Kate Schafer: Setting off for Brownsville, TX, September 18, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 18, 2017

 

Weather Data from the Bridge:

Latitude: 27o 02.5’ N
Longitude: 94o 32.6’ W

Scattered clouds

Visibility 14 nautical miles

Wind speed 10 knots

Sea wave height 1 foot

Temperature Seawater 29.9 o Celsius

 

Personal log

Sunday afternoon, September 17

I arrived in Pascagoula, Mississippi in the late afternoon on Saturday after a long day of travel.  Things were so quiet on the ship that evening as most of the crew had gone home during the break between legs of the survey.  It was great to be met and shown around by a friendly face, the Officer on Duty (OOD) David Reymore.  I definitely was feeling a bit like a fish out of water, even though we hadn’t even left the dock yet. As people start to arrive back on the ship, they all know their role and are busy getting ready for our departure later on today. It’s a good experience to feel like you’re out of your element every now and again and I guess a small part of why I decided to apply for a Teacher at Sea position in the first place.

NOAA

As I was preparing to depart on this adventure and was explaining that I was going to be a NOAA Teacher at Sea, I had a number of people ask me what NOAA stood for, so I thought I’d provide a bit of information about what they are and what they do.  First, NOAA stands for the National Oceanic and Atmospheric Administration, and the name definitely suggests the broad mission that the agency has.  Their mission involves striving to understand the oceans, atmosphere, climate, coastlines and weather and making predictions about how the interactions between these different entities might change over time.

That is a tall order, and the agency is divided up into different offices that focus on different aspects of their mission.  The National Weather Service, for example, is focused on forecasting the weather and makes predictions about things like where hurricanes will travel and how intense they will be when they get there.  The National Marine Fisheries Service is tasked with studying the ocean resources and habitats in U.S. waters and to use that understanding to create sustainable fisheries.

So far, I’ve met many people that I’ll be sharing the boat with over the next two weeks.  They have all taken time to introduce themselves and talk for a bit, even though I know that they’ve got tons to do before we sail.

Sunday evening

Well, we’re underway towards our first sampling sites off the coast of Brownsville, Texas.  The seas are really calm, and I’m sitting up on the deck enjoying the light breeze and digesting the delicious dinner of jambalaya, vegetables and blackberry cobbler.  On our way out from Pascagoula, we saw a few dolphins, beautiful white sand barrier islands and mile after mile of moon jellies, but now we’re no longer in sight of land.

P1030600

Barrier island off the coast of Mississippi

We’ve passed an occasional oil rig off in the distance but haven’t seen much else.  The sun just set behind just enough clouds to make the colors spectacular and then as I was climbing down the stairs, I saw a handful of dolphins playing in the boat’s wake.

IMG_3919

Sunset over the Gulf of Mexico

Monday, September 18

Today will be a full day of travel to reach our fishing grounds.  Assuming we continue to make steady progress, we should arrive in the late afternoon or early evening on Tuesday to begin fishing.  We will be baiting 100 hooks that, once deployed, will remain in the water for an hour before we pull them back in.  We’ll be fishing in a variety of depths while working our way back towards Pascagoula.  We practiced some drills this afternoon, including a “man overboard” simulation, using a couple of orange buoys.  They deployed a rescue boat and had retrieved the buoys in a matter of minutes.  I have to admit that watching them get out there with such speed and skill put me at ease.

IMG_3927

Rescue boat deployed during the “man overboard” drill

 

 

Lisa Battig: Of Auroras, Anemometers, Anchors and Adult-sized Exposure Suits, September 3, 2017

NOAA Teacher at Sea

Lisa Battig

Aboard NOAA Ship Fairweather

August 28 – September 8, 2017

 

Mission: Arctic Hydrographic Survey

Geographic Location: Transit from Port Clarence to Yukon River Delta with Ship Surveying on the west side of Norton Sound
Latitude: 62o 32.5 N            Longitude:  165o 48.7 W

Date: September 3, 2017

Weather on the Bridge:
48 degrees F, Winds 6-8 knots from NNE, Seas 2-3 ft increasing, 50% cloud cover


Science and Technology Log

 AURORAS: 

Manda aurora 1

A shot of the aurora taken by Lieutenant Damien Manda, Operations Officer. This was my first aurora ever, and I know I was treated to a truly spectacular display. There was a lot of ooo-ing and aaah – ing and shrieks of delight. I was definitely one of those!

So this isn’t ship science, and it certainly isn’t technology that is made or operated by anyone on the ship, but the aurora is great science and of all the things I’ve experienced out here, has one of the best ties to Chemistry. Why Chemistry? Well, because it’s dealing with electrons. As my chemistry students will learn in a month or so, energy at certain frequencies has the ability to affect the electrons in an atom by causing them to jump up one or more energy levels. That electron does not want to stay in that higher energy position (orbital) so it will shortly drop back down. When it does so, it releases the absorbed energy as a photon of light which is what our eyes see as the brilliant colors. Neon lights follow this principle.

The aurora occurs in an oval shape around the magnetic poles of the earth – both north and south. The reason for this is that the magnetic field of the earth dips closer to earth at the North and South Pole. It is in these regions that highly charged electrons and protons from the solar wind move close enough to the earth that they will interact with the electrons in elements in our lower atmosphere; nitrogen, oxygen, argon and the trace gases.

Because each element has a different emission spectrum, the color given off will vary with the elements being charged. The green that is so often associated with auroras is from atmospheric oxygen. Oxygen in the lower atmosphere is the element that is most commonly affected by the solar wind particles. When higher altitude oxygen is affected, reds will actually be present. Nitrogen will also be charged this way, but less frequently than oxygen. Nitrogen’s color scheme is blues and purples. A strong aurora, which we had the opportunity to see, will have a mix of greens, pinks, purples, whites and blues.

ANEMOMETERS: Weather is one of the more important factors in determining ship navigation. High winds bring heavy seas; heavy moisture in the air may bring low clouds or fog reducing visibility. These factors must be figured into a navigational plan. Weather on the ship is compiled both through analog and digital means. The first wind information given to a seaman standing watch during daylight hours is the wind vane on the bow of the ship. It will tell which direction the wind is from and will give that seaman a sense of how the ship may drift off course while underway.

Fairweather anemometer

Looking up at the anemometers on Fairweather set on the flying bridge. You can see the two levels reasonably well. This is where constant weather data are being gathered which are then relayed to multiple places both on the ship and off.

The ship also has two anemometers. Both are on the mast. One is above the other physically as you somewhat see in the image. They are able to pick up exact wind speed and direction and keep record of maxima. One of the two will be chosen as dominant because the wind is less influenced by obstacles as it (the wind) travels across the ship’s surface. The anemometer chosen will feed into the ship’s digital data stream.The watch also takes data on air temperature, atmospheric pressure, cloud cover, and seas. Air temperature is taken from wet and dry bulb mercury thermometers. The difference between the wet and dry bulb temperatures will give a reading of relative humidity, also, when assessed using a psychrometric chart. A standard barometer is also on the bridge. Swell height and direction are determined by the watch crew visually, as are cloud cover and type. All of these data are recorded hourly. Digital sensors on board also take many of these readings and feed them into the navigation system and the ship’s ECDIS system. The redundancy of these processes, using both digital and analog means, underscore the importance of weather to the ship.

All NOAA ships, UNOLS (university ships) and some merchant vessels also serve as weather stations for the National Weather Service. The digital data is automatically sent on the hour. Visual data on swell direction and height and the condition of the seas is shared through another program, keeping the NWS and other weather agencies more informed of local weather activity.

ANCHORS:

watching the anchor and chain

Commanding Officer Mark Van Waes and Chief Bosun Brian Glunz checking the anchor and chain to be sure it is clear of the ship. Dennis Brooks is standing by.

 

When placing the anchor, the ship will initially overshoot the anchor location and then reverse back over it. This is primarily to keep the anchor and chain from ever being underneath the ship. The anchor and chain are extremely heavy and could do serious damage to the scientific equipment underneath, the propellers and even scratch up the hull. Once the ship has reversed slowly to the location, the anchor is dropped along with 5-7 times the amount of chain as the depth of water the ship is in. As the chain is dropping, the ship will continue to slowly back up laying the chain along the seafloor. The chain will then be locked, and as the anchor finally drags back, it will catch and hold. When the anchor catches, the ship will buck slightly, pulling the chain completely taut, and then because the ship will rebound, the chain will slacken. This is done twice (or more, if necessary) to ensure the anchor has really caught. The bosun and deck hands are watching over the side of the ship communicating with the bridge when the anchor is taut and slack as well. For complete safety, fixed points of land are marked on the radar and distances to each are calculated. The bridge will take measurements from these points every 10 minutes for the first half hour confirming that the anchor is set and then every half hour while at anchor.

Heaving the anchor involves “reeling” it in (similar to sport fishing) by getting the ship closer to the anchor as it is being drawn up. The goal is keeping the chain at a 90o angle to the surface of the water. Again, this keeps the anchor and chain from being able to do damage to the ship. During this process, the bridge will continually check the location of the bow relative to the anchor to insure that the hull will never cross over the chain. Once the ship is directly over the anchor, it should pull free. Finally, during the time the anchor chain is being pulled up, it must be cleaned of all the mud and debris.

washing the anchor chain

Me. Washing down the anchor chain as it comes up with SS Dennis Brooks helping hold the fire hose (it’s pretty heavy!)

ADULT EXPOSURE SUITS: 

Exposure suit

Me trying on a VERY large adult exposure suit. Look at those legs!!

Each week, the entire crew of the ship has an emergency drill. Because there are no outside emergency personnel available for the ship (e.g. fire department) all crew must be well trained in how to handle fires, a sinking ship, and a person falling overboard. There are many crewmembers who pursued their MPIC (Medical Person in Charge), and others who are trained in Rescue Swimming, and there are also members of the Engineering crew who are trained firefighters. But regardless of training, the entire crew needs to be clear as to their responsibilities in an emergency situation and how to communicate with one another throughout the ordeal. So once a week, an unannounced drill will be run to sharpen some of these skills.

I had the chance to be involved with “man overboard” drill today. The drill consisted of me screaming as a dummy (Oscar) with a life vest was dumped over the side. After that, a man overboard was called and the ship’s alarm system was initiated. There are differing signals for each type of emergency. As all ship personnel mustered, communication began. The Commanding Officer, Mark Van Waes, was actually the first to spot the MOB (man overboard) and fixed the location for the bridge who subsequently relayed it through ship communications. At that point, two different options were available; bringing the ship to a position next to the victim and rescuing from the ship or deploying the Fast Rescue Boat mentioned in my last post to do a rescue. Although the ship was brought around, the rescue from the ship proved too difficult. The Fast Rescue boat was deployed with a coxswain, rescue diver (outfitted in an exposure suit) and a third. The MOB was found, placed on a back board, brought back to the ship, and rescue breathing was started along with warming up of the body.

It was fantastic watching all of the different pieces of the puzzle come together to be successful.


Department of the Day: The Deck Crew!

The Deck Crew

The amazing deck crew! L-R back row: Terry Ostermeyer, Dennis Brooks, Brian ____. L-R front row: Carl Coonts, Rick Ferguson, Me, Peter “Nick” Granozio

Every department is important on Fairweather, but the deck crew does a lot of difficult tasks that are often overlooked. They are the ones who keep the ship clean and stocked with supplies. They do the heavy lifting and the fixing of anything non-mechanical. They are responsible for driving the small launches – and are indispensable to the surveys since they need to drive the lines and make the call if it gets too shallow or dangerous. They are also on bridge watch and typically have the helm, meaning they are driving the big ship, too!

Deck crew launches the small boats from Fairweather and they head up the line handling to keep everyone safe. Members of the deck crew are also on watch 24 hours a day and do constant security checks throughout the entire ship every hour. They operate all of the cranes onboard. They are responsible for the flow of materials – what will be incinerated or placed in hazmat containers or stored for later disposal – and then take care of it. Finally, they also do the physical work of anchoring and heaving the anchors. The ship certainly would not run without the deck department.


Personal Log

Getting to know the different groups of people that work here has been amazing. I’ve had opportunities to work closely with the Survey team, the NOAA Corps officers, the stewards and the deck department. I’ve had a chance to see a bit of what the engineering group does, too. I’ve learned so much about the work they do and even about the lives they led before and lead now. I’ve also learned that ship life has some big ups and downs. The work is fascinating and most of the time there are new and interesting things to do. The CO, XO and Ops Officer work hard to ensure that daily duties change often and that there is a constant atmosphere of training.

But it’s difficult to be out at sea for long periods of time, and Fairweather in particular does not have a true “home port” – so it’s virtually impossible to have a place to call home. Several of the folks on this ship have family around the area of where Hurricane Irma is about to hit (Florida, the Carolinas…) and so one of the crewmembers is on his way to Florida to make sure everything is going to be okay. On the flip side, you really do get to see amazing places and events – like the aurora at the top of my post, or Russia…

Little and Big Diomede from Kyle

The islands of Little Diomede (left, foreground) and Big Diomede (right, background). Little Diomede is American land but Big Diomede is Russian. I saw Russia!

 


 Did You Know?

…that exposure (immersion) suits really do extend your life? In March 2008, up here in the Bering Sea, a fishing trawler, Alaska Ranger, went down with 47 people on it. All 47 put exposure suits on prior to abandoning ship – some of them were not properly fitted, one ended up with a gash in it – but at least they all put them on. While lifeboat deploys were attempted, at least two of the lifeboats ended up floating away with no one in them. Only 2 were properly deployed and one of those took on water immediately. So exposure suits were the primary survival tool! Although 5 members of the crew did not make it, 42 were saved through the actions of the US Coast Guard and others in the 1-7 hour window after hitting the water. Some of the crew members were floating in the water in their suits for 3 hours before they were rescued! The necessity of proper training, like the weekly drills on NOAA ships, cannot be overstated. But in these worst case scenarios, even an ill-fitting exposure suit is going to give you more time.

Susan Brown: Let’s Go Fishing, September 4, 2017

 

NOAA Teacher at Sea

Susan Brown

NOAA Ship Oregon II

September 3 – 15, 2017

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 4, 2017

Weather Data from the Bridge

Latitude: 29 43.931N
Longitude: 086 09.617W
Sea wave height: .5 meters
Wind Speed: 2
Wind Direction: 250 degrees
Visibility: good
Air Temperature: 28.3 degrees Celsius
Barometric Pressure: 1016 mb
Sky: partly cloudy

Science and Technology Log

Numbered tags used for each hook

Mackerel used for bait

Today was my first shift. We are using mackerel to bait the 100 hooks that will be places into the water at a specific station. Each hook is numbered so that we can collect data on which hook brought in a fish and entered into the database. There are several jobs out here from baiting the hooks, placing the buoys, flinging the baited hooks out, and recording data in the computer. My job today is the computer.

entering data on the deployment of the baited hooks

The longline is set and left to sit in the ocean for approximately one hour before we start bringing up the line to see if we have a fish on. Out of the 100 hooks we got one fish, a baby tiger shark and a larger juvenile tiger shark coming in at six feet or so. This tiger shark had several hooks in its mouth as well as a tag so when she was brought up on board, all the hooks were removed and the tag replaced with a new one.

IMG_5947

Removing hooks from the tiger shark’s mouth

The tag that was on the tiger shark was opened up to reveal a small scroll of paper with a unique number so that this shark can be tracked from where it was first picked up to when it ended up with us for the brief visit. Below is a short video of us bringing up the shark in the cradle! [no dialogue or narration.]

We will be setting another line tonight at our second station as we continue to motor southeast following the coast of Florida.

Beside recording data on the sharks, a CTD is deployed to collect data on conductivity, temperature and depth. We will use this data in the classroom to look for trends between the abiotic factors that may influence where we are finding certain shark species and the number of overall sharks at any given station.

The CTD that measure conductivity, temperature and depth

Personal Log

There are many different scientists on board researching different things. I am sharing a stateroom with Dani who is on the night shift. She is looking into how different sharks handle stress. I see very little of her since we are on opposite shifts so we get a quick visit at noon when there is a changing of the guards so of say. Brett and Carlos, as mentioned in an earlier post, are looking into parasites that inhabit the various animals we are bringing up. I will do a separate blog on those two and their research later this week to share what they are finding.

Donning the survival suit during abandon ship drill

Today we had a few drills to practice in case of an emergency. One was a fire drill and the other was an abandon ship drill where I had to don a large neoprene suit in less than two minutes. Here I am in that suit! It was quite cumbersome to put on.

Learning new words as I get acclimated to the ship. Here are a few for you:

The head = bathroom

Stateroom = room where I sleep

Muster = to assemble

Bow = the front of the ship

Stern = the back of the ship

Did You Know?

Military time is used on board this ship. See the photo of the clock below.

Question of the Day: Why use military time?

NOAA clock

Cathrine Prenot: Why Math Matters. July 29, 2016.

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 29, 2016

Weather Data from the Bridge

Lat: 4901.93N (We’re in Canada!)
Lon: 12651.64W
Speed: 5.7 knots
Windspeed: 34.2 deg/knots
Barometer: 1018.10 mBars
Air Temp: 15.0 degrees Celsius
Water Temp: 13.92 degrees Celsius

Science and Technology Log

IMG_4287

Panoramic view of the back deck of the Bell M. Shimada from the wet lab.

There is a book on the bridge of most sailing vessels called “The American Practical Navigator.” Most people call it Bowditch, for short. It is a thick tome, and has an insane wealth of information in it, as Nathanial Bowditch vowed to “put down in the book nothing I can’t teach the crew.” He evidently thought his crew could learn anything, as Bowditch is an encyclopedia of information. You can find distances to nearby planets, how magnetic fields change around iron vessels, what to do if you are lost at sea, what mirages are, and rules to navigate around hurricanes. It’s been updated multiple times since Bowditch’s version in 1802, but one fact has remained. There is math—oodles and oodles of geometry and algebra and calculus—on every page. In fact, a lot of the Bell M. Shimada runs on math—even our acoustic fishing is all based on speed and wavelengths of sound.

transfer

Screenshot from the Bell M. Shimada’s Acoustics Lab showing the visual rendition (left to right) of 18,000Hz, 38,000Hz, and 120,000Hz.  The ocean floor is the rainbow wavy line 250-450meters below.  This was transect #38; we fished the red/orange splotches approx 150 meters deep.  They were all hake!

Sonar was first used in World War I to detect submarines, and began to be used to sense fish soon after the war ended, with limited success. Sonar advanced rapidly through World War II and fishermen and scientists modified surplus military sonar to specifically detect ocean life. Since sound will bounce off “anything different than water,” we can now use different frequencies and energy to determine an incredible amount of information on a fish’s life. We can “try to tell what kind of fish, where they are, map vertically what they do, and determine their density.” The chief scientist, Dr. Sandy Parker-Stetter says it best. “My job is to spy on fish.” In my opinion, Sandy seems good enough to be in the Acoustics CIA. Click on Adventures in a Blue World; Why Math Matters, to learn all about fish spying and other reasons you should pay attention in algebra class.

Adventures in a Blue World, CNP. Why Math Matters.

Adventures in a Blue World, CNP. Why Math Matters.

 

Personal Log

Life onboard continues to be interesting and fun. The wind has picked up a bit, which has translated into higher seas. I tried to film the curtains around my rack last night opening and closing of their own accord, but every time I’d pick up the camera, they’d stop. I did get a few seconds of some wave action outside the workout room; riding a bike is now much easier than running on the treadmill. Pushups are insanely easy when the ship falls into the waves, and ridiculously difficult when rising.

Porthole video.

I’ve also been involved in a chemical spill drill (that does say drill), and was lucky to be given the helm for a brief moment on the Bell Shimada.

Staging a chemical spill for the crew's spill drill

Staging a chemical spill for the crew’s spill drill

Prenot at the Helm

Prenot at the Helm

 

Did You Know?

NOAA has been around since 1970! Thanks to our great Survey Tech Kathryn Willingham for keeping our science team working so seamlessly. Well… …and making it fun too.

Kathryn

Kathryn Willingham

 

Resources: 

Ocean frequencies: explore sound in the ocean.
Check out this great TED talk about the importance of mathematics at sea.

Julia Harvey: More to a Mooring than meets the Eye, June 26, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3, 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 26th, 2016

Weather Data from the Bridge

Wind Speed: 15 knots

Wind Direction: 100 degrees (slightly east southeast)

Temperature: 24.5 degrees C

Barometric Pressure: 1014.7 mb

Science and Technology Log

One of the primary objectives of this WHOTS project is to deploy WHOTS-13 mooring. This will be accomplished on our second day at sea.

Site of Mooring-13 courtesy of WHOTS Project Instructions

Site of Mooring-13
(courtesy of WHOTS Project Instructions)

The mooring site was chosen because it is far enough away from Hawaii so that it is not influenced by the landmasses. Mooring 13 will be located near mooring 12 in the North Pacific Ocean where the Northeast Trade Winds blow. Data collected from the moorings will be used to better understand the interactions between the atmosphere and the ocean. Instruments on the buoy record atmospheric conditions and instruments attached to the mooring line record oceanic conditions.

A look at interactions between the atmosphere and the ocean.

A look at interactions between the atmosphere and the ocean. [R. Weller, WHOI]

 

 

 

 

 

There is a lot more going on than just plopping a mooring in the sea. Chief Scientist Al Plueddemann from Woods Hole Oceanographic Institution and his team began in-port prep work on June 16th. This included loading, positioning and securing the scientific equipment on the ship.  A meteorological system needed to be installed on the Hi’ialakai to collect data critical to the mission.  And then there was the assembly of the buoy which had been shipped to Hawaii in pieces.  Once assembled, the sensors on the buoy were tested.

Meteorological Station on the Bow

Meteorological Station

As we left Oahu, we stopped to perform a CTD (conductivity/temperature/depth) cast. This allowed for the testing of the equipment and once water samples were collected, the calibration of the conductivity sensors occurred.

Sunday, June 26th, was the day of deployment. Beginning very early in the morning, equipment was arranged on deck to make deployment efficient as possible. And the science team mentally prepared for the day’s task.

Predeployment

The deck before deployment began. The buoy is the blue item on the left.

Promptly at 7:30 am, deployment began. The first stage was to deploy the top 47 meters of the mooring with sensing instruments called microcats attached at 5 meter intervals. A microcats has a memory card and will collect temperature, conductivity and pressure data about every three minutes until the mooring is removed next year.

Sensing instruments for the morring

Microcats for recording oceanic conditions

readied microcats

Microcats readied for deployment. They are lined up on the deck based on their deployment depth.

This portion of the mooring is then attached to the surface buoy, which is lifted by a crane and lowered overboard. More of the mooring with instruments is lowered over the stern.

The remainder of the mooring is composed of wire, nylon, 68 glass balls and an anchor.  At one point, the mooring wire became damaged. To solve this problem, marine technicians and crew removed the damaged portions and replaced the section with wire from a new spool. This process delayed the completion of mooring deployment but it showed how problems can be solved even when far out at sea.

After dinner, the nylon section of the rope was deployed. Amazingly, this section is more than 2000 meters long and will be hand deployed followed by a section of 1500 m colmega line. It was dark by the time this portion was in the water. 68 glass floats were then attached and moved into the water. These floats will help in the recovery of the mooring next year. The attachment to the anchor was readied.

glass floats for recovery

These glass floats will help when the mooring is recovered next year.

The anchor weighs 9300 pounds on deck and will sit at a depth of 4756 meters. That is nearly 3 miles below the ocean surface. The crane is used to lift the anchor overboard. The anchor will drop at 1.6 m/s and may take about 50 minutes to reach the bottom.  As the anchor sinks, the wire, nylon and the rest of the mooring will be pulled down. Once it reaches the bottom, the mooring will be roughly vertical from the buoy to the anchor.

 

Mooring Structure

Mooring Structure

Personal Log

I sailed aboard NOAA ship Oscar Dyson in 2013 so I already had a general idea of what life aboard a ship would be. Both ships have workout areas, laundry facilities, lounges, and of course messes where we all eat. But on the Hi’ialakai, I am less likely to get lost because of the layout. A door that goes up is near a door that goes down.

On our first day aboard, we held two safety drills. The first was the abandon ship drill. As soon as we heard 6 short and 1 long whistles, we grabbed our life jacket, survival suit and a hat. We reported to our muster stations. I am assigned to lifeboat #1 and I report the starboard side of 0-3 deck ( 2 levels up from my room). Once I arrived, a NOAA officer began taking role and told us to don the survival suit. This being my first time putting the suit on, I was excited. But that didn’t last long. Getting the legs on after taking off shoes was easy as was putting one arm in. After that, it was challenging. It was about 84 F outside. The suit is made of neoprene. And my hands were the shapes of mittens so imagine trying to zip it up. I finally was successful and suffered a bit to get a few photos. This was followed by a lesson for how to release the lifeboats. There are enough lifeboats on each side of the ship, to hold 150% of the capacity on board.

Survival Suit & Julia

Abandon Ship drill with Survival Suit

Safety is an important aspect of living aboard a NOAA ship. It is critical to practice drills just like we do at school. So when something does happen, everyone knows what to do. A long whistle signals a fire. All of the scientists report to the Dry Lab for a head count and to wait for further instruction.

I am reminded of how small our world really is.  At dinner Saturday, I discovered one of the new NOAA officers was from Cottage Grove, Oregon. Cottage Grove is just a short drive south of Eugene. She had a friend of mine as her calculus teacher.  Then a research associate asked me if I knew a kid, who had graduated from South Eugene High School and swam in Virginia. I did. He had not only been in my class but also swam with my oldest son on a number of relay teams growing up. Small world indeed.

 

Did You Know?

The Hi’ialakai was once a Navy surveillance ship (USNS Vindicator) during the Cold War. NOAA acquired it in 2001 and converted it to support oceanic research.

 

 

 

Chris Henricksen: Standing My First Watch, May 8, 2014

NOAA Teacher at Sea

Chris Henricksen

Aboard NOAA Ship Henry B. Bigelow

April 29–May 10, 2014

Geographical area of cruise: Gulf of Maine

Mission: Spring Bottom Trawl & Acoustic Survey

Date: May 7, 2014

Air Temp: 9.1°C (48.38°F)

Relative Humidity: 73%

Wind Speed: 10.83mph

Barometer: 1011.7mb

 

 

Science and Technology Log

My section stands watch from midnight to noon–twelve hours on, twelve hours off.  Today I stood my first watch, acting as one of three “recorder” on the fish sorting line.  A recorder’s role is to assist his assigned “cutter” by entering requested measurement data (e.g., length, weight, etc.) of individual fish into a computer database.  The cutter processes fish by identifying the species, then performing any number of actions (i.e., cuts, as in, with a knife) in order to retrieve information about particular fish for later use by scientists.  Such data will consist of measuring, weighing, and sexing the fish, as well as checking the contents of its stomach.  Other particular data may be gathered, such as collecting otoliths (ear bones) from the head of the fish.

photo of net prep

Preparing the net for our first trawl

After getting underway, the captain called a series of drills, one of which was abandon ship.  During this exercise, I reported to the aft deck of the ship, donned a “Gumby” survival suit, which is bright orange/red, keeps you warm while in the water, and helps you to stay afloat.  Following that, we had a collision drill.  In a disaster scenario, everyone has a muster station, so that we can be counted, and then help control the situation, if need be.

photo of abandon ship drill

Abandon Ship Drill

Today was my first of about a dozen watches I will stand.  It went smoothly, but there was considerable down time.  The first stations (the areas in which the nets are lowered and trawling begins) were about 25 nautical miles from one another, so it took a couple of hours to steam from one station to the next.  During this time, I was able to relax, grab a bite, or hang out with other members of my watch. Personal Log The food aboard ship is very good, and there is plenty of it. Between mealtimes, the cook makes sure that plenty of drinks and snacks are available, so there is no reason to go hungry aboard the Henry B. Bigelow. The ship has a huge library of DVDs with many new movies.  We can also watch TV thanks to a satellite connection (DirectTV). The only things I am not allowed to do are 1) re-enter my stateroom after going on watch, as there is always an off-watch shipmate trying to catch some shuteye, and 2) make a surprise appearance on the bridge, which is where the NOAA officers navigate and steer the ship.  That’s for safety, and I am sure they would welcome me, as long as I called ahead first. I am tired, but feeling pretty good.  I boarded the ship wearing an anti-motion sickness patch, fearing that, after twenty years of not being at sea, I might be susceptible to seasickness.  The medicine made me feel awful, so I took it off, and now feel much better!  I had almost forgotten how much I enjoy the rocking of a ship.  It’s an especially good way to fall asleep–gently rocking…

2014-05-06 deck selfie

Deck Selfie!

Louise Todd, Underway, September 16, 2013

NOAA Teacher at Sea
Louise Todd
Aboard NOAA Ship Oregon II
September 13 – 29, 2013

Mission: Shark and Red Snapper Bottom Longline Survey
Geographical Area of Cruise: Gulf of Mexico
Date: September 16, 2013

Weather Data from the Bridge:
Barometric Pressure: 1014.01mb
Sea Temperature: 28.8˚Celsius
Air Temperature: 29.9˚C
Wind speed: 19.22 knots

Science and Technology Log:

Oregon II

Oregon II (Photo Credit NOAA)

We left Galveston a little before 2pm on Sunday, September 15.  We were in transit to our first sampling location and should arrive there around 8pm tonight.  Depending on the conditions we might actually be able to do some fishing tonight!

Today we went through our abandon ship drill.  The ship’s alarm is used to alert everyone on board in the event of an emergency.  Abandon ship is indicated by 7 short rings followed by one long ring of the alarm.  When the alarm sounds with the abandon ship signal, we must carry our survival suits, personal flotation devices (PFDs), long pants, a hat and a long-sleeved shirt to the well deck, at the bow (front) of the ship.  My survival suit and personal flotation device (PFD) are kept in cabinets in my room.  The survival suit is tricky to get on and it gets very, very warm when you are wearing it!

Survival Suit

In my survival suit (Photo Credit Lisa Jones)

Personal Log:

During this initial transit, there hasn’t been much for me to do.  I spent a lot of time sleeping on Sunday.  The way the waves rock the ship back and forth makes me very sleepy!  I have taken a few short naps today in order to be ready in case we do any fishing on the later part of my shift tonight.  I am on the day shift which means I will work noon to midnight.  I think it will take me some time to get used to staying up that late but I think these naps will help!  As we start fishing the days will be much busier for me so staying awake will be easy I hope.  The views off of the ship are amazing.  I was surprised to see how blue the water gets.

View off the ship

View off the Oregon II

My stateroom is very comfortable and I have plenty of space in drawers and cabinets for everything I brought with me.  I am getting used to latching doors and drawers behind me so they do not slam back and forth as the ship rocks.  On the ship there is always someone sleeping so everyone works hard to be courteous and stay quiet.

My stateroom

My stateroom

My roommate is an officer on the ship so we are usually in the room at different times.  Officers on NOAA ships are part of the NOAA Corps.  Roommates are usually assigned based on the shifts people are working so each person has some time alone in the room.  As we start fishing more I will bring my computer and other items I might want throughout the day into one of the labs on the ship so I won’t have to go in and out of the room when my roommate might be sleeping.  The curtains are helpful in blocking out any light that might prevent you from sleeping.  The showers are right next to my room which is convenient and the common head (bathroom) is just around the corner.

There are plenty of food choices in the galley on the ship and everything has been delicious.  In the mornings you can even get eggs made to order!  I certainly don’t think I will be going hungry!

Did You Know?

Even in the warmer waters of the Gulf of Mexico, hypothermia is risk due to the difference in water temperature and our body temperatures.  The survival suit helps to protect our bodies from the difference in temperature.