Lona Hall: Land and Sea, June 12, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 12, 2019

Time:  1541 hours

Location: Saltery Cove, Kodiak Island

Weather from the Bridge:

Latitude: 57°29.1009’ N

Longitude: 152°44.0031’ W

Wind Speed: 9.0 knots

Wind Direction: N (10 degrees)

Air Temperature: 12.78° Celsius

Water Temperature: 8.89° Celsius

Lona in immersion suit
All dressed up (in an immersion suit) and no place to go

Science and Technology Log

You may be wondering what role technology plays in a hydrographic survey.  I have already written about how modern survey operations rely on the use of multibeam sonar.  What I have not described, and am still coming to understand myself, is how complex the processing of sonar data is, involving different types of hardware and software.  

For example, when the sonar transducer sends out a pulse, most of the sound leaves and eventually comes back to the boat at an angle.  When sound or light waves move at an angle from one substance into another, or through a substance with varying density, they bend. You have probably observed this before and not realized it.  A plastic drinking straw in a glass of water will appear broken through the glass. That is because the light waves traveling from the straw to your eye bend as they travel.

Refraction in a glass of water
Refraction in a glass of water

The bending of a wave is called refraction. Sound waves refract, too, and this refraction can cause some issues with our survey data. Thanks to technology, there are ways to solve this problem. The sonar itself uses the sound velocity profile from our CTD casts in real time to adjust the data as we collect it. Later on during post processing, some of the data may need to be corrected again, using the CTD cast profiles most appropriate for that area at that general time. Corrections that would be difficult and time-consuming if done by hand are simplified with the use of technology.

Another interesting project in which I’ve been privileged to participate this week was setting up a base station at Shark Point in Ugak Bay.  You have most likely heard of the Global Positioning System, and you may know that GPS works by identifying your location on Earth’s surface relative to the known locations of satellites in orbit.  (For a great, kid-friendly explanation of GPS, I encourage students to check out this website.)  But what happens if the satellites aren’t quite where we think they are?  That’s where a base station, or ground station, becomes useful. Base stations, like the temporary one that we installed at Shark Point, are designed to improve the precision of positioning data, including the data used in the ship’s daily survey operations.

power source for the base station
Setting up the power source for the base station

Setting up the Base Station involved several steps.  First, a crew of six people were carried on RA-7, the ship’s small skiff, to the safest sandy area near Shark Point. It was a wet and windy trip over on the boat, but that was only the beginning! Then, we carried the gear we needed, including two tripods, two antennae (one FreeWave antenna to connect with the ship and a Trimble GPS antenna), a few flexible solar panels, two car batteries, a computer, and tools, through the brush and brambles and up as close to the benchmark as we could reasonably get.  A benchmark is a physical marker (in this case, a small bronze disk) installed in a location with a known elevation above mean sea level. For more information about the different kinds of survey markers, click here.

Base station installers
Base station installers: damp, but not discouraged

Next we laid out a tarp, set up the antennae on their tripods, and hooked them up to their temporary power source.  After ensuring that both antennae could communicate, one with the ship and the other with the satellites, we met back up with the boat to return to the ship.  The base station that we set up will be retrieved in about a week, once it has served its purpose.


Career Focus – Commanding Officer (CO), NOAA Corps

CO Ben Evans at dinner
CO Ben Evans enjoying dinner with the other NOAA Corps officers

Meet Ben Evans.  As the Commanding Officer of NOAA Ship Rainier, he is the leader, responsible for everything that takes place on board the ship as well as on the survey launches. Evans’ first responsibility is to the safety of the ship and its crew, ensuring that people are taking the appropriate steps to reduce the risks associated with working at sea.  He also spends a good deal of his time teaching younger members of the crew, strategizing with the other officers the technical details of the mission, and interpreting survey data for presentation to the regional office.

Evans grew up in upstate New York on Lake Ontario.  He knew that he wanted to work with water, but was unsure of what direction that might take him.  At Williams College he majored in Physics and then continued his education at Woods Hole Oceanographic Institution, completing their 3-year Engineering Degree Program.  While at WHOI, he learned about the NOAA Commissioned Officers Corps, and decided to apply.  After four months of training, he received his first assignment as a Junior Officer aboard NOAA Ship Rude surveying the waters of the Northeast and Mid-Atlantic.  Nearly two decades later, he is the Commanding Officer of his own ship in the fleet.

When asked what his favorite part of the job is, Evans smiled to himself and took a moment to reply.  He then described the fulfillment that comes with knowing that he is a small piece of an extensive, ongoing project–a hydrographic tradition that began back in 1807 with the United States Survey of the Coast.  He enjoys working with the young crew members of the ship, sharing in their successes and watching them grow so that together they may carry that tradition on into the future.

Danielle Koushel, NOAA Corps Junior Officer
Danielle Koushel, NOAA Corps Junior Officer, tracks our location on the chart


Personal Log

For my last post, I would like to talk about some of the amazing marine life that I have seen on this trip.  Seals, sea lions, and sea otters have shown themselves, sometimes in surprising places like the shipyard back in Seward.  Humpback whales escorted us almost daily on the way to and from our small boat survey near Ugak Bay. One day, bald eagles held a meeting on the beach of Ugak Island, four of them standing in a circle on the sand, as two others flew overhead, perhaps flying out for coffee.  Even the kelp, as dull as it might seem to some of my readers, undulated mysteriously at the surface of the water, reminding me of alien trees in a science fiction story.

Shark Point
Looking out over Shark Point from the base station

Stepping up onto dry land beneath Shark Point, we were dreading (yet also hoping for) an encounter with the great Kodiak brown bear. Instead of bears, we saw a surprising number of spring flowers, dotting the slopes in clumps of blue, purple, and pink. I am sensitive to the smells of a new place, and the heady aroma of green things mixed with the salty ocean spray made our cold, wet trek a pleasure for me.  


Word of the Day

Davit – a crane-like device used to move boats and other equipment on a ship


Speaking of Refraction…

Rainbow
Rainbows are caused by the refraction of light through the lower atmosphere

Thank you to NOAA Ship Rainier, the Teacher at Sea Program, and all of the other people who made this adventure possible.  This was an experience that I will never forget, and I cannot wait to share it with my students back in Georgia!

Lona Hall: Rockin’ at the NALL on Ugak, June 10, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 10, 2019

Time:  1932 hours

Location: Saltery Cove, Kodiak Island

Weather from the Bridge:

Latitude: 57°29.1359’ N

Longitude: 152°44.0488’ W

Wind Speed: 17.2 knots

Wind Direction: N (353 degrees)

Air Temperature: 12.13° Celsius

Water Temperature: 9.44° Celsius

Lona on a launch vessel
Sitting in the sun on a launch, Rainier in the background


Science and Technology Log

For my second time out on a launch, I was assigned to a shoreline survey at Narrow Cape and around Ugak Island (see chart here).  Survey Tech Audrey Jerauld explained the logistics of the shoreline survey.  First, they try to confirm the presence of charted features (rocks) along the shore. (As you may remember from my last post, a rock is symbolized by an asterisk on the charts.) Then, they use the small boat’s lidar (LIght Detection And Ranging) to find the height of the rocks. Instead of using sound pulses, as with sonar, lidar uses pulses of laser light.  

Point Cloud
Point Cloud: Each dot represents a lidar “ping”, indicating the presence of features above the waterline

Once a rock was identified, Audrey photographed it and used the laser to find the height of the rock to add to the digital chart.  The launch we used for the shoreline survey was RA-2, a jet boat with a shallow draft that allows better access to the shoreline. We still had to be careful not to get too close to the rocks (or to the breakers crashing into the rocks) at certain points around Ugak Island.  The line parallel to the shore beyond which it is considered unsafe to survey is called the NALL (Navigable Area Limit Line). The NALL is determined by the crew, with many factors taken into account, such as shoreline features, marine organisms, and weather conditions.  An area with many rocks or a dangerously rocky ledge might be designated as “foul” on the charts.

Amanda and Audrey
Amanda and Audrey discussing the locations of rocks along the shoreline

I must pause here to emphasize how seriously everyone’s safety is taken, both on the small boats and the ship itself.  In addition to strict adherence to rules about the use of hard hats and Personal Flotation Devices in and around the launches, I have participated in several drills during my stay on the ship (Man Overboard, Fire and Emergency, and Abandon Ship), during which I was given specific roles and locations.  At the bottom of each printed Plan of the Day there is always a line that states, “NEVER shall the safety of life or property be compromised for data acquisition.” Once more, I appreciate how NOAA prioritizes the wellbeing of the people working here. It reminds me of my school district’s position about ensuring the safety of our students.  No institution can function properly where safety is not a fundamental concern.


Career Focus – Marine Engineer

Johnny Brewer joined the Navy in 1997.  A native of Houston, Texas, many of his family members had served in the military, so it seemed natural for him to choose a similar path after high school.  The Navy trained him as a marine engineer for a boiler ship. Nearly 15 years later he went into the Navy Reserve and transitioned to working for NOAA.

Johnny Brewer, Marine Engineer
Johnny Brewer, Marine Engineer

Working as an engineer requires mental and physical strength.  The Engineering Department is responsible for maintaining and updating all of the many working parts of the ship–not just the engine, as you might think! The engineers are in charge of the complex electrical systems, plumbing, heating and cooling, potable water, sewage, and the launches used for daily survey operations.  They fix everything that needs to be fixed, no matter how large or small the problem may be.

Johnny emphasized how important math is in his job.  Engineers must have a deep understanding of geometry (calculating area, volume, density, etc.) and be able to convert measurements between the metric and American systems, since the ship’s elements are from different parts of the world.  He also described how his job has given him opportunities to visit and even live in new places, such as Hawaii and Japan. Johnny said that when you stay in one place for too long you can become “stuck in a box,” unaware of the world of options waiting for you outside of the box.  As a teacher, I hope that my students take this message to heart.


Personal Log

In my last post I introduced Kimrie Zentmeyer, our Acting Chief Steward. In our conversation, she compared the ship to a house, the walls of which you cannot leave or communicate beyond, except by the ship’s restricted wi-fi, while you are underway.  I would like for my readers (especially my students) to imagine living like this, confined day in and day out to a single space, together with your work colleagues, without family or friends from home.  How would you adjust to this lifestyle? Do you have what it takes to live and work on a ship? Before you answer, consider the views from your back porch!

Ugak Bay
Ugak Bay (Can you spot the whale?)


Word of the Day

bulkhead – a wall dividing the compartments within the hull of a ship

Q & A

Are there other NOAA ships working in Alaska?

Yes!  NOAA Ship Fairweather is Rainier’s sister-ship and is homeported in Ketchikan, Alaska.  Also, the fisheries survey vessel, NOAA Ship Oscar Dyson is homeported in Kodiak, not far from where we are currently located.

What did you eat for dinner?

This evening I had sauteed scallops, steamed broccoli, and vegetable beef stew. And lemon meringue pie. And a cherry turnover. And ice cream.

(:

Lona Hall: The Comforts of Life at Sea, June 8, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 8, 2019

Time:  1630 hours

Location: Saltery Cove, Kodiak Island

Weather from the Bridge:

Latitude: 57°29.2124’ N

Longitude: 152°44.0648’ W

Wind Speed: 15 knots

Wind Direction: N (354 degrees)

Air Temperature: 9.24° Celsius

Water Temperature: 8.89° Celsius

Science and Technology Log

teacher at sea lona hall On the flying bridge with the "Big Eyes"
On the flying bridge at the “Big Eyes”

Let’s talk charts.  A chart is a map that shows specific details of the shoreline and the seafloor, including depth (usually in fathoms) and notable features.  Click here to view the chart of the area, “Chiniak Bay to Dangerous Cape.”  Can you find Saltery Cove, where we are currently anchored? How about Cape Greville and Sequel Point?  The latter are located at the northern and southern ends of the area that we surveyed with the launch last Wednesday afternoon.

If you look carefully, you will see many symbols along the shoreline.  An asterisk represents a rock awash that may only be visible when the water recedes at low tide.  A series of dots represents sandy shore, while small scallop shapes and circles denote breakers and stones, respectively.  The small, filled in triangles on land show where there are cliffs or steep slopes. The symbol that looks like a stick with small branches represents kelp.  Kelp is considered a possible hazard, since it can get wrapped around the propeller of a boat.

Now move your gaze to the ocean.  The numbers that you see are depth soundings, measured in fathoms.  Recall that one fathom equals 6 feet. This means that where you see a sounding of 9 fathoms, the water is actually 54 feet deep (relative to the mean lower low water datum).  If you are looking at the area near Cape Greville, all of the soundings that you see on the chart were taken between 1900 and 1939, before the invention of multibeam sonar. There was a magnitude 9.2 earthquake on March 27, 1964 that changed the depths and shapes of the landforms.  Finally, you should not discount the effects of weathering and erosion by wave action on this area.  The dynamic nature of it all makes the work that NOAA is doing all the more important for the safety of anyone at sea.

Career Focus – Steward

With so many people and so much work being done every day, how do you ensure good morale among the crew? You make sure that they are well fed!  That’s where the Stewards Department comes in to play. I met with Kimrie Zentmeyer, Acting Chief Steward, to learn how she and her staff take care of all of the people on the ship.  

Kimrie Zentmeyer, Acting Chief Steward
Kimrie Zentmeyer, Acting Chief Steward

The Stewards Department is like a sweet grandmother, spoiling her grandbabies by providing good food and other comforts to the entire Rainier family.  Stewards plan and prepare the meals, supply appropriate linens and bedding, and maintain a positive, upbeat attitude in the face of a potentially stressful work environment. Stewards work long hours in close quarters and, as Kimrie says, provide the “customer service” of the ship. Kimrie herself has worked on ships for many years.  She started out as a mess person for Chevron Shipping when her daughter left home for college. As part of the NOAA Relief Pool, Kimrie has worked on ten of NOAA’s ships, filling positions on a temporary basis until permanent employees can be found. It is clear that she has a deep understanding of the emotional needs of a ship’s crew, and she enjoys the camaraderie and cooperation that develop in this unique work environment.

Cold food stores, stocked at port with the help of all of the crew
Cold food stores, stocked at port with the help of all of the crew

This evening for dinner, I had baked salmon, green beans, macaroni and cheese, a salad, and an amazing berry pie.  Everything was prepared fresh, and I felt quite satisfied afterwards. Thank you, stewards!

Personal Log

I would like to take some time to write about the ship. Rainier is a hydrographic survey vessel. (For more information about what that means, see my last post!)  Constructed in Jacksonville Florida, and then later commissioned in 1968, Rainier is one of the longest-serving ships in NOAA’s fleet.  It is named after Mount Rainier, a volcanic mountain in western Washington state.  Students might remember that this mountain is located near a continent-ocean convergent plate boundary between the North American and Juan de Fuca plates, where subduction has lead to the formation of the Cascade Volcanic Arc. Our ship’s home port is located in Newport, Oregon. Originally, however, the home port was in Seattle, Washington, and so it was christened after the iconic Mount Rainier.

NOAA Ship Rainier is 231 feet long from bow to stern.  There are six different levels, or decks, identified by the letters A-F moving upwards from the bottom of the ship.  Each deck is broken into numbered sections, or rooms.

inboard profile
Diagram of the ship, side view

To communicate a particular location, you might refer to the deck letter and section number.  You might also use the following vocabulary:

Port – the left side of the ship

Starboard – the right side of the ship

Fore – forward of the beam

Aft – behind the beam

Stern – the back end of the ship

Bow – the front end of the ship

D-Deck
Overhead diagram of the “D” Deck

My room is located on the E deck, one level below the bridge.  On the D deck we enjoy delicious, cafeteria-style meals in the mess, and we can work, read, relax, or watch movies in the lounge.  The steering takes place on the Bridge, the command center of the ship. I will highlight the bridge in a future post. Other common areas include the Plotting Room, the Holodeck, the Boat Deck, Flying Deck, and Fantail.  There is also a laundry room and even a gym! Although it can be a bit confusing at first, the ship’s layout makes sense and allows for efficiency without sacrificing the crew’s comfort.

Word of the Day

athwart – at right angles to fore and aft; across the centerline of the ship

Lona Hall: Launchin’ and Lunchin’ Near Kodiak Island, June 6, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019


Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 6, 2019

Time:  2000 hours

Location: Underway to Isthmus Bay, Kodiak Island

Weather from the Bridge:

Latitude: 57°39.2266’ N
Longitude: 152°07.5163’ W
Wind Speed: 11.6 knots
Wind Direction: NW (300 degrees)
Air Temperature: 11.37° Celsius
Water Temperature: 8.3° Celsius


Science and Technology Log

Lona on launch RA-5
Yours truly, happy on RA-5

Today I went out on a launch for the first time.  The plan was to survey an area offshore and then move nearshore at low tide, with the water at its lowest level on the beach of Kodiak Island.  Survey Techs, Carl Stedman and Christina Brooks, showed me the software applications used to communicate with the coxswain and collect data. To choose the best frequency for our multibeam pulse, we needed to know the approximate depth of the area being surveyed.  If the water is deeper, you must use lower frequency sound waves, since higher frequency waves tend to attenuate, or weaken, as they travel. We chose a frequency of 300 kilohertz for a 60 meter depth. Periodically, the survey techs must cast a probe into the water.  The Sea-bird SeaCAT CTD (Conductivity, Temperature, Depth) measures the characteristics of the water, creating a sound velocity profile. This profile can tell us how quickly we should expect sound waves to travel through the water based upon the water’s temperature, salinity, and pressure.

Seabird SeaCAT CTD
Seabird SeaCAT CTD
Carl Stedman deploying the probe
Carl Stedman deploying the probe

Using the sound velocity profile allows the computer’s Seafloor Information System (SIS) to correct for changes in water density as data is being collected.  Once the profile was transmitted to SIS, we were ready to begin logging data.

Imagine that you are mowing your lawn.  To maximize efficiency you most likely will choose to mow back and forth in relatively straight paths, overlapping each new row with the previous row.  This is similar to how the offshore survey is carried out. As the boat travels at a speed of about 7 knots, the Kongsberg EM2040 multibeam sonar transducer sends out and receives pulses, which together create a swath.  The more shallow the water, the wider the base of the swath.

Close up of chart
Close up of chart, showing depth gradient by color

After lunch we changed to a nearshore area closer to Kodiak Island between Sequel Point and Cape Greville. It was important to wait for low tide before approaching the shore to avoid being stuck inshore as the tide is going out.  Even so, our coxswain was very careful to follow the edges of the last swaths logged. Since the swath area extends beyond the port and starboard sides of the boat, we could collect data from previously uncharted areas without driving directly above them.  In this way we found many rocks, invisible to the naked eye, that could have seriously damaged an unlucky fisherman!


Career Focus – Able Seaman

Our coxswain driving the boat today was Allan Quintana.  

Allan, aka "Q", driving the boat
Allan, aka “Q”, driving the boat

As an Able Seaman, Allan is part of the Deck Department, which functions primarily to keep track of the ship, manage the lines and anchoring, and deploy and drive the launches.  Allan started out working for the Navy and later transitioned to NOAA. A Miami native, he told me how he loves working at sea, in spite of the long stretches of time away from his friends and family back home.


Personal Log

If you have never been on a boat before, it is a unique experience. Attempts have been made by poets, explorers, scientists, naturalists, and others throughout history to capture the feeling of being at sea.  Although I’ve read many of their descriptions and tried to imagine myself in their shoes, nothing compares to experiencing it first-hand.

Standing on the bow of the anchored ship, looking out at the water, my body leaning to and fro, rising and falling, I am a sentient fishing bobber, continuously rocking but not really going anywhere.  My head feels somehow both heavy and light, and if I stand there long enough, I just might fall asleep under the spell of kinetic hypnosis. The motion of the launch is different. A smaller boat with far less mass is bullied by the swells. For a new crew member like me, it’s easy to be caught off guard and knocked over, unless you have a good grip. I stand alert, feet apart, one hand clasping a rail, as the more experienced crew move about, casually completing various tasks. I wonder how long it would take to become accustomed to the boat’s rising and falling.  Would my body gradually learn to anticipate the back and forth rocking? Would I eventually not feel any movement at all?

View over the bow
A ship with a view


Word of the Day

draft – the vertical distance between the waterline and the hull of a boat, a.k.a. the draught

The draft of NOAA Ship Rainier is 17 feet.

Lona Hall: Meeting, Greeting, and Settling In, June 3, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

 

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 3, 2019

Local Time: 1100 hours

Location: Alongside, JAG Shipyard, Seward, AK

Weather from the Bridge:

Latitude: 60°05.1022’ N
Longitude: 149°21.2954’ W
Wind Speed: 5 knots
Wind Direction: E/SE (114 degrees)
Air Temperature: 12.12° Celsius

Lona Hall on NOAA Ship Rainier
Enjoying the fresh air

Science and Technology Log

While at port in Seward, it has already been my pleasure to meet some of the people that make up the team of NOAA Ship Rainier.  My mission so far has been to learn about the different capacities in which individuals serve on board the ship and how each person’s distinct responsibilities combine together to create a single, well-oiled machine.  

The five main departments represented are the NOAA Commissioned Officers Corps, the Hydrographic Survey Technician team, the Engineering team, the Deck department, and the Stewards.  There are also a few visitors (like me) who are here to observe, ask questions, and participate in daily operations, as possible.

Career Focus – Hydrographic Survey Technician

Today I spent some time with Survey Technician, Amanda Finn.  Amanda is one of nine Survey Techs aboard NOAA Ship Rainier.

Amanda Finn, Hydrographic Survey Technician
Amanda Finn, Hydrographic Survey Technician

What is hydrography?

According to the NOAA website, hydrography is the “science that measures and describes the physical features of the navigable portion of the Earth’s surface and adjoining coastal areas.” Essentially, hydrographers create and improve maps of the ocean floor, both deep at sea and along the shoreline.  The maps, or charts, allow for safer navigation and travel at sea and are therefore very important.

(Click here to see the chart for Resurrection Bay, where the ship is currently docked.)

 

What does a Hydrographic Survey Technician do?

Technicians like Amanda are in charge of preparing systems for collecting hydrographic data, actually collecting and processing the data, monitoring it for quality, and then writing reports about their findings.  They work part of the time on the ship as well as on the smaller launch boats.

 

What kind of data do Survey Techs use?

Both the main ship and the small launches are equipped with multibeam sonar systems.  SONAR is an acronym for Sound Navigation and Ranging. This fascinating technology uses sound waves to “see” whatever exists below the water.  Instead of sending out one sound wave at a time, the multibeam sonar sends out a fan-shaped collection, or swath, of sound waves below and to the sides of the boat’s hull. When the sound waves hit something solid, like a rock, a sunken ship, or simply the sea floor, they bounce back.  The speed and strength at which the sound waves return tell the technicians the depth and hardness of what lies beneath the ocean surface at a given location.

small vessel in the water
Small launch for near shore survey

Personal Log

It is possible to be overwhelmed in a good way.  That has been my experience so far traveling from my home in Georgia to Alaska.  The ship is currently docked at the Seward shipyard in Resurrection Bay. When you hear the word “shipyard”, you might not expect much in the way of scenery, but in this case you would be absolutely wrong!  All around us we can see the bright white peaks of the Kenai Mountains. Yesterday I stood in one place for a while watching a sea otter to my left and a bald eagle to my right. Local fishermen were not as enchanted as I was, but rather were focused on the task at hand: pulling in their bounties of enormous fish!

View near Seward shipyard
Out for a walk near the shipyard

I am similarly impressed with the order and organization aboard the ship. With over fifty people who need to sleep, eat, and get things done each and every day, it might seem like an impossible task to organize it all.  By regular coordination between the departments, as well as the oversight and planning of the ship’s Commanding Officer and Executive Officer, everything flows smoothly.

I think that it is worth noting here how the level of organization that it takes to run a ship like NOAA Ship Rainier should not be taken for granted.  Every individual must do their part in order to ensure the productivity, efficiency, and safety of everyone else.  As a teacher, we often discuss how teamwork is one of life’s most important skills. What a terrific real-world example this has turned out to be!

NOAA Ship Rainier
NOAA Ship Rainier

Did you know?

Seward is located on the Kenai Peninsula in southern Alaska.  The name Kenai (key-nye) comes from the English word (Kenaitze) for the Kahtnuht’ana Dena’ina tribe.  The name of this tribe translates to “people along the Kahtnu river.” Click here for more information about the Kenaitze Indian Tribe.

Word of the Day

fathom: a unit of length equal to 6 feet, commonly used to measure the depth of water

Lona Hall: Alaska Awaits, May 22, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: May 22, 2019

Personal Introduction

Finishing off the school year has never been so exciting as it is now, with an Alaskan adventure awaiting me!  My students are nearly as giddy as I am, and it is a pleasure to be able to share the experience with them through this blog.

In two weeks, I will leave my home in the Appalachian foothills of Georgia and fly to Anchorage, Alaska.  From there I will take a train to the port city of Seward, where I will board NOAA Ship Rainier.  For 11 days we will travel around Kodiak Island conducting a hydrographic survey, mapping the shape of the seafloor and coastline. The Alaska Hydrographic Survey Project is critical to those who live and work there, since it greatly improves the accuracy of maritime navigational charts, ensuring safer travel by sea.

Lona Hall and students in Mozambique
My Mozambican students, 2013

In the past, I have traveled and worked in many different settings, including South Carolina, Cape Cod, Costa Rica, rural Washington, and even more rural Mozambique.  I have acted in diverse roles as volunteer, resident scientist, amateur archaeologist, environmental educator, mentor, naturalist, and teacher of Language Arts, English Language, Math, and Science.

View of Mount Yonah
Mount Yonah, the view from home in northeast Georgia

I now found myself back in my home state of Georgia, married to my wonderful husband, Nathan, and teaching at a local public school.  Having rediscovered the beauty of this place and its people, I feel fortunate to continue life’s journey with a solid home base.

Lona and Nathan at beach
My husband and I at the beach

Currently I teach Earth Science at East Hall Middle School in Gainesville, Georgia.  For the last five years, I have chosen to work in the wonderfully wacky world of sixth graders.  Our school boasts a diverse population of students, many of whom have little to no experience beyond their hometown.  It is my hope that the Teacher at Sea program will enrich my instruction, giving students a glimpse of what it is like to live and work on a ship dedicated to scientific research.  I am also looking forward to getting to know the people behind that research, learning what motivates them in the work that they do and what aspects of their jobs they find the most challenging.

Did you know?

Kodiak Island is the largest island in Alaska and the second largest in the United States.  It is located near the eastern end of the Aleutian Trench, where the Pacific Plate is gradually being subducted underneath the North American Plate.

Eric Koser: Concluding Matters, July 17, 2018

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 22-July 9, 2018

Mission: Lisianski Strait Survey, AK

Geographic Area: Southeast Alaska

Date: July 17, 2018: 900 HRS

 

Weather Data From the Front Porch
Lat: 44°9.48’          Long: 94°1.02’
Skies: Clear
Wind 6 knots, 50°
Visibility 10+ miles
Seas: no seas!
Water temp: no precip to measure
Air Temp: 22°C Dry Bulb

 

Science and Technology Log

Hydrography matters. It allows mariners to travel safely. It allows many of the goods that arrive here in Minnesota to get here! Containers of goods arrive in Minnesota by truck and train from both coasts as well as the great lakes and by barge on the Mississippi river. Right here in Mankato, we often see shipping containers on trucks and trains. But I wonder if many people stop to consider what it takes to assure that the goods they desire arrive safely.

 

These trains carry containers that likely come from one of the coasts on a ship. The containers often transfer to semi trucks to go to their final destinations.

Intermodal Truck
Shipping containers like this one are very common on Minnesota roadways and railways!

In Minnesota, it’s very common to see containers on trucks. The more I am aware, the more often I realize there are shipping containers all around. I wonder how many people stop to consider that trip that some of the containers here on trucks have taken. I would guess that many of them have traveled on the ocean and many across international waters.

 

 

 

Intermodal Truck
Many carriers distribute merchandise via the intermodal system.

 

Seafood matters. People enjoy Alaskan fish, even here in the Midwest. Fishing boats are successful in part due to safe navigation made possible by current charts. The ledges and shoals identified by the hydro scientists on Rainier keep mariners safe, and ultimately support the commerce that many enjoy around the world.

Salmon isn't native to Minnesota!
This looks like a tasty ocean treat!

Navigation matters in many areas! All mariners in the US have free access to the latest navigational charts for inland and coastal waterways, thanks to the work of NOAA’s hydrographers aboard ships like Rainier. The updates we made in Alaska that are most pertinent to safety will be posted in a matter of weeks as “Notice to Mariners.” Here is an example. The general chart updates made by the team will be in the online charts within a year.

——-

It’s been both exciting and rewarding to be a part of this work. I’ve developed a good understanding of the techniques and tools used in basic ocean hydrography. There are so many great applications of physics – and I’m excited to share with my students.

One of the key take-aways for me is the constant example of team work on the ship. Most everywhere I went, I witnessed people working together to support the mission. In the engineering department, for example, Ray, Sara, Tyler, and Mike have to communicate closely to keep the ship’s systems up and running. More often than not, they work in a loud environment where they can’t speak easily to each other. Yet they seem to know what each other needs – and have ways to signal each other what to do.

On the bridge, one way the teamwork is evident in the language used. There is a clearly established set of norms for how to control the ship. The conn gives commands. The helm repeats them back. The helm reports back when the command is completed. The conn then affirms this verbally. And after a while, it all seems pretty automatic. But this team work is really at the heart of getting the ship’s mission accomplished automatically.

Hydro Team
Here the hydrographers work together with the cox’n to assure our launch captures the needed data.

The hydrographers aboard Rainer sure have to work together. They work in teams of three to collect data on the launches – and then bring that back to the ship to process. They need to understand each other’s notes and references to make accurate and complete charts from their observations. And when the charts are sent on to NOAA’s offices, they need to be clear. When running multibeam scanning, the hydrographer and the cox’n (boat driver) have to work very closely together to assure the launch travels in the right path to collect the needed data.

Even the stewards must be a team. They need to prepare meals and manage a kitchen for 44 people. And they do this for 17 days straight—no one wants to miss a meal! The planning that happens behind the scenes to keep everyone well fed is not a small task.

Ocean Sunset
Sunset on the ocean is an occasion in itself! Its easy to be captivated by such beauty at sea!

I look forward to sharing lots about my experiences. I have been asked to speak at a regional library to share my story and photos. I also will present at our state conference on science education this fall. And surely, my students will see many connections to the oceans!  Kids need to understand the interconnectedness of our vast planet!

Finally, I’m very appreciative of NOAA both for the work that they do and for the opportunities they provide teachers like myself to be involved!

Teacher at Sea
This Teacher at Sea has had a great experience!

 

Eric Koser: A Walk Through Ship Rainier, July 7, 2018

 

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 22 – July 9, 2018


Mission:
Lisianski Strait Survey

Geographic Area: Southeast Alaska

Date: July 7, 2018: 1400 HRS

Weather Data From the Bridge
Lat: 49°11.7′          Long: 123°38.4′
Skies: Broken
Wind: 16kn at 120°
Visibility: 10+ miles
Seas:  2ft
Water temp: 15.5°C
Air Temp: 17.6°C Dry Bulb, 15.6°C Wet Bulb

Science and Technology Log

NOAA celebrated the 50th anniversary of the 1968 launch of Ship Rainier and Ship Fairweather this past spring.  These two vessels together have provided 100 years of hydrographc service.  Its amazing to consider this vessel has been cutting through the waves for 50 years!

It took a few days for me to get familiar with the layout of Ship Rainier.  Let me take you on a video tour of several sections of the ship and welcome you aboard.

First some orientation.  The decks are identified with letters – where A represents the lowest level and G is the highest level.  “A deck” is actually a collection of tanks and bilge areas…the work of the engineering team mostly takes place on B deck in the engine room.  The ship also uses numbers to address areas of the ship – starting with 01 at the bow and 12 at the stern.  This way, any location on the ship can be identified by an address.

So lets get started on a tour…

Often, work days start with a meeting on the Fantail of this ship. This is on the D deck – the deck with most of the common spaces on board.

Fantail
This is a diagram of the fantail.

Fantail Safety Briefing
A typical morning safety briefing before a busy day of launches.

We’ll start our walk at the base of the stairs on the starboard side of the front of the fantail.  You’ll see the green coated bollards on several decks.  These are used for tying off the ship when in port.  The large yellow tank is gasoline for the outboard motors.  It is setup to be able to jettison over the side in a fire emergency.

Next, we’ll walk in the weather tight door amidships (center) of the front of the fantail. As we walk forward, notice the scullery (dishwashing area) on the left side followed by the galley (kitchen). To the right is the crew mess (eating area). Continuing ahead, we’ll walk through the DC ready room (Damage Control) and into the wardroom (officers eating area) and lounge.

Next, we’ll start in the Ward room and proceed up the stairs to the E deck. Here we’ll walk by several officers quarters on either side of the hall. Then we’ll turn and see a hallway that goes across the E deck and is home to FOO’s (Field Operations) and XO’s (Executive Officer’s) offices.   Then we’ll step out onto the deck and walk towards the deck on the bow (the front of the ship).

Starting once again at the fantail, now we’ll proceed up the steps to the E deck.  This is the level where the davits are mounted (small cranes) that support the launches (small boats).  After passing the base of the davits, we stop into the boat shop.  This is where engineering maintains the engines of all of the launches on board Rainier.   Next we walk up to the F level and turn towards the stern to see the launches from alongside.  Notice, also, the large black crane in the center of the deck that is used for moving additional equipment and launches.  Finally, we’ll walk all the way up the port side to the fly bridge on the G level.  Here you’ll see “Big Eyes”, my favorite tool on the ship for spotting things in the distance.  As I turn around you’ll see the masts and antennas atop this ship for communications and navigation.  The grey post with the glass circle on it is the magnetic compass –  which can actually also be viewed from the bridge below with a tube that looks up from the helm position.  You might also notice this where the kayaks are stored – great for an afternoon excursion while at anchor!

Here is a quick look in the plot room that is also located on the F deck just aft of the bridge.  This is one of two places where the hydrograph scientists work to collect and process the data collected with the MBES systems.

In the front of the ship on the F deck is the bridge.  This is the control center for the ship and the location of the helm.  There is more detail on the bridge in an earlier post.  The sound you hear is a printer running a copy of the latest weather updates.

Finally, visit my C-03 stateroom.  My room has two bunks and plenty of storage for two people’s gear.  There are four staterooms in this cluster that share two heads (bathrooms).  The orange boxes on the wall are EEBDs (Emergency Escape Breathing Devices).  These are located throughout the ship and provide a few minutes of air to allow escape in the event of fire.  Notice at the top of the steps were back to the hallway and steps just outside of the lounge on D level.

The entire engineering department is not included in these videos and exists mostly on the B level.  Please see my second blog post for more detail on engineering systems and several photos!

Personal Log

Sunday, July 8, 1000 hrs.
We’re coming around the northwestern most point of Washington State this morning and then turning south for the Oregon Coast.  The ship is rolling a bit in the ocean swells.  I’ve come to be very used to this motion.  Last night we had a chance to go ashore in Friday Harbor, in the San Juan Islands for a few hours.  I was surprised just how ‘wobbly’ my legs felt being back on solid ground for a while.  My ship mates tell me this is how it is the first few times back ashore after being at sea!

This has been a great experience – one of plenty of learning and a real appreciation for the work accomplished by this team.  I look forward to drawing in all I can in the last day on the ocean.

Who is On Board?

Mike Alfidi
This is our cox’n Mike Alfidi at the helm of Launch RA-3.

This is augmenter Mike Alfidi.  Mike has been a cox’n (boat driver) here on Rainier for about two years now, and has quite a bit of past experience in the Navy.  Mike is a part of the deck department.  His primary duties here are driving small boats and handling equipment on the decks.  As an “augmenter,” he makes himself available to NOAA to be placed as directed on ships needing his skills.

One of the things Mike loves about his work is getting to see beautiful places like Southeast Alaska.  And, he appreciates updating charts in high traffic areas like the harbor at Pelican.  He loves to be a part of history – transitioning survey data from the old lead line to the much more accurate MBES.  One of the toughest parts, he says, is riding our rough seas and plotting in less trafficked areas.  He did a great job of piloting our launch just as the hydro scientists needed to collect the data we were after!

 

 

Eric Koser: The Impact of the Work

NOAA Teacher at Sea
Eric Koser
Aboard Ship Rainier
June 22-July 9
Mission: Lisianski Strait Survey, AK
July 4, 2018: 1000 HRS

Weather Data From the Bridge
Lat: 55°57.7’          Long: 133°55.7’
Skies: Clear
Wind Light and variable
Visibility 10+ miles
Seas: <1 ft
Water temp: 7.2°C
Air Temp: 14.1°C Dry Bulb, 12.5°C Wet Bulb

Pelican Harbor
The harbor at Pelican, Alaska.

The Impact of the Work
“We’re a part of history!” This notion, shared by a colleague on a launch yesterday, brings home the importance of the work of this team and NOAA’s Hydrographic Branch. Lisianski Inlet was last surveyed in 1917 by lead line! The charts of the inlet were old and not likely accurate. This week – fresh data has been collected by Ship Rainier and her launches to bring the next century of mapping tools below their shores.

Pelican Harbor in the town of Pelican, Alaska was last surveyed between 1970 and 1989.–until we surveyed it yesterday with Rainier Launch RA-3. Our team drove in and out between each of the docks in the harbor, carefully pinging sound waves off of the floor of the harbor to construct a new digital map of the bottom.

Pelican Guys
Guys on a mission…walking to pickup the HorCon.

Pelican HorCon
This is the Horizontal Control station, or HorCon, setup on the breakwater at Pelican before we took it down.

Part of our task yesterday, in addition to conducting MBES survey from our launch, was to dock in Pelican and retrieve our HorCon (a GPS reference radio setup on land that we have used there all week). As we walked through the very small town carrying two car batteries in backpacks, a pair of antennas, tripods, and other gear back to the launch – surely people were interested in what we were up to. Several people stopped to chat as we made our way from the pier, along the boardwalk, and down to the docks to go back to our launch. People asked who we were – and if we were the NOAA team that was in town. There was much appreciation expressed to NOAA for the work being done in the inlet to update the nautical charts. Here in Pelican, the water is the primary mode of transport. Accurate nautical charts provide security and safety.

 

 

 

Pelican
Here is a bit of history on the city!

Main Street, Pelican, Alaska
Main Street, Pelican, Alaska

 

Pelican
It’s a comfortable place, here in Pelican!

There are no roads to Pelican. A few cars are in town – to pull trailers and move equipment. But the primary mode of land transport is four-wheelers. The ‘main street’ is really a raised boardwalk that runs along the rocky shore – and is the heartbeat of the community.   Folks that live up or down the inlet from the town get there in small launches – there are no roads. A ferry comes to Pelican twice a month and is how cars and trucks come and go here. A seaplane comes through a few times a week—often bringing tourists in and out – and the mail. It’s a beautiful spot centered in a small inlet on the edge of the Pacific Ocean.

 

 

 

 

 

 

Pelican Seaplane
The fastest transportation in many parts of Alaska.

Pelican House
A house up the shoreline from Pelican.

Science and Technology Log

It’s mission accomplished for Lisianski Inlet!

Nautical charts are broken up into sheets. And within each sheet, areas are broken down into smaller polygons for data collection. Each launch (small boat), as well as the ship itself, can bring in multibeam data with the equipment mounted on each hull to complete plotting polygons and eventually complete sheets.

The hydrographic survey team is working away today in the plot room and on “the holodeck” of Ship Rainier (an office area on the top of the ship behind the plot room) processing the data we have collected the past several days. A combination of ship and launch multibeam data in addition to bottom samples and shoreline updates have been collected. Now the work of the scientists continues and becomes data processing.

Holideck
Part of the hydrographic team on the holodeck.

As the data is combined, it is reviewed and refined to make a complete picture of the survey area. Once the team on the ship has completed their work, the data goes to the Pacific Hydrographic Branch of the Office of Coast Survey of NOAA. Here, the PHB team reviews that data again and assures it meets the specifications and standards needed to become finalized for use.

From PHB, the data is passed to two places. One is the NCEI (National Center for Environmental Information) office. They archive all of the raw and processed data including the digital surfaces themselves and the descriptive reports written by the hydrographers here.

The data also goes to the Marine Chart Division, an office of NOAA Coast Survey. Here is where the nautical charts are produced in both ENC and RNC (electronic and paper versions). It is this branch that publishes the data for use by mariners and the general public. Anyone can see the charts at nauticalcharts.noaa.gov (try the “Chart Locator”).

Nautical Chart
Here is a finished chart we are using to navigate today. Notice the two buoys in purple and green on the chart, and the narrow space between them.

Flybridge Approach
This is the view from the flybridge as we approach these same two buoys that are indicated on the chart.

 

Who is on board?

Tyanne
Tyanne Faulkes is a hydrographic scientist with NOAA.

During this leg of the trip, we have a visiting scientist from NOAA’s is here on board. Tyanne Faulkes works as a physical scientist for the Pacific Hydrographic Branch of NOAA. She is a part of the team that processes the data from the hydro teams on NOAA Ship Rainier and NOAA Ship Fairweather. Her job is to assure that the data meets NOAA’s specifications–so that they can provide evidence of dangers of navigation and accurate depth information for all mariners.

Tyanne loves to be involved in making maps of the sea floor – and getting to see things others have not seen before! She loves that NOAA provides data for free to scientists around the world. Her job includes not only desk work, but also opportunities to make many mapping trips to understand where the hydro data comes from. Ms Faulkes has a bachelors degree in geography and GIS. It was a paid internship just out of college with NOAA that initially brought her to this work. And – she has a ton of fun with what she does. As a kid, Tyanne loved oceanography. Her GIS education tied well with the internship – and it all came together to take her where she is today!

Tyanne Mountains
When she’s not chasing the bottom of the oceans, Tyanne also loves to climb mountains!

She some advice to students – “Learn how to code!”

“Building Python scripts is a very powerful tool to allow us to automate the data review process. Being able to write the code – or at least understand the basic concepts that put it together – allows one to be much more efficient in your work!”

Understanding the concept of an algorithm that can save one hours of work is a very good asset. “I wish in college someone would have taught me how to do this!” One easy example is a bulk file renaming tool that the launch teams use. After collecting 50 some separate files of data in a day, this tool will take the individual file names and append any number of things to the filenames – all automatically.

Want to get involved? Next week, Tyanne and her team at NOAA’s Western Regional Center at Sand Point in Seattle, WA are hosting an annual camp for middle school and high school students! Students from across the US can apply to come to this camp each summer and have great experiences learning all about oceans and hydrography! Check it out on the web: NOAA Science Camp – Washington Sea Grant.

 

Heather O’Connell: Surveying Tracy Arm, June 20, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 22, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Sitka, Alaska

Date: 6/20/18

Weather Data from the Bridge

Latitude and Longitude: 57°52.9’ N, 133 °38.7’ W, Sky Condition: Broken, Visibility: 10+ nautical miles, Wind Speed: Light Variable, Sea Level Pressure: 1013.5 millibars, Sea Water Temperature: 3.9°C, Air Temperature: Dry bulb: 17.8°C, Wet bulb: 14°C

Science and Technology Log

After the morning meeting of hearing everyone’s risk assessment before getting on the launches, I was part of the four person crew on launch RA-6. Our task for the day was to clean up the data, or collect data in places within the Tracy Arm polygon that weren’t already surveyed. We had to fill in the gaps in L and M polygons on the East point. The entire area of Tracy Arm needed to be surveyed because there are several cruise ships that are coming into this area now that Sawyer Glacier is receding and the area has not been surveyed since the late nineties. Navigation charts must be updated to ensure that the safety of the people that are visiting the area.

Launch going out to survey
Launch going out to survey

Once on the launch, the bright orange POS MV, or Positioning Orientation System Marine Vessel, must be powered to start the survey process. The new acquisition log was created as an excel spreadsheet to record the different casts along with the latitude and longitude, the maximum depth and the sound speed of the water at about approximately one meter. With all of the valuable data recorded, it is important to have a consistent system for managing all of the data so that it can be accessed and managed efficiently.

The EM-2040 Konsberg Sonar S.I.S., Seafloor Information System, program was powered on next. The EM processing unit, which is connected to the multi-beam sonar, has three lines of information when properly communicating with sonar. The right hand monitor in the launch displays the information from the sonar. Creating the file name is another crucial way of ensuring that the data can be managed properly. It is from this computer that you can manually adjust the angle of the beam swath with the sound pings.

Sonar Computer Systems
Sonar Computer Systems

Once the computers were started and communicating with each other, we completed a C.T.D. cast to obtain the sound speed profile of the water. There is also a device that measures this right on the multibeam sonar, but it is important that two devices have a similar sound speed profile to ensure data accuracy. If there is a large discrepancy between the two values, then another cast must be taken. Initially, the measuring sound speed profile at the interface was 1437.2 and the C.T.D. sound speed was 1437.8. The final algorithm that determines the depth of the water will take this information into account. Since we were somewhat close to a waterfall, the fresh water input most likely affected the sound profile of the water.

Preparing the CTD
Preparing the CTD

After viewing the data acquired in the sheet, or the assigned area of Tracy Arm to survey, Greg found areas where there were holes. He put a target on the map on the monitor on the left hand side computer. This HYSWEEP interface for multibeam and side scan sonar (which is a subset of HYPAC which is the multibeam software) screen shows a chart of the area with depths in fathoms and any rocks or shoals that would impede driving ability along with a red boat image of the vessel. This display is what the coxswain driving above also sees so that he or she is aware of what direction to travel. Once logging data, this screen also displays the beam so that you can ensure that all necessary data is being acquired. Previous surveys are depicted in a more subdued color so that you can see that the missing data is being collected. From the monitor, the survey technician must control the view of the map to be sure that it includes the targeted area, along with the path of the boat so that future obstructions can be avoided.

Multi-beam Sonar Work Station
Multi-beam Sonar Work Station

Since we were avoiding icebergs in the initial part of the clean up, we were going at about two knots. This slow pace allows for an increase in returns, nodes and soundings that increase the data density. Shallow waters take much longer to survey due to the smaller swath width. It is important to have accurate, high resolution data for shorelines since this is the area where many vessels will be traveling.  When a sonar pings, every swath, or fan-shaped area of soundings, returns five hundred soundings. Five hundred soundings times a rate of seven pings per second means there are thirty five hundred soundings per second total. This data density enhances the resolution of the maps that will be generated once the data has been processed.

Since there are sometimes safety hazards when surveying there are several different approaches that can be used to ensure the entire area is surveyed in a safe manner. Half stepping included going back over previous coverage far enough away from the hazard. Scalloping is another method which involves turning right before the rock or obstruction. This sends the beam swath near the rock without putting the vessel in danger. Some areas that were too close to icebergs could not be surveyed since it was not safe. But, this hydrographic survey was able to acquire data closer to the Sawyer Glacier than ever before. Being a part of this data collection was gratifying on many levels!

Personal Log

Seeing a white mountain goat amongst some of the most beautiful geological features that I have ever laid eyes on was another benefit of being out on the launch for the day. When a grizzly bear cub ran by a waterfall I continued to appreciate a day on the launch. Seals perched on icebergs were always a fun sight to see. And, the endless pieces of ice drifting by in the sea during our surveying never ceased to amaze me. 

Seals on an Ice Berg
Seals on an Iceberg

After a day of surveying, kayaking to a waterfall in William’s Cove and exploring proved to be another fun adventure.

OLYMPUS DIGITAL CAMERA
Waterfall in William’s Cove

Growing Muscle like Growing Character

The other day as I ran on the treadmill, I had a realization. While looking at the lifting weights, I realized that in order to build muscle, one must tear old muscles and rebuild new strands of protein. When these new fibers build on top of each other, muscles grow. I realized that new officers go through a similar process of developing skills and character. Junior officers come in with a two year responsibility where they learn an incredible amount. They are constantly put into new and challenging learning experiences where they tear their muscles. As they acclimate to these experiences, they build character, or muscle. The cycle repeats with subsequent occurrences.

Junior Officer ENS Airlie Pickett has a small triangle tattooed on her inner left bicep. When I asked her the significance of it, she said that the only way that you can truly understand something is to observe how it changes. In math, integrals and derivatives explain this change.

As I appreciated her tattoo, I considered that she must learn quite a lot about herself as a junior officer constantly learning new things. I’ve appreciated the opportunity to experience and observe myself in an unfamiliar surrounding on Rainier. It’s humbling to not understand the nautical terms, endless acronyms of surveying and NOAA Corps structure of life. I appreciated that all hands on Rainier made me feel welcomed, and were patient with explaining new concepts to me. I am grateful for the opportunity to experience the Inside Passage while learning about hydrographic surveying. Living on a ship, learning about navigation and meeting all of the hard working people on Rainier has been an unique experience. Overall, this has been an incredible opportunity. Mahalo nui loa! (Thank you very much). A hui hou Rainier! (Until we meet again)!

Did You Know?

Barometers measure atmospheric pressure in millimeters of mercury or atmospheres. An atmosphere is the amount of air wrapped around the Earth and one atmosphere, atm, is the amount of pressure at sea level at fifteen degrees Celsius. As altitude increases, the amount of pressure decreases since the density of the air decreases and less pressure is exerted. A decrease in altitude increases the amount of pressure exerted and the density of the air increases.

Changes in pressure can signify weather patterns. A drop in barometric pressure means a low pressure system is coming in and  there is not enough force to blow away the weather. Weather indicative of this includes windy, cloudy and/or rainy weather. An increase in barometric pressure means a high pressure system is coming in and  cool, dry air pushes out the weather resulting in clear skies.

https://www.nationalgeographic.org/encyclopedia/barometer/