Meredith Salmon: Xtreme XBTs, July 14, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

 July 12 – August 4, 2018

 

Mission: Seafloor Mapping in support of Galway Bay Initiative

Geographic Area:  Atlantic Ocean, south of Bermuda

Date: July 14, 2018

Weather Data from the Okeanos Explorer Bridge – July 14, 2018

Latitude: 28.58°N

Longitude: 65.48°W

Air Temperature: 27.4°C

Wind Speed:  13.96 knots

Conditions: Rain and clouds

Depth: 5183 meters

 

Science and Technology Log

Temperature and salinity are two main variables when determining the density of water. The density of water or any acoustic medium is a very important factor in determining the speed of sound in water. Therefore, temperature data collected by Expendable Bathythermograph (XBT) probes, as well as historical salinity profiles from the World Ocean Atlas, are used to create sound velocity profiles to use to correct for sound speed changes in the water column.

Expendable Bathythermograph (XBT) probes are devices that are used to measure water temperature as a function of depth. Small copper wires transmit the temperature data back to the ship where it is recorded and analyzed. At first, I was surprised to learn that temperature data is such an important component of multibeam mapping operations; however, I learned that scientists need to know how fast the sound waves emitted from the sonar unit travel through seawater. Since these probes are designed to fall at a determined rate, the depth of the probe can be inferred from the time it was launched. By plotting temperature as a function of depth, the scientists can get a picture of the temperature profile of the water.

On our expedition, we have been deploying XBT’s on a schedule as the ship is making its way to the survey area. The XBT Launcher is connected to a deck box, which translates information to computer systems onboard so the data can be logged when the probes are deployed into the water. On the Okeanos Explorer, up to 8 tubes can be loaded at one time and launched by scientists on board.

XBT closet in the Dry Lab

XBT closet in the Dry Lab

 

 

 

 

 

XBT Data

XBT Data from a launch aboard the Okeanos Explorer. The colors on the graph indicate the XBT number and the data is plotted on a temperature and depth scale.

 

 In addition to launching XBTs and collecting data, we completed a Daily Product so that we can communicate the data we have collected to anyone on shore. The Daily Products are completed not only to ensure that the hydrographic software systems are working correctly but to also inform the public our current location, where we have collected data, and if we are meeting the objectives of the mission. Once onshore, NOAA uses this information to analyze the quality of the data and use it for analysis for dive planning. In order to generate the Daily Field Products, we use hydrographic computer systems such as QPS Qimera for advanced multibeam bathymetry processing, Fledermaus for 4D geo-spatial processing, and Geocap Seafloor for digital terrain modelling. In addition, the Daily Field Products allow us to double check the quality of the data and search for any noise interferences due to the speed of the ship or the type of seafloor bottom (hard vs soft).

 

Personal Log

One of the coolest parts of learning onboard the Okeanos Explorer is the fact that I am a part of scientific exploration and discovery in real time.  Known as “America’s Ship for Ocean Exploration,” the Okeanos Explorer is the only federally funded U.S. ship assigned to systematically explore our largely unknown ocean for the sole purpose of discovery and the advancement of knowledge. This is the first U.S.-led mapping effort in support of the Galway Statement on Atlantic Ocean Cooperation and all of this information is going to be available for public use. Not only do I get the opportunity to be involved with “real-time” research, but I am also responsible for communicating this information to a variety of different parties on shore.

Being immersed in the “hands-on” science, learning from the survey techs and watch leads, and observing all of the work that is being done to collect, process, and analyze the data is a really exciting experience. I am definitely out of my element when it comes to the content since I do not have any prior experience with seafloor mapping, sonars, etc., but I am really enjoying playing the role as the “student” in this situation. There is definitely a lot to learn and I am trying to soak it all in!

 

Did You Know?

XBTs contain approximately 1,500 meters of copper wire that is as thin as a strand of hair!

Taylor Planz: Safety First!, July 15, 2018

NOAA Teacher at Sea
Taylor Planz
Aboard NOAA Ship Fairweather
July 9 – 20, 2018

 Mission: Arctic Access Hydrographic Survey
Geographic Area of Cruise: Point Hope, Alaska and vicinity
Date: July 15, 2018 at 8:46am

Weather Data from the Bridge
Latitude: 68° 22.310′ N
Longitude: 167° 07.398′ W
Wind: 3 knots W, gusts up to 20 knots
Barometer: 13.39 mmHg
Visibility: 5 nautical miles
Temperature: 10.8° C
Sea Surface 9° C
Weather: Overcast, light rain

Science and Technology Log
I was in my stateroom on Friday afternoon when I heard one continuous alarm sound, followed by an announcement that white smoke had been detected on board. My first thought was Oh no! What’s wrong with the engine now??? As I walked out of my room, I noticed smoke permeating through the halls near the ceiling. My muster station was the forward mess, so I walked there to meet up with my group. Two PICs (people in charge) had already laid out a map of the ship, and they were assigning pairs of people to search different sections of the ship looking for smoke and/or hot spots on doors or walls. Each “runner” group took a radio and reported their findings, and the results were written on the map. I was runner group 4 with an intern named Paul, and we were assigned the E level just below the bridge. We saw a small amount of smoke but no hot spots. One runner group opened an escape hatch to the fan room to find smoke EVERYWHERE. After finding the source of the fire, it was put out as quickly as possible and the smoke ventilated out of the ship. If you haven’t guessed it yet, this was our first fire drill.

Safety is always the first priority on all NOAA vessels. Working on a ship is much different than working on land. In the event of an emergency, everyone on board has to be prepared to be a first responder. If one serious accident happens, it could affect all 45 people on board. To ensure emergency preparedness, drills take place on a regular basis. Each drill is treated as though the emergency were happening in real life. Fire drills and abandon ship drills take place weekly, and man overboard drills and hazardous materials drills take place every three months.

An announcement to abandon ship happens as a last resort if there is no possible way to save the ship. If this were to happen, we would hear seven or more bursts of the alarm followed by an announcement. We would then grab our immersion suit and PFD (personal flotation device) as quickly as possible and meet at our muster stations. My muster station is on the port (left) side of the ship at fire station 24. There are life rafts on each side of the ship that can be deployed into the water. Right now, the water in the Arctic Ocean is a chilly 9° C. To protect ourselves from hypothermia, we must don an immersion suit within 60 seconds of arriving at our station. New people to the ship must practice this during our first few days on board.

The immersion suits would be used to keep warm in the event we had to abandon ship

The immersion suits would be used to keep warm in the event we had to abandon ship

In addition to drills, an operational risk assessment (or GAR score) is calculated for the mission each day. GAR stands for Green, Amber, or Red, and it determines whether the mission is safe to pursue that day. The GAR score consists of the following sections: resources, environment, team selection, fitness, weather, and complexity. Each section is given a rating of 1 – 10, with 1 being the best and 10 being the worst. Many of the sections are variable depending on the day, so sometimes a mission will be delayed until the weather improves, and other times assigning different personnel to the task may be enough to make the mission safe. The total score is the sum of the six sections. If the score is 45 or above (red zone), then the mission will not happen that day. If the score is between 24 and 44 (amber zone), it means extra caution is advised, and a low GAR score of 0 – 23 is green. The best case scenario is for the mission to be in the green zone.

Some other examples of safe practices on board NOAA Ship Fairweather are detailed below.

LT Manda gives a safety brief before deploying the small boats for the day. Once deployment begins, everyone must wear hard hats and a PFD for safety

LT Manda gives a safety brief before deploying the small boats for the day. Everyone participating in the boat deployment must wear hard hats and a PFD

Many hands are needed to safely deploy a small boat

Many hands are needed to safely deploy a small boat

The small boats are equipped with life jackets, immersion suits, first aid kids, and other safety equipment

The small boats are equipped with life jackets, immersion suits, first aid kids, and other safety equipment

Personal Log
I’m learning what it truly means to be flexible during my time with NOAA Ship Fairweather. Weather can make or break a day of surveying on the sea. The water experiences surface waves from both the wind and swell. Swells are the large waves that originate elsewhere and have a definite direction whereas the surface waves are caused by wind and are much smaller. The surface waves in combination with the swell produce a total wave height, and the NOAA Corps looks at the total wave height when deciding the plan of the day. Unfortunately, waves of up to 14′ are predicted in the Point Hope region this week, which will make it incredibly difficult to launch the small boats. Not only do the large waves create hazardous conditions on the boat, they make it harder to acquire good soundings with the MBES. If the data collected will be of poor quality, it is better to delay the mission and wait for better conditions. The poor weather in combination with the mechanical delay we experienced during the first week of the leg has made it difficult to collect very much data around Point Hope.

Not only do the large waves slow down the ship’s data collection, they make me queasy! I felt lucky coming in to the Arctic Ocean on Friday because the sea was calm and beautiful! It was almost eerily quiet. The most amazing part was that the horizon seemed to disappear as the sky and the ocean gently blurred into one. The serenity was short-lived however, and taking the small boats out Saturday morning was quite the adventure! I am so glad I brought motion sickness medication with me!

The Arctic Water was calm and beautiful Saturday morning

The Arctic Water was calm and beautiful Saturday morning

Did You Know?
Did you know NOAA Ship Fairweather weights 1,591 tons? Since one ton is the same as 2,000 pounds, the ship weighs 3,182,000 pounds! The ship stays afloat, so that means the buoyant force it experiences is equal and opposite to its weight. If the buoyant force were any less, the ship would sink!

Question of the Day
How does a personal flotation device (PFD) keep a person from sinking?

Answer to Last Question of the Day:
How many nautical names can you think of for rooms/locations on the ship, and what would their equivalent name be on land?
These are the ones I have learned so far:
Stateroom = Dorm or bedroom
Galley = Kitchen
Mess = Dining room
Scullery = Dish washing room
Head = Bathroom
Gangway = ramp (to get off boat)
Sick Bay = doctor’s office/patient room
Do you know of any that I missed? Feel free to answer in the comments!

 

Brandy Hill: First Leg (hopefully not the last!) at Sea Complete: July 12, 2018

NOAA Teacher at Sea

Brandy Hill

Aboard NOAA ship Thomas Jefferson

June 25, 2018 – July 6, 2018

 

Mission: Hydrographic Survey- Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 12, 2018

 

Personal Conclusion

It was wonderfully impressive listening to ENS Jacquelyn Putnam’s orders to the Bridge while docking the ship. She and Lt. Klemm stood just outside the doors to the Bridge with a clear view of the dock at Pier 21. As she called out orders, the Bridge team would respond by making adjustments to the rudder, speed, or direction. I hadn’t realized how much of a team effort docking the ship would be. It was like parallel parking a car in busy downtown Portland on a much larger scale.

FishingVessel.jpg

We arrived at Pier 21 in Galveston, Texas early Friday morning on July 6th. There were several fishing vessels flocked with birds. Sometimes you could see dolphin fins peeking up through the water around the boat.

After we were safely docked, all shipmates met in the mess where CDR Chris van Westendorp gave a speech of recognition and appreciation for his crew. These last couple legs at sea are especially meaningful for CO as they symbolize a transition of many years at sea to an upcoming land assignment. There were also several people taking much-deserved leave, or moving onto other job assignments.

 

 

SunsetBow.jpg

Sunset from the bow during my two weeks aboard NOAA ship Thomas Jefferson.

I am so grateful to have been able to participate as a teacher at sea on the Thomas Jefferson. I knew it would be a learning experience, but I didn’t realize how impactful my relationships and interactions with the crew would be. There is something truly inspirational about being around a well-functioning team of people serving a meaningful purpose. People are excited to work for NOAA and to be a part of a higher scientific mission.

I also hadn’t realized the direct relationship between hydrographic surveys and hurricane relief. After a hurricane, the sea floor can shift and change/block major pathways for delivering supplies like oil and water. Last year, NOAA ship Thomas Jefferson responded to Hurricane Maria in Puerto Rico,  “NOAA Ship Thomas Jefferson spent the last three weeks in Puerto Rico and the U.S. Virgin Islands surveying ports and bays in response to Hurricane Maria. Over the three week period, the crew surveyed 13 areas and no fewer than 18 individual port facilities, as well as conducted emergency repairs to three tide and weather stations.” (NOAA Office of Coast Survey, October 2017)

Looking towards next school year, I am excited to bring my experience into the classroom and provide students with meaningful learning opportunities. I am looking into using Citizen Science, ways of incorporating the Ocean Literacy Principles, and reaching out to have more diverse professionals interact with my classroom. One of my goals as a science and math teacher is to provide students with many opportunities to ask questions, explore, think critically, and be inspired to continue a lifelong journey of learning and growth.

My experience with NOAA and NOAA ship Thomas Jefferson will forever have an impact on my classroom and for that, I am extremely grateful.

RiceCrispieFlag.jpg

4th of July goodies made by ENS Sydney Catoire, Julia Wallace, and Kevin Brown.

BowlineKnot.png

I practiced my Bowline knots on the long trek home.

Taylor Planz: Rocks are Red, Valleys are Blue, July 10, 2018

NOAA Teacher at Sea

Taylor Planz

Aboard NOAA Ship Fairweather

July 9 – 20, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, Alaska and Vicinity

Date: July 10, 2018 at 5:30pm

Weather Data from the Bridge
Latitude: 64° 29.691′ N
Longitude: 165° 26.276′ W
Wind: 5 knots SW, gusts up to 12 knots
Barometer: 99.9 kPa
Visibility: 10+ nautical miles
Temperature: 16.0° C
Sea Surface Temperature: 11.9° C
Weather: Cloudy, no precipitation

Science and Technology Log

The City of Nome from NOAA Ship Fairweather

The City of Nome from NOAA Ship Fairweather

Welcome to Nome

The center of town features a sculpture of a gold pan because Nome is historically known for gold panning and dredging.

I arrived in Nome on Saturday, July 7th around 7:30pm. The weather was a beautiful 65° F with just a few clouds in the sky! By the time I settled in my stateroom (bedroom) and unpacked my belongings, it was raining! According to the Western Regional Climate Center (WRCC), Nome receives and average of 16″ of rainfall each year and 60″ of snow. Despite this fairly low rainfall total, precipitation is a frequent
occurrence in Nome. Usually, the precipitation falls as more of a light drizzle in the summer, so the accumulation over the course of a year is very small.

I am here in Nome to join NOAA Ship Fairweather on a Hydrographic Survey of the vicinity of Point Hope, Alaska. Nome is the northernmost city in Alaska with a deep enough draft dock and facilities (such as sewage disposal and fresh water) for a ship. Therefore, we will start and end our trip in Nome. The ship has been experiencing some technical difficulties, so we were not able to go underway on our scheduled day of July 9. Over the weekend, engineers discovered a leak in the exhaust from one of the ship’s engines. Left untreated, black smoke could escape into the ship and personnel could be exposed to the unhealthy fumes. As of today, the exhaust pipe has been fixed, but there are a few parts that need to be shipped to Nome to finish the job. Hopefully NOAA Ship Fairweather will be underway later this week.

on a small boat

Here I am aboard one of the small boats with NOAA Ship Fairweather in Background at the Nome Harbor.

Once we are underway, the trip to Point Hope will take approximately 22 hours. That means we must reserve a full day on each end of the leg (another name for the trip) for travel. In order to maximize our limited time near Point Hope, NOAA Ship Fairweather will deploy up to four 28′ boats to work at the same time. There are also enough personnel onboard to allow data to be collected on the small boats for up to 24 hours per day. Two of the four 28′ boats are shown below.

Launch 2805

Two 28′ boats with hydrographic instruments can be found on each side of NOAA Ship Fairweather.

So what are these boats all doing anyways? As previously mentioned, NOAA Ship Fairweather and its small boats are designed for hydrographic research. “Hydro” is a prefix meaning “water”, and “graph” is a root word meaning “to write”. The boats will map the sea floor (i.e. – “write” about what is under the water) and any of its contents with sonar devices. Sonar is an acronym that stands for SOund Navigation And Ranging. The main sonar device used on this ship is a multibeam echosounder (MBES for short), which can be found on the underside of the ship as seen below. Sound waves are emitted from the front of the device, known as the transmitter. The sound waves travel through the water column, bounce off the sea floor, and then get picked up by a receiver adjacent to the transmitter.

Multibeam Echosounder

Multibeam Echosounder on NOAA research vessel (Photo courtesy: NOAA)

Conductivity, Temperature, and Depth Sensor (CTD)

Conductivity, temperature, and depth sensor (CTD)

There is a lot of math involved both before and after sound wave data is collected! The photo below is a CTD instrument, which stands for conductivity, temperature, and depth. Conductivity is a measure of how well an object conducts electricity. This instrument is lowered through the water column, collecting data on all three parameters listed above. The speed of sound varies based on conductivity and temperature, so the sonar data can be adjusted based on the results. For each individual data point collected along the sea floor, the actual speed of sound is multiplied by half of the time it took the sound wave to travel from transmitter to receiver. Using the equation distance = rate x time, one can find the distance (i.e. – depth) of each point along the sea floor. Put a bunch of those results together, and you begin to see a map!

Workstation

Many screens are needed to put all of the data together into an accurate sea floor map.

Sea floor maps use color to show different depths. The most shallow areas are colored with red, while the deepest areas are colored with blue. The remaining colors of the rainbow form a spectrum that allows us to see slopes. Today, we took a small boat out and surveyed the harbor where NOAA Ship Fairweather is docked. The harbor was very shallow, so every large rock in the harbor showed up as red on the map. The deeper areas showed up as blue. Hence my blog title! In my next blog, I will include pictures of maps that have recently been completed! Stay tuned!

Personal Log

Sea glass and rock treasures

Sea glass and rock treasures from the Bering Sea

Living on a ship that is docked in a tiny town with little to no cell phone service is fairly challenging. However, everyone on the ship finds creative solutions to keep themselves and others entertained. It is not uncommon for groups to form in the conference room to watch a movie on the big projector screen or to host a game night. There is also a fitness room onboard with plenty of exercise options! The Bering Sea and a long beach are a short, five minute walk from the ship. We had a campfire with marshmallows the first night that everyone returned to the ship from their time off. One person in our group found a whale bone on the beach! See the picture below. I spent some time walking the water line looking for sea glass. I actually found a few pieces, in

Whale bone

This is a whale bone that was found on the beach near NOAA Ship Fairweather

addition to a couple of rocks I thought were quite pretty! Sea glass is made from containers, bottles, and other glass objects that end up in the ocean. Over time, these objects break into smaller pieces, and the sandy and/or rocky sea floor erodes them. By the time they reach the beach, the pieces of glass have smooth edges and a translucent color. They are fun to collect as they come in many different colors, shapes, and sizes!

Did You Know?
Ocean water has a high conductivity, or ability to conduct electricity, because of all of the dissolved salts in sea water. The ions that form from dissolved salts cause ocean water to be about 1,000,000 times more conductive than fresh water!

Question of the Day
If a CTD determined that the speed of sound in an area was 1,504 m/s and the time it took for the sound wave to travel from the ship’s transmitter to receiver was 0.08 seconds, how deep was the water in that specific area? Make sure to use proper units, and remember that the total time is two ways and not just one way!
(Answer in the next blog post)

Victoria Obenchain: NOAA Corps Officers, July 3, 2018

Teacher at Sea Blog

Victoria Obenchain

Aboard NOAA Ship Fairweather

June 25th-July 6th, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Northwest, Alaska

Date: July 3, 2018

Weather Data from the Bridge

  • Lat.: 54o 53.1’ N
  • Long.: 162o 30.8’ W
  • Sea wave height: 1 foot
  • Wind speed: 29 knots
  • Wind direction: East, southeast
  • Temperature: 10.0oC
  • Visibility: 4 nautical miles
  • Sky Conditions: Overcast/Hazy

Personal Log

I am writing my personal log first this time, because I am just in awe of the beauty around me. We pulled in to Kodiak, AK on Sunday to pick up an Autonomous Surface Vehicle (ASV) which will be used later in the summer, and to refuel. The scenery here is just amazing, I spent the day on the Flying Bridge (the highest point I am allowed to stand) and just took in the sun, scenery and beauty. The water was a crystal royal blue, the mountains a bright green topped with white snow; and as we finally pulled out, fascinating sea life appeared all around us. From jellyfish, sea otters, porpoises, whales and puffins; it was beautiful. While I was not fast enough with my camera when an animal decided to grace my presence, here are some pictures of the scenery.

Science and Technology Log

Aboard NOAA Ship Fairweather, officers of the NOAA Corps work hard to keep our ship on course and accomplish the ship’s mission. The ship has a wide range of officers; senior officers who are within a few years of retirement, officers who have worked on multiple assignments and are working their way up the ranks to one day being a commanding officer (CO) of their own ship, down to junior officers who have just joined NOAA a few months ago and are still learning all they need to know to be a part of this amazing team.  They are an incredible example of respect, self discipline, perseverance and teamwork.

20180702_112937.jpg

Officers on the bridge of NOAA Ship Fairweather

Today, the newer junior officers had a chance to take part in a docking and launching ship simulation. The XO designed a Playstation ship game to have the officers practice commands for the rudder, bow thrusters, and forward and back engines. The junior officers had to then try docking, turning, walking and driving the ship in different sea conditions. The officers yelled out the commands and the other players responded accordingly, much like they would do as an Officer on Duty. The ship on the screen then would move as it would in the sea. Junior officers could then see how a ship would respond to their calls. Docking and launching are done very little once on a mission, so junior officers might not get too many chances to practice this important skill. This seemed to get everyone a bit involved.

Every few years, officers rotate between ship deployments and land assignments. While an officer may really love their current assignment or position, this change in location and assignment allows them to learn new skills and develop as NOAA officers. NOAA’s commitment to science and technology has attracted some of the most passionate and scientifically-minded individuals to this career path; developing their skills and challenging them to grow within their field seems to be something NOAA has excelled at. On board NOAA Ship Fairweather, officers are constantly learning, pushing or supporting each other and following a chain of command with the highest respect.  I am constantly impressed with their knowledge of the ship, the engines, native sea life, navigational skills, safety protocols, survey planning (yes they do surveys, too!) and patience, especially with a very interested and inquisitive Teacher at Sea.

20180703_082655.jpg

ENS Lawler and ENS Junge keeping us on course.

NOAA Corps is the smallest of the seven uniform services in our country. NOAA’s mission has a scientific focus, so all officers have an undergraduate degree in a scientific field and some level of science expertise. While many are excited to join this amazing team, there are some challenges outside the work itself. A ship assignment is not the easiest of jobs; to be in a self-contained area which serves as both your work and your home, one that may offer you little privacy and connections to the outside world when cell service is not available or wifi is slow, and yet together they lift each other up, help each other succeed and move past disagreements quickly, as they are all going through some of the same issues.

I have spent some time talking to a few of the newer officers about why they joined NOAA Corps. They are all so passionate about their job, yet, only one of them, when they were in middle school or high school, even thought this would be where they are today.  For time and space reasons, not to mention for my students’ attention spans, I will paraphrase a few of them below.

What was appealing about joining NOAA Corps?

-I really wanted to go to sea, and do science. I didn’t want to be sitting behind a desk. – ENS Kevin Tennyson

-NOAA Corps moves you around every few years, between land and sea assignments. This allows you to never get stagnant in your skills, you are always learning. – LT Steve Moulton

-Before this I was in the Coast Guard reserves and working on my science graduate degree, and this seemed like a good next step. What cemented it for me was when I got to go to Antarctica for some research on a ship for 37 days, it made me realize this was what I wanted to do. -ENS William Abbott

What are the best days like on the ship and in NOAA Corps?

-Driving the ship in cool places and in interesting, challenging passes. – ENS Patrick Lawler

-I like doing the small boat surveys; small boat operations and data collection, and getting diving practice in when possible. – ENS Peter Siegenthaler

-Just being on the bridge, orienting yourself with where you are, and figuring out the big picture when it comes to the ship. – ENS William Abbott

-Being on the bridge with your co-workers, figuring things out together, it can be really fun. -ENS Jeff Calderon

What challenges are there to working on the ship and in NOAA Corps?

-It can be a lot of pressure to perform your job well. You are responsible for those on board. – ENS Kevin Tennyson

-Being on a ship for so long, it starts to feel small, and you miss things like gardening and just the land in general. – ENS Linda Junge

-There is a lot of electronic equipment to become acquainted with and know how to work without thinking about. – ENS Cabot Zucker

What are you looking forward to in your NOAA Career?

-My next assignment is in Maryland, I’ll be doing small boat surveys and mapping in the Chesapeake Bay. It will be nice to be closer to home. – ENS Patrick Lawler

– Hopefully getting sent to Antarctica, they have a station there. It would be cool to work there for a bit. – ENS Jackson Vanfleet-Brown

-Hopefully going to dive school. I also like that throughout this job I will be constantly learning. – ENS Cabot Zucker

-I hope to be getting into pilot training/flight school within a few years.- ENS Jeff Calderon

What did you want to be growing up or what did you see yourself doing when you were older?

-Totally wanted to be a baseball player… or I guess something with Marine Biology or Marine Science, doing field research. – ENS Patrick Lawler

-Was very interested in being a pilot for a bit of a time. Sometimes I was unsure, but definitely knew I wanted to travel! – ENS Linda Junge

-I wanted to be on a ship, my Mom and Godmother worked on ships, this was kind of where I saw myself. – ENS Jackson Vanfleet-Brown

– The stereotypical mad scientist. Yep, that’s what I thought. – ENS Kevin Tennyson

Is there anything else you would tell someone about this job, in particular some adorable science loving, students who maybe have not heard much about this type of career?

-This is a lot of fun! It’s a good mix of science, active and outside work, and you get to see the world. –ENS Kevin Tennyson

– I definitely did not know about this growing up! I would say to look at Maritime Academies for those who might be interested. There are a lot of ship jobs out there that pay well and offer you fun interesting work that is not behind a desk. – ENS Peter Siegenthaler

– A ship is a cool environment to work in, not just for NOAA, any ship job can be great. If you are interested in research options to more exotic or isolated places, employers like those who have ship work skills. Those people can usually be resourceful and diffuse stressful situations; because, well you have to be able to. And it’s cool… so why not be on a ship? – ENS Linda Junge

– This job is all about adventure, it will definitely challenge you! – LT Steve Moulton

One last thing: I got a very short video of some porpoises, check them out!

Eric Koser: Navigation + Hydrography = Great Charts! July 1, 2018

 

NOAA Teacher at Sea
Eric Koser
Aboard Ship Rainier
June 22-July 9
Mission: Lisianski Strait Survey, AK
July 1, 2018: 0900 HRS

 

Weather Data From the Bridge
Lat: 58°06.8’          Long: 136°32.0’
Skies: Broken
Wind 10 kts at 220°
Visibility 10+ miles
Seas: 1 ft
Water temp: 7.2°C
Air Temp: 11.6°C Dry Bulb, 10.9°C Wet Bulb

Science and Technology Log

Aboard Ship Rainier, it takes a team to manipulate this ship. But first, much planning must occur to prepare for each day!

The FOO (Field Operations Officer) creates the plan for each day. Each evening, around dinner time, the FOO publishes the POD (Plan of the day) for the next day for everyone aboard. Here is a portion of July 1’s POD developed by FOO Ops Officer Scott Broo:

7.1.18 RA POD

The “Plan of the Day” for July 1, 2018. Notice the shoreline window indicates the best time for the launches to work.

Today at 0515 was M/E Online.  This is when the Engineering Department starts both 12 cylinder diesel locomotive engines–after being prepped and inspected ahead of time.

Next the Deck Department “weighed the anchor” at 0600 to get underway. Note – this term refers to when the ship holds the weight of the anchor – as it is pulled OUT of the water so we can get underway.

The principal work of Ship Rainier is hydrographic mapping. All operations here focus on creating the best charts possible of the ocean floor. As we are logging (using the MBES to take data from the ship), the plot department communicates to the bridge to indicate where they need the ship to go. The bridge can view a computer display showing the current plots the hydro team is working on – and uses this and the guidance of the hydrographic team to direct the ship. Over time, the ship covers the area of the current sheet while the hydro team captures the data from the MBES. As the process proceeds, the whole sheet gets ‘painted’ by the MBES so we have a complete chart of the bottom.

MBES Data

This display in the plot room shows the hydrographers the incoming MBES data in real time. Note the line of travel of the ship in the center pointing WestSouthWest as this sheet is ‘painted.’ Various colors represent different relative depths.

It really takes a team on the bridge to control the ship when underway. The bridge is the control room of the ship.

Bridge Location

The bridge is the room with all the windows (in the blue box) just below the fly bridge.

Imagine standing on the bridge (the room where the driving happens) and noticing who is there. From port (left) to starboard (right) we have: Navigator, Lee Helm, Helm, Lookout, and OOD.

The Bridge

Here the lookout, the JOOD (junior officer on deck), the OOD, and the helmsman (left to right) are on the bridge.

Bridge Diagram

This snippet from the ship’s plans illustrates locations of tools on the bridge.

The navigator’s job is to always be aware of where the ship is and where she is to be heading. The lee helmsperson operates the controls for the engine speed and the pitch of the props [forward or backwards]. The helmsperson turns the wheel to control the rudders or sets the helm in autopilot to steer a fixed bearing. The lookout maintains awareness of all other vessels around the ship and any potential obstacles in the ship’s path. The OOD orchestrates the whole team and is directly responsible for the motion of the ship. The OOD gives commands for any changes that are to happen to the course of the ship – and also communicates with Plot to know where they need the ship to go to create the charts.

Lee Helm

The lee helm is the control panel for the engines located on the bridge. The propeller pitch is controlled by the levers at the center. The bow thruster is controlled by the lever on the right.

The Helm

The helm is the ship’s steering control. The current bearing is show at the top and bottom and the auto pilot bearing is on the display at the center.

Radar

The radar displays what is around us. The yellow indicates land (we were anchored in a bay at the time of this photo). Radar also senses other vessels in the water. Two radar units run at two different ranges all the time.

 

 

 

 

 

 

 

 

 

 

 

Personal Log

Shoreline from Launch

This is a shoreline view from launch RA-7 as we were charting features along Lisianski Inlet.

The wildlife in this part of Alaska is great and easy to find. We’ve seen humpback whales, orcas, sea otters, eagles, gulls, deer, and bears. Last night as we were anchored at the end of the inlet I watched a grizzly bear on shore. I was able to use the large mounted binoculars on the flybridge affectionately called “big eyes” to take photos. I watched the bear move along the shore as a pair of eagles flew overhead.

Here are a few of the wildlife photos I’ve taken the past several days!

This slideshow requires JavaScript.

Here is a video of the same bear lumbering along the shoreline in the evening.

Shore Bear

Questions to Ponder

Why do you suppose the shoreline window for launch boats to conduct hydrographic surveys matches up to the times of the lowest tide of the day?

What role does the tide play in creating accurate charts of the sea floor?

How can a ship or launch make an accurate map of the seafloor if the vessel is constantly changing pitch, yaw, and role as it moves in the waves?
[There is a system to account for this!]

Who can access the charts created by NOAA?  Anyone!
The United States is the only country to provide freely available navigational charts to anyone.  Visit charts.noaa.gov to see what these look like!

Brandy Hill: What Lies Beneath the Surface, July 1, 2018

NOAA Teacher at Sea

Brandy Hill

Aboard NOAA ship Thomas Jefferson

June 25, 2018 –  July 6, 2018

 

Mission: Hydrographic Survey- Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 1, 2018

 

Weather Data from the Bridge

Latitude: 29° 10.1’ N

Longitude: 093° 54.5’ W

Visibility: 10+ NM

Sky Condition: 3/8

Wind: 16 kts

Temperature:

Sea Water: 29.4° C

Air: 27° C

 

Science and Technology Log

At this point I have been able to understand more of the sonar technology taking place during the survey aboard the Thomas Jefferson. The ship uses two types of sonar: multibeam and side scan. Both work together transmitting and receiving sound pulses to and from the ocean floor. This provides a multispectral analysis.

Julia Wallace, a physical scientist, works at the sonar acquisition station. This requires a large amount of multitasking as she communicates with the bridge (ship steering deck), watches the safety cameras, and makes sure both sonar devices are working correctly.

Julia Wallace, a physical scientist, works at the sonar acquisition station. This requires a large amount of multitasking as she communicates with the bridge (ship steering deck), watches the safety cameras, and makes sure both sonar devices are working correctly.

Multibeam sonar is located underneath the hull of the ship. Multibeam is used to detect bathymetry (the depth of the ocean floor). Multibeam backscatter (reflected wave energy) gives a reading of the surface intensity. For example, a strong signal would mean a harder surface like rock or pipeline. With multibeam sonar, you can also adjust the sound wave frequency. For example, high frequency (primarily used during this survey in the Gulf of Mexico) is used for shallower waters allowing for higher resolution images. Images from multibeam have a color gradient to allow for clear vision of contours and depth differences. One way surveyors aboard the TJ may use backscatter images is to determine areas where bottom sampling might be applicable.

A NOAA ship using mulitbeam sonar. (Courtesy of NOAA)

A NOAA ship using mulitbeam sonar. (Courtesy of NOAA)

Bathymetry acquired using multibeam echosounder layered over a nautical chart.  Blue and green wave lengths penetrate further in water, so the coloring corresponds to this observation. This poster is from a previous Thomas Jefferson hydrographic survey near Savannah, Georgia. (Prepared by CHST Allison Stone)

Bathymetry acquired using multibeam echosounder layered over a nautical chart.  Blue and green wave lengths penetrate further in water, so the coloring corresponds to this observation. This poster is from a previous Thomas Jefferson hydrographic survey near Savannah, Georgia. (Prepared by CHST Allison Stone)

3D bathymetry imagery from the Okeanos Explorer. (NOAA)

3D bathymetry imagery from the Okeanos Explorer. (NOAA)

A close-up view of multibeam data. The third window down shows multibeam backscatter.

A close-up view of multibeam data. The third window down shows multibeam backscatter.

The side scan sonar is used alongside multibeam to provide black and white scans of images. Like multibeam backscatter, side scan measures the intensity of the sound returning from the sea floor. For example, a side scan return with high intensity could indicate a difference in material like pipeline or a wreck. A low intensity value could mean that the side scan sonar waves have reached a muddy substrate. Julia used the analogy of a tennis ball being bounced against a wall of different materials. For example, the tennis ball hitting a concrete wall would bounce back with higher intensity than one being bounced against a soft wall. Side scan sonar is very effective at detecting features that protrude off the sea floor, and for shallow water surveys, typically can see farther and cover a greater area the sea floor than multibeam echosounders alone.

The side scan sonar sensor is located on a torpedo-shaped “towfish” and pulled behind the boat. When viewing side scan images, surveyors typically look for the acoustic shadow cast by a feature protruding off the sea floor. By measuring the length of the acoustic shadow, hydrographers can determine whether the feature requires additional investigation. For example, the outline of a shipwreck, bicycle, or pipeline. However, it can also detect mammals like dolphins or schools of fish.

Diagram of side scan sonar. (Courtesy of thunder bay 2001, Institute for Exploration, NOAA-OER)

Diagram of side scan sonar. (Courtesy of thunder bay 2001, Institute for Exploration, NOAA-OER)

The Thomas Jefferson sidescan sonar on deck.

The Thomas Jefferson sidescan sonar on deck.

In the early morning, the sidescan sonar picked up the image of an incorrectly charted shipwreck. Height is estimated using the "shadow" of the wreck.

In the early morning, the sidescan sonar picked up the image of an incorrectly charted shipwreck. Height is estimated using the “shadow” of the wreck.

Sidescan sonar imagery layered on a nautical chart. It is important to remember that sidescan data does not account for depth, it is a measure of differences in sea floor substrate.

Sidescan sonar imagery layered on a nautical chart. It is important to remember that sidescan data does not account for depth, it is a measure of differences in sea floor substrate.

Look closely and you can see arc lines in the sidescan imagery. Lt. Anthony Klemm explains that these arcs are from ships dragging anchor and stirring up the sea floor.

Look closely and you can see arc lines in the sidescan imagery. Lt. Anthony Klemm explains that these arcs are from ships dragging anchor and stirring up the sea floor.

While this is happening, surveyors are also towing a MVP or Moving Vessel Profiler to capture information about the water column. This is important because multiple factors in the water column need to be corrected in order for accurate sonar calculations. For example, the speed of sound in salt water is roughly 1500 m/s but may change while the ship is traveling over different parts of the sea floor or passing through a thermocline (steep temperature gradient) or halocline (steep salinity gradient). The MVP is similar to the CTD used on the launch boat (see previous post), but the MVP allows the ship to continue moving at about 10 knots (average survey speed), while the CTD must be cast when the ship is stationary.

Information from the Moving Vessel Profiler. From left to right, the MVP tracks sound speed, temperature, and salinity in relation to depth.

Information from the Moving Vessel Profiler. From left to right, the MVP tracks sound speed, temperature, and salinity in relation to depth.

For more information on multispectral analysis and sonar, see these resources:

https://oceanexplorer.noaa.gov/explorations/09bermuda/background/multibeam/multibeam.html

https://oceanservice.noaa.gov/education/seafloor-mapping/how_sidescansonar.html

Personal Log

One of my goals in the classroom is to teach students to be comfortable making and learning from mistakes. Making mistakes in math and science is common and welcome because they lead to great discussion and future change. Often, my sixth graders get discouraged or so caught up in failure that they become paralyzed in making further attempts. While aboard the Thomas Jefferson, I have witnessed several aspects not go according to plan. I think these experiences are important to share because they provide real-life examples of professionals coming together, learning from mistakes, and moving forward.

Around 4:00 am, the towfish side scan sonar became entangled with the MVP. This was a horrendous disaster. The crew spent about 16 hours contemplating the issue and collecting data using the multibeam only, which is less than ideal.  One of XO LCDR McGovern’s many roles aboard the ship is to serve as the investigator. She reviewed tapes of the early morning, talked with the crew, and later held a debrief with all involved. When something like this happens, the ship must write a clear incident report to send to shore. There were many questions about why and how this happened as well how to best proceed. In the end, the towfish and MVP were untangled with no damage present to the sensor. Within the same day, both were cast out and back in use.

I find this to be an astounding example of perseverance and teamwork. Despite being disappointed and upset that a critical tool for collecting accurate data was in dire shape, the crew came up with a plan of action and executed. Part of the engineering and scientific processes include evaluation and redesign. Elements of the sea and a center drift of the side scan lead to a documented new plan and refiguring the process so that this is unlikely to happen again.

Lt. Charles Wisotzsky's sketch of the complications with launching both the sidescan sonar (which tends to centerline) and MVP towfish with a current coming from port side.

Lt. Charles Wisotzsky’s sketch of the complications with launching both the sidescan sonar (which tends to centerline) and MVP towfish with a current coming from port side.

This camera image captures the entanglement of the sidescan sonar and MVP.

This camera image captures the entanglement of the sidescan sonar and MVP.

Peaks

+Saw a tuna eat a flying fish

Flying Fish. (www.ocean.si.edu)

Flying Fish. (www.ocean.si.edu)

+There is a large sense of purpose on the ship. Despite complex sleep schedules to enable 24 hour operations with a smaller crew, people are generally happy and working hard.

+ There seems to be an unlimited supply of ice cream in the ice cream freezer. Junior Officer, ENS Garrison Grant introduced me to a new desert- vanilla ice cream, a scoop of crunchy peanut butter, and chocolate syrup. I also found the rainbow sprinkles.