to access the Google Earth project file. 

New York state fossil
Behind the scenes at the American Museum of Natural History, checking out the official state fossil of New York, Eurypterus Remipes.

In 2015, I re-tooled yet again and was accepted into a challenging yet rewarding education program at the American Museum of Natural History in New York City. In 15 months, I learned how to teach with artifacts, took graduate courses in all manner or earth and space subjects, of course, had classes in pedagogical approaches, had two in-residence teaching experiences at area schools, all the while in the amazing AMNH, home of Night at the Museum. 

Meg and students at AMNH
These are two of my ninth graders checking out a piece of kimberlite with a diamond sticking out. We’re at AMNH in the Hall of Planet Earth.

Now as a public high school educator, teaching Earth Science to 9-12 graders in the Bronx, I have a strong foundation in the solid earth topics like plate tectonics, rocks and minerals, and geologic time. But Regents Earth Science class in New York also involves oceanography, meteorology, climate science and astronomy. 

Meg snorkeling
Yes, this is me, actually in the sea at Salt Whistle Bay, Mayreau Island in the Grenadines.

What compelled me to apply for the NOAA Teacher at Sea program is what motivates me throughout my other life decisions: I wanted to push against my boundaries and my limitations. I have always had a healthy respect for the sea, which was mixed in with a little fear. I saw the movie Jaws when I was young and impressionable, so I never really wanted to venture too far into the water beyond the waves. I didn’t even want to swim in lakes for fear of what might be traversing through the murky unknown. As I’ve aged, I’ve certainly grown less fearful of the water. I’ve traveled on sailboats and catamarans, I’ve snorkeled in the Caribbean, I’ve jumped into waters with nurse sharks and stingrays! But as a teacher who feels like she’s missing some key knowledge of her curriculum – oceanography – I want to challenge myself to learn-while-doing as I have the privilege of being selected to be a Teacher at Sea. I cannot wait!

Lona Hall: Meeting, Greeting, and Settling In, June 3, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

 

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 3, 2019

Local Time: 1100 hours

Location: Alongside, JAG Shipyard, Seward, AK

Weather from the Bridge:

Latitude: 60°05.1022’ N
Longitude: 149°21.2954’ W
Wind Speed: 5 knots
Wind Direction: E/SE (114 degrees)
Air Temperature: 12.12° Celsius

Lona Hall on NOAA Ship Rainier
Enjoying the fresh air

Science and Technology Log

While at port in Seward, it has already been my pleasure to meet some of the people that make up the team of NOAA Ship Rainier.  My mission so far has been to learn about the different capacities in which individuals serve on board the ship and how each person’s distinct responsibilities combine together to create a single, well-oiled machine.  

The five main departments represented are the NOAA Commissioned Officers Corps, the Hydrographic Survey Technician team, the Engineering team, the Deck department, and the Stewards.  There are also a few visitors (like me) who are here to observe, ask questions, and participate in daily operations, as possible.

Career Focus – Hydrographic Survey Technician

Today I spent some time with Survey Technician, Amanda Finn.  Amanda is one of nine Survey Techs aboard NOAA Ship Rainier.

Amanda Finn, Hydrographic Survey Technician
Amanda Finn, Hydrographic Survey Technician

What is hydrography?

According to the NOAA website, hydrography is the “science that measures and describes the physical features of the navigable portion of the Earth’s surface and adjoining coastal areas.” Essentially, hydrographers create and improve maps of the ocean floor, both deep at sea and along the shoreline.  The maps, or charts, allow for safer navigation and travel at sea and are therefore very important.

(Click here to see the chart for Resurrection Bay, where the ship is currently docked.)

 

What does a Hydrographic Survey Technician do?

Technicians like Amanda are in charge of preparing systems for collecting hydrographic data, actually collecting and processing the data, monitoring it for quality, and then writing reports about their findings.  They work part of the time on the ship as well as on the smaller launch boats.

 

What kind of data do Survey Techs use?

Both the main ship and the small launches are equipped with multibeam sonar systems.  SONAR is an acronym for Sound Navigation and Ranging. This fascinating technology uses sound waves to “see” whatever exists below the water.  Instead of sending out one sound wave at a time, the multibeam sonar sends out a fan-shaped collection, or swath, of sound waves below and to the sides of the boat’s hull. When the sound waves hit something solid, like a rock, a sunken ship, or simply the sea floor, they bounce back.  The speed and strength at which the sound waves return tell the technicians the depth and hardness of what lies beneath the ocean surface at a given location.

small vessel in the water
Small launch for near shore survey

Personal Log

It is possible to be overwhelmed in a good way.  That has been my experience so far traveling from my home in Georgia to Alaska.  The ship is currently docked at the Seward shipyard in Resurrection Bay. When you hear the word “shipyard”, you might not expect much in the way of scenery, but in this case you would be absolutely wrong!  All around us we can see the bright white peaks of the Kenai Mountains. Yesterday I stood in one place for a while watching a sea otter to my left and a bald eagle to my right. Local fishermen were not as enchanted as I was, but rather were focused on the task at hand: pulling in their bounties of enormous fish!

View near Seward shipyard
Out for a walk near the shipyard

I am similarly impressed with the order and organization aboard the ship. With over fifty people who need to sleep, eat, and get things done each and every day, it might seem like an impossible task to organize it all.  By regular coordination between the departments, as well as the oversight and planning of the ship’s Commanding Officer and Executive Officer, everything flows smoothly.

I think that it is worth noting here how the level of organization that it takes to run a ship like NOAA Ship Rainier should not be taken for granted.  Every individual must do their part in order to ensure the productivity, efficiency, and safety of everyone else.  As a teacher, we often discuss how teamwork is one of life’s most important skills. What a terrific real-world example this has turned out to be!

NOAA Ship Rainier
NOAA Ship Rainier

Did you know?

Seward is located on the Kenai Peninsula in southern Alaska.  The name Kenai (key-nye) comes from the English word (Kenaitze) for the Kahtnuht’ana Dena’ina tribe.  The name of this tribe translates to “people along the Kahtnu river.” Click here for more information about the Kenaitze Indian Tribe.

Word of the Day

fathom: a unit of length equal to 6 feet, commonly used to measure the depth of water

Tom Savage: Surveying the Coastline of Point Hope, Alaska, August 12, 2018

NOAA Teacher at Sea

Tom Savage

Aboard NOAA Ship Fairweather

August 6 – 23, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, northwest Alaska

Date: August 12, 2018

Weather data from the Bridge

Wind speed 8 knots
Visibility: 10 nautical miles
Barometer: 1010.5 mB
Temp:  8.5 C     47 F
Dry bulb 8   Wet bulb 6.5
Cloud Height: 5,000 ft
Type: Alto Stratus
Sea Height 2 feet

Science and Technology

Why is NOAA taking on this challenging task of mapping the ocean floor?  As mentioned in an earlier blog, the ocean temperatures worldwide are warming and thus the ice in the polar regions are melting. As the ice melts, it provides mariners with an option to sail north of Canada, avoiding the Panama Canal. The following sequence of maps illustrates a historical perspective of receding ice sheet off the coast of Alaska since August 1857.  The red reference point on the map indicates the Point Hope region of Alaska we are mapping.

This data was compiled by NOAA using 10 different sources. For further information as how this data was compiled visit https://oceanservice.noaa.gov/news/mar14/alaska-sea-ice.html. 

The light grey indicates  0-30% Open Water – Very Open Drift.  The medium grey indicates 30 – 90 % Open drift – Close Pack.  The black indicates 90 – 100% very close compact.