Hayden Roberts: Wet and Wild, July 14, 2019


NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 14, 2019

Weather Data from the Bridge:
Latitude: 29.19° N
Longitude: 83.45° W
Wave Height: 1-2 feet
Wind Speed: 10 knots
Wind Direction: 180
Visibility: 10 nm
Air Temperature: 30.5°C
Barometric Pressure: 1019 mb
Sky: Few clouds


Science Log

NOAA Ship Oregon II includes many departments and sections of the ship. As part of the TAS program (Teacher at Sea), I spend most of my time assisting the research team in the wet lab, which occurs in 12-hour shifts. The wet lab is where each catch is brought after it is hauled aboard. The process involves bringing what we find in the trawling net on deck so that we can weigh, sort, count, and measure a subsample of what is found. Fortunately, we do not have to weigh and determine the sex of everything that comes aboard in the net; otherwise, it would take hours when the catch is large. By taking a subsample, fishery biologists can split the catch into percentages depending on the weight of the entire catch and sample size. This subsample’s diversity can then be used as a basis for the entire catch. This conserves our efforts and while still providing an accurate representation of what was caught.

Pulling in the trawling net
Pulling in the trawling net.
Sorting the catch
Opening and sorting the catch.
Wet Lab
Wet Lab aboard NOAA Ship Oregon II.
Sorted samples
Sorted samples ready to be cataloged.

In order to ensure that our leg of the groundfish survey covers the maximum area possible, NOAA uses a method called independent random sampling. A computer program randomly selects stations or research sites based on depth data and spatial area. By choosing random samples independently, fishery biologists can ensure that they have not inadvertently singled out or favored one area over another and that the data collected represents an accurate picture of the fish population in the Gulf. Previous legs of the groundfish survey this summer have focused on research stations along the Texas and Louisiana Gulf coast. Our sampling takes place along the Florida side of the Gulf. The goal is to hit 45-50 research sites during our trip.

So far, I have learned that the eastern side of Gulf can be more challenging to survey than the west. NOAA and its SEAMAP partners have covered less area in the eastern part of the Gulf. While the eastern Gulf is not exactly uncharted waters, NOAA is still perfecting its research techniques in this part of the Gulf. As early as the 1970s, NOAA has surveyed the muddy bottom of the western Gulf off the coast of Texas. In that part of the Gulf, silt from rivers (mostly the Mississippi) makes for a more uniform surface to trawl for fish samples. East of Mobile, Alabama, tends to be rocky and sandy with outcrops of coral and sponge. The craggy surface, while ideal for a host of aquatic species, can create challenges for collecting samples. With each research station we visit on our cruise, we have to be careful not to cause too much damage to the sea floor. Therefore, we have been using a torpedo-shaped probe to scan our trawling paths before we drop the net. While this doubles the time it takes to complete each research station, it does improve our odds of collecting good samples as well as protecting our trawling net from jagged objects that might tear the net.


Did You Know?

A fishery biologist is a scientist who studies fish and their habitats. As biologists, they mostly focus on the behavior of fish in their natural surroundings. Some biologists work mostly in a lab or sorting data in a research facility like NOAA’s office in Pascagoula, but many spend quite a bit of time collecting field samples in various ecological settings. To become a fishery biologist, scientists have to study botany, zoology, fishery management, and wildlife management as a prerequisite to a career in the fish and game biology field. A bachelor’s degree may be acceptable for managerial positions, but many fishery biologists have advanced degrees such as a Master’s or Doctorate.


Personal Log

At the beginning of the cruise, we conducted safety drills aboard Oregon II. Safety drills include fire, man overboard, and abandon ship. Each drill requires the crew to go to various parts of the ship. For fire, the research crew (including myself) heads to the stern (or back of the ship) to wait instructions and to be out of the way of the deck crew working the fire. For man overboard, we are instructed to keep eyes on the individual in the water, yelling for help, and throw life preservers in the water to help mark the person’s location. For abandon ship, the crew meets on the fore deck with their life jackets and “gumby” survival suits (see picture). If life rafts can be deployed, we put on our life jackets and all of us file into groups. If we have to jump into the water, we are asked to put on our red survival suits, which are a cross between a wetsuit and a personal inflatable raft.

Hayden in gumby suit
Practicing donning my survival suit.

I asked Acting Commanding Officer Andrew Ostapenko (normally the Executive Officer but is the acting “captain” of our cruise) about what we would do in the event of a storm. With a length of 170 feet and a width of 34 feet, Oregon II is large enough to handle normal summer squalls and moderate weather like the ones we have sailed through the first few days our trip, but it is important to avoid tropical storms or hurricanes (like Barry, which is gathering near the coast of Louisiana), which are just too big to contend. On the ship, the officers keep a constant watch on the weather forecast with real-time data feeds from the National Weather Service (NWS).

As part of my orientation to the ship, I took a tour of the safety features of Oregon II with the officer in charge of safety for our cruise, OPS Officer LT Ryan Belcher. He showed us what would happen in case of an emergency. There are 6 life rafts on board, and each can hold 16 people. Three rafts position on each side of the ship, and they automatically float free and inflate if that side of the ship goes underwater. An orange rescue boat can be deployed if someone falls overboard, but that craft is more It is more regularly used for man overboard drills and to support periodic dives for underwater hull inspections and maintenance.

Rescue vessel
Rescue vessel.
radio and satellite receivers
NOAA Ship Oregon II funnel with radio and satellite receivers.
Foghorn
Foghorn is a device that uses sound to warn vehicles of navigational hazards and hazards or emergencies aboard the ship.

If an emergency on the ship did occur, it would be essential to send out a call for help. First, they would try the radio, but if radio communication no longer worked, we also have a satellite phone, EPIRBS (satellite beacons), and a radar reflector (that lets ships nearby know there is an emergency). On the lower tech end, old fashion emergency flares and parachute signals can be launched into the air so other ships could locate us.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s