Martha Loizeaux: Cool Science Tools and Drifter Buoy! August 26, 2018


Roy Moffitt: Measuring Ocean Properties with the CTD, August 19, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

 

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 19, 2018

 

Current location/conditions:

Evening of August 19 – Edge of the Barrow Canyons in the Beaufort Sea

Air temp 32F, sea depth  185m , surface sea water temp  32F

 

Measuring Ocean Properties with the CTD

Scientists have a tendency to use acronyms to refer to select processes and measures.  The acronym heard the most, if not constant, on this trip has been CTD.  So here is my best attempt to give you a brief overview of what that “CTD” means and some of the measurements scientists are taking.

CTD Deployment

Deploying the CTD (Conductivity, Temperature, and Depth) probe, which is suspended in a metal “package” with Niskin water bottles

The acronym CTD stands for conductivity, temperature, and depth of the ocean water. This instrument, which takes a measurement 24 times a second, is attached to a large frame that includes big plastic bottles know as Niskin bottles. Nearly every time we stop the ship the CTD package (shown in the image above) is slowly lowered to just above the sea floor (or less depending upon the scientific interest at the site).   On the way back up, the Niskin bottles are filled with seawater from different pre-determined depths.  An electronic switch is triggered for each bottle at different depths so that the containers are sealed closed trapping water from that depth.  Once the package is back on board the scientists measure various properties of the water, including its salinity and oxygen content which will be used to verify and calibrate the electronic sensors on the CTD.

The three main measurements of the CTD represent fundamental characteristics of seawater. Conductivity (C) determines the salinity or the amount of salt in the water.  Electrical conductivity or how well an electric current can flow through the water gives an instant real time measurement of water salinity.  When combined with temperature (T) and depth (D) this gives a measure of the density of the water, and even tells us something about how the water is moving.

In addition to these physical properties, other sensors attached to the CTD provide information on the underwater marine life.  Phytoplankton is the base of the underwater food web and is an important indicator for the overall health of the local marine environment. Phytoplankton is too small to be seen individually without the aid of a microscope; however, scientists have found a way to test for its presence in water. Phytoplankton gets its energy, as all plants do, from the sun using the process of photosynthesis. One of the sensors on the CTD tests for chlorophyll fluorescence, a light re-emitted during the process of photosynthesis.  The amount of fluorescence measured can be used to determine the amount of living phytoplankton at different depths in the ocean.  Another sensor measures the levels of sunlight in the water.

The water samples from the Niskin bottles are used to determine many other properties of the water. One such property is dissolved carbon dioxide.  Just like the atmosphere, the ocean has its own carbon cycle.  We might hear of increased atmosphere CO2 levels associated with global warming.  Some of this CO2 is absorbed from the atmosphere at the surface of the ocean and some of the carbon from the ocean is also exchanged into the atmosphere. This carbon exchange rate between the air and sea helps regulate the pH of the ocean.  Tracking dissolved carbon dioxide measurements over time gives scientists additional physical measurements to track the overall health of the marine environment.  Scientists have been seeing increasing amounts of dissolved carbon dioxide in the ocean which can decrease pH levels making the ocean more acidic.  Small changes in the ocean pH can affect some marine life more than others upsetting the balance in the marine ecosystems.

 

The Exiting Pacific Ocean

At the moment scientists are doing even more CTD casts with a focus on ocean currents.   We are at the edge of the Chukchi Sea where the Pacific-origin water exits the shelf into the deep Arctic Ocean. Much of this happens at Barrow Canyon, which acts as a drain for the water to flow northward. Scientists are still uncertain what happens to the water after it leaves the canyon, so the survey we are doing now is designed to track water as it spreads seaward into the interior Arctic.

 

The Pressure of the Deep Sea

Most of the CTD casts during our time on the Healy have not exceeded 300 meters.  Lowering and raising the CTD from deeper depths takes a lot of precious time, and on this cruise the emphasis is on the upper part of the water column.  However, on August 18, we completed a cast 1000 meters deep.  In addition to collecting data, we were able to demonstrate the crushing effects of the deep ocean pressure by placing a net of styrofoam cups on the CTD to the depth of 1000 meters.  Styrofoam cups contain significant amounts of air. This is why the styrofoam cup is such a good insulator for a hot drink.  At 1000 meters deep, much of the air is crushed out of the cup. Since the pressure is equivalent around the cup, it is crushed in a uniform way causing the cup to shrink. Here are some images demonstrating the crushing power of the sea.  *Note: The big cup with no drawing is the original size.  This will be a great visual tool to bring back to the classroom.

shrunk cups

Styrofoam cups shrunken by the increased pressure of the deep ocean

 

Today’s Wildlife Sightings

A highlight today was not seeing but hearing.  I was able to listen in live on Beluga whales with the help of  deployed sonobuoys.  The sonobuoys  are floating hydrophones that transmit back what they hear with their underwater microphones.  Today they picked up the Beluga whales and their short songs.  I thought their calls sound like the songbirds from home and little did I know, this is why they are called the canaries of the sea!

 

Now and Looking forward

Tonight we saw 100s of Walruses mostly on the ice.  On Monday we will have a presentation about walrus from one of the scientists on board.  I look forward to sharing pictures and what I learned in the next blog.

Anne Krauss: The Oregon II Trail, August 16, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 16, 2018

Weather Data from the Bridge

Conditions at 1106

Latitude: 25° 17.10’ N

Longitude: 82° 53.58’ W

Barometric Pressure: 1020.17 mbar

Air Temperature: 29.5° C

Sea Temperature: 30.8° C

Wind Speed: 12.98 knots

Relative Humidity: 76%

 

Science and Technology Log

Before getting into the technology that allows the scientific work to be completed, it’s important to mention the science and technology that make daily life on the ship safer, easier, and more convenient. Electricity powers everything from the powerful deck lights used for working at night to the vital navigation equipment on the bridge (main control and navigation center). Whether it makes things safer or more efficient, the work we’re doing would not be possible without power. Just in case, several digital devices have an analog (non-electronic) counterpart as a back-up, particularly those used for navigation, such as the magnetic compass.

 

This slideshow requires JavaScript.

To keep things cool, large freezers are used for storing bait, preserving scientific samples, and even storing ice cream (no chumsicles for dessert—they’re not all stored in the same freezer!). After one particularly sweltering shift, I was able to cool off with some frozen coffee milk (I improvised with cold coffee, ice cream, and milk). More importantly, without the freezers, the scientific samples we’re collecting wouldn’t last long enough to be studied further back at the lab on land.

Electricity also makes life at sea more convenient, comfortable, and even entertaining. We have access to many of the same devices, conveniences, and appliances we have at home: laundry machines, warm showers, air conditioning, home cooked meals, a coffee maker, TVs, computers with Wi-Fi, and special phones that allow calls to and from sea. A large collection of current movies is available in the lounge. During my downtime, I’ve been writing, exploring, enjoying the water, and learning more about the various NOAA careers on board.

To use my computer, I first needed to meet with Roy Toliver, Chief Electronics Technician, and connect to the ship’s Wi-Fi. While meeting with him, I asked about some of the devices I’d seen up on the flying bridge, the top deck of the ship. The modern conveniences on board are connected to several antennae, and Roy explained that I was looking at important navigation and communication equipment such as the ship’s GPS (Global Positioning System), radar, satellite, and weather instrumentation.

I was also intrigued by the net-like item (called a Day Shape) that communicates to other ships that we are deploying fishing equipment. This lets nearby ships know that the Oregon II has restricted maneuverability when the gear is in the water. At night, lights are used to communicate to other ships. Communication is crucial for safety at sea.

When I stopped by, Roy had just finished replacing some oxygen sensors for the CTD (that stands for Conductivity, Temperature, and Depth). For more information about CTDs click here: https://oceanexplorer.noaa.gov/facts/ctd.html

Without accurate sensors, it’s very difficult for the scientists to get the data they need. If the sensors are not working or calibrated correctly, the information collected could be inaccurate or not register at all. The combination of salt water and electronics poses many interesting problems and solutions. I noticed that several electronic devices, such as computers and cameras, are built for outdoor use or housed in durable plastic cases.

On this particular day, the ship sailed closer to an algal bloom (a large collection of tiny organisms in the water) responsible for red tide. Red tide can produce harmful toxins, and the most visible effect was the presence of dead fish drifting by. As I moved throughout the ship, the red tide was a red hot topic of conversation among both the scientists and the deck department. Everyone seemed to be discussing it. One scientist explained that dissolved oxygen levels in the Gulf of Mexico can vary based on temperature and depth, with average readings being higher than about 5 milligrams per milliliter. The algal bloom seemed to impact the readings by depleting the oxygen level, and I was able to see how that algal bloom registered and affected the dissolved oxygen readings on the electronics Roy was working on. It was fascinating to witness a real life example of cause and effect. For more information about red tide in Florida, click here: https://oceanservice.noaa.gov/news/redtide-florida/

Chief Electronics Technician Roy Toliver in his office on the Oregon II.

Chief Electronics Technician Roy Toliver in his office on the Oregon II. The office is like the ship’s computer lab. When he’s not working on the ship’s electronics, Roy enjoys reading out on the stern. It’s a great place for fresh air, beautiful views, and a good book!

Personal Log

Preparing and packing for my time on the Oregon II reminded me of The Oregon Trail video game. How to pack for a lengthy journey to the unfamiliar and unknown?

A video game screenshot

I had a hard time finding bib overalls and deck boots at the general store.

I didn’t want to run out of toiletries or over pack, so before leaving home, I tracked how many uses I could get out of a travel-sized tube of toothpaste, shampoo bottle, and bar of soap, and that helped me to ration out how much to bring for fifteen days (with a few extras, just in case). The scientists and crew of the Oregon II also have to plan, prepare, and pack all of their food, clothing, supplies, tools, and equipment carefully. Unlike The Oregon Trail game, I didn’t need oxen for my journey, but I needed some special gear: deck boots, foul weather gear (rain jacket with a hood and bib overalls), polarized sunglasses (to protect my eyes by reducing the sun’s glare on the water), lots of potent sunscreen, and other items to make my time at sea safe and comfortable.

I was able to anticipate what I might need to make this a more efficient, comfortable experience, and my maritime instincts were accurate. Mesh packing cubes and small plastic baskets help to organize my drawers and shower items, making it easier to find things quickly in an unfamiliar setting.

berths on ship show blue privacy curtains

This is where we sleep in the stateroom. The blue curtains can be closed to darken the room when sleeping during the day. On the left is a sink.

My own shark cradle

Reading and dreaming about sharks!

Dirt, guts, slime, and grime are part of the job. A bar of scrubby lemon soap takes off any leftover sunscreen, grime, or oceanic odors that leaked through my gloves. Little things like that make ship life pleasant. Not worrying about how I look is freeing, and I enjoy moving about the ship, being physically active. It reminds me of the summers I spent as a camp counselor working in the woods. The grubbier and more worn out I was, the more fun we were having.

The NOAA Corps is a uniformed service, so the officers wear their uniforms while on duty. For everyone else, old clothes are the uniform around here because the work is often messy, dirty, and sweaty. With tiny holes, frayed seams, mystery stains, cutoff sleeves, and nautical imagery, I am intrigued by the faded t-shirts from long-ago surveys and previous sailing adventures. Some of the shirts date back several years. The well-worn, faded fabric reveals the owner’s experience at sea and history with the ship. The shirts almost seem to have sea stories to tell of their own.

Sunset over water showing orange, pink, and blue hues.

As we sail, the view is always changing and always interesting!

Being at sea is a very natural feeling for me, and I haven’t experienced any seasickness. One thing I didn’t fully expect: being cold at night. The inside of the ship is air-conditioned, which provides refreshing relief from the scorching sun outside. I expected cooler temperatures at night, so I brought some lightweight sweatshirts and an extra wool blanket from home. On my first night, I didn’t realize that I could control the temperature in my stateroom, so I shivered all night long.

A folded grey hooded sweatshirt

It’s heavy, tough, and grey, but it’s not a shark!

My preparing and packing didn’t end once I embarked (got on) on the ship. Every day, I have to think ahead, plan, and make sure I have everything I need before I start my day. This may seem like the least interesting aspect of my day, but it was the biggest adjustment at first.

To put yourself in my shoes (well, my deck boots), imagine this:

Get a backpack. Transport yourself to completely new and unfamiliar surroundings. Try to adapt to strange new routines and procedures. Prepare to spend the next 12+ hours working, learning, exploring, and conducting daily routines, such as eating meals. Fill your backpack with anything you might possibly need or want for those twelve hours. Plan for the outdoor heat and the indoor chill, as well as rain. If you forgot something, you can’t just go back to your room or run to the store to get it because

  1. Your roommate is sleeping while you’re working (and vice versa), so you need to be quiet and respectful of their sleep schedule. That means you need to gather anything you may need for the day (or night, if you’re assigned to the night watch), and bring it with you. No going back into the room while your roommate is getting some much-needed rest.
  2. Land is not in sight, so everything you need must be on the ship. Going to the store is not an option.

Just some of the items in my backpack: sunscreen, sunglasses, a hat, sweatshirt, a water bottle, my camera, my phone, my computer, chargers for my electronics, an extra shirt, extra socks, snacks, etc.

I am assigned to the day watch, so my work shift is from noon-midnight. During those hours, I am a member of the science team. While on the day watch, the five of us rotate roles and responsibilities, and we work closely with the deck crew to complete our tasks. The deck department is responsible for rigging and handling the heavier equipment needed for fishing and sampling the water: the monofilament (thick, strong fishing line made from plastic), cranes and winches for lifting the CTD, and the cradle used for safely bringing up larger, heavier sharks. In addition to keeping the ship running smoothly and safely, they also deploy and retrieve the longline gear.

A pulley in front of water

Pulleys, winches, and cranes are found throughout the boat.

Another adjustment has been learning the routines, procedures, and equipment. For the first week, it’s been a daily game of What-Am-I-Looking-At? as I try to decipher and comprehend the various monitors displayed throughout the ship. I follow this with a regular round of Now-What-Did-I-Forget? as I attempt to finesse my daily hygiene routine. The showers and bathroom (on a ship, it’s called the head) are down the hall from my shared stateroom, and so far, I’ve managed to forget my socks (day one), towel (day two), and an entire change of clothes (day four). With the unfamiliar setting and routine, it’s easy to forget something, and I’m often showering very late at night after a long day of work.

Showers and changing stalls on ship

I’m more than ready to cool off and clean up after my shift.

One thing I never forget? Water. I am surrounded by glittering, glistening water or pitch-black water; water that churns and swells and soothingly rocks the ship. Swirling water that sometimes looks like ink or teal or indigo or navy, depending on the conditions and time of day.

Another thing I’ll never forget? This experience.

A water bottle in the sun

In case I forget, the heat of the sun reminds me to drink water all day long.

Did You Know?

The Gulf of Mexico is home to five species, or types, or sea turtles: Leatherback, Loggerhead, Green, Hawksbill, and Kemp’s Ridley.

Recommended Reading

Many of my students have never seen or experienced the ocean. To make the ocean more relevant and relatable to their environment, I recommend the picture book Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene. A young girl’s grandfather moves to the city and notices there’s nowhere to fish. She and her grandfather imagine fishing from their high-rise apartment fire escape. The “fish” they catch are inspired by the vibrant ecosystem around them: the citizens and bustling activity in an urban environment. The catch of the day: “Flying Litterfish,” “Laundry Eels,” a “Constructionfish,” and many others, all inspired by the sights and sounds of the busy city around them.

The book could be used to make abstract, geographically far away concepts, such as coral ecosystems, more relatable for students in urban, suburban, and rural settings, or as a way for students in rural settings to learn more about urban communities. The young girl’s observations and imagination could spark a discussion about how prominent traits influence species’ common names, identification, and scientific naming conventions.

The cover of the book Skyfishing

Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene (Abrams Books for Young Readers, 2017)

 

Anne Krauss: All at Sea (But Learning Quickly), August 14, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 14, 2018

Weather Data from the Bridge

Conditions at 0030

Latitude: 25° 22.6’ N

Longitude: 84° 03.6’ W

Barometric Pressure: 1017.4 mb

Air Temperature: 28.8° C

Wind Speed: 9.1 knots

 

Science and Technology Log

For the first few days, we steamed, or traveled, to our first station. Each station is a research location where several activities will take place:

  1. Preparing and setting out the longline gear.
  2. Letting the line soak (fish on the bottom) for one hour while other tasks are performed.
  3. Deploying a CTD (Conductivity Temperature Salinity) to collect samples and information about the water.
  4. Hauling back the longline gear.
  5. Recording data from the longline set and haulback.
  6. Collecting measurements and samples from anything caught on the longline.
  7. Depending on what is caught: attaching tags and releasing the animal back into the water (sharks) or collecting requested samples for further study (bony fish).

This is a very simplified summary of the various activities, and I’ll explore some of the steps in further detail in other posts.

During these operations and in between tasks, scientists and crew are very busy. As I watched and participated, the highly organized, well-coordinated flurry of activity on deck was an incredible demonstration of verbs (action words): clean, rinse, prepare, gather, tie, hook, set, haul, calibrate, operate, hoist, deploy, retrieve, cut, measure, weigh, tag, count, record, release, communicate

Last night, I witnessed and participated in my first longline station. I baited 100 hooks with mackerel. I recorded set and haulback data on the computer as the gear was deployed (set) and hauled back in (haulback). I attached 100 numbered tags to the longline gangions (attached to the hooks). I recorded measurements and other data about SHARKS!

We caught, measured, sampled, tagged, and released four sharks last night: a silky, smooth-hound, sandbar, and tiger shark! I’ve never seen any of these species, or types, in person. Seeing the first shark burst onto the deck was a moment I’ll remember for the rest of my life!

A sandbar shark being measured with a measuring tape in a rope sling.

A sandbar shark being measured on the cradle or sling used for measuring larger, heavier sharks.

Sometimes, we didn’t catch any fish, but we did bring up a small piece of coral, brittle sea stars, and a crinoid. All three are marine animals, so I was excited to see them in person.

In between stations, there was some downtime to prepare for the next one. One of my favorite moments was watching the GoPro camera footage from the CTD. A camera is attached to the device as it sinks down through the depths to the bottom and back up to the surface again. The camera allowed me to visually ‘dive along’ as it collected water samples and data about the water temperature, salinity, pressure, and other information. Even though I watch ocean documentaries frequently and am used to seeing underwater footage on a screen, this was extremely exciting because the intriguing ecosystem on the screen was just below my feet!

Personal Log

Perhaps it is sea lore and superstition, but so far, the journey has been peppered with fortuitous omens. One of my ocean-loving former students and her Disney-bound family just happened to be on my flight to Orlando. Yes, it’s a small world after all. Her work samples were featured in our published case study, reminding me of the importance and impact of ocean literacy education. Very early the next morning, NASA’s promising Parker Solar Probe thunderously left the Sunshine State, hurtling toward the sun. New York’s state motto: Excelsior. Later that morning, a rainbow appeared shortly before the Oregon II left Port Canaveral. Although an old weather proverb states: “rainbow in the morning gives you fair warning,” we’ve had very pleasant weather, and I chose to interpret it as a reassuring sign. Sailing on the Oregon II as a Teacher at Sea is certainly my pot of gold at the end of the rainbow.

 

According to seafaring superstition, women on board, whistling, and bananas are supposed to be bad luck on a boat. On the Oregon II, folks do not seem to put much stock into these old beliefs since I’ve encountered all three aboard the ship and still feel very lucky to be here.

A fruit basket and a bunch of bananas

The rest of the fruit seems to think that bananas are bad luck…the crew doesn’t!

In another small-world coincidence, two of the volunteers on the Second Leg of the Shark/Red Snapper Longline Survey recently graduated from SUNY Potsdam, my undergrad alma mater. What drew us from the North Country of New York to Southern waters? A collective love of sharks.

These small-world coincidences seemed indicate that I was on the right path. Out on the ocean, however, the watery world seems anything but small. The blue vastness and unseen depths fill me with excitement and curiosity, and I cannot wait to learn more. For the next two weeks, the Oregon II will be my floating classroom. Instead of teaching, I am here to learn.

As a fourth generation teacher, education is in my blood. One great-grandmother taught in a one-room schoolhouse in 1894. My other great-grandmother was also a teacher and a Potsdam alumna (Class of 1892). As we traverse the Atlantic Ocean, I wonder what my academic ancestors would think of their great-granddaughter following in their footsteps…whilst studying sharks and snapper at sea. Salt water equally runs through my veins.

 

This slideshow requires JavaScript.

As we steamed, or traveled, to our first station (research location), I wondered about the unfamiliar waters and equipment around me. Before I could indulge my questions about marine life, however, I first needed to focus on the mundane: daily life at sea. In many ways, I was reminded of the first day at a new school. It was junior high all over again, minus the braces and bad bangs. At first, those long-forgotten new school worries resurfaced: What if I get lost? Where is my locker (or, in this case, my stateroom)? What if I forget my schedule? What if I have to sit by myself at lunch? To combat these thoughts, I draw upon a variety of previous travel and life experiences: studying abroad, backpacking, camping, meeting new friends, volunteering, working with a marine science colleague, and sailing on other vessels. Combined, those experiences provided me with the skills to successfully navigate this one.

The Atlantic Ocean and a high flyer buoy

The Atlantic Ocean and a high flyer buoy

I’ve spent the first few days getting acquainted with the layout, personnel, safety rules, and routines of the Oregon II. My students wondered about some of the same aspects of life at sea.

Where do I sleep on the ship?

The staterooms remind me of a floating college dorm, only much quieter. I’m sharing a small stateroom with Kristin Hannan, a scientist. We are on opposite work shifts, so one of us is sleeping while the other is working. I am assigned to the day shift (noon to midnight) while she is assigned to the night shift (midnight to noon). Inside the stateroom, we have berths (similar to bunk beds), a sink, and large metal storage cabinets that are used like a closet or dresser. Space is limited on the ship, so it must be used efficiently and sometimes creatively.

A view of water, a pier, and a pulley

The view as we leave Port Canaveral.

Do you know anyone else on the ship?

No, but I’m meeting lots of new people. They have been welcoming, offering interesting information and helpful reminders and pointers. Those first-day-of-school jitters are fading quickly. I didn’t get lost, but I got a bit turned around at first, trying to figure out which deck I needed for the galley (like the ship’s cafeteria), where we eat our meals. And I only had to eat lunch by myself once. On the first day at sea, I made a PB & J sandwich. Eating that, I felt like a kid again (only without my lunchbox), but it was nice to be at a point in my life where I’m confident enough to be all by myself and feel a bit out of place. That’s how you learn and grow. Everything is new to me right now, but with time, it’ll start to make sense. Pretty soon, the equipment and unfamiliar routines will start to feel more familiar. Hopefully, the sharks will like me.

Did You Know?

The Gulf of Mexico is home to approximately 200 orcas (scientific name: Orcinus orca, also known as killer whales).

Recommended Reading 

As an introduction to biographies in grades 4 and up, I recommend Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman. Ruth and her stuffed shark explore a maritime history museum, learning about the important roles women have held at sea. Inspired by female sea captains, explorers, and naturalists, Ruth imagines herself in the photographs and paintings, part of an actual exhibit in the Mystic Seaport Museum in Mystic, Connecticut. For more information about the intrepid women featured in the book, brief biographical information is provided at the end. Ruth would no doubt be impressed with the seafaring women (and men) aboard NOAA Ship Oregon II.

A children's book about women at sea

Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman; published by Mystic Seaport (2004)

Tom Savage: Surveying the Coastline of Point Hope, Alaska, August 12, 2018

NOAA Teacher at Sea

Tom Savage

Aboard NOAA Ship Fairweather

August 6 – 23, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, northwest Alaska

Date: August 12, 2018

Weather data from the Bridge

Wind speed 8 knots
Visibility: 10 nautical miles
Barometer: 1010.5 mB
Temp:  8.5 C     47 F
Dry bulb 8   Wet bulb 6.5
Cloud Height: 5,000 ft
Type: Alto Stratus
Sea Height 2 feet

Science and Technology

Why is NOAA taking on this challenging task of mapping the ocean floor?  As mentioned in an earlier blog, the ocean temperatures worldwide are warming and thus the ice in the polar regions are melting. As the ice melts, it provides mariners with an option to sail north of Canada, avoiding the Panama Canal. The following sequence of maps illustrates a historical perspective of receding ice sheet off the coast of Alaska since August 1857.  The red reference point on the map indicates the Point Hope region of Alaska we are mapping.

This data was compiled by NOAA using 10 different sources. For further information as how this data was compiled visit https://oceanservice.noaa.gov/news/mar14/alaska-sea-ice.html. 

The light grey indicates  0-30% Open Water – Very Open Drift.  The medium grey indicates 30 – 90 % Open drift – Close Pack.  The black indicates 90 – 100% very close compact.

Sea Ice Concentration August 1857

Sea Ice Concentration August 1857

Ice Concentration August 1957

Ice Concentration August 1957

Sea Ice Concentration August 2016

Sea Ice Concentration August 2016

Ships that sail this region today rely on their own ships sonar for navigating around nautical hazards and this may not be as reliable especially if the ships sonar is not properly working (it’s also problematic because it only tells you how deep it is at the ship’s current location – a sonar won’t tell you if an uncharted hazard is just in front of the ship). Prior to mapping the ocean floor in any coastal region, it requires a year of planning in identifying the exact corridors to be mapped. Hydrographers plot areas to be mapped using reference polygons overlaid on existing nautical charts.  Nautical charts present a wealth of existing information such as ocean depth, measured in fathoms(one fathom is equal to six feet) and other known navigation hazards.

As mariners sail closer to the shorelines, the depth of the ocean becomes increasingly important.  Because of this uncertainty in the depth, the Fairweather herself cannot safely navigate safely (or survey) close to shore.  In order to capture this data, small boats called “launches” are used. There are a total of four launch boats that are housed on the boat deck of the Fairweather. Each boat can collect data for up to twelve hours with a crew of 2-5. Depending on the complexity of the area, each daily assignment will be adjusted to reasonably reflect what can be accomplished in one day by a single launch. Weather is a huge factor in the team’s ability to safely collect data. Prior to deployment, a mission and safety briefing is presented on the stern of the ship by the Operations Officer. During this time, each boat coxswain generates and reports back to the operations officer their GAR score (safety rating) based on weather, crew skills and mission complexity (GAR stands for Green-Amber-Red … green means low risk, so go ahead, amber means medium risk, proceed with caution; red means high risk, stop what you’re doing).  In addition, a mission briefing is discussed outlining the exact area in which data will be collected and identified goals.

 

Safety Briefing

Safety Briefing by LT Manda – photo by Tom Savage

 

Deploying a launch boat

Deploying a launch boat – photo by Tom Savage

The sonar equipment that transmits from the launch boats is called EM2040 multi beam sonar. A multi beam sonar is a device that transmits sound waves to determine the depth of the ocean. It is bolted to the hull that runs parallel to the boat, yet emits sound perpendicular to the orientation of the sonar. In the beginning of the season, hydrographers perform a patch test where they measure the offsets from the sonar to the boat’s GPS antenna, as well as calculating any angular misalignments in pitch, roll or yaw. These measurements are then entered in to software that automatically corrects for these offsets.

deploying CTD

TAS Tom Savage deploying the conductivity, temperature and density probe ~ photo by Megan Shapiro

The first measurement to collect is the ocean’s conductivity, temperature and depth. From this information, the scientists can determine the depths in which the density of the water changes. This data is used to calculate and correct for the change in speed of sound in a given water column and thus provide clean data. The boats travel in pre-defined set lines within a defined polygon showing the identified corridor to be collected. Just like mowing a lawn, the boat will travel back and forth traveling along these lines. The pilot of the boat called the Coxswain, uses a computer aided mapping in which they can see these set lines in real time while the boat moves. This is an extremely valuable piece of information while driving the boat especially when the seas are rough.

Coxswain

Coxswain Zucker – photo by Tom Savage

The coxswain will navigate the boat to the position where data collection will begin inside a defined polygon. Since the multibeam echosounder transmits sound waves to travel through a deep column of water, the area covered by the beam is wide and takes longer to collect. In such stretches of water, the boat is crawling forward to get the desired amount of pings from the bottom needed to produce quality hydrographic data. The reverse is true when the boat is traveling in shallow water. The beam is very narrow, and the boat is able to move at a relatively fast pace. The boat is constantly rolling and pitching as it travels along the area.

 

 

 

 

Hydrographer Megan analyzing the data

Hydrographer Megan analyzing the data

As the boat is moving and collecting data, the hydrographer checks the course and quality of the data in real time. The depth and soundings comes back in different colors indicating depth. There is at least four different software programs all talking to one another at the same time. If at any point one component stops working, the boat is stopped and the problem is corrected.  The technology driving this collection effort is truly state of the art and it all has to operate correctly, not an easy feat. Every day is different and provides different challenges making this line of work interesting.  Troubleshooting problems and the ability to work as a team is crucial for mission success!

 

Personal Log

I have found the work on the Fairweather to be extremely interesting. The crew onboard has been exceptional in offering their insights and knowledge regarding everything from ship operations to their responsibilities.  Today’s blog marks my first week aboard and everyday something new and different is occurring. I look forward in developing new lesson plans and activities for my elementary outreach program. Prior to arriving, I was expecting the weather to be mostly overcast and rainy most of the time. However, this has not been the case. Clear blue skies has prevailed most days; in fact I have seen more sun while on the Fairweather than back home in Hendersonville in the entire month of July!  For my earth science students, can you make a hypothesis as to why clear skies has prevailed here? Hint, what are the five lifting mechanisms that generate instability in the atmosphere and which one(s) are dominant in this region of Alaska?

Question of the day.  Can you calculate the relative humidity based on the dry and wet bulb readings above?      Data table below……    Answer in the next blog

What is the relative humidity?

What is the relative humidity?

 

Until next time, happy sailing !

Tom

Stephen Kade: Conductivity, Temperature, and Depth, August 5, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: 30 54 760 N, 76 32 86.0 W, 40 nautical miles E of Cape Lookout, North Carolina

Date: August 5, 2018

Weather Data from the Bridge:

Wind speed 11 knots,
Air Temp: 30.c,
Visibility 10 nautical miles,
Wave height 1 foot

Science and Technology Log

While our main mission aboard the NOAA Ship Oregon II is to survey and study sharks and red snapper, it is also very important to understand the environmental conditions and physical properties of the sea water in which these animals live. The CTD instrument is used to help understand many different properties within the water itself. The acronym CTD stands for Conductivity (salinity), Temperature, and Depth. Sensors also measure dissolved oxygen content and fluorescence (presence of cholorphyll).

CTD

The CTD instrument itself is housed in a steel container and is surrounded by a ring of of steel tubing to protect it.

Conductivity is a measure of how well a solution conducts electricity and it is directly related to salinity, or the salt that is within ocean water. When salinity measurements are combined with temperature readings, seawater density can be determined. This is crucial information since seawater density is a driving force for major ocean currents. The physical properties and the depth of the water is recorded continuously both on the way down to the ocean floor, and on the way back up to the surface.  There is a light, and a video camera attached to the CTD to provide a look at the bottom type, as that is where the long line is deployed, and gives us a good look at the environment where our catch is made. These data can explain why certain animals gather in areas with certain bottom types or physical parameters. This can be particularly important in areas such as the hypoxic zone in the Gulf of Mexico. This is an area of low oxygen water caused by algal blooms related to runoff of chemical fertilizers from the Mississippi River drainage.

The CTD instrument itself is housed in a steel container and is surrounded by a ring of of steel tubing to protect it while deployed and from bumping against the ship or sea floor. Attached water sampling bottles can be individually triggered at various depths to collect water samples allowing scientists to analyze water at specific depths at a particular place and time. The entire structure is slowly lowered by a hydraulic winch, and is capable of making vertical profiles to depths over 500 meters. An interior computer display in the ship’s Dry Science Lab profiles the current location of the CTD and shows when the winch should stop. We have found this to be a tricky job, during large wave swells, as the boat rocks quite a bit and changes the depth by a meter or more. The operator must be very careful that the CTD doesn’t hit the ocean floor too hard which can damage the equipment.

Dry Lab

An interior computer display in the ship’s Dry Science Lab profiles the current location of the CTD and shows when the winch should stop.

The data collected while deployed at each station is instantly uploaded to NOAA servers for immediate use by researchers and scientists. The current data is also available the general public as well, on the NOAA website. Once safely back aboard the Oregon II, the CTD video camera is taken off and uploaded to the computer, The CTD must be washed off and the lines flushed for one minute with fresh water, as the salt water from the ocean can damage and corrode the very sensitive equipment inside. The instrument is also calibrated regularly to ensure it is working correctly throughout all legs of the long line survey.

Personal Log

TAS Stephen Kade

TAS Stephen Kade

I am having such a great time during my Teacher at Sea experience. In the 9 days aboard ship so far, we have traveled the entire coasts of Mississippi, Arkansas, Florida, South Carolina, and North Carolina. Never in my life did I think I would get an opportunity to do something like this as I’ve dreamed about it for decades, and now my dreams have come true. I’m learning so much about fishing procedures, the biology of sharks, navigational charting, and the science of collecting data for further study while back on land at the lab. I can’t wait to get home and spread the word about NOAA’s mission and how they are helping make the world a better place, and are advocating for the conservation of these beautiful animals!

 

Animals Seen: Sharpnose shark, Tiger Shark, Grouper, Red Drum fish, Moray Eel, Blue Line Tile fish

Meredith Salmon: CTDs and Cribbage! July 24, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

 

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.34°N

Longitude: 64.14°W

Air Temperature: 28.16°C

Wind Speed:  17.34 knots

Conditions: partly sunny  

Depth: 5060.32 meters

Science and Technology Log

Understanding the physical properties of seawater such as temperature, salinity, and depth are important parameters for studying ocean processes. Fortunately, A CTD is an acronym for an electronic instrument that is used on research vessels to measure three important factors: conductivity, temperature, and depth. These data points are key exploration components used aboard the Okeanos Explorer.

 

Conductivity is a measure of how well a solution conducts electricity and it is directly related to salinity. When salinity measurements are combined with temperature readings, seawater density can be determined. This is crucial information since seawater density is a driving force for major ocean currents.

 

The CTD itself is housed in a steel container and is surrounded by a ring of plastic bottles. These water sampling bottles can be individually triggered at various depths to collect water samples allowing scientists to analyze water at specific depths at a particular place and time. The entire structure is connected to a rosette that is lowered by a hydrographic winch crane, and this rosette is capable of making vertical profiles to depths up to 6,800 meters.  

ctd 3

CTD unit aboard the Okeanos Explorer

 

Features in the deep ocean such as hydrothermal vents and underwater volcanoes are associated with changes in chemical properties of seawater, so CTDs are used to measure chemical and physical properties associated with these structures. For instance, changes in water temperature may indicate the presence of hydrothermal vents or volcanoes. Since these features are located in deep waters, a CTD will be raised and lowered throughout the water column as the ship moves over the survey area. Although a CTD cast has not been completed on our expedition, these procedures require effective communication between scientists in the lab and the hydrographic crane operator. Scientists in the lab can monitor the CTD measurements in real time in the lab, and communicate depth for water capture in the rosette bottles to the crane operator. Once back on board, scientists can retrieve the water samples from the bottles and take them into the lab for further analysis.

ctd1

CTD rosette complete with water sampling containers

Personal Log

We have continued to map the survey area, load XBTs, and take sunphotometer readings throughout the course of the week. Since they are few and far between, everyone looks forward to turns. The entire turning process requires effective communication with the bridge and survey team and can take approximately 15 to 20 minutes to complete.

SISTurn

A turn pictured in the Seafloor Information System (SIS) program

Aside from waiting for turns, we have been playing daily trivia or bingo as well as card games including cribbage! Since the cribbage tournament is underway, we have been practicing, playing, and watching other games. There have been some serious upsets and victories so the finals are going to be interesting for sure.

Okeanos Cribbage Tournament Bracket

Okeanos Cribbage Tournament Bracket

cribbage tournament

Savannah vs. Charlie!

cribbage 6

Fernando vs. Christian!

We learned that we are heading back to Norfolk for dry dock towards the end of July so we will need to stop surveying soon to transit back to Virginia. It is crazy to think that we only have a couple more days at sea!

double rainbow.jpeg

A double rainbow seen from the boat deck!

 

Double Rainbow

Savannah, Sally, and I enjoying the view!

Did You Know?

Some CTD instruments are so fast that they measure the conductivity, temperature, and depth 24 times each second! This provides a very detailed description of the water being tested.

Resources: 

https://oceanexplorer.noaa.gov/facts/ctd.html

https://www.windows2universe.org/earth/Water/CTD.html