Maronda Hastie: Time to Meet My Shipmates, August 30, 2022

NOAA Teacher at Sea

Maronda Hastie

Aboard NOAA Ship Oregon II

August 28 – September 14, 2022

Date: Monday August 29, 2022 & Tuesday, August 30, 2022

Mission: Shark/Red Snapper Bottom Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Weather Data:

Lows/Highs = 75 degrees – 88 degrees Fahrenheit
Wave Height = 1’6″ – 1’8″ Northeast
Wind Speed = 3 – 14 mph
Humidity = 71%
Barometric Pressure = 29.97″ HG
Sky = Sunny

Science Log

On Monday, August 30, 2022, I met my shipmates in Cape Canaveral in front of the ship. We all had to take a self-administered Covid-19 test and wait 30 minutes for the results to appear on the sensor. I was so nervous staring at the apparatus every 5 seconds waiting for the light to brighten on a negative result. That was too much stress! What if it said positive? Would I have to head back to Atlanta or wait a few days? Once the ship leaves the dock, then it does not disembark until the end of the research project. That would have been a disaster! Luckily my results were negative! I was able to board the 170 feet ship NOAA Oregon II, locate my room and take a quick tour.

This ship’s homeport is Pascagoula, Mississippi and conducts a variety of research surveys in the Gulf of Mexico, Caribbean Sea, and Atlantic Ocean. The surveys focus on fisheries, marine mammals, and plankton. Commanding Officer Eric Johnson can lead his staff for up to 33 days at a time. The following are the maximum numbers for the staff.

Commissioned Officers/Mates = 5, Licensed Engineers = 3, Unlicensed Engineers = 2, Deck = 6, Stewards = 2, Electronic Technician = 1, Total Crew = 19, Scientists = 12. Up to 12 people can sit in the dining area at one time with 6 people spread amongst 2 tables.

The ship is equipped with a 275 square feet wet lab, 210 square feet hydro lab, 100 square feet bio lab, 75 square feet computer lab, 4 dive team equipment, 2 cranes, a cradle, trawl nets, hydraulics, ropes, long line fishing gear, a medical treatment room, a laundry room, and a rescue boat that can hold 6 people.

We had to wait for 17,000 gallons of diesel fuel to fill the ship, stock the kitchen, and get other necessary supplies. Can you calculate how much this gas costs in your city? There are a lot of factors that affect the outcome of our journey as we crisscross around the Gulf of Mexico. Luckily, we have trained professionals doing their job!

a collage of four photos. Top left: view of the bow of NOAA Ship Oregon II in port. We can see the NOAA logo and the ship's hull number, R 332. Top right: a view of a table surrounded by six chairs attached on swivel posts to the floor. There's a television on the wall at one end of the table and a porthole window. Bottom left: a scientist sits at one of several computers set up on a long wooden desk. additional monitors are mounted on the wall. Bottom right: a view of a desk and computer monitors in front of the row of windows in the ship's bridge.
Top Left: Front of Ship (Bow), Top Right: Dining Area, Bottom Left: Computer Lab, Bottom Right: Bridge, Captain’s Area

Personal Log

I appreciate my Uncle Bill who made sure I arrived in Cape Canaveral safely. It was good to see him with his gracious welcome to Orlando, Florida. Now that I completed the initial paperwork & received a negative Covid result, I am happy to meet my shipmates! My work schedule will be from 12pm to 12am with breaks in between. I’m the only Teacher at Sea on this ship along with 2 college interns and a volunteer. We are all excited about the upcoming experience. There’s a lot of information to learn in a short period of time, but I think I can manage. My state room has a full bathroom, lots of storage space & twin bunkbeds with curtains. I chose the top bunk. I met with Mr. Collin Lynch, Chief Electronics Technician as soon as I got settled into my room. He made sure my computer & cell phone are connected to the Wi-Fi system. I really appreciate him because I still need to connect with my students, plan lessons & make sure they get assistance as needed during my breaks.

While my shipmates & I waited for the supplies to come in, we had dinner at the local restaurants along the waterfront. I learned how to keep score in a darts game and still lost. I had hoped to see a rocket launch, but the mission was cancelled/postponed. The disappointed people were in traffic starting at 3am in the morning to get a good spot. Oh well, maybe next time.

Top left: Maronda poses for a photo with her uncle outside. Top right: Maronda stands next to a dartboard. Bottom left: a man holds a dart up in his right hand, aiming at a dartboard out of frame. Bottom right: Maronda prepares to throw another dart.
Top Left: My Uncle Bill, Top Right: Me with no luck at darts, Bottom Left: Lead Fisherman, Chuck Godwin, Bottom Right: Me still trying to earn points

I enjoyed listening to the stories, having great meals & asking a few questions. I found out that some of them conduct surveys for up to 45 days before they go home. Some are married with kids while others are single, or kids are grown now. Either way, they adjust to life at sea. Check out a few pictures from my flight to time in Cape Canaveral.

  • Maronda poses with her Uncle Bill outside in Orlando.
  • A view of the stern of NOAA Ship Oregon II in port. It's a sunny day with blue skies and white clouds. A bright orange fast rescue boat mounted on a davit on an upper deck catches the eye.
  • A view of toward the bow of NOAA Ship Oregon II in port. It's a sunny day with blue skies and white clouds. We can see the wooden sign board that reads OREGON II. Two people stand on the lower deck and look over the taffrail.
  • A selfie view of Maronda in front of NOAA Ship Oregon II in port. We can see the back half of the ship, the fast rescue boat, and the American flag ensign flying from the fantail.
  • A close-up selfie of Maronda in front of NOAA Ship Oregon II in port. We can see the NOAA logo and read, in reverse, NOAA R 332.
  • A metal plaque that reads: "R.V. OREGON II, designed by R. H. MACY for U.S. DEPARTMENT OF INTERIOR BUREAU OF COMMERCIAL FISHERIES built by THE INGALLS SHIPBUILDING CORP., a division of LITTON INDUSTRIES, Pascagoula, Mississippi, 1967
  • Maronda reclines in a lawn chair on the deck of NOAA Ship Oregon II, beneath the metal ship information plaque.
  • a close-up view of navigational instruments on the bridge
  • a close-up view of a plate of sushi at a restaurant.
  • four people along one side of a table at a restuarant, eating sushi
  • five people along one side of a long table at a restuarant, eating sushi
  • Maronda and four other people at a long table in a restuarant, eating sushi

Maronda Hastie: Preparing for Teacher at Sea Aboard NOAA Ship Oregon II, August 28, 2022

NOAA Teacher at Sea

Maronda Hastie

Aboard NOAA Ship Oregon II

August 29, 2022 to September 14, 2022

Date: August 28, 2022

Mission: Shark/Red Snapper Bottom Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Introduction

Greetings from Atlanta, Georgia. Join me during my research on the NOAA Ship Oregon II in an expedition studying shark and red snapper. I am excited to board the ship in Cape Canaveral, Florida and head to the Gulf of Mexico for about 14 days. Be a part of my journey and interact through my blog.

I first learned about NOAA’s Teacher at Sea Program while at the Georgia Aquarium for a workshop two years ago. I immediately looked up more information & started the application process. Although I was accepted & thrilled to participate, Covid-19 delayed my departure. Please understand how frustrated I was as the world’s plans changed before my eyes! Normally I delete spam emails, but I did several searches to make sure I didn’t miss out on the email contacting me back to the original plan. I was so excited to finally get the news I’ve been waiting for that I did a happy dance.

In 2017 I was fortunate to participate in the Georgia Aquarium “Rivers to Reefs” program where educators spent one week testing water in the Altamaha River Watershed. We started in Atlanta and worked our way to Gray’s Reef National Marine Sanctuary off the coast of Savannah, Georgia. Our field experiences included a behind the scenes tour of the Georgia Aquarium, testing water in Shoals Creek on Glenwood Avenue, High Falls State Park in Jackson Georgia, canoe the Ocmulgee River where it meets the Oconee River, Sapelo Island Marine Institute, and Skidaway Island Marine Science Center. This experience opened my eyes to more opportunities for my students and enlightened me on how humans effect the environment. I immediately worked on developing student project presentations and fieldtrips the next school year. I love seeing the “Aha” moments and taking my students to Skidaway Island and other places around the world. I get just as excited as them when they figure out things work.

a slide Maronda created about her experience at the Georgia Aquarium's Rivers to Reefs Workshop. Title: Shoals Creek on Glenwood Avenue. "Our 1st data collection stop was Shoals Creek on Glenwood Avenue in Dekalb County. We observed our surroundings, discussed the difference between invasive and nonnative species, described watersheds and environmental concerns, completed projects to share with our students, and collected water samples."
Georgia Aquarium Rivers to Reefs Program in 2017 Shoals Creek
a slide Maronda created about her experience at the Georgia Aquarium's Rivers to Reefs Workshop.
GA Aquarium Rivers to Reefs Program 2017 High Falls Park
a slide Maronda created about her experience at the Georgia Aquarium's Rivers to Reefs Workshop.
Georgia Aquarium Rivers to Reefs Program 2017 Sapelo Island
a slide Maronda created about her experience at the Georgia Aquarium's Rivers to Reefs Workshop.
Georgia Aquarium Rivers to Reefs Program 2017 Gray’s Reef

While studying Math & Computer Science at Savannah State University, I spent a lot of time in the Marine Biology building working on projects, catching small crabs at the school’s dock, walking to the docks at Thunderbolt, and Tybee Island collecting samples. This allowed me to relax, rejuvenate, learn about the environment and be creative. Now I challenge my students and people around me to do the same. Currently I teach Algebra, Geometry & Pre-Calculus and would like to incorporate more cross-curricular projects with my students.

a collage of photos of students visiting the Georga Aquarium.
Field trip with McNair High Students 2022
a student stands at a black table near a sample tray and laminated instruction sheets. She smiles down a small fish she holds in her gloved right hand.
Mariah was all smiles while she examined the fish at Skidaway Island Marine Science Center 2019
a group of students stands around a specimen bin in a lab setting. several of them hold containers of water and reach in to remove specimens.
Students Examine Samples at Skidaway Island Marine Science Center 2019

Upcoming Surveys in the Gulf of Mexico

My work hours will be from 12pm – 12am leaving from Cape Canaveral & headed to the Gulf of Mexico aboard the NOAA Ship Oregon II. I am excited to work with all types of sharks & red snapper along the way. Listen, if I pull a shark from the tail will it try to bite me? How close do I need to be? How long can the fish be out of water while I carefully examine it & put back in the ocean? What will I use all this information for? Are you trying to make me shark meat? Which statistic will I increase? What if a hurricane approaches, do I need to record that too or leave town? Soon I will find out. Let’s get started!

What did the faculty & students have to say before I depart?

Last week students & faculty members had something to say about this exciting journey I will participate in with NOAA. I am honored to carry the torch for the Teacher at Sea Program this year and proudly immerse myself in the entire experience. Check out what a few people had to say.

Student Da’Vaughn T. : “I would like field trips such as helping the marine life and be able to visit underwater animals.”

Math Instructional Coach Eboni Arnold: “Science research can help students at McNair High School by enhancing their critical thinking skills, mathematical competency as well as gain an in-depth knowledge of science based real life practical skills to enhance their learning. ​Environmental issues are related to STEAM because the more students and educators know about the environment, they are able to raise awareness of the importance of being environmentally safe and protecting our society through learned experiences. ​Everyone can benefit from this amazing experience through Ms. Hastie sharing her blogs, notes, her own experiences, and the connections she will make with her students, colleagues, and within McNair High School. ​ Ms. Hastie is an excellent choice for this opportunity because she always connects real-life opportunities to her classroom instruction. She provides opportunities for students to experience life outside the classroom through field trips and project-based learning.”

Principal Dr. Loukisha Walker:

Principal Dr. Loukisha Walker

Hello, my name is Dr. Loukisha Walker and I am a proud principal of Dr. Ronald E. McNair High School in Atlanta, Georgia. I would like to speak on why Ms. Hastie is the perfect choice for the Teacher at Sea Program. 

For Ms. Hastie, this opportunity is simply an extension of prior and current activities that she has used to expose students to opportunities and programs that would otherwise be out of reach for our students. This allows students to broaden their scope of possibilities for careers and even travel. Ms. Hastie, in addition to all of these things, is an avid blogger, project creator, and loves to communicate what she has learned to students to give them wisdom and insight, though they did not experience it first hand. For this reason and others, Ms. Hastie is simply the perfect choice for the Teacher at Sea Program. I know that Ms. Hastie, and her work ethic, and the way she pays attention to detail, she will take all of that information and bring it back to our students and make sure that she relays that information to them. She’s gonna talk about how exciting it is for them. She’s going to even speak on just her experience for being at sea for so many days. So with all of those things in mind, Ms. Hastie is going to not only do an amazing job while she’s at sea for 15 days, but she’s going to record, she’s going to continue to blog while she’s there, she’s gonna take a ton of photos and she’s going to come back and make sure our students experience it as if they were there with her.

This is Ms. Hastie, this is her work ethic, and we’re so proud of her and we know she’s going to do an amazing job with the Teacher at Sea Program. Congratulations once again, Go Mustangs, and we are proud of you.

Assistant Principal of Attendance & Testing, Dr. Barbara Long:

Assistant Principal of Attendance & Testing, Dr. Barbara Long

“Good afternoon, my name is Dr. Barbara Long. I serve as the assistant principal of attendance and testing at the fantastic Dr. Ronald E. McNair High School. We are so proud of Ms. Maronda Hastie and all that she is going to learn, do, and share when she returns from this amazing adventure. Science research can benefit our students at Dr. Ronald E. McNair High School in multiple ways. Number 1, it will surely help to develop our students’ problem solving, analytical, and critical thinking skills. Hopefully students will engage in actionable research projects following this pursuit and partner and collaborate with others to devise solutions to these real life problems and ultimately benefit the communities in which we live. So I’m looking forward to the engagement, activities, and application of the real science for our students. Proud to be a leader here.”

Art Teacher Debra Jeter:

Art Teacher Debra Jeter

“There’s something that’s universal about science research that could not only benefit the students at McNair, but benefit anyone to know what’s going on around us. How else can we, you know, contribute or help or even understand and live in this world if we don’t have some understanding of, you know, what’s going on around us. And the ocean is so important to us. And I think Ms. Hastie is a great choice for this, because not only has she been well traveled, but she has a great interest in science research and the environment.

And not only that, but she does the most, you know? Like, she’ll be in there, following them and asking questions and writing it down and making sure she bring it back and share with McNair. And so many of these environmental issues are related to STEAM, too, which is a big concern for all the teachers at McNair, because environmental issues, as global warming continues, is gonna be vital for us all to understand how we can contribute to making our environment more peaceful. And not so hostile, and, you know, so many species are going extinct, if we just let this continue, we might be extinct too. And I’m sure that she’s gonna benefit… We’ll all benefit from her experience of being out there. I can’t wait to hear her stories and see her photos. I’ve been on journeys with her before she’s a marvelous… She know how to find places and go places and do things, she’s very capable. It’s gonna be fascinating just to hear her second-hand stories of what she found and how we can help make the world a better place.”

Business & Technology Teacher Wanda Charles-Henley

Business & Technology Teacher Wanda Charles-Henley

“Hello, my name is Wanda Charles-Henley and I’m a business teacher here at McNair High School. And I’d like to answer question number two: how and why is Ms. Hastie a good choice for this opportunity? I think Ms. Hastie is a perfect candidate for this opportunity because she’s always willing to go above and beyond for not only the students here at McNair, but also the staff members. She’s always willing to lend a helping hand. As a new teacher here, she was the first one to come and say she would teach me some of the new programs ’cause I’d been out of education for a while. She’s always one of the last teachers to leave the building. So she has a number of programs that she has coordinated for the students, exposing them to a lot of the opportunities outside of school. She also has the Chick-fil-A Leadership Program. She’ll coordinate activities for the students such as skating, coordinate activities such as environmentally cleaning up the Chattahoochee River. She’s always coming up with innovative ways to get the students involved. And I just think she will be an excellent candidate, and she is an outstanding teacher, and I can’t wait to see what she brings back to McNair High School and all the information she’s gonna share with us. Go Ms. Hastie!”

Culinary Arts Teacher Chef Leslie Gordon-Hudson:

Culinary Arts Teacher Chef Leslie Gordon-Hudson

“Okay, my question that I will be answering is how and why is Ms. Hastie a good choice for this opportunity… Ms. Hastie is a good choice for this opportunity, ’cause she is one teacher, I know, that will go out and get the resources and the information and bring it back not just to her math class, but in the entire school and engage the entire school, and whatever the idea is or the project or the learn resource or whatever the systems that she learned, that’s why I think she’s a great choice for this program.”

Student Dieynabou D.:

Student Dieynabou D.

“I believe that everyone can benefit from this great experience because it will provide excellent exposure into many things, including careers into oceanography. As a student leader, and a member of the National Beta Club here at McNair High School, I’m looking forward to creating community service activities that are involved with the environment.”

And here’s what I have to say:

Teacher at Sea Maronda Hastie

Hi, my name is Maronda Hastie. I am a representative of McNair High School in DeKalb County, Georgia. I am so excited to have been selected to be a part of the Teacher at Sea Program. I first heard about it at the Georgia Aquarium, and it is a program from NOAA, the National Oceanic and Atmospheric Administration. So I’m excited that I’m gonna be studying shark and red snapper (hope the shark doesn’t eat me!) but I’m excited about studying the shark, because once I do all of my research for a few weeks, I get to bring it all back and I will share it with my colleagues, I will share it with my students, and I will share it with the community. So I feel like my job is to just spread the information about oceanic opportunities, as well as opportunities for the students to know about more careers, more field trips, more hands-on activities in the classroom. So I’ll develop a few lessons, so although I teach math, we can do interdisciplinary projects, so I’ll be working with, say, the science teacher, I work with the art teacher, I work with any teacher who would like to create lessons with me, so that we can, you know, expose our children. So I’m excited.

George Hademenos: I am (George Hademenos, NOAA Teacher at Sea), I Said, May 13, 2022

NOAA Teacher at Sea

George Hademenos

Aboard NOAA Ship Oregon II

June 20 – July 3, 2022

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 13, 2022

Welcome to my blog!

Welcome to the inaugural post of my blog, describing my observations and reflections as a NOAA Teacher at Sea on my upcoming expedition in June 2022. My name is George Hademenos and I am excited to invite you along on this field trip of a lifetime to learn about marine science and the research that will be conducted during the research cruise. This is a particularly momentous occasion as this experience has been two years in the making (Dang that COVID!) – more on the application process, the NOAA Teacher at Sea program, and the instructional possibilities that this program presents will follow in upcoming posts.

Before I go any further, I want to take this opportunity to address the 800-lb sea lion in the room. The “sea lion” I am referring to is the title of the blog. “I am (George Hademenos, NOAA Teacher at Sea), I Said.” is a rather peculiar title for a blog entry and I did want to take this opportunity to explain the rationale for this title and set the stage for the blog entries to follow.

I have always loved music not only for the melodies but also for the lyrics that draw the listener into a story. Music has played an important part of my life not only as a hobby but also as a job. Beginning in high school and continuing through college, I was an announcer at radio stations in my hometown of San Angelo, Texas, the West Texas city that I grew up in. My love of music combined with my love of talking (which greatly prepared me for the classroom) made this an ideal job for me. Below is a picture of me at one of these radio stations that I worked at, KGKL.

A close-up view of high-school-aged George sitting at a microphone, wearing headphones
My job through high school and college was a radio announcer.

In any event, returning to the blog title discussion, I decided to incorporate this time in my life into my current experience by titling this blog entry (as well as every other blog title that follows) with the exact title (or a modified title) of a recorded song. What better way to begin a blog than with Neil Diamond!

Introducing…me!

With that explanation out of the way, I would like to use this first blog entry to introduce myself, explain why a high school physics teacher in Texas is interested in marine science and, most importantly, provide details about my cruise assignment as well as ways you can learn more about my expedition and marine science, in general. I am currently in my 21st year of teaching physics at Richardson High School in Richardson, Texas, a suburb north of Dallas.

A screenshot of the homepage of Richardson High School's website
Welcome to Richardson High School, my classroom home for 21 years!

I know that physics often gets a bad reputation among high school students as being hard, involving math, and quite frankly a class that they are forced to take. And these students would be correct on all counts. However, I often tell my classes at the beginning of each school year, “the reason I love teaching physics is that each of you experience physics on a daily basis and I do not have to think long and hard to come up with examples and applications of every topic and concept covered in class that directly impact your life.” I know that if I am successful in this regard, then perhaps my students might actually grow to tolerate and some maybe to even enjoy physics.

How did I end up in the classroom?

When I graduated from high school, I didn’t know what I wanted to be but I knew what I didn’t want to be… a teacher. I did not want or even entertain the notion of a career as a teacher. What makes this even more astounding is that everyone in my family were teachers, except me. My dad was the Education Department chair at the university I attended but I still was not interested. I wanted to pursue a career in medical research. Following my pursuit of advanced degrees in physics, two postdoctoral fellowships (one in nuclear medicine and another in neuroradiology), and a career as a staff scientist for stroke at the American Heart Association, I lived my dream but realized it was impacting my reality. My wife, Kelly, and I have a daughter, Alexandra, who always loved school and invested her time in any and all extracurricular activities she could possibly handle. My time was invested in activities that required my direct attention such as meetings, conferences, grants and drafting manuscripts for publication and not activities that I wanted to focus on such as attending recitals, performances, parent-teacher conferences and help with homework.

I understand that there are priorities in life and for me, they finally came into focus. I decided to change careers – change into the one career I thought I would never pursue – teaching. Twenty years later, I still have not regretted the move. So, what am I like in the classroom? The video below gives you a snapshot of what it is like to have me as a teacher.

A video summary of me as a classroom teacher.

Why marine science?

One thing you will come to learn about me through my blog postings is that I am a teacher who not only loves to teach but also, first and foremost, loves to learn. I am always looking for novel, innovative, and creative approaches to instructional activities, experiences, and projects that I can engage my students with, as well as share these approaches with other teachers. When a program such as NOAA Teacher at Sea comes about with opportunities for teachers to learn about marine science and “walk a mile in the shoes” of researchers, teachers like me jump at the chance to apply and hopefully are selected for such an honor.

I will be a participant on NOAAS Oregon II for Leg 2 of the SEAMAP Summer Groundfish Survey where I will be working with and learning from Andre J. Debose, Chief Scientist with NOAA Fisheries Service and his research team based in Pascagoula, MS. I am beyond ready for my Teacher at Sea cruise where I plan to pursue the following two objectives: (1) to share my knowledge and experiences of this journey with you through a blog and a Google Site and (2) initiate and contribute to a dialogue about the importance of planning, collecting, and evaluating surveys of shrimp, groundfish, plankton, and reef fish, conducted in the Gulf of Mexico, that you in turn can share with your students and colleagues.

More information regarding the cruise will follow in subsequent blog posts prior to and during the cruise (if the internet is behaving). I hope that you will not only read the blog posts but ask questions ranging from the Teacher at Sea program to the cruise details to the ship NOAAS Oregon II to the research conducted aboard the vessel to ways you can learn more marine science (or if you are a teacher, to design instructional activities to engage your students in marine science). I may not know the answers to all of your questions but rest assured that, if I do not know how to respond to a particular question, I will let you know and take steps to find a prompt and factual response. I would like to make this journey a positive learning experience for everyone!

Kathy Schroeder: My Journey Ends, but will Never Be Forgotten, November 2, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15 – October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 11/2/19

Weather Data from Naples, FL

Latitude: 26.17
Longitude: 81.34
Temperature: 89° F
Wind Speeds: ESE 11 mph

Personal Log

Our last day on Oregon II together was filled with lots of hugs and new Facebook friends.  I left Pascagoula, MS and arrived back in Naples, FL around midnight.  It was nice to be back in my big bed but I really missed the rocking of the ship to put me to sleep. 

The next morning I was greeted at my classroom door at 7 am by my students who had a lot of questions.  They all had been following along on my blog and have seen a few pictures that were posted.  I made a PowerPoint of pictures from the ship so they could see what my living and working arrangements were like.  The funniest part was when I showed them my sleeping arrangements.  They thought it was great that I was on the top bunk, but surprised at how small the room was and how I didn’t have a TV.  (I think some thought it was more like a hotel room – boy were they wrong.)  The part they were shocked the most was the size of the shower and the toilet area.  I was able to organize my pictures into folders of the same species.  I was then able to show them all of the wonderful pictures that the crew, scientists, volunteers and I had taken during our excursion. 

The following week a reporter from the Naples Daily News and her photographer came to my classroom to interview me about my trip as well as what the students were learning in AICE Marine.  

I was able to bring back with me the one of the 12 foot monofilament line and hook that is attached to the longline.  I was able to explain to them how the lines are attached and the process for leaving the longline in the water for exactly an hour.  We also started a lesson on random sampling.  I discussed how the location for the longline deployment is chosen and why scientist make sure they are randomly chosen. 

My biggest surprise was a package I received from my Uncle Tom a few days after I returned home.  He is a fantastic artist that paints his own Christmas cards every year.  In the package I received he painted the sunset picture I had taken of Oregon II when we were docked in Galveston.  It is now hanging in my classroom.

NOAA Ship Oregon II
NOAA Ship Oregon II, September 16, 2019. Photo by Kathy Schroeder.
Kathy's uncle's painting
Painting by my Uncle Tom Eckert from the picture I took

In December I will be presenting about my experiences with NOAA.  Students, their families, and people from the Naples community will all be welcome to attend.  I will be working with fellow colleagues from other high schools in Naples that also teach marine to spread the word to their students.  My goal is to get as many students who are interested in a marine career to attend the presentation so that going forward I will be able to work with them in a small group setting to help with college preferences and contacts for marine careers. 

I can’t thank NOAA enough for choosing me to participate as the NOAA Teacher at Sea Alumnus.  The experiences I have received and the information I will be able to pass along to my students is priceless!


Science and Technology Log

My students have been able to see and touch some of the items I was able to bring home from Oregon II that I discussed.  I was able to answer so many questions and show them a lot of the pictures I took. We are anxiously awaiting the arrival of a sharp-nosed shark that is being sent to us from the lab in Pascagoula, MS.  For students that are interested I will be conducting a dissection after school to show the anatomy of the shark as well as let them touch and feel the shark. (An additional blog will be posted once the dissection is competed)

Kathy Schroeder: Retrieving the Longline, September 30, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15-October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 9/30/19

Weather Data from the Bridge

Latitude: 29.47408
Longitude: 85.34274
Temperature: 85°F
Wind Speeds: E 5 mph


Science and Technology Log

Retrieving the Longline

One hour after the last highflyer is entered into the water it is time to retrieve the longline.  The ship pulls alongside the first highflyer and brings it on board.  Two people carry the highflyer to the stern of the ship.  The longline is then re-attached to a large reel so that the mainline can be spooled back onto the ship.  As the line comes back on board one scientist takes the gangion removes the tag and coils it back into the barrel.  The bait condition and/or catch are added into the computer system by a second scientist.  If there is a fish on the hook then it is determined if the fish can be brought on board by hand or if the cradle needs to be lowered into the water to bring up the species. 

Retrieving the high flyer
Retrieving the high flyer on the well deck

Protective eye wear must be worn at all times, but if a shark is being brought up in the cradle we must all also put on hard hats due to the crane being used to move the cradle.   Once a fish is on board two scientists are responsible for weighing and taking three measurements:  pre-caudal, fork, and total length in mm.  Often, a small fin clip is taken for genetics and if it is a shark, depending on the size, a dart or rototag is inserted into the shark either at the base of the dorsal fin or on the fin itself.   The shark tag is recorded and the species is then put back into the ocean.  Once all 100 gangions, weights and highflyers are brought on board it is time to cleanup and properly store the samples. 

sandbar shark
Taking the measurements on a sandbar shark (Carcharhinus plumbeus) Measurements: 1080 precaudal, 1200 fork, 1486 total (4’10”)l, 20.2 kg (44.5 lbs)
tagging smoothhound
Placing a rototag in a Gulf smooth-hound (Mustelus sinusmexicanus)
Tiger shark on cradle
Tiger shark (Galeocerdo cuvier) on the cradle getting ready for a dart tag
data station
Data station for recording measurements, weight, sex, and tag numbers

Fish Data: Some species of snapper, grouper and tile fish that are brought on board will have their otoliths removed for ageing, a gonad sample taken for reproduction studies and a muscle sample for feeding studies and genetics.  These are stored and sent back to the lab for further processing. 

red snapper samples
red snapper (Lutganidae campechanus) samples: gonad (top), muscle (middle), otoliths (bottom)


Personal Log

It has been a busy last few days.  We have caught some really cool species like king snake eels (Ophichthus rex), gulper sharks (Centrophorus granulosus), yellow edge grouper (Hyporthodus flavolimbatus) and golden tile fish (Lopholaatilus chamaeleontiiceps).  There have been thousands of moon jelly fish (Aurelia aurita) the size of dinner plates and larger all around the boat when we are setting and retrieving the longline.  They look so peaceful and gentle just floating along with the current.  When we were by the Florida-Alabama line there were so many oil rigs out in the distant.  It was very interesting learning about them and seeing their lights glowing.  One of them actually had a real fire to burn off the gases.  There were also a couple sharks that swam by in our ship lights last night.  One of the best things we got to witness was a huge leatherback sea turtle (Dermochelys coriacea) that came up for a breath of air about 50 feet from the ship. 

yellow-edge grouper
yellow edge grouper (Hyporthodus flavolimbatus) 891 mm (2′ 11″), 9.2 kg (20.3 pounds)
king snake eel
king snake eel (Ophichthus rex)
king snake eel close-up
king snake eel (Ophichthus rex)

Kathy Schroeder: The Great Hammerhead / Setting the Longline, September 24, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15-October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 24, 2019

Weather Data from the Bridge

Latitude: 29.15258
Longitude: 93.02012
Temperature: 87°F
Wind Speeds: E 10 mph


Science and Technology Log

My last blog left off with a late night longline going in the water around 9:00pm on 9/23/19.  We were able to successfully tag a great hammerhead, a scalloped hammerhead, and a tiger shark.  We also caught a blacknose shark, three gafftopsail catfish (Bagre marinus), and three red snappers. 

female great hammerhead
Female great hammerhead caught on 9/23/19 aboard NOAA Ship Oregon II
male scalloped hammerhead
Male scalloped hammerhead caught on 9/23/19 aboard NOAA Ship Oregon II


Deploying the Longline

Today I’m going to explain to you the five jobs that we rotate through when we are deploying the longline.  When there are about 15-20 minutes before deployment we grab our sunglasses, personal floatation device (pfd) and rubber boats and head to the stern of the ship.  All scientists are responsible for helping to cut and bait all 100 gangions (hooks and line).  The hooks are 15/0mm circle hooks and the gangion length is 3.7m long.  The bait used for this is Atlantic mackerel cut into chunks to fit the hooks.  We are all responsible for cleaning the deck and the table and cutting boards that were used. 

baiting hooks
Kristin cutting bait and Taniya and Ryan baiting the 100 hooks

The first job on the deployment is setting up the laptop computer.  The scientist on computer is responsible for entering information when the high flyer, the three weights (entered after first high flyer, after gangion 50 and before final high flyer), and the 100 baited gangions entered into the water.  This gives the time and the latitude and longitude of each to keep track of for comparison data. 

The second job is the person actually putting the high flyer and buoy in the water.  Once the ship is in position and we receive the ok from the bridge it is released into the water.  The high flyer is 14ft from the weight at the bottom to the flashing light at the top. (see picture) 

high flyer
Kristin and Kathy getting ready to put the first high flyer in the water

The third job is the “slinger”.  The slinger takes each hook, one by one, off of the barrel, lowers the baited hook into the water,  and then holds the end clamp so that the fourth scientist can put a tag number on each one (1-100).  It is then handed to the deckhand who clamps it onto the mainline where it is lowered into the water off the stern. 

numbers on gangion
Placing the numbers on the gangion before being put on the mainline

The final job is the barrel cleaner.  Once all the lines are in the water the barrel cleaner takes a large brush with soap and scrubs down the inside and outside of the barrel.  The barrels are then taken to the well deck to get ready for the haul in.  The last weight and high flyer are put into the water to complete the longline set, which will remain in the water for one hour.  Everyone now helps out cleaning the stern deck and bringing any supplies to the dry lab.  At this time the CTD unit is put in the water (this will be described at a later time).   


Personal Log

Last night was so exciting, catching the three large sharks.  During this station I was responsible for the data so I was able to take a few pictures once I recorded the precaudal, fork, and total length measurements as well as take a very small fin sample and place it in a vial, and record the tagging numbers. 

Shout Out:    Today’s shout out goes to my wonderful 161 students, all my former students, fellow teachers, especially those in my hallway, my guest teachers and all the staff and administration at Palmetto Ridge High School.  I would also like to thank Mr. Bremseth and Michelle Joyce for my letters of recommendations! 

I couldn’t have been able to do this without all of your help and support.  I have sooo much to tell you about when I get back.  Go Bears!!

Kathy Schroeder: Sharks, Sharks, and More Sharks! September 23, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15-October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 9/23/19

Weather Data from the Bridge (at beginning of log)

Latitude: 28.07
Longitude: 93.27.45
Temperature: 84°F
Wind Speeds: ESE 13 mph
large swells


Science and Technology Log

9/21/19-We left Galveston, TX late in the afternoon once the backup parts arrived.  After a few changes because of boat traffic near us, were able to get to station 1 around 21:00 (9:00 pm).  We baited the 100 hooks with Atlantic Mackerel.   Minutes later the computers were up and running logging information as the high flyer and the 100 hooks on 1 mile of 4mm 1000# test monofilament line were placed in the Gulf of Mexico for 60 minutes.  My job on this station was to enter the information from each hook into the computer when it was released and also when it was brought onboard.   When the hook is brought onboard they would let me know the status:  fish on hook, whole bait, damaged bait, or no bait.  Our first night was a huge success.  We had a total of 28 catches on our one deployed longline.                                                                                                                                       

Kathy and red snapper
NOAA TAS Kathy Schroeder with a red snapper caught on the Oregon II

We caught 1 bull shark (Carcharhinus leucas), 2 tiger sharks (Galeocerdo cuvier), 14 sharp nose sharks (Rhizoprionodon terraenovae), 2 black tip sharks (Carcharhinus limbatus), 7 black nose sharks (Carcharhinus acronotus), and 2 red snappers (Lutjanus campechanus).  There were also 3 shark suckers (remoras) that came along for the ride. 

sandbar shark
Sandbar shark – no tag. Oregon II

I was lucky to be asked by the Chief Scientist Kristin to tag the large tiger shark that was in the cradle.  It took me about 3 tries but it eventually went in right at the bottom of his dorsal fin.  He was on hook #79 and was 2300mm total length.  What a great way to start our first day of fishing.  After a nice warm, but “rolling” shower I made it to bed around 1:00 am.  The boat was really rocking and I could hear things rolling around in cabinets.  I think I finally fell asleep around 3:00.

9/22- The night shift works from midnight to noon doing exactly what we do during the day.  They were able to complete two stations last night.  They caught some tilefish (Lopholatilus chamaeleonticeps) and a couple sandbar sharks (Carcharhinus plumbeus).  My shift consists of Kristin, Christian, Taniya, and Ryan: we begin our daily shifts at noon and end around midnight.  The ship arrived at our next location right at noon so the night shift had already prepared our baits for us.  We didn’t have a lot on this station but we did get a Gulf smooth hound shark (Mustelus sinusmexicanus), 2 king snake eels (Ophichthus rex), and a red snapper that weighed 7.2 kg (15.87 lbs).  We completed a second station around 4:00 pm where our best catch was a sandbar shark.  Due to the swells, we couldn’t use the crane for the shark basket so Kristin tried to tag her from the starboard side of the ship. 

We were able to complete a third station tonight at 8:45 pm.  My job this time was in charge of data recording.  When a “fish  is on,” the following is written down: hook number, mortality status, genus and species, precaudal measurement, fork measurement, and total length measurement, weight, sex, stage, samples taken, and tag number/comments.  We had total of 13 Mustelus sinusmexicanus; common name Gulf smooth-hound shark.  The females are ovoviviparous, meaning the embryos feed solely on the yolk but still develop inside the mother, before being born.  The sharks caught tonight ranged in length from 765mm to 1291mm.  There were 10 females and 3 male, and all of the males were of mature status.  We took a small tissue sample from all but two of the sharks, which are used for genetic testing.  Three of the larger sharks were tagged with rototags.  (Those are the orange tags you see in the picture of the dorsal fin below).

measuring a shark
Taking the three measurements
king snake eel
King snake eel caught on a longline.


Personal Log

I spend most of my downtime between stations in the science dry lab.  I have my laptop to work on my blog and there are 5 computers and a TV with Direct TV. We were watching Top Gun as we were waiting for our first station.  I tried to watch the finale of Big Brother Sunday night but it was on just as we had to leave to pull in our longline.  So I still don’t know who won. 🙂 I slept good last night until something started beeping in my room around 4:00 am.  It finally stopped around 6:30.  They went and checked out my desk/safe where the sound was coming from and there was nothing.  Guess I’m hearing things 🙂 

Shout out! – Today’s shout out goes to the Sturgeon Family – Ben and Dillon I hope you are enjoying all the pictures – love Aunt Kathy

Kathy Schroeder: Maintenance During Tropical Storm Imelda, September 18, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15-October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 9/18/19

Weather Data from the Bridge

Latitude: 29.3088855
Longitude: -94.7948546
Temperature: 78°F
Wind Speeds: SSW 17 mph

NOAA Ship Oregon II
NOAA Ship Oregon II September 16, 2019


Science and Technology Log

While we are waiting to get started with our research survey that collects fisheries-independent data about sharks, I’ll tell you a little about how other NOAA scientists collect information directly from the commercial shark fisheries in the Gulf of Mexico.

Southeast Shark Bottom Longline Observer Program

Southeast Program

The Shark Bottom Longline Observer Program works to gather reliable data on catch, bycatch, and discards in the Shark Bottom Longline Fishery, as well as document interactions with protected species. Administered by the Southeast Fishery Science Center’s Panama City Laboratory, the data collected by observers helps inform management decisions.  NOAA hires one to six observer personnel under contractual agreements to be placed on commercial fishing vessels targeting shark species. Program coordinators maintain data storage and retrieval, quality control, observer support services (training, observer gear, documents, debriefing, data entry), and administrative support. 

Fishery

This shark bottom longline fishery targets large coastal sharks (e.g., blacktip shark) and small coastal sharks (e.g., Atlantic sharpnose). Groupers, snappers, and tilefish are also taken. The shark bottom longline fishery is active on the southeast coast of the United States and throughout the  Gulf of Mexico. Vessels in this fishery average 50 feet long, with longline gear consisting of 5 to 15 miles of mainline and 500 to 1500 hooks being set. Each trip has a catch limit ranging from 3 to 45 large coastal sharks, depending on the time of year and the region (Gulf of Mexico or south Atlantic). Shark directed trips can range from 3-5 days at sea.

In 2007, NOAA Fisheries created a shark research fishery to continue collection of life history data and catch data from sandbar sharks for future stock assessment. This was created as sandbar sharks are protected due to lower population numbers that allowed for some very limited commercial take of the animals and allows for collection of scientific data on life history etc. A limited number of commercial shark vessels are selected annually and may land sandbar sharks, which are otherwise prohibited. Observer coverage is mandatory within this research fishery (compared to coverage level of 4 percent to 6 percent for the regular shark bottom longline fishery). 

https://www.fisheries.noaa.gov/southeast/fisheries-observers/southeast-shark-bottom-longline-observer-program


Personal Log

Well, I guess you were hoping to hear from me sooner than this.  I arrived in Galveston, TX on September 15th.  I boarded NOAA Ship Oregon II and got settled in my room.  The 170 foot ship was tugged into port early due to a broken part.  Today is Wednesday September 18th , and we are still waiting to leave.  Fingers crossed it will be tomorrow morning.  During this time I was able to meet with the crew members and scientists and familiarize myself with the ship.  I was able to walk around Galveston and learn about its history.  We were able to go out to dinner where I have had amazing oysters and a new dish “Snapper Wings” at Katie’s Seafood Restaurant.   It was delicious and so tender. I would definitely recommend it!      

During our time in port we were also hit with Tropical Storm Imelda. We have had lots of rain and flooding in the area. 

snapper wings
Snapper Wings at Katie’s Seafood Restaurant, Galveston, TX
oysters
Fresh Oysters at the Fisherman’s Wharf, Galveston, TX

Shout Out:  Today’s shout out goes to my nephews Eastwood and Austin and my sister Karen and her husband Casey in Dallas, TX.  I also want to say Hi to all of my marine students at PRHS.  Hope I didn’t leave you all too much work to do 🙂 Keep up with your blog ws!

Kathy Schroeder: Twice in a Lifetime Experience, September 12, 2019

shark tag

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15 – October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 9/12/19

Weather Data from the Bridge

Current Location:  Naples, Florida

Latitude: 26° 17’ 45”
Longitude: 81° 34’ 40”
Temperature: 91° F
Wind Speeds: NNE 7 mph


Personal Log

Before I leave on my “Twice in a Lifetime Experience” I thought I’d let you know a little more about me.

In May of 2010, I participated in the NOAA TAS program.  The hardest part was leaving my 1 ½ year old son Jonah while I was gone for three weeks.  At the time I was teaching science at Key Biscayne K-8 School, which was located on an island off of Miami, Florida.  I wanted to have my students experience something new so I chose to go to Alaska aboard NOAA Ship Oscar Dyson.  The ship left out of Dutch Harbor, Alaska where the Deadliest Catch is filmed.  We spent the days and night doing neuston and bongo tows to study the walleye pollock (imitation crab meat).  I couldn’t have asked for a better experience and crew!  For more information you can look up my blog in the past season 2010.  I applied for the NOAA TAS Alumni position and now I’m happy to say I will be having a “Twice in a Lifetime Experience” with NOAA!  This time I will be on NOAA Ship Oregon II where we will be tagging and monitoring sharks and red snappers in the Gulf of Mexico.

I grew up in Louisville, KY where I spent most of my summers boating and skiing on the Ohio River.  When I was 10 years old my parents, sister and I got scuba certified.   I guess you could say this is when my love for the ocean began!  Our first trip was to Grand Cayman and we experienced things underwater that were even more beautiful than books and videos could ever show.  I have been back numerous times, but when I went back this past June you can obviously see the changes that are occurring in the ocean and the beaches.  I currently volunteer with Rookery Bay Estuarine Reserve and help with turtle patrol, shark tagging, and trawls.  The amount of garbage we collect is getting out of control.  Teaching the importance of this to my students is one of my top priorities. 

I currently teach AICE Marine and Marine Regular at Palmetto Ridge High School in Naples, Florida.  For the past 5 years I have grown the program into a class that is not just “inside” the classroom.  What better way to learn about marine species and water quality than taking care of your own aquarium?  Throughout the school there are 24 aquariums.  The tanks include saltwater, fresh water, and brackish water.  My students are taught how to properly maintain a tank, checking the water quality and salinity, as well as feeding and caring for their organisms.  In addition to the aquariums they have a quarterly enrichment grade that has them getting outside in our environment and learning about the canals, lakes, and ocean that are just miles from us.  We work with Keeping Collier Beautiful to do canal cleanups twice a year and they also visit Rookery Bay and the Conservancy for educational lessons.  Thanks to the science department at Collier County Public Schools we are also given the opportunity to go out into the estuaries.  Rookery Bay and FGCU Vester lab work with us to get the students out on the water to experience the ecology around them.  Even though we are only miles from the Gulf of Mexico some students have never been out on a boat.  This day trip gives them a hands on learning experience where we complete a trawl and water sampling.

As I leave this weekend I know my students will be in good hands and will be following my blog throughout my journey.  The value of what I am going to be sharing with them far outweighs my short time away.  My goal is to show them you are never too old to try something new and hopefully my experience will get more students into a career in marine sciences. 

Shout outs:  First one goes to my son Jonah (11), my parents Bud and Diane for taking care of him while I’m off having the time of my life, my boyfriend Michael who is currently deployed with the Air Force SFS, and his two kids Andrew (17) and Mackenna (10).  Thanks for your support. Love and miss you all!  <(((><

shark tag
Rookery Bay Shark Tagging in the estuaries
Gulf of Mexico alumni workshop
NOAA Gulf of Mexico TAS Alumni workshop
Jonah and lobster
My son Jonah’s first mini-lobster season
Keep Collier Beautiful
PRHS Keeping Collier Beautiful Canal Cleanup
Kathy and baby turtle
Rookery Bay Sea Turtle Patrol – rescued and released

Hayden Roberts: What’s in a Name? July 18, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico
Date: July 18, 2019

Weather Data from the Bridge
Latitude: 29.43° N
Longitude: 86.24° W
Wave Height: 1 foot
Wind Speed: 7 knots
Wind Direction: 220
Visibility: 10 nm
Air Temperature: 31°C
Barometric Pressure: 1017.5 mb
Sky: Few clouds


Science Log

Over the course of this research experience, I have realized that I was not entirely prepared to assist on this voyage. While I think I have pulled my weight in terms of manpower and eagerness, I quickly realized that not having a background in the biological sciences limits my capacity to identify species of fish. Not growing up in the Gulf region, I am already limited in my understanding and recognition of fish variety through their common names like shrimp, grouper, and snapper. Countless other varieties exist most of which have no commercial fishing value such as boxfish, sea robin, spadefish, and scorpionfish. Fortunately, the microbiology grad student paired with me during wet lab processing has been patient and the fishery biologists assigned to this research party have been informative showing me the basics to fish identification (or taxonomy).

Sorting fish species
Sorting fish species in the wet lab.
Measuring a stingray
Measuring and weighing a specimen in the wet lab.

The wet lab aboard Oregon II is the nexus of the research team’s work. While the aft deck and the computer lab adjacent to the wet lab are important for conducting research and collecting data, the wet lab is where species are sorted, identified, and entered into the computer. The lab has a faint smell of dead fish and briny water. While the lab is kept clean, it is hard to wash the salt off the surfaces of the lab entirely after every research station.

Alongside the buckets and processing equipment are textbooks, quick reference guides, and huge laminated charts of fish species. Most of the reference material has distinctive color photographs of each fish species with its scientific name listed as the caption. The books in this lab are focused on Gulf and Atlantic varieties as these are what are likely to be found during the surveys. Fishery biologists have a wealth of knowledge, and they pride themselves on knowing all the species that come through the lab. However, occasionally a variety comes through the lab they cannot identify. Some species are less common than others. Even the experts get stumped from time to time and have to rely on the books and charts for identification. To get experience in this process, the biologists have given me crustaceans to look up. I struggle to make matches against pictures, but I have gotten better at the process over the weeks.

Calappa flammea
Calappa flammea.

As I have learned more about the scientific names of each species we have caught, I have also learned that scientists use a two-name system called a Binomial Nomenclature. Scientists name animals and plants using the system that describes the genus and species of the organism (often based on Latin words and meaning. The first word is the genus and the second is the species. Some species have names that align close to the common name such as scorpionfish (Scorpaena brasiliensis). Others seem almost unrelated to their common name such as scrawled cowfish (Acanthostracion quadricornis).

scrawled cowfish
Acanthostracion quadricornis

Fortunately for those of us who do not identify fish for a living, technology has provided resources to aid in learning about and identifying species of fish we encounter. The FishVerify app, for example, can identify a species, bring up information on its habitat and edibility, and tell you its size and bag limits in area based on your phone’s Global Positioning System (GPS). The app is trained on over a thousand different species with the beta version of the app focused on 150 species caught in the waters of Florida. On our research cruise, we have encountered over 150 species so far.

Hayden and red grouper
Me and a large specimen of Epinephelus moiro.


Did You Know?

The naming system for plant and animal species was invented by the Swedish botanist Carl Linnaeus in the 1700s. It is based on the science of taxonomy, and uses a hierarchical system called binomial nomenclature. It started out as a naming system for plants but was adapted to animals over time. The Linnaean system has progressed to a system of modern biological classification based on the evolutionary relationships between organisms, both living and extinct.


Personal Log

Nearly two weeks into this experience and the end of my time with NOAA aboard Oregon II, I find that I have settled into a routine. Being assigned to the “dayshift,” I have seen several sunsets over my shoulder as I have helped deploy research equipment or managed the bounty of a recent trawls. I have missed nearly all the sunrises as the sun comes up five hours after I have gone to bed.

However, these two features along the horizon cannot match the view I have in the morning or late at night. After breakfast and a shower midmorning, I like to spend about 30 minutes gazing at the water from one of the upper decks. The clean light low along the water accentuates its blueish-green hue. In my mind, I roll through an old pack of crayons trying to figure out what color the water most closely represents. Then I realize it’s the Green-Blue one. It is not Blue-Green, which is a lighter, brighter color. The first part of the crayon color name is an adjective describing the second color name on the crayon. Green-blue is really blue with a touch of green, while blue-green is really green with some blue pigment in the crayon. Green-Blue in the crayon world is remarkably blue with a hint of green. The water I have admired on this cruise is that color.

Hayden on fore deck
View from fore deck of NOAA Ship Oregon II.

The Gulf in the east feels like an exotic place when cruising so far away from shore. While I have been to every Gulf state in the U.S. and visited their beaches, the blue waters off Florida seem like something more foreign than I am accustomed. When I think of beaches and seawater in the U.S., I think of algae and silt mixed with the sand creating water with a brown or greenish hue: sometimes opaque if the tide is rough such as the coast of Texas and sometimes clear like the tidal pools in Southern California. Neither place has blue water, which is okay. Each place in this world is distinct, but to experience an endless sea of blue is exotic to me.

Retrieving the trawling net
Retrieving the trawling net at night.

In contrast to vibrant colors of the morning, the late evening is its own special experience. Each night I have been surprised at how few stars I can see. Unfortunately, the tropic storm earlier in the week has produced sparse, lingering clouds and a slight haze. At night the horizon shows little distinction between the water and the sky. The moon has glided in and out of cover. However, the lights atop the ship’s cranes provide a halo around the ship as it cruises across the open water. What nature fails to illuminate, the ship provides. The water under this harsh, unnatural light is dark. It churns with the movement of the boat like thick goo. Yet that goo teems with life. Every so often a crab floats by along the ships current. Flying fish leap from the water and skip along the surface. Glimpses of larger inhabitants dancing on the edge of the ship’s ring: creatures that are much larger than we work up in the wet lab but illusive enough that it can be hard to determine if they are fish or mammal. (I am hopeful they are pods of dolphins and not a frenzy of sharks).

Hayden Roberts: Playing Hide and Seek with Sonar, July 16, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico
Date: July 16, 2019

Weather Data from the Bridge
Latitude: 28.51° N
Longitude: 84.40° W
Wave Height: 1 foot
Wind Speed: 6 knots
Wind Direction: 115
Visibility: 10 nm
Air Temperature: 30.8°C
Barometric Pressure: 1021 mb
Sky: Clear


Science Log

In my previous blog, I mentioned the challenges of doing survey work on the eastern side of the Gulf near Florida. I also mentioned the use of a probe to scan the sea floor in advance of trawling for fish samples. That probe is called the EdgeTech 4125 Side Scan Sonar. Since it plays a major role in the scientific research we have completed, I wanted to focus on it a bit more in this blog. Using a scanner such as this for a groundfish survey in the Gulf by NOAA is not typical. This system was added as a precaution in advance of trawling due to the uneven nature of the Gulf floor off the Florida Coast, which is not as much of a problem the further west one goes in the Gulf. Scanners such as these have been useful on other NOAA and marine conservation research cruises especially working to map and assess reefs in the Gulf.

deploying side scan
Preparing to put the side scan over board.

Having seen the side scanner used at a dozen different research stations on this cruise, I wanted to learn more about capabilities of this scientific instrument. From the manufacturer’s information, I have learned that it was designed for search and recovery and shallow water surveys. The side scanner provides higher resolution imagery. While the imagining sent to our computer monitors have been mostly sand and rock, one researcher in our crew said he has seen tanks, washing machines, and other junk clearly on the monitors during other research cruises.

This means that the side scanner provides fast survey results, but the accuracy of the results becomes the challenge. While EdgeTech praises the accuracy of its own technology, we have learned that accurate readings of data on the monitor can be more taxing. Certainly, the side scanner is great for defining large items or structures on the sea floor, but in areas where the contour of the floor is more subtle, picking out distinctions on the monitor can be harder to discern. On some scans, we have found the surface of the sea floor to be generally sandy and suitable for trawling, but then on another scan with similar data results, chunks of coral and rock have impeded our trawls and damaged the net.

Side scan readout
Sample scan from monitor in the computer lab. The light areas are sandy bottom. The dark is either seaweed or other plant material or rocks. The challenge is telling the difference.


Did You Know?

In 1906, American naval architect Lewis Nixon invented the first sonar-like listening device to detect icebergs. During World War I, a need to detect submarines increased interest in sonar. French physicist Paul Langévin constructed the first sonar set to detect submarines in 1915. Today, sonar has evolved into more sophisticated forms of digital imaging multibeam technology and side scan sonar (see https://oceanexplorer.noaa.gov/explorations/lewis_clark01/background/seafloormapping/seafloormapping.html for more information).


Personal Log

When I first arrived aboard Oregon II, the new environment was striking. I have never spent a significant amount of time on a trawling vessel or a research ship. Looking around, I took many pictures of the various features with an eye on the architectural elements of the ship. One of the most common fixtures throughout the vessel are posted signs. Lamented signs and stickers can be found all over the ship. At first, I was amused at the volume and redundancy, but then I realized that this ship is a communal space. Throughout the year, various individuals work and dwell on this vessel. The signs serve to direct and try to create consistency in the overall operation of the ship and the experience people have aboard it. Some call the ship “home” for extended periods of time such as most of the operational crew. Others, mostly those who are part of the science party, use the vessel for weeks at a time intermittently. Before I was allowed join the science party, I was required to complete an orientation. That orientation aligns with policies of NOAA and the expectation aboard Oregon II of its crew. From the training, I primarily learned that the most important policy is safety, which interestingly is emblazoned on the front of the ship just below the bridge.

Safety First!
Safety First!

The signs seem to be reflective of past experiences on the ship. Signs are not only reminders of important policies and protocols, but also remembrances of challenges confronted during past cruises. Like the additional equipment that has been added to Oregon II since its commission in 1967, the added signs illustrate the history the vessel has endured through hundreds of excursions.

Oregon II 1967
Bureau of Commercial Fisheries Ship Oregon II (1967), which was later transferred to NOAA when the administration was formed in 1970.
Oregon II 2017
NOAA Ship Oregon II in 2017 on its 50th Anniversary.

Examples of that history is latent in the location and wording of signs. Posted across from me in the computer lab are three instructional signs: “Do not mark or alter hard hats,” “Keep clear of sightglass do not secure gear to sightglass” (a sightglass is an oil gauge), and “(Notice) scientist are to clear freezers out after every survey.”

signs collage
A collage of four signs around NOAA Ship Oregon II
more signs
Another collage of four signs around NOAA Ship Oregon II
even more signs
Another collage of signs around NOAA Ship Oregon II

Author and journalist Daniel Pink talks about the importance of signs in our daily lives. His most recent work has focused on the emotional intelligence associated with signs. Emotional intelligence refers to the way we handle interpersonal relationships judiciously and empathetically. He is all about the way signs are crafted and displayed, but signs should also be thought of in relation to how informative and symbolic they can be within the environment we exist. While the information is usually direct, the symbolism comes from the way we interpret the overall context of the signs in relation to or role they play in that environment.

Hayden Roberts: Wet and Wild, July 14, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 14, 2019

Weather Data from the Bridge:
Latitude: 29.19° N
Longitude: 83.45° W
Wave Height: 1-2 feet
Wind Speed: 10 knots
Wind Direction: 180
Visibility: 10 nm
Air Temperature: 30.5°C
Barometric Pressure: 1019 mb
Sky: Few clouds


Science Log

NOAA Ship Oregon II includes many departments and sections of the ship. As part of the TAS program (Teacher at Sea), I spend most of my time assisting the research team in the wet lab, which occurs in 12-hour shifts. The wet lab is where each catch is brought after it is hauled aboard. The process involves bringing what we find in the trawling net on deck so that we can weigh, sort, count, and measure a subsample of what is found. Fortunately, we do not have to weigh and determine the sex of everything that comes aboard in the net; otherwise, it would take hours when the catch is large. By taking a subsample, fishery biologists can split the catch into percentages depending on the weight of the entire catch and sample size. This subsample’s diversity can then be used as a basis for the entire catch. This conserves our efforts and while still providing an accurate representation of what was caught.

Pulling in the trawling net
Pulling in the trawling net.
Sorting the catch
Opening and sorting the catch.
Wet Lab
Wet Lab aboard NOAA Ship Oregon II.
Sorted samples
Sorted samples ready to be cataloged.

In order to ensure that our leg of the groundfish survey covers the maximum area possible, NOAA uses a method called independent random sampling. A computer program randomly selects stations or research sites based on depth data and spatial area. By choosing random samples independently, fishery biologists can ensure that they have not inadvertently singled out or favored one area over another and that the data collected represents an accurate picture of the fish population in the Gulf. Previous legs of the groundfish survey this summer have focused on research stations along the Texas and Louisiana Gulf coast. Our sampling takes place along the Florida side of the Gulf. The goal is to hit 45-50 research sites during our trip.

So far, I have learned that the eastern side of Gulf can be more challenging to survey than the west. NOAA and its SEAMAP partners have covered less area in the eastern part of the Gulf. While the eastern Gulf is not exactly uncharted waters, NOAA is still perfecting its research techniques in this part of the Gulf. As early as the 1970s, NOAA has surveyed the muddy bottom of the western Gulf off the coast of Texas. In that part of the Gulf, silt from rivers (mostly the Mississippi) makes for a more uniform surface to trawl for fish samples. East of Mobile, Alabama, tends to be rocky and sandy with outcrops of coral and sponge. The craggy surface, while ideal for a host of aquatic species, can create challenges for collecting samples. With each research station we visit on our cruise, we have to be careful not to cause too much damage to the sea floor. Therefore, we have been using a torpedo-shaped probe to scan our trawling paths before we drop the net. While this doubles the time it takes to complete each research station, it does improve our odds of collecting good samples as well as protecting our trawling net from jagged objects that might tear the net.


Did You Know?

A fishery biologist is a scientist who studies fish and their habitats. As biologists, they mostly focus on the behavior of fish in their natural surroundings. Some biologists work mostly in a lab or sorting data in a research facility like NOAA’s office in Pascagoula, but many spend quite a bit of time collecting field samples in various ecological settings. To become a fishery biologist, scientists have to study botany, zoology, fishery management, and wildlife management as a prerequisite to a career in the fish and game biology field. A bachelor’s degree may be acceptable for managerial positions, but many fishery biologists have advanced degrees such as a Master’s or Doctorate.


Personal Log

At the beginning of the cruise, we conducted safety drills aboard Oregon II. Safety drills include fire, man overboard, and abandon ship. Each drill requires the crew to go to various parts of the ship. For fire, the research crew (including myself) heads to the stern (or back of the ship) to wait instructions and to be out of the way of the deck crew working the fire. For man overboard, we are instructed to keep eyes on the individual in the water, yelling for help, and throw life preservers in the water to help mark the person’s location. For abandon ship, the crew meets on the fore deck with their life jackets and “gumby” survival suits (see picture). If life rafts can be deployed, we put on our life jackets and all of us file into groups. If we have to jump into the water, we are asked to put on our red survival suits, which are a cross between a wetsuit and a personal inflatable raft.

Hayden in gumby suit
Practicing donning my survival suit.

I asked Acting Commanding Officer Andrew Ostapenko (normally the Executive Officer but is the acting “captain” of our cruise) about what we would do in the event of a storm. With a length of 170 feet and a width of 34 feet, Oregon II is large enough to handle normal summer squalls and moderate weather like the ones we have sailed through the first few days our trip, but it is important to avoid tropical storms or hurricanes (like Barry, which is gathering near the coast of Louisiana), which are just too big to contend. On the ship, the officers keep a constant watch on the weather forecast with real-time data feeds from the National Weather Service (NWS).

As part of my orientation to the ship, I took a tour of the safety features of Oregon II with the officer in charge of safety for our cruise, OPS Officer LT Ryan Belcher. He showed us what would happen in case of an emergency. There are 6 life rafts on board, and each can hold 16 people. Three rafts position on each side of the ship, and they automatically float free and inflate if that side of the ship goes underwater. An orange rescue boat can be deployed if someone falls overboard, but that craft is more It is more regularly used for man overboard drills and to support periodic dives for underwater hull inspections and maintenance.

Rescue vessel
Rescue vessel.
radio and satellite receivers
NOAA Ship Oregon II funnel with radio and satellite receivers.
Foghorn
Foghorn is a device that uses sound to warn vehicles of navigational hazards and hazards or emergencies aboard the ship.

If an emergency on the ship did occur, it would be essential to send out a call for help. First, they would try the radio, but if radio communication no longer worked, we also have a satellite phone, EPIRBS (satellite beacons), and a radar reflector (that lets ships nearby know there is an emergency). On the lower tech end, old fashion emergency flares and parachute signals can be launched into the air so other ships could locate us.

Hayden Roberts: Data and More Data… July 11, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 11, 2019

Weather Data from the Bridge:
Latitude: 28.29° N
Longitude: 83.18° W
Wave Height: 1-2 feet
Wind Speed: 11 knots
Wind Direction: 190
Visibility: 10 nm
Air Temperature: 29.8°C
Barometric Pressure: 1013.6 mb
Sky: Few clouds


Science Log

As I mentioned in my introductory post, the purpose of the SEAMAP Summer Groundfish Survey is to collect data for managing commercial fisheries in the Gulf of Mexico. However, the science involved is much more complex than counting and measuring fish varieties.

The research crew gathers data in three ways. The first way involves trawling for fish. The bulk of the work on-board focuses on trawling or dragging a 42-foot net along the bottom of the Gulf floor for 30 minutes. Then cranes haul the net and its catch, and the research team and other personnel weigh the catch. The shift team sorts the haul which involves pulling out all of the shrimp and red snapper, which are the most commercially important species, and taking random samples of the rest. Then the team counts each species in the sample and record weights and measurements in a database called FSCS (Fisheries Scientific Computer System).

Trawling nets
Trawling nets waiting on aft deck.

SEAMAP can be used by various government, educational, and private entities. For example, in the Gulf data is used to protect the shrimp and red snapper populations. For several years, Gulf states have been closing the shrimp fishery and putting limits on the snapper catches seasonally to allow the population to reproduce and grow. The SEAMAP data helps determine the length of the season and size limits for each species.

Tampa Bay area waters
Digital chart of the waters off the Tampa Bay area. Black dots represent research stations or stops for our cruise.

Another method of data collection is conductivity, temperature, and depth measurements (CTD). The process involves taking readings on the surface, the bottom of Gulf floor, and at least two other points between in order to create a CTD profile of the water sampled at each trawling locations. The data becomes important in order to assess the extent of hypoxia or “dead zones” in the Gulf (see how compounded data is used to build maps of hypoxic areas of the Gulf: https://www.noaa.gov/media-release/noaa-forecasts-very-large-dead-zone-for-gulf-of-mexico). Plotting and measuring characteristics of hypoxia have become a major part of fishery research especially in the Gulf, which has the second largest area of seasonal hypoxia in the world around the Mississippi Delta area. SEAMAP data collected since the early 1980s show that the zone of hypoxia in the Gulf has been spreading, unfortunately. One recent research sample taken near Corpus Christi, TX indicated that hypoxia was occurring further south than in the past. This summer, during surveys two CTD devices are being used. The first is a large cylinder-shaped machine that travels the depth of the water for its readings. It provides a single snapshot. The second CTD is called a “Manta,” which is a multi-parameter water quality sonde (or probe). While it can be used for many kinds of water quality tests, NOAA is using it to test for hypoxia across a swath of sea while pulling the trawling net. This help determine the rate of oxygenation at a different depth in the water and across a wider field than the other CTD can provide.

Setting up the CTD
Setting up the CTD for its first dive of our research cruise.


Did You Know?

Algae is a major problem in the Gulf of Mexico. Hypoxia is often associated with the overgrowth of certain species of algae, which can lead to oxygen depletion when they die, sink to the bottom, and decompose. Two major outbreaks of algae contamination have occurred in the past three years. From 2017-2018, red algae, which is common in the Gulf, began washing ashore in Florida. “Red Tide” is the common name for these algae blooms, which are large concentrations of aquatic microorganisms, such as protozoans and unicellular algae. The upwelling of nutrients from the sea floor, often following massive storms, provides for the algae and triggers bloom events. The wave of hurricanes (including Irma and during this period caused the bloom. The second is more recent. Currently, beaches nearest the Mississippi Delta have been closed due to an abundance of green algae. This toxic algae bloom resulted from large amounts of nutrients, pesticides, fertilizers being released into the Bonnet Carre Spillway in Louisiana because of the record-high Mississippi River levels near Lake Pontchartrain. The spillway opening is being blamed for high mortality rates of dolphins, oysters and other aquatic life, as well as the algae blooms plaguing Louisiana and Mississippi waters.


Personal Log

Pulling away from Pascagoula yesterday, I knew we were headed into open waters for the next day and half as we traveled east down the coast to the Tampa Bay, FL area. I stood on the fore deck and watched Oregon II cruise past the shipyard, the old naval station, the refinery, navigation buoys, barrier islands, and returning vessels. The Gulf is a busy place. While the two major oceans that flank either side of the U.S. seem so dominant, the Gulf as the ninth largest body of water in the world and has just as much importance. As a basin linked to the Atlantic Ocean, the tidal ranges in the Gulf are extremely small due to the narrow connection with the ocean. This means that outside of major weather, the Gulf is relatively calm, which is not the case with our trip.

Navigation buoy
Navigation buoy that we passed leaving Pascagoula harbor.

As we cruise into open waters, along the horizon we can see drilling platforms jutting out of the Gulf like skyscrapers or resorts lining the distant shore. Oil and gas extraction are huge in this region. Steaming alongside us are oil tankers coming up from the south and cargo ships with towering containers moving back and forth between Latin America and the US Coast. What’s in the Gulf (marine wildlife and natural resources) has geographic importance, but what comes across the Gulf has strategic value too.

The further we cruised away from Mississippi, the water became choppy. The storm clouds that delayed our departure the day before were now overhead. In the distances, rain connected the sky to sea. While the storm is predicted to move northwest, the hope is that we can avoid its intensification over the Gulf Stream as we move southeasterly.

Choppy seas
Choppy seas as we cruise across the Gulf to the West Coast of Florida to start our research.

I learned that water in the Gulf this July is much warmer than normal. As a result, locally produced tropical storms have formed over the Gulf. Typically, tropical storms (the prelude to a hurricane) form over the Atlantic closer to the Equator and move North. Sometimes they can form in isolated areas like the Gulf. Near us, an isolated tropical storm (named Barry) is pushing us toward research stations closer to the coast in order to avoid more turbulent and windy working conditions. While the research we are conducting is important, safety and security aboard the ship comes first.

Hayden Roberts: Wait-and-See (or Is It Sea?) July 8, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 8, 2019

Weather Data from the Bridge

Latitude: 30.35° N 
Longitude: 88.6° W
Wave Height: 1-2 feet
Wind Speed: 10 knots
Wind Direction: Northwest
Visibility: 10 nm
Air Temperature: 33°C 
Barometric Pressure: 1012 mb
Sky: Few clouds


Science Log

Day one of my trip and we are delayed leaving. Growing up in Oklahoma, you think you know weather until one of the NOAA fishery biologists assigned to the ship provides you a lengthy explanation about the challenges of weather on setting sail. As he put it, the jet stream is throwing off the weather. This is true. Studies have suggested that for a few years the polar jet stream has been fluctuating more than normal as it passes over parts of the Northern Hemisphere. The jet stream is like a river of wind that circles the Northern Hemisphere continuously. That river meanders north and south along the way. When those meanders occur over the Atlantic and the Pacific Oceans, it can alter pressure systems and wind patterns at lower latitudes and that affects how warm or raining it is across North America and Europe. 

This spring in Oklahoma, it has led to record-breaking rains that have flooded low lying areas across the Great Plains and parts of the southeastern United States. Thunderstorms have generally been concentrated in the southern and middle section of the US as the jet stream dips down. The NOAA biologist also indicated that the delay in our departure could be blamed on the El Niño effect. 

El Niño is a natural climate pattern where sea water in the central and eastern tropical Pacific Ocean is warmer than average. This leads to greater precipitation originating from the ocean. According to NOAA scientists, El Niño is calculated by averaging the sea-surface temperature each month, then averaging it with the previous and following months. That number is compared to average temperatures for the same three-month period between 1986 and 2015, called the Oceanic Niño index. When the index hits 0.5 degrees Celsius warmer or more, such as right now, it’s classified as an El Niño. When it’s 0.5 degrees Celsius cooler or more, it’s a La Niña. During an El Niño, the southern part of the U.S. typically experiences wetter than average conditions, while the northern part is less stormy and milder than usual. During a La Niña, it flips, with colder and stormier conditions to the north and warmer, less stormy conditions across the south. However, the El Niño this year has been classified as weak, which means typically the wetter conditions do not push into the Gulf of Mexico region, but exceptions can occur. With the fluctuating jet stream, the El Nino has vacillated between the Plains region and the upper South and regions closer to the Gulf. Thus, the storm causing our delayed departure comes from a weather condition that has been pushed further south by the jet stream.

While these may be causes for the delayed departure, the actual sailing conditions at the time of our voyage are the main concerns. Looking at the NOAA Marine Forecast webpage (https://www.nws.noaa.gov/om/marine/zone/off/offnt4mz.htm), the decision for our delay is based on a storm producing significant wave heights, which are the average height of the highest 1/3 of the waves. Individual waves may be more than twice the average wave heights. In addition, weak high pressure appears to dominate the western Gulf and will likely last mid-week. Fortunately, we are set sail into the eastern Gulf off the coast of Florida. We should be able to sail behind the storm as it moves west. We do have to watch the surface low forming along a trough over the northeast Gulf later in the week. The National Hurricane Center in Miami (which provided weather data in the Atlantic and the Gulf for NOAA) predicts that all of this will intensify through Friday (July 12) as it drifts westward. This will produce strong to near gale force winds and building seas for the north central Gulf. Hopefully by then we will be sailing south of it. 

Gulf of Mexico weather forecasts
Digital interface map for regions of the Gulf of Mexico and its weather forecasts (National Weather Service, NOAA)


Did You Know?

The weather terms El Niño and La Niña can be translated from Spanish to English as boy and girl, respectively. El Niño originally applied to an annual weak warm ocean current that ran southwards along the coast of Peru and Ecuador around Christmas time before it was linked to a global phenomenon now referred to as El Niño–Southern Oscillation. La Niña is sometimes called El Viejo, anti-El Niño, or simply “a cold event.” El Niño events have been occurring for thousands of years with at least 26 occurring since 1900.


Personal Log

I boarded NOAA’s Oregon II yesterday when the ship was virtually empty. It was Sunday, and we were not set to leave until mid-afternoon the following day (and now Tuesday, July 9). Spending the night on the ship was more comfortable than I had expected. While the stateroom was cramped (I share it with one other crew member), the space is surprisingly efficient. I had plenty of space to store my gear. The bunkbed was more cozy than restricted.

NOAA Pascagoula Lab
Even though it was Sunday and everything was closed, I had to stop for a selfie.
NOAA Ship Oregon II
My first look at NOAA Ship Oregon II.

My first day in Pascagoula, MS was spent learning about the town. Pascagoula is a port city with a historic shipyard. Pascagoula is home to the state’s largest employer, Ingalls Shipbuilding, the largest Chevron refinery in the world, and Signal International, an oil platform builder. Prior to World War II, the town was a small fishing community, but the population jumped with war-driven shipbuilding. The city’s population peak in the late 1970s, but today, there are less than 25,000 in the area. Pascagoula continues to be an industrial center surrounded by the growing tourism industry across the Gulf region to the east and west of the port. The population also declined when Naval Station Pascagoula was decommissioned in 2006. The old naval base is located on manmade strip of land called Singing River Island and is in the middle of the port. The port still maintains a large Coast Guard contingent as well as serving as the home portfor the NOAA Ships Gordon GunterOregon II, and Pisces. The NOAA port is actually called the Gulf Marine Support Facility and is located a block from NOAA’s National Marine Fisheries Service Mississippi Laboratory.

Hayden Roberts: Santiago’s Dream (My Introduction), July 2, 2019

NOAA Teacher at Sea

Hayden Roberts

(In advance) Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 2, 2019


Introduction

“There are many good fishermen and some great ones. But there is only one you.”

–Ernest Hemingway (Old Man and the Sea)

As I sit at my home computer, my mind is racing with thoughts of what I need to do before leaving for Mississippi. My family doesn’t quite know what I am doing aboard NOAA Ship Oregon II, not that I am sure either! They vacillate between images of cramped, hot quarters portrayed in old World War II movies like Das Boot (1981), which is about a German submarine crew. In contrast to the sailors traversing icy, choppy waters as in the reality TV show Deadliest Catch, which is about King Crab fishermen in Alaska’s Bering Sea. I am not sure my time aboard Oregon II will be either, but perhaps they will think me braver if I leave that picture in their minds ahead of my trip [wink, wink].

Roberts Family
Roberts Family. From left to right: Owen, Hayden, Jackson, and Sarah.

However, before I talk about my trip, I should take a step back and talk about where I came. I am from Oklahoma, one of the most landlocked areas of North America. I grew up in Oklahoma (both Tulsa and Oklahoma City), but have had many other experiences since then. I have been teaching at the collegiate level for 15 years. I mostly instruct high school students taking concurrent enrollment classes and community college students working on undergraduate general education requirements.  I teach regional geography, folklife and traditional culture, and introduction to the humanities at Oklahoma State University—Oklahoma City (OSU-OKC) and Oklahoma City Community College. I am lead faculty in geography at OSU-OKC.

Sarah and Hayden
My wife Sarah and I at one of our favorite date night adventures, Thunder basketball games.

I earned my BA from Sarah Lawrence College in New York (1994). I studied visual arts, primarily painting and filmmaking, and cultural studies. I earned my MA in Folk Studies from Western Kentucky University, Bowling Green (1998), and I earned my PhD in Geography from the University of Oklahoma, Norman (2015). Through my education and early adult life, I lived coast to coast in seven different states. This education prepared me to work in the field of public history, historic interpretation, community development, and arts administration in addition to teaching at the collegiate level. Before teaching, I worked in Washington, DC for Ralph Nader (yes, the clean water, clean air, clean everything guy…oh, and he ran for president). I worked for several historic sites and cultural agencies, including Mammoth Cave National Park, Kentucky Museum, Historic Carnton, and the Tennessee Arts Commission. I have also worked in education administration. I served as the director the Oklahoma Center for Arts Education for the University of Central Oklahoma, as executive director of the Oklahoma Folklife Council for the Oklahoma Historical Society, and recently, as Director of Community Resources for Western Heights Public Schools. At Western Heights, I have been fortunate to work close to a younger group of students. I have been a part of the expanding arts and science curriculum at the high school. The school district is in the process of renovating the high school science wing and building a new arts and science high school building for an emerging STEAM program. STEAM stands for science, technology, engineering, arts, and math instruction. Working with community partners, I am also involved in promoting college and career readiness at the secondary level.

Students gardening
Gardening with 5th and 6th grade students during their after school STEAM program in Western Heights’ outdoor classroom.

My research interests include the cultural geography of Oklahoma, family stories and cultural expressions, and community building. However, through my research in folk studies (similar to anthropology) and cultural geography, I have studied human interconnectivity associated with occupations, which is what initially drew my interest to the NOAA Teacher at Sea (TAS) program. In the past, I have studied occupations associated with rural culture and how environment and increased urbanization have effected work settings and their relationship to identity.  My research interest aside, I am excited to learn more about the science of fishery surveys. I think learning about the maritime career opportunities associated with NOAA programs will be important to convey to the students I teach. Especially because so many of my students come from economically challenged, urban settings, and the thought of pursuing a career based on scientific research is foreign. As a geographer, I am also excited to share with students ways they can connect to geography as an influence on their career plans.  

Mayes County Fair
Mayes County Fair in Pryor, Oklahoma. Shot as part of my fieldwork on rural culture and place identity.


Mission Information

I will be part of the third leg of the Southeast Area Monitoring and Assessment Program (SEAMAP) sailing out of the NOAA Pascagoula, MS facility. SEAMAP is a State/Federal/university program for collecting, managing, and disseminating fishery-independent data in the southeastern US. The Gulf of Mexico survey work began in 1981. I have read blogs and videos from NOAA TAS alum that have been part of the similar research cruises, and I have reviewed the NOAA website under the SEAMAP pages and NOAA Oregon II pages. TAS alumni Angela Hung from the 2018 SEAMAP survey crew posted a great blog on roughly what Oregon II crew will be doing while I am sailing (see https://noaateacheratsea.blog/2018/07/03/angela-hung-dont-give-it-a-knife-june-30-2018/). However, I am still working to understand exactly what I will be doing. Coastal culture and scientific research of this nature is new to me. The closest experience I have goes back to my childhood when in the 1980s my mom built a catfish hatchery and commercial pond operation on 10 acres of farmland in southeastern Oklahoma. The “catfish farm” as we called was only in our family for a few years. The next closest experience I have to coastal fisheries is chartering boats for near shore and deep sea fishing adventures on vacation. Clearly, I am in for a lesson on the broader science of understanding and maintaining the ecology of our domestic waterways in the US. This will be an interesting trip, for sure!

Anne Krauss: Farewell and Adieu, November 11, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: November 11, 2018

Weather Data from home

Conditions at 1615

Latitude: 43° 09’ N

Longitude: 77° 36’ W

Barometric Pressure: 1027 mbar

Air Temperature: 3° C

Wind Speed: SW 10 km/h

Humidity: 74%

 

Science and Technology Log

 

Participating in the Shark/Red Snapper Longline Survey provided a porthole into several different career paths. Each role on board facilitated and contributed to the scientific research being conducted. Daily longline fishing activities involved working closely with the fishermen on deck. I was in awe of their quick-thinking adaptability, as changing weather conditions or lively sharks sometimes required a minor change in plan or approach. Whether tying intricate knots in the monofilament or displaying their familiarity with the various species we caught, the adept fishermen drew upon their seafaring skill sets, allowing the set and haulback processes to go smoothly and safely.

Chief Boatswain Tim Martin deploying the longline gear. The sun is shining in the background.
Chief Boatswain Tim Martin deploying the longline gear.

Chief Boatswain Tim Martin is preparing to retrieve the longline gear. A grapnel and his hand are visible against the water.
Chief Boatswain Tim Martin preparing to retrieve the longline gear with a grapnel

Even if we were on opposite work shifts, overlapping meal times provided the opportunity to gain insight into some of the careers on board. As we shared meals, many people spoke of their shipboard roles with sentiments that were echoed repeatedly: wanted a career that I could be proud ofa sense of adventureopportunity to see new places and give backcombining adventure and sciencewanted to protect the resources we have

I had the opportunity to speak with some of the engineers and fishermen about their onboard roles and career paths. It was interesting to learn that many career paths were not direct roads, but winding, multilayered journeys. Some joined NOAA shortly after finishing their education, while others joined after serving in other roles. Some had experience with commercial fishing, and some had served on other NOAA vessels. Many are military veterans. With a name fit for a swashbuckling novel set on the high seas, Junior Unlicensed Engineer Jack Standfast, a United States Navy veteran, explained how the various departments on board worked together. These treasured conversations with the Engineering Department and Deck Department were enlightening, a reminder that everyone has a story to tell. I very much appreciate their patience, kindness, and willingness to share their expertise and experiences.

Hard hats, PFDs, and gloves belonging to the Deck Department are hanging on hooks.
Hard hats, PFDs, and gloves belonging to the Deck Department

Skilled Fisherman Mike Conway standing on deck.
The ship had a small library of books, and several crew members mentioned reading as a favorite way to pass the time at sea. Skilled Fisherman Mike Conway shared several inspiring and philosophical websites that he enjoyed reading.

 

Lead Fisherman and Divemaster Chris Nichols:

In an unfamiliar setting, familiar topics surfaced in conversations, revealing similarities and common interests. Despite working in very different types of jobs, literacy was a popular subject in many of the conversations I had on the ship. I spoke to some of the crew members about how literacy factored into their daily lives and career paths. Some people described their family literacy routines at home and shared their children’s favorite bedtime stories, while others fondly remembered formative stories from their own childhood. Lead Fisherman Chris Nichols recalled the influence that Captains Courageous by Rudyard Kipling had on him as a young reader. He described how exciting stories such as Captains Courageous and The Adventures of Tom Sawyer inspired a sense of adventure and contributed to pursuing a unique career path. Coming from a family of sailors, soldiers, and adventurers, Chris conveyed the sense of pride that stems from being part of “something bigger.” In this case, a career that combines adventure, conservation, and preservation. His experiences with the United States Navy, commercial fishing, NOAA, and scuba diving have taken him around the world.

Echoing the themes of classic literature, Chris recommended some inspiring nonfiction titles and podcasts that feature true stories about human courage, overcoming challenges, and the search for belonging. As a United States Navy veteran, Chris understood the unique reintegration needs that many veterans face once they’ve completed their military service. He explained the need for a “tribe” found within the structure of the military or a ship. Chris described the teamwork on the ship as “pieces of a puzzle” in a “well-oiled machine.”

A pre-dive safety briefing takes place on the ship's bridge.
Led by Divemaster Chris Nichols, also the Oregon II’s Lead Fisherman and MedPIC (Medical Person in Charge), the team gathered on the bridge (the ship’s navigation and command center) to conduct a pre-dive operation safety briefing. Nichols appears in a white t-shirt, near center.

Chris also shared some advice for students. He felt it was easier for students to become good at math and to get better at reading while younger and still in school. Later in life, the need for math may resurface outside of school: “The things you want to do later…you’ll need that math.” As students grow up to pursue interests, activities, and careers, they will most likely need math and literacy to help them reach their goals. Chris stressed that attention to detail—and paying attention to all of the details—is extremely important. Chris explained the importance of remembering the steps in a process and paying attention to the details. He illustrated the importance of knowing what to do and how to do it, whether it is in class, during training, or while learning to dive.

Chris’ recommendations:

  • Tribe: On Homecoming and Belonging by Sebastian Junger
  • Team Never Quit Podcast with Marcus Luttrell & David Rutherford

The sun rises over the Gulf of Mexico.
Sunrise over the Gulf of Mexico

Skilled Fisherman Chuck Godwin:

Before joining NOAA, Skilled Fisherman Chuck Godwin served in the United States Coast Guard for fifteen years (active duty and reserves). After serving in the military, Chuck found himself working in education. While teaching as a substitute teacher, he saw an ad in the newspaper for NOAA careers and applied. Chuck joined NOAA in 2000, and he has served on NOAA Ships Bell M. Shimada, Pisces, Gordon Gunter, and Oregon II.

Echoing Chris Nichols’ description of puzzle pieces in a team, Chuck further explained the hierarchy and structure of the Deck Department on the Oregon II. The Deck Department facilitates the scientific research by deploying and retrieving the longline fishing gear while ensuring a safe working environment. From operating the winches and cranes, to hauling in some of the larger sharks on the shark cradle, the fishermen perform a variety of tasks that require both physical and mental dexterity. Chuck explained that in the event of an unusual situation, the Deck Department leader may work with the Bridge Officer and the Science watch leader and step in as safety dictates.

Skilled Fisherman Chuck Godwin
Skilled Fisherman Chuck Godwin. Photo courtesy of Chuck Godwin.

In addition to his ability to make a fantastic pot of coffee, Chuck has an impish sense of humor that made our twelve-hour work shifts even more interesting and entertaining. Over a late-night cup of coffee, I found out that we shared some similar interests. Chuck attended the University of Florida, where he obtained his bachelor’s degree in Wildlife Management and Ecology. He has an interest in writing and history, particularly military history. He co-authored a published paper on white-tailed deer. An avid reader, Chuck usually completes two or three books during a research cruise leg. He reads a wide range of genres, including sci-fi, westerns, biographies, military history, scientific texts, and gothic horror. Some of his favorite authors include R.A. Salvatore, Ernest Hemingway, and Charles Darwin. In his free time, he enjoys roleplaying games that encourage storytelling and creativity. For Chuck, these adventures are not about the end result, but the plotlines and how the players get there. Like me, Chuck has done volunteer work with veterans. He also values giving back and educating others about the importance of science and the environment, particularly water and the atmosphere. Chuck’s work with NOAA supports the goal of education and conservation to “preserve what we have.”

 

 

Personal Log

Far from home, these brief conversations with strangers seemed almost familiar as we discussed shared interests, goals, and experiences. As I continue to search for my own tribe and sense of belonging, I will remember these puzzle pieces in my journey.

A high flyer and buoy float on the surface of the water.
A high flyer and buoy mark one end of the longline.

My path to Teacher at Sea was arduous; the result of nearly ten years of sustained effort. The adventure was not solely about the end result, but very much about plotlines, supporting (and supportive) characters, and how I got there: hard work, persistence, grit, and a willingness to fight for the opportunity. Every obstacle and roadblock that I overcame. As a teacher, the longline fishing experience allowed me to be a student once again, learning new skills and complex processes for the first time. Applying that lens to the classroom setting, I am even more aware of the importance of clear instructions, explanations, patience, and encouragement. Now that the school year is underway, I find myself spending more time explaining, modeling, demonstrating, and correcting; much of the same guidance I needed on the ship. If grading myself on my longline fishing prowess, I measured my learning this way:

If I improved a little bit each day by remembering one more thing or forgetting one less thing…

If I had a meaningful exchange with someone on board…

If I learned something new by witnessing natural phenomena or acquired new terminology…

If I encountered an animal I’d never seen in person, then the day was a victory.

And I encountered many creatures I’d never seen before. Several species of sharks: silky, smooth-hound, sandbar, Atlantic sharpnose, blacknose, blacktip, great hammerhead, lemon, tiger, and bull sharks. A variety of other marine life: groupers, red snapper, hake, and blueline tilefish. Pelicans and other seabirds. Sharksuckers, eels, and barracudas.

The diminutive creatures were just as interesting as the larger species we saw. Occasionally, the circle hooks and monofilament would bring up small hitchhikers from the depths. Delicate crinoids and brittle stars. Fragments of coral, scraps of seaweed and sponges, and elegant, intricate shells. One particularly fascinating find: a carrier shell from a marine snail (genus: Xenophora) that cements fragments of shells, rocks, and coral to its own shell. The evenly spaced arrangement of shells seems like a deliberately curated, artistic effort: a tiny calcium carbonate collage or shell sculpture. These tiny hints of what’s down there were just as thrilling as seeing the largest shark because they assured me that there’s so much more to learn about the ocean.

A spiral-shaped shell belonging to a marine snail.
At the base of the spiral-shaped shell, the occupant had cemented other shells at regular intervals.

The spiral-shaped shell belonging to a marine snail.
The underside of the shell.

Like the carrier snail’s shell collection, the small moments and details are what will stay with me:

Daily activities on the ship, and learning more about a field that has captivated my interest for years…

Seeing glimpses of the water column and the seafloor through the GoPro camera attached to the CTD…

Hearing from my aquatic co-author while I was at sea was a surreal role reversal…

Fishing into the middle of the night and watching the ink-black water come alive with squid, jellies, flying fish, dolphins, sailfish, and sharks…

Watching the ever-shifting moon, constellations, clouds, sunsets, and sunrise…

Listening to the unique and almost musical hum of the ship’s machinery and being lulled to sleep by the waves…

And the sharks. The breathtaking, perfectly designed sharks. Seeing and handling creatures that I feel strongly about protecting reinforced my mission to educate, protect, and conserve. The experience reinvigorated my connection to the ocean and reiterated why I choose to reduce, reuse, and recycle. Capturing the experience through the Teacher at Sea blog reinforced my enjoyment of writing, photography, and creative pursuits.

 

Teacher at Sea Anne Krauss looks out at the ocean.
Participating in Teacher at Sea provided a closer view of some of my favorite things: sharks, ships, the sea, and marine science.

The Gloucester Fisherman's Memorial Statue
The Gloucester Fisherman’s Memorial Statue

In my introductory post, I wrote about formative visits to New England as a young child. Like so many aspects of my first glimpses of the ocean and maritime life, the Gloucester Fisherman’s Memorial statue intrigued me and sparked my young imagination. At that age, I didn’t fully grasp the solemn nature of the tribute, so the somber sculpture and memorial piqued my interest in fishing and seafaring instead. As wild as my imagination was, my preschool self could never imagine that I would someday partake in longline fishing as part of a Shark/Red Snapper Survey. My affinity for marine life and all things maritime remains just as strong today. Other than being on and around the water, docks and shipyards are some of my favorite places to explore. Living, working, and learning alongside fishermen was an honor.

Teacher at Sea Anne Krauss visiting a New England dock as a young child.
I was drawn to the sea at a young age.

Teacher at Sea Anne Krauss in Gloucester
This statue inspired an interest in fishing and all things maritime. After experiencing longline fishing for myself, I revisited the statue to pay my respects.

A commercial longline fisherman's hand holds on to a chain, framed against the water.
A New England commercial longline fisherman’s hand

Water and its fascinating inhabitants have a great deal to teach us. The Atlantic and the Gulf of Mexico reminded me of the notion that: “Education is not the filling of a pail, but the lighting of a fire.” Whether misattributed to Plutarch or Yeats or the wisdom of the Internet, the quote conveys the interest, curiosity, and appreciation I hope to spark in others as I continue to share my experience with my students, colleagues, and the wider community.

I am very grateful for the opportunity to participate in Teacher at Sea, and I am also grateful to those who ignited a fire in me along the way. Thank you to those who supported my journey and adventure. I greatly appreciate your encouragement, support, interest, and positive feedback. Thank you for following my adventure!

A collage of images from the ship. The shapes of the images spell out "Oregon II."
Thank you to NOAA Ship Oregon II and Teacher at Sea!

The sun shines on the water.
The sun shines on NOAA Ship Oregon II.

Did You Know?

Xenophora shells grow in a spiral, and different species tend to collect different items. The purpose of self-decoration is to provide camouflage and protection from predators. The additional items can also strengthen the snail’s shell and provide more surface area to prevent the snail from sinking into the soft substrate.

Recommended Reading

Essentially two books in one, I recommend the fact-filled Under Water, Under Earth written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski. The text was translated from Polish by Antonia Lloyd-Jones.

Cover of Under Earth
Under Earth written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski; published by Big Picture Press, an imprint of Candlewick Press, Somerville, Massachusetts, 2016

One half of the book burrows into the Earth, exploring terrestrial topics such as caves, paleontology, tectonic plates, and mining. Municipal matters such as underground utilities, water, natural gas, sewage, and subways are included. Under Earth is a modern, nonfiction, and vividly illustrated Journey to the Center of the Earth.

Cover of Under Water
Under Water written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski; published by Big Picture Press, an imprint of Candlewick Press, Somerville, Massachusetts, 2016

Diving deeper, Under Water explores buoyancy, pressure, marine life, ocean exploration, and several other subjects. My favorite pages discuss diving feats while highlighting a history of diving innovations, including early diving suit designs and recent atmospheric diving systems (ADS). While Under Earth covers more practical topics, Under Water elicits pure wonder, much like the depths themselves.

Better suited for older, more independent readers (or enjoyed as a shared text), the engaging illustrations and interesting facts are easily devoured by curious children (and adults!). Fun-fact finders and trivia collectors will enjoy learning more about earth science and oceanography. Information is communicated through labels, cross sections, cutaway diagrams, and sequenced explanations.

 

 

 

 

 

Ashley Cosme: The Ocean Stirs the Heart, November 8, 2018

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: November 8th, 2018

 

My entire teaching career has been spent seeking ways to inspire my students to be happy, caring, thoughtful, and courageous stewards of the earth.  It is so easy for someone to go through their day to day life without thinking about the impact that their actions have on the ocean, and the organisms that inhabit its waters.  For as long as I can remember my inspiration has come from Robert Wyland, a renowned marine artist that focuses on teaching awareness about environmental conservation.  Until I completed my Teacher at Sea experience, I had no idea that Robert Wyland has partnered with NOAA in outreach programs to actively engage in teaching students about the importance of marine life conservation.  I am completely humbled knowing that as a Teacher at Sea Alumni, I have also now partnered with NOAA in creating opportunities for kids to become informed and aware of life beyond the classroom.

The ocean stirs the heart,

inspires the imagination and

brings eternal joy to the soul.

Robert Wyland

I love the ocean!  I love the feeling of ‘not knowing’ when I look out over the water.  There are so many unanswered questions about the systems, processes, and organisms that lie beneath the surface.  I cannot express enough the gratitude that I have towards NOAA for choosing me to embark on an adventure that I will remember and share with others for the rest of my life.  The Teacher at Sea experience has changed me.  I am more patient with my students, and I have this unexplained excitement every day in the classroom.  I have always been an upbeat teacher, but my passion for educating my students about the importance of scientific research has taken over.  When I was aboard NOAA Ship Oregon II, I could feel the desire from the NOAA scientists towards their work.  It is amazing to be able to be a part of a team that gets to explore a territory on earth where most humans will never go.  The ocean will always remain to be a mystery, and scientists will forever be challenged to explore, collect data, and draw conclusions about the existence of life offshore.  Wyland once said, “the world’s finest wilderness lies beneath the waves….”.  Knowing that I have been a part of exploring the ocean’s wilderness with NOAA scientists is something that I will cherish forever.

Two students hold shark jaws
Students checking out a few samples that I brought back from my Teacher at Sea exploration.

 

Ocean Adventure Camp
My co-teacher, Ashley Henderson (8 months pregnant), and me on our last day of Ocean Adventure Camp 2018.

Each summer my co-teacher, Ashley Henderson, and I host a science camp called Ocean Adventure.  This coming summer (2019) we will be adding a new camp called Shark Camp.  Both camps will provide a unique way to educate the young ‘explorers’ in our community on the biological, chemical, and physical forces of the ocean, as well as human impact. Teacher at Sea has provided me with the opportunity to strengthen my knowledge of the ocean, including SHARKS, and will help us create a more impactful experience for the youngsters that attend the camps.  It is important to me to reach out to the children in my community to develop an early interest in science, and nurture that awareness as the students flow through the different grade levels.

 

 

Ocean Adventure Camp 2018
A group of kids from my community at Ocean Adventure Camp 2018. This is my passion!

Anne Krauss: Tooth Truth and Tempests, September 30, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: September 30, 2018

Weather Data from Home

Conditions at 1515

Latitude: 43° 09’ N

Longitude: 77° 36’ W

Barometric Pressure: 1026.3 mbar

Air Temperature: 14° C

Wind Speed: S 10 km/h

Humidity: 71%

 

Science and Technology Log

My students sent me off with many shark questions before I left for the Shark/Red Snapper Longline Survey. Much of their curiosity revolved around one of the most fear-inducing features of a shark: their teeth! Students wanted to know:

Why do sharks eat fish?
How and why do sharks have so many teeth?
Why do sharks have different kinds of teeth?
Do sharks eat each other? What hunts sharks, besides other sharks?
And one of my favorite student questions: Why do sharks eat regular people, but not scientists?

Most people think of sharks as stalking, stealthy, steel-grey hunters. With a variety of colors, patterns, fin shapes, and body designs, sharks do not look the same. They do not eat the same things, or even get their food the same way. Instead, they employ a variety of feeding strategies. Some gentle giants, like the whale shark (Rhincodon typus), are filter feeders. They strain tiny plants and animals, as well as small fish, from the water. Others, such as the angel shark (Squatina spp.), rely on their flattened bodies, camouflage, and the lightning-fast element of surprise. Instead of actively pursuing their prey, they wait for food to come to them and ambush their meal. These suction-feeding sharks have tiny, pointed, rearward-facing teeth to trap the prey that has been sucked into the shark’s mouth. This video demonstrates how the angel shark uses clever camouflaging and special adaptations to get a meal:

https://www.nationalgeographic.com.au/videos/shark-kill-zone/angel-shark-stealth-2838.aspx

A circle hook is held up against the sky. The horizon is in the background.
Circle hooks are used in longline fishing. Each hook is baited with mackerel (Scomber scombrus).

A pile of frozen mackerel used as bait.
Frozen mackerel (Scomber scombrus) is used as bait.

Circle hooks are placed along the edges of plastic barrels. The hooks are connected to thick, plastic fishing line called monofilament.
The circle hooks and gangions are stored in barrels. The hooks are attached to thick, plastic fishing line called monofilament.

100 circle hooks baited with mackerel. The baited hooks are placed on the edges of barrels, which are sitting on deck.
All 100 circle hooks were baited with mackerel, but sharks also eat a variety of other fish.

The sharks we caught through longline fishing methods were attracted to the Atlantic mackerel (Scomber scombrus) that we used as bait. Depending on the species of shark and its diet, shark teeth can come in dozens of different shapes and sizes. Instead of just two sets of teeth like we have, a shark has many rows of teeth. Each series is known as a tooth file. As its teeth fall out, the shark will continually grow and replace teeth throughout its lifetime—a “conveyor belt” of new teeth. Some sharks have 5 rows of teeth, while the bull shark (Carcharhinus leucas) may have as many as 50 rows of teeth!

The sandbar shark (Carcharhinus plumbeus) usually has about 14 rows of teeth. They may lose teeth every ten days or so, and most sharks typically lose at least one tooth a week. Why? Their teeth may get stuck in their prey, which can be tough and bony. When you don’t have hands, and need to explore the world with your mouth, it’s easy to lose or break a tooth now and then. Throughout its lifetime, a shark may go through over 30,000 teeth. The shark tooth fairy must be very busy!

A sandbar shark (Carcharhinus plumbeus) tooth with serrated edges.
Sandbar shark (Carcharhinus plumbeus) tooth. The sandbar shark is distinguishable by its tall, triangular first dorsal fin. Sharks’ teeth are equally as hard as human teeth, but they are not attached to the gums by a root, like human teeth. Image credit: Apex Predators Program, NEFSC/NOAA

Similar to our dining utensils, sharks’ teeth are designed for cutting, spearing, and/or crushing. The tooth shape depends upon the shark’s diet. Sharks’ teeth are not uniform (exactly the same), so the size and shape of the teeth vary, depending on their location in the upper and lower jaws. Some sharks have long, angled, and pointed teeth for piercing and spearing their food. Similar to a fork, this ensures that their slippery meals don’t escape. Other sharks and rays have strong, flattened teeth for crushing the hard shells of their prey. These teeth work like a nutcracker or shellfish-cracking tool. Still others, like the famously fierce-looking teeth of the great white, are triangular and serrated. Like a steak knife, these teeth are used for tearing, sawing, and cutting into their prey.

A shortfin mako shark (Isurus oxyrinchus) tooth is narrow and pointed.
A shortfin mako shark (Isurus oxyrinchus) tooth is narrow and pointed. Image credit: Apex Predators Program, NEFSC/NOAA

Smooth dogfish (Mustelus canis) teeth are flattened for crushing prey.
Smooth dogfish (Mustelus canis) teeth are flattened for crushing prey. Image credit: Apex Predators Program, NEFSC/NOAA

A silky shark (Carcharhinus falciformis) tooth has serrated edges.
A silky shark (Carcharhinus falciformis) tooth has serrated edges. Image credit: Apex Predators Program, NEFSC/NOAA

A tiger shark (Galeocerdo cuvier) tooth is jagged and serrated.
A tiger shark (Galeocerdo cuvier) tooth is jagged and serrated. Image credit: Apex Predators Program, NEFSC/NOAA

Link to more shark tooth images: https://www.nefsc.noaa.gov/rcb/photogallery/shark_teeth.html

Beyond their teeth, other body features contribute to a shark’s ability to bite, crush, pursue, or ambush their prey. The powerful muscles that control their jaws and swimming ability, the position of their mouth, and the shape of their caudal (tail) fin all influence how a shark gets its food. Unlike humans, sharks do not chew their food. They swallow their food whole, or use their teeth to rip, shred, crush, and tear their food into smaller chunks that the shark can swallow. No need to floss or brush after a meal: sharks’ teeth contain fluoride, which helps to prevent cavities and decay.

Some people may find it hard to swallow the idea that sharks aren’t mindless menaces, but shark encounters are quite rare. Sharks have many extraordinary adaptations that make them efficient swimmers and hunters of other marine life, not humans. Whenever sharks come up in conversation, I am careful to dispel myths about these captivating creatures, trying to replace fear with facts (and hopefully, curiosity and respect). Since sharks can’t talk, I’m happy to advocate for them. Despite the way sharks are negatively portrayed in the media, I assure my students that sharks far prefer to eat bony fish, smaller sharks, skates, rays, octopus, squid, bivalves, crustaceans, marine mammals, plankton, and other marine life over humans. Instead of fear, I try to instill awareness of the vital role sharks fulfill in the ecosystem. We are a far greater threat to them, and they require our respect and protection.

For more information on sharks: https://oceanservice.noaa.gov/facts/sharkseat.html

 

Personal Log

As storms and hurricanes tear across the Gulf of Mexico, causing destruction and devastation, my thoughts are with the impacted areas. Before my Teacher at Sea placement, I never thought I’d spend time in the region, so it’s interesting to see now-familiar locations on the news and weather maps. One of my favorite aspects of being at sea was watching the sky: recognizing constellations while fishing at night, gazing at glorious, melting sunsets, and observing storm clouds gathering in the distance. The colors and clouds were ever-changing, a reminder of the dynamic power of nature.

A colorful sunset on the Gulf of Mexico.
The sky was vibrant.

Storm clouds gather over Tampa, Florida.
Storm clouds gathered over Tampa, Florida.

Darkening clouds over the water.
The clouds clustered around Tampa. The city looked very small on the horizon.

Darkening clouds over the water.
As the rain started, the clouds darkened.

Darkening clouds over the water.
The colors changed and darkened as lightning started in the distance.

Darkening clouds over the water.
Dramatic dark clouds and lightning.

Watching the recent storm coverage on TV reinforced the importance of strong and accurate communication skills. Similar to a sidebar on the page, much of the supplementary storm information was printed on the screen. For someone who needed to evacuate quickly or was worried about loved ones in the area, this printed information could be crucial. As I listened to the reporters’ updates on the storm damage, aware that they were most likely reading from scripted notes, I was reminded of the challenge of conveying complex science through everyday language.

Two maps show the Gulf of Mexico.
The top image from Google Maps shows one research station where we were longline fishing in August (marked in red). The bottom satellite image shows Hurricane Michael moving through the same area. Image credits: Map of the Gulf of Mexico. Google Maps, 17 August 2018, maps.google.com; satellite image: NOAA via Associated Press.

One might assume that a typical day at sea only focused on science, technology, and math. In fact, all school subjects surfaced at some point in my experience at sea. For example, an understanding of geography helped me to understand where we were sailing and how our location influenced the type of wildlife we were seeing. People who were more familiar with the Gulf of Mexico shared some facts about the cultural, economic, and historical significance of certain locations, shedding light on our relationship with water.

Fishing is an old practice steeped in tradition, but throughout the ship, modern navigation equipment made it possible to fish more efficiently by plotting our locations while avoiding hazards such as natural formations and other vessels. Feats of engineering provided speed, power, drinkable water, and technological conveniences such as GPS, air conditioning, and Wi-Fi. In contrast to the natural evolution of sharks, these artificial adaptations provided many advantages at sea. To utilize the modern technology, however, literacy was required to input data and interpret the information on the dozens of monitors on board. Literacy and strong communication skills were required to understand and convey data to others. Reading and critical thinking allowed us to interpret maps and data, understand charts and graphs, and access news articles about the red tide we encountered.

I witnessed almost every person on board applying literacy skills throughout their day. Whether they were reading and understanding crucial written communication, reading instructions, selecting a dinner option from the menu, or referencing a field guide, they were applying reading strategies. In the offices and work spaces on board, there was no shortage of instructional manuals, safe operating procedures, informational binders, or wildlife field guides.

Writing helped to organize important tasks and schedules. To manage and organize daily tasks and responsibilities, many people utilized sticky notes and checklists. Computer and typing skills were also important. Some people were inputting data, writing research papers and projects, sharing their work through social media, or simply responding to work-related emails. The dive operation that I observed started as a thoroughly written dive plan. All of these tasks required clear and accurate written communication.

Junior Unlicensed Engineer (JUE) Jack Standfast holds a small notebook used for recording daily tasks and responsibilities.
Junior Unlicensed Engineer (JUE) Jack Standfast carried a small notebook in his pocket, recording the various engineering tasks he’d completed throughout the day.

Each day, I saw real-life examples of the strong ties between science and language arts. Recording accurate scientific data required measurement, weight, and observational skills, but literacy was required to read and interpret the data recording sheets. Neat handwriting and careful letter spacing were important for recording accurate data, reinforcing why we practice these skills in school. To ensure that a species was correctly identified and recorded, spelling could be an important factor. Throughout the experience, writing was essential for taking interview notes and brainstorming blog ideas, as well as following the writing process for my blog posts. If I had any energy left at the end of my day (usually around 2:00 AM), I consulted one of my shark field guides to read more about the intriguing species we saw.

 

Did You Know?

No need for a teething ring: Sharks begin shedding their teeth before they are even born. Shark pups (baby sharks) are born with complete sets of teeth. Sharks aren’t mammals, so they don’t rely upon their mothers for food after they’re born. They swim away and must fend for themselves, so those born-to-bite teeth come in handy.

Recommended Reading

Smart About Sharks written and illustrated by Owen Davey

Appropriate for older readers, the clever, comprehensive text offers interesting facts, tidbits, and trivia. The book dives a bit deeper to go beyond basic shark facts and knowledge. I’ve read hundreds of shark books, and I appreciated learning something new. The text doesn’t shy away from scientific terminology and concepts, such as phylogeny (eight orders of sharks and representative species). The facts reflect recent research findings on shark behavior. Lesser-known species are included, highlighting the diversity in body shapes, sizes, and specialized features. From a design standpoint, the aesthetically appealing illustrations are stylized, colorful, and engaging. Simple infographics provide explanations of complex ideas. Fact meets fiction in a section about shark mythology from around the world. The book concludes with a discussion of threats to sharks, as well as ocean conservation tips.

The cover of Smart About Sharks by Owen Davey.
Smart About Sharks written and illustrated by Owen Davey; published by Flying Eye Books, New York, 2016

 

Andria Keene: The sun is setting on my adventure! October 21, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 21, 2018

Weather Data from the Bridge
Date: 2018/10/21
Time: 12:52
Latitude: 029 23.89 N
Longitude 094 14.260 W
Barometric Pressure 1022.22mbar
Air Temperature: 69 degrees F

The isness of things is well worth studying; but it is their whyness that makes life worth living.
– William Beebe

 

Last sunset
My last sunset aboard the Oregon II.

Science and Technology Log

Today is our last day at sea and we have currently completed 53 stations!  At each station we send out the CTD.   CTD stands for Conductivity, Temperature and Depth.   However, this device measures much more than that.  During this mission we are looking at 4 parameters: temperature, conductivity, dissolved oxygen and fluorescence which can be used to measure the productivity of an area based on photosynthetic organisms.

science team with the CTD
Some of the science team with the CTD.

Once the CTD is deployed, it is held at the surface for three minutes.  During this time, 4,320 scans are completed!  However, this data, which is used to acclimate the system, is discarded from the information that is collected for this station.

CTD Collage
The crane lifts the CTD from the well deck and deploys it into the water.

Next, the CTD is slowly lowered through the water until it is about 1 meter from the bottom.  In about 30 meters of water this round trip takes about 5 minutes during which the CTD conducts 241 scans every 10 seconds for a grand total of approximately 7,230 scans collected at each station.

CTD Graph
The computer readout of the data collected at one of the stations.

Our CTD scans have gathered the expected data but during the summer months the CTD has found areas of hypoxia off the coast of Louisiana and Texas.

Summer Hypoxia Zones
Data from CTD scans was used to create this map of hypoxic zones off the coast of Louisiana in summer of 2018.

 

Personal Log

The gloomy weather has made the last few days of the voyage tricky. Wind and rough seas have made sleeping and working difficult. Plus, I have missed my morning visits with dolphins at the bow of the ship due to the poor weather.  But seeing the dark blue water and big waves has added to the adventure of the trip.

Dark clouds lifting
The gloom is lifting as a tanker passes in the distance.

We have had some interesting catches including one that weighed over 800 pounds and was mostly jellyfish.  Some of the catches are filled with heavy mud while others a very clean. Some have lots of shells or debris.  I am pleasantly surprised to see that even though I notice the occasional plastic bottle floating by, there has not been much human litter included in our catches.  I am constantly amazed by the diversity in each haul.  There are species that we see at just about every station and there are others that we have only seen once or twice during the whole trip.

Catch collage
A few of the most unique catches.

I am thrilled to have had the experience of being a NOAA Teacher at Sea and I am excited to bring what I have learned back to the classroom to share with my students.  

 

Challenge Question:

Bonus points for the first student in each class to send me the correct answer!

These are Calico Crabs, but this little one has something growing on it?  What is it?

Calico crabs
Calico crabs… but what is that growing on this small one?

Did you know…

That you can tell the gender of a flat fish by holding it up to the light?

Flatfish collage
The image on the top is a female and the one of the bottom is the male. Can you tell the difference?

 

Today’s Shout Out! 

Kudos to all of my students who followed along, answered the challenge questions, played species BINGO, and plotted my course!  You made this adventure even more enjoyable!  See you soon 🙂

Andria Keene: Let the fun begin! October 17, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 17, 2018

Weather Data from the Bridge
Date: 2018/10/17
Time: 13:10
Latitude: 027 39.81 N
Longitude 096 57.670 W
Barometric Pressure 1022.08mbar
Air Temperature: 61 degrees F

Those of us who love the sea wish everyone would be aware of the need to protect it.
– Eugenie Clark

Science and Technology Log

After our delayed departure, we are finally off and running! The science team on Oregon II has currently completed 28 out of the 56 stations that are scheduled for the first leg of this mission. Seventy-five stations were originally planned but due to inclement weather some stations had to be postponed until the 2nd leg. The stations are pre-arranged and randomly selected by a computer system to include a distributions of stations within each shrimp statistical zone and by depth from 5-20 and 21-60 fathoms.

Planned stations and routes
Planned stations and routes

At each station there is an established routine that requires precise teamwork from the NOAA Corps officers, the professional mariners and the scientists. The first step when we arrive at a station, is to launch the CTD. The officers position the ship at the appropriate location. The mariners use the crane and the winch to move the CTD into the water and control the decent and return. The scientists set up the CTD and run the computer that collects and analyzes the data. Once the CTD is safely returned to the well deck, the team proceeds to the next step.

science team with the CTD
Some members of the science team with the CTD

Step two is to launch the trawling net to take a sample of the biodiversity of the station. Again, this is a team effort with everyone working together to ensure success. The trawl net is launched on either the port or starboard side from the aft deck. The net is pulled behind the boat for exactly thirty minutes. When the net returns, the contents are emptied into the wooden pen or into baskets depending on the size of the haul.

red snapper haul
This unusual haul weighed over 900 pounds and contained mostly red snapper. Though the population is improving, scientists do not typically catch so many red snapper in a single tow.

The baskets are weighed and brought into the wet lab. The scientists use smaller baskets to sort the catch by species. A sample of 20 individuals of each species is examined more closely and data about length, weight, and sex is collected.

The information gathered becomes part of a database and is used to monitor the health of the populations of fish in the Gulf. It is used to help make annual decisions for fishing regulations like catch and bag limits. In addition, the data collected from the groundfish survey can drive policy changes if significant issues are identified.

Personal Log

I have been keeping in touch with my students via the Remind App, Twitter, and this Blog. Each class has submitted a question for me to answer. I would like to use the personal log of this blog to do that.

3rd Period - Marine Science II
3rd Period – Marine Science II: What have you learned so far on your expedition that you can bring back to the class and teach us?

The thing I am most excited to bring back to Marine 2 is the story of recovery for the Red Snapper in the Gulf of Mexico. I learned that due to improved fishing methods and growth in commercial fishing of this species, their decline was severe. The groundfish survey that I am working with is one way that data about the population of Red Snapper has been collected. This data has led to the creation of an action plan to help stop the decline and improve the future for this species.

4th Period - Marine Science I
4th Period – Marine Science I: What challenges have you had so far?

Our biggest challenge has been the weather! We left late due to Hurricane Michael and the weather over the past few days has meant that we had to miss a few stations. We are also expecting some bad weather in a couple of days that might mean we are not able to trawl.

5th Period - Marine Science I
5th Period – Marine Science I: How does the NOAA Teacher at Sea program support or help our environment?

The number one way that the NOAA Teacher at Sea program supports our environment is EDUCATION! What I learn here, I will share with my students and hopefully they will pass it on as well. If more people know about the dangers facing our ocean then I think more people will want to see changes to protect the ocean and all marine species.

7th Period - Marine Science I
7th Period – Marine Science I: What is the rarest or most interesting organism you have discovered throughout your exploration?

We have not seen anything that is rare for the Gulf of Mexico but I have seen two fish that I have never seen before, the singlespot frogfish and the Conger Eel. So for me these were really cool sightings.

 

 

 

 

 

 

 

 

 

 

8th Period - Marine Science I
8th Period – Marine Science I: What organism that you have observed is by far the most intriguing?

I have to admit that the most intriguing organism was not anything that came in via the trawl net. Instead it was the Atlantic Spotted Dolphin that greeted me one morning at the bow of the boat. There were a total of 7 and one was a baby about half the size of the others. As the boat moved through the water they jumped and played in the splashing water. I watched them for over a half hour and only stopped because it was time for my shift. I could watch them all day!

Do you know …

What the Oregon II looks like on the inside?
Here is a tour video that I created before we set sail.

 

Transcript: A Tour of NOAA Ship Oregon II.

(0:00) Hi, I’m Andria Keene from Plant High School in Tampa, Florida. And I’d like to take you for a tour aboard Oregon II, my NOAA Teacher at Sea home for the next two weeks.

Oregon II is a 170-foot research vessel that recently celebrated 50 years of service with NOAA. The gold lettering you see here commemorates this honor.

As we cross the gangway, our first stop is the well deck, where we can find equipment including the forecrane and winch used for the CTD and bongo nets. The starboard breezeway leads us along the exterior of the main deck, towards the aft deck.

Much of our scientific trawling operations will begin here. The nets will be unloaded and the organisms will be sorted on the fantail.

(1:00) From there, the baskets will be brought into the wet lab, for deeper investigation. They will be categorized and numerous sets of data will be collected, including size, sex, and stomach contents.

Next up is the dry lab. Additional data will be collected and analyzed here. Take notice of the CTD PC.

There is also a chemistry lab where further tests will be conducted, and it’s located right next to the wet lab.

Across from the ship’s office, you will find the mess hall and galley. The galley is where the stewards prepare meals for a hungry group of 19 crew and 12 scientists. But there are only 12 seats, so eating quickly is serious business.

(2:20) Moving further inside on the main deck, we pass lots of safety equipment and several staterooms. I’m currently thrilled to be staying here, in the Field Party Chief’s stateroom, a single room with a private shower and water closet.

Leaving my room, with can travel down the stairs to the lower level. This area has lots of storage and a large freezer for scientific samples.

There are community showers and additional staterooms, as well as laundry facilities, more bathrooms, and even a small exercise room.

(3:15) If we travel up both sets of stairs, we will arrive on the upper deck. On the starboard side, we can find the scientific data room.

And here, on the port side, is the radio and chart room. Heading to the stern of the upper deck will lead us to the conference room. I’m told that this is a great place for the staff to gather and watch movies.

Traveling back down the hall toward the bow of the ship, we will pass the senior officers’ staterooms, and arrive at the pilot house, also called the bridge.

(4:04) This is the command and control center for the entire ship. Look at all the amazing technology you will find here to help keep the ship safe and ensure the goals of each mission.

Just one last stop on our tour: the house top. From here, we have excellent views of the forecastle, the aft winch, and the crane control room. Also visible are lots of safety features, as well as an amazing array of technology.

Well, that’s it for now! Hope you enjoyed this tour of NOAA Ship Oregon II.  

 

Challenge Question of the Day
Bonus Points for the first student in each class period to come up with the correct answer!
We have found a handful of these smooth bodied organisms which like to burrow into the sediment. What type of animal are they?

Challenge Question
What type of animal are these?

Today’s Shout Out:  To my family, I miss you guys terribly and am excited to get back home and show you all my pictures! Love ya, lots!

Andria Keene: Steaming and Dreaming in Safety, October 12, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Weather Data from the Bridge
Date: 2018/10/12
Time: 14:58:22
Latitude: 27 37.15 N
Longitude 091 23.21 W
Barometric Pressure 1015.69mbar
Relative Humidity 60 %
Air Temperature: 27.1 0C

Everyone is an explorer. How could you possibly live your
life looking at a door and not open it?  – Robert Ballard

 

Science/Technology and Personal Log

Hurricane Michael brought a three day delay to our departure. At first, I was a little disappointed that we were not setting sail right away but now I am glad because I had some extra time to explore Pascagoula, familiarize myself with the ship, and slowly meet the crew as they arrived spread out over several days. Plus, the additional time allowed me to start working on my career lesson plan and to prepare a video tour of the ship. I will upload the video to this blog page as soon as it is complete.

Photo collage
#1 – My first tour of Oregon II #2 – Hurricane Michael arrives in the center of where I am and my hometown of Tampa #3 – Exploring Round Point Lighthouse #4 – My first sunset aboard.

On Thursday, Oct 11th at 9:00am, we departed from Pascagoula and headed out into the Gulf of Mexico. I was amazed at how quickly we lost sight of land and at the vastness of this body of water with which I thought I was so familiar. My favorite part was watching the color of the water change from a dark teal to a deep blue.

 

colors of the water of the Gulf
The various colors of the water of the Gulf

On the “Plan of the Day” board under schedule it reads “Steam and Dream til Saturday Afternoon” and that is just what we are doing. Our path will lead us north of the Mexican border and south of Corpus Christi, Texas, where we will find our first station. Until then, in between steaming and dreaming, we are getting to know each other and learning about our roles and responsibilities.

 

 

 

 

 

 

Abandon ship drill
Abandon ship drill! Here I am in my survival suit.

For example, today we practiced our Fire and Abandon Ship Drills. While it is a little nerve-racking to think that something like that could actually happen, it was reassuring to see that everyone was well-trained and the operations ran smoothly.

 

 

 

 

 

 

 

 

My first lesson plan will focus on careers available through NOAA. It is amazing to see the variation in the positions and the backgrounds of the workers on this ship. Basically, on the Oregon II there are three types of employees who make up the ship’s complement.

Types of Employees
This graphic illustrates the structure of the employees aboard Oregon II.

I feel like NOAA has something to offer everyone from entry level positions that require no experience to positions requiring years of experience or advanced college degrees. The best part is that no matter where you start there is always room to advance through hard work and certification. I can’t wait to share all the opportunities with my students!

 

Did You Know?

Oregon II has a reverse osmosis system that uses salt water to create the freshwater needed aboard.  The salt that is removed is returned back to the Gulf.

 

Challenge Question of the Day
(For my students: bonus points for the first person from each class period to answer it correctly):

This picture was taken from the screen of one of the navigation systems on the bridge.

Challenge Question
Screenshot from one of the navigation systems

What do you think is represented by each of the black squares with a dot inside?

 

Animals Seen Today:

Moon Jellyfish and Flying Fish

Kristin Hennessy-McDonald: That’s Why They Call It Fishing, September 30, 2018

NOAA Teacher at Sea

Kristin Hennessy-McDonald

Aboard NOAA Ship Oregon II

September 15 – 30, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 30, 2018

 

 

Science and Technology Log

The past three days were light catch days.  One day, we only caught a snake fish, which, as you can see, is a pretty tiny little guy.  But, the data from a catch that brings up nothing is just as important as a catch that brings up 50 fish.  As the saying goes, “If we always caught something, we would call it catching, not fishing.”  We have brought up a few Sandbar sharks and Tiger sharks, some of them large enough to have to cradle.  I have gotten to tag a few of the Sandbar sharks, which is still an amazing experience.

Snakefish
Snakefish, our only catch one day

While we did not see many sharks, I had fun seeing the other organisms at the surface.  There have been a lot of moon jellyfish as we have been pulling the line in, and it was clear enough that I was able to get a picture of a few of them as they floated by.  One night, there were flying fish next to the ship, and one of them jumped onto the deck, so I was able to see one up close.  One of the days, a pod of dolphins joined us on a run, and followed the boat for quite a while.  So, while we did not see many sharks, I was able to see some awesome animals throughout the past few days.

Moon Jellyfish
Moon Jellyfish

 

 

 

The last night on the ship, I finished cleaning my shark jaws.  Overnight, they soaked in hydrogen peroxide to whiten them, and today I set them to dry.  I’m looking forward to taking them home and sharing them with all of my students.

 

Drying Shark Jaws
Drying Shark Jaws

 

It was an amazing two weeks.  On Friday night, we set our last line, and it was bittersweet.  Over the past two weeks, I have been able to fish with an amazing group of people.  They allowed me to be a part of the team, and attempt each job setting and pulling in the line.  I was able to put out the high flyer, sling bait, place numbers, clean barrels, and keep data on the computer.  I learned how to tie a double-overhand knot, handle small sharks, tag sharks of all sizes, and had lots of fun doing it.  I’m excited to head back to T-STEM Academy at East High School, but I will always fondly remember my time on the Oregon II.

 

Day Shift Group Photo
Day Shift Group Photo

 

Personal Log

One of the things that the night shift has done a few times is midnight hot dogs.  Chris, the night shift lead fisherman, brings different types of hot dogs on the boat and will cook them at midnight for the shift change.  It gives the night shift members something to eat before breakfast at 7 AM, and gives the day shift something to eat before bed.  They go all out, with a condiment bar and gourmet buns.

 

Did You Know?

Once the Oregon II returns to port from this fourth leg of the Shark/Red Snapper Longline Survey, they will spend a week cleaning and preparing the ship to return to the Gulf of Mexico on a Groundfish Survey that will run from October 8-November 21.  NOAA Groundfish surveys allow for the collection of data on the distribution of flora and fauna within the target region through the use of trawl nets.

 

Quote of the Day

The charm of fishing is that it is the pursuit of what is elusive but attainable, a perpetual series of occasions for hope.
~ John Buchan

 

Question of the Day

Sharks have teeth that are constantly being replaced.  How many teeth will the average shark go through in their lifetime?

Kristin Hennessy-McDonald: Nurse Sharks, Tiger Sharks, and Sandbars, Oh My, September 27, 2018

NOAA Teacher at Sea

Kristin Hennessy-McDonald

Aboard NOAA Ship Oregon II

September 15 – 30, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 27, 2018

 

Weather Data from the Bridge

Latitude: 2840.20N

Longitude: 8439.79W

Sea Wave Height: 0m

Wind Speed: 2.2 knots

Wind Direction: 39.04 degrees

Visibility: 10 nautical miles

Air Temperature: 30.045

Sky: 75% cloud cover

 

Science and Technology Log

We have moved from the coast of Texas, past Louisiana, Mississippi, and Alabama, to the coast of Florida.  When watching the video from the CTD, we have seen the sea floors go from mostly mud to sand.  The water has decreased in turbidity, and the growth on the sea floor has increased.  The make-up of our catches has changed too.  We moved outside of the productive waters associated with the Mississippi River discharge, so our catch rates have decreased significantly.

Yesterday, we had a fun day of catching sharks I had never seen.  Our first catch of the day brought up a juvenile Tiger shark (Galeocerdo cuvier).  I was excited to be able to see this shark, which is listed as near threatened by the International Union for Conservation of Nature.  On our later catch, we brought up three sharks large enough to require the cradle.  First, we brought up a Sandbar shark (Carcharhinus plumbeus).  Then, we were lucky enough to bring up a Nurse Shark (Ginglymostoma cirratum).  The mouth of the nurse shark has barbles, which it uses to feed from the sea floor.  Our final shark of the evening was a much more developed Tiger Shark.  I was lucky enough to help with the tagging of the animal.

juvenile Tiger Shark
Kristin Hennessy-McDonald with a juvenile Tiger Shark

Nurse Shark
Closeup of a Nurse Shark

Nurse Shark release
Nurse Shark release

Last night, we set a line at the end of day shift, and night shift brought it in.  A few of the day shift science team members decided to stay up and watch some of the haul back, and were rewarded with seeing them bring in, not one, but two Silky sharks (Carcharhinus falciformis), back to back.  From the upper deck of the ship, so that I was not in their way, I was able to observe the night shift work together to bring up these two large animals.

Silky Shark
Night Shift retrieving a Silky Shark

The night shift has gotten some pretty amazing catches, and they have enjoyed sharing them with us at shift change.  The two shifts spend about half an hour together around noon and midnight sharing stories of the time when the other shift was asleep.  The other day, the night shift caught Gulper Sharks (Centrophorus uyato) and Tile Fish (Lopholatilus chamaeleonticeps).  These are two species we have not seen on the day shift, so it was fun to look at their pictures and hear the stories of how they caught these fish.

Gulper Shark
Gulper Shark Photo Credit: Gregg Lawrence

tilefish
Tilefish Photo Credit: Gregg Lawrence

 

Personal Log

When we have a long run between stations, once I have gotten done sending emails and grading student work, we will spend some time watching movies in the lounge.  The ship has a large collection of movies, both classic and recent.  Watching movies keeps us awake during the late night runs, when we have to stay up until midnight to set a line.

The day shift has started to ask one another riddles as we are baiting and setting lines.  It’s a fun way to bond as we are doing our work.  One of my favorites have been: “1=3, 2=3, 3=5, 4=4, 5=4, 6=3, 7=5, 8=5, 9=4, 10=3.  What’s the code?”

Did You Know?

Sharks don’t have the same type of skin that we do.  Sharks have dermal denticles, which are tiny scales, similar to teeth, which are covered with enamel.

Quote of the Day

Teach all men to fish, but first teach all men to be fair. Take less, give more. Give more of yourself, take less from the world. Nobody owes you anything, you owe the world everything.

~Suzy Kassem

Question of the Day

I have a lot of teeth but I’m not a cog
I scare a lot of people but I’m not a spider
I have a fin but I’m not a boat
I’m found in the ocean but I’m not a buoy
I sometimes have a hammerhead but I don’t hit nails

What am I?

Stephen Kade: the Art of the High Seas, September 21, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: Southeastern U.S. coast

Date: September 21, 2018

Thresher by Kade
Watercolor painting of Thresher shark, Stephen Kade TAS 2018

 

Scientific Journal: 

While aboard the NOAA Ship Oregon II, I was able to create some art, which is my absolute passion in life. I was able use my time before and after most shifts to draw and paint the fish and sharks with watercolor paint and water from the ocean. It was tricky to paint with the constant movement of the ship, but I was able to paint over 20 paintings of sharks, fish, and the Oregon II over the 16 days on board the ship.

watercolor paintings
various watercolor paintings done aboard Oregon II, by Stephen Kade, TAS 2018

Now that I’ve been home for a month, I’ve had some time to reflect on my NOAA Teacher at Sea experience. If I told you my NOAA Teacher At Sea experience was incredible, I would be understating it quite a bit. I knew the excitement of working on the mighty NOAA Ship Oregon II and participating in the shark survey would be a highlight of my lifetime for sure. The opportunity to work with NOAA scientists, fishermen, and the rest of the crew was the best learning experience a teacher and artist could ask for. But just a week after returning, it was back to school and I needed to find ways to convey what I learned to my students. I began by creating a digital infographic about Longline Fishing so they would have a visual to go along with my explanation.

Longline Fishing infographic
Digital Longline Fishing infographic by Stephen Kade, TAS 2018

 

I wanted to inform my students to create awareness about the species of shark and other ocean inhabitants that are threatened and endangered. I also wanted them to learn science about the animals and incorporate some of that data into their art to make their images more impactful to those that see them. We want to compile related projects together until later in the year for our annual Night of the Arts- NOAA Edition.

Student Art
Student Art from OL Smith Middle School, Dearborn, MI

Student Art
Student Art from OL Smith Middle School, Dearborn, MI

We also created three life size Art Shark paintings and posted them in the hallways of our school to advocate for sharks through art and work to give sharks a more positive community image, and not the sensational, fearful media portrayal of sharks.

Student Art - Sand Tiger Shark
Student Art from OL Smith Middle School, Dearborn, MI

Sandbar Shark
Student Art from OL Smith Middle School, Dearborn, MI

painting of Great Hammerhead shark
3′ x 8′ painting of Great Hammerhead shark, Stephen Kade TAS 2018

As a fine artist painter, the Teacher At Sea experience has helped to make my artwork much more accurate for several reasons. Primarily the reason was proximity. I was able to see the sharks and fish first hand everyday, and take many reference photos of our catch each day. I could now see the beautiful colors of different sharks while out of the water, which I never had seen before. I was also able to speak to the fishermen and scientists each day about the behaviors and biology of the fish and I gained insight from listening to their vast experiences in the oceans all around the globe.

Since being home, I’ve begun to paint a series of scientifically accurate side views of my favorite sharks, and eventually I will digitally compile them into one poster after I get 15 to 18 completed. After that, I’ll begin a series of paintings with sharks swimming in their natural environment to bring more color and visual dynamics onto the canvas. This has been the most inspiring adventure of my life, and I will continue to advocate for my favorite ocean animals by using art to bring the respect and admiration that these beautiful sharks deserve to continue to thrive long into Earth’s distant future.

Kade_hammerhead
Watercolor painting of Great Hammerhead Shark by Stephen Kade, TAS 2018

Great White Shark
Watercolor painting of Great White Shark by Stephen Kade, TAS 2018

Anne Krauss: The Reel Whirl’d, September 15, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 26, 2018

Weather Data from the Air

Conditions at 0634

Altitude: 9585 meters

Outside Temperature: -38 ℃

Distance to Destination: 362 km

Tail Wind: 0 km/h

Ground Speed: 837 km/h

(While NOAA Ship Oregon II has many capabilities, flight isn’t one of them. These were the conditions on my flight home.)

Science and Technology Log

The idea of placing an elementary school teacher on a Shark/Red Snapper Longline Survey seems like a reality show premise, and I couldn’t believe that it was my surreal reality. Several times a day, I took a moment to appreciate my surroundings and the amazing opportunity to get so close to my favorite creatures: sharks!

Anyone who knows me is aware of my obsession with sharks. Seeing several sharks up close was a hallowed, reverential experience. Reading about sharks, studying them through coursework, and seeing them on TV or in an aquarium is one thing. Being only a few feet away from a large tiger shark (Galeocerdo cuvier) or a great hammerhead (Sphyrna mokarran) is quite another. Seeing the sharks briefly out of the water provided a quick glimpse of their sinewy, efficient design…truly a natural work of art. Regardless of size, shape, or species, the sharks were powerful, feisty, and awe-inspiring. The diversity in design is what makes sharks so fascinating!

A tiger shark at the surface.
Even just a quick peek of this tiger shark (Galeocerdo cuvier) reveals her strong muscles and powerful, flexible design.

A large tiger shark lies on a support framework made from reinforced netting. The shark and the structure are being lifted out of the water.
This female tiger shark was large enough to require the shark cradle. The reinforced netting on the cradle provided support for the 10.5 foot shark.

The snout and eye of a sandbar shark being secured on a netted shark cradle.
The shape of this sandbar shark’s (Carcharhinus plumbeus) head and eye is quite different from the tiger shark’s distinct design.

A great hammerhead's cephalofoil.
Even in the dark, the shape of the great hammerhead’s (Sphyrna mokarran) cephalofoil is unmistakable.

I envied the remora, or sharksucker, that was attached to one of the sharks we caught. Imagine being able to observe what the shark had been doing, prior to encountering the bait on our longline fishing gear. What did the shark and its passenger think of their strange encounter with us? Where would the shark swim off to once it was released back into the water? If only sharks could talk. I had many questions about how the tagging process impacts sharks. As we started catching and tagging sharks, I couldn’t help but think of a twist on the opening of MTV’s The Real World: “…To find out what happens…when sharks stop being polite…and start getting reeled.

Sadly for my curiosity, sharks have yet to acquire the ability to communicate verbally, despite their many advantageous adaptations over millions of years. To catch a glimpse of their actions in their watery world, scientists sometimes attach cameras to their fins or enlist the help of autonomous underwater vehicles (AUVs) to learn more. The secret lives of sharks… reality TV at its finest.

Underwater camera footage is beginning to reveal the answers to many of the questions my Kindergarten-5th grade students have about sharks:

How deep can sharks swim?

How big can sharks get? How old can sharks get?

Do sharks sleep? Do sharks stop swimming when they sleep? Can sharks ever stop swimming? 

Do sharks have friends? Do sharks hunt cooperatively or alone?

Is the megalodon (Carcharocles megalodon) still swimming around down there? (This is a very common question among kids!)

The answers vary by species, but an individual shark can reveal quite a bit of information about shark biology and behavior. Tagging sharks can provide insight about migratory patterns and population distribution. This information can help us to better understand, manage, and protect shark populations.

Various tools are spread out and used to weigh (scale), collect samples (scissors and vials), remove hooks (pliers, plus other instruments not pictured), apply tags (leather punch, piercing implement, and tags), and record data (clipboard and data sheet).
These tools are used to weigh (scales on bottom right), collect samples (scissors and vials), remove hooks (pliers, plus other instruments not pictured), apply tags (leather punch, piercing implement, and tags), and record data (clipboard and data sheet).

Using several low-tech methods, a great deal of information could be gleaned from our very brief encounters with the sharks we caught and released. In a very short amount of time, the following information was collected and recorded:

• hook number (which of the 100 longline circle hooks the shark was caught on)
• genus and species name (we recorded scientific and common names)
• four measurements on various points of the shark’s body (sometimes lasers were used on the larger sharks)
• weight (if it was possible to weigh the shark: this was harder to do with the larger, heavier sharks)
• whether the shark was male or female, noting observations about its maturity (if male)
• fin clip samples (for genetic information)
• photographs of the shark (we also filmed the process with a GoPro camera that was mounted to a scientist’s hardhat)
• applying a tag on or near the shark’s first dorsal fin; the tag number was carefully recorded on the data sheet
• additional comments about the shark

Finally, the hook was removed from the shark’s mouth, and the shark was released back into the water (we watched carefully to make sure it swam off successfully)!

A metal tag is marked with the number eight. This is one of 100 used in longline fishing.
Longline fishing uses 100 numbered hooks. When a fish is caught, it’s important to record the hook number it was caught on.

Two kinds of shark tags: plastic swivel tags used for smaller sharks and dart tags used for larger sharks.
Depending on the shark’s size, we either attached a swivel tag (on left and middle, sometimes called a Rototag or fin tag; used for smaller sharks) or a dart tag (on right, sometimes called an “M” tag; used for larger sharks).

For more information on shark tagging: https://www.nefsc.noaa.gov/nefsc/Narragansett/sharks/tagging.html 

This slideshow requires JavaScript.

Other fish were retained for scientific samples. Yellowedge grouper (Epinephelus flavolimbatus), blueline tilefish (Caulolatilus microps), and red snapper (Lutjanus campechanus) were some of species we caught and sampled. Specific samples from specific species were requested from various organizations. Generally, we collected five different samples:

• fin clips: provide genetic information
• liver: provides information about the health of the fish, such as the presence of toxins
• muscle tissue: can also provide information about the health of the fish
• gonads: provide information about reproduction
• otoliths: These bony structures are found in the inner ear. Similar to tree rings, counting the annual growth rings on the otoliths can help scientists estimate the age of the fish.

A yellowedge grouper on a table surrounded by sampling equipment.
Samples were taken from this yellowedge grouper (Epinephelus flavolimbatus).

Samples were preserved and stored in vials, jars, and plastic sample bags, including a Whirl-Pak. These bags and containers were carefully numbered and labeled, corresponding with the information on the data sheets. Other information was noted about the fish, including maturity and stomach contents. Sometimes, photos were taken to further document the fish.

 

Personal Log

Thinking of the Oregon II as my floating classroom, I looked for analogous activities that mirrored my elementary students’ school day. Many key parts of the elementary school day could be found on board.

A 24-hour analog clock.
Sometimes, my students struggle to tell the time with analog clocks. The ship uses military time, so this 24-hour clock would probably cause some perplexed looks at first! We usually ate dinner between 1700-1800.

Weights, an exercise bike, resistance bands, and yoga mats.
Physical Education: Fitness equipment could be found in three locations on the ship.

A dinner plate filled with cooked vegetables.
Health: To stay energized for the twelve-hour shifts, it was important to get enough sleep, make healthy food choices, and stay hydrated. With lots of exercise, fresh air, and plenty of water, protein, and vegetables, I felt amazing. To sample some local flavors, I tried a different hot sauce or Southern-style seasoning at every meal.

A metal first aid cabinet.
There wasn’t a nurse’s office, but first aid and trained medical personnel were available if needed.

With my young readers and writers in mind, I applied my literacy lens to many of the ship’s activities. Literacy was the thread that ran through many of our daily tasks, and literacy was the cornerstone of every career on board. Several ship personnel described the written exams they’d taken to advance in their chosen careers. Reading and writing were used in everything from the recipes and daily menu prepared by Second Cook Arlene Beahm and Chief Steward Valerie McCaskill in the galley to the navigation logs maintained by Ensign Chelsea Parrish on the ship’s bridge.

A clipboard shows the daily menu for breakfast, lunch, and dinner.
The menu changed every day. You could also make your own salad, sandwiches, and snacks. If you had to work through mealtime, you could ‘save-a-meal,’ and write down your food choices to eat later. This was kind of like indicating your lunch choice at school. Instead of a cafeteria, food was prepared and cooked in the ship’s galley.

Shelves of books in the ship's library.
Library: The ship had a small library on board. To pass the time, many people enjoyed reading. (And for my students who live vicariously through YouTube: that sign at the bottom does say, ‘No YouTube’! Computers were available in the lab, but streaming wasn’t allowed.)

I often start the school year off with some lessons on reading and following directions. In the school setting, this is done to establish routines and expectations, as well as independence. On the ship, reading and following directions was essential for safety! Throughout the Oregon II, I encountered lots of printed information and many safety signs. Some of the signs included pictures, but many of them did not. This made me think of my readers who rely on pictures for comprehension. Some important safety information was shared verbally during our training and safety drills, but some of it could only be accessed through reading.

A collage of safety-related signs on the ship. Some have pictures, while others do not.
Without a visual aid, the reader must rely on the printed words. In this environment, skipping words, misreading words, or misunderstanding the meaning of the text could result in unsafe conditions.

A watertight door with a handle pointing to 'open'.
On a watertight door, for example, overlooking the opposite meanings of ‘open’ and ‘closed’ could have very serious consequences.

A watertight door with a handle pointing to 'closed'.
Not being able to read the sign or the words ‘open’ and ‘closed’ could result in a scary situation.

 

Did You Know?

Thomas Jefferson collected fossils and owned a megalodon tooth. The Carcharocles megalodon tooth was found in South Carolina. One of the reasons why Jefferson supported expeditions to lands west of the Mississippi? He believed that a herd of mammoths might still be roaming there. Jefferson didn’t believe that animal species could go extinct, so he probably liked the idea that the megalodon was still swimming around somewhere! (There’s no scientific evidence to support the idea that either Thomas Jefferson or the megalodon are still around.)

Recommended Reading

If Sharks Disappeared written and illustrated by Lily Williams

This picture book acknowledges the scariness of sharks, but explains that a world without sharks would be even scarier. Shown through the eyes of a curious young girl and her family, the book highlights the important role that sharks play in the ocean food web. As apex predators, sharks help to keep the ocean healthy and balanced.

The book includes some mind-blowing facts, such as the concept that sharks existed on Earth before trees. Through easy-to-follow examples of cause and effect, the author and illustrator explores complex, sophisticated concepts such as overfishing, extinction, and trophic cascade. The glossary includes well-selected words that are important to know and understand about the environment. Additional information is provided about shark finning and ways to help save sharks. An author’s note, bibliography, and additional sources are also included.