NOAA Teacher at Sea
Kimberly Scantlebury
Aboard NOAA Ship Pisces
May 1-May 12, 2017
Mission: SEAMAP Reef Fish Survey
Geographic Area of Cruise: Gulf of Mexico
Date: May 4, 2017
Weather Data from the Bridge
Time: 10:25
Latitude: 2823.2302 N, Longitude: 9314.2797 W
Wind Speed: 12 knots, Barometric Pressure: 1009 hPa
Air Temperature: 19.3 C, Water Temperature: 24.13 C
Salinity: 35.79 PSU, Conditions: Cloudy, 6-8 foot waves
Science and Technology Log

Long line fishing is one way to gather fish population data. Another is remote sensing with camera arrays. The benefit of this is it is less invasive. The downside is it is more expensive and you can not collect fish samples. The goal has been to do ten-twelve camera array deployments a day.

There are two camera arrays set up: Orthogonal Stereo Camera Array (OSCAR) and an array containing a 360 degree spherical view camera pod and a single stereo camera (Frank). OSCAR runs technology that has been used since 2008. There have been many incarnations of camera technology used for the SEAMAP Reef Fish Survey since 1991. The OSCAR setup uses four stereo cameras that capture single video and stereo pair still images. Frank uses six cameras that can be stitched together to give a full 360 viewing area. This work is used to determine trends in abundance of species, although there are a few years of holes in the data as the transition from catch to camera took place. OSCAR setup and the Frank setup (affectionately called that due to its pieced together parts like Frankenstein’s Monster) both run to provide comparisons between the different technology. One of the other devices on Frank is an Abyss by GoPro.

GoPros’ Abyss device may be a cheaper, off the rack option, but they do not do as well in low light conditions. Choosing gear is always a balance between cost and wants. For that you need to spend more for custom scientific equipment.
Researchers are always working to stay current to gather the best data. This requires frequent upgrades to hardware and software. It also means modern scientific researchers must possess the skills and fortitude to adapt to ever changing technology. The ability to continually learn, troubleshoot, and engineer on the fly when something breaks are skills to learn. This is something all current students can take to heart.

Together, camera arrays, vertical long lines, and fish trap methods give a more accurate view of beneath the waves.
Quote of the day regarding launching the camera arrays: “You gotta remember, I’m gonna make that lady fly.”-James
Personal Log

Another important science lesson is that zero is a number. There have been camera problems to work through and we have not been catching fish. Sometimes that zero is from equipment that stopped running. Those zeros are errors that can be removed from the data set.
With fishing, we record if the bait is still attached or not, even if we do not catch any. It is always fun to put thirty hooks down and not know what is going to appear until we reel them up. It is also disappointing not to catch anything. Data is data. It is important for determining species abundance.

I have enjoyed learning how to record on the data sheets, bait the hooks, de-bait the hooks (so there is always fresh bait), and a lot of little parts that are a part of the overall experience.
When we are working, the ship goes to a predetermined location and stops. The CTD (conductivity, temperature, depth) Water Column Profiler is dropped in first (to be featured in a future post) then raised after data collection is done. Next either OSCAR or Frank goes down. Every few stops we also do the vertical long line fishing. The ship then goes on to the next stop, which takes about twenty minutes. That time is spent breaking down fish (when they are caught) and troubleshooting equipment.
Did You Know?

Good for you Kim! Looks like an amazing opportunity! Be safe!