Eric Koser: The Impact of the Work


NOAA Teacher at Sea
Eric Koser
Aboard Ship Rainier
June 22-July 9
Mission: Lisianski Strait Survey, AK
July 4, 2018: 1000 HRS

Weather Data From the Bridge
Lat: 55°57.7’          Long: 133°55.7’
Skies: Clear
Wind Light and variable
Visibility 10+ miles
Seas: <1 ft
Water temp: 7.2°C
Air Temp: 14.1°C Dry Bulb, 12.5°C Wet Bulb

Pelican Harbor

The harbor at Pelican, Alaska.

The Impact of the Work
“We’re a part of history!” This notion, shared by a colleague on a launch yesterday, brings home the importance of the work of this team and NOAA’s Hydrographic Branch. Lisianski Inlet was last surveyed in 1917 by lead line! The charts of the inlet were old and not likely accurate. This week – fresh data has been collected by Ship Rainier and her launches to bring the next century of mapping tools below their shores.

Pelican Harbor in the town of Pelican, Alaska was last surveyed between 1970 and 1989.–until we surveyed it yesterday with Rainier Launch RA-3. Our team drove in and out between each of the docks in the harbor, carefully pinging sound waves off of the floor of the harbor to construct a new digital map of the bottom.

Pelican Guys

Guys on a mission…walking to pickup the HorCon.

Pelican HorCon

This is the Horizontal Control station, or HorCon, setup on the breakwater at Pelican before we took it down.

Part of our task yesterday, in addition to conducting MBES survey from our launch, was to dock in Pelican and retrieve our HorCon (a GPS reference radio setup on land that we have used there all week). As we walked through the very small town carrying two car batteries in backpacks, a pair of antennas, tripods, and other gear back to the launch – surely people were interested in what we were up to. Several people stopped to chat as we made our way from the pier, along the boardwalk, and down to the docks to go back to our launch. People asked who we were – and if we were the NOAA team that was in town. There was much appreciation expressed to NOAA for the work being done in the inlet to update the nautical charts. Here in Pelican, the water is the primary mode of transport. Accurate nautical charts provide security and safety.

 

 

 

Pelican

Here is a bit of history on the city!

Main Street, Pelican, Alaska

Main Street, Pelican, Alaska

 

Pelican

It’s a comfortable place, here in Pelican!

There are no roads to Pelican. A few cars are in town – to pull trailers and move equipment. But the primary mode of land transport is four-wheelers. The ‘main street’ is really a raised boardwalk that runs along the rocky shore – and is the heartbeat of the community.   Folks that live up or down the inlet from the town get there in small launches – there are no roads. A ferry comes to Pelican twice a month and is how cars and trucks come and go here. A seaplane comes through a few times a week—often bringing tourists in and out – and the mail. It’s a beautiful spot centered in a small inlet on the edge of the Pacific Ocean.

 

 

 

 

 

 

Pelican Seaplane

The fastest transportation in many parts of Alaska.

Pelican House

A house up the shoreline from Pelican.

Science and Technology Log

It’s mission accomplished for Lisianski Inlet!

Nautical charts are broken up into sheets. And within each sheet, areas are broken down into smaller polygons for data collection. Each launch (small boat), as well as the ship itself, can bring in multibeam data with the equipment mounted on each hull to complete plotting polygons and eventually complete sheets.

The hydrographic survey team is working away today in the plot room and on “the holodeck” of Ship Rainier (an office area on the top of the ship behind the plot room) processing the data we have collected the past several days. A combination of ship and launch multibeam data in addition to bottom samples and shoreline updates have been collected. Now the work of the scientists continues and becomes data processing.

Holideck

Part of the hydrographic team on the holodeck.

As the data is combined, it is reviewed and refined to make a complete picture of the survey area. Once the team on the ship has completed their work, the data goes to the Pacific Hydrographic Branch of the Office of Coast Survey of NOAA. Here, the PHB team reviews that data again and assures it meets the specifications and standards needed to become finalized for use.

From PHB, the data is passed to two places. One is the NCEI (National Center for Environmental Information) office. They archive all of the raw and processed data including the digital surfaces themselves and the descriptive reports written by the hydrographers here.

The data also goes to the Marine Chart Division, an office of NOAA Coast Survey. Here is where the nautical charts are produced in both ENC and RNC (electronic and paper versions). It is this branch that publishes the data for use by mariners and the general public. Anyone can see the charts at nauticalcharts.noaa.gov (try the “Chart Locator”).

Nautical Chart

Here is a finished chart we are using to navigate today. Notice the two buoys in purple and green on the chart, and the narrow space between them.

Flybridge Approach

This is the view from the flybridge as we approach these same two buoys that are indicated on the chart.

 

Who is on board?

Tyanne

Tyanne Faulkes is a hydrographic scientist with NOAA.

During this leg of the trip, we have a visiting scientist from NOAA’s is here on board. Tyanne Faulkes works as a physical scientist for the Pacific Hydrographic Branch of NOAA. She is a part of the team that processes the data from the hydro teams on NOAA Ship Rainier and NOAA Ship Fairweather. Her job is to assure that the data meets NOAA’s specifications–so that they can provide evidence of dangers of navigation and accurate depth information for all mariners.

Tyanne loves to be involved in making maps of the sea floor – and getting to see things others have not seen before! She loves that NOAA provides data for free to scientists around the world. Her job includes not only desk work, but also opportunities to make many mapping trips to understand where the hydro data comes from. Ms Faulkes has a bachelors degree in geography and GIS. It was a paid internship just out of college with NOAA that initially brought her to this work. And – she has a ton of fun with what she does. As a kid, Tyanne loved oceanography. Her GIS education tied well with the internship – and it all came together to take her where she is today!

Tyanne Mountains

When she’s not chasing the bottom of the oceans, Tyanne also loves to climb mountains!

She some advice to students – “Learn how to code!”

“Building Python scripts is a very powerful tool to allow us to automate the data review process. Being able to write the code – or at least understand the basic concepts that put it together – allows one to be much more efficient in your work!”

Understanding the concept of an algorithm that can save one hours of work is a very good asset. “I wish in college someone would have taught me how to do this!” One easy example is a bulk file renaming tool that the launch teams use. After collecting 50 some separate files of data in a day, this tool will take the individual file names and append any number of things to the filenames – all automatically.

Want to get involved? Next week, Tyanne and her team at NOAA’s Western Regional Center at Sand Point in Seattle, WA are hosting an annual camp for middle school and high school students! Students from across the US can apply to come to this camp each summer and have great experiences learning all about oceans and hydrography! Check it out on the web: NOAA Science Camp – Washington Sea Grant.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s