Geoff Carlisle: Oregon II is to NOAA as Millennium Falcon is to Star Wars, June 10, 2018

NOAA Teacher at Sea
Geoff Carlisle
Aboard NOAA Ship Oregon II
June 7 – June 20, 2018

 

Mission: SEAMAP Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico
Date: June 10, 2018

 

Geoff & O2

My first day on the NOAA Ship Oregon II!

 

Science Log

Having spent a few days on the ship now, I’ve come to realize that NOAA Ship Oregon II is a lot like the Millennium Falcon from Star Wars. In Star Wars Episode IV: A New Hope, Han describes the Falcon by saying, “She may not look like much, but she’s got it where it counts, kid. I’ve made a lot of special modifications myself.” Every crew member and scientist that I’ve talked to talks about Oregon II like Han does about the Falcon. The typical conversation starts with them saying that she “may not look like much,” being the oldest and one of the smallest research vessels in the NOAA fleet. But without fail, they immediately begin talking about how versatile the boat is, thanks to the many modifications that have been made over the years (some even joke about how the boat itself may be 50 years old, but none of its parts are). The boat is covered with its many awards and achievements, and has the lowest crew turnover in the NOAA fleet (many of the crew members have worked on the ship for over 20 years!).

 

50 Years

You can see how much the ship has changed in its 50 years!

On Thursday, we began our two-day “steam” from the NOAA Ship Oregon II’s home port in Pascagoula, Mississippi, to Brownsville, Texas (near the border between the US and Mexico). Upon reaching Brownsville we’ll drop our first trawling nets at various stations, which are randomized locations where we’ll make our measurements.

The data we collect is part of the SEAMAP Summer Groundfish Survey, which the Gulf states of Texas, Louisiana, Mississippi, Alabama, and Florida depend on to assess the health and vitality of groundfish in the Gulf of Mexico. For example, according to the Texas Parks and Wildlife (TPWD), the commercial shrimp season for both the state and federal waters  “is based on an evaluation of the biological, social and economic impact to maximize the benefits to the industry and the public.” Knowing that I helped with the “biological evaluation” they refer to makes the work feel important.

 

Personal Log

Common tern

Common tern (Sterna hirundo) which fly from Canada to Patagonia every year

Casting off from Pascagoula felt like getting a “best of” tour of the Mississippi Gulf. The first hour of sailing was filled with incredible views of wildlife: groups of pelicans buzzing the ship, terns hovering above the deck, and flocks of seabirds chasing after fishing ships hoping to catch a meal. Every few hours we also see pods of bottlenose dolphins playing in the boat’s wake, and schools of flying fish gliding alongside the boat. The diversity and abundance of life reminded me that the Gulf of Mexico is a fertile ecosystem, with so much to explore.

 

 

Dolphins chasing our boat!

Brown pelicans

Brown pelicans (Pelecanus occidentalis) skirting our boat

Fishing vessel

A common sight in the gulf: sea birds stealing from fishing nets

Can't beat the views

Can’t beat the views

Without stations to take measurements, I don’t have many responsibilities yet on the ship, so I spend most of my time getting to know the crew, reading, watching the ocean, and working out. I was worried about what two weeks at sea would do to my triathlon training (it’s the middle of racing season!), but luckily I found a stationary bike with an incredible view. The term “stationary” bike feels almost tongue-in-cheek though, as the boat’s rocking and rolling have caused me to tip over more than once. On the bright side, I’m getting more of an ab workout?

 

 

 

Space is very limited on the boat, so there are a number of pieces of etiquette you learn quickly:

  • If someone is coming down the stairs or a hallway, pull over – you can’t fit two people in any passageways
  • With 30 people on board, but only 12 seats in the galley, make your meals short so others can get in and sit down
  • Don’t sit up too quickly in bed (the pic below is my bed!)
Geoff's bunk on the ship

Geoff’s bunk on the ship

The boat is also constantly moving and humming. You learn quickly that you can’t move too quickly because of the large waves rocking the boat. While the gentle rocking of the ship can help lull you to sleep, every hour or so the waves get so rough that things start falling off of tables, which makes dinner time… fun?

One thing is for sure: the sunsets on the Gulf are unparalleled.

Sunset

The sunsets on the Gulf are unparalleled.

 

Did You Know?

British composer Ralph Vaughan Williams set text about the sea from American Poet Walt Whitman’s “Leaves of Grass” in his Symphony No. 1, “A Sea Symphony,” for chorus and orchestra. In the piece, Vaughan Williams paints a symphonic picture of the sea that transports the listener, making you feel as if you were at sea. Since setting sail a few days ago, I can’t get this piece out of my head. Have a listen!

https://open.spotify.com/user/1243186021/playlist/6lOxst2QezoMlnJ4TdYAn3?si=xnS-ZDUkQ82YkoEPvRcA2Q

Behold, the sea itself,
And on its limitless, heaving breast, the ships;
See, where their white sails, bellying in the wind, speckle the
green and blue,
See, the steamers coming and going, steaming in or out of port,
See, dusky and undulating, the long pennants of smoke.

Walt Whitman, Leaves of Grass, Book XIII: Song of Exposition

Geoff Carlisle: Last Night in Texas, June 5, 2018

NOAA Teacher at Sea

Geoff Carlisle

Aboard NOAA Ship Oregon II

June 7 – 20, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 5, 2018

Welcome!

Geoff's classroom

In my classroom at KIPP Austin College Prep

Hello! My name is Geoff Carlisle, and I’m joining the NOAA Ship Oregon II this summer as part of the NOAA Teacher At Sea program. Every few days I’ll be posting updates here about my experiences on the ship, so keep checking in for updates from the Gulf (and to see if I’ve fallen overboard)!

I’m so excited to fly to Pascagoula, Mississippi tomorrow to begin my trip. When I heard that I was selected to join this program, I felt like a kid again. For anyone who knows me, I wear my love of nature documentaries and the natural world on my sleeves, so the chance to live at sea and interact with sea creatures is a dream come true. My biggest hope for this trip is that I get to hold a shark (crossing my fingers)!

Weather Data from the Bridge (Well… Austin)

  • Latitude: 30.336 N
  • Longitude: 97.687 W
  • Water Temperature: —
  • Wind Speed: 5.2 knots
  • Wind Direction: S
  • Visibility: 8.67 nm
  • Air Temperature: 37.2 oC (99 oF)
  • Barometric Pressure: 1009.6 mbar
  • Sky: Clear
No hurricanes expected

Five-Day Graphical Tropical Weather Outlook

I have to admit, the idea of sailing in the Gulf of Mexico gives me as much trepidation as it does excitement. As a science teacher, the Gulf is synonymous with hurricanes. However, I was pleased to see that NOAA’s National Hurricane Center tweeted today, “no new tropical cyclones are expected during the next five days.” So I’ll be fine for at least that long.

Here in Austin, the heat is oppressive, with temperatures already reaching over 100 oF, and daily reminders from NPR that we are flirting with record highs. Daily life is consumed by heat-related questions: “Did I put the sun reflector up in my car so can actually sit in my car? Did I bring another shirt with me for when I inevitably sweat through the one I have on? Are people like me with Norwegian heritage even supposed to live this far south?” As a triathlete, I spend a lot of time training in conditions that mimic what I’ll see in a race. Since the direct sunlight and heat will be similarly intense at sea, I’m just treating each triple-digit day like a training session. A very sweaty training session.

 

Science and Technology Log

This summer, I will be joining the science team aboard the NOAA Ship Oregon II on leg one of the SEAMAP (Southeast Area Monitoring & Assessment Program) Summer Groundfish Survey in the Gulf of Mexico.  This research is vital to the long-term sustainability of groundfish and shrimp populations in the Gulf. The three primary research objectives are:

  1. Provide near-real-time data on the size of shrimp in the gulf
  2. Aide in the evaluation of when to close the Texas shrimping season
  3. Measure the groundfish and shrimp stock across the northern Gulf of Mexico

Four ships across the Gulf, including the Oregon II (see below), conduct this research in June and July every year by casting long nets called trawl nets at different locations around the Gulf. These nets are reeled onto the ship’s deck, and the contents of the catch are brought inside to be sorted by species, sexed, measured, weighed, and the data recorded. Some particular species will be stored and brought back to labs on the mainland for research.

NOAA Ship Oregon II

NOAA Ship Oregon II (Photo Credit: Ensign Chelsea Parrish, NOAA)

  

Personal Log

College pennants

College pennants decorate the walls when you enter the school, giving a visual reminder to our school’s driving purpose.

Last week I completed my 8th year teaching middle school science. I began my teaching career as a Teach For America corps member in the Mississippi Delta, and have spent the past six years at KIPP Austin College Prep. KIPP is a national network of public charter schools that primarily serve students from underserved communities, and put them on the path to college. Every day when I enter school, the first thing I see when I come in the door is a sign that says “Home of the hardest working students in Austin,” and this couldn’t be more true. I came to KIPP because I wanted to be a part of a community of exceptional educators who are committed to educational equity. Being part of a mission-oriented organization makes every day feel urgent and purposeful, and I’m proud to call myself a KIPP teacher.

Watch the video to learn more about KIPP Austin!

As a science teacher, I know how important it is that my students have learning experiences outside of the classroom. Partnering with my immensely talented colleague Colleen Henegan, we secured a Bright Green Futures grant from the City of Austin to build the largest school-based aquaponics greenhouse in Central Texas. Our school is located in a federally-recognized food desert (an area where access to healthy foods is severely limited). The system was built largely by our own students, along with Google employees who volunteered their time. Aquaponics is a method of cultivating fish and plants together in a closed system that is vastly more energy-efficient and requires 90% less water than traditional agricultural methods. Our students are learning how to grow plants in an environmentally-conscious way that allows them to see how science can be used to solve real-world problems.

AP Environmental Science Teacher Colleen Henegan

AP Environmental Science Teacher Colleen Henegan testing the aquaponics system’s plumbing

Aquaponics demo system

Our demo system that I built to show how fish and plants can be grown together in symbiosis (fish are in the tank below, and cucumber are growing in lava rocks above!)

greenhouse

A photo of the greenhouse our students helped to build which now houses our system

Outside of teaching, I enjoy playing in an orchestra and training for triathlons (I’m training for my first Ironman 70.3 in October!).

Did You Know?

As a native of Oregon, being a crew member on Oregon II feels quite special. In my research about the ship, I was fascinated to learn that it has also achieved some major accomplishments:

  • Built in 1967, Oregon II is the longest-serving ship in the NOAA fleet. It has logged over 10,000 days at sea and traveled over 1,000,000 nautical miles, sailing as far south as the Amazon River Delta in Brazil, and as far north as Cape Cod, Massachusetts. (Source)
  • In 1998, Oregon II was the first United States Government ship to call at Havana, Cuba since 1959 when Fidel Castro took control of the country. The ship partnered with NOAA’s Cuban counterparts to research shark migration patterns. (Source)

 

Melissa Barker: Data, Samples and Research, Oh My, June 29, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 29, 2017

Weather Data from the Bridge

Latitude: 29 11.93 N

Longitude: 92 40.31 W

Air temp: 28.6 C

Water temp: 28 C

Wind direction: 180 degrees

Wind speed: 13 knots

Wave height: 1 meter

Sky: Overcast

Science and Technology Log

We had a slight lull in the sampling yesterday due to storms and lightning risk, but today has been full speed ahead with the trawling. In this blog I’ll talk more about taking data and how the data and samples are used.

We use the FSCS system, designed by NOAA, to record our data for each trawl. The program walks us through all the data need for each species. The pattern goes something like this: select species, measure length with the Limnoterra magnetic measuring board, then mass the individual, and finally try to determine the sex of the organism. Without this technology I can image that the whole sampling process would take a lot longer.

 

 

Determining sex can be tricky at times and there are some species that we cannot sex such as squid, scallops and very small fish. We cut the fish open and look for male and female gonads. If possible we also mark the maturity state of the individual.

Female gonads

Male gonads

When recording shrimp, we measure length, weight and sex for each individual up to 200. This can take a while, but working in pairs we get pretty efficient. Female shrimp have a circular breast plate, called a thelycus, under the head or just above their first set of legs. Males have a petasma, the male sex organ, between their two front legs.

Female shrimp on the left, male shrimp on the right. The knife is indicating the petasma, the male sex organ.

David (left) and Tyler work together to measure, weigh and sex the shrimp efficiently

You might be wondering what happens to all this data that we are collecting?

The data we collect is sent to SEAMAP (Southeast Area Monitoring and Assessment Program) and is made publicly available. Scientists can use this data for their research. The SEAMAP Groundfish survey happens twice per year and has been ongoing for 42 years, allowing for identification of long term trends in the data.

SEAMAP gives the shrimp data to the different state agencies who make the data available to fishermen, who will use it to determine if shrimp are of marketable size and thus worth heading out to shrimp.

Bagged lizard fish headed to the freezer

In addition to the data we are collecting, we also collect and freeze samples. Any scientists can make requests for a study species to be saved from our trawls. These requests are entered into the computer system, which prompts us to bag, label and freeze the species to be taken off the ship at the end of the cruise.

Samples stored in the freezer. There are many more in additional freezers.

For example, we save all Red Snapper and send them to the NOAA lab in Panama City, Florida, for an age and growth study. Red Snapper is the top commercial fish in Gulf of Mexico, so this is critical data for fisherman and sustaining a healthy fish stock.

 

Several of the students who are part of the science team are collecting samples for their research.

Tagged Blue Crabs (photo credit: Helen Olmi)

Helen, who is part of the night shift, attends University of Southern Mississippi and is part of the Gulf Coast Research Lab. She is part of a team that is looking at migration patterns and reproductive behavior of female Blue Crabs (Callinectes sapidus). She tags female crabs and if fishermen find them they call in to report the location. Female Blue Crabs mate after their terminal molt and collect sperm in sac-like receptacles to use later to fertilize their eggs. When ready to spawn, the females move lower in the estuary into saltier waters. Blue Crabs are the most common edible crab so it is important to continue to monitor the health of the population in the Gulf.

Sharpnose Shark ready to be measured

David is an undergrad at University of Miami, who has earned a scholarship through NOAA Office of Education school scholarship program. As part of this program, he is funded to do summer research. He is working as part of larger study looking at the distribution and diet of the sharpnose shark (Rhizoprionodon terraenovae), one of the most common species of shark in the Gulf. Sharpnose sharks are generalists and the research study is looking to see if they are also potentially opportunistic eaters. He is also comparing diets from East and West Gulf sharks and may also be able to compare diets of sharks in low vs high oxygen areas. David’s data collection involves sorting through partially digested stomach remains to try to figure out what the shark ate; he gets to play detective in the lab.

Tyler holding a Croker

Tyler is a graduate student at Texas A&M at Corpus Christi and works with Atlantic Croaker (Micropogonias undulatus). He researches whether exposure to low oxygen affects what Croaker eat. Croaker are widely abundant in the Gulf–they often make up more than half of our trawl samples–thus they make a good study species. Croaker often feed at the bottom, in the benthic zone. Tyler is trying to determine if Croaker are changing their feeding patterns in hypoxic areas by feeding higher up in the water column in the pelagic zone to find more food. He uses Croaker tissue samples to examine diet using isotopes. The general idea with isotopes is that what you eat or process will become part of you. Different prey species will have different isotope signatures and looking at Croaker tissue can determine what organisms the fish have been eating.

As you can see the data and samples from this survey support a lot of science and sustainable fisheries management. Check out some of the interesting organisms we have found in our trawls in the last few days.

 

 

Personal Log

 As we crank through trawl after trawl of species, I have to stop and remind myself of where I am. As a land lover, it can be a little disconcerting that there is no land anywhere in sight. This fact is helping me appreciate the vastness of the ocean. It is said that we have only explored five percent of the ocean. Before I was on the Oregon II, this was hard to believe, but now I am starting to comprehend just how large the ocean really is.

Sunset over the Gulf of Mexico

Andre and the Cobia

We had some rough seas due to a storm cell a couple days ago which got the boat rocking and rolling again. The movement made it hard to sleep or move around. Luckily, we are through that area and back to our normal motion. With each trawl, I anticipate the possibility of interesting new species that might come up in our net. We caught an 18.8 kg Cobia (Rachycentron canadum) in our net yesterday, which is a fish I had never heard of, but is apparently prized as a food and game fish. Andre filleted it up and we ate it for lunch. It was so of the best fish I’ve ever tasted. Living in Colorado, I don’t eat much seafood, but I’ve decided to try what we catch out here and I’m glad I have. We’ve also had fresh caught shrimp and snapper that were delicious thanks to Valerie and Arlene, the stewards who are keeping us well fed.

I’m enjoying getting to know some of the folks who work on the ship. Many of these people have worked on the Oregon II for several years. When you live and work with each other in a confined space for 24 hours a day, you become close pretty quickly. The family feel among the crew and officers is evident.

I am getting more efficient with my measuring and weighing techniques and even remembering a few scientific names. During each twelve-hour shift, the time spent on our feet depends on the number of stations we cover. Some days we are back to back, just finishing up one sample while they are already trawling for the next. A monitor screen tells us the distance to the next station, so we can anticipate what is coming next. We are getting closer to the Mississippi delta where we are anticipating a decrease in oxygen at some of our stations.

Did You Know?

The Natural Marine Sanctuary System is a network of underwater parks that protects more than 600,000 square miles of marine and Great Lakes waters. NOAA’s Office of National Marine Sanctuaries serves as the trustee for the parks and brings together a diverse group of stakeholders to promote responsible and sustainable ocean use and protect the health of our most valuable ocean resources. Healthy oceans can provide recreation and tourism opportunities for coastal communities. (Source: sanctuaries.noaa.gov)

Marine Sanctuary map copy

(Photo credit: sanctuaries.noaa.gov)

In the Gulf of Mexico there is a marine sanctuary called Flower Garden Banks which includes three different areas, East Flower Banks, West Flower Banks and Stetson Bank, which are all salt dome formations where coral reef communities have formed. You can learn more about our National Marine Sanctuary System here.

Dawson Sixth Grade Queries

Why do you need to take the temperature and amount of salt in the water? (Bella)

Temperature, salinity, dissolved oxygen and florescence measurements give us more information about the water where we are sampling. Salinity helps tell us if we are in a freshwater, estuary or fully marine environment. The salinity will decrease as we near the Mississippi river delta. Salinity and temperature affect fish physiology or body functions. Each species has normal tolerance levels that it can live within. Organisms that find themselves outside of their salinity and temperature limits might not be able to survive.

The image of the CTD data below gives you an idea of typical values for temperature, salinity, dissolved oxygen and florescence and how they change as depth increases.

CTD key: pink=fluorescence, green=oxygen. blue=temperature, red=salinity

Does the temperature of the ocean get colder as it gets deeper? (Allison)

Generally temperature does decrease with depth, but in our shallow sampling locations there can be less than a 2 degree C temperature change. As you can see on the CTD data above, the temperature changed 6 degrees C at this sampling location.

How deep is it where you have sample? (David, Shane, Alix)

We sample at depths of 5-60 fathoms. One fathom equals 6 feet.

 

 

Chris Murdock: Let The Adventure Begin! June 5, 2017

NOAA Teacher at Sea
Chris Murdock
Aboard NOAA ship Oregon II
June 7th – June 20th, 2017

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 30, 2017

Weather Data from the Bridge

Weather in Iowa can be crazy! Just last week we went from 90 degrees and sunny all the way down to 50 degrees and rainy in the course of three days. We have been lucky this week to have sunny skies and a very comfortable temperature of 75. Perfect running weather!

Science and Technology Log

I will be joining the crew of the Oregon II on leg one of the SEAMAP (Southeast Area Monitoring & Assessment Program) Summer Groundfish Survey in the Gulf of Mexico. Some of the objectives of this survey are to monitor the size and distribution of shrimp and other groundfish (fish that live near the sea bottom), as well as to provide information on shrimp and groundfish populations within the Gulf of Mexico. In order to accomplish these objectives, large quantities of groundfish are collected using a long net called a trawl net. All shrimp species will be sorted from the catch in order to be weighed and sexed. A total of 200 shrimp from each catch will be documented, and this information will be extrapolated out to determine estimated total numbers from each area studied. This process will be repeated for other selected species of groundfish through the course of the study. Research like this is vital to the long-term sustainability of these fish populations.

 

Oregon II

NOAA Ship Oregon II. Photo Courtesy of NOAA

Personal Log and Introduction

My name is Chris Murdock and I teach Biology, AP Biology, and Biomedical Science at Regina High School in Iowa City, Iowa. I have been lucky to call Regina home for the past 4 years. Regina is such a unique place for so many different reasons, and I could probably spend this entire post explaining what Regina means to me and how it has made me into the teacher/person I am today. I will forever be grateful to Regina for allowing me opportunities like this one to better myself both personally and professionally.

3896

Backpacking through Canyonlands National Park, March, 2017

Throughout my entire life, I have always considered myself a very curious person. Even at an early age, I would constantly ask questions about how this and that worked, or why certain phenomena happen the way that they do. As a result, I have always been fascinated by the wonderful world of science. That hunger for knowledge led me to Mrs. Mazucca’s honors biology class my sophomore year of high school. Never before have I had a teacher more passionate, more engaging, and one that genuinely got you excited for a topic you knew nothing about. I loved every second of that class, and I can honestly say that without having Mrs. Mazucca I would not be in the position I am today. It was in that moment I knew what I wanted to be when I grew up. From that day on, everything I did was to better prepare myself to be the best educator I could be.

I have always been fascinated by the oceans and the life within them. Growing up in the Midwest, I was confined to exploring local rivers and lakes. While I loved exploring the bodies of water around me, there was always something about the ocean that drew me in. From the vastness of the oceans, to the diversity of life within them, I was awestruck. After all, life has been evolving in the oceans for hundreds of millions of years! Every vacation I took near an ocean, I would spend as much time as possible in and around the water. It is amazing to me that something so prominent in all of our lives can go unchecked for such a long period. During my time at the University of Iowa, I took every marine science class I could. There was even a period where I contemplated leaving the college of education to pursue a career in marine biology. The more I learned, the more I fell in love with the ocean. Unfortunately, one thing became increasingly clear to me throughout college: the oceans and the life within them are in danger like never before. While I could do plenty to educate the masses as a marine biologist, I knew that teaching was where I could make the greatest impact. I decided that as a teacher, I was going to do everything I could to foster an environment to make my students more environmentally and globally aware. In order for this to be successful, I myself needed to embark on a journey to do the same.

1803.PNG

Snorkeling in Belize, August 2016

Fast forward to December of 2015 when my girlfriend notified me of the NOAA Teacher At Sea Experience. “This is absolutely perfect for you!” she said, “You have to sign up for this”. The more I researched, the more I thought this was too good to be true. I spent nearly the entire next year thinking about the potential of this trip until the time finally came to fill out my application. At the end of November, after all the forms were turned in, I received the email “you will receive notification of your application status via the email address listed on your application by February 2017”. It was going to be a long wait.
Then came February 1st, and as I was walking out of the door to go to school I got an email from NOAA. I nearly spilled my coffee all over me as I fumbled over my phone to open the document as fast as I could. Ever since last December, I had prepared myself for a rejection letter. While I was very confident in my application, I just didn’t believe it would work out. It was too perfect of an experience for me to actually happen. With my heart pounding out of my chest, I began to read the document. To my utter amazement I was accepted! Me. Accepted into the experience of a lifetime. Words cannot describe the pure joy I felt as I drove to work that day. I was going to get the chance to live out my childhood dream, without sacrificing my true passion of teaching. To say I am lucky is an understatement.

1264.JPG

My students and I on the senior class trip to Washington, DC. April, 2016

From that day on, my life revolved around NOAA Teacher At Sea. I read dozens of blog posts, I read about every ship in the fleet, and I filled out all the required paperwork as fast as my printer would spit it out. While any cruise would have been an unbelievable experience, I could not be happier with being selected for the SEAMAP survey in the Gulf. Living in Iowa and the heart of farmland, USA, my actions and the actions of my neighbors have a direct impact on the health of the Gulf ecosystem. It is my hope that once I return from my cruise, I will be able to get my community to be more conscious of the oceans and how we positively (or negatively) affect them. Writing this blog, I am still in a state a shock that this is really happening. June 7th cannot get here fast enough! I am so excited to be able to spend two amazing weeks on board the Oregon II learning from some of the best scientists in the world.

Did You Know?

The Gulf of Mexico is the ninth largest body of water on the planet, covering an area of 600,000 mi2! (Source-Encyclopedia Britannica)

Fact of the Day

In my classroom, we start class every day with a “Fact of the Day” where I share new and upcoming research from the scientific community. Today’s fact comes from NOAA Research Vessel Okeanos Explorer.

This NOAA team has been exploring the depths of the Central Pacific Basin to explore deep water ecosystems before they become impacted too greatly by climate change. On this expedition, the NOAA team captured some truly amazing footage, some of which had previously not been seen except for in the fossil record! Some examples include Sea snails basically eating the poop of crinoids (sea lilies), and usually inactive brittle stars attacking swimming squids! Several videos from this expedition are posted below.

All of this amazing research sheds light on a largely unexplored region of the oceans, and the data collected from this expedition will help create a baseline to measure the effects of climate change moving forward. (Source-Ocean Explorer.noaa.gov) (Videos of these interactions can be found here!- http://oceanexplorer.noaa.gov/okeanos/explorations/ex1705/logs/photolog/welcome.html)

Kimberly Scantlebury: Beneath the Waves, May 4, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date:  May 4, 2017

Weather Data from the Bridge

Time: 10:25

Latitude: 2823.2302 N, Longitude: 9314.2797 W

Wind Speed: 12 knots, Barometric Pressure: 1009 hPa

Air Temperature: 19.3 C, Water Temperature: 24.13  C

Salinity: 35.79  PSU, Conditions: Cloudy, 6-8 foot waves

Science and Technology Log

IMG_2968

The cameras are sent down 15-150 meters. It takes several crew, plus Joey “driving” inside the dry lab, to make each launch happen.

Long line fishing is one way to gather fish population data. Another is remote sensing with camera arrays. The benefit of this is it is less invasive. The downside is it is more expensive and you can not collect fish samples. The goal has been to do ten-twelve camera array deployments a day.

IMG_2954

Hi, OSCAR.

There are two camera arrays set up: Orthogonal Stereo Camera Array (OSCAR) and an array containing a 360 degree spherical view camera pod and a single stereo camera (Frank). OSCAR runs technology that has been used since 2008. There have been many incarnations of camera technology used for the SEAMAP Reef Fish Survey since 1991. The OSCAR setup uses four stereo cameras that capture single video and stereo pair still images. Frank uses six cameras that can be stitched together to give a full 360 viewing area. This work is used to determine trends in abundance of species, although there are a few years of holes in the data as the transition from catch to camera took place. OSCAR setup and the Frank setup (affectionately called that due to its pieced together parts like Frankenstein’s Monster) both run to provide comparisons between the different technology. One of the other devices on Frank is an Abyss by GoPro.

IMG_2964

NOAA scientist, Kevin works on making sure the Abyss is reading to attach to Frank.

GoPros’ Abyss device may be a cheaper, off the rack option, but they do not do as well in low light conditions. Choosing gear is always a balance between cost and wants. For that you need to spend more for custom scientific equipment. 

Researchers are always working to stay current to gather the best data. This requires frequent upgrades to hardware and software. It also means modern scientific researchers must possess the skills and fortitude to adapt to ever changing technology. The ability to continually learn, troubleshoot, and engineer on the fly when something breaks are skills to learn. This is something all current students can take to heart.   

IMG_2970

The team troubleshooting technology.

Together, camera arrays, vertical long lines, and fish trap methods give a more accurate view of beneath the waves.

Quote of the day regarding launching the camera arrays: “You gotta remember, I’m gonna make that lady fly.”-James

Personal Log

IMG_3006

There are three different sized hooks used that rotate through the three Bandit reels.

Another important science lesson is that zero is a number. There have been camera problems to work through and we have not been catching fish. Sometimes that zero is from equipment that stopped running. Those zeros are errors that can be removed from the data set.

With fishing, we record if the bait is still attached or not, even if we do not catch any. It is always fun to put thirty hooks down and not know what is going to appear until we reel them up. It is also disappointing not to catch anything. Data is data. It is important for determining species abundance.

IMG_3010

Baiting the hooks.

I have enjoyed learning how to record on the data sheets, bait the hooks, de-bait the hooks (so there is always fresh bait), and a lot of little parts that are a part of the overall experience.

When we are working, the ship goes to a predetermined location and stops. The CTD (conductivity, temperature, depth) Water Column Profiler is dropped in first (to be featured in a future post) then raised after data collection is done. Next either OSCAR or Frank goes down. Every few stops we also do the vertical long line fishing. The ship then goes on to the next stop, which takes about twenty minutes. That time is spent breaking down fish (when they are caught) and troubleshooting equipment.

Did You Know?

IMG_3004

When on deck, hard hats and PDF are required when the cranes are running.

Kimberly Scantlebury: Sharks, Snappers, and Sealegs, May 2, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

IMG_2952

My beautiful home for two weeks.

Geographic Area of Cruise: Gulf of Mexico

Date: May 2, 2017

Weather Data from the Bridge

Time: 11:25

Latitude: 2808.4978 N, Longitude: 09329.9347 W

Wind Speed: 18.69 knots, Barometric Pressure: 1015.6 hPa

Air Temperature: 27.4 C, Water Temperature: 24.4 C

Salinity: 35.9301 PSU,  Conditions: sunny, no clouds, small waves

Science and Technology Log

There are several ways data is collected for the SEAMAP Reef Fish Survey in order to have a more complete understanding of the reef system. One of them is fishing with vertical long lines with Bandit reels. We are fishing for snapper species (Lutjanus sp.), grouper species (Serranidae sp.), and certain species of amberjack (Seriola sp.). There are three reels mounted on the vessel’s starboard side. The fishing works by dropping a weighted line with ten mackerel-baited hooks per reel, which then ends with an orange float. The boat is kept as still as possible and we wait a designated period of time before reeling up the lines.

I fished with deckhand James and Texas A&M graduate student, Jillian. The other lines were fished by NOAA scientists Joey, Kevin, John, and other deckhands. Our first try we caught two large spinner (Carcharhinus brevipinna) sharks that escaped back to sea. The other lines caught smaller sharks and a couple red snappers. We ended up catching and returning six sharks.

This slideshow requires JavaScript.

Even though we were not aiming to catch sharks, they are part of the ecosystem and the data is collected. The data is written down on paper first and then transferred to computer databases. Some of the sharks required wrangling and less data was collected before releasing them live to prevent harm to shark and people.

The red snappers were weighed, measured in different ways, sexed, the sexual development was determined, and then retained, meaning we kept the fish. The otoliths (ear bones) and gonads (reproductive parts) were also weighed, labeled with an unique bar code, and stored for later analysis down at the Panama City Lab.

Determining variability of fish ages is possible due to this important work. Otoliths work similar to aging tree rings. Under a microscope you can clearly read each year. By comparing fish size to gonads, it has been determined a thirty-year-old red snapper can produce more eggs than 30 one year old red snappers. It is easy to see the research conducted on NOAA Ship Pisces is vital to managing and protecting our nation’s seafood supply.

This slideshow requires JavaScript.

Personal Log

The movement aboard a ship this size is different than smaller vessels I’ve been on such as a ferry, lobster boat, and other research vessels. Right now we are expecting to not work Thursday due to high seas and wind. The NOAA Ship Pisces’s 208 feet sways in every direction-up, down, all around. The adjustment period for acclimating to this unpredictable movement is referred to as, “getting your sealegs.” This is also an apt metaphor for my time adapting to life on board.

Other than research protocols, Teachers at Sea need to learn what to do in case of emergencies. The science staff, including myself, received a safety briefing before leaving port.  Each person is assigned a muster station where they are to report if there is a Fire or Man Overboard. A separate location is assigned for Abandon Ship. Each emergency has a designated series of short or long horn blasts from the ship so it is clear to all what is happening.

IMG_2998

It’s Gumby suit time!

Later, the whole ship drilled Abandon Ship. As fast as possible, we each carried our personal flotation device (PFD) and survival suit (referred to as a Gumby suit) to our life raft station. I then practiced how to get the suit on in less than a minute.

Did You Know?

As a New Englander, I talk faster than most people on NOAA Ship Pisces, whose home port is Pascagoula, Mississippi.

There are a lot of oil rigs in the Gulf of Mexico. We have not seen any other vessels out here, but can often see a half dozen rigs at a time. In fact, NOAA Ship Pisces was recognized for, “outstanding and successful emergency mobilization by providing acoustic monitoring survey operations under hazardous and arduous navigation conditions in support of the Deepwater Horizon Oil Spill recovery efforts.” 

IMG_3003

Oil rigs in sight as equipment is brought back aboard.

David Walker: Crossing the Mississippi River Delta (Days 10-12), July 5, 2015

NOAA Teacher at Sea
David Walker
Aboard NOAA Ship Oregon II
June 24 – July 9, 2015

Mission: SEAMAP Bottomfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: July 5, 2015

Weather Data from the Bridge

Weather Log 7/5/15

NOAA Ship Oregon II Weather Log 7/5/15

This has been some of the smoothest water I’ve seen yet on the ocean.  At times, you can’t even see wave motion on the surface of the ocean, and it looks more like a lake.  On July 5, 2015, waves were estimated to be 1 ft. in height, at most (see above weather log from the bridge).  Sky condition on July 5 began as scattered (SCT, 3-4 oktas), moved to broken (BKN, 5-7 oktas) and overcast (OVC, 8 oktas) by the afternoon and evening, and then returned to FEW (1-2 oktas) by 11 PM.  There was rain observed in the vicinity (VC/RA) at 4 PM, and some lightning (LTG) was observed in the late evening.

Science and Technology Log

The survey is still progressing smoothly.  We have just crossed the Mississippi River delta, and I have observed a much greater human presence in the water — many ships, mostly commercial shrimping vessels, and even more oil rigs than usual.

Of particular interest to me, we have caught many new species over the past couple of days.  One notable new catch on Day 11 was a giant hermit crab (Petrochirus diogenes), the largest species in the Gulf of Mexico.  In most cases, hermit crabs need to be removed from their shells in order to be successfully identified.  This process was much more difficult than I had imagined, and I ended up having to use a hammer to crack the shell.  The crab contained within was indeed large – it amazed me that such a large species could occupy such a moderately-sized shell.  After analyzing the crab in the laboratory, we quickly returned it to the ocean, in the hope that it would find another shell in which to occupy and survive.

Another interesting catch on Day 11 was a seabiscuit (Brissopsis alta).  This organism was caught at a station overlying a sandy/muddy bottom, this type of seafloor environment providing a habitat for these unique creatures.  We were able to prep the seabiscuit with bleach in the same manner in which we prepped the sand dollars a couple of days ago.  The product was a purely white – a very delicate, yet quite beautiful specimen for my classroom.  Much thanks to fisheries biologist Kevin Rademacher for his help in preparing these organisms.

On Days 11 and 12, we caught some particularly large individuals, which made for great photo opportunities.  On Day 11, we caught the largest roundel skate (Raja texana) that we’ve seen yet, and on Day 12, we netted a large gulf smoothhound (Mustelus sinusmexicanus), a shark species that interestingly has no teeth.  The rest of the night shift was encouraging me to take a photo with my hand down the shark’s mouth, but I settled for the typical catch photo.  This shark was swiftly returned to the water (head first) after laboratory analysis was conducted, and it survived the catch.

As we have to open up fish in order to sex them, it is a natural investigative temptation to look at the other anatomy inside the fish.  A usual focal point is the stomach, as many times, fish stomachs are very disproportionately bloated.  Many times, enlargement of organisms such as the air bladder, stomach, and eyes of caught fish is due to barotrauma.  When a fish is quickly taken from deep waters to the surface, the pressure rapidly decreases, causing internal gases to expand.  In certain cases, we have discovered very recently eaten fish inside organisms’ stomachs.  One particularly interesting example was the stomach of a threadtail conger (Uroconger syringinus), in which we found a yellow conger (Rhynchoconger flavus) of equal size!

Uroconger Ate Rhyncoconger

We found the yellow conger on the right inside the stomach of the threadtail conger on the left! Photo credit to Kevin Rademacher.

I have started to realize the very subtle differences between some species.  One great example of such subtle variance is found in two similar sole species – the fringed sole (Gymnachirus texae) and the naked sole (Gymnachirus melas).  The naked sole contains a faint secondary stripe in between each of the bold stripes on its back; the fringed sole does not have this stripe.  During our initial sorting of species, I unwittingly threw both of these species into the same basket.  Fortunately, fisheries biologist Kevin Rademacher noticed what I was doing and identified the distinguishing phenotypic difference.  I have adjusted the brightness, contrast, and shadowing of the below photos to make the difference in striping more apparent.

Flatfish, such as the soles above, have a very interesting developmental pattern from juvenile to adult.  Fisheries biologists Kevin Rademacher and Alonzo Hamilton were able to nicely summarize it for me.  As juveniles, they start off with eyes on both sides of their heads and swim in the same manner as normal fish.  However, once they get large enough to swim out of the current, they “settle out” onto the seafloor.  At this time, a very interesting series of morphological changes takes place.  Notably, the eyes of the fish migrate such that they are both on one side of the fish’s body.  This morphological change has clearly been evolutionary favored over generations, as it allows the fish to see with both of its eyes while slithering along the seafloor.  The side of the fish on which the eyes end up depends on the particular species of fish.  Flatfish are accordingly categorically defined as “right-eyed” or “left-eyed,” based on the side of the fish containing the eyes.  The procedure is fairly simple to define a flatfish a right-eyed or left-eyed.

  1. Look down at the side of the fish containing both of the eyes.
  2. Orient the fish such that the eye that migrated from the opposite side is on top.
  3. If the head faces left, the flatfish is defined as left-eyed.
  4. Otherwise, it is defined as right-eyed.

On many occasions, we have been able to keep some of our catch to later eat.  I have had fresh white shrimp, brown shrimp, red snapper, lane snapper, vermillion snapper, hogfish, and even paper scallops.  I have obtained lots of practice heading shrimp and fileting fish, as well as shucking scallops.  It has been very interesting to visualize the entire process, from catch to table.  It is true what they say, incredibly fresh seafood tastes much better.  Most of the credit here goes to Chief Steward (CS) Mike Sapien and Second Cook (2C) Lydell Reed, the chefs on the ship.

Also after my shift, I was able to visit the ship’s bridge for the first time during the day.  The environment at night is quite different on the bridge, as the NOAA Corps Officers driving the ship need to keep their eyes adjusted to the dark.  Accordingly, the only lights used in the bridge at night are red, reminding me of the lights used by the scientists I observed on a recent night trip to the UT McDonald Observatory.  My trip to the bridge during the day allowed me to observe the operation of the ship and many instruments clearly for the first time.  It was honestly quite intimidating — so many instruments, controls, and dials, and I had no clue what any of them did.  I was very scared to touch anything – the only instrument with which I braved to interact was a very nice pair of binoculars.  The ship is always driven by NOAA Corps Commissioned Officers.  During the time of my observation, Ensign (ENS) Laura Dwyer, a Junior Officer, and Lieutenant Junior Grade (LTRG) Larry Thomas, the ship’s Operations Officer, were on the bridge.  The Captain (Commanding Officer) of the ship, Master David Nelson, entered and exited periodically.  ENS Dwyer was very kind to point out to me different instruments on the bridge and discuss the operating of the ship.  Interestingly, the NOAA Ship Oregon II operates on a system similar to that of a car with a manual transmission – while the ship has two engines instead of one, each engine has a clutch.  There is also a controllable pitch system that allows the operator of the ship to change the angle of the propeller.  There are two RADAR devices, as well multiple GPS navigational systems, on which the stations of the survey are plotted.  The are multiples of each of these important ship systems as a safety measure.  Despite the GPS systems, the ship still has a chart table on the bridge, and even a chart room, where routes are plotted out in more detail.  The helm, which controls the rudder, is still a large, prominent wheel, just as it was in the pirate stories I read as a child.  ENS Dwyer told me, however, that helms are much more abbreviated in appearance in more modern ships.  She indicated that many members of the NOAA Corps appreciate the “vintage” feel of the bridge of the NOAA Ship Oregon II — the ship will be 50 years old in 2017!

We have more or less finished the intended stations for Leg 2 of this survey, but as we still have time left before we are due back in port, we have received orders to proceed through to Leg 3 stations.  These stations are entirely across the Gulf of Mexico, along the western coast of Florida.  The traveling time there is over 14 hours by boat, and we will be traveling more or less as the crow flies.  I am really looking forward to these new stations, as I have heard the biodiversity is vastly different.

Survey Locations

Sections of the 2015 SEAMAP Bottomfish Survey

Personal Log

Ever since my shift on Day 11, in which I felt particularly fatigued and engorged, I have been completing cardio workouts daily.  There is quite a bit of workout equipment stored in various places throughout the ship, and I have finally found an enjoyable cardio workout.  I am using a rowing machine that I found on the top deck of the ship, and I set it up to face the direction of the ship’s movement.  In this way, when I row, I feel as though I am actually pushing the boat through the water.  The wave motion and periodic jostling of the ship makes the rowing machine feel even more like the real thing, and I am forced to recall my days rowing at the crack of dawn on Lake Dunmore near Middlebury, Vermont while in college.

Workout Setup

My workout setup on the top deck of the ship

The Fourth of July on the boat was free of any special pomp and circumstance.  It was, more than anything, just another work day.  Fortunately, all of the employees on the boat get paid overtime for working this day, as well as weekend days.  I definitely missed the Zilker fireworks celebration in Austin (TX), but it was meaningful to be on a boat with members of the NOAA Corps, a Commissioned Service of the United States, on this important day for America.

I have made significant progress in Tender is the Night and am almost finished.  I have also spent free time watching the FIFA Women’s World Cup and the Wimbledon Championships on the satellite television upstairs.

Regarding my sleep, I have finally stopped taking Dramamine®.  Lo and behold, I have had no more nightmares, this lending further support to my theory that Dramamine® was the cause.

The days are still very exciting, and I have yet to encounter a day without a great deal of fresh learning.  On to Florida!

Did You Know?

The Navy Motion Picture Service provides encrypted DVDs for use on deployed ships.  In the upstairs lounge, there are well over 700 DVDs, from classics to quite new releases, organized for anyone to watch in their free time.

DVD Binder

On of the many DVD binders on the ship, courtesy of the Navy Motion Picture Service

Notable Species Seen