Hayden Roberts: Wet and Wild, July 14, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 14, 2019

Weather Data from the Bridge:
Latitude: 29.19° N
Longitude: 83.45° W
Wave Height: 1-2 feet
Wind Speed: 10 knots
Wind Direction: 180
Visibility: 10 nm
Air Temperature: 30.5°C
Barometric Pressure: 1019 mb
Sky: Few clouds


Science Log

NOAA Ship Oregon II includes many departments and sections of the ship. As part of the TAS program (Teacher at Sea), I spend most of my time assisting the research team in the wet lab, which occurs in 12-hour shifts. The wet lab is where each catch is brought after it is hauled aboard. The process involves bringing what we find in the trawling net on deck so that we can weigh, sort, count, and measure a subsample of what is found. Fortunately, we do not have to weigh and determine the sex of everything that comes aboard in the net; otherwise, it would take hours when the catch is large. By taking a subsample, fishery biologists can split the catch into percentages depending on the weight of the entire catch and sample size. This subsample’s diversity can then be used as a basis for the entire catch. This conserves our efforts and while still providing an accurate representation of what was caught.

Pulling in the trawling net
Pulling in the trawling net.
Sorting the catch
Opening and sorting the catch.
Wet Lab
Wet Lab aboard NOAA Ship Oregon II.
Sorted samples
Sorted samples ready to be cataloged.

In order to ensure that our leg of the groundfish survey covers the maximum area possible, NOAA uses a method called independent random sampling. A computer program randomly selects stations or research sites based on depth data and spatial area. By choosing random samples independently, fishery biologists can ensure that they have not inadvertently singled out or favored one area over another and that the data collected represents an accurate picture of the fish population in the Gulf. Previous legs of the groundfish survey this summer have focused on research stations along the Texas and Louisiana Gulf coast. Our sampling takes place along the Florida side of the Gulf. The goal is to hit 45-50 research sites during our trip.

So far, I have learned that the eastern side of Gulf can be more challenging to survey than the west. NOAA and its SEAMAP partners have covered less area in the eastern part of the Gulf. While the eastern Gulf is not exactly uncharted waters, NOAA is still perfecting its research techniques in this part of the Gulf. As early as the 1970s, NOAA has surveyed the muddy bottom of the western Gulf off the coast of Texas. In that part of the Gulf, silt from rivers (mostly the Mississippi) makes for a more uniform surface to trawl for fish samples. East of Mobile, Alabama, tends to be rocky and sandy with outcrops of coral and sponge. The craggy surface, while ideal for a host of aquatic species, can create challenges for collecting samples. With each research station we visit on our cruise, we have to be careful not to cause too much damage to the sea floor. Therefore, we have been using a torpedo-shaped probe to scan our trawling paths before we drop the net. While this doubles the time it takes to complete each research station, it does improve our odds of collecting good samples as well as protecting our trawling net from jagged objects that might tear the net.


Did You Know?

A fishery biologist is a scientist who studies fish and their habitats. As biologists, they mostly focus on the behavior of fish in their natural surroundings. Some biologists work mostly in a lab or sorting data in a research facility like NOAA’s office in Pascagoula, but many spend quite a bit of time collecting field samples in various ecological settings. To become a fishery biologist, scientists have to study botany, zoology, fishery management, and wildlife management as a prerequisite to a career in the fish and game biology field. A bachelor’s degree may be acceptable for managerial positions, but many fishery biologists have advanced degrees such as a Master’s or Doctorate.


Personal Log

At the beginning of the cruise, we conducted safety drills aboard Oregon II. Safety drills include fire, man overboard, and abandon ship. Each drill requires the crew to go to various parts of the ship. For fire, the research crew (including myself) heads to the stern (or back of the ship) to wait instructions and to be out of the way of the deck crew working the fire. For man overboard, we are instructed to keep eyes on the individual in the water, yelling for help, and throw life preservers in the water to help mark the person’s location. For abandon ship, the crew meets on the fore deck with their life jackets and “gumby” survival suits (see picture). If life rafts can be deployed, we put on our life jackets and all of us file into groups. If we have to jump into the water, we are asked to put on our red survival suits, which are a cross between a wetsuit and a personal inflatable raft.

Hayden in gumby suit
Practicing donning my survival suit.

I asked Acting Commanding Officer Andrew Ostapenko (normally the Executive Officer but is the acting “captain” of our cruise) about what we would do in the event of a storm. With a length of 170 feet and a width of 34 feet, Oregon II is large enough to handle normal summer squalls and moderate weather like the ones we have sailed through the first few days our trip, but it is important to avoid tropical storms or hurricanes (like Barry, which is gathering near the coast of Louisiana), which are just too big to contend. On the ship, the officers keep a constant watch on the weather forecast with real-time data feeds from the National Weather Service (NWS).

As part of my orientation to the ship, I took a tour of the safety features of Oregon II with the officer in charge of safety for our cruise, OPS Officer LT Ryan Belcher. He showed us what would happen in case of an emergency. There are 6 life rafts on board, and each can hold 16 people. Three rafts position on each side of the ship, and they automatically float free and inflate if that side of the ship goes underwater. An orange rescue boat can be deployed if someone falls overboard, but that craft is more It is more regularly used for man overboard drills and to support periodic dives for underwater hull inspections and maintenance.

Rescue vessel
Rescue vessel.
radio and satellite receivers
NOAA Ship Oregon II funnel with radio and satellite receivers.
Foghorn
Foghorn is a device that uses sound to warn vehicles of navigational hazards and hazards or emergencies aboard the ship.

If an emergency on the ship did occur, it would be essential to send out a call for help. First, they would try the radio, but if radio communication no longer worked, we also have a satellite phone, EPIRBS (satellite beacons), and a radar reflector (that lets ships nearby know there is an emergency). On the lower tech end, old fashion emergency flares and parachute signals can be launched into the air so other ships could locate us.

Hayden Roberts: Data and More Data… July 11, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 11, 2019

Weather Data from the Bridge:
Latitude: 28.29° N
Longitude: 83.18° W
Wave Height: 1-2 feet
Wind Speed: 11 knots
Wind Direction: 190
Visibility: 10 nm
Air Temperature: 29.8°C
Barometric Pressure: 1013.6 mb
Sky: Few clouds


Science Log

As I mentioned in my introductory post, the purpose of the SEAMAP Summer Groundfish Survey is to collect data for managing commercial fisheries in the Gulf of Mexico. However, the science involved is much more complex than counting and measuring fish varieties.

The research crew gathers data in three ways. The first way involves trawling for fish. The bulk of the work on-board focuses on trawling or dragging a 42-foot net along the bottom of the Gulf floor for 30 minutes. Then cranes haul the net and its catch, and the research team and other personnel weigh the catch. The shift team sorts the haul which involves pulling out all of the shrimp and red snapper, which are the most commercially important species, and taking random samples of the rest. Then the team counts each species in the sample and record weights and measurements in a database called FSCS (Fisheries Scientific Computer System).

Trawling nets
Trawling nets waiting on aft deck.

SEAMAP can be used by various government, educational, and private entities. For example, in the Gulf data is used to protect the shrimp and red snapper populations. For several years, Gulf states have been closing the shrimp fishery and putting limits on the snapper catches seasonally to allow the population to reproduce and grow. The SEAMAP data helps determine the length of the season and size limits for each species.

Tampa Bay area waters
Digital chart of the waters off the Tampa Bay area. Black dots represent research stations or stops for our cruise.

Another method of data collection is conductivity, temperature, and depth measurements (CTD). The process involves taking readings on the surface, the bottom of Gulf floor, and at least two other points between in order to create a CTD profile of the water sampled at each trawling locations. The data becomes important in order to assess the extent of hypoxia or “dead zones” in the Gulf (see how compounded data is used to build maps of hypoxic areas of the Gulf: https://www.noaa.gov/media-release/noaa-forecasts-very-large-dead-zone-for-gulf-of-mexico). Plotting and measuring characteristics of hypoxia have become a major part of fishery research especially in the Gulf, which has the second largest area of seasonal hypoxia in the world around the Mississippi Delta area. SEAMAP data collected since the early 1980s show that the zone of hypoxia in the Gulf has been spreading, unfortunately. One recent research sample taken near Corpus Christi, TX indicated that hypoxia was occurring further south than in the past. This summer, during surveys two CTD devices are being used. The first is a large cylinder-shaped machine that travels the depth of the water for its readings. It provides a single snapshot. The second CTD is called a “Manta,” which is a multi-parameter water quality sonde (or probe). While it can be used for many kinds of water quality tests, NOAA is using it to test for hypoxia across a swath of sea while pulling the trawling net. This help determine the rate of oxygenation at a different depth in the water and across a wider field than the other CTD can provide.

Setting up the CTD
Setting up the CTD for its first dive of our research cruise.


Did You Know?

Algae is a major problem in the Gulf of Mexico. Hypoxia is often associated with the overgrowth of certain species of algae, which can lead to oxygen depletion when they die, sink to the bottom, and decompose. Two major outbreaks of algae contamination have occurred in the past three years. From 2017-2018, red algae, which is common in the Gulf, began washing ashore in Florida. “Red Tide” is the common name for these algae blooms, which are large concentrations of aquatic microorganisms, such as protozoans and unicellular algae. The upwelling of nutrients from the sea floor, often following massive storms, provides for the algae and triggers bloom events. The wave of hurricanes (including Irma and during this period caused the bloom. The second is more recent. Currently, beaches nearest the Mississippi Delta have been closed due to an abundance of green algae. This toxic algae bloom resulted from large amounts of nutrients, pesticides, fertilizers being released into the Bonnet Carre Spillway in Louisiana because of the record-high Mississippi River levels near Lake Pontchartrain. The spillway opening is being blamed for high mortality rates of dolphins, oysters and other aquatic life, as well as the algae blooms plaguing Louisiana and Mississippi waters.


Personal Log

Pulling away from Pascagoula yesterday, I knew we were headed into open waters for the next day and half as we traveled east down the coast to the Tampa Bay, FL area. I stood on the fore deck and watched Oregon II cruise past the shipyard, the old naval station, the refinery, navigation buoys, barrier islands, and returning vessels. The Gulf is a busy place. While the two major oceans that flank either side of the U.S. seem so dominant, the Gulf as the ninth largest body of water in the world and has just as much importance. As a basin linked to the Atlantic Ocean, the tidal ranges in the Gulf are extremely small due to the narrow connection with the ocean. This means that outside of major weather, the Gulf is relatively calm, which is not the case with our trip.

Navigation buoy
Navigation buoy that we passed leaving Pascagoula harbor.

As we cruise into open waters, along the horizon we can see drilling platforms jutting out of the Gulf like skyscrapers or resorts lining the distant shore. Oil and gas extraction are huge in this region. Steaming alongside us are oil tankers coming up from the south and cargo ships with towering containers moving back and forth between Latin America and the US Coast. What’s in the Gulf (marine wildlife and natural resources) has geographic importance, but what comes across the Gulf has strategic value too.

The further we cruised away from Mississippi, the water became choppy. The storm clouds that delayed our departure the day before were now overhead. In the distances, rain connected the sky to sea. While the storm is predicted to move northwest, the hope is that we can avoid its intensification over the Gulf Stream as we move southeasterly.

Choppy seas
Choppy seas as we cruise across the Gulf to the West Coast of Florida to start our research.

I learned that water in the Gulf this July is much warmer than normal. As a result, locally produced tropical storms have formed over the Gulf. Typically, tropical storms (the prelude to a hurricane) form over the Atlantic closer to the Equator and move North. Sometimes they can form in isolated areas like the Gulf. Near us, an isolated tropical storm (named Barry) is pushing us toward research stations closer to the coast in order to avoid more turbulent and windy working conditions. While the research we are conducting is important, safety and security aboard the ship comes first.

Hayden Roberts: Wait-and-See (or Is It Sea?) July 8, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 8, 2019

Weather Data from the Bridge

Latitude: 30.35° N 
Longitude: 88.6° W
Wave Height: 1-2 feet
Wind Speed: 10 knots
Wind Direction: Northwest
Visibility: 10 nm
Air Temperature: 33°C 
Barometric Pressure: 1012 mb
Sky: Few clouds


Science Log

Day one of my trip and we are delayed leaving. Growing up in Oklahoma, you think you know weather until one of the NOAA fishery biologists assigned to the ship provides you a lengthy explanation about the challenges of weather on setting sail. As he put it, the jet stream is throwing off the weather. This is true. Studies have suggested that for a few years the polar jet stream has been fluctuating more than normal as it passes over parts of the Northern Hemisphere. The jet stream is like a river of wind that circles the Northern Hemisphere continuously. That river meanders north and south along the way. When those meanders occur over the Atlantic and the Pacific Oceans, it can alter pressure systems and wind patterns at lower latitudes and that affects how warm or raining it is across North America and Europe. 

This spring in Oklahoma, it has led to record-breaking rains that have flooded low lying areas across the Great Plains and parts of the southeastern United States. Thunderstorms have generally been concentrated in the southern and middle section of the US as the jet stream dips down. The NOAA biologist also indicated that the delay in our departure could be blamed on the El Niño effect. 

El Niño is a natural climate pattern where sea water in the central and eastern tropical Pacific Ocean is warmer than average. This leads to greater precipitation originating from the ocean. According to NOAA scientists, El Niño is calculated by averaging the sea-surface temperature each month, then averaging it with the previous and following months. That number is compared to average temperatures for the same three-month period between 1986 and 2015, called the Oceanic Niño index. When the index hits 0.5 degrees Celsius warmer or more, such as right now, it’s classified as an El Niño. When it’s 0.5 degrees Celsius cooler or more, it’s a La Niña. During an El Niño, the southern part of the U.S. typically experiences wetter than average conditions, while the northern part is less stormy and milder than usual. During a La Niña, it flips, with colder and stormier conditions to the north and warmer, less stormy conditions across the south. However, the El Niño this year has been classified as weak, which means typically the wetter conditions do not push into the Gulf of Mexico region, but exceptions can occur. With the fluctuating jet stream, the El Nino has vacillated between the Plains region and the upper South and regions closer to the Gulf. Thus, the storm causing our delayed departure comes from a weather condition that has been pushed further south by the jet stream.

While these may be causes for the delayed departure, the actual sailing conditions at the time of our voyage are the main concerns. Looking at the NOAA Marine Forecast webpage (https://www.nws.noaa.gov/om/marine/zone/off/offnt4mz.htm), the decision for our delay is based on a storm producing significant wave heights, which are the average height of the highest 1/3 of the waves. Individual waves may be more than twice the average wave heights. In addition, weak high pressure appears to dominate the western Gulf and will likely last mid-week. Fortunately, we are set sail into the eastern Gulf off the coast of Florida. We should be able to sail behind the storm as it moves west. We do have to watch the surface low forming along a trough over the northeast Gulf later in the week. The National Hurricane Center in Miami (which provided weather data in the Atlantic and the Gulf for NOAA) predicts that all of this will intensify through Friday (July 12) as it drifts westward. This will produce strong to near gale force winds and building seas for the north central Gulf. Hopefully by then we will be sailing south of it. 

Gulf of Mexico weather forecasts
Digital interface map for regions of the Gulf of Mexico and its weather forecasts (National Weather Service, NOAA)


Did You Know?

The weather terms El Niño and La Niña can be translated from Spanish to English as boy and girl, respectively. El Niño originally applied to an annual weak warm ocean current that ran southwards along the coast of Peru and Ecuador around Christmas time before it was linked to a global phenomenon now referred to as El Niño–Southern Oscillation. La Niña is sometimes called El Viejo, anti-El Niño, or simply “a cold event.” El Niño events have been occurring for thousands of years with at least 26 occurring since 1900.


Personal Log

I boarded NOAA’s Oregon II yesterday when the ship was virtually empty. It was Sunday, and we were not set to leave until mid-afternoon the following day (and now Tuesday, July 9). Spending the night on the ship was more comfortable than I had expected. While the stateroom was cramped (I share it with one other crew member), the space is surprisingly efficient. I had plenty of space to store my gear. The bunkbed was more cozy than restricted.

NOAA Pascagoula Lab
Even though it was Sunday and everything was closed, I had to stop for a selfie.
NOAA Ship Oregon II
My first look at NOAA Ship Oregon II.

My first day in Pascagoula, MS was spent learning about the town. Pascagoula is a port city with a historic shipyard. Pascagoula is home to the state’s largest employer, Ingalls Shipbuilding, the largest Chevron refinery in the world, and Signal International, an oil platform builder. Prior to World War II, the town was a small fishing community, but the population jumped with war-driven shipbuilding. The city’s population peak in the late 1970s, but today, there are less than 25,000 in the area. Pascagoula continues to be an industrial center surrounded by the growing tourism industry across the Gulf region to the east and west of the port. The population also declined when Naval Station Pascagoula was decommissioned in 2006. The old naval base is located on manmade strip of land called Singing River Island and is in the middle of the port. The port still maintains a large Coast Guard contingent as well as serving as the home portfor the NOAA Ships Gordon GunterOregon II, and Pisces. The NOAA port is actually called the Gulf Marine Support Facility and is located a block from NOAA’s National Marine Fisheries Service Mississippi Laboratory.

Hayden Roberts: Santiago’s Dream (My Introduction), July 2, 2019

NOAA Teacher at Sea

Hayden Roberts

(In advance) Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 2, 2019


Introduction

“There are many good fishermen and some great ones. But there is only one you.”

–Ernest Hemingway (Old Man and the Sea)

As I sit at my home computer, my mind is racing with thoughts of what I need to do before leaving for Mississippi. My family doesn’t quite know what I am doing aboard NOAA Ship Oregon II, not that I am sure either! They vacillate between images of cramped, hot quarters portrayed in old World War II movies like Das Boot (1981), which is about a German submarine crew. In contrast to the sailors traversing icy, choppy waters as in the reality TV show Deadliest Catch, which is about King Crab fishermen in Alaska’s Bering Sea. I am not sure my time aboard Oregon II will be either, but perhaps they will think me braver if I leave that picture in their minds ahead of my trip [wink, wink].

Roberts Family
Roberts Family. From left to right: Owen, Hayden, Jackson, and Sarah.

However, before I talk about my trip, I should take a step back and talk about where I came. I am from Oklahoma, one of the most landlocked areas of North America. I grew up in Oklahoma (both Tulsa and Oklahoma City), but have had many other experiences since then. I have been teaching at the collegiate level for 15 years. I mostly instruct high school students taking concurrent enrollment classes and community college students working on undergraduate general education requirements.  I teach regional geography, folklife and traditional culture, and introduction to the humanities at Oklahoma State University—Oklahoma City (OSU-OKC) and Oklahoma City Community College. I am lead faculty in geography at OSU-OKC.

Sarah and Hayden
My wife Sarah and I at one of our favorite date night adventures, Thunder basketball games.

I earned my BA from Sarah Lawrence College in New York (1994). I studied visual arts, primarily painting and filmmaking, and cultural studies. I earned my MA in Folk Studies from Western Kentucky University, Bowling Green (1998), and I earned my PhD in Geography from the University of Oklahoma, Norman (2015). Through my education and early adult life, I lived coast to coast in seven different states. This education prepared me to work in the field of public history, historic interpretation, community development, and arts administration in addition to teaching at the collegiate level. Before teaching, I worked in Washington, DC for Ralph Nader (yes, the clean water, clean air, clean everything guy…oh, and he ran for president). I worked for several historic sites and cultural agencies, including Mammoth Cave National Park, Kentucky Museum, Historic Carnton, and the Tennessee Arts Commission. I have also worked in education administration. I served as the director the Oklahoma Center for Arts Education for the University of Central Oklahoma, as executive director of the Oklahoma Folklife Council for the Oklahoma Historical Society, and recently, as Director of Community Resources for Western Heights Public Schools. At Western Heights, I have been fortunate to work close to a younger group of students. I have been a part of the expanding arts and science curriculum at the high school. The school district is in the process of renovating the high school science wing and building a new arts and science high school building for an emerging STEAM program. STEAM stands for science, technology, engineering, arts, and math instruction. Working with community partners, I am also involved in promoting college and career readiness at the secondary level.

Students gardening
Gardening with 5th and 6th grade students during their after school STEAM program in Western Heights’ outdoor classroom.

My research interests include the cultural geography of Oklahoma, family stories and cultural expressions, and community building. However, through my research in folk studies (similar to anthropology) and cultural geography, I have studied human interconnectivity associated with occupations, which is what initially drew my interest to the NOAA Teacher at Sea (TAS) program. In the past, I have studied occupations associated with rural culture and how environment and increased urbanization have effected work settings and their relationship to identity.  My research interest aside, I am excited to learn more about the science of fishery surveys. I think learning about the maritime career opportunities associated with NOAA programs will be important to convey to the students I teach. Especially because so many of my students come from economically challenged, urban settings, and the thought of pursuing a career based on scientific research is foreign. As a geographer, I am also excited to share with students ways they can connect to geography as an influence on their career plans.  

Mayes County Fair
Mayes County Fair in Pryor, Oklahoma. Shot as part of my fieldwork on rural culture and place identity.


Mission Information

I will be part of the third leg of the Southeast Area Monitoring and Assessment Program (SEAMAP) sailing out of the NOAA Pascagoula, MS facility. SEAMAP is a State/Federal/university program for collecting, managing, and disseminating fishery-independent data in the southeastern US. The Gulf of Mexico survey work began in 1981. I have read blogs and videos from NOAA TAS alum that have been part of the similar research cruises, and I have reviewed the NOAA website under the SEAMAP pages and NOAA Oregon II pages. TAS alumni Angela Hung from the 2018 SEAMAP survey crew posted a great blog on roughly what Oregon II crew will be doing while I am sailing (see https://noaateacheratsea.blog/2018/07/03/angela-hung-dont-give-it-a-knife-june-30-2018/). However, I am still working to understand exactly what I will be doing. Coastal culture and scientific research of this nature is new to me. The closest experience I have goes back to my childhood when in the 1980s my mom built a catfish hatchery and commercial pond operation on 10 acres of farmland in southeastern Oklahoma. The “catfish farm” as we called was only in our family for a few years. The next closest experience I have to coastal fisheries is chartering boats for near shore and deep sea fishing adventures on vacation. Clearly, I am in for a lesson on the broader science of understanding and maintaining the ecology of our domestic waterways in the US. This will be an interesting trip, for sure!