NOAA Teacher at Sea
Patricia Donahue
Onboard NOAA Ship Rainier
August 19-23, 2008
Mission: Hydrographic Survey of Bear Cove, AK
Geographical Area: Kachemak Bay, Alaska, 59.43.7 N, 151.02.9 W
Date: August 21, 2008
Weather Data from the Bridge at 1000 hours
Broken clouds (7/8)
Visibility 11 to 27 nautical miles
Winds calm
Seas 0-1 ft (light breeze) at 9.4˚C
Air pressure 1001.5 millibars and rising slightly
Dry Bulb 12.2˚C, Wet Bulb 11.1˚C
Cumulus clouds between 3000 and 5000 feet

Science and Technology Log
We are anchored in Halibut Cove near a large lagoon too shallow even for the small boats to enter. The nearby mountains have attracted my attention. According to the chart for this area, the two seen off the bow are both 3600 feet high. They have some patches of snow on them. A taller mountain, 4200 feet high, is barely visible in the distance. Nearer the shore some cliffs show evidence of an interesting geological history. Once upon a time, marine sediments collected at the bottom of the sea. The layers built steadily one atop the other, creating organic and clastic sedimentary rocks. The rocks were uplifted to nearly vertical and have eroded. The lighter colored section appears to be limestone but it’s difficult to tell from afar. Due to intense tectonic activity in the area, some of the rock was heated and crushed, causing metamorphism. The section next to what I think is limestone looks to be either a metamorphosed limestone or a batholith. I’m hopeful that someone on board knows more geology than I do!

Today I went out on one of the small vessels conducting single beam sonar scanning to determine the depth and shape of the bay bottom. The boat moves across the surface of the sea in straight, parallel lines much like the ones made when cutting the grass with a lawn mower. The lines in the first picture are the rows that the boat “mows.” The sonar pings go down from the bottom of the boat at a rate of 100 per second! The equipment on board measures how much time passes until the ping returns from the bottom. The longer it takes for the sound signal to bounce back, the deeper the water is in that location. The boat also has another scanner similar to what fishermen use to find schools of fish. Look at these two photographs from the scanner. Which is a school of fish and which is a 27 foot high mound on the ocean floor? The depth of the water is in large numbers in the lower left. The numbers farthest to the right are the ocean temperatures. Why is the water colder where the bottom is deeper?

Personal Log
The screen above with the “mowing the lawn” lines on it clearly shows an airplane making its way back and forth. Of course I had to ask, “Why an airplane icon”? I thought they’d tell me that it was for laughs but no, there is a good reason. The airplane icon’s nose keeps in sync with the GPS and the lines better than the ship icon! The surveyors find it easier to know their position.
Animals Seen Today
- Many sea otters – Look closely at the picture to the left. The otter in the picture is eating clam. A shell is balanced on its belly!
- Schools of fish under the boat “seen” by the radar
- Several types of birds too far away to identify
Vocabulary of the Day
While inputting the weather this morning, I noticed several screens that we did not add data to and rather than skip them, I decided to see what they were about. They were about ice conditions that a ship might encounter and include in a weather report. Here are two new words I didn’t have for ice. A bergy bit is a large piece of floating glacier ice between 100 and 300 square meters in area and showing less than 5 meters but more than 1 meter above sea level. A growler is smaller than a bergy bit. It is larger than 20 square meters in area but less than 1 meter is above the sea surface. Growlers can be transparent, green, or even black in appearance. Since its summer in Alaska, I won’t be seeing any bergy bits or growlers! I also learned that the term iceberg has a precise definition. An iceberg is a piece of ice afloat or aground that shows more than 5 meters above the sea surface. They are described more specifically by their shape.
Challenge Yourself
Kachemak Bay receives a lot of glacial melt water. Surveyors have a difficult time with the radar equipment when they encounter freshwater because the sound waves travel at a different speed through fresh water than they do through salt water. In which type of water, salt or fresh, does sound travel faster? Why?