Kimberly Scantlebury: Returning Home, May 25, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 25, 2017

Weather Data from the Bridge

Greetings again from New Hampshire! It seems fitting that my NOAA Teacher at Sea blogs are bookended at home in cooler 55 F rainy weather. The garden is in and looking forward to the hot sun that will follow.

Science and Technology Log

IMG_2995

The CTD array coming in on NOAA Ship Pisces

Part of the NOAA Teacher at Sea program is creating two lesson plans, one about science & technology, and the other about careers. I am looking forward to writing and improving those lessons based on student feedback. My 9th graders began this process by analyzing data I took home from one of the CTD sites. NOAA scientist Kevin was generous with his time. He gave me data binned by meter and took the time to make sure all of the information was clear. Since the CTD array collects data eight times a second, the dataset would have been a little unruly otherwise. Back in the classroom, my students created a list of questions that could be looked at based on the data available. They then created data stories that explored questions such as:

  • Is there a correlation between oxygen and fluorescence?
  • How does depth correlate to sound velocity?
  • How big are the differences in temperature?
  • What is the variability of fluorescence?
  • How does the temperature change as you go deeper in the water?
  • How does salinity between shallow and deeper parts vary?
  • Is there a correlation between pressure and salinity?
  • Is there a correlation between depth and density?
  • Does oxygen vary?

The amount of data out there can feel overwhelming sometimes. There is a greater need than ever before to know how to sift through information and critique it. Giving students constant opportunities to practice how to interpret data is important. This process also connected the information they learned from the blog posts to the next step in science research. Once the data is collected, it needs analysis and interpretation. The ability to critically analyze information is vital to an informed citizenry.  

Personal Log

I’ve been back home for almost two weeks and it’s been back to the end-of-school groove. Sometimes it feels surreal that recently I was on a real working fisheries vessel. I have taken solo trips before so I know the feeling of going through a unique experience only to return home to everyone just normally moving forward as life does. It can feel a little jarring. This one felt even more so even though I was in contact the whole time.   

It was great getting questions and comments in person. I was happy to hear people from age 6 to 96 were following along when I was away. I am not naturally a journaler, but I appreciate the ability to reread my own experiences later. It will also provide a tool for my teaching.

unnamed

Arrrrr you ready for Spirit Week

The week I returned to school was Spirit Week. It happened to be character day when I was asked to speak to the School Board about my NOAA Teacher at Sea experience. Not everyone can say they have talked to their School Board about their time at sea, while dressed as a pirate. Of course, the experience is not over. I still have those lesson plans in the works and there are other loose ends to tie up (such as this final post). I also look forward to continuing through the network of NOAA Teacher at Sea alumni. NOAA is such a rich resource for science and science learning. I am very thankful for the opportunities NOAA Teacher at Sea has afforded me as a science educator and to the crew and science team from my time on NOAA Ship Pisces.  

Did You Know?

Teacher at Sea has accepted teachers from all 50 states, American Samoa, Puerto Rico, and Guam since 1990. Interested? Any full time pre-K-12 teacher; community college, college, or university teacher; museum or aquarium educator; or adult education teacher may apply.

Cecelia Carroll: Back Home, May 16, 2017

NOAA Teacher at Sea

Cecelia Carroll

Aboard NOAA Ship Henry B. Bigelow

May 2 – 14, 2017

Mission: Spring Bottom Trawl

Geographic Area: Northeastern Atlantic

Date: May 16, 2017

Reflections

With our stations complete, we headed home a bit early on Saturday, and with the approaching nor’easter on Mother’s Day, it was probably a good decision.  I thoroughly enjoyed my experience and value the efforts, hard-work, professionalism and teamwork that make an undertaking of such enormity a valued and fun endeavor.  The camaraderie of the team will be forever cherished.

We came back through the Cape Cod Canal late in the evening, on our return to Newport, RI.  We spotted joggers with head lamps running along the path of the canal. Perhaps a local road race?

It was interesting feeling in my kitchen rocking and rolling all day Sunday …. dock rock or kitchen rock???  That was a fun sensation!!

It was nice to see my students this morning, Monday, all welcoming me home and curious about my trip.  On Sunday, I had prepared a slide-show of many of my photos and projected my blog on the “Smartboard” to share with my classes.  They had a wide range of questions from what did I eat, was I seasick, what fish did we catch, did you dissect any fish, did you see any whales, how old do you have to be to go out on the ship, to what will the scientists do with the samples that were saved. They were impressed with my pictures of the goosefish, (who wouldn’t be impressed with such a fish!) and laughed at how the scientist I worked closely with nicknamed me a “Fish Wrangler” as I had caught, in midair,  some slippery, squirming, flip-flopping Red Fish as they had managed an attempted escape off the scale when a big wave hit.  I’ll wear that tag with pride!

Thank you to NOAA and their staff that prepared me for the journey.  Thank you to all the wonderful people I met on the ship.  A “Teacher at Sea” is a monicker of which I will be always proud … as well as “Fish Wrangler!”

Some Photos

IMG_1541

This lobster is regenerating a new claw!! Amazing!

 

IMG_1763

Mike deciding which species of fish we will run on the conveyor ( let go to the end of the conveyor belt without sorting manually straight into a basket )

 

 

 

Kimberly Scantlebury: It’s All About the Little Things, May 8, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 8, 2017

Weather Data from the Bridge

Time: 18:00

Latitude: 2755.757 N, Longitude: 9200.0239 W

Wind Speed: 14.21  knots, Barometric Pressure: 1015.3 hPa

Air Temperature: 24.56  C, Water Temperature: 24.4  C

Salinity: 36.37  PSU, Conditions: 50% cloud cover, light wind, seas 2-4 feet

Science and Technology Log

IMG_2969

The CTD

The CTD (conductivity, temperature, depth) array is another important tool. It goes down at each station, which means data is captured ten-twelve times a day. It drops 50 m/min so it only takes minutes to reach the bottom where other winch/device systems can take an hour to do the same. This array scans eight times per second for the following environmental factors:

  • Depth (m)
  • Conductivity (converts to salinity in ppt)
  • Temperature (C)
  • Dissolved oxygen (mg/mL)
  • Transmissivity (%)
  • Fluorescence (mg/m^3)
  • Descent rate (m/sec)
  • Sound velocity (m/sec)
  • Density (kg/m^3)

There are two sensors for most readings and the difference between them is shown in real time and recorded. For example, the dissolved oxygen sensor is most apt to have calibration issues. If the two sensors are off each other by 0.1 mg/L then something needs to be done.

Software programs filter the data to cut out superfluous numbers such as when the CTD is acclimating in the water for three minutes prior to diving. Another program aligns the readings when the water is working through the sensors. Since a portion of water will reach one sensor first, then another, then another, and so on, the data from each exact portion of water is aligned with each environmental factor. There are many other sophisticated software programs that clean up the data for use besides these two.

These readings are uploaded to the Navy every twelve hours, which provides almost real-time data of the Gulf. The military uses this environmental data to determine how sound will travel through sound channels by locating thermoclines as well as identifying submarines. NOAA describes a thermocline as, “the transition layer between warmer mixed water at the ocean’s surface and cooler deep water below.” Sound channels are how whales are able to communicate over long distances.

NOAA Ocean Explorer: Sound in the Sea 2001

This “channeling” of sound occurs because of the properties of sound and the temperature and pressure differences at different depths in the ocean. (NOAA)

The transmissometer measures the optical properties of the water, which allows scientists to track particulates in the water. Many of these are clay particles suspended in the water column. Atmospheric scientists are interested in particulates in the air and measure 400 m. In the water, 0.5 m is recorded since too many particulate affects visibility very quickly. This affects the cameras since light reflecting off the clay can further reduce visibility.   

Fluorescence allows scientists to measure chlorophyll A in the water. The chlorophyll molecule is what absorbs energy in photosynthetic plants, algae, and bacteria. Therefore, it is an indicator of the concentration of organisms that make up the base of food chains. In an ecosystem, it’s all about the little things! Oxygen, salinity, clay particles, photosynthetic organisms, and more (most we can not actually see), create a foundation that affects the fish we catch more than those fish affect the little things.  

The relationship between abiotic (nonliving) and biotic (living) factors is fascinating. Oxygen is a great example. When nitrates and phosphates wash down the Mississippi River from the breadbasket of America, it flows into the Gulf of Mexico. These nutrients can make algae go crazy and lead to algae blooms. The algae then use up the oxygen, creating dead zones. Fish can move higher up the water column or away from the area, but organisms fixed to the substrate (of which there are many in a reef system) can not. Over time, too many algae blooms can affect the productivity of an area.

Salt domes were created millions of years ago when an ancient sea dried up prior to reflooding into what we have today. Some salt domes melted and pressurized into super saline water, which sinks and pools. These areas create unique microclimates suitable to species like some mussels. A microclimate is a small or restricted area with a climate unique to what surrounds it.

IMG_3032

The ship’s sonar revealing a granite spire a camera array was deployed on.

Another great example is how geology affects biology. Some of these salt domes collapsed leaving granite spires 30-35 meters tall and 10 meters across. These solid substrates create a magical biological trickle down effect. The algae and coral attach to the hard rock, and soon bigger and bigger organisms populate this microclimate. Similar microclimates are created in the Gulf of Mexico from oil rigs and other hard surfaces humans add to the water.

Jillian’s net also takes a ride with the CTD. She is a PhD student at Texas A&M University studying the abundance and distribution of zooplankton in the northern Gulf of Mexico because it is the primary food source of some commercially important larval fish species. Her net is sized to capture the hundreds of different zooplankton species that may be populating the area. The term zooplankton comes from the Greek zoo (animal) and planktos (wanderer/drifter). Many are microscopic, but Jillian’s samples reveal some translucent critters you can see with the naked eye. Her work and the work of others like her ensures we will have a deeper understanding of the ocean.   

This slideshow requires JavaScript.

Personal Log

Prior to this I had never been to the Gulf of Mexico other than on a cruise ship (not exactly the place to learn a lot of science). It has been unexpected to see differences and parallels between the Gulf of Mexico and Gulf of Maine, which I am more familiar. NOAA scientist, John, described the Gulf to me as, “a big bathtub.” In both, the geology of the area, which was formed millions of years ago, affects that way these ecosystems run.   

Quote of the Day:
Jillian: “Joey, are we fishing at this station?”
Joey: “I dunno. I haven’t had my coffee yet.”
Jillian: “It’s 3:30 in the afternoon!”

Did You Know?

Zooplankton in the Gulf of Mexico are smaller than zooplankton in the Gulf of Maine. Larger species are found in colder water.  

why_zoo

Zooplankton under microscope (NOAA)

Kimberly Scantlebury: Beneath the Waves, May 4, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date:  May 4, 2017

Weather Data from the Bridge

Time: 10:25

Latitude: 2823.2302 N, Longitude: 9314.2797 W

Wind Speed: 12 knots, Barometric Pressure: 1009 hPa

Air Temperature: 19.3 C, Water Temperature: 24.13  C

Salinity: 35.79  PSU, Conditions: Cloudy, 6-8 foot waves

Science and Technology Log

IMG_2968

The cameras are sent down 15-150 meters. It takes several crew, plus Joey “driving” inside the dry lab, to make each launch happen.

Long line fishing is one way to gather fish population data. Another is remote sensing with camera arrays. The benefit of this is it is less invasive. The downside is it is more expensive and you can not collect fish samples. The goal has been to do ten-twelve camera array deployments a day.

IMG_2954

Hi, OSCAR.

There are two camera arrays set up: Orthogonal Stereo Camera Array (OSCAR) and an array containing a 360 degree spherical view camera pod and a single stereo camera (Frank). OSCAR runs technology that has been used since 2008. There have been many incarnations of camera technology used for the SEAMAP Reef Fish Survey since 1991. The OSCAR setup uses four stereo cameras that capture single video and stereo pair still images. Frank uses six cameras that can be stitched together to give a full 360 viewing area. This work is used to determine trends in abundance of species, although there are a few years of holes in the data as the transition from catch to camera took place. OSCAR setup and the Frank setup (affectionately called that due to its pieced together parts like Frankenstein’s Monster) both run to provide comparisons between the different technology. One of the other devices on Frank is an Abyss by GoPro.

IMG_2964

NOAA scientist, Kevin works on making sure the Abyss is reading to attach to Frank.

GoPros’ Abyss device may be a cheaper, off the rack option, but they do not do as well in low light conditions. Choosing gear is always a balance between cost and wants. For that you need to spend more for custom scientific equipment. 

Researchers are always working to stay current to gather the best data. This requires frequent upgrades to hardware and software. It also means modern scientific researchers must possess the skills and fortitude to adapt to ever changing technology. The ability to continually learn, troubleshoot, and engineer on the fly when something breaks are skills to learn. This is something all current students can take to heart.   

IMG_2970

The team troubleshooting technology.

Together, camera arrays, vertical long lines, and fish trap methods give a more accurate view of beneath the waves.

Quote of the day regarding launching the camera arrays: “You gotta remember, I’m gonna make that lady fly.”-James

Personal Log

IMG_3006

There are three different sized hooks used that rotate through the three Bandit reels.

Another important science lesson is that zero is a number. There have been camera problems to work through and we have not been catching fish. Sometimes that zero is from equipment that stopped running. Those zeros are errors that can be removed from the data set.

With fishing, we record if the bait is still attached or not, even if we do not catch any. It is always fun to put thirty hooks down and not know what is going to appear until we reel them up. It is also disappointing not to catch anything. Data is data. It is important for determining species abundance.

IMG_3010

Baiting the hooks.

I have enjoyed learning how to record on the data sheets, bait the hooks, de-bait the hooks (so there is always fresh bait), and a lot of little parts that are a part of the overall experience.

When we are working, the ship goes to a predetermined location and stops. The CTD (conductivity, temperature, depth) Water Column Profiler is dropped in first (to be featured in a future post) then raised after data collection is done. Next either OSCAR or Frank goes down. Every few stops we also do the vertical long line fishing. The ship then goes on to the next stop, which takes about twenty minutes. That time is spent breaking down fish (when they are caught) and troubleshooting equipment.

Did You Know?

IMG_3004

When on deck, hard hats and PDF are required when the cranes are running.

Christopher Tait: Where am I? April 1, 2017

 NOAA Teacher at Sea

Christopher Tait

Aboard NOAA Ship Reuben Lasker

March 21 – April 7, 2017

Mission: Spring Coastal Pelagic Species Survey

Geographic Area of Cruise: Pacific Ocean from San Diego, CA to San Francisco, CA

Date: April 1, 2017

Weather Data from the Bridge

Time 8:51 PDT,

Current Location: South West of Santa Rosa Island, Latitude 33.37N Longitude -120.7 W

Air Temperature 13.4 oC  (56.1 oF)

Water Temperature 13.1 oC  (55.5 oF)

Wind Speed 12 kts

Barometric pressure 1013.98 hPa

DSC_0326

Science and Technology Log

Oceans cover 71% of the surface of Earth and 99% of the livable space (Figure 1).  The Coastal Pelagic Survey is taking several approaches to map the distribution of anchovy, sardine, and other target species within the epipelagic zone.  This zone is the thin surface layer extending to the depths light penetrates the ocean, which is approximately 200 meters near California.  The epipelagic zone in some coastal areas is very productive due to the upwelling of nutrient rich water causing an abundance of primary production by phytoplankton.  Besides the net trawling and acoustic transects, the researchers are using samples of fish eggs and ichthyoplankton (ichthyo = fish, plankton = drifting) to determine locations of spawning. This voyage is mostly surveying over the continental shelf and I am amazed at the diversity of organisms we have found thus far.  In this modern era of exploration of the vastly unknown deeper regions, I can only imagine the species still to be discovered!

 

Figure 1: Ocean Layers

Ocean Layers.png

(c) Knight, J.D., 1998, Sea and Sky, http://www.seasky.org/deep-sea/ocean-layers.html

CUFES:

A CUFES (Continuous Underway Fish Egg Sampler) system is used to determine the location of fish eggs as we travel transects on a continuous daily basis (Figure 2).  Water from 3 meters below the surface is pulled into the boat at 640 L/min. and poured through a filter to collect fish eggs and other plankton.  The collected samples are analyzed every 30 minutes to determine a density of eggs and which species are spawning.  The collected samples are further analyzed at NOAA’s SWFSC (Southwest Fisheries Science Center) in La Jolla, CA.

Figure 2: CUFES Schematic

CUFES.png

CUFES schematic.

 

Figure 3: Preliminary Results of CUFES Survey

CUFES Eggs.png

Preliminary results of the CUFES survey. The CUFES data is overlaid on sea surface temperatures measured by satellite.

The CUFES data is overlaid on sea surface temperatures measured by satellite.

PairoVET Tow & Bongo Tow

A PairoVET (paired vertical egg tow) sample is collected using a pair of small, fine mesh nets dropped to 70 meters deep and vertically towed to the surface to collect fish eggs and zooplankton in the water column at predetermined locations along our transects every 20 nautical miles. This is generally the depths that sardine release their eggs. The Bongo net gets its name because the nets are the size of bongo drums (Figure 4 & 5).  This is a plankton tow that is pulled alongside the ship and occurs every 40 nautical miles.  The net is dropped to a depth of 210 meters and pulled up at a 45 degree angle to get a more complete sample of the ichthyoplankton and zooplankton throughout the water column at location.

 Figure 4: Bongo net in center of image and PairoVET on the right.

IMG_4467.JPG

Bongo net in center of image and PairoVET on the right.

Figure 5: Bongo going overboard.

IMG_4469.JPG

Bongo going overboard.

Figure 6: Preserving the Bongo Sample for later analysis.

IMG_4500.JPG

TAS Chris Tait preserves the Bongo Sample for later analysis

CTD: Conductivity, Temperature and Depth Probe

The scientists use a CTD (conductivity-temperature-depth) probe to measure the physical properties of the seawater throughout the water column that biologic samples are being taken (Figure 7). Conductivity is used to calculate the salinity of the water. These physical properties are very important in determining the types of organisms that are present at varying locations.

 Figure 7: CTD (Conductivity Temperature Depth) Analysis

DSC_0323.JPG

CTD (Conductivity Temperature Depth) analysis

Personal Log

One of the great mysteries of waking up is answering the question of “where am I?”  After a long evening of trawling for fish and keeping an eye on where you are, you go to bed.  Exhausted, the boat rocks you to sleep.  When I wake up the first thing I do is, jump out of bed and run out onto the front deck.  Some days, there is ocean for as far as the eye can see, some days a mysterious island (Figure 8) in the distance and sometimes there is the mainland (Figure 9)!  I run to grab my phone when mainland is in sight to get a couple of phone calls out to family.

 Figure 8: The mysterious island turns out to be Anacapa Island, which is part of the Channel Islands National Park.  The waters surrounding the park are part of a national marine sanctuary.

IMG_4752.JPG

Anacapa Island, one of the Channel Islands

 

Figure 9: Sunrise over Santa Barbara.  Time for me to make a call home!

IMG_4872.JPG

Sunrise over Santa Barbara

In the Dry Lab there is a computer with a map showing where we are currently located, a red track line showing where we have been and transect lines displaying where we will soon be (Figure 10).  On our acoustic transects, we follow the parallel lines to mow the lawn and find the location of the CPS (coastal pelagic species) from their echoes.  When we trawl, we break transect and go to places that showed promise in the acoustic backscatter.  

 Figure 10: Without tracking our location on the computer I would feel totally lost! The blue lines are where we plan to go, and the red lines show where we’ve actually gone.

Map of transect.png

Blue lines show where we plan to go, and the red lines show where we’ve actually gone.

Catch of the Day

As I get ready for my night shift, I feel this anticipation to discover what species we are going to find!  Every day brings a new catch of the day!

Grey Smoothhound Shark (Mustelus californicus): This small coastal shark feeds on small invertebrates and fish.

IMG_4581.JPG

Gray Smoothhound Shark (Mustelus californicus)

Needle Fish (Family Belonidae):  This large needle fish is coastal piscivorous fish, meaning they specialize at eating other fish. They have a mouth full of tiny needle like teeth to prevent a slippery fish from getting away.

IMG_4739.JPG

Needle Fish (Family Belonidae)

Northern Anchovy (Engraulis mordax): This is one of our target species on this survey.  Anchovy have the potential to form massive schools and have a tremendous impact of the ecology of the California Current Ecosystem.  They feed on zooplankton, provide food for other fish, sea birds, and marine mammals.  They are also an important fishery which have the potential to be over fished if not properly managed.

IMG_4644.JPG

Northern Anchovy (Engraulis mordax)

Pacific Sardine (Sardinops sagax, top specimen) and Pacific Mackerel (Scomber japonicas, bottom two specimens): These two species are also part of the Coastal Pelagic Species community, which this survey are targeting.  The sardine is another very important fish due to their ability to form tremendous schools, impacting plankton through feeding, providing food for larger predators, and they are a valuable fishery.  Sardine populations have the ability to boom and crash, and the cause is still not fully understood.  The Pacific mackerel is a species that has been populous at times of lower sardine and anchovy abundance.

IMG_4748.JPG

Pacific Sardine (Sardinops sagax), top, and Pacific Mackeral (Scomber japonicus), bottom two

Pacific Sardine (Sardinops sagax) and Pacific Mackeral (Scomber japonicus)

IMG_4749.JPG

Close-up of Pacific Mackerel (Scomber japonicus)

Pacific Mackeral (Scomber japonicus)

IMG_4747.JPG

Pacific Mackerel (Scomber japonicus)

Jack Mackerel (Trachurus symmetricus) and Larval Rockfish (Sebastes sp.): Jack Mackerel is another target species of the Coastal Pelagic Survey.

IMG_4750

Jack Mackerel (Trachurus symmetricus) and a larval rockfish (Sebastes sp.)

Emily Sprowls: The pressure is on! March 23, 2017

 

NOAA Teacher at Sea

Emily Sprowls

Aboard Oregon II

March 20 – April 3,2017

Mission: Experimental Longline Survey

Oregon2

NOAA Ship Oregon II

Geographic Area of Cruise: Gulf of Mexico

Date: March 23, 2017

Weather Data from the Bridge

13:00 hours

28°03.9’ N 89°08.3’W

Visibility 10 nm, Haze

Wind 3kts 100°E

Sea wave height <1 ft.

Seawater temp 25.1°C

 Science and Technology Log

The past two days have been devoted to setting extremely deep longlines. Each of these sampling lines take many hours, as we have to slowly reel out over 3 miles of line, give it time to sink, soak, and then reel it back in.   The line that we put out today is even a bit longer than usual, because I got to be in charge of “slinging” the hooks onto the line and I was not very fast at getting the four different sizes of hooks ready

Grenadier fish Kevin.jpg

A Mexican grenadier fish

. Have I mentioned how patient everyone is with the “Teach” aboard?

This morning we pulled up 97 empty hooks from 1250 meters before we caught the amazing grenadier fish! It suffered barotrauma, which is a nicer way of saying that its eyes and swim bladder inflated like balloons from the inside as it was hauled up from the high pressure depths.

One of the scientists onboard studies ocean food chains by examining the contents of fish stomachs. The stomach of the Mexican grenadier fish contained a fully intact armored shrimp!

Personal Log

Today I took advantage of the calm, calm seas to try the workout equipment onboard. They have all kinds of gear to help folks stay active and work off the delicious food in the galley. There is a rowing machine, stationary bike, weight bench, Jacob’s ladder, and elliptical. I used the elliptical machine because it was way too hot on the upper decks to use the exercise bike. Even with the very calm seas, there is a little bit of rolling, which made it an extra challenge for me keep it going!

Kids’ Questions of the Day

These questions about the Oregon II are from Harmony elementary students:

  • How big is the boat?       How tall? How long?

The boat is 175 feet long and 80 feet tall.

  • How much does the boat weigh?      

The boat weight is 800 tons. This is not how much the boat would weigh if you put it on a scale, but how

survival suit.jpg

TAS Emily Sprowls dons a survival suit

much weight the boat can carry if it were loaded full of cargo. We are not carrying nearly that much weight because a lot of the space on the boat is for equipment and for scientists and crew to live aboard.

  • How fast can it go?

Typically, the boat can go about 10 nautical miles per hour using both engines. She can go a little faster if the wind and current conditions are just right.

  • What is the boat made of?

The boat is made of steel and aluminum.

  • What are the white balloon things on top of the boat?

The white domes cover satellite dishes for the internet and phone.

  • What are the poles on the boat for? Are there sails?

The two yellow poles on either side of the boat are the outriggers used to

CTD sensor.jpg

This array houses the Conductivity, Temperature, and Depth probe.

pull a wide trawling net, much like a shrimp boat. Scientists trawl the bottom to study benthic organisms, including shrimp, but also sponges, crabs and bottom-dwelling sharks.

  • What new technologies does the boat have?

The Oregon II turns 50 years old this year!   It has been sailing the Atlantic Ocean since before I was born, but the crew is constantly fixing and replacing equipment on the boat. Even though she is old, she is very safe and reliable. Nevertheless, we still have to prepare for emergencies, including the possibility of needing to abandon ship while wearing the goofy-looking, but life-saving survival suits.

 

StyrofoamCup

Styrofoam Cup Test!

Scientists have brought new technology on board, including plenty of computers to collect, sort, store and analyze all the data we collect. One of the computers is connected to a device called the “CTD” with a set of sensors for Conductivity, Temperature, Depth and Dissolved Oxygen. Today the CTD went all the way to about 1100 meters (3700 ft.), and we tethered some styrofoam cups to the outside to subject them to the extreme pressure at that depth.

 

Barney Peterson: Cut Bait and Fish! August 17, 2016

NOAA Teacher at Sea
Barney Peterson

Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Wednesday, August 17, 2016

Weather Data from the Bridge:

Latitude: 25 29.664 N

Longitude: 082 02.181 W

Air temperature: 84.56 F

Pressure: 1018.13 Mb

Sea Surface Temperature: 30.5 C

Wind Speed: 13.54 Kt    East 12.72 degrees

Science Log:

The fishing process on the ship repeats itself in a well-defined cycle: cut bait, bait 100 hooks, drop hi-flyer, drop weight,  attach 50 tags and baited hooks, drop weight, attach 50 more tags and hooks, drop weight, deploy hi-flyer.  Put the CTD over the side and retrieve for water quality data.  Wait an hour.  Retrieve hi-flyer, retrieve weight, pull in first 50 hooks and detach tags logging any catch as they come in, retrieve weight, pull in next 50 hooks and detach tags logging any catch as they come in, retrieve last weight, retrieve last hi-flyer.  Process the catch as it comes in, logging tag number, gender, species, lengths at 3 points, life stage, and tag number if the catch is a shark that gets tagged, return catch to water alive as quickly as possible. Transit to the next sample site.  Wash, rinse and repeat.

That boils it down to the routine, but long line fishing is much more interesting and exciting than that!  Bait we use is Atlantic Mackerel, caught farther north and frozen, thawed just before use and cut into 3 pieces per fish.  A circle hook is inserted through each piece twice to ensure it will not fall off the hook…this is a skill that takes a bit of practice.  Sometimes hooks are pulled in with bait still intact. Other times the bait is gone and we don’t know if it was eaten without the hook catching, a poor baiting job, or more likely eaten by smaller fish, too little to be hooked.  When we are successful we hear the call “FISH ON!” and the deck comes alive.

The line with a catch is pulled up as quickly and carefully as possible.  Some fish are not securely hooked and are lost between the water and the deck…not what we want to happen.  If the catch is a large shark (generally 4 feet or longer) it is raised to the deck in a sling attached to the forward crane to minimize the chance of physical injury.  For large sharks a camera with twin lasers is used to get a scaled picture for estimating length.  There is a dynamometer on the line between the sling and the crane which measures pressure and converts it to weight.  Both of these processes help minimize the time the shark needs to be out of water with the goal of keeping them alive to swim away after release.  A tag is quickly attached to the shark, inserted under the skin at the base of the second dorsal fin.  A small clip is taken from a fin, preferably from the pelvic fin, for DNA studies. The sling is lowered back to the water and the shark is free to swim away.  All data collected is recorded to the hook-tag number which will identify the shark as to geographic location of the catch.

Shark in sling

A sandbar shark being held in the sling for measurements.

Sometimes the catch is a smaller shark or a bony fish:  a Grouper, a Red Snapper, or any one of many different types of fish that live in this area.  Each of these is brought onto the deck and laid on a measuring board. Species, length, and weight are recorded. Fin clips are taken.  Many of them are on the list of species of recreational and commercial importance.  These fish are retained for life history studies which will inform future management decisions.  In the lab they are dissected to retrieve otoliths (ear stones) by which their age is determined.  Depending upon the species, gonads (the reproductive organs) may be saved for study to determine the possibilities of future reproductive success.  For certain species a good-sized piece of flesh is cut from the side for fraudulent species voucher library use.

After the smaller sharks are measured, fin clipped, gender identified, life stage is determined and weight is taken, they are tagged and returned to the water as quickly as possible.  Tags on these sharks are a small, numbered plastic tag attached by a hole through the first dorsal fin.

This is a lot to get done and recorded and it all happens several times each shift.  The routine never varies.  The amount of action depends upon the success of the catch from any particular set.  This goes on 24 hours per day.  The only breaks come as we travel between the sites randomly selected for our sets and that time is generally spent in the lab.

(Thanks go to Kevin Rademacher, Trey Driggers and Lisa Jones, Research Fisheries Biologists, for contributing to this entry.  File photo NOAA/NMFS)

Personal Log:

I do not need 12 hours of sleep.  That means I have several hours at the start or end of each shift to write in my journal, talk to the other members of the crew, take care of personal business such as laundry and communicate with home via email.  Even so, every day seems to go by very quickly and I go to bed thinking of all the things I have yet to learn.  In my next posts I will tell more about the different kinds of sharks and introduce you to some of the other people on the ship.  Stay tuned.