Kristin Hennessy-McDonald: Something Incredible, September 16, 2018

NOAA Teacher at Sea

Kristin Hennessy-McDonald

Aboard NOAA Ship Oregon II

September 15 – 30, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 16, 2018

 

Personal Introduction

Greetings to those following my adventure from afar.  My name is Kristin Hennessy-McDonald, but my students and fellow faculty call me Dr. Hen-Mc.  I am so excited to have been selected to be a member of the NOAA Teacher at Sea Program aboard the Oregon II.  I am the science lead at T-STEM Academy at East High School, where I teach Honors Biology.  My path to the classroom was far from straight.  I attended the University of Notre Dame, where I earned a B.S. in Biology.  I then continued my academic path at the University of Alabama, Birmingham, where I earned my PhD in Cell Physiology.  After spending a little less than 3 years at St. Jude Children’s Research Hospital, I had an epiphany.  I found that I enjoyed sharing my passion about science more than doing research at the bench.  I made the decision to transition to the classroom and have not looked back.  8 years later, I have found my home at T-STEM, and my family in Team East.

The journey to boarding the Oregon II has been a long one, but well worth it.  When my boss brought the opportunity to me, I applied with hope.  When I got the acceptance letter, I gasped and started jumping up and down in my classroom.  My students were confused, but then excited when they found out that I had gotten this opportunity.  I teach many of the same students who were in that class, and they have all been sharing in my excitement over the past months as I have prepared for this adventure.

I have always been fascinated by water.  From the time I was a small child, my parents would have to watch carefully when we went to the pool or the beach, because I was liable to jump right in.  As I grew up, that love of water has remained, and I spend time each summer on the Gulf.  I am thrilled to have a chance to study ecosystem of the Gulf of Mexico, and see things that I only read about in National Geographic magazine.

Mark and Kristin Gulf

Me and my husband in Gulfport, MS

I have passed my love of water on to my daughter.  Beth is the same way I was when I was young.  She wants to run into the water, to play in the waves.  She sees the beauty of the sea, watching dolphins alongside the boat when we take trips to Ship Island out of Gulfport, MS.  I look forward to sharing my adventures at sea with her.  I am sad to leave her and my husband for two weeks, but grateful that they waved me off on my adventures with a smile.

Beth Gulf

Beth at Ship Island building a sandcastle

I began my career as a teacher because I wanted to share my love of science with young people.  I dreamed of someday being a child’s gateway to the wonders and knowledge of science.  While none of my students have stood on a desk reciting Whitman, some of my students have allowed my love of science to guide them along science career paths.  When I joined Team East at T-STEM Academy at East High School, I knew that I was in a place that would foster the idea of learning by doing.  I wanted to exemplify that going on this trip.  I cannot wait to bring all of the knowledge and experiences of this trip back to my classroom.  Instead of just sharing case studies of Gulf Coast ecosystems, I will be able to share what I learned as a NOAA Teacher at Sea.

 

Personal Quote of the day

“Somewhere, something incredible is waiting to be known.”
~Carl Sagan

 

Did You Know?

Red Snappers are considered to be one of the top predators in the Gulf of Mexico?

 

Question of the day

Given that red snapper hatch at 0.0625 inches long, and can reach sizes of 16 inches within two years, do you think their cells have a long or short G1 phase?

 

Ashley Cosme: Jaws! – September 13th, 2018

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 13, 2018

Weather data from the Bridge:

  • Latitude: 29 45.5N
  • Longitude: 88 22.4W
  • Wind speed: 4 Knots
  • Wind direction: 060 (Coming from Northeast)
  • Sky cover: Clear
  • Visibility: 10 miles
  • Barometric pressure: 1016.4 atm
  • Sea wave height: 1 foot
  • Sea Water Temp: 30.3°C
  • Dry Bulb: 28.2°C
  • Wet Blub: 25.9°C

 

Science and Technology:

The one thing that pops into most people’s mind when they hear the word ‘shark’ is their sharp teeth.  Surprisingly, not all sharks have sharp teeth.  The diet of a shark determines the shape of their teeth.  The picture below is a set of jaws from two different species of sharks.  The jaws on the right are from an Atlantic sharpnose shark (Rhizoprionodon terraenovae), and the set of jaws on the left is from a gulf smoothhound (Mustelus sinusmexicanus).  The Atlantic sharpnose shark possesses small razor blade-like teeth because their diet consists of many different species of fish, as well as worms, crabs, and mollusks.  The gulf smoothhound possess teeth that are shorter, less sharp, and more closely packed together.  Their diet consists mainly of crustaceans and smaller species of fish.

jaws.jpg

Jaws from a gulf smoothhound (Mustelus sinusmexicanus) and an Atlantic sharpnose shark (Rhizoprionodon terraenovae)

 

Personal Log:

Day Crew.jpg

Shark/Red Snapper Survey Day Crew

We completed our last haulback tonight and we caught a whopping 48 fish.   Just before the haulback I watched the sun set one last time before I head home tomorrow.  These past two weeks have been so rewarding for me professionally and personally.  There were times when I felt like a college intern again, and I loved the feeling of not knowing all the answers.  So often my students think I have the answer to everything, and it was so refreshing to be back in their shoes for two weeks.  The NOAA scientists and fisherman expressed so much patience with me.  It reminded me that my students are learning most of the material in my classroom for the first time, and they will be more successful if I show them patience as they work through understanding the many details that I throw at them in one class period.

I most excited to get back to my family.  I fly in very late tomorrow night so I will not see my kids until they wake up on Saturday morning.  I can’t wait to see the look on their faces when they see that Mommy is finally home!  Once everyone is awake I am driving straight to Dunkin’ Donuts for an iced coffee.

Ashley Cosme: Special Situation Lights, September 11, 2018

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 11, 2018

Weather data from the Bridge:

  • Latitude: 28 40.5N
  • Longitude: 91 08.5W
  • Wind speed: 22 Knots
  • Wind direction: 080 (East)
  • Sky cover: Scattered
  • Visibility: 10 miles
  • Barometric pressure: 1014.5 atm
  • Sea wave height: 3-4 feet
  • Sea Water Temp: 29.9°C
  • Dry Bulb: 25.9°C
  • Wet Blub: 24.6°C

 

Science and Technology:

When NOAA Corps officers go through training they learn a poem to help them remember how to identify Special Situation Lights on other vessels.

Red over green, sailing machine.

Red over white, fishing boat in sight.

Green over white, trawling at night.

White over red, pilot ahead.

Red over red, captain is dead.

mast of the Oregon II

The mast of the Oregon II is identified by the arrow.

When driving a vessel like the Oregon II it is always important to have the ability to analyze the radar, locate other vessels in the water, and determine their current situation by reading their mast lights.  Line 1 of the poem describes a vessel that is currently sailing by use of wind without the use of an engine, line 2 describes a boat engaged in fishing operations, line 3 indicates that the vessel is currently trawling a net behind the boat, line 4 indicates that the vessel is a pilot boat (a boat containing a pilot, who helps guide larger tanker and cargo ships into harbors), and line 5 of the poem is used for a situation when the vessel is not operating properly and other vessels should steer clear.

 

 

 

Personal Log:

blacktip shark

NOAA Scientist, Adam, Pollack, and I measuring and tagging a blacktip shark (Carcharhinus limbatus)

There are currently three named storms in the Atlantic, including a category 4 hurricane (Florence) that is headed towards the Carolinas.  I have never experienced a bad storm while out on the water.  The waves the last 24 hours have ranged from 3-5 feet, with an occasional 8 foot wave.  We have changed our port call location and will now be going back to Pascagoula, Mississippi instead of Galveston, Texas.  There was also no internet for part of the day so my team and I sat in the dry lab and told ghost stories.  I was also introduced to the “dinosaur game” in Google Chrome, which is sort of like a low budget Mario.  Apparently it is the dinosaur’s birthday so he is wearing a birthday hat.

I am still making the most of every minute that I am out here.  Our last haulback was very active with many large blacktip sharks.  It is a workout trying to handle the sharks on deck, while collecting all required data, and getting them back in the water as fast as possible.  I am loving every second!

 

 

Did you know:

Sharks possess dermal denticles (skin teeth) that makes their skin feel rough when running your hand tail to nose.  Shark skin used to be used as sandpaper before it was commercially manufactured.  It can also give you shark burn, which is sort of like a rug burn, if the shark brushes up against you.

 

Animals Seen:

Atlantic Sharpnose Shark (Rhizoprionodon terraenovae)

Blacknose Shark (Carcharhinus acronotus)

Blacktip Shark (Carcharhinus limbatus)

Flying Fish (Exocoetus peruvianus)

Gafftopsail Catfish (Bagre marinus)

Pantropical Spotted Dolphin (Stenella attenuate)

Red Snapper (Lutjanus campechanus)

Spinner Shark (Carcharhinus brevipinna)

Tiger Shark (Galeocerdo cuvier)

Ashley Cosme: Otoliths, Ice Cream, and Annabelle – September 9, 2018

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 9, 2018

Weather data from the Bridge:

  • Latitude: 28 08.58N
  • Longitude: 92 24.27W
  • Wind speed:  8.66 Knots
  • Wind direction:  143 (from Southeast)
  • Sky cover: Scattered
  • Visibility:  10 miles
  • Barometric pressure:  1011.96 atm
  • Sea wave height: 0-0.5 feet
  • Sea Water Temp:  30.4°C
  • Dry Bulb: 28.7°C
  • Wet Bulb: 25.4°C

Science and Technology Log: 

In addition to collecting data on the many species of sharks in the Gulf of Mexico, this survey also collects data that will go towards assessing the population of red snapper (Lutjanus campechanus).  One piece of evidence that is collected from the red snapper is their two distinct otoliths.  Otoliths are structures that are used for balance and orientation in bony fish.  One fascinating characteristic of the otolith is that they contain natural growth rings that researchers can count in order to determine the age of the fish.  This information is important for stock assessment of the red snapper in the Gulf of Mexico.

Otoliths

Otoliths from a red snapper (Lutjanus campechanus)

 

Personal Log:

I would have to say that the hardest part about being out at sea is not being able to see Coral and Kai.  I miss them so much and think about them nonstop.  Coral is at a very curious stage in her life (I hope the curiosity stays with her forever) and I cannot wait to get home and tell her about all the animals that I have been lucky enough to witness on this adventure.  Kai is just the sweetest little boy and I can only imagine the way he will react when I get home.

Ashley and shark

Bearing Down on the Oregon II

I am very busy on the boat and when there is down time my team and I are getting shark lessons from the incredibly intelligent Chief NOAA Scientist, Kristin Hannan, or we are in the movie room catching up on all the Annabelle movies.  It is almost impossible to get scared while aboard a ship.  It may seem that many things could go wrong, but the lights are always on and someone is always awake.  It is the perfect environment to watch any horror film because this atmosphere makes it much less scary.

Probably the scariest thing that is happening on this boat is the amount of weight I have gained.  All of the meals are delicious and they come with dessert.  It is kind of nice to not have to worry about going to the gym or staying on a normal routine.  Life is always so hectic day to day when I am at home, but being out here on the water gives me time to relax and reflect on the amazing people I have in my life that made this opportunity possible.

I am sad to report that the Chicago Bears lost tonight to Greenbay, but I did show support for my team!  I think the best part of the day was when I was on the bow of the boat and Kristin announced over the radio that the Bears were winning 7 to 0.  It is exciting being out here seeing everyone cheer for their fantasy team, as well as their home town team.

 

Animals seen:

Red Snapper (Lutjanus campechanus)

King Snake Eel (Ophichthus rex)

Bonnethead Shark (Sphyrna tiburo)

Pantropical Spotted Dolphin (Stenella attenuate)

Atlantic Sharpnose Shark (Rhizoprionodon terraenovae)

Blacknose Shark (Carcharhinus acronotus)

Blacktip Shark (Carcharhinus limbatus)

Gulf Smooth-hound Shark (Mustelus sinusmexicanus)

Ashley Cosme: Deploying a Longline – September 4, 2018

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date:  September 4th, 2018

Longline sites

Primary longline stations are indicated in purple. The red line represents the path the Oregon II.

Weather Data from the Bridge:

  • Latitude: 28 02.2N
  • Longitude: 96 23.8W
  • Wind speed: 13 Knots
  • Wind direction: 080 (from North)
  • Sky cover: Broken
  • Visibility: 10 miles
  • Barometric pressure:  1014.1atm
  • Sea wave height: 2 feet
  • Sea Water Temp: 30.6°C
  • Dry Bulb: 28.1°C
  • Wet Bulb: 25.3°C

 

Science and Technology Log:

After a long two day cruise to the southern tip of Texas, we finally started fishing.  I learned quickly that everyone has a job, and when you are done with your job, you help members of your team complete their tasks.  The coordinates of all of the survey locations are charted using a program called Novel Tec, and once the captain has determined that we have reached our designated location, the fun begins.  To deploy the longline there are many important responsibilities that are delegated by the Chief NOAA Scientist.

Baited hooks

Baited hooks

 

#1- All scientists work together to bait 100 hooks with mackerel (Scomber scombrus).

 

 

 

 

 

High Flyer

High-Flyer deployment

 

 

 

#2- High-Flyer Release – Once the long line has been attached to the high-flyer, it is released from the stern of the boat.  The high-flyer consists of a buoy to keep it above water, and a flashing light, so we know the exact location of the beginning of the longline.

 

 

 

 

 

Attaching a weight

Attaching a weight and TDR

 

#3 Weight Attachment – A NOAA fisherman is responsible for attaching the weight at the appropriate distance, based on the depth of that station to ensure the gear is on the sea floor.  This  also keeps the high-flyer from drifting.  Alongside the weight, a TDR is attached to the line, which records temperature and depth.

 

 

 

numbered hooks

Each baited hook is identified with a number.

 

 

 

#4 Numbering of baited hooks – After the first weight goes out, one by one the gangions are numbered and set over the edge of the ship, but not let go.  A gangion consists of a 12ft line, a baited hook, and hook number.

 

 

 

 

 

 

Attaching the Hooks

Attaching the Hooks

# 5 Hook Attachment – A NOAA fisherman will receive one gangion at a time, and attach it to the line.  Another weight is attached to the line after 50 hooks have been deployed, and once all 100 hooks are deployed the final weight is attached.  Then the line is cut, and the second high-flyer is attached and set free to mark the end of the survey area.  This process goes fairly quickly, as the longline is continuously being fed into the water.

 

Data Collection

Data Collection

 

#6 Data Collection – Each piece of equipment that enters the water is recorded in a database on the computer.  There should always be 2 high-flyers, 3 weights, and 100 gangions entered into the database.

 

 

 

 

 

Scrubbing buckets

Scrubbing buckets

 

 

 

#7 Bucket Clean-up – The buckets that were holding the baited hooks need to be scrubbed and prepared for when we haul the line back in.

 

 

 

 

 

 

Once all of the gear is in the water we wait for approximately one hour until we start to haul back each hook one by one.  The anticipation is exciting to see if a shark or other fish has hooked itself.

Longline Fishing infographic

This image illustrates what the longline, including all the gear, would look like once completely placed in the water. (Image courtesy of Stephan Kade, 2018 Teacher at Sea).

 

Personal Log

I would say that my body has fully adjusted to living at sea.  I took off my sea sickness patch and I feel great!  Currently, Tropical Storm Gordon is nearing to hit Mississippi this evening.  We are far enough out of the storm’s path that it will not affect our fishing track.  I am having the time of my life and learning so much about the Oregon II, sharks, and many other organisms that we’ve seen or caught.

Remora

This sharksucker (Echeneis nautratus) was sucking on a blacktip shark that we caught. He instantly attached to my arm to complete his duty as a cleaner fish.

Did you know?:

Engineers.jpg

William Osborn (1st Engineer) and Fred Abaka (3rd Engineer).

NOAA Ship Oregon II creates freshwater via reverse osmosis.  Sea water is pumped in and passed through a high pressure pump at 1,000psi.  The pump contains a membrane (filter), which salt is too big to pass through, so it is disposed overboard.  The clean freshwater is collected and can be used for showering, cooking, and drinking.  In addition to creating freshwater, the engineers are also responsible for the two engines and the generators.

 

 

 

Animals Seen:

Pantropical Spotted dolphins (Stenella attenuate)

Blacknose Shark (Carcharhinus acronotus)

Sharpnose Shark (Rhizoprionodon terraenovae)

Smoothhound Dogfish (Mustelus sinusmexicanus)

Blacktip Shark (Carcharhinus limbatus)

Red Snapper (Lutjanus campechanus)

Sharksucker (Echeneis nautratus)

Anne Krauss: How Do You Solve a Problem Like Marine Debris? August 24, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 24, 2018

Weather Data from the Bridge

Conditions at 1705

Latitude: 29° 15.17’ N

Longitude: 86° 11.34’ W

Barometric Pressure: 1014.82 mbar

Air Temperature: 31.2° C

Sea Temperature: 32.6° C

Wind Speed: 2.44 knots

Relative Humidity: 57%

 

Science and Technology Log

Life at sea provides fathoms of real-life examples of the nonfiction text structures I teach my students to identify: description, order and sequence, compare and contrast, fact vs. opinion, problem-solution, cause and effect, and several others.

While on the Oregon II, I was very fortunate to observe a dive operation that took place.

Here’s how an account of the dive operation might read for my elementary school students. Embedded in the text, I’ve included opportunities for developing readers to use context clues, to notice words that signal order/sequence (first, next, then…), to notice words that signal compare and contrast (similar, unlike), etc.

A red and white 'diver down' scuba flag painted on a metal storage locker door.

A ‘diver down’ scuba flag on the Oregon II.

Today’s lesson: Problem-Solution.

Problem: Sometimes, the hull (or watertight body) of a vessel can become encrusted with marine life such as algae or barnacles. This is called biofouling. To prevent biofouling, underwater surfaces are inspected and cleaned regularly. To further prevent creatures from making the body of the Oregon II their home, the hull is painted with a special anti-fouling paint.

Occasionally, man-made materials, like rope and fishing gear, can get tangled in the equipment that sits below the surface of the water, such as the rudder or propeller.

Underwater GoPro camera footage suggested that a piece of thick plastic fishing line (called monofilament) was near the Oregon II’s bow thruster. The bow thruster, located in the front of the ship, is a propulsion device that helps to steer the ship to the port (left) or starboard (right) side. This makes navigating and docking the 170-foot ship easier. When the powerful bow thruster is engaged, the entire ship rumbles, sounding like a thunderous jet soaring through the sky.

Something like entangled fishing line is problematic for navigation and safety, so the line must be removed if found. Because the bow thruster is located beneath the water’s surface, this task cannot be completed while on the ship. So how can the crew remove any tangled line and inspect the hull for damage?

Solution: Divers must swim under the ship to inspect the hull. If fishing line is suspected, divers can investigate further. This opportunity to “inspect and correct” allows them to take a closer look at the hull. If fishing line or other damage is found, divers cut away the line and report the damage. Routine hull inspections are part of regular ship maintenance.

A pre-dive briefing on the bridge

Led by Divemaster Chris Nichols, also the Oregon II’s Lead Fisherman and MedPIC (Medical Person in Charge), the team gathered on the bridge (the ship’s navigation and command center) to conduct a pre-dive safety briefing. Nichols appears in a white t-shirt, near center.

The entire process is not as simple as, “Let’s go check it out!” NOAA divers must follow certain rules and safety regulations.

First, the Oregon II’s dive team developed a Dive Operations Plan to investigate the bow thruster and hull. Dive details were discussed in a pre-dive briefing, or meeting. The Diving Emergency Assistance Plan (DEAP) was reviewed and a safety checklist completed.

The team prepared to send two divers, Lead Fisherman (LF) Chris Nichols and Navigation Officer Ensign (ENS) Chelsea Parrish, to inspect the bow thruster and remove any fishing line if needed. For this task, they carried scrapers and line-cutting tools.

To prepare for the dive operation, ship navigation plans were made. Equipment beneath the boat was secured. This ensured that the divers would be kept safe from any moving parts such as the propeller or rudder.

Next, announcements were made before and after the dive to notify the entire ship that divers would be entering and exiting the water. That way, everyone on board knew to stop any fishing activity and avoid putting fishing gear in the water.

Two dive safety flags hoisted over the Oregon II.

To let nearby vessels know that divers are in the water, two flags are hoisted. The scuba flag (red and white) indicates “diver down,” and the International Code of Signals flag ‘Alfa’ (blue and white; sometimes spelled ‘Alpha’) lets other vessels know that the ship is engaged in a dive operation. This tells other vessels to ‘keep well clear at slow speed’.

International Code of Signals flags are stored on the bridge.

Maritime communication flags are stored on the bridge. Learn your A, B, Seas: https://en.wikipedia.org/wiki/International_maritime_signal_flags

During the pre-dive briefing, procedures were reviewed and agreed upon. If needed, clarifying questions were asked to make sure that everyone knew and understood exactly what to do. This was similar to the ‘Checking for Understanding’ that I do with my students after giving directions.

Then the team agreed upon a dive time and a maximum diving depth. In this case, the team planned to dive a maximum of 25 fsw (feet of sea water). The surrounding water was about 160 feet deep.

A smaller rigid rescue boat floats nearby, prepared to assist divers if needed.

A smaller, 18-foot rigid rescue boat was launched from the Oregon II, prepared to assist the divers in the water if needed.

On the deck of the Oregon II, a Topside Supervisor and Line Tender kept watchful eyes on the divers. Chief Boatswain (pronounced “boh-suhn”) Tim Martin was the standby diver, prepared to provide immediate assistance to the other divers if needed.

Divers perform a safety check before entering the water.

Before entering the water, the divers checked one another’s gear for safety.

Divers perform a safety check before entering the water.

Potential risks and hazards, such as currents, obstacles, and dangerous marine life, were identified ahead of time. Multiple solutions were in place to minimize or eliminate these risks. Checking equipment before entering the water ensures that divers are prepared.

As the divers prepared to enter the water, the rest of the team was equally well prepared with checks, double-checks, back-up plans, communication, and contingency (emergency) plans. Hopefully, emergency plans are never needed during a dive operation, but just in case, everyone was well-trained and prepared to jump into action.

A diver enters the water with a Giant Stride.

Plans for entry into the water and exit from the water were reviewed in the pre-dive briefing. In this case, Lead Fisherman Chris Nichols entered the water with an entry method called a Giant Stride.

A diver enters the water with a Giant Stride.

Ensign Chelsea Parrish enters the water with a Giant Stride. An exit plan, plus two back-up exit options, were also reviewed beforehand. If needed, the divers had three possible ways to exit the water.

The water was calm and the weather fair. The divers signaled to the ship that they were OK in the water, and slipped beneath the surface. Soon, the only trace of them was a lighter blue trail of bubbles.

Divers at the surface of the water, preparing to dive.

The divers are OK and ready to dive. For breathing under water, the divers used compressed air in tanks. Because this was open circuit scuba (self-contained underwater breathing apparatus) equipment, air bubbles could be seen in the water once they disappeared beneath the surface.

Divers leave behind a trail of bubbles as they descend.

As divers descended, air bubbles could be seen beneath the surface. For safety, a Reserve Air Supply System (RASS) was also worn by each diver.

This was a working dive. Unlike recreational diving, this was not the time for the divers to leisurely swim and explore, but to follow the plan precisely. To communicate with each other under water, hand signals were used.

A diver inspects the bow thruster under water.

The dive was an opportunity to inspect the hull. Divers checked fore (front, toward the bow of the ship) and aft (rear, toward the stern of the ship). Photo credit: Ensign Chelsea Parrish, NOAA

A diver inspects the bow thruster under water.

The bow thruster looked fine…no fishing line nearby! Photo credit: Ensign Chelsea Parrish, NOAA

Divers inspect the hull of the ship.

The dive was an opportunity to inspect the hull. Divers checked fore (front, toward the bow of the ship) and aft (rear, toward the stern of the ship). All looked well! Photo credit: Ensign Chelsea Parrish, NOAA

Divers surface after the dive.

While in the water, the divers also practiced a ‘sick diver’ drill to rehearse what to do if a diver needed medical attention. Similar to a fire drill or other safety drill, but performed in the water, this was one of several drills performed on the Oregon II.

The dive team holds a post-dive debriefing on the ship's bridge.

After the dive was completed, a post-dive briefing was held to review and critique the dive operation. The dive team discussed how the dive actually went, in comparison to the dive plan. This was similar to the reflection I do after teaching lesson plans.

The divers reported back on the condition of the bow thruster and hull, as well as the dive conditions. They discussed their equipment, the undercurrent, and how they felt while under the pressure of the water. Dive data was collected from each diver and recorded on a form. The divers reached a depth of 21 feet.

Success! After inspecting the hull, the divers reported that they didn’t see any fishing line on the bow thruster or damage to the hull. Instead, they saw some small fish called jacks and some moon jellies drifting by.

Diving gear is removed, rinsed, and dried.

Finally, the scuba equipment is removed and rinsed with fresh water. Once dry, it will be carefully stowed away until the next dive.

Dive operations don’t happen often on the Oregon II. Normally, the team practices and performs their dives in a swimming pool in Mobile, Alabama. This dive near the Florida Keys was the first at-sea operational dive in two years as a full team—a rare and exciting treat to witness! 

Personal Log

This reflection captures my own dive into the world of longline fishing. Switching roles from educator to student, this is also where I transition from writing for my students to writing for my peers and colleagues.

Two pairs of gloves and a hard hat

Gloves for handling bait (left) and grippy gloves for handling live fish (right)

Every time I attempt something brand new, some optimistic part of me hopes that I’ll be a natural at it. If I just try, perhaps I’ll discover some latent proclivity. Or perhaps I’ll find my raison d’être—the reason why I was placed on this planet.

So I try something new and quickly recognize my naïveté. Many of these new skills and sequences are difficult, and I’m slow to master them. I compare my still-developing ability to that exhibited by seasoned veterans, and I feel bad for not grasping it quickly.

Spoiler alert: Longline fishing may not be my calling in life.

Life on and around the water, however, suits me quite well. As I’ve acclimated to life on a ship, the very act of being at sea comes naturally. Questions and curiosity flow freely. An already-strong appreciation for the water and its inhabitants deepens daily. And while I may not learn new concepts quickly, I eventually learn them thoroughly because I care. This journey has been a culminating opportunity in which I’ve been able to apply the nautical knowledge and marine biology fun facts I’ve been collecting since childhood.

Much of the daily work is rote, best learned through repetition, muscle memory, and experience. Very little of it is intuitive or commonsense, and my existing nautical know-how isn’t transferable to the longline gear because I’ve never handled it before.

The sun shines on two high flyers (used in longline fishing).

The tops of two high flyers

Buoys and metal snap clips used for longline fishing.

Buoys and snap clips

Orange plastic buoy used in longline fishing

Additional buoys are sometimes added to the mainline.

Longline gangions stored in a barrel

At first, making sense of the various steps and equipment used in longline fishing felt like a jumbled, tangled barrel of gangions.

At any point during my twelve hour shift, I’m keeping track of: the time, several other people, several locations on the ship, my deck boots (for working outside), sneakers (for walking inside), personal flotation device (PFD), sun hat, hard hat, bait gloves (for setting bait on hooks), grippy work gloves (for handling equipment and slippery, slimy fish), water bottle, camera, and rain gear…not to mention the marine life and specialized equipment for the particular task we’re performing.

A view of the stern shows a bait cooler, table, longline clips/hook numbers, bait barrels, high flyers, buoys, and other longline fishing equipment.

The longline gear is deployed off the stern.

Somewhere, Mr. Rogers is feeding his fish and chuckling with approval every time I sit down to swap out my deck boots several times a day.

A water bottle, deck boots, and a hard hat

Swapping out my sneakers for deck boots…again.

There’s a great deal of repetition, which is why it’s so frustrating that these work habits haven’t solidified yet. It should be predictable, but I’m not there…yet. Researchers believe it takes, on average, more than two months before a new behavior becomes automatic. Maybe I’m being hard on myself for not mastering this in less than two weeks.

Unlatch the door. Relatch the door. Fill water bottle. Sunscreen on. Sneakers off. Boots on. Boots off. Sneakers on. Bait gloves on. Bait gloves off. Work gloves on. Work gloves off. Regular glasses off. Sunglasses on. Sunglasses off. Refill water bottle. Regular glasses on. Unpack the tool bag. Repack the tool bag. Hat on. Hat off. Repeat sunscreen. Refill water bottle. PFD on. PFD off. Hard hat on. Hard hat off…and repeat.

It seems simple enough in writing, but I struggle to remember what I need to be wearing when, not to mention the various sub-steps involved in longline fishing and scientific research.

Clouds over shining water and the horizon

How do you catch a cloud and pin it down?

During the dive operation, I ventured up to the bow for a better vantage point. Alone on the bow, glorious water teemed with fascinating marine life as far as I could see. Below me—and well below the surface—an actual dive operation was taking place: an opportunity to apply the diving knowledge I’ve absorbed and acquired over the past several years.

If I were in a certain movie musical, I would have burst into song, twirling in circles on the bow, unable to resist the siren song of the sea. (And, as I’ve discovered from handling a few of the slimier species we’ve caught, the depths are alive…with the stench of mucus. And its slimy feel.)

As I struggle to keep track of all of the routines, equipment, and fishing gear, I feel like Maria in the opening scene of The Sound of Music. Lost in reverie and communing with nature, she suddenly remembers she’s supposed to be somewhere and rushes off to chapel, wimple in hand. She’s supposed to be wearing it, of course, but at least she made it there and remembered it at all.

My Teacher at Sea path was filled with an Alpine range of mountains to climb, but I climbed every mountain, and I’m here on the Oregon II. All of the hard work I’ve put in for the past ten years culminated into that harmonized, synchronous moment on the bow…

And then I remembered that my shift was starting soon, so I dashed off, PFD in hand.

I know that I’ll need a PFD at some point. And my gloves. And my boots. And a hard hat. I have them all at the ready, but I’m not always sure which one to wear when. As I fumble through the transitions, routines, and equipment, I sympathize with Maria’s difficult search for belonging. I certainly mean well, and my appreciation for the water around us cannot be contained.

A very happy Teacher at Sea

Being on and around the water fills me with joy…

Eventually, Maria realizes that she’s better suited to life as a governess and later, a sea captain’s wife. I’m discovering that perhaps I was not destined to be a skilled longline fisherman, but perhaps there is some latent proclivity related to the life aquatic. I may not always know which equipment to use when, but I know—with certainty—that I definitely need the ocean.

Privacy curtains on a berth in a stateroom

Taking a curtain cue from Maria, perhaps I could fashion a dress or a wetsuit from the curtains hanging near my berth…?

Did You Know?

Sharks secrete a type of mucus, or slime, from their skin. The mucus provides protection against infection, barnacles, and parasites. It also helps sharks to move faster through the water. Ship builders are inspired by sharks’ natural ability to resist biofouling and move through the water efficiently.

Recommended Reading  

Students may be surprised to learn that barnacles are not only marine animals, but they begin their life as active swimmers and later attach themselves permanently to a variety of surfaces: docks, ships, rocks, and even other animals.

Barnacles by Lola M. Schaefer is part of the Musty-Crusty Animals series, exploring how the animal looks and feels, where it lives, how it moves, what it eats, and how it reproduces. This title is part of Heinemann’s Read and Learn collection of nonfiction books for young readers. Other creatures in the series include: crayfish, hermit crabs, horseshoe crabs, lobsters, and sea horses. These books are a great introduction to nonfiction reading skills and strategies, especially for younger readers who are interested in fascinating, unconventional creatures.

Each chapter begins with a question, tapping into children’s natural curiosity and modeling how to develop and ask questions about topics. Supportive nonfiction text features include a table of contents, bold words, simple labels (as an introduction to diagrams), size comparisons, a picture glossary, and index.

For more information on barnacles: https://oceanservice.noaa.gov/facts/barnacles.html

The cover of a children's nonfiction book about barnacles.

Barnacles by Lola M. Schaefer (Reed Educational & Professional Publishing; published by Heinemann Library, an imprint of Reed Educational & Professional Publishing, Chicago, Illinois 2002)

Ashley Cosme: E.T. Phone Home, September 2, 2018

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Ship Tracker 2

Current location of NOAA Ship Oregon II (Photo courtesy of NOAA Ship Tracker)

Date: September 2nd, 2018

Weather Data from the Bridge:

  • Latitude: 27.16233N
  • Longitude: 94.45417W
  • Wind speed: 10 Knots
  • Wind direction: South
  • Sky cover: Scattered
  • Visibility: 10 miles
  • Barometric pressure: 1012.5 atm
  • Sea wave height: 3 feet
  • Sea Water Temp: 30.9 °C
  • Dry Bulb: 29.4°C
  • Wet Bulb: 26.0°C

 

 

Science and Technology Log:

When one hears that there is an ET aboard NOAA Ship Oregon II, they might imagine E.T., the extra terrestrial, wearing a sailor hat and driving the boat.  Fortunately for everyone aboard, E.T. is not driving the boat and the ET aboard the Oregon II is Lester S. Andreasen.  Lester, known as Les, is a rotational Electronic Technician (ET).  Les is responsible for the network and communication while out at sea.  He also provides support to the NOAA scientists by assisting them in maintaining shipboard scientific data collection.

Les Andreason, Electronics Technician

Les Andreason working in his ‘office’ aboard NOAA Ship Oregon II.

Prior to his career aboard NOAA Ship Oregon II, Les was in the Navy for 23 years.  His first station right out of boot camp was Key West, FL.  That is where he learned about navigational radar, and preformed corrective and preventative maintenance on electronics on the unique squadron of Patrol Hydrofoil Missiles (PHMs).  Les started in the Navy as an electronic technician seaman (E3), and worked his way to a command master chief (E9).  When he left the Navy he began his career aboard dynamic positioning ships.  When the oil field began to struggle, Les was hired by NOAA.

Les describes NOAA Ship Oregon II as a “fun ship”, as he really enjoys the people.  He finds it fascinating to see how the crew interacts with the scientists while completing the shark surveys.  Les’s advice to anyone who wants to pursue a career as an ET would be to study computer science, mathematics, or computer engineering.  I guess he is a little like E.T. the extra terrestrial, because without Les we wouldn’t be able to ‘Phone Home’ and talk to our families or anyone on shore.

Very Small Aperture Terminal

Very Small Aperture Terminal (VSAT) used to maintain the Internet and phone connection.

Satellites

The smaller white satellite is responsible for ship to shore communication. The satellite larger white satellite connects to the VSAT inside the ship.

 

Personal Log:

We have been cruising for two days now, and won’t start fishing until tonight.  Since I have had some extra time on my hands, I got to try out the nifty workout equipment.  I did a circuit of 2 minutes on the bike, 20 kettle bell swings, and 10 dumbbell squats.  I completed 10 rounds.  Then I proceeded to the stern where I did planks, sit-ups, and stretched.  It was very relaxing to be able to look out over the water.  I didn’t even feel like I was working out because it was so peaceful.

working out

My new best friend, the stationary bike!

Nothing but water

View from the stern while working out.

 

 

abandon ship

This is what I will be wearing in case an emergency situation occurs and I have to abandon NOAA Ship Oregon II.

 

We also ran ship drills so everyone is prepared on where to go in an emergency situation.  Aboard any ship, safety is the number one goal.  I feel more comfortable knowing that I will have a suit and life jacket on if I need to abandon the ship.

 

 

 

 

 

 

 

 

Did You Know?:

The NOAA fishermen stated that they have seen killer whales (Orcinus orca) in the Gulf of Mexico.  Normally this species is found in colder water, but according the NOAA Marine Mammal Stock Assessment Report (2012) there were approximately 28 killer whales reported in the Gulf of Mexico in 2009.

 

Masked Booby

This Masked Booby flew beside the ship as we cruised through the Gulf of Mexico.

Animals seen:

Masked Booby (Sula dactylatra)

Royal Tern (Thalasseus maximus)

Flying Fish (Exocoetus peruvianus)