David Murk, Why Are We Here? . . . . Wish You Were Here, May 16, 2014

NOAA Teacher at Sea
Dave Murk
Aboard NOAA Ship Okeanos Explorer
May 7 – 22, 2014.


Mission: EX 14-03 – Exploration, East Coast Mapping

Geographical Area of Cruise: Atlantic Ocean, U.S. East Coast

Date: May 16, 2014


Weather Data from the Bridge

We are at 28⁰ N – 079⁰ W heading west from Cape Canaveral, Florida:

Weather:  Few clouds

Visibility: 10 miles

Wind : 20 knots out of the northwest.

Water  Depth: 444 fathoms or 812 feet.

Temperature: water : 27° Celsius

Air temperature: 22°Celsius (I heard there was snow in Illinois, so I’ll leave the temp. in Celsius)

Our location can also be found at: (http://shiptracker.noaa.gov/).


Science and Technology Log

Storms and subsequent rainbows with dolphins cavorting in the Okeanos Explorer’s bow wake get you asking the big questions.

Why are we here?

Not in the larger philosophical, sense but why is the Okeanos Explorer at 29⁰N, 79⁰W? With 95% of the ocean unexplored, why did NOAA choose the Blake Plateau (Stetson Mesa) to map? I went to Derek Sowers, the Expedition Coordinator for this cruise, to find out.

Derek is a Physical Scientist with NOAA’s Office of Ocean Exploration and Research (OER), which is the program that leads the scientific missions on the Okeanos Explorer. In preparation for the ship’s explorations this year, OER staff asked many scientists and ocean managers in the Gulf of Mexico and along the U.S. Atlantic southeastern seacoast for priority areas for ocean exploration.The main purpose for the Okeanos Explorer is to explore largely unknown parts of the ocean and then put the data and discoveries out there for other scientists to use as a foundation for further research and improved stewardship. OER staff boil all these ideas down to a few and talk about the pros and cons of the final exploration focus areas. Once an operation’s area is determined for a cruise, OER then asks scientists what additional science can be done in these areas while the ship is planning to go there.

Much of this “extra” science benefits other parts of NOAA – such as the scientists that study fisheries and marine habitat. To manage this extra scientific work, the ship often hosts visiting scientists. On the current cruise, Chris Taylor from NOAA Fisheries Oceanography Branch joined the cruise to lead the plankton tow and oceanographic measurement work to search for Bluefin Tuna larvae in this part of the ocean and to understand the ocean chemistry here. It is important to NOAA to multi task and utilize the ship 24/7 to accomplish numerous scientific objectives. During March and April, lots of details were nailed down and by the middle of April Derek knew that the expedition could include time to do the plankton tows and extra water sampling.

Top View of Bathymetric image of Blake Plateau

Top View of Bathymetric image of Blake Plateau

Now, just like a family vacation, things happen along the way that require everyone to make changes. A road could be closed, someone could get sick, the car could break down. These expeditions are no different. So, how do decisions happen at sea?

The crew of the Okeanos Explorer are responsible for safe operation of the ship and for supporting the visiting scientists in accomplishing their objectives for the cruise. The visiting scientists, as led by the Expedition Coordinator, must make decisions about how, where, and what needs to get done to accomplish the science objectives of the cruise. The Expedition Coordinator discusses these plans with the ship’s Operations Officer and she consults with the head of the various department on the ship (Deck, Engineering, Medical, etc.) and the Commanding Officer to most effectively support safely achieving the science team’s goals. There is a daily Operations Meeting for all of these leaders to meet and ensure coordination throughout the day so that things run smoothly on the ship. The Commanding Officer is responsible for making sure the crew implements their duties, while the Expedition Coordinator (often called the Chief Scientist) is responsible for making sure the scientists implement their duties.

For complex decisions, like our present decision whether or not to go inshore to get a replacement plankton net, lots of factors are weighed and the final call is with the Expedition Coordinator and the CO. The Expedition Coordinator weighs trading off seafloor mapping time with getting more plankton data and decides if it is worth it to go get the net. Commander Ramos must decide if it is safe and reasonable to do so and makes the final decision of where and what the ship does.

For seafloor mapping work that happens 24 hours a day, there are three teams of two people who “stand watch” on 8 hour work shifts (called a “watch”). Each watch has a watch leader that works at the direction of the Expedition Coordinator. The Watch Leader ensures the quality of the mapping work accomplished during their 8 hour watch. The ship’s Survey Technician, Jacklyn James, works closely with the visiting mapping scientists to run all of the complex computer systems under standard operating procedures.

Here is an example of how routine small decisions are made. Let’s say that Vanessa Self-Miller (see personal log) is on duty as the Watch Leader and wants to have the ship move over 500 meters to get better sonar coverage of the seafloor below.

Vanessa uses the intercom to call the deck officer on the bridge and tells the officer she would like the ship to move over 500 meters. The officer checks the AIS (see last blog) and sea conditions to see if this would be a safe maneuver for the ship. The reasons for not approving the mapping team’s request would almost always be safety based. Most of the time, the officer says “Sure Thing. Roger That.” and in the space of a few minutes the ship has changed course as requested.

The answer to “why are we here?”  is a complex, time-consuming endeavor, but when it works, like on this expedition, it is magic to watch unfold.

Personal log

Wish you were here.


The storm was not one of those Illinois summer thunderstorms that come racing in from Iowa – gathering energy like a 5th grade class the last few weeks of school. Nope. No simultaneous lightning thunder howitzers that you feel in your spine; just some lightning and wind gusts to 50 knots, but I sure wanted to see how things looked from the bridge once I heard the foghorn. The bridge on the Okeanos Explorer is one of my favorite places on this ship. I always ask permission for entry and if the circumstances allow, the officer on duty will grant it.

Operations Officer Lt.Rose’s IPod was playing Pink Floyd while she divided her attention between the myriad of dials and screens and  talking navigation with mapping intern Kalina Grabb.   AB Tepper-Rasmussen and NOAA Corps Officer LTJG (Lieutenant Junior Grade) Bryan Begun peered into the foggy soup and monitored the AIS.

The irony of the moment struck me because while the crew unconsciously played percussion on the brass rail overhead or mumbled lyrics and David Gilmour and Roger Waters sang about not needing an education, there was so much education and proof of education going on in this little room. That is the defining image I’ll always have of this space on the Okeanos Explorer. It is a place where the acquisition and exhibition of knowledge are so evident and invigorating. You can’t spend more than 4 minutes in this space without learning something or being amazed at how smart these people are and how devoted they are to use that knowledge to carry out the science of this mission.   On this particular night, the skies lifted and we had hopes of seeing a launch at Canaveral, 40 miles to the west.   Lt. Rose announced to the whole ship that a double rainbow could be seen portside and even the dolphins responded to her call to educate the right side of our brains.

Dolphins after the storm (picture courtesy of John Santic)

Dolphins after the storm
(picture courtesy of John Santic)

Lieutenant Junior Grade Begun and Mapping Intern Kalina Grabb checking the error of the gyrocompass using the azimuth


What else have I been doing?

In addition to spending time on the bridge- I have been helping with the XBT launches, using the photometer to add data to the NOAA’s Aerosol Project – with the ever faithful Muffin from good ol’ Hampshire Elementary and preparing for a night launch of CTD and plankton tows – more on that next blog.

Launching the XBT – taken by Expedition Coordinator, Derek Sowers

Photo taken by mapping intern Danielle Lifavi

Photo taken by mapping intern Danielle Lifavi

Preparing for night launch of CTD and plankton tows.(photo taken by LTJG Bryan Begun)


Vanessa Self-Miller

Vanessa Self-Miller

Like all women, Vanessa Self-Miller’s mom was great at multi-tasking. While she got things rolling for the evening in the household, Vanessa was her mom’s guinea pig for the next day’s science lessons for her 6th grade students at Jackson Middle School in Jackson, Louisiana. She also instilled a love of the scientific method in her daughter.

Her father was a math guy and found out early that Vanessa was going to be the 3rd wheel with her brother on typical father son activities that involved mechanics or being out in nature.   That nurturing and her work ethic prompted Vanessa to get a degree in physics at Southern University in Baton Rouge, Louisiana. She went on to work for the U.S. Navy as a hydrographer doing a lot of mapping harbors and near the shore. She received her masters degree in Hyrdrographic Science from University of Southern Mississippi.

Now she is thrilled to be a physical scientist/hyrdrographer for NOAA.   While it is a challenge to coordinate job related travel with her husband and two children, she loves working for NOAA. NOAA respects a work-life balance and that allows her to pursue her passions in life. She wants to encourage all students but especially the young girls to start early in their path to a career in science. She feels that how parents nurture their girls is important in their seeking employment in the fields of science.

On a personal note, any time a question came up from this naive teacher or any of the mapping interns, Vanessa was able to answer it completely and without pause. She encourages all the 5th graders out there, male or female, to pursue their scientific oceanographic dreams. NOAA will need today’s fifth graders to investigate sea level rise and all the Ocean Engineering energy products that our country will need twenty years from now. There will always be a need for scientists who love to explore and want to work for NOAA.

Avery Marvin: Sound Off! From Noise to Nautical Charts, July 22, 2013

NOAA Teacher at Sea
Avery Marvin
Aboard NOAA Ship Rainier (NOAA Ship Tracker)
July 8 — 25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 22, 2013

Current Location: 54° 55.6’ N, 160° 10.2’ W

Weather on board: Broken skies with a visibility of 14 nautical miles, variable wind at 22 knots, Air temperature: 14.65°C, Sea temperature: 6.7°C, 2 foot swell, sea level pressure: 1022.72 mb

Science and Technology log:

Teamwork, safety first

Rainier motto, painted in the stern of the ship above the fantail, the rear lower outside deck where we have our safety meetings.

“Teamwork, Safety First”, is inscribed boldly on the Rainier stern rafter and after being aboard for more than 2 weeks, it is evident this motto is the first priority of the crew and this complex survey operation at hand.

Rainier launch

This is one of the survey launches that we use to gather our survey data. In this case, the launch is shown approaching the Rainier, getting ready to tie up.

It’s a rainy overcast morning here in SW Alaska and we are circled around the officers on the fantail for the daily safety meeting. Weather conditions, possible hazards, and the daily assignment for each launch are discussed. Per the instructions on the POD (Plan of the Day), handed out the previous evening, the crew then disperse to their assigned launches. The launches are then one-at-a-time lowered into the water by the fancy davit machinery and driven away by the coxswain to their specific “polygon” or survey area for the day. A polygon surveyed by a launch on average takes 2-3 hours at 6-8 knots to survey and usually is an area that is inaccessible by the ship. Many polygons make up one large area called a “sheet” which is under the direction of the “sheet manager”. Several sheets make up an entire survey project. Our hydrographic project in the Shumagins has 8 sheets and makes up a total of 314 square nautical miles.

Safety meeting

The CO, XO, and FOO lead the safety meeting for the day, discussing weather conditions, water conditions, and the assignments for each launch.

Shumagin Islands

This is a chart of the Shumagin Islands showing the 8 sheets (highlighted in green) that we are surveying.


East side of Chernabura Island divided into survey “polygons”, each labeled with a letter or word. Notice how each polygon is a small subset of the larger sheet.

On board each launch we have a complex suite of computer systems: one manages the sonar, another manages the acquisition software, and the third records the inertial motion of the launch as it rocks around on the water (pitch, heave, roll). The acquisition system superimposes an image of the path of the launch and the swath of the sonar beam on top of a navigational chart within the polygon. Starting at one edge of the polygon, the coxswain drives in a straight a line (in a direction determined by the sheet manager), to the other end of the polygon, making sure there is some overlap at the boundaries of the swaths. He/she then works back in the other direction, once again making sure there is some overlap with the adjacent swath. We call this “mowing the lawn,” or “painting the floor” as these are visually analogous activities. Throughout the day, we pause to take CTD casts so that we have a sound velocity profile in each area that we are working.


Typical launch dispersal for a survey day. Launches are signified by “RA-number”. You can also see the location of our tide measurement station and GPS control station, both of which we use to correct our data for errors.

Mowing the lawn

This image shows the software tracking the path and swath of the launch (red boat shape) as it gathers data, driving back and forth in the polygon, or “mowing the lawn.” The darker blue shaded area shows overlap between the two swaths. The launch is approaching a “holiday”, or gap in the data, in an effort to fill it in.

You might be wondering, why the swath overlap? This is to correct for the outer sonar beams of the swath, which can scatter because of the increased distance between the sea floor and the sonar receiver below the hull of the boat. The swath overlap is just one of the many quality control checks built into the launch surveying process. Depending on the “ping rate”, or the number of signals we are able to send to the bottom each second, the speed of the boat can be adjusted.  The frequency of the sound wave can also be changed in accordance with the depth. Lower frequencies (200 khz) are used for deeper areas and higher frequencies (400 khz) are used for shallower areas.

Rosalind working the surveying computers in the launch

Rosalind working the surveying computers in the launch

Despite what might seem like mundane tasks, a day on board the launch is exhausting, given the extreme attention to detail by all crew members, troubleshooting various equipment malfunctions, and the often harsh weather conditions (i.e. fog, swells, cool temperatures) that are typical of southwest Alaska. The success of the ship’s mission depends on excellent communication and teamwork between the surveyors and the coxswain, who work closely together to maximize quality and efficiency of data collection. Rain or shine, work must get done.  But it doesn’t end there. When the launches arrive back at the ship, (usually around 4:30 pm), the crew will have a debrief of the day’s work with the FOO (field operations officer) and XO (executive officer). After dinner, the survey techs plunge head first (with a safety helmet of course) into the biggest mountain of data I have EVER witnessed in my life, otherwise known as “night processing”. We are talking gigabytes of data from each launch just for a days work.  It begins with the transferring of launch data from a portable hard drive to the computers in the plot room. This data is meticulously organized into various folders and files, all which adhere to a specific naming format. Once the transferring of data has finished, the “correction” process begins. That’s right, the data is not yet perfect and that’s because like any good science experiment, we must control for extraneous factors that could skew the depth data. These factors include tides, GPS location error, motion of the launch itself, and the sound velocity in the water column.

Plot room

Our chief surveyor works in the plot room cleaning and correcting data.

Data cleaning.

Data showing the consequences of the tide changing. The orange disjointed surface shows the data before it was adjusted for the tide changing. You can see how the edges between swaths (i.e. red and olive green) do not match up, even though they should be the same depth.

Sound speed artifact

This image shows the edge effects of changing sound speed in the water column. The edges of each swath “frown” because of refraction owing to changing density in the water column. This effect goes away once we factor in our CTD data and the sound speed profile.

In previous posts, I discussed how we correct for tides and the sound velocity. We also correct for the GPS location of the launch during a survey day, so that any specific data point is as precisely located as possible. Although GPS is fairly accurate, usually to within a few meters, we can get even more precise (within a few centimeters) by accounting for small satellite errors throughout the day. We do this by determining the location of a nearby object (our Horizontal Control, HorCon, Station) very precisely, and then tracking the reported position of this object throughout the day. Any error that is recorded for this station is likely also relevant for our launch locations, so we use this as the corrector. For example, if on July 21, 2013, at 3pm, the GPS location of our Bird Island HorCon station was reported 3cm north of its actual location, then our launches are also probably getting GPS locations 3cm too far north, so we will adjust all of our data accordingly. This is one of the many times we are thankful for our software. We also account for pitch, heave, and roll of the launch using the data from the inertial motion unit. That way, if the launch rolled sideways, and the center beam records a depth of 30 meters, we know to adjust this for the sideways tilt of the launch.

HorCon station

This shows the set up of our Horizontal Control and tide gauge station. The elevated rock position was chosen to maximize satellite visibility.

After all correctors have been applied (and a few software crashes weathered), the survey technicians then sort through all the data and clean out any “noise.” This noise represents sound reflections on sea life, air bubbles, or other items that are not part of the seafloor.  Refraction of sound waves, as mentioned in the last post, is caused by density changes in the water due to changes in the temperature, pressure, or salinity.

Dirty data

This shows sonar data with “noise”. The noise is the seemingly random dots above and below the primary surface. On the surface itself, you can see data from four different swaths, each in a different color. Notice the overlap between swaths and how well it appears to be matching up.

Cleaned surface

This shows sonar data after the “noise” has been cleaned out. Notice how all data now appears to match a sea floor contour.

Many of the above correctors are applied the same day the data is collected, so the sheet manager can have an up-to-date record of the project’s progress before doing final planning for data collection the next day. After a sheet has been fully surveyed and ALL correctors applied, the sheet manager will complete a “descriptive report”, which accompanies the data and explains any gaps in the sonar data (“holidays”) and/or other errors present. This report, along with the data, is sent to the Pacific Hydrographic Branch for post-processing, and in 1-2 years, we will have a corrected and updated navigational chart. During this time the data is reviewed for quality and adherence to hydrographic specifications and then is distilled into a cartographic product (nautical chart) consisting of points, lines, and areas.

Personal Log:

So I am going to hold off in talking about an animal that has recently fascinated me and instead devote this personal log to some cool things I have been doing on the ship.

Most recently I got to be the helmsman and steer the ship. This involved me following orders from the “conning officer” who told me various steering commands such as: “Left ten degrees rudder”, “steady on course 167°”, “ease 5° right”, “helm in auto” (auto-pilot). To acknowledge the command, I repeated what the conning officer said followed by “aye”. For example: “Left ten degrees rudder, aye” or “course 167°, aye”.  When the boat is actually on the course that was requested by the conning officer, I repeated the command with the word “steady”. For example: “Steady on course 167°”

Avery at the helm

Avery at the helm

You might be wondering why all of the commands involve degrees. Well that is because this ship is steered by the rudder, similar to how you manually steer a small sailboat.  So changing the angle of the rudder will change the direction of the ship.  To change this angle, you turn the steering wheel a desired amount of degrees beyond zero in the direction the conning officer instructed.  So if he said “right 5 degrees rudder”, I would turn the steering wheel right, and stop at the 5 hash mark.

Once the boat actually turns 5°, I will make sure I am at the correct “heading” or degree mark that the conning officer instructed.  A heading can be any number between 000-360 (where 000-deg = North, 045 = Northeast, 090 = East, etc.) as this boat can turn in a complete circle and be navigated in any direction.  (There is 360° in both a compass and a circle.)  Once I am steady at the correct heading, I will put the steering wheel back to 0° which means the rudder is completely straight and parallel with the boat. At this point the boat is going straight. If this were a car, you could just stay straight no problem.

But because this boat moves in water and is affected by ocean conditions such as swells, it is easily knocked off course of the heading. So as helmsman I am constantly making tiny adjustments with the steering wheel by a few degrees in either direction to maintain my heading.   This adjustment is done using the steering wheel if I am driving manual, or using a dial on the gear panel if the boat is in “auto” (auto-pilot). Because the ship rudder must “push water out of the way” in order to steer the boat, there is a delay between when I turn the steering wheel to when the ship actually moves that amount of degrees. This is not a car which turns instantaneously by the movement of axles.  So I need to account for that “lag time” as well as ocean conditions and the speed of the boat when turning the ship.  For example, if the boat is going slow (3 knots) and I need to turn quickly, I will have to use a greater rudder angle.  Throughout this process I have several digital screens that show me my current position and course, current heading and desired heading as well as other navigational aides.  When I was helmsman, I was closely monitored and assisted by Jason, a former Navy Chief Boatswain, who is one of the best helmsman on the ship.  To be a good navigator you need to know the fundamentals but you also need a lot of practice and exposure to various navigational situations.

Helm stand

Helm stand

Yesterday, Rosalind and I got to work on deck and help the Chief Boatswain with various deck tasks such as lowering the anchor and assisting with the davit to hoist the launches from their day of surveying out on the water.  Assisting with the job of lifting a 16,000 lb launch with 3 people aboard using the davit winch was by far the most exhilarating experience thus far on the ship. I handled the task with extreme caution. As with being a helmsman, there are many factors I must consider as a davit operator.  For example, if there is a significant swell, I need to be more aggressive with the davit movements to get the boat lifted fast to avoid any excessive swaying in mid-air. Most importantly, I must attentively follow the gestures of the deck boss below who is able to see the launch very clearly and is directing me on every davit movement.  Even an experienced davit operator like Jason, who probably can predict the next davit movement in his sleep, must never assume and then act. He ALWAYS follows the exact orders of the deck officer below because he never knows what they are seeing that he cannot from the above deck.  Overall, with Jason’s close attention and assistance, I think I did a good job of assisting with the davit. The boat made it safely aboard, and my heart returned to a normal beating pattern. 🙂

Operating the crane to get the davit ready to lift the launch out of the water

Getting the davit positioned and ready to lift the launch out of the water.

On a lighter note I learned how to play the good ole’ mariner pastime favorite, Cribbage. Rosalind (the other Teacher at Sea and my delightful roommate) taught me how to play. We had a cribbage tournament here aboard the ship in which about 12 people competed. I did not advance to the finals but had a lot of fun nonetheless.  I am looking forward to gaining more Cribbage strategies so I can be a more competitive player for future matches.

First round of Cribagge tournament

First round of Cribbage tournament

Just for fun:

An adorable sole I caught on the fantail of the Rainer (I released him/her)

An adorable sole I caught on the fantail of the Rainer (I released him/her). 🙂

Fun factoid: A fathom which is a maritime measurement equal to 6 feet, was originally based on the distance, fingertip to fingertip of a man’s outstretched arms. Fathom that!

Kristy Weaver: One Stormy Week, May 27, 2012

NOAA Teacher at Sea
Kristy Weaver
Aboard R/V Savannah
May 23 — June 1, 2012

Mission:  Reef Fish Survey
Location:  Off the Coast of Vero Beach, Florida
Date: May 27, 2012

Current Weather: 73 Degrees, Windy and Rainy

Hello from Sunny Florida!

Storm clouds off the coast of Vero Beach, FL

Actually let’s change that to, “Hello from mostly cloudy Florida!”

When we learned about weather in our science kit we talked about how the weather is always changing and how we have to do different things or dress differently because of the weather. I have really been thinking about this for the past few days.  I wanted this post to be about all of the science that I am doing on this trip, but the weather has taken over!

Storm clouds off the stern (back) of the boat
about 20 miles off Vero Beach, FL

We were doing a lot of fishing off the coast of Georgia and our plan was to stay there for a few more days.  We had to move because there was a storm that was headed right towards us.   It has not rained that much.  The problem is the wind.  The wind makes it dangerous to work on the boat and can make large waves.  If we stayed where we were there would have been waves about 5-10 feet high.  Some would have been even higher.

The arrow points to where our boat is on this map of Florida

This would have been too rough to work in so we headed south to the water off Daytona Beach, Florida.  After a while the water got rough there too so we headed even further south.  Right now we are about 30 miles off the coast of Vero Beach, Florida.

The wind is about 20-25 miles per hour.  (That would definitely be a “2” on our wind scale  if we used our flags today!) That is the speed limit that cars can drive on our school’s street!   The waves are about 6 feet tall right now, which is taller than I am.  The boat is rocking back and forth a lot.  This makes it hard to walk, but it’s also pretty funny because I need to hold onto the walls wherever I go!

The boat was rocking a lot today.
Sometimes I had to hold on while we waited to drop the traps.

We are done fishing for the day because the wind is getting stronger, but we will start again in the morning.  We are going to go closer to the shore where the waves will not be as big.  When we get there the captain will set the anchor.  The anchor will grab onto the ocean floor and hold us in one spot for the night.  We will head back out to sea in the morning when the storm passes.

Clouds off the stern of the R/V Savannah
Part of Tropical Storm Beryl

Weather also affected the way I packed.   About three weeks ago I was on the beach with my mom and I was so cold!  I was nervous that I was going to be freezing on the boat because I knew I would be working outside until midnight.  So before I left for my trip I bought a whole bunch of really warm clothes to take with me.  I haven’t needed any of it!  It is a little more chilly on the water than it is on land, but I still haven’t needed more than a sweatshirt and shorts to stay warm.   I checked the weather in New Jersey, and I checked the weather in Georgia, but I didn’t believe it!  I should have trusted those meteorologists!

I can’t wait to tell you everything I have learned from the scientists on the ship!  I also have some GREAT pictures of dolphins for you.  They were jumping out of the water and put on quite a show for us yesterday.  Make sure you check back soon to see them!

(On a personal note:  I would like to wish my niece Maddie a very happy 9th birthday!  Aunt Kristy loves you!  Also,  congratulations to my parents on the purchase of their new home!  I’m sorry I couldn’t be there, but I know you understand:)

Paige Teamey: November 2, 2011

NOAA Teacher at Sea Paige Teamey Aboard NOAA Ship Thomas Jefferson October 31, 2011 – November 11, 2011

Mission: Hydrographic Survey Geographical Area: Atlantic Ocean, between Montauk, L.I. and Block Island Date:  November 2, 2011

Weather Data from the Bridge
Clouds: clear
Visibility: 10 Nautical Miles
Wind: SW 5 knots
Temperature 13.9 ° Celsius
Dry Bulb: 13.5° Celsius
Wet Bulb:  10.0 ° Celsius
Barometer: 1626.8 millibars
Latitude: 41°08’39″ ° North
Longitude: 072°05’43″ ° West

 Current Celestial View of NYC:

 Current Moon Phase:

 Current Seasonal Position (make sure to click on “show earth profile):

 http://www.astroviewer.com/  http://www.die.net/moon/ http://esminfo.prenhall.com



Science and Technology Log On a NOAA ship, similar to a military vessel, everyone has specific titles.  It would be like calling your principal or mom a CEO (Chief Executive Officer) followed by their last name.  Comparably on a ship there are tons of acronyms like (f.y.i., a.k.a, or my favorite o.m.g.). However, the acronyms the shipmates use are for titles and instead of fun text phrases they are based on status and certification. Ship acronym/name examples: CO: Commanding Officer XO: Executive Officer FOO: Field Operations Officer Ensign: “Fresh Meat” or Junior Officer Boatswain (Bosun): a Wage Mariner in charge of equipment and the crew GVA: General Vessel Assistant Today was full of events.  I awoke at around 6:02am and went outside to breathe in the fresh air and watch the day break.   After eating yet another delicious breakfast in the mess hall (cafeteria…we aren’t that messy) I was told by the FOO Davidson I would be going out on my first launch.  I was placed on the 3102 which unfortunately does not currently have any hydrographic equipment  (we hope to obtain a scanner this weekend sent from a Pacific Ocean NOAA ship). Today our mission is to go to the shores of Montauk, Long Island and retrieve data from a tidal instrument that was logging the daily tidal changes.  Normally these instruments can be accessed via satellites, however the most recent Nor’ Easter compromised the instruments and made its information inaccessible via the internet.  BGL Rob (Boatswain Group Leader) normally would be taking the helm (steering wheel of boat) and Frank (surveyor) and Ensign  Storm’n Norman also came along.  Ensign Norman is currently learning how to navigate a small ship for a new license so took the helm while BGL Rob supervised (she needs to log so many hours behind the helm before sitting for the exam).  All four of us piled into the 3102 while a massive davit (hydraulic lift) placed the 3102 from the TJ into the Atlantic Ocean. The technology behind the davit blew me out of the water (not really), but it was pretty amazing.  The ship was moving 5.8 mph (you walk about 1.5-2mph) while 3102 was being lifted out of the water.

Boatswain Rob gave great tips to Ensign Norman; however, Ensign Norman was confident and very much in control of 3102 and did a fantastic job driving us to and from Montauk.  Once we arrived at Montauk, Frank opened the weather station and a huge amount of water poured out (probably why it wasn’t transmitting data).  It took quite a while to get the information downloaded on the computer we brought, because the system was out of date with current technology (so interesting how fast technology moves). While Frank was on the phone with an engineer stationed in Seattle I walked along the dock and met a lovely gentleman named Joe and his dog, Lil’ Sugar.  Joe was also a captain of a ship and ferried people to and from Block Island.  Joe was a very warm gentle soul who spoke of his years at sea and all of the unique experiences he has been fortunate to have on multiple vessels.  Currently Joe works as a Captain for a whale watching company (apparently Right Whales are migrating).   After my lovely chat with Joe and quick walk around I returned to the group.

Message in a bottle found on Montauk Beach.

Upon returning Frank had found a note in a bottle that a woman named “Karen” had thrown into the ocean and washed ashore in Montauk.  We presumed Karen was from somewhere in Connecticut (based on the cell phone number).  We called her number, but she did not retrieve her phone.   I will say for all of you wistful bottle throwers.  If you do this, make sure you use glass (it doesn’t break down to little plastic bits that fish mistakenly eat for food) and be imaginative with your note (I am not advocating for anyone to throw a bottle into the ocean).  Karen’s was very plain and gave little background or visual.  It was more fun talking with the group and imagining all of the personality and character she may have had (most of this was based on the jar she placed the note in…it was a Trappist Preserves jelly jar).  Trappist Preserves usually retails for $27.00 and is hand-made by monks in an Abbey located in Massachusetts.

Kimberly the Great in front of Acquisition Screen locate off of the Bridge.

Kimberly the Great in front of Acquisition Screen locate off of the Bridge.

When I returned to the TJ I spent the rest of the day (almost 6 hours) in the acquisition room, located on the bridge, with Kimberly the Great.  Kimberly is a seasoned surveyor (meaning she has been aboard the TJ for seven years) and was able to break down each surveying screen in an incredible way.  (Read Nov. 3-4 for a break down of Hydrographic surveying)

Davey Jones Shadow??? Skull and bones shadow in the acquisition room.

Personal Log Breakfast:  2 fried eggs, oatmeal, 1 hashbrown Lunch:  Deli sandwich with coffee Dinner:  Vegetarian “chicken” patty with tomato sauce and cheese, and corn Dessert:  Chocolate Cake (Happy Belated birthday XO!!!)

Michele Brustolon, July 10, 2010

NOAA Teacher at Sea
Michele Brustolon
Onboard NOAA Oscar Dyson
June 28 – July, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Eastern Bering Sea (Dutch Harbor)
Date: July 10, 2010

Weather Data from the Bridge

Time: 1400
Latitude: 59.12N
Longitude: 174.02W
Cloud Cover: 5/8
Wind: 17 knots
Air Temperature: 8.00 C/ 460 F
Water Temperature: 7.00 C/ 450 F
Barometric Pressure: 1006.9 mb

Science and Technology Log

Weather, weather everywhere!
Aside from weather helping you decide what to wear for the day, weather is critical on board a research vessel. Each hour the bridge collects the same data that is then input into the AMVER Sea system and sent to NOAA Weather. Some of the information included is: time, latitude, longitude, cloud cover, air and water temperatures, wind, barometric pressure, visibility, and swell height. This helps determine our exact location (check out shiptracker.noaa.gov) as well as the weather at sea and also weather inland. It is not uncommon for marine weather systems to move inland. This information also helps us understand long term climate changes, precipitation, and ocean currents.

Exactly where are we?
The latitude and longitude help determine the position of the ship and the time is recorded to understand how the ship is moving and in what direction. This allows the scientists to follow the transects to conduct their research. If I told you at 1500 hours (3pm) our mark was 58.00N and 171.48W, you would be able to pinpoint our location on a map. Our latitude so far on this trip (July 7th) has been in the range of 56.12N-58.69N depending on the transect that we are following and the longitudes’ range is between 170.01W-171.48W.

Transect lines for Leg II onboard Oscar Dyson

It’s cloudy again?
It tends to be quite cloudy and foggy here in the Bering Sea and cloud cover is measured in eighths of the sky. For example, on July 6th the cloud cover at 1500 hours was 7/8 which means that 87.5% of the sky was filled with clouds. Cloud type and location can help predict the type of weather. The majority of our days have been 8/8 or 100% cloud cover with stratus clouds and lots of moisture in the air.

Stratus Clouds

This is definitely not the heat wave they are getting back home!
This brings us to air temperature and wind. The temperature is always taken on the windward side of the ship because this is the side of the ship in the stream of air fresh from the sea that has not been in contact with or passed over the ship. There are two types of thermometers in each case on the deck in front of the bridge. The dry bulb measures the air temperature and the wet bulb has a muslin wick which absorbs heat from the thermometer. The temperature difference between the two, called the depression of the wet bulb, can help determine what the percent humidity is by referring to the humidity chart. Wind can affect these readings which is why there are thermometers on either side of the bridge. The wind direction is logged as the same direction from which the sea waves are coming. Average temperature through July 7th for Leg II has been 5.680C/420F with winds averaging 10.29 knots.

The weather mentioned has been the trend for Leg II; however, this could be changing by the end of the week…stay tuned!

Wet and dry bulb thermometers

Hold on tight!

It’s July 10 and we are still waiting for the big seas to hit us. (not that I am complaining about calm weather!) The swells have gotten larger and the wind definitely picked up yesterday. The strongest wind recorded yesterday was 26 knots while on my shift. There is still a chance for NW sustained winds up to 25 knots and 10 foot seas before the weekend is up. Part of the reason for calmer seas yesterday was that we were so far north and the low pressure system was to the south of us. It was actually the farthest north I have ever been, and we will go even farther north before it is time to head back to Dutch Harbor.

Weather forecast

Personal Log

While we have had some quiet days, the fishing has been picking up. Unfortunately, the fish seem to be accessible more for the night crew than our shift. For example, we may fish once in a twelve hour shift, but the night crew may fish 2-3 times! We did have a couple of fishing mornings where there was enough time for a quick coffee and piece of toast and then on to the wet lab. Let me paint a picture for you… its 0430, the four of us (Abigail, Katie, Rebecca, and I) are keeping the beat to the tunes on the iPod of choice for the day in our full foul weather gear while we sort, sex, weigh, and find the lengths of pollock. It’s quite the jam session- all before breakfast! It may seem like a strange way to start the day, but it’s pretty cool!

Pollock on the sorting table

Processing Pollock: we record data about length, weight, stomachs, and otoliths.

Another benefit to having the day shift is that I was able to experience sunset as I looked west (off the port side of the ship) from my stateroom at 0330 and by the time we finished fishing at 0645, the sun was rising! Between 0400 and 0700 is one of the quieter times during my shift. It is a good time to get laundry done, regroup for the day, and one of the most peaceful places to go is the bridge. As you finish climbing the stairs you enter the darkness of the bridge; no fluorescent or incandescent lights staring you in the face. Even the headlamps worn and the covered monitors are red. I found myself closing my eyes and rocking as the boat swayed back and forth. Definitely a different atmosphere then being in the wet lab processing fish. This of course all changes after breakfast when more people are up for their shift. I find it amazing how many different environments there are on one ship throughout a day.

Sunset: 0400

Sunrise: 0645

The bridge at sunrise

Another new experience for me occurred by the time I made it to the Acoustics lab on Friday morning. The echo sounder was already in the water collecting data. The advantage of this single transducer is that it has the ability to be dropped closer to the fish (about 50m) to allow for more precise data. It still functions like the transducers that are on the centerboard of the ship: sending “pings” or sound waves and recording target strength. The transducers that do not interfere with the echo sounder continue to collect the same data but from farther away (around 80m), and then the two sets of data can be compared. There is also a small CTD that is attached to the unit. To make it even better, I was able to see the North Star and the moon while on the deck where the echo sounder comes on board!

The echo sounder

This might be too much excitement for some of you, but like I said before I need things to do. This brings me to the new challenge on the ship; Ensign Amber Payne spearheaded a “European Challenge of the Century.” It is a series of exercise challenges that include all members on board the Oscar Dyson. Now, this challenge continues throughout this season which ends in October, so the scientists (that’s me!) were randomly placed on teams to contribute while onboard. Even before the challenge, Abigail, Katie, Rebecca, and I have made a habit of heading to one of the two gyms to rip it up while blasting tunes. That’s right- two gyms on this ship! You can chose to run, bike, row, lift, and there are plenty of other options as well. Even though the gym has become part of my daily routine and running on a boat MUST burn more calories than on land, I don’t think it has been enough with Ray’s cooking. It’s like eating out at your favorite restaurant EVERY day!

Animals seen
Chrysaora melanaster
pollock (1-2 years)

Word of the day
guile: deceit

New Vocabulary
barometric pressure: the downward force that the atmosphere exerts per unit of a certain area.
swell height: measure of wind waves generated locally; vertical distance between trough and crest
muslin wick: plain woven cotton fabric
humidity: the amount of moisture in the air
gale force winds: strong winds between 28-47 knots
target strength: strength of the sound waves returning after reaching the fish

Christine Hedge, September 14, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 14, 2009

Dr. Hall standing by the hovercraft before it is inflated

Dr. Hall standing by the hovercraft before it is inflated

Weather Data from the Bridge 
Latitude: 720 46’N
Longitude: 1580 24’W
Temperature: 350F

Science and Technology Log 

Doing science in the Arctic is challenging.  The weather is difficult, the ice is ever changing, and the expense of operating an icebreaker, aircraft, or helicopter is quite high.  So, how else can people get out onto the ice to study the ocean and the geology of the seafloor? One interesting project uses a hovercraft (think air hockey), which skims over the ice on a cushion of air. Using a hovercraft to study the most inaccessible places in the Arctic is not a new idea. But, Dr. John K. Hall, a member of our science party has taken this idea and run with it.   John has a long history of polar exploration under his belt. Including 13.5 months floating around the Arctic on a 90 square kilometer, 60-meter thick ice sheet known as Fletcher’s Ice Island (T-3) during the 1960’s. His latest project has been to purchase and equip a hovercraft to go where icebreakers cannot (areas of VERY thick ice).

Norwegian students parked on the ice doing research. The white tent protects the scientists while they collect data through a drill hole in the ice.

Norwegian students parked on the ice doing research. The white tent protects the scientists while they collect data through a drill hole in the ice.

The hovercraft was completed in 2007.  She is called the R/H Sabvabaa, which is the Inupiaq word for “flows swiftly over it.”  This hovercraft was designed specifically for doing science in Arctic conditions. It is equipped with all the comforts of home and all the latest technology.  From this research platform scientists have access to echosounding and seismic equipment to study the sea floor.  They can also park the Sabvabaa easily on a floe, get out on the ice to drill, photograph, and collect samples from under the ice.  This small 40-foot vessel (it fits in a semi-truck container) has great potential as a way for scientists to collect data in heavy ice conditions.  For more information about the Sabvabaa check out this website.

Classroom on the Ice 

Could you imagine being one of the first people to ride the hovercraft over the pack ice?  Since 2008, 16 lucky Norwegian high-school students have had that honor.  A competition was held as part of the Norwegian International Polar Year (IPY) program.  This competition set out to find Norwegian students ages 14-18 who are interested in careers in polar geophysics. A pair of students and a pair of researchers worked from the Sabavaa for one-week intervals. During their time on the Sabvabaa, the winning students participated in geophysical, geological, and oceanographic studies on drifting ice. They also had 4 encounters with polar bears!  What a great opportunity for these students. If you are interested in the student blogs from these trips (which are written in Norwegian) do a Google search for Sabavaa and have Google translate them.

FOR MY STUDENTS: Remember, not all scientists work in labs wearing white lab coats!  Many researchers lead exciting and adventurous lives. 

Paul Henkart teaching Nikki Kuenzel and Christina Lacerda.

Paul Henkart teaching Nikki Kuenzel and Christina Lacerda.

Personal Log 

As an educator, one of the best parts of this expedition has been to watch the mentoring that goes on. The scientists and professors in the science party have decades of research experience to share. It is not unusual to find one of these veteran Arctic explorers sharing their expertise with graduate students from the University of New Hampshire. Not only do these “mentor scientists” have great technical expertise. They are also really good at explaining complex ideas in a very simple way.   This has been wonderful for me since my background is in biology – so geophysics has been a challenge. The graduate students on board are not only learning science from the masters – they are hearing great adventure stories about past polar adventures before we had helpful technologies such as GPS and multibeam echosounders. Everyone on the Healy is in “learning mode”.  The Coast Guard crew, teachers at sea, scientists, and students are constantly asking questions and sharing expertise.

Patricia Donahue, August 22, 2008

NOAA Teacher at Sea
Patricia Donahue
Onboard NOAA Ship Rainier 
August 19-23, 2008

Mission: Hydrographic Survey of Bear Cove, AK
Geographical Area: Kachemak Bay, Alaska, 59.43.7 N, 151.02.9 W
: August 22, 2008

One of the Rainier’s small boats, also called a launch

One of the Rainier’s small boats, also called a launch

Science and Technology Log 

Much of today had to do with technology. The small boat I went out on, pictured to the right, was filled with computer equipment. Each day at the survey technology department meetings, I’ve listened but not entirely understood the reports of computer issues on the small boats.  This morning I witnessed one such incident. Something didn’t work. Fortunately, there was a work-around and the data collection proceeded smoothly.

I was reminded of the early 18th century efforts to determine longitude. The problem was so pressing that kings of various countries offered rewards for the development of a clock that could keep time at sea. In 1772, James Cook, for whom Cook Inlet in Alaska is named, sailed with the first marine chronometer. The chronometer was a clock that kept accurate time for the home port. On board Cook’s ship, Resolution, there was another clock that kept local time.

Sonar equipment is lowered into the water.

Sonar equipment is lowered into the water.

Since the Earth turns 15 degrees of longitude each hour, by using the difference between the two clocks, seamen would know how far east or west they had traveled. They already knew how to determine latitude with an instrument called a sextant so by using the marine chronometer they could actually plot their coordinates. Now, of course, we take GPS for granted. Many people even have GPS in their cars. These devices and the hand held ones I use with my students at school are accurate to within 4 to 10 meters. Well, the boat I was on today has DGPS, which is even better. It is accurate to within 5 centimeters! With this high-tech equipment, NOAA is able to take very accurate measurements and make very accurate maps.

This graph depicts the velocity of sound through water.

This graph depicts the velocity of sound through water.

The boat I was on today used multi-beam sonar to determine the depth of the ocean floor. This is similar in concept to the single beam in that ping return-times are used. The multi-beam uses a lot more pings, sometimes as many as 200 per second. In the picture above, the sonar equipment is being lowered into the ocean. I learned that salinity, temperature and depth (which is another way of saying pressure) determine the electrical conductivity and density of the water. These two factors then determine the sound velocity.  In the graph, depth is on the Y axis and velocity is on the X axis. Notice the bulge in the plotted line. This represents an area nearer the surface where glacial melt water and ocean water are mixing. The velocity of sound through this water is slower than deeper down where it’s mostly salt water.

This graph displays the pitch, roll, and heave of the boat.

This graph displays the pitch, roll, and heave of the boat.

Measurements of salinity, temperature, electrical conductivity, depth and density were taken 27 times today. This data will be used to adjust the sound velocity to get the most accurate picture of the ocean bottom. The movement of the boat also has an effect on the sonar equipment. NOAA is using the moving vessel profiler or MVP to eliminate the interference caused by the boat’s movement. A boat has a pitch, roll and heave. The computer screen to the left shows graphs of these three types of movement. What do you think was happening on the boat at about halfway across the graph? Remember, the boat is “mowing the lawn” as it collects data. Lastly, the tides also affect the data. Upon return to Rainier, the data is processed and also corrected for the effect of the tides.

TAS Donahue gets a chance to drive the launch.

TAS Donahue gets a chance to drive the launch.

Personal Log 

Several crewmembers have tried fishing from the boat and we’ve seen many small boats with fishermen aboard but no one has caught anything. Using the binoculars aboard the small boat today I watched someone land a fish. I think it was a halibut, which makes sense since we’re in Halibut Cove. The most exciting part of the day was driving the small boat. Data was not collected from a small piece of sea bottom so the boat had to make one last pass over it with the sonar equipment. I’ve driven many different vehicles, even a motorcycle, but a boat is different. I couldn’t make it stay straight!

The scariest thing that happened today didn’t happen to us at all. The United States Coast Guard broadcast a message all afternoon over the marine radio. The message would also start with “pan, pan, pan,” which is the appropriate way to begin a distress call. Most of us have heard of “may day” calls. Those are used when there is immediate danger. A “pan” call is more similar to a warning. A boat carrying two adults and one child had not returned as expected and was missing. The Coast Guard was asking all other boaters to keep an eye out for them. I hope they’ve been found and that everyone is okay.

Animals Seen Today 

A raft of otters, Common Murres, Marbled Murrelets, and Barrow’s Goldeneye

Vocabulary of the Day 

The coxswain is the person who drives the boat.

Challenge Yourself What is 5 cm in inches? What types of movements are pitch, roll and heave?