Anna Levy: Fish Rules, July 17, 2017


NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10-20, 2017

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 17, 2017

Weather Data from the Bridge

Warm weather and blue skies are making it easy to spend a lot of time out on deck, looking for wildlife! In addition to the lazy seagulls who keep hitching a ride on the ship’s trawling gear, we continue to spot dolphins, flying fish, and even a shark feeding frenzy!

IMG_1191

Lazy sea gulls hitch a ride on our trawling gear

Latitude: 28 24.13 N
Longitude: 83 57.32 W
Air temp: 27.7 C
Water temp: 31.3 C
Wind direction: light and variable
Wind speed: light and variable
Wave height: 0.3 meter
Sky: 50% cloud cover, no rain

 

Science and Technology Log

The organisms in each catch provide a snap shot of the marine life in one location in one moment in time. It’s interesting to see what we catch, but there are not many scientific conclusions that we can draw based on what we see in just 10 days. However, this survey has been completed twice per year (once in the summer and once in the fall) for over 35 years. It is looking at trends, or changes and patterns over time, that allows scientists to draw conclusions about the health and ecology of the Gulf of Mexico.

One of the major practical applications of this research is to prevent overfishing, the removal of too many individuals from a population causing that population to become unstable. Continued overfishing can lead to the extinction of a species because it leaves too few mature individuals to reproduce and replace those that are removed.

Cod Graph

Graph Created by Boston Globe

One famous example of overfishing and its consequences occurred in the late 1980’s off the Atlantic coast of Canada. Cod was a major food source and commercial industry in the provinces of Newfoundland and Labrodor. However, unregulated overfishing depleted the cod population and, between 1988 and 1992 the cod population crashed, losing more than 99% of its biomass – they were essentially gone. This destroyed the industry, putting over 40,000 people out of work. In 1992, the government finally imposed a complete ban on cod fishing in hopes that the cod population could still recover. The fishing ban is still in place today, though just last year, Canadian scientists released a report stating that there are some signs of hope!

When NOAA scientists notice overfishing occurring in US waters, they can recommend that protective regulations, or rules, are put in place to limit or even stop fishing in an area until the species has had a chance to recover.

Here are a few examples of the types of regulations that have been created in the Gulf of Mexico in response to the data from the Groundfish Survey.

Texas Shrimping Closure

To prevent overfishing of shrimp in the western Gulf of Mexico, NOAA and the Texas Department of Wildlife collaborated to implement an annual closure of state and federal waters off the coast of Texas to shrimping. This is called the “Texas Closure.”

The Texas closure runs each year from about May 15 to July 15, though the exact dates vary depending on the health of the shrimp population that year. This break allows the shrimp time to mature to an age at which they can reproduce, and to migrate out to deeper waters, which is where females spawn. It also allows the shrimp to grow to a size that is more commercially valuable.

IMG_1177

A shrimp we caught off the coast of Florida.

We saw quite a few shrimp in our recent catches. Because this species is being more intensively monitored, we collected more detailed data about the individuals we caught, including the length, mass, and sex of a sample of least 200 individual shrimp (instead of a the smaller sample size of 20 that we used for most other species.)

In addition to sending out an annual notice to fisherman of the dates of the Texas Closure, NOAA also makes all of the shrimp survey data available. This can help fishermen to target the best fishing locations and work efficiently. For example, this is a plot showing the amount of brown shrimp found at various locations, created using this year’s survey data.

Shrimp Map

Plot Created By NOAA

Red Snapper Regulation

Another species that is currently under regulation is the red snapper, which has been a popular seafood in the US since the 1840s. As fishing technology improved and recreational fishing expanded in the 1950’s, the number of red snapper captured each year increased dramatically. The shrimp industry was also expanding rapidly at this time, and juvenile red snapper were often accidentally caught and killed in shrimp trawls. As a result of these three pressures, the red snapper population began to decline dramatically.

Red Snapper SP

Graph created by NOAA

By 1990, the spawning potential, or the number of eggs produced by the population each year, was only 2% of what it would have been naturally, without any fishing. This was far below the target spawning potential level of 26% that is necessary to sustain the species.

 

Several types of regulations were implemented to protect the snapper. These included:

  • Limiting the number of commercial and recreational fishing licenses issued each year
  • Restricting the size and number of fish that a fisherman could collect on a fishing trip
  • Reducing the amount of time each year that fishermen could fish for red snapper
  • Regulating the type of fishing gear that could be used
  • Requiring commercial shrimp fishermen to install devices on their trawls to reduce the by-catch of juvenile red snapper
  • Requiring fishermen to avoid areas where red snapper spawn

Survey results in the last 5 years show that these regulations are working and that the red snapper population is growing. This is good news. However, the red snapper is not out of the woods yet. It is important to understand that, as a species with a long life span (they can live over 50 years!), it will take time for the population to regain

Red Snapper Productivity

Graphic created by NOAA

its normal age structure. Currently, the majority of red snapper found in the Gulf are less than 10 years old. These fish are still juveniles capable of producing only a fraction of the offspring a fully mature individual would produce. It is important to continue to closely monitor and regulate the fishing of snapper until both the number and age of individuals has been restored to a sustainable level.

We were fortunate to catch members of three different species of red snapper during my leg of the survey. I did notice that most of them were relatively small – less than 10 inches – which is consistent with the concern that the population is still disproportionately young.

As with the shrimp, we collected more detailed information about these individuals. We also removed the stomachs of a sample of snappers. As I discussed in my last blog (“What Tummies Tell Us”), scientists back on land will examine the contents of their stomachs as part of a diet study to better understand what snapper are eating. Because the invasive lionfish has a competitive relationship with red snapper, meaning that it eats many of the same foods that red snapper eat, fisheries biologists are concerned that red snapper may be forced to settle for alternative and/or reduced food sources and that this could also slow their recovery.

IMG_1235

A typical red snapper from our catch. Note that each mark on the ruler is one centimeter.

IMG_0045

Red snapper from one catch.

 

Hypoxia Watch

CTD

Getting ready to deploy the CTD sensors.

In addition to collecting data about the fish and other organisms we find, remember that we also use a group of instruments called a CTD to collect information about the quality of the water at each survey station. (For more about CTDs, please see my previous blog “First Day of Fishing.”)

One of the measurements the CTD takes is the amount of oxygen that is dissolved in the water. This is important because, just like you and me, fish need to take in oxygen to survive. (The difference is that you and I use our lungs to remove oxygen from the air, whereas fish use gills to remove oxygen from the water!) When dissolved oxygen concentrations in the water drop below 2 mg/L, a condition called hypoxia, most marine organisms cannot survive.

When waters become hypoxic, organisms that are able to migrate (like some fishes) will leave the area. Organisms that cannot migrate (like corals or crabs) will die from lack of oxygen. This creates large areas of ocean, called dead zones, that are devoid of typical marine life. Often anaerobic microorganisms, some of which are toxic to humans, will then grow out of control in these areas. Not only is this stressful for the marine populations, it hampers regular fishing activities, and can even pose a threat to human health.

The Gulf of Mexico is home to the largest hypoxic zone in US waters. Nitrogen-rich fertilizers and animal waste from farming activities throughoAnnual Hypoxic Zone Graphut the Midwest United States all collect in the Mississippi River, which drains into the Gulf. Though nitrogen is a nutrient that organisms need in order to grow and be healthy, excess nitrogen causes an imbalance in the normal nitrogen cycle, and stimulates high levels of algae plant growth called an algal bloom. Once the algae use up the excess nitrogen, they begin to die. This causes the population of decomposers like fungi and bacteria to spike. Like most animals, these decomposers consume oxygen. Because there are more decomposers than usual, they begin to use up oxygen faster than it can be replenished.

This hypoxic zone is largest in the summer, when farming activities are at their peak. In the winter, there is less farming, and therefore less nitrogen. As the hypoxic water continues to mix with normal ocean water, the levels of oxygen begin to return to normal. (When there are tropical storms or hurricanes in the Gulf, this mixing effect is more significant, helping to reduce the impact of the hypoxia. This is often the primary cause of low-hypoxia years like 2000.) Unfortunately, the average size of the annual dead zone remains at nearly 15,000 square kilometers, three times the goal of 5,000 square kilometers.

The data collected from this year’s Groundfish Survey was used to create this map of hypoxic areas. How might this map be different if tropical storm Cindy had not occurred this summer?

This Years Hypoxic Zone

A plot of dissolved oxygen levels created from this year’s survey data.

The data we collect on the Groundfish survey is combined with data gathered during other NOAA missions and by other organizations, like NASA (the National Aeronautics and Space Administration) and USGS (the United States Geologic Survey). By collaborating and sharing data, scientists are able to develop a more complete and detailed understanding of hypoxia levels.

In response to the levels of hypoxia seen in the data, the federal Environmental Protection Agency (EPA) has required Midwestern states to develop and implement plans that will allow them to make greater progress in reducing the nutrient pollution that flows into the Mississippi. Specifically, the EPA wants states to do things like:

  • Identify areas of land that have the largest impact on pollution in the Mississippi
  • Set caps on how much nitrogen and other nutrients can be used in these areas
  • Develop new agricultural practices and technologies that will reduce the amount of these pollutants that are used or that will flow into the water
  • Ensure that the permitting process that states use to grant permission to use potential pollutants is effective at limiting pollutants to reasonable levels
  • Develop a plan for monitoring how much nutrient pollution is being released into waters

These EPA regulations were only recently implemented, so it is still unclear what, if any, impact they will have on the hypoxic zone in the Gulf. It will be interesting to keep an eye on the data from the Groundfish survey in coming years to help answer that question!

In the mean time, though, things still seem to be moving in the wrong direction. In fact, NOAA just announced that this summer’s dead zone is the largest ever recorded.

summer-dead-zone.adapt.885.1

Photo credit: Goddard SVS, NASA

Personal Log

Getting a PhD in your chosen field of science is an awesome accomplishment and is necessary if your goal is to design and carry out your own research projects. However, I’ve noticed that the PhD is often presented to students as the only path into a career in science. I think this is unfortunate, since this often discourages students who know they do not want to pursue a graduate degree from entering the field.

I’ve noticed that most of the scientists I’ve met while on board the Oregon II and in the NOAA lab at Pascagoula do not hold PhDs, but are still deeply involved in field work, lab work, and data analysis every day.

I asked Andre DeBose, a senior NOAA fishery biologist and the Field Party Chief for this mission, if he feels a PhD is necessary for those interested in fishery biology. Andre agreed that a graduate degree is not necessary, but he cautioned that it is a very competitive field and that education is one way to set yourself apart – “if you have the opportunity to get an advanced degree, take the opportunity.”

However, he continued, “the MOST important thing you can do is take the opportunity to do internships, volunteering, and fellowships. Those open a lot of doors for you in the world of biology.” Andre himself holds a bachelors degree in biology, but it was his years of experience working in aquaculture and as a contractor with NOAA that were most helpful in paving the way to the permanent position he holds today. “When I graduated from college, I took a low-paying job in aquaculture, just to start learning everything I could about fish. When contract [or short-term] positions became available at the NOAA lab, I applied and tried to make myself as useful as possible. It took time and I had to be really persistent – I would literally call the lab all the time and asked if they had anything they needed help with – but when a full time position finally became available, everyone knew who I was and knew that I had the right skills for the job.”

Now, Andre tries to help others navigate the tricky career path into marine biology. In addition to his responsibilities as a biologist, he is also the Outreach and Education Coordinator for the NOAA lab, which allows him to mentors all of interns (and Teachers at Sea like me!) and to talk with students at schools in the community.

If you’re interested in pursuing a career in marine biology, it’s never to early to start looking for some of those volunteer opportunities! There are lots of scientists out there like Andre who are excited to share their knowledge and experience.

IMG_0092

The Day-Shift Science Team as we head back in to port.  From left to right:  TAS Anna Levy, NOAA Summer Intern Jessica Pantone, NOAA Biologist & Field Party Chief Andre DeBose, NOAA Fellow Dedi Vernetti Duarte, NOAA Volunteer Elijah Ramsey.

Did You Know?

In the Gulf of Mexico, each state has the authority to regulate the waters that are within about 9 miles of the coast. (This includes making rules about fishing.) Beyond that, the federal government, with the help of federal agencies like NOAA, make the rules!

 

Questions to Consider:

Research:  This article discussed the political side of the Snapper situation. Research other news articles about this issue to ensure that you have a balanced perspective.

Reflect: To what extent do you believe this issue should be governed by science? To what extent do you believe this issue should be governed by politics?

Take action: Propose some specific ways that fisherman, scientists, and policy-makers could work together to address issues like the overfishing of red snapper fairly and effectively.

Review: Examine the graph showing the size of the hypoxic zone in the Gulf each summer. There are unusually small zones in 1988 and 2000. How do you explain this?

Research: Two other reoccurring hypoxic zones in the US are found in Chesapeake Bay and Lake Erie. What is the cause of each of these zones?

 

 

 

 

Anna Levy: What Tummies Tell Us, July 15, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 15, 2017

 

Weather Data from the Bridge

Scattered, mild storms continue, causing some delays in our fishing. However, they do lead to beautiful sunsets!

IMG_1087

Beautiful Gulf of Mexico sunset

Latitude: 29 18.790 N

Longitude: 84 52.358 W

 

Air temp: 28.7 C

Water temp: 29.7 C

Wind direction: light and variable

Wind speed: light and variable

Wave height: 0.3 meter

Sky: 80% cloud cover, no rain

 

Science and Technology Log

IMG_5442

TAS Anna Levy removes the stomach of a red snapper.

Data about the number and size of individual organisms can tell us a lot about the health of an overall population of a species. However, it doesn’t tell us much about the role that species plays in its community. If we want to understand that better, we need to know more about how it fits into its food web – what it eats and what eats it. If you were trying to collect information about what a fish eats, where would you look first? Its stomach!

So, after we measure certain species, we dissect them and remove their stomachs. We place each stomach in its own tiny bag, with a bar code that identifies which individual fish it belonged to. Back at a lab on land, scientists will carefully examine the contents of the stomachs to better understand what each species was eating.

IMG_1079

The bar codes that we use to label specimens.

 

factc_240

This map shows the native range of lionfish. Credit: http://oceanservice.noaa.gov/facts/lionfish-facts.html

For example, one of the fish currently under investigation in the Gulf of Mexico is the lionfish. This is an invasive species, which means that it is not native to the area. Its natural habitat is in parts of southern Pacific and Indian oceans, but it was first spotted in the Atlantic, off the coast of North Carolina, in 2002. Lionfish were most likely introduced to this area by humans, when they no longer wanted the fish as an aquarium pet. By 2010, its range had expanded to include the Gulf. And, with no natural predators in this area and rapid rates of reproduction, its numbers have increased exponentially.

Early dietary studies, which were focused on the lionfish in the Atlantic, show that the lionfish is a generalist. This means that, while it prefers to eat small reef fish, it is able to eat a wide variety of organisms including benthic invertebrates (like crabs) and other fish. This flexibility makes lionfish even more resilient and able to spread. These studies also found that lionfish stomachs were rarely empty, suggesting that they are highly successful predators, able to out-compete other top predators for food.

This has wildlife experts concerned about the impact lionfish will have on natural ecosystems. It is possible that lionfish will over-consume native species, causing native ecosystems to collapse. It is also possible that lionfish will out-compete and displace native, high level predators, like snapper and grouper. Scientists are working now to develop methods to try to manage this invasion.

Because ecosystems here are different from those in the Atlantic, scientists are now turning their attention to studying the lionfish in the Gulf of Mexico. The work that we did on the boat today should help them do just that!

To see the results of one such study, completed in 2014, see:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105852

For more information and photos about the lionfish, please see:

https://oceanservice.noaa.gov/education/stories/lionfish/lion02_invade.html

https://oceanservice.noaa.gov/facts/lionfish-facts.html

http://www.fisheries.noaa.gov/mediacenter/2015/05/21_05.html

 

Personal Log

Often times, we teachers struggle to convince our students that, while all of the modern technology we have is great, they also need to understand how to solve problems without relying on it. (Most of us have probably been on at least one side of the old, “no, you don’t need a calculator to multiply by 10!” argument at some point in life.)   Well, in the past couple of days, I’ve seen two great examples of this onboard the ship.

The first relates directly to our survey work. Our CTD, the equipment mentioned in last post, has two sensors that both detect how much dissolved oxygen is in the water. Having two instruments collecting the same information (sometimes called redundancy) is important, not only so that there is a back-up in case one breaks, but also so that we can tell if they are measuring accurately.

The two oxygen sensors have been reading differently – one was about 0.7 mg/L lower than the other. This is an indication that one needs to be calibrated – but which one? To find out, Alonzo Hamilton, one of the senior NOAA scientists, used a classical chemical analysis technique called titration.

IMG_1082

This is the titration equipment found in the chemical lab on board the ship.

In a chemical titration, one substance is slowly added to another, while the scientist watches for a chemical reaction to occur. If you know how the two substances react, you can determine how much of the second substance is present, based on how much of the first was added to make the reaction happen.

Based on the results of his titration, Alonzo was able to determine which of the oxygen sensors was reading accurately. So, it definitely goes to show that there are important applications for that classic high school chemistry!

IMG_1173

The binnacle that houses the ship’s magnetic compass.

The other example relates more to the ability to navigate the ship. NOAA Ship Oregon II is equipped with advanced electronic navigation software, Gyro compass, radar, and GPS systems. However, when I was exploring the top deck (flying bridge) of the ship, I came upon this strangely low-tech looking instrument. I asked ENS Chelsea Parrish, a NOAA Corps Officer and member of the wardroom, about it. She explained that it is called a “binnacle,” a safeguard that houses a magnetic compass! The magnetic compass is the same type of technology used by mariners back in the 1300’s. It is critical to have in case of a power outage or other disruption to the ship’s electronic navigation technology.

 

 

Did You Know?

While they typically live in cold waters, there is one pod of orca whales (aka killer whales) that resides, year-round, in the Gulf of Mexico. It’s rare to see them, but I’m keeping my eyes peeled!

Dolphins, on the other hand, seem to be everywhere out here. I’ve caught at least a glimpse of them every day so far. In fact, a group of them swam up to investigate our CTD today as it was being lowered into the water.

 

Questions to Consider:

Research: Some other famous invasive species in our oceans include the green crab (Carcinus maenas), killer algae (Caulerpa taxifolia), a jellyfish-like animal called a sea walnut (Mnemiopsis leidyi), a marine snail called rapa whelk (Rapana venosa), and the zebra mussel (Dreissena polymorpha). Where did each of these originate? How did they come to inhabit their invaded areas? What impact are they having?

Brainstorm: What measures could you imagine taking to manage some of these species?

Research: The specific type of titration used to determine the amount of dissolved oxygen in water is called the Winkler method. How does the Winkler method work?

 

 

 

Anna Levy: First Day of Fishing! July 12, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 12, 2017

 

Weather Data from the Bridge

We’re traveling through some mild rainstorms. Nothing extreme, but we do feel a little more side to side rocking motion in the boat (which makes me feel sleepy!)

IMG_5433

Mild rainstorms on the horizon

Latitude: 29 degrees, 56.2 minutes North

Longitude: 86 degrees, 20.6 minutes West

Air temp: 24.7 degrees Celsius

Water temp: 30.1 degrees Celsius

Wind direction: light and variable

Wind speed: light and variable

Wave height: 1 foot (about 0.3 meters)

Sky: overcast with light rain

 

Science and Technology Log

Today I completed my first shift on the science team and we surveyed 3 complete stations. At each station, we carried out a multi-step protocol (or procedure). Here are the steps:

IMG_1039

The Depth Contour Output graph displays data collected from one station.

Before we begin fishing, the ship conducts a transect (or cross-section) of the survey area, using multiple pieces of equipment to observe the ocean floor. This tells us if it is safe (for both ship operations and for fragile coral that may exist) to trawl here. If a coral reef or other large obstacle was present, we would see significant variation in the depth of the ocean floor. This “depth contour output” graph shows the data we collected at one station. How deep is the water at this station? Is it safe to trawl here?

IMG_1028

The CTD collects information about water chemistry

We also use a collection of instruments called a “CTD” to collect information about the chemistry of water itself at different depths. This information is called the water’s “profile.” For fisheries studies, we are most interested in the amount of dissolved oxygen and the temperature at different depths. Why might this information be relevant for understanding the health of fish populations?

IMG_1025

Forel-Ule color scale

We also measure the water color using the Forel-Ule color scale by matching it to the samples shown in this photo. This gives scientists an indication of the amount of particulates, chlorophyll, and nutrients are in the water.

IMG_0033

Trawl Net being lowered into water

Once we determine it is safe to trawl, the ship returns to the starting location. We will trawl along the same path that we observed. Here’s the trawl net before it is lowered into the water. It will be pulled just along the bottom of the survey area, using tickler chains to agitate the ocean floor for benthic organisms for 30 minutes, and collecting whatever crosses its path!

IMG_1037

The catch is emptied into baskets

Once the trawl is finished, the deck crew uses a large crane to pull the trawl on board. We all help to empty the net and place everything into baskets. Most of what we catch are biological organisms, but small amounts of non-living material (like shells, dead coral, and even trash) come up as well.

IMG_1002

The Wet Lab

We then bring the baskets into the wet lab.

IMG_1046

Baskets are emptied into a long trough with a conveyor belt

We dump the baskets into a long metal trough that has a conveyor belt at the bottom.

IMG_1014

The catch is sorted into baskets by species

Next we sort the catch. Each species gets its own basket and we count the number of individuals for each species.

IMG_1032

Identifying organisms

Then, it’s time for the tough part (for me at least) – every organism has to be identified by its scientific name. That’s a lot of Latin! Fortunately, Andre and the senior scientists are very patient and happy to help those of us who are new. It’s amazing how many species these experienced scientists recognize off the top of their heads.

IMG_1030

Field Guides

We also have many field guides, which are books containing photos and descriptions of species, to help us.

IMG_1017

For each species, we record the total number of individuals and total mass

We are interested in how much of each species are present, so we record both the total number of individuals and total mass of each species.

IMG_1059

TAS Anna Levy measures the length of a flatfish using the Limnoterra Board

We also measure the length and mass of a sample of individuals. A handy device called a Limnoterra Electronic Measuring Board makes this process easy.  We place the mouth of the fish on one end of this board and then touch its tail fin with a pen-like magnetic wand. The board then automatically sends the fish’s length to the computer to be recorded.  We use an electronic balance that is also connected to the computer to measure and record mass.

IMG_1008

A computer screen displays FSCS software

All of the information is recorded in a database, using software called FSCS (pronounced “fiscus”).

Many of the specimens we collect are saved for use in further research on land.   Scientists at NOAA and other research institutions can request that we “bag and tag” species that they want. Those samples are then frozen and given to the scientists when we return to shore.

Any organisms or other material that remains is returned to the sea, where it can be eaten or continue its natural cycle through the ecosystem. The conveyor belt, conveniently, travels to a chute that empties back into the ocean. Now all that’s left is to clean the lab and wait for the process to begin again at the next station!

Our goal is to complete this process 48 times, at the 48 remaining stations, while at sea. 3 down, 45 to go!

Personal Log

IMG_1048

Sometimes the work is high-paced…

This work has real highs and lows for me, personally. There are dramatic, hold your breath, moments like when equipment is lifted off the deck with cranes and lowered into the water. There is the excitement of anticipating what data or species we will find. My favorite moment is when we dump the buckets and all of the different species become visible. I’m amazed at the diversity and beauty of organisms that we continue to see. It reminds me of all of the stereotypical “under the sea” images you might see in a Disney movie.

The more challenging part is the pace of the work. Sometimes there are many different things going on, so it’s easy to keep busy and focus on learning new things, so time passes quickly. Other times, though, things get repetitive. For example, once we start entering all of the data about the individual fish, one person calls out the length and mass of a fish, while the other enters it into the computer – over and over until we’ve worked through all of the fish.

IMG_1050

… but sometimes the work even stops altogether, especially when whether interferes.

Sometimes, the work even stops altogether, especially when the weather interferes. There have been mild rainstorms coming and going continually. It is not safe to have people on deck to deploy the CTD and trawling equipment when there is lightning in the area, so there is nothing for the science team to do but wait during these times.

Because the pace of the work is constantly changing, it’s difficult to get into a groove, so I found myself getting really tired at the end of the shift. However, an important part of collecting data out in the field is being flexible and adapting to the surroundings. There is a lot to accomplish in a limited amount of time so I keep reminding myself to focus on the work and do my best to contribute!

Did You Know?

When working at sea, scientists must use special balances that are able to compensate for the movement of the ship in order to get accurate measurements of mass.

To ensure that we are accurately identifying species, we save 1 individual from each species caught at a randomly selected station. We will freeze those individuals and take them back to NOAA’s lab in Pascagoula, where other scientists will confirm that we identified the species correctly!

Questions to Consider:

Review: Look at the “depth contour output” graph above: How deep is the water at this station? Is it safe to trawl here?

Research: What does “CTD” stand for?

Research: For fisheries studies, we are most interested in the amount of dissolved oxygen and the temperature at different depths. Why might this information be relevant for understanding the health of fish populations?

Reflect: Why might scientists decide to use three different pieces of equipment to collect the same data about the ocean floor? And, why might they have several different scientists independently identify the species name of the same individuals?

Melissa Barker: On to the Emerald Coast, July 4, 2017

Lionfish!

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22-July 6

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 4, 2017

Weather Data from the Bridge:

Latitude: 29 49.65 N

Longitude: 86 59.92 W

Air temp: 29.7 C

Water temp: 31.6 C

Wind direction: 337 degrees

Wind speed: 1.88 knots

Wave height: 0.5 meters

Sky: partly cloudy

 

Science and Technology Log

We are now off the coast of Western Florida. After completing many stations in East Texas and Louisiana, we headed over to the Emerald Coast. State agencies in Louisiana and Mississippi, who are SEAMAP partners, have already completed stations in their states using the same trawling protocol which allowed us to push on to Florida.

The change in species has been dramatic. We are now trawling in sandy bottom areas, which have also been shallower than most of our Texas trawls with muddy bottoms. Generally, the fish here in Florida have more coloration and our catches have been smaller with fewer, but often slightly larger fish. Below is a side by side comparison of fish diversity between a Texas trawl catch and a Florida trawl catch.

The increased coloration in the fish actually helps the fish hide better in the sandy bottomed blue waters, yet at the same time allowing potential mates to find each other more easily. In the murky bottom waters of Texas, the fish tend to blend in better with duller colors. Here are some of the interesting species we found in the Emerald Coast waters.

One new fish we have caught in Florida is the lionfish (Pterois volitans ). In less than 10 years, the Lionfish has become widely established as an invasive species in the US Southeast and Caribbean coastal waters. It is native to the Indo-Pacific region, but was introduced into this area of the Gulf.

It is believed that lionfish were introduced off the Florida coast in the mid-1980’s, then expanded their way up the east coast. By 2004, NOAA scientists confirmed breeding populations off the coast of North Carolina which then worked their way into the Gulf of Mexico by 2005-2008. Lionfish are a popular aquarium fish and it is hypothesized that people released them into the Atlantic when they no longer wanted them as aquarium pets. Their large eggs masses floated up the coast via the gulf steam allowing them to spread easily. According to the National Centers for Coastal Ocean Sciences, it is estimated that their population has reached roughly 1,000 per acre in some locations of the Gulf.

Lionfish are top predators which compete for food and habitat with native predators that have been overfished like snapper and grouper.

Lionfish Infographic by the National Centers for Coastal Ocean Science (NCCOS)

They consume over 50 species including some that are economically and ecologically important. For example, they can consume important algae-eating parrot fish, allowing for too much vegetation build in reef areas. They have no known predators and reproduce all year long. You have to be careful when handing lionfish because they can deliver a venomous sting with their spines that can cause pain, sweating and respiratory distress. There has been a push to encourage harvesting lionfish for consumption in an attempt to reduce their population, but unfortunately there is currently no known mechanism to control or eliminate the population. (Source: NOAA National Ocean Services)

 

 

Interviews with the People of the Oregon II- PART 2

I’ve spent some time talking with people who work on the ship from the different departments trying to understand their jobs and their desire to work at sea. I have posted three interviews in my previous blog and have three more to share with you here.

 

Commanding Officer Dave Nelson

Captain Dave Nelson in the captain’s chair

Captain Nelson’s number one responsibility is safety on board. He is also responsible for the operations, such as getting the data that the scientists need. Additionally, he has a significant teaching and mentoring role for the Ensigns, new Officers. He is one of only two civilian captains in the NOAA fleet and has been training junior officers for 15 years. In 2016, the Oregon II won NOAA Ship of the Year, partially due to the culture that Captain Nelson has cultivated on the ship. Since he worked his way up from the deck, he really can appreciate the role that each individual on the boat plays and says it is critical that everyone works together for the safety and the success of the science mission of the ship.

What did you do before working for NOAA?

After high school, I fished commercially and worked as crew on oil field supply boats. I captained a shrimp boat, but knew I wanted to find a career.

How did you get to where you are today?

I started as a deck hand and worked my way up to Third mate, then Operations Officer (OPS), Executive Officer (XO) and finally Commanding Officer (CO) over the course 25 years. I had all the nautical knowledge and NOAA gave me the opportunity to take the Master Captains License test. I had to go back to the books to study hard and then passed with flying colors.

 What do you enjoy most about working on the Oregon II?

I enjoy training the Junior Officers and seeing them make progress. And of course, the joy of going to sea.

What advice or words of wisdom do you have for my students?

Set a goal and stick to it. Don’t let anyone get in your way. At 47, I had to go back to the books and study harder than I ever had for my Master Captains exam. There will be set backs and hard work will be required, but sticking with your goal is worth it in the end.

 

Science Field Party Chief Andre DeBose

Field Party Chief Andre DeBose holding a Sphoerodies pachygaster (Blunthead Puffer)

Andre has been working at the NOAA Mississippi Lab in Pascagoula as the education coordinator and a member of the trawl unit for 21 years. He has been working on the Oregon II for 19 years. When at the lab he coordinates the education interns, collects and compiles trawl data and compiles historical trawl protocols. He is also the foreign national coordinator and get them cleared for sea duty. I’ve worked closely with Andre on the boat and appreciate all his patience and willingness to share his knowledge and insight with me.

 What does it mean to be Science Field Party Chief?

I am the liaison between the lab and the ship and help mediate requests from both parties. On board, I supervise all scientific activities and personal.

 What did you do before working for NOAA?

My degree is in general biology, which I linked to aquaculture. Right out of college, I worked at the Sea Chick aquaculture plant raising large mouth and hybrid striped bass. The facility was trying to make farmed grown fish as important as farmed raised chicken.

How did you come to work for NOAA?

I was hired as a temporary scientist for a Groundfish survey for 40 days aboard NOAA Ship Chapman. After that, I worked with a Red Drum tagging crew aboard the R/V Caretta then was hired on permanently by NOAA and been working at the lab ever since.

Tell me about one challenging aspect of your job?

Being out at sea. I miss my family and my normal day to day life.

What do you enjoy most about working on the Oregon II?

Going to sea. Even though it is hard to be away, I love being out there and the work we do.

What advice or words of wisdom do you have for my students?

The goals that you desire may become your livelihood, always make sure to make your work fun and it will never bore you.

 

Second Engineer Darnell Doe

Second Engineer Darnell Doe

Darnell has been the Second Engineer aboard the Oregon II for three years. His job is a critical one as he is responsible for the maintenance and upkeep of the engines and generators. We are typically running on one engine and one generator with a second of each for back up. He changes filters, checks oil sump levels and makes sure everything is running smoothly.

What did you do before working for NOAA?

I worked in the Navy for 20 years as an engineer doing repair as a machinist through three wars. Then I worked doing combat support for the military sea lift command.

Why work for NOAA?

A friend told me about a job opening on a NOAA ship. I applied and got it.

Tell me about one challenging aspect of your job?

I’m used to working on much bigger ships, so working on the Oregon II is like working on a lawn mower in comparison. I tackle problems in a routine way and solve them as they arise.

What do you enjoy most about working on the Oregon II?

Working on this ship is new and interesting, which I like. I’ve seen some weird stuff come out of that water and enjoy learning about the science that is happening onboard.

What advice or words of wisdom do you have for my students?

If your mind is set on something, proceed on that road and keep persisting. Stick with your goal.

 

Personal Log

It’s the 4th of July and folks are getting patriotic on the Oregon II. The ship got a new flag today and we had festive lunch, which is typically the biggest meal on the ship due to the shift change. The day shift folks eat first and then start their shift, while the night shift folks end their shift, eat and head to bed.

Yesterday we saw land. It has been 10 days since I’ve seen hard ground which is a lot for this land lover. I’m not sure why, but for some reason I imagined we would be close enough to see land more often. However, it was strange to see beach hotels and condos at a distance today; we are between 3.5-8 miles off shore for a few of our stations. I’ve come to enjoy the endless sea view.

Tire pulled up in our trawl net

While trawling yesterday we caught a tire. We’ve actually found very little trash in our trawls, so the tire was a bit of a surprise. Then we caught another tire in the next trawl. Apparently, it is common for people to dump tires and other large trash items into the ocean and GPS the location. These items are used as fish aggregating devices. Vegetation will grow on them and attract small fish. Larger fish are then drawn to the area to feed. Using the GPS location, people will come back to fish this area. I guess it is helpful that we are picking up the tires.

It is hard to believe that I am almost at the end of my journey. We’ve finished our trawling and are making the trek back to Pascagoula, MS. It feels strange to be awake with no fish work to do, but I’m enjoying a little down time as it has been a busy two weeks full of fun and learning.

Did You Know?

The northwest coast of Florida from Pensacola Beach to Panama City Beach is referred to as the Emerald Coast, which is where we are now. According to the Northwest Florida Daily News, the term Emerald Coast was coined in 1983 by a junior high school student who won $50 in the contest for a new area slogan.

Dawson Sixth Grade Queries

What is the coolest/craziest animal you found? (Alexa, Lorna, Blaine)

Lionfish (Pterois volitans)

Of all the fascinating new species I’ve seen, I think lionfish are the coolest and craziest organism of them all. I also find it interesting that a native species in one area of the world can be problematic and invasive in another part of the world.

Why do you think we only discovered/explored only 5% of the ocean? (Kale)

There are several reasons when we have explored so little of the ocean. One main reason is that ocean exploration is expensive, roughly $10,000 per day. Fish and other aquatic organisms are concentrated by the coast, so that is the area that is prioritized for exploration and where our major fisheries are located.

How many fish died for the research? (Mia, Bennett)

Most of the fish that come aboard end up dying for the purpose of science. I would estimate that in a typical trawl we have might pull in between 250 to 300 organisms. This is a pretty small amount when compared to the amount of fish removed by the commercial finishing industry and the unintended catch associated with the fishing industry. We often split the catch and end up sending half of the organisms back into the ocean fairly quickly. However, the ones we keep aboard give us important data that allow fisheries manager to assess the health of the fisheries in their states. We also keep and freeze certain species for other researchers who will use them off the boat. Ultimately the ones we don’t keep are returned to the ocean and will be eaten by larger fish and marine mammals.

Melissa Barker: Navigation and People of the Oregon II, July 2, 2017

P1030109NOAA Teacher at Sea

Melissa Barker

Aboard NOAA ship Oregon II

June 22-July 6

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 2, 2017

Weather Data from the Bridge

Latitude: 28 37.91 N

Longitude: 89 19.41 W

Air temp: 30.5 C

Water temp: 31.7 C

Wind direction: 340 degrees

Wind speed: 4 knots

Wave height: 0 meters

Sky: partly cloudy

 

Science and Technology Log

Point plotted on electronic chart. We are the little green boat icon on the screen.

I spent some time on the bridge with LT Reni Rydlewicz learning about how the ship is navigated. The officers and crew are reliant on technology to navigate the Oregon II from station to station. There are many obstacles here off the coast of Louisiana that must be avoided including rigs, oil field traffic, shipping boats and shrimpers. The radar, electronic charts and weather screen are vital to successfully navigating the Gulf. The first step in navigation is using the electronic chart to plot a line to the station.

 

Radar is critical to navigation in a busy Gulf

 

We keep at least one mile away from any rigs or other obstacles. The officer on duty will check the radar and then visually confirm what they see out on the water. They may also radio any nearby vessels to discuss their routes and make sure we can safely pass.

 

 

 

Melissa at the helm being instructed by LT Rydlewicz

 

 

Next, the officer will turn the helm to the proper heading using degrees, like on a compass.  Zero degrees is due north. Once on the proper heading, we will go to the way point of the set track-line monitoring for obstructions and vessels along the way.

 

 

 

Plotting our location on the chart

 

About every thirty minutes to one hour, the officer will drop a fixed position on the paper chart to track our progress based on our latitude and longitude.

Wind direction indicator

 

 

 

 

 

 

You can see us sitting on the south edge of the storm cell on the weather screen

 

 

 

Another vital piece of technology is the WXWorks weather screen that shows weather patterns and lightning strikes.

 

 

 

 

 

Currently, the water is calm and we are cruising to a station near the mouth of the Mississippi River. The image below shows the route we have taken thus far as we zig zag our way from station to station.

You can see our route as of 7/1/17 marked in blue. The Oregon II is the little green boat on the map.

The pitch and RPM’s can be adjusted to change the speed of the ship. The Oregon II has two engines, but we usually operate on one to save wear and tear and to have a backup engine just in case. Our average cruising speed is about 8 knots. With both engines, we can cruise at 10-11 knots.

When conducting a CTD, the officer often uses one of the side stations to control the speed and rudder so they can see what is happening with the CTD instrument. They must keep the ship as still as possible, which can be challenging in some conditions. Before the trawl is lowered into the water, the officers must plot a course making sure they can trawl continuously for about 1.5 miles at 2.5-3 knots within 5 miles radius of the station. The bridge, deck crew and FPC are in radio communication when setting the trawl. At night, the bridge operates with red screens and lights so the officers can keep their night vision. There is also video feed that shows the bow and stern decks and engine room to keep an eye on folks when they are out doing their work.

I can only imagine how overwhelming it must have been for ENS Parrish, when she started on the Oregon II in December, trying to learn how to use all the technology that helps her and the other officers navigate the ship as well as actually learning how the ship moves in the water.

 

Interviews with the People of the Oregon II

I’ve spent some time talking with people who work on the ship from the different departments trying to understand their jobs and their desire to work at sea. I have posted three interviews here and will post more in the next blog.

 

ENS Chelsea Parrish

ENS Chelsea Parrish holding a cobia

Chelsea is a Junior Officer learning to stand her own watch on the bridge. She reported to the Oregon II in December and needs to have at least 120 hours at sea, become proficient navigating the ship and have the Commanding Officer’s blessing to become an Officer Of the Deck. In addition to learning the details of navigation and fishing operations, she also is the Environmental Compliance Officer, completes chart corrections weekly and heads up social media for the ship. You can learn more about the NOAA Corps here.

What did you do before working for NOAA?

I earned my masters in marine science and then applied to the NOAA Corps. The training for NOAA Corps is nineteen weeks, seventeen of which are spent at the Coast Guard Academy in New London, CT training and taking classes.

ENS Chelsea Parrish in her Service Dress Blues. (photo credit: Chelsea Parrish)

Why did you join the NOAA Corps?

I heard about it in graduate school and it sounded like a great way to serve my country and help scientists do their work. I consider the NOAA Corps a hidden gem because not that many people know about it. We are stewards of our oceans and atmosphere by contributing to oceanographic, hydrographic and fisheries science. I will spend two years at sea and then three years on land and continue that rotation. We even have a song, check it out here.

Tell me about one challenging aspect of your job?

The balance between work and personal life can be a challenge on the ship, but I’m finding a routine and sticking to it.

What do you enjoy most about working on the Oregon II?

I love watching the sun rise and set over the ocean each day and the mystery of what we will find in the ocean each day.

What advice or words of wisdom do you have for my students?

Be adaptable and take advantage of every opportunity that comes your way. Don’t be afraid to go against the norm and follow your passion.

 

Lead Fisherman Chris Nichols

In Chris’ role as Lead Fisherman, he is second in charge of on the deck crew and leader of the night watch. He operates the cranes and is responsible for fishing operations on the ship. He also stands a look out watch on the bridge. His other responsibilities involve mending fishing nets and handling the sharks (especially during the shark survey). Chris has many certifications that give him additional responsibility such as being a surface rescue swimmer, NOAA working diver and one of the MPIC’s (medical person on duty).

What did you do before working for NOAA?

Lead Fisherman Chris Nelson

I was a charter fishing boat captain, an able body seaman with the Merchant Marines and had a navigation job with the Navy.

Why work for NOAA?

My specialty is big game fish, so I was initially attracted to the NOAA shark surveys. I’ve been at sea since 1986 and am always up for another adventure.

Tell me about one challenging aspect of your job?

I have a lot of additional duties besides being a Lead Fisherman. The upkeep of all of my certifications takes a significant amount of time.

What do you enjoy most about working on the Oregon II?

The camaraderie of the people. We have a great steady group of people and our repeat ports are nice places to visit. I really enjoy working with the scientists and the fish too.

What advice or words of wisdom do you have for my students?

Embrace adventure. I was inspired by early on by reading adventure stories like Tom Sawyer. Work has taken me all around the world. And definitely take those math courses, especially algebra and calculus. I use math every day in my work.

 

Chief Steward Valerie McCaskill

For two years Valerie has been the Chief Steward who keeps everyone on the ship well fed. She and her assistant, Arlene, attempt to satisfy 30 different appetites three times per day.

Valerie’s welcoming smile

What did you do before working for NOAA?

I worked oil industry first in food service, but wanted to work for NOAA. I have a small catering business and like to experiment with food.

Why work for NOAA?

I love running a kitchen without the unreliable schedule and endless hours of land based restaurants.

One of the amazing meals from the galley

Tell me about one challenging aspect of your job?

Trying to please everyone is a big task. It can also be challenging to meet people’s dietary restrictions with the limitations of the kitchen.

What do you enjoy most about working on the Oregon II?

I enjoy the people. Even if the boat is rocking and people are tired, I try to being comfort through food.

What advice or words of wisdom do you have for my students?

Never let fear of failure stop you.

 

 

 

Personal Log

Chart of the turn I made

A few days ago, we were on weather hold and I went up to the bridge to see what was going on. I was starting to feel a little sick from all the movement. Being in the bridge, where I could see the horizon, helped sooth my stomach and distract me from the motion. We were running “weather patterns”, which means that we are running a course for the best ride possible while waiting for the weather system to pass. Then we can go back to the station we need to sample. Reni let me turn the ship which was a pretty cool experience. She directed me to turn the helm to 40 degrees to the port side, then as we started to turn, she had me easy back to 30, 20, 10 and finally back to zero to complete our 180 degree turn back towards the station.

Yesterday between trawls, David, Sarah and I went up to the forward most part on the bow. We peered over the railing to see four bottlenose dolphins playing on the bow wake. It was incredible to see them so close. As they were swimming at 7-8 knots right alongside the ship, they rotated position allowing each to take a turn coming to the surface for air. It was similar to bikers rotating in a peloton to stay out of the wind. Once I’m back on shore, I’ll post some video, but here is a still shot for you.

P1030109

Bottlenose dolphins riding the bow wake

Standing at the forward most part of the bow

P1030103

Looking back from the bow to the bridge

View from the flying bridge

 

I’ve been waking up a few hours before my shift starts to work on my blogs and get a little exercise. I never know what the weather is like when I wake up because I sleep on the lower deck. Technically I sleep under water and hear the water slapping the side of the ship as I’m drifting off to sleep. This morning I decided to go to the flying bridge, which is at the top of the ship, to do a little workout. The sea was glass-like and the visibility was over 10 nautical miles. I decided it was the perfect location for some yoga. I enjoyed the extra challenge of holding poses on the moving ship.

 

 

 

Did You Know?

The northern two-thirds of the continental US and part of Canada drains into the Gulf of Mexico. These rivers bring accumulated runoff from cities, suburbs, rural areas, agriculture and industry and have the potential to influence the health of the Gulf.  (source: flowergarden.noaa.gov)

gomwatershed

Rivers that drain into the Gulf of Mexico (photo credit: http://flowergarden.noaa.gov)

Dawson Sixth Grade Queries

Are you going to see sharks? (Gemma, Sylvia, Mae, Finn)

We have caught two small sharpnose sharks so far on this cruise. The Oregon II does a shark survey in the late summer where they focus on catching sharks.

How long does the whole process of catching fish take? (Sam)

Once we come upon the station, they set the trawl for 30 minutes. Depending on how deep we are sampling, it might take 10-20 minutes to bring the net back in.

What classes or skills would you have to master to become a marine biologist? (Rowan, Ava, Julia) 

I asked this question to a room full of students studying some sort of marine biology or science and here is what they said…

It depends on your area of interest, but reading and writing skills are critical. It would be helpful to take courses in biology, chemistry, comparative physiology and anatomy, biological and ecological systems and applied math like calculus and statistics. In David’s program at University of Miami, he had to choose a concentration like biology, physics, or chemistry with his marine science degree.

 

Melissa Barker: Data, Samples and Research, Oh My, June 29, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 29, 2017

Weather Data from the Bridge

Latitude: 29 11.93 N

Longitude: 92 40.31 W

Air temp: 28.6 C

Water temp: 28 C

Wind direction: 180 degrees

Wind speed: 13 knots

Wave height: 1 meter

Sky: Overcast

Science and Technology Log

We had a slight lull in the sampling yesterday due to storms and lightning risk, but today has been full speed ahead with the trawling. In this blog I’ll talk more about taking data and how the data and samples are used.

We use the FSCS system, designed by NOAA, to record our data for each trawl. The program walks us through all the data need for each species. The pattern goes something like this: select species, measure length with the Limnoterra magnetic measuring board, then mass the individual, and finally try to determine the sex of the organism. Without this technology I can image that the whole sampling process would take a lot longer.

 

 

Determining sex can be tricky at times and there are some species that we cannot sex such as squid, scallops and very small fish. We cut the fish open and look for male and female gonads. If possible we also mark the maturity state of the individual.

Female gonads

Male gonads

When recording shrimp, we measure length, weight and sex for each individual up to 200. This can take a while, but working in pairs we get pretty efficient. Female shrimp have a circular breast plate, called a thelycus, under the head or just above their first set of legs. Males have a petasma, the male sex organ, between their two front legs.

Female shrimp on the left, male shrimp on the right. The knife is indicating the petasma, the male sex organ.

David (left) and Tyler work together to measure, weigh and sex the shrimp efficiently

You might be wondering what happens to all this data that we are collecting?

The data we collect is sent to SEAMAP (Southeast Area Monitoring and Assessment Program) and is made publicly available. Scientists can use this data for their research. The SEAMAP Groundfish survey happens twice per year and has been ongoing for 42 years, allowing for identification of long term trends in the data.

SEAMAP gives the shrimp data to the different state agencies who make the data available to fishermen, who will use it to determine if shrimp are of marketable size and thus worth heading out to shrimp.

Bagged lizard fish headed to the freezer

In addition to the data we are collecting, we also collect and freeze samples. Any scientists can make requests for a study species to be saved from our trawls. These requests are entered into the computer system, which prompts us to bag, label and freeze the species to be taken off the ship at the end of the cruise.

Samples stored in the freezer. There are many more in additional freezers.

For example, we save all Red Snapper and send them to the NOAA lab in Panama City, Florida, for an age and growth study. Red Snapper is the top commercial fish in Gulf of Mexico, so this is critical data for fisherman and sustaining a healthy fish stock.

 

Several of the students who are part of the science team are collecting samples for their research.

Tagged Blue Crabs (photo credit: Helen Olmi)

Helen, who is part of the night shift, attends University of Southern Mississippi and is part of the Gulf Coast Research Lab. She is part of a team that is looking at migration patterns and reproductive behavior of female Blue Crabs (Callinectes sapidus). She tags female crabs and if fishermen find them they call in to report the location. Female Blue Crabs mate after their terminal molt and collect sperm in sac-like receptacles to use later to fertilize their eggs. When ready to spawn, the females move lower in the estuary into saltier waters. Blue Crabs are the most common edible crab so it is important to continue to monitor the health of the population in the Gulf.

Sharpnose Shark ready to be measured

David is an undergrad at University of Miami, who has earned a scholarship through NOAA Office of Education school scholarship program. As part of this program, he is funded to do summer research. He is working as part of larger study looking at the distribution and diet of the sharpnose shark (Rhizoprionodon terraenovae), one of the most common species of shark in the Gulf. Sharpnose sharks are generalists and the research study is looking to see if they are also potentially opportunistic eaters. He is also comparing diets from East and West Gulf sharks and may also be able to compare diets of sharks in low vs high oxygen areas. David’s data collection involves sorting through partially digested stomach remains to try to figure out what the shark ate; he gets to play detective in the lab.

Tyler holding a Croker

Tyler is a graduate student at Texas A&M at Corpus Christi and works with Atlantic Croaker (Micropogonias undulatus). He researches whether exposure to low oxygen affects what Croaker eat. Croaker are widely abundant in the Gulf–they often make up more than half of our trawl samples–thus they make a good study species. Croaker often feed at the bottom, in the benthic zone. Tyler is trying to determine if Croaker are changing their feeding patterns in hypoxic areas by feeding higher up in the water column in the pelagic zone to find more food. He uses Croaker tissue samples to examine diet using isotopes. The general idea with isotopes is that what you eat or process will become part of you. Different prey species will have different isotope signatures and looking at Croaker tissue can determine what organisms the fish have been eating.

As you can see the data and samples from this survey support a lot of science and sustainable fisheries management. Check out some of the interesting organisms we have found in our trawls in the last few days.

 

 

Personal Log

 As we crank through trawl after trawl of species, I have to stop and remind myself of where I am. As a land lover, it can be a little disconcerting that there is no land anywhere in sight. This fact is helping me appreciate the vastness of the ocean. It is said that we have only explored five percent of the ocean. Before I was on the Oregon II, this was hard to believe, but now I am starting to comprehend just how large the ocean really is.

Sunset over the Gulf of Mexico

Andre and the Cobia

We had some rough seas due to a storm cell a couple days ago which got the boat rocking and rolling again. The movement made it hard to sleep or move around. Luckily, we are through that area and back to our normal motion. With each trawl, I anticipate the possibility of interesting new species that might come up in our net. We caught an 18.8 kg Cobia (Rachycentron canadum) in our net yesterday, which is a fish I had never heard of, but is apparently prized as a food and game fish. Andre filleted it up and we ate it for lunch. It was so of the best fish I’ve ever tasted. Living in Colorado, I don’t eat much seafood, but I’ve decided to try what we catch out here and I’m glad I have. We’ve also had fresh caught shrimp and snapper that were delicious thanks to Valerie and Arlene, the stewards who are keeping us well fed.

I’m enjoying getting to know some of the folks who work on the ship. Many of these people have worked on the Oregon II for several years. When you live and work with each other in a confined space for 24 hours a day, you become close pretty quickly. The family feel among the crew and officers is evident.

I am getting more efficient with my measuring and weighing techniques and even remembering a few scientific names. During each twelve-hour shift, the time spent on our feet depends on the number of stations we cover. Some days we are back to back, just finishing up one sample while they are already trawling for the next. A monitor screen tells us the distance to the next station, so we can anticipate what is coming next. We are getting closer to the Mississippi delta where we are anticipating a decrease in oxygen at some of our stations.

Did You Know?

The Natural Marine Sanctuary System is a network of underwater parks that protects more than 600,000 square miles of marine and Great Lakes waters. NOAA’s Office of National Marine Sanctuaries serves as the trustee for the parks and brings together a diverse group of stakeholders to promote responsible and sustainable ocean use and protect the health of our most valuable ocean resources. Healthy oceans can provide recreation and tourism opportunities for coastal communities. (Source: sanctuaries.noaa.gov)

Marine Sanctuary map copy

(Photo credit: sanctuaries.noaa.gov)

In the Gulf of Mexico there is a marine sanctuary called Flower Garden Banks which includes three different areas, East Flower Banks, West Flower Banks and Stetson Bank, which are all salt dome formations where coral reef communities have formed. You can learn more about our National Marine Sanctuary System here.

Dawson Sixth Grade Queries

Why do you need to take the temperature and amount of salt in the water? (Bella)

Temperature, salinity, dissolved oxygen and florescence measurements give us more information about the water where we are sampling. Salinity helps tell us if we are in a freshwater, estuary or fully marine environment. The salinity will decrease as we near the Mississippi river delta. Salinity and temperature affect fish physiology or body functions. Each species has normal tolerance levels that it can live within. Organisms that find themselves outside of their salinity and temperature limits might not be able to survive.

The image of the CTD data below gives you an idea of typical values for temperature, salinity, dissolved oxygen and florescence and how they change as depth increases.

CTD key: pink=fluorescence, green=oxygen. blue=temperature, red=salinity

Does the temperature of the ocean get colder as it gets deeper? (Allison)

Generally temperature does decrease with depth, but in our shallow sampling locations there can be less than a 2 degree C temperature change. As you can see on the CTD data above, the temperature changed 6 degrees C at this sampling location.

How deep is it where you have sample? (David, Shane, Alix)

We sample at depths of 5-60 fathoms. One fathom equals 6 feet.

 

 

Melissa Barker: Going Fishing, June 25, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 25, 2017

Weather Data from the Bridge

Latitude: 28 30.0 N

Longitude: 94 00.4 W

Air temp: 26.7 C

Water temp: 28.8 C

Wind direction: 130 degrees

Wind speed: 14 knots

Sky: rain squall

Science and Technology Log

We left port Friday evening and by 10:00pm we were fishing. We move from stations to station, often in a zig zag pattern to retrieve our samples. As I mentioned in a previous blog, the stations we will visit are randomly generated for us. I will use this post to give you an idea of what we do at each station.

P1020827

CTD instrument ready for deployment

As we come upon a station, we first deploy a scientific instrument called the CTD, which stands for conductivity, temperature, and depth which it measures. Additionally, this instrument measures dissolved oxygen. During day light hours, we also take additional environmental data including water color, percent cloud cover and wave height. At least once per day, we take a water sample which will be titrated using the Winkler method to double check our dissolved oxygen readings. The CTD is first calibrated at the surface for three minutes, then lowered to approximately two meters above the bottom, with a maximum depth of 200 meters. Teamwork is critical here as the officers in the bridge announce that we have arrived at a station. The Science Field Party Chief (FPC), Andre, tells the fisherman the depth and watches the data come into a computer in the dry lab near the stern. They are all in radio communication to make sure everything goes smoothly.

P1020924

Trawl headed into the water

Then the fishermen prepare to deploy a 40-foot trawl within a 2.5 mile radius of the station coordinates. Again, with communication from the fisherman, bridge and the FPC, the trawl is lowered into the ocean and moves along the bottom collecting organisms for exactly 30 minutes after which the trawl is raised and the net is brought onto the boat. The organisms caught in the net are then released into baskets,which are weighed on deck to get a total mass for the catch.

 

 

Then the fun begins! The full catch is poured out into the trough or if big enough, brought in via a conveyor belt. If the catch is 24 kg or under, we will log the entire catch.

P1020854

Catch poured out into the trough

If it is over 24 kg, then we will split the catch and log a representative sample. When splitting the catch, we first place all the organisms in the trough and roughly divide the catch in half. Before we send the half that we will not log back to the ocean, we must pull out commercial species, such as shrimp and snapper, and any individual species not found in the half we will log. Then we take the half of the catch that we will log and start the sorting.

P1020860

Splitting the catch

We sort all organisms that are the same species into one basket, then count and take a total mass for each species group. You can see images below of a sorted catch.

IMG_3163

Sorted fish

For most species, we will sample up to 20 random individuals. We record length for all 20 and then take a mass and sex every fifth organism. Logging is a bit different for shrimp, we will record length, mass and sex for all organisms up to 200 individuals. We will do the same for any other commercial species.

P1020945

Measuring a fish with the Limnoterra board

We use a Limnoterra measuring board with a magnetic wand which gives an accurate length by connecting to a magnetic strip on the board. This tool saves a lot of time and allow us to get accurate measurements.

In future posts, I’ll talk more about what we are finding and learning from our data.

P1020864

Trying to sex a fish which can be sometimes be challenging

Personal Log

I am starting to find my sea legs. The seas were a bit rough as we left port after the storm. It was touch and go for the first 24-36 hours, but with the help of Meclizine (a motion sickness medication) and sea bands (wrist bands that push on a pressure point in your wrist) I am now feeling pretty good. I’m also getting used to the constant movement of the Oregon II which makes everyday activities like walking, showering and sleeping quite interesting. When I lay down in bed and close my eyes, I can feel the troughs of the waves push me down into my mattress and then I spring up at the tops of the waves. It is very relaxing and helps lull me to sleep. When showering, I frequently need to hold on so as to not fall over. As some of you know, I have a habit of moving pretty fast around school. Often in a rush to check items off my to-do list or get to my classes. On the boat, we need to move slowly due to the constant motion. You also never know when someone is going to open a door into the hallway or come around the corner. There is not much space, so you must move slowly and cautiously.

P1020910

Day shift crew from left to right: David, Tyler, Field Party Chief Andre, Sarah and Melissa

I am also getting use to the fish smell in the wet lab where I spend most of time when working. I’m on the day shift, which runs from noon to midnight. I’ve tried to soak up as much information as I can over the last couple days and have really enjoyed the learning. The hardest part for me is trying to learn scientific names for the 30-40 species we find in each catch. The Latin names go in one ear and out the other. Having never worked with fish, this part pretty challenging, but luckily Andre is very patient and always willing to answer my questions. My day-shift teammates, Tyler, David and Sarah, are terrific, keep the atmosphere fun and teach me each day. It has been really interesting to see the increase and decrease of certain species from different stations.

P1020865

Melissa and Tyler measuring fish in the wet lab

Did You Know?

The Texas shrimp fishery closed on May 15, 2017 and will re-open on a yet to be determined date in July. This is what is referred to as the “Texas Closure”. The shrimp data that we are collecting will be sent to the state to help them determine the health of the fishery and when to open it back up. According to the Coastal Fisheries Division of the Texas Parks and Wildlife Department (TPWD), “The closure is designed to allow escapement of shrimp out to the gulf where they can grow to a larger, more valuable size before they are vulnerable to harvest. The goal is to provide shrimp of a size that are more valuable for the shrimping industry while ensuring sustainable stocks in the future.”

P1020883

A large Brown Shrimp: Penaeus aztecus

 

Dawson Sixth Grade Queries

How many different species did you find? (Owen, Sylvia, Tyler, Maylei, Ben)

The number of species we find varies with each trawl, but recently we have been finding about 35-40 species per trawl. The picture below show the diversity a typical catch.

 What organisms other than fish did you find? (Badri, Tyler, Alexa, Lorena, Wanda)

We find many other species besides fish. Some of the more common groups of organisms we find are squid, jelly fish, shrimp, sea stars, scallops, crabs, and vacated shells. Occasionally we catch a small shark or sting ray.

P1020954

Example catch diversity