Cara Nelson, The Gales of September, September 12, 2019

NOAA Teacher at Sea

Cara Nelson

Aboard USFWS R/V Tiglax

September 11-25, 2019


Mission: Northern Gulf of Alaska Long-Term Ecological Research project

Geographic Area of Cruise: Northern Gulf of Alaska – currently sampling in Prince William Sound

Date: September 12, 2019

Weather Data from the Bridge:

Time: 0830
Latitude: 60º16.073’ N
Longitude: 147º59.608’W
Wind: East, 10 knots – building to 30
Air Temperature: 13ºC (55ºF)
Air Pressure: 1003 millibars
Cloudy, light drizzle

Science and Technology Log

There is a tool for every job and the same holds true for sampling plankton and water in the Northern Gulf of Alaska (NGA).  As we sorted, shuffled and assembled equipment yesterday, what struck me the most was the variety of nets and other equipment needed for the different science research being performed as part of the LTER program. 

There are a variety of research disciplines comprising the LTER scientific team aboard the R/V Tiglax, each with their own equipment and need for laboratory space. These disciplines include physical oceanography, biological (phytoplankton and zooplankton), and chemical oceanography along with marine birds and mammal.  Their equipment has been transported from University of Alaska Fairbanks, as well as Western Washington University to the remote town of Seward AK and subsequently transferred to the ship before it could be either set up or stored away in the hold for later use.  Logistics is an important part of any research mission.

Immediately, it was obvious that some of the primary equipment on the ship, used for almost all the water sampling and plankton tows, require frequent maintenance in order to maintain function.  The winch for instance needed rewiring at port before we could depart. Winch runs the smart wire cable that allows the scientists to talk real time to the equipment (e.g., CTD and MultiNet).

v
The deck full of boxes being unpacked and stored away, as well as the winch pulled apart for rewiring

One of the most complex pieces of equipment and the workhorse of all oceanographic cruises, the CTD, takes a good deal of time to set up as well properly interface with the computers in the lab for real-time data communication.  A CTD, which stands for conductivity, temperature and depth, is a piece of equipment that accurately measures the salinity and water temperature at different depths.  The CTD is actually only a small portion of the device shown below.

CTD prep
The CTD is being put together and wired before departure.
CTD output
Temperature (blue line) salinity (red line) and fluorescence (chlorophyll) are transmitted and graphed on the computer as the CTD is lowered and raised.


The main gray bottles visible in a ring around the top are called Niskin bottles. These bottles are used to collect water samples and can be fired from the lab computer to close and seal water in at the desired depth.  These water samples are used by the team to examine both chlorophyll (abundance of phytoplankton) as well as nutrients.  As a side note, if these bottles are not reopened when the CTD is sent back down the pressure can cause the bottles to implode.  Two bottles were lost this way at our second station this morning, luckily spares were available onboard!

One bottle shattered from the pressure (on the right) and in the process, broke the neighboring bottle.

On the bottom of the CTD, there are several important sensors.  One is for nitrates and another for dissolved oxygen.  Additionally, there is a laser that detects particle size in the water, aiding in identifying plankton.  Much of this data is being fed to the computers but will not be analyzed until the scientists return the lab at the end of the cruise. 

A big decision had to be made before departing Seward late in the evening on the 11th.  A gale warning is in effect for the NGA with 30+ knot winds and high seas.  After several meetings between the chief scientists and the captain, it was determined to forego the typical sampling along GAK1 and the Seward line and head immediately to Prince William Sound (PWS) to escape the brunt of the storm. 

After getting underway late in the evening on Wednesday, the 11th, we stopped at a station called Res 2.5 in Resurrection Bay.  This station is used to test the CTD before heading out.  Just as with any complicated equipment it takes time to work out the glitches.  For example, it is imperative to have the CTD lower and raise at a particular rate of speed for consistent results and speed and depth sensor were not initially reading correctly.  Additionally, the winch continued to give a little trouble until all the kinks were worked out close to midnight. With a night focused on transiting to PWS, sampling was put on hold until this morning.


Personal Log

There are three F’s to remember when working aboard a NOAA research vessel: Flexibility, Fortitude and Following orders.  Flexibility was the word for everyone to focus on the first day.  I was immediately impressed with how everyone was able to adjust schedules based on equipment issues, coordination with other researchers on equipment loading and storage and most of all the weather.

Yesterday, there was help needed everywhere, so I was able to lend a hand with the moving and sorting and eventually assembly of some of our equipment.  The weather was beautiful in Seward as we worked in the sunshine on the deck, knowing that a gale was brewing and would follow us on our exit from Resurrection Bay.  Helping put together the variety of nets we are going to be able to use during our night shift, gave me time to ask our team a lot of questions.  I am amazed at how open and willing the entire team is to teach me every step of the way.  I am feverishly taking notes and pictures to take it all in.

Orientation and safety are also a big part of the first day on a new ship.  Dan, the first mate, gave us a rundown of the rules and regulations for R/V Tiglax along with a tour of the ship.  We ended on the deck with a practice drill and getting into our survival suits in case of a ship evacuation. 

survival suit practice
The new crew practices with their survival suits: Emily, Jake, Kira and Cara
Cara in survival suit
Although it has been a few years, I was able to don my survival suit pretty quickly.

Adjusting to a night time schedule will be one of my greatest challenges.  Usually we work the first night but we had a break due to the weather so we were able to put off our first nighttime sampling until Thursday night.  Everyone on the night crew has a different technique to adjust their body clock.  My plan was to stay up as late as possible and then rise early.  Last night however, between the ship noise and the rocking back & forth in the high seas during our transit from Seward to Knight Island passage, I did not sleep well.  Hopefully this will inspire a nap so I can wake refreshed for our first night shift. 

When I awoke this morning at 06:00, we had entered the sheltered waters of Knight Island passage. with calm seas and a light drizzle, ready to start a full day of collection.  I was able to watch the first plankton tows with the CalVet for the daytime zooplankton team with Kira Monell and Russ Hopcroft. Additionally, I made my rounds up to the fly bridge where Dan Cushing monitors for seabirds and mammals while we are underway.  I will share details of these experiences in the coming days.

For now, it is time for lunch and my power nap.


Did You Know:

There are a wide variety of plankton sampling nets each with a unique design to capture the desired type and size of plankton.  To name a few we will be using: Bongo nets, Mutlinets (for vertical and horizontal towing), Methot trawl nets, and CalVet nets.  As I get to assist with each one of these nets, I will highlight them in my blog to give you a better idea what they look like and how they work.

Ragupathy Kannan: Ocean Salinity to Ocean Sunfish, August 26, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast U.S. Atlantic Ocean

Date: August 26, 2019

Weather Data from the Bridge

Latitude: 41.27688
Longitude: -67.03071
Water temperature: 18.4°C
Wind Speed: 14.8 knots
Wind Direction: 41°
Air temperature: 18.6°C
Atmospheric pressure: 1021 millibars
Sky: Cloudy


Science and Technology Log

We entered Canadian waters up north in the Gulf of Maine, and sure enough, the waters are cooler, the sea choppier, and the wind gustier than before.  And the organisms are beginning to show a difference too.  Our Chief Scientist Harvey Walsh showed me a much longer arrow worm (Chaetognatha) from the plankton samples than we had encountered before (see photo below).  And there are more krill (small planktonic crustaceans) now. 

arrow worm
We got this beautiful arrow worm in our plankton sample as we entered colder waters

So far in my blogs, I have focused on sampling of biological organisms like plankton.  But recall that in an ecosystem monitoring survey like ours, we need to measure the abiotic (non-biological) aspects too because the word Ecosystem covers a community of organisms along with their biotic and abiotic environment. 

In today’s blog, I will highlight the ways various important abiotic components are measured.  You will learn about the interdisciplinary nature of science.  (Feel free to pass this blog on to physics, chemistry, and engineering majors you know—it may open up some career paths they may not have explored!).  I will come back to biotic factors in my next blog (seabirds and marine mammals!).

CTD

The CTD is a device that measures Conductivity, Temperature, and Depth.  We lower a heavy contraption called a Rosette (named due to its shape, see photo below) into the water. It has bottles called Niskin bottles that can be activated from a computer to open at specific depths and collect water samples.  Water samples are collected from various depths.  Electrical conductivity measurements give an idea of salinity in the water, and that in turn with water temperature determines water density.  The density of water has important implications for ocean circulation and therefore global climate.  In addition, dissolved inorganic carbon (DIC) is also measured in labs later to give an idea of acidity across the depths.  The increased CO2 in the air in recent decades has in turn increased the ocean’s acidity to the point that many shelled organisms are not able to make healthy shells anymore.  (CO2 dissolves in water to form carbonic acid).  Addressing the issue of increasing ocean acidity and the resulting mass extinction of shell-building organisms has become a pressing subject of study.  See the photos below of CTD being deployed and the real-time data on salinity and temperature transmitted by the CTD during my voyage.

lowering the CTD
I assist lowering the CTD Rosette into the water. The gray cylinders are Niskin bottles that can be activated to open at various depths.
CTD data
This display shows the real time data from each scan the CTD sends back to the computer. The y-axis is depth in meters, with sea surface at the top. The instrument was sent down to 500 meters deep. The green lines show fluorescence, an estimate of phytoplankton production. Note that the phytoplankton are at the photic (top) zone where more light penetrates. The blue line shows water temperature in degrees Celsius and the red line shows salinity. (Photo courtesy: Harvey Walsh)

EK-80

The ship is equipped with a highly sensitive sonar device called EK-80 that was designed to detect schools of fish in the water. (See photo of it attached to the hull of our ship, below).  It works by sending sound waves into the water.  They bounce off objects and return.  The device detects these echos and generates an image.  It also reflects off the sea bottom, thus giving the depth of the water.  See below an impressive image generated by our EK-80, provided kindly to me by our amicable Electronics Technician, Stephen.

EK-80 display
A remarkable screen shot of the EK-80 display of our ship passing over the Chesapeake Bay Bridge Tunnel as we headed out to sea from Norfolk, Virginia. To the left is a huge mound of dirt/rock, and just to the right of the mound, is a ravine and the tunnel (has a small peak and spikes). To the right (seaward side of the tunnel) you can see dredge material falling from the surface. We observed the sand and silt on the surface as we were passing through it. (Courtesy Stephen G. Allen).

The Acoustic Doppler Current Profiler (ADCP)

Scientists use this instrument to measure how fast water is moving across an entire water column. An ADCP is attached to the bottom of our ship (see photo below) to take constant current measurements as we move.  How does it work? The ADCP measures water currents with sound, using a principle of sound waves called the Doppler effect.  A sound wave has a higher frequency as it approaches you than when it moves away. You hear the Doppler effect in action when a car speeds past with a building of sound that fades when the car passes. The ADCP works by transmitting “pings” of sound at a constant frequency into the water. (The pings are inaudible to humans and marine mammals.) As the sound waves travel, they bounce off particles suspended in the moving water, and reflect back to the instrument. Due to the Doppler effect, sound waves bounced back from a particle moving away from the profiler have a slightly lowered frequency when they return. Particles moving toward the instrument send back higher frequency waves. The difference in frequency between the waves the profiler sends out and the waves it receives is called the Doppler shift. The instrument uses this shift to calculate how fast the particle and the water around it are moving. (From whoi.edu)

The University of Hawaii monitors ocean currents data from ADCPs mounted in various NOAA ships to understand global current patterns and their changes. 

hull of NOAA Ship Gordon Gunter
The hull (bottom surface) of the ship showing the EK-80 and ADCP systems, among other sensors. Photo taken at the ship yard. (Courtesy: Stephen G. Allen)

Hyperpro

Hyperpro is short for Hyperspectral profiler, a device that ground truths what satellites in outer space are detecting in terms of light reflectivity from the ocean.  What reflects from the water indicates what’s in the water.  Human eyes see blue waters when there isn’t much colloidal (particulate) suspensions, green when there is algae, and brown when there is dirt suspended in the water.  But a hyperpro detects a lot more light wavelengths than the human eye can.  It also compares data from satellites with what’s locally measured while actually in the water, and therefore helps scientists calibrate the satellite data for accuracy and reliability.  After all, satellites process light that has traversed through layers of atmosphere in addition to the ocean, whereas the hyperpro is actually there. 

deploying hyperpro
A Hyperpro being deployed

Career Corner

Three enterprising undergraduate volunteers.

Volunteers get free room and board in the ship in addition to invaluable, potentially career–making experience.

undergraduate volunteers
David Caron (far side), Jessica Lindsay, and Jonathan Maurer having some much-needed down time on the flying bridge

David Bianco-Caron is doing his B.A. in Marine Science from Boston University (BU).  His undergraduate research project at the Finnerty Lab in BU involves a comb-jelly (Ctenophore) native to the West Atlantic but which has become an introduced exotic in the East Atlantic.  David studies a cnidarian parasite of the comb-jelly in an attempt to outline factors that could limit the comb-jelly.  The project has implications in possible biological control. 

Jessica Lindsay finishes a B.S. in Marine Biology later this year and plans to get her Small Vessels operating license next year.  This is her 2nd year volunteering in a NOAA ship.  She received a NOAA Hollings Scholarship which provides up to $9500 for two years (https://www.noaa.gov/office-education/hollings-scholarship).  It entailed 10 weeks of summer research in a lab.  She studies how ocean acidification affects shelf clams. 

Jonathan Maurer is a University of Maine senior working on a B.S. in Climate Science.  He studies stable isotopes of oxygen in ocean waters to understand ocean circulation.  The project has implications on how oceanic upwelling has been affected by climate change.  He intends to go to graduate school to study glaciers and ocean atmosphere interactions. 

See my previous blog for information on how to become a volunteer aboard a NOAA research ship.

I also had the pleasure of interviewing our Executive Officer (XO), LCDR Claire Surrey-Marsden.  Claire’s smiling face and friendly personality lights up the ship every day. 

XO Claire Surrey-Marsden
Our Executive Officer (XO), LCDR Claire Surrey-Marsden

Claire is a Lieutenant Commander in the NOAA Corps:

The NOAA Commissioned Officer Corps is made up of 321 professionals trained in engineering, earth sciences, oceanography, meteorology, fisheries science, and other related disciplines. Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA. Learn more: https://www.omao.noaa.gov/learn/noaa-commissioned-officer-corps

Q. Thanks for your time, Claire. You’re the XO of this ship.  What exactly is your role?

A. The Executive Officer is basically the administrator on board.  We help with staffing, we manage all the crew, we have a million dollar budget for this ship every year that we have to manage.  Everything from food to charts to publications, all these get managed by one central budget. I’m kind of the paper work person on board.

Q. What’s your background?

A. I have a marine biology degree from Florida Tech. I’ve done marine mammal work most of my career. I joined NOAA in 2007, before that I was a biologist for Florida Fish and Wildlife [FFW].

Q. I heard you have done necropsies of marine mammals?

A. I was a manatee biologist for FFW for 3 years, we also dealt with lots of whales and dolphins that washed up on shore. I’ve also done marine mammal work in my NOAA career.  Worked with Southwest Fisheries Science Center on Grey Whales and dolphins, and worked with Right Whale management with the maritime industry and the coast guard.

Q. About a 100 college students, maybe even more are following my blog now.  What’s your advice to them, for someone interested in marine biology/NOAA Corps, what should they be doing at this stage?

A. Great question. Volunteer! Find all the opportunities you can to volunteer, even if it’s unpaid.  Getting your face out there, letting people see how good a worker you are, how interested and willing you are, sometimes you will be there right when there is a job opening. Even if it seems like a menial task, just volunteer, get that experience. 

Q. NOAA accepts volunteers for ships every summer?

A. Yes, ecomonitoring and other programs takes students out for 2-3 weeks, but there are other opportunities like the local zoo.  Even stuff that isn’t related to what you’re doing. Getting that work experience is crucial.

Q. What’s the most challenging part of your job as an XO in a ship like this?

A. Living on a small boat in the middle of the ocean can be challenging for people working together harmoniously.  Just making sure everyone is happy and content and getting fulfillment for their job.

At the end of the interview, Claire handed me a stack of brochures describing the NOAA Corps and how you can become part of it. Please stop by my office (Math-Science 222) for a copy.

Personal Log

The seas have become decidedly choppier the past few days.  It’s a challenge to stay on your feet!  The decks lurch unexpectedly.  Things get tossed around if not properly anchored.  I have fallen just once (touchwood!) and was lucky to get away with just a scratch.  I’ve had to take photo backups of my precious field notes lest they get blown away.  They came close to that once already.

The ship has a mini library with a decent collection of novels and magazines plus a lounge (with the ubiquitous snacks!).  I found a copy of John Grisham’s The Whistler, and this has become my daily bed time reading book. 

The lounge and library on board
The lounge and library on board

Interesting animals seen lately

I started this blog with a photo of an exceptionally long arrow worm.  The cold waters have brought some other welcome creatures.  I created a virtual stampede yesterday in the flying bridge when I yelled Holy Mola!  Everyone made a mad dash to my side to look over the railings at a spectacular Ocean Sunfish (Mola mola) floating by.  The name Mola comes from the Latin word meaning millstone, owing to its resemblance to a large flat and round rock.  I have been looking for this animal for days!  Measuring up to 6 feet long and weighing between 250 and 1000 kg, this is the heaviest bony fish in the world.  The fish we saw was calmly floating flat on the surface, lazily waving a massive fin at us as though saying good bye.  It was obviously basking.  Since it is often infested with parasites like worms, basking helps it attract birds that prey on the worms.

mola mola
Ocean Sunfish Mola mola. We saw this behemoth lying on its side basking, waving its massive dorsal fin as though greeting us. They allow birds and other fish to pick their ectoparasites as they float (from baliscuba.com)

Another animal that almost always creates a stir is the dolphin.  Schools of dolphins (of up to 3 species) never cease to amuse us.  They show up unexpectedly and swim at top speed, arcing in and out of the water, often riding our bow.  Sometimes, flocks of shearwaters circling around a spot alert us to potential dolphin congregations.  Dolphins drive fish to the surface that are then preyed upon by these birds.  My colleague Allison Black captured this wonderful photo of Common Dolphins frolicking by our ship in perfect golden evening light.

common dolphins
Common Dolphins swimming by our ship (Photo by Allison Black)

Did You Know?

Molas (Ocean Sunfish) are among the most prolific vertebrates on earth, with females producing up to 300,000,000 eggs at a time (oceansunfish.org).

Parting shot

NOAA does multiple concurrent missions, some focused on fisheries, some on oceanography, and some hydrography.  It has a ship tracker that tracks all its ships around the world.  Our ET Stephen Allen kindly shared this image of our ship’s location (marked as GU) plus the locations of two other NOAA ships. 

location on shiptracker
Our exact location (GU) on 25 August 2019, captured by NOAA’s ship tracker (Courtesy Stephen G. Allen)

David Madden: Land Ho! Return Home, August 2, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15 – 29, 2019

Back on land, in Tallahassee, FL

Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

Weather report in Tallahassee
Conditions early on Friday morning, Tallahassee, FL

Date: August 2, 2019

sunset over aft deck
Sunset aboard Pisces on my last night.

Gratitude Log:

My time on NOAA Ship Pisces is complete. Huge thanks to the folks who made it possible. I am grateful for the grand opportunity and grateful to the many people who helped me along the way. Starting with Emily and Jennifer at NOAA Teacher at Sea. They made everything smooth and easy on my end. Special thanks for allowing me to participate in Teacher at Sea this year, considering I was originally assigned to go last year. I was unable to go last year because my Dad got diagnosed with cancer right before the trip, and I elected to stay home with him during surgery and treatment. Emily, and the NOAA scientists involved, Zeb and Nate, made this year’s trip preparation a breeze. Thank you. Additionally, my Dad is doing well (and even back on the golf course)!

Processing fish
Processing fish with Mike B (the elder) and Todd K. photo by Mike B (the younger)

In some sense I was the little brother tag along on this cruise. “Aww come on, can I play?” was basically what I was saying each day to the scientists and NOAA officers. They were happy to oblige. Thank you for being patient and supportive while I learned how to work on your team.

  1. Zeb, Todd K, Todd W, and Brad were particularly helpful and knowledgeable and patient – thanks, guys!  * Thanks, Brad, for your rocks of the day.  Our minds and our chakras benefited.
  2. Thanks to my roommate, Mike B – for being a great roommate and for helping me out with a ton of things (including excellent slow mo footage of the XBT!)
  3. Thanks to the NOAA officers who were always happy to chat and tell me about how things work and about their careers. Thank you CO, XO, Jamie, Luke, Dan, and Jane. * Did you know that all NOAA officers have a college degree in a STEM field?
  4. And thank you to the scientific team of all stars: Dave H for always being hilarious, Zach for being hardworking and friendly to talk with, Mike B for being so wise and having good taste in music, Kevan, for lots of good chats during meal times, and Lauren, for making Oscar the octopus and being so friendly!
Engine Room
Just hanging out in the engine room one more time with Steve. Thanks to Steve and Garet!

Science and Technology Log

Todd W is the Senior Survey Technician. He works on Pisces full time and helped out the science team with running the CTD (conductivity, temperature, depth). Todd also helped me run a few experiments, and was overall real cool with helping me find random stuff during the cruise.

In particular, Todd and I, with Mike B’s help, tricked out the CTD to investigate how colors change with depth. We arts-and-crafted a few color strips and secured them to the CTD along with some GoPros to record video. We wanted to see what happened to various colors as the CTD descended to depth (~90m). See what it looked like at the top vs. the bottom (image below). You can see clearly that indeed the red color disappeared soonest while most everything took on a blue tone. This is because red is the longest wavelength on the visible spectrum and therefore the lowest energy (~ 700 nm); it’s the most easily absorbed by the water. Conversely, blue light has a shorter wavelength (~400 nm), and this means higher frequency and higher energy. I made a video with the footage we collected – coming soon. When it comes out you can see for yourself the reds disappear and the colors shift to blue. We also secured a Styrofoam cup to the CTD in order to watch what happens as the pressure increases on the way down. *See here for my pressure video covering similar topics. The CTD only went down to around 90 meters, but that was still enough to increase the pressure from 1 atm to around 9 atm. This nine fold increase shrunk the cup around 12%. Todd tells stories of taking Styrofoam manikin heads down to 300 + meters and watching them shrink to the size of a shot glass.

testing color and pressure
Science lab aboard the CTD – testing color and pressure.

In addition to CTD excitement, Todd let me conduct an XBT launch. XBT stands for Expendable Bathythermograph. * This cruise had the highest density of acronyms of any experience in my life. Geez. Here’s a link from NOAA describing XBTs.  And my pictures below.

 

This slideshow requires JavaScript.

Bravo, Todd & NOAA Ship Pisces – you got me!!

XBT certificate
Don’t worry, my XBT bravery and expertise didn’t go unrewarded.

Neato Fact:

We stopped by the NOAA Beaufort Lab shortly after we docked in Morehead City. Todd K was awesome and showed me around and introduced me to a series of interesting characters – it was nice to see the lab and see what everyone had been talking about. I spent a short time walking near the sea wall outside the lab. I ran into Larisa who pointed out two cute baby green sea turtles. She said that recently they’ve started coming into the inlet to feed.  Related neato fact: Hawksbill sea turtles have been shown to exhibit biofluorescence.

Baby green sea turtle.
Baby green sea turtle.

Personal Log

It’s good to be back on land, and fun to trade the breezy blue ocean seascape for the hot humid green treescape of Tallahassee. I’m busy trying to process the information from the trip and figure out ways to incorporate it into my teaching and lesson plans. Surely it’ll take two forms – a little bit of distilling and planning now, and a slow seep of info from memories later. I’m hoping the trickle of revisited memories pop up at opportune times during the school year for me to take advantage. We’ll see.

I’m back to school in a few days.  This is the last full blog. Coming up I’ll post some quick hit blogs with links to some videos. Stay tuned.

Sunset
Until we meet again!

Shelley Gordon: A Day on the Back Deck, July 20, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 20, 2019

Weather data: Wind – variable 5 knots or less, wind wave ~1’, Swell – NW 7’@ 10sec / S 1’ @ 11sec, Patchy fog


Science Log

7:39am – We are about to pass under the Golden Gate Bridge, heading west toward the Farallon Islands.  Several small fishing boats race out in a line off our port side, hulls bouncing against the waves and fishing nets flying in the wind.  I am aboard R/V Fulmar in transit toward data collection point 4E, the eastern most point along ACCESS Transect 4.  The TTG (“time to go,” or the time we expect to arrive at 4E) is estimated at 1h53’ (1 hour, 53 minutes), a figure that fluctuates as the boat changes course, speeds up, or slows down.  

This is my second day on an ACCESS research cruise.  Yesterday I got my boots wet in the data collection methods used on the back deck.  The ACCESS research project collects various types of data at specific points along transects (invisible horizontal lines in the ocean). Today we will be collecting samples at 6 different points along Transect 4.  With one day under my belt and a little better idea of what to expect, today I will aim to capture some of the action on the back deck of the boat throughout the day. 

9:41am – Almost to Station 4E. “5 minutes to station.”  This is the call across the radio from First Mate Rayon Carruthers, and also my signal to come down from the top deck and get ready for action.  I put on my rain pants, rubber boots, a float jacket, and a hard hat.  Once I have my gear on, I am ready to step onto the back deck just as the boat slows down for sample collection to commence.  At this first station, 4E, we will collect multiple samples and data.  Most of the sampling methods will be repeated multiple times through the course of the day at different locations and depths (most are described below). 

deploying hoop net
Dani Lipski and Shelley Gordon deploy the hoop net. Photo: Rachel Pound

10:53am – Station 4EX. We finished cleaning the hoop net after collecting a sample at a maximum depth of 33m.  The hoop net is a tool used to collect a sample of small living things in deep water.  This apparatus consists of an ~1m diameter metal ring that has multiple weights attached along the outside.  A 3m, tapered fine mesh net with a cod end (small plastic container with mesh vents) hangs from the hoop.  Attached to the net there is also a flow meter (to measure the amount of water that flowed through the net during the sample collection) and a depth sensor (to measure the depth profile of the tow).  To deploy the net, we used a crane and winch to hoist the hoop out over the surface of the water and drop the net down into the water. Once the net was let out 100m using the winch, we brought it back in and pulled it back up onto the boat deck.  Using a hose, we sprayed down the final 1m of the net, pushing anything clinging to the side toward the cod end.  The organisms caught in the container were collected and stored for analysis back at a lab.  On this haul the net caught a bunch of copepods (plankton) and ctenophores (jellyfish).

Kate Davis preps samples
Kate Davis fills a small bottle with deep water collected by the Niskin bottle.

11:10am – Station 4ME. Dani Lipski just deployed the messenger, a small bronze-colored weight, sending it down the metal cable to the Niskin sampling bottle.  This messenger will travel down the cable until it makes contact with a trigger, causing the two caps on the end of the Niskin bottle to close and capturing a few liters of deep water that we can then retrieve back up at the surface.  Once the water arrives on the back deck, Kate Davis will fill three small vials to take back to the lab for a project that is looking at ocean acidification.  The Niskin bottle is attached to the cable just above the CTD, a device that measures the conductivity (salinity), temperature, and depth of the water.  In this case, we sent the Niskin bottle and CTD down to a depth of 95m. 

deploying the CTD
Dani Lipski and Shelley Gordon deploy the CTD. Photo: Rachel Pound

12:16pm – Station 4M. Rachel Pound just threw a small plastic bucket tied to a rope over the side of the boat.  Using the rope, she hauls the bucket in toward the ship and up over the railing, and then dumps it out.  This process is repeated three times, and on the third throw the water that is hauled up is collected as a sample.  Some of the surface water is collected for monitoring nutrients at the ocean surface, while another sample is collected for the ocean acidification project.

surface water sample
Rachel Pound throws a plastic bucket over the side railing to collect a surface water sample.

1:36pm – Station 4W. Using a small hoop net attached to a rope, Rachel Pound collected a small sample of the phytoplankton near the surface.  She dropped the net down 30ft off the side of the boat and then towed it back up toward the boat.  She repeated this procedure 3 times and then collected the sample from the cod end.  This sample will be sent to the California Department of Public Health to be used to monitor the presence of harmful algal blooms that produce domoic acid, which can lead to paralytic shellfish poisoning.

Tucker trawl net
Shelley Gordon, Dru Devlin, Jamie Jahncke, and Kirsten Lindquist prepare the Tucker trawl net. Photo: Kate Davis

2:54pm – The final sample collection of the day is underway.  Jaime Jahncke just deployed the first messenger on the Tucker trawl net.  This apparatus consists of three different nets.  These nets are similar to the hoop net, with fine mesh and cod ends to collect small organisms in the water.  The first net was open to collect a sample while the net descended toward ocean floor.  The messenger was sent down to trigger the device to close the first net and open a second net.  The second net was towed at a depth between 175-225m for ~10 minutes.  After the deep tow, a second messenger will be sent down the cable to close the second net and open a third net, which will collect a sample from the water as the net is hauled back to the boat.  The Tucker trawl aims to collect a sample of krill that live near the edge of the continental shelf and the deep ocean.

3:46pm – After a full day of action, the boat is turning back toward shore and heading toward the Bodega Bay Marina. 

5:42pm – The boat is pulling in to the marina at Bodega Bay.  Once the crew secures the boat along a dock, our day will be “done.”  We will eat aboard the boat this evening, and then likely hit the bunks pretty early so that we can rise bright and early again tomorrow morning, ready to do it all again along a different transect line!


Did You Know?

The word copepod means “oar-legged.” The name comes from the Greek word cope meaning oar or paddle, and pod meaning leg. Copepods are found in fresh and salt water all over the world and are an important part of aquatic food chains. They eat algae, bacteria, and other dead matter, and are food for fish, birds, and other animals. There are over 10,000 identified species of copepods on Earth, making them the most numerous animal on the planet.

Hayden Roberts: Data and More Data… July 11, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 11, 2019

Weather Data from the Bridge:
Latitude: 28.29° N
Longitude: 83.18° W
Wave Height: 1-2 feet
Wind Speed: 11 knots
Wind Direction: 190
Visibility: 10 nm
Air Temperature: 29.8°C
Barometric Pressure: 1013.6 mb
Sky: Few clouds


Science Log

As I mentioned in my introductory post, the purpose of the SEAMAP Summer Groundfish Survey is to collect data for managing commercial fisheries in the Gulf of Mexico. However, the science involved is much more complex than counting and measuring fish varieties.

The research crew gathers data in three ways. The first way involves trawling for fish. The bulk of the work on-board focuses on trawling or dragging a 42-foot net along the bottom of the Gulf floor for 30 minutes. Then cranes haul the net and its catch, and the research team and other personnel weigh the catch. The shift team sorts the haul which involves pulling out all of the shrimp and red snapper, which are the most commercially important species, and taking random samples of the rest. Then the team counts each species in the sample and record weights and measurements in a database called FSCS (Fisheries Scientific Computer System).

Trawling nets
Trawling nets waiting on aft deck.

SEAMAP can be used by various government, educational, and private entities. For example, in the Gulf data is used to protect the shrimp and red snapper populations. For several years, Gulf states have been closing the shrimp fishery and putting limits on the snapper catches seasonally to allow the population to reproduce and grow. The SEAMAP data helps determine the length of the season and size limits for each species.

Tampa Bay area waters
Digital chart of the waters off the Tampa Bay area. Black dots represent research stations or stops for our cruise.

Another method of data collection is conductivity, temperature, and depth measurements (CTD). The process involves taking readings on the surface, the bottom of Gulf floor, and at least two other points between in order to create a CTD profile of the water sampled at each trawling locations. The data becomes important in order to assess the extent of hypoxia or “dead zones” in the Gulf (see how compounded data is used to build maps of hypoxic areas of the Gulf: https://www.noaa.gov/media-release/noaa-forecasts-very-large-dead-zone-for-gulf-of-mexico). Plotting and measuring characteristics of hypoxia have become a major part of fishery research especially in the Gulf, which has the second largest area of seasonal hypoxia in the world around the Mississippi Delta area. SEAMAP data collected since the early 1980s show that the zone of hypoxia in the Gulf has been spreading, unfortunately. One recent research sample taken near Corpus Christi, TX indicated that hypoxia was occurring further south than in the past. This summer, during surveys two CTD devices are being used. The first is a large cylinder-shaped machine that travels the depth of the water for its readings. It provides a single snapshot. The second CTD is called a “Manta,” which is a multi-parameter water quality sonde (or probe). While it can be used for many kinds of water quality tests, NOAA is using it to test for hypoxia across a swath of sea while pulling the trawling net. This help determine the rate of oxygenation at a different depth in the water and across a wider field than the other CTD can provide.

Setting up the CTD
Setting up the CTD for its first dive of our research cruise.


Did You Know?

Algae is a major problem in the Gulf of Mexico. Hypoxia is often associated with the overgrowth of certain species of algae, which can lead to oxygen depletion when they die, sink to the bottom, and decompose. Two major outbreaks of algae contamination have occurred in the past three years. From 2017-2018, red algae, which is common in the Gulf, began washing ashore in Florida. “Red Tide” is the common name for these algae blooms, which are large concentrations of aquatic microorganisms, such as protozoans and unicellular algae. The upwelling of nutrients from the sea floor, often following massive storms, provides for the algae and triggers bloom events. The wave of hurricanes (including Irma and during this period caused the bloom. The second is more recent. Currently, beaches nearest the Mississippi Delta have been closed due to an abundance of green algae. This toxic algae bloom resulted from large amounts of nutrients, pesticides, fertilizers being released into the Bonnet Carre Spillway in Louisiana because of the record-high Mississippi River levels near Lake Pontchartrain. The spillway opening is being blamed for high mortality rates of dolphins, oysters and other aquatic life, as well as the algae blooms plaguing Louisiana and Mississippi waters.


Personal Log

Pulling away from Pascagoula yesterday, I knew we were headed into open waters for the next day and half as we traveled east down the coast to the Tampa Bay, FL area. I stood on the fore deck and watched Oregon II cruise past the shipyard, the old naval station, the refinery, navigation buoys, barrier islands, and returning vessels. The Gulf is a busy place. While the two major oceans that flank either side of the U.S. seem so dominant, the Gulf as the ninth largest body of water in the world and has just as much importance. As a basin linked to the Atlantic Ocean, the tidal ranges in the Gulf are extremely small due to the narrow connection with the ocean. This means that outside of major weather, the Gulf is relatively calm, which is not the case with our trip.

Navigation buoy
Navigation buoy that we passed leaving Pascagoula harbor.

As we cruise into open waters, along the horizon we can see drilling platforms jutting out of the Gulf like skyscrapers or resorts lining the distant shore. Oil and gas extraction are huge in this region. Steaming alongside us are oil tankers coming up from the south and cargo ships with towering containers moving back and forth between Latin America and the US Coast. What’s in the Gulf (marine wildlife and natural resources) has geographic importance, but what comes across the Gulf has strategic value too.

The further we cruised away from Mississippi, the water became choppy. The storm clouds that delayed our departure the day before were now overhead. In the distances, rain connected the sky to sea. While the storm is predicted to move northwest, the hope is that we can avoid its intensification over the Gulf Stream as we move southeasterly.

Choppy seas
Choppy seas as we cruise across the Gulf to the West Coast of Florida to start our research.

I learned that water in the Gulf this July is much warmer than normal. As a result, locally produced tropical storms have formed over the Gulf. Typically, tropical storms (the prelude to a hurricane) form over the Atlantic closer to the Equator and move North. Sometimes they can form in isolated areas like the Gulf. Near us, an isolated tropical storm (named Barry) is pushing us toward research stations closer to the coast in order to avoid more turbulent and windy working conditions. While the research we are conducting is important, safety and security aboard the ship comes first.

Catherine Fuller: Maintaining Balance, July 1, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 28 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: 1 July 2019

Weather Data from the Bridge

Latitude: 60’ 15” N
Longitude: 145’ 30” N
Wave Height:
Wind Speed: 7 knots
Wind Direction: 101 degrees
Barometric Pressure: 1020 mb
Air Temperature:  13.2° C
Relative Humidity: 94%
Sky: Overcast


Science and Technology Log

When I read some the material online about the NGA LTER, what struck me was a graphic that represented variability and resiliency as parts of a dynamic system.  The two must coexist within an ecosystem to keep it healthy and sustainable; they must be in balance.  On board, there is also balance in the studies that are being done.  The Main Lab houses researchers who are looking at the physical aspects of the water column, such as sediment and plankton.  The Wet Lab researchers are looking at the chemical aspects and are testing properties such as fluorescence, DIC (dissolved inorganic carbon), and DOC (dissolved organic carbon). 

Working deck
This is the working deck of the ship, where the majority of equipment is deployed

Today we deployed Steffi’s sediment traps, a process during which balance was key. First of all, each trap was composed of four collection tubes arranged rather like a chandelier. 

collection tubes
These are the collection tubes that will be staged at selected depths to collect sediment

These were hooked into her primary line. Her traps were also attached to two sets of floaters: one at the surface and one as an intermediary feature on her line.  These allowed her traps to sit at the proper depths to collect the samples she needed.  The topmost trap sat 80m below the surface, while the next three were at subsequent 25m intervals. 

View this post on Instagram

Sediment trap #Sikuliaq

A post shared by Bern, (@bernm8r_) on

Bern’s time lapse of the sediment trap deployment
hazy sound
Steffi’s traps were released against the background of the smoky sound.

We also collected more samples from another run of the CTD today.  Again, the Niskin bottles (collection tubes) were “fired” or opened at various depths, allowing sampling through a cross section of the water at this particular data point PWS2. Unlike our previous collection, these samples were filtered with .45 micron mesh to eliminate extraneous particles.  This is a very careful process, we needed to be very careful to eliminate air bubbles and replace the filters regularly as the clogged quickly.  For one depth, we did collect unfiltered samples as a comparison to the filtered ones.  Many groups use the CTD to collect samples, so there must also be careful planning of usage so that there is enough water for each team.  Collection is a complicated dance of tubes, syringes, bottles, labels and filters all circling around the CTD. 

Steffi and buoys
Steffi looks over the sound as the buoys marking her traps recede into the distance.

Later this evening, we’ll have the chance to pull up Steffi’s sediment traps and begin to prepare her samples for analysis. 


Personal Log

Balance is key in more ways than one when you’re living aboard a research ship. Although it’s been very calm, we experience some rolling motion when we are transiting from one site to the next.  The stairways in the ship are narrow, as are the steps themselves, and it’s a good thing there are sturdy handrails!  Other than physical balance, it’s important to find personal balance.  During the day, the science work can be very intense and demanding.  Time schedules shift constantly, and it is important to be aware of when your experiments or data collection opportunities are taking place.  Down time is precious, and people will find a quiet space to read, go to the gym (a small one), catch up on sleep or even watch a movie in the lounge. 

A couple of weeks before I left, the Polynesian Voyaging Society hosted a cultural group from Yakutat, who had shipped in one of their canoes down for a conference.  We were able to take them out sailing, and the subject of balance came up in terms of the worldview that the Tlingit have.  People are divided between being Eagles and Ravens, and creatures are also divided along the lines of being herbivorous and carnivorous.  Rather than this being divisive within culture, it reflects the principle of balance.  Both types are needed to make an ecosystem whole and functional.  And so, as we progress, we are continually working on maintaining our balance in the R/V Sikuliaq ecosystem. 


Animals seen today:

A few dolphins were spotted off the bow this evening, but other than that, Prince William Sound has been relatively quiet.  Dan, our U.S. Fish and Wildlife person, remarked that there are more boats than birds today, which isn’t saying much as I’ve only seen three other boats.

Catherine Fuller: A Tropical Fish in an Alaskan Aquarium, June 30, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 28 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: 30 June 2019

Weather Data from the Bridge

Latitude: 60.32 N
Longitude: 147.48 W
Wind Speed: 3.2 knots
Wind Direction: 24 degrees
Air Temperature: 72 °F
Sky: Hazy (smoke)


Science and Technology Log

We arrived in Seward mid-day on Thursday, June 27th to find it hazy from fires burning north of us; the normally picturesque mountain ranges framing the bay were nearly obscured, and the weather forecast predicts that the haze will be with us at sea for a while as well.  Most of the two days prior to departure were busy with loading, sorting, unpacking and setting up of equipment. 

Ready to load
All equipment and supplies are placed on pallets to load on board

There are multiple experiments and different types of studies that will be taking place during the course of this cruise, and each set of researchers has a specific area for their equipment.  I am on the particle flux team with Stephanie O’Daly (she specifically requested to have “the teacher” so that she’d have extra hands to help her), and have been helping her as much as I can to set up.  Steffi has been very patient and is good about explaining the equipment and their function as we go through everything.  Particle flux is about the types of particles found in the water and where they’re formed and where they’re going.  In addition, she’ll be looking at carbon matter: what form it takes and what its origin is, because that will tell her about the movement of specific types of plankton through the water column.  We spent a part of Friday setting up a very expensive camera (the UVP or Underwater Visual Profiler) that will take pictures of particles in the water down to 500 microns (1/2 a millimeter), will isolate the particles in the picture, sort the images and download them to her computer as well. 

Steffi’s friend Jess was very helpful and instructive about setting up certain pieces of equipment.  I found that my seamanship skills luckily were useful in splicing lines for Steffi’s tows as well as tying her equipment down to her work bench so that we won’t lose it as the ship moves. 

As everyone worked to prepare their stations, the ship moved to the refueling dock to make final preparations for departure, which was about 8:30 on Saturday morning. 

Day one at sea was a warm up for many teams.  Per the usual, the first station’s testing went slowly as participants learned the procedures.  We deployed the CTD (conductivity, temperature and depth) at the second station.  A CTD is a metal framework that carries various instruments and sampling bottles called Niskin bottles.  In the video, you can see them arranged around the structure. The one we sent on June 28 had 24 plastic bottles that were “fired” at specific depths to capture water samples.  These samples are shared by a number of teams to test for things like dissolved oxygen gas, and nutrients such as nitrate, nitrites, phosphate and silicate, and dissolved inorganic carbon.  

Video coming soon!
The CTD is lowered over the side of the ship long enough to fill sample bottles and then is brought back on board. (This still photo is a placeholder for the video.)

One of my tasks today was to help her collect samples from specific bottles by attaching a tube to the bottle, using water from the sample to cleanse it and them fill it.  Another team deployed a special CTD that was built completely of iron-free materials in order to run unbiased tests for iron in the water. 

By late Saturday night, we will be in Prince William Sound, and will most likely spend a day there, before continuing on to Copper River.  Usually LTER cruises are more focused on monitoring the state of the ecosystem, but in this case, the cruise will also focus on the processes of the Copper River plume, rates and interactions.  This particular plume brings iron and fresh water into the Northern Gulf of Alaska ecosystem, where it is dispersed by weather and current.  After spending some time studying the plume, the cruise will continue on to the Middleton Line to examine how both fresh water and iron are spread along the shelf and throughout the food web.  


Personal Log

As the science team gathered yesterday, it became evident that the team is predominantly female.  According to lead scientist Seth Danielson, this is a big change from roughly 20 years ago, and has become more of the norm in recent times.  We also have five undergraduates with us who have never been out on a cruise, which is unusual.  They are all very excited for the trip and to begin their own research by assisting team leaders.  I’ve met most of the team and am slowly getting all the names down. 

I have to admit that I’m feeling out of my element, much like a fish in a very different aquarium.  I’m used to going to sea, yes, but on a vessel from another time and place.  There is much that is familiar about gear, lines, weather, etc., but there are also great differences.  The ship’s crew is a separate group from the science crew, although most are friendly and helpful.  Obviously, this is a much larger and more high tech vessel with many more moving parts.  Being on the working deck requires a hard hat, protective boots, and flotation gear.  There are viewing decks that are less restricted. 

I am excited to be at sea again, but a little bit nervous about meeting expectations and being as helpful as I can without getting in the way.  It’s a little strange to be primarily indoors, however, as I’m used to being out in the open! I’m enjoying the moments where I can be on deck, although with the haze in the air, I’m missing all the scenery! 

Did you know?

Because space is limited onboard, many of the researchers are collecting samples for others who couldn’t be here as well as collecting for themselves and doing their own experiments.

Something to think about:

How do we get more boys interested in marine sciences?

Questions of the day (from the Main Lab):

Do whales smell the smoke outside?

Answer: Toothed whales do not have a sense of smell, and baleen whales have a poor sense of smell at best.

Do scorpions get seasick?

Jill Bartolotta: ROV, CTD, OMG, June 10, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 14, 2019

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 10, 2019

Weather Data:

Latitude: 29°04.9’ N

Longitude: 079°53.2’ W

Wave Height: 1-2 feet

Wind Speed: 11 knots

Wind Direction: 241

Visibility: 10

Air Temperature: 26.7° C

Barometric Pressure: 1017.9

Sky: Clear

Science and Technology Log

As part of this mapping mission we are identifying places that may be of interest for an ROV (remotely operated vehicle) dive. So far a few locations have shown promise. The first is most likely an area with a dense mass of deep sea mound building coral and the other an area where the temperature dropped very quickly over a short period of time. But before I talk about these two areas of interest I would like to introduce you to some more equipment aboard.

CTD

CTD stands for conductivity, temperature, and depth. A CTD is sent down into the water column to collect information on depth, temperature, salinity, turbidity, and dissolved oxygen. Some CTDs have a sediment core on them so you can collect sediment sample. There is also a sonar on the bottom of the CTD on Okeanos Explorer that is used to detect how close the equipment is to the bottom of the ocean. You want to make sure you avoid hitting the bottom and damaging the equipment.

Sidney and CTD
General Vessel Assistant Sidney Dunn assisting with CTD launch. Photo Credit: Charlie Wilkins SST Okeanos Explorer

Yesterday we used a CTD because the XBTs launched overnight showed a water temperature change of about 4°C over a few meters change in depth. This is a HUGE change! So it required further exploration and this is why we sent a CTD down in the same area. The CTD confirmed what the XBTs were showing and also provided interesting data on the dissolved oxygen available in this much colder water. It sounds like this area may be one of the ROV sites on the next leg of the mission.

Deep water canyon-like feature
Deep water canyon-like feature with cold water and high oxygen levels. Photo Credit: NOAA OER

ROV

ROV stands for remotely operated vehicle. Okeanos Explorer has a dual-body system meaning there are two pieces of equipment that rely on each other when they dive. The duo is called Deep Discoverer (D2) and Seirios. They are designed, built, and operated by NOAA Office of Ocean Exploration and Research (OER) and Global Foundation for Ocean Exploration (GFOE). Together they are able to dive to depths of 6,000 meters. D2 and Seirios are connected to the ship and controlled from the Mission Control room aboard the ship. Electricity from the ship is used to power the pair. A typical dive is 8-10 hours with 2 hours of prep time before and after the dive.

Seirios and D2 getting ready for a dive. Photo Credit: Art Howard, GFOE
Seirios and D2 getting ready for a dive. Photo Credit: Art Howard, GFOE

Seirios lights up D2, takes pictures, provides an aerial view of D2, and contains a CTD. D2 weighs 9,000 pounds and is equipped with all types of sampling equipment, including:

  • Lights to illuminate the dark deep
  • High definition cameras that all allow for video or still frame photos
  • An arm with a claw to grab samples, such as rock or coral
  • Suction tube to bring soft specimens to the surface
  • Rock box to hold rock specimens
  • Specimen box to hold living specimens (many organisms do not handle the pressure changes well as they are brought to the surface so this box is sealed so the water temperature stays cold which helps the specimens adjust as they come to the surface)
ROV D2 labeled
D2 with some of her specimen collection parts labeled.

My favorite fact about D2 is how her operators keep her from imploding at deep depths where pressure is very strong and crushes items from the surface. Mineral oil is used to fill air spaces in the tubing and electric panel systems. By removing the air and replacing it with oil, you are reducing the amount of pressure these items feel. Thus, preventing them from getting crushed.

ROV Brain
D2’s “brain” is shown behind the metal bars. The bars are there for extra protection. The panel boxes and tubes are filled with a yellow colored liquid. This liquid is the mineral oil that is used to reduce the pressure the boxes and tubes feel as D2 descends to the ocean floor.

D2 provides amazing imagery of what is happening below the surface. Like I said earlier, one of the areas of interest is mound-building coral. The mapping imagery below shows features that appear to be mound building coral and have shown to be true on previous dives in the area in 2018.

bathymetry features
Multibeam bathymetry collected on this cruise that shows features which are similar to mound building coral that are known to be in the area. Photo Credit: NOAA OER

Mound-Building Coral

Mound-building coral (Lophelia pertusa) are a deep water coral occurring at depths of 200-1000 meters. They form large colonies and serve as habitat for many deep-water fish and other invertebrates. Unlike corals in tropical waters which are near the surface, Lophelia pertusa do not have the symbiotic relationship with algae. Therefore, they must actively feed to gain energy.

mound-building coral (Credit: NOAA OER)
Large amounts of Lophelia pertusa, stony coral, found at the top of the crest of Richardson Ridge during Dive 07 of the Windows to the Deep 2018 expedition. Rubble of this species also appeared to form the mounds found in this region.

Personal Log

We saw whales today!!!! They went right past the ship on our port side and then went on their way. We weren’t able to see them too well, but based on their coloring, low profile in the water, and dorsal fin we think them to be pilot whales, most likely short-finned pilot whales. Pilot whales are highly social and intelligent whales.

Dorsal fin of a pilot whale
Dorsal fin of a pilot whale

There was also the most amazing lightening show last night. The bolts were going vertically and horizontally through the sky. I think what I will miss most about being at sea is being able to see the storms far off in the distance.

Did You Know?

You can build your own ROV, maybe with your high school science or robotics club, and enter it in competitions.

ROV competition
High school ROV competition at The Ohio State University.

References

Mound Building Coral: NOAA, 2010, https://oceanexplorer.noaa.gov/explorations/10lophelia/background/biology/biology.html

Pilot Whales: American Cetacean Society, 2018, https://www.acsonline.org/pilot-whale

Andria Keene: The sun is setting on my adventure! October 21, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 21, 2018

Weather Data from the Bridge
Date: 2018/10/21
Time: 12:52
Latitude: 029 23.89 N
Longitude 094 14.260 W
Barometric Pressure 1022.22mbar
Air Temperature: 69 degrees F

The isness of things is well worth studying; but it is their whyness that makes life worth living.
– William Beebe

 

Last sunset
My last sunset aboard the Oregon II.

Science and Technology Log

Today is our last day at sea and we have currently completed 53 stations!  At each station we send out the CTD.   CTD stands for Conductivity, Temperature and Depth.   However, this device measures much more than that.  During this mission we are looking at 4 parameters: temperature, conductivity, dissolved oxygen and fluorescence which can be used to measure the productivity of an area based on photosynthetic organisms.

science team with the CTD
Some of the science team with the CTD.

Once the CTD is deployed, it is held at the surface for three minutes.  During this time, 4,320 scans are completed!  However, this data, which is used to acclimate the system, is discarded from the information that is collected for this station.

CTD Collage
The crane lifts the CTD from the well deck and deploys it into the water.

Next, the CTD is slowly lowered through the water until it is about 1 meter from the bottom.  In about 30 meters of water this round trip takes about 5 minutes during which the CTD conducts 241 scans every 10 seconds for a grand total of approximately 7,230 scans collected at each station.

CTD Graph
The computer readout of the data collected at one of the stations.

Our CTD scans have gathered the expected data but during the summer months the CTD has found areas of hypoxia off the coast of Louisiana and Texas.

Summer Hypoxia Zones
Data from CTD scans was used to create this map of hypoxic zones off the coast of Louisiana in summer of 2018.

 

Personal Log

The gloomy weather has made the last few days of the voyage tricky. Wind and rough seas have made sleeping and working difficult. Plus, I have missed my morning visits with dolphins at the bow of the ship due to the poor weather.  But seeing the dark blue water and big waves has added to the adventure of the trip.

Dark clouds lifting
The gloom is lifting as a tanker passes in the distance.

We have had some interesting catches including one that weighed over 800 pounds and was mostly jellyfish.  Some of the catches are filled with heavy mud while others a very clean. Some have lots of shells or debris.  I am pleasantly surprised to see that even though I notice the occasional plastic bottle floating by, there has not been much human litter included in our catches.  I am constantly amazed by the diversity in each haul.  There are species that we see at just about every station and there are others that we have only seen once or twice during the whole trip.

Catch collage
A few of the most unique catches.

I am thrilled to have had the experience of being a NOAA Teacher at Sea and I am excited to bring what I have learned back to the classroom to share with my students.  

 

Challenge Question:

Bonus points for the first student in each class to send me the correct answer!

These are Calico Crabs, but this little one has something growing on it?  What is it?

Calico crabs
Calico crabs… but what is that growing on this small one?

Did you know…

That you can tell the gender of a flat fish by holding it up to the light?

Flatfish collage
The image on the top is a female and the one of the bottom is the male. Can you tell the difference?

 

Today’s Shout Out! 

Kudos to all of my students who followed along, answered the challenge questions, played species BINGO, and plotted my course!  You made this adventure even more enjoyable!  See you soon 🙂

Andria Keene: Let the fun begin! October 17, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 17, 2018

Weather Data from the Bridge
Date: 2018/10/17
Time: 13:10
Latitude: 027 39.81 N
Longitude 096 57.670 W
Barometric Pressure 1022.08mbar
Air Temperature: 61 degrees F

Those of us who love the sea wish everyone would be aware of the need to protect it.
– Eugenie Clark

Science and Technology Log

After our delayed departure, we are finally off and running! The science team on Oregon II has currently completed 28 out of the 56 stations that are scheduled for the first leg of this mission. Seventy-five stations were originally planned but due to inclement weather some stations had to be postponed until the 2nd leg. The stations are pre-arranged and randomly selected by a computer system to include a distributions of stations within each shrimp statistical zone and by depth from 5-20 and 21-60 fathoms.

Planned stations and routes
Planned stations and routes

At each station there is an established routine that requires precise teamwork from the NOAA Corps officers, the professional mariners and the scientists. The first step when we arrive at a station, is to launch the CTD. The officers position the ship at the appropriate location. The mariners use the crane and the winch to move the CTD into the water and control the decent and return. The scientists set up the CTD and run the computer that collects and analyzes the data. Once the CTD is safely returned to the well deck, the team proceeds to the next step.

science team with the CTD
Some members of the science team with the CTD

Step two is to launch the trawling net to take a sample of the biodiversity of the station. Again, this is a team effort with everyone working together to ensure success. The trawl net is launched on either the port or starboard side from the aft deck. The net is pulled behind the boat for exactly thirty minutes. When the net returns, the contents are emptied into the wooden pen or into baskets depending on the size of the haul.

red snapper haul
This unusual haul weighed over 900 pounds and contained mostly red snapper. Though the population is improving, scientists do not typically catch so many red snapper in a single tow.

The baskets are weighed and brought into the wet lab. The scientists use smaller baskets to sort the catch by species. A sample of 20 individuals of each species is examined more closely and data about length, weight, and sex is collected.

The information gathered becomes part of a database and is used to monitor the health of the populations of fish in the Gulf. It is used to help make annual decisions for fishing regulations like catch and bag limits. In addition, the data collected from the groundfish survey can drive policy changes if significant issues are identified.

Personal Log

I have been keeping in touch with my students via the Remind App, Twitter, and this Blog. Each class has submitted a question for me to answer. I would like to use the personal log of this blog to do that.

3rd Period - Marine Science II
3rd Period – Marine Science II: What have you learned so far on your expedition that you can bring back to the class and teach us?

The thing I am most excited to bring back to Marine 2 is the story of recovery for the Red Snapper in the Gulf of Mexico. I learned that due to improved fishing methods and growth in commercial fishing of this species, their decline was severe. The groundfish survey that I am working with is one way that data about the population of Red Snapper has been collected. This data has led to the creation of an action plan to help stop the decline and improve the future for this species.

4th Period - Marine Science I
4th Period – Marine Science I: What challenges have you had so far?

Our biggest challenge has been the weather! We left late due to Hurricane Michael and the weather over the past few days has meant that we had to miss a few stations. We are also expecting some bad weather in a couple of days that might mean we are not able to trawl.

5th Period - Marine Science I
5th Period – Marine Science I: How does the NOAA Teacher at Sea program support or help our environment?

The number one way that the NOAA Teacher at Sea program supports our environment is EDUCATION! What I learn here, I will share with my students and hopefully they will pass it on as well. If more people know about the dangers facing our ocean then I think more people will want to see changes to protect the ocean and all marine species.

7th Period - Marine Science I
7th Period – Marine Science I: What is the rarest or most interesting organism you have discovered throughout your exploration?

We have not seen anything that is rare for the Gulf of Mexico but I have seen two fish that I have never seen before, the singlespot frogfish and the Conger Eel. So for me these were really cool sightings.

 

 

 

 

 

 

 

 

 

 

8th Period - Marine Science I
8th Period – Marine Science I: What organism that you have observed is by far the most intriguing?

I have to admit that the most intriguing organism was not anything that came in via the trawl net. Instead it was the Atlantic Spotted Dolphin that greeted me one morning at the bow of the boat. There were a total of 7 and one was a baby about half the size of the others. As the boat moved through the water they jumped and played in the splashing water. I watched them for over a half hour and only stopped because it was time for my shift. I could watch them all day!

Do you know …

What the Oregon II looks like on the inside?
Here is a tour video that I created before we set sail.

 

Transcript: A Tour of NOAA Ship Oregon II.

(0:00) Hi, I’m Andria Keene from Plant High School in Tampa, Florida. And I’d like to take you for a tour aboard Oregon II, my NOAA Teacher at Sea home for the next two weeks.

Oregon II is a 170-foot research vessel that recently celebrated 50 years of service with NOAA. The gold lettering you see here commemorates this honor.

As we cross the gangway, our first stop is the well deck, where we can find equipment including the forecrane and winch used for the CTD and bongo nets. The starboard breezeway leads us along the exterior of the main deck, towards the aft deck.

Much of our scientific trawling operations will begin here. The nets will be unloaded and the organisms will be sorted on the fantail.

(1:00) From there, the baskets will be brought into the wet lab, for deeper investigation. They will be categorized and numerous sets of data will be collected, including size, sex, and stomach contents.

Next up is the dry lab. Additional data will be collected and analyzed here. Take notice of the CTD PC.

There is also a chemistry lab where further tests will be conducted, and it’s located right next to the wet lab.

Across from the ship’s office, you will find the mess hall and galley. The galley is where the stewards prepare meals for a hungry group of 19 crew and 12 scientists. But there are only 12 seats, so eating quickly is serious business.

(2:20) Moving further inside on the main deck, we pass lots of safety equipment and several staterooms. I’m currently thrilled to be staying here, in the Field Party Chief’s stateroom, a single room with a private shower and water closet.

Leaving my room, with can travel down the stairs to the lower level. This area has lots of storage and a large freezer for scientific samples.

There are community showers and additional staterooms, as well as laundry facilities, more bathrooms, and even a small exercise room.

(3:15) If we travel up both sets of stairs, we will arrive on the upper deck. On the starboard side, we can find the scientific data room.

And here, on the port side, is the radio and chart room. Heading to the stern of the upper deck will lead us to the conference room. I’m told that this is a great place for the staff to gather and watch movies.

Traveling back down the hall toward the bow of the ship, we will pass the senior officers’ staterooms, and arrive at the pilot house, also called the bridge.

(4:04) This is the command and control center for the entire ship. Look at all the amazing technology you will find here to help keep the ship safe and ensure the goals of each mission.

Just one last stop on our tour: the house top. From here, we have excellent views of the forecastle, the aft winch, and the crane control room. Also visible are lots of safety features, as well as an amazing array of technology.

Well, that’s it for now! Hope you enjoyed this tour of NOAA Ship Oregon II.  

 

Challenge Question of the Day
Bonus Points for the first student in each class period to come up with the correct answer!
We have found a handful of these smooth bodied organisms which like to burrow into the sediment. What type of animal are they?

Challenge Question
What type of animal are these?

Today’s Shout Out:  To my family, I miss you guys terribly and am excited to get back home and show you all my pictures! Love ya, lots!

Martha Loizeaux: Cool Science Tools and Drifter Buoy! August 26, 2018


Roy Moffitt: Measuring Ocean Properties with the CTD, August 19, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

 

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 19, 2018

 

Current location/conditions:

Evening of August 19 – Edge of the Barrow Canyons in the Beaufort Sea

Air temp 32F, sea depth  185m , surface sea water temp  32F

 

Measuring Ocean Properties with the CTD

Scientists have a tendency to use acronyms to refer to select processes and measures.  The acronym heard the most, if not constant, on this trip has been CTD.  So here is my best attempt to give you a brief overview of what that “CTD” means and some of the measurements scientists are taking.

CTD Deployment
Deploying the CTD (Conductivity, Temperature, and Depth) probe, which is suspended in a metal “package” with Niskin water bottles

The acronym CTD stands for conductivity, temperature, and depth of the ocean water. This instrument, which takes a measurement 24 times a second, is attached to a large frame that includes big plastic bottles know as Niskin bottles. Nearly every time we stop the ship the CTD package (shown in the image above) is slowly lowered to just above the sea floor (or less depending upon the scientific interest at the site).   On the way back up, the Niskin bottles are filled with seawater from different pre-determined depths.  An electronic switch is triggered for each bottle at different depths so that the containers are sealed closed trapping water from that depth.  Once the package is back on board the scientists measure various properties of the water, including its salinity and oxygen content which will be used to verify and calibrate the electronic sensors on the CTD.

The three main measurements of the CTD represent fundamental characteristics of seawater. Conductivity (C) determines the salinity or the amount of salt in the water.  Electrical conductivity or how well an electric current can flow through the water gives an instant real time measurement of water salinity.  When combined with temperature (T) and depth (D) this gives a measure of the density of the water, and even tells us something about how the water is moving.

In addition to these physical properties, other sensors attached to the CTD provide information on the underwater marine life.  Phytoplankton is the base of the underwater food web and is an important indicator for the overall health of the local marine environment. Phytoplankton is too small to be seen individually without the aid of a microscope; however, scientists have found a way to test for its presence in water. Phytoplankton gets its energy, as all plants do, from the sun using the process of photosynthesis. One of the sensors on the CTD tests for chlorophyll fluorescence, a light re-emitted during the process of photosynthesis.  The amount of fluorescence measured can be used to determine the amount of living phytoplankton at different depths in the ocean.  Another sensor measures the levels of sunlight in the water.

The water samples from the Niskin bottles are used to determine many other properties of the water. One such property is dissolved carbon dioxide.  Just like the atmosphere, the ocean has its own carbon cycle.  We might hear of increased atmosphere CO2 levels associated with global warming.  Some of this CO2 is absorbed from the atmosphere at the surface of the ocean and some of the carbon from the ocean is also exchanged into the atmosphere. This carbon exchange rate between the air and sea helps regulate the pH of the ocean.  Tracking dissolved carbon dioxide measurements over time gives scientists additional physical measurements to track the overall health of the marine environment.  Scientists have been seeing increasing amounts of dissolved carbon dioxide in the ocean which can decrease pH levels making the ocean more acidic.  Small changes in the ocean pH can affect some marine life more than others upsetting the balance in the marine ecosystems.

 

The Exiting Pacific Ocean

At the moment scientists are doing even more CTD casts with a focus on ocean currents.   We are at the edge of the Chukchi Sea where the Pacific-origin water exits the shelf into the deep Arctic Ocean. Much of this happens at Barrow Canyon, which acts as a drain for the water to flow northward. Scientists are still uncertain what happens to the water after it leaves the canyon, so the survey we are doing now is designed to track water as it spreads seaward into the interior Arctic.

 

The Pressure of the Deep Sea

Most of the CTD casts during our time on the Healy have not exceeded 300 meters.  Lowering and raising the CTD from deeper depths takes a lot of precious time, and on this cruise the emphasis is on the upper part of the water column.  However, on August 18, we completed a cast 1000 meters deep.  In addition to collecting data, we were able to demonstrate the crushing effects of the deep ocean pressure by placing a net of styrofoam cups on the CTD to the depth of 1000 meters.  Styrofoam cups contain significant amounts of air. This is why the styrofoam cup is such a good insulator for a hot drink.  At 1000 meters deep, much of the air is crushed out of the cup. Since the pressure is equivalent around the cup, it is crushed in a uniform way causing the cup to shrink. Here are some images demonstrating the crushing power of the sea.  *Note: The big cup with no drawing is the original size.  This will be a great visual tool to bring back to the classroom.

shrunk cups
Styrofoam cups shrunken by the increased pressure of the deep ocean

 

Today’s Wildlife Sightings

A highlight today was not seeing but hearing.  I was able to listen in live on Beluga whales with the help of  deployed sonobuoys.  The sonobuoys  are floating hydrophones that transmit back what they hear with their underwater microphones.  Today they picked up the Beluga whales and their short songs.  I thought their calls sound like the songbirds from home and little did I know, this is why they are called the canaries of the sea!

 

Now and Looking forward

Tonight we saw 100s of Walruses mostly on the ice.  On Monday we will have a presentation about walrus from one of the scientists on board.  I look forward to sharing pictures and what I learned in the next blog.

Anne Krauss: The Oregon II Trail, August 16, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 16, 2018

Weather Data from the Bridge

Conditions at 1106

Latitude: 25° 17.10’ N

Longitude: 82° 53.58’ W

Barometric Pressure: 1020.17 mbar

Air Temperature: 29.5° C

Sea Temperature: 30.8° C

Wind Speed: 12.98 knots

Relative Humidity: 76%

 

Science and Technology Log

Before getting into the technology that allows the scientific work to be completed, it’s important to mention the science and technology that make daily life on the ship safer, easier, and more convenient. Electricity powers everything from the powerful deck lights used for working at night to the vital navigation equipment on the bridge (main control and navigation center). Whether it makes things safer or more efficient, the work we’re doing would not be possible without power. Just in case, several digital devices have an analog (non-electronic) counterpart as a back-up, particularly those used for navigation, such as the magnetic compass.

 

This slideshow requires JavaScript.

To keep things cool, large freezers are used for storing bait, preserving scientific samples, and even storing ice cream (no chumsicles for dessert—they’re not all stored in the same freezer!). After one particularly sweltering shift, I was able to cool off with some frozen coffee milk (I improvised with cold coffee, ice cream, and milk). More importantly, without the freezers, the scientific samples we’re collecting wouldn’t last long enough to be studied further back at the lab on land.

Electricity also makes life at sea more convenient, comfortable, and even entertaining. We have access to many of the same devices, conveniences, and appliances we have at home: laundry machines, warm showers, air conditioning, home cooked meals, a coffee maker, TVs, computers with Wi-Fi, and special phones that allow calls to and from sea. A large collection of current movies is available in the lounge. During my downtime, I’ve been writing, exploring, enjoying the water, and learning more about the various NOAA careers on board.

To use my computer, I first needed to meet with Roy Toliver, Chief Electronics Technician, and connect to the ship’s Wi-Fi. While meeting with him, I asked about some of the devices I’d seen up on the flying bridge, the top deck of the ship. The modern conveniences on board are connected to several antennae, and Roy explained that I was looking at important navigation and communication equipment such as the ship’s GPS (Global Positioning System), radar, satellite, and weather instrumentation.

I was also intrigued by the net-like item (called a Day Shape) that communicates to other ships that we are deploying fishing equipment. This lets nearby ships know that the Oregon II has restricted maneuverability when the gear is in the water. At night, lights are used to communicate to other ships. Communication is crucial for safety at sea.

When I stopped by, Roy had just finished replacing some oxygen sensors for the CTD (that stands for Conductivity, Temperature, and Depth). For more information about CTDs click here: https://oceanexplorer.noaa.gov/facts/ctd.html

Without accurate sensors, it’s very difficult for the scientists to get the data they need. If the sensors are not working or calibrated correctly, the information collected could be inaccurate or not register at all. The combination of salt water and electronics poses many interesting problems and solutions. I noticed that several electronic devices, such as computers and cameras, are built for outdoor use or housed in durable plastic cases.

On this particular day, the ship sailed closer to an algal bloom (a large collection of tiny organisms in the water) responsible for red tide. Red tide can produce harmful toxins, and the most visible effect was the presence of dead fish drifting by. As I moved throughout the ship, the red tide was a red hot topic of conversation among both the scientists and the deck department. Everyone seemed to be discussing it. One scientist explained that dissolved oxygen levels in the Gulf of Mexico can vary based on temperature and depth, with average readings being higher than about 5 milligrams per milliliter. The algal bloom seemed to impact the readings by depleting the oxygen level, and I was able to see how that algal bloom registered and affected the dissolved oxygen readings on the electronics Roy was working on. It was fascinating to witness a real life example of cause and effect. For more information about red tide in Florida, click here: https://oceanservice.noaa.gov/news/redtide-florida/

Chief Electronics Technician Roy Toliver in his office on the Oregon II.
Chief Electronics Technician Roy Toliver in his office on the Oregon II. The office is like the ship’s computer lab. When he’s not working on the ship’s electronics, Roy enjoys reading out on the stern. It’s a great place for fresh air, beautiful views, and a good book!

Personal Log

Preparing and packing for my time on the Oregon II reminded me of The Oregon Trail video game. How to pack for a lengthy journey to the unfamiliar and unknown?

A video game screenshot
I had a hard time finding bib overalls and deck boots at the general store.

I didn’t want to run out of toiletries or over pack, so before leaving home, I tracked how many uses I could get out of a travel-sized tube of toothpaste, shampoo bottle, and bar of soap, and that helped me to ration out how much to bring for fifteen days (with a few extras, just in case). The scientists and crew of the Oregon II also have to plan, prepare, and pack all of their food, clothing, supplies, tools, and equipment carefully. Unlike The Oregon Trail game, I didn’t need oxen for my journey, but I needed some special gear: deck boots, foul weather gear (rain jacket with a hood and bib overalls), polarized sunglasses (to protect my eyes by reducing the sun’s glare on the water), lots of potent sunscreen, and other items to make my time at sea safe and comfortable.

I was able to anticipate what I might need to make this a more efficient, comfortable experience, and my maritime instincts were accurate. Mesh packing cubes and small plastic baskets help to organize my drawers and shower items, making it easier to find things quickly in an unfamiliar setting.

berths on ship show blue privacy curtains
This is where we sleep in the stateroom. The blue curtains can be closed to darken the room when sleeping during the day. On the left is a sink.

My own shark cradle
Reading and dreaming about sharks!

Dirt, guts, slime, and grime are part of the job. A bar of scrubby lemon soap takes off any leftover sunscreen, grime, or oceanic odors that leaked through my gloves. Little things like that make ship life pleasant. Not worrying about how I look is freeing, and I enjoy moving about the ship, being physically active. It reminds me of the summers I spent as a camp counselor working in the woods. The grubbier and more worn out I was, the more fun we were having.

The NOAA Corps is a uniformed service, so the officers wear their uniforms while on duty. For everyone else, old clothes are the uniform around here because the work is often messy, dirty, and sweaty. With tiny holes, frayed seams, mystery stains, cutoff sleeves, and nautical imagery, I am intrigued by the faded t-shirts from long-ago surveys and previous sailing adventures. Some of the shirts date back several years. The well-worn, faded fabric reveals the owner’s experience at sea and history with the ship. The shirts almost seem to have sea stories to tell of their own.

Sunset over water showing orange, pink, and blue hues.
As we sail, the view is always changing and always interesting!

Being at sea is a very natural feeling for me, and I haven’t experienced any seasickness. One thing I didn’t fully expect: being cold at night. The inside of the ship is air-conditioned, which provides refreshing relief from the scorching sun outside. I expected cooler temperatures at night, so I brought some lightweight sweatshirts and an extra wool blanket from home. On my first night, I didn’t realize that I could control the temperature in my stateroom, so I shivered all night long.

A folded grey hooded sweatshirt
It’s heavy, tough, and grey, but it’s not a shark!

My preparing and packing didn’t end once I embarked (got on) on the ship. Every day, I have to think ahead, plan, and make sure I have everything I need before I start my day. This may seem like the least interesting aspect of my day, but it was the biggest adjustment at first.

To put yourself in my shoes (well, my deck boots), imagine this:

Get a backpack. Transport yourself to completely new and unfamiliar surroundings. Try to adapt to strange new routines and procedures. Prepare to spend the next 12+ hours working, learning, exploring, and conducting daily routines, such as eating meals. Fill your backpack with anything you might possibly need or want for those twelve hours. Plan for the outdoor heat and the indoor chill, as well as rain. If you forgot something, you can’t just go back to your room or run to the store to get it because

  1. Your roommate is sleeping while you’re working (and vice versa), so you need to be quiet and respectful of their sleep schedule. That means you need to gather anything you may need for the day (or night, if you’re assigned to the night watch), and bring it with you. No going back into the room while your roommate is getting some much-needed rest.
  2. Land is not in sight, so everything you need must be on the ship. Going to the store is not an option.

Just some of the items in my backpack: sunscreen, sunglasses, a hat, sweatshirt, a water bottle, my camera, my phone, my computer, chargers for my electronics, an extra shirt, extra socks, snacks, etc.

I am assigned to the day watch, so my work shift is from noon-midnight. During those hours, I am a member of the science team. While on the day watch, the five of us rotate roles and responsibilities, and we work closely with the deck crew to complete our tasks. The deck department is responsible for rigging and handling the heavier equipment needed for fishing and sampling the water: the monofilament (thick, strong fishing line made from plastic), cranes and winches for lifting the CTD, and the cradle used for safely bringing up larger, heavier sharks. In addition to keeping the ship running smoothly and safely, they also deploy and retrieve the longline gear.

A pulley in front of water
Pulleys, winches, and cranes are found throughout the boat.

Another adjustment has been learning the routines, procedures, and equipment. For the first week, it’s been a daily game of What-Am-I-Looking-At? as I try to decipher and comprehend the various monitors displayed throughout the ship. I follow this with a regular round of Now-What-Did-I-Forget? as I attempt to finesse my daily hygiene routine. The showers and bathroom (on a ship, it’s called the head) are down the hall from my shared stateroom, and so far, I’ve managed to forget my socks (day one), towel (day two), and an entire change of clothes (day four). With the unfamiliar setting and routine, it’s easy to forget something, and I’m often showering very late at night after a long day of work.

Showers and changing stalls on ship
I’m more than ready to cool off and clean up after my shift.

One thing I never forget? Water. I am surrounded by glittering, glistening water or pitch-black water; water that churns and swells and soothingly rocks the ship. Swirling water that sometimes looks like ink or teal or indigo or navy, depending on the conditions and time of day.

Another thing I’ll never forget? This experience.

A water bottle in the sun
In case I forget, the heat of the sun reminds me to drink water all day long.

Did You Know?

The Gulf of Mexico is home to five species, or types, or sea turtles: Leatherback, Loggerhead, Green, Hawksbill, and Kemp’s Ridley.

Recommended Reading

Many of my students have never seen or experienced the ocean. To make the ocean more relevant and relatable to their environment, I recommend the picture book Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene. A young girl’s grandfather moves to the city and notices there’s nowhere to fish. She and her grandfather imagine fishing from their high-rise apartment fire escape. The “fish” they catch are inspired by the vibrant ecosystem around them: the citizens and bustling activity in an urban environment. The catch of the day: “Flying Litterfish,” “Laundry Eels,” a “Constructionfish,” and many others, all inspired by the sights and sounds of the busy city around them.

The book could be used to make abstract, geographically far away concepts, such as coral ecosystems, more relatable for students in urban, suburban, and rural settings, or as a way for students in rural settings to learn more about urban communities. The young girl’s observations and imagination could spark a discussion about how prominent traits influence species’ common names, identification, and scientific naming conventions.

The cover of the book Skyfishing
Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene (Abrams Books for Young Readers, 2017)

 

Anne Krauss: All at Sea (But Learning Quickly), August 14, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 14, 2018

Weather Data from the Bridge

Conditions at 0030

Latitude: 25° 22.6’ N

Longitude: 84° 03.6’ W

Barometric Pressure: 1017.4 mb

Air Temperature: 28.8° C

Wind Speed: 9.1 knots

 

Science and Technology Log

For the first few days, we steamed, or traveled, to our first station. Each station is a research location where several activities will take place:

  1. Preparing and setting out the longline gear.
  2. Letting the line soak (fish on the bottom) for one hour while other tasks are performed.
  3. Deploying a CTD (Conductivity Temperature Salinity) to collect samples and information about the water.
  4. Hauling back the longline gear.
  5. Recording data from the longline set and haulback.
  6. Collecting measurements and samples from anything caught on the longline.
  7. Depending on what is caught: attaching tags and releasing the animal back into the water (sharks) or collecting requested samples for further study (bony fish).

This is a very simplified summary of the various activities, and I’ll explore some of the steps in further detail in other posts.

During these operations and in between tasks, scientists and crew are very busy. As I watched and participated, the highly organized, well-coordinated flurry of activity on deck was an incredible demonstration of verbs (action words): clean, rinse, prepare, gather, tie, hook, set, haul, calibrate, operate, hoist, deploy, retrieve, cut, measure, weigh, tag, count, record, release, communicate

Last night, I witnessed and participated in my first longline station. I baited 100 hooks with mackerel. I recorded set and haulback data on the computer as the gear was deployed (set) and hauled back in (haulback). I attached 100 numbered tags to the longline gangions (attached to the hooks). I recorded measurements and other data about SHARKS!

We caught, measured, sampled, tagged, and released four sharks last night: a silky, smooth-hound, sandbar, and tiger shark! I’ve never seen any of these species, or types, in person. Seeing the first shark burst onto the deck was a moment I’ll remember for the rest of my life!

A sandbar shark being measured with a measuring tape in a rope sling.
A sandbar shark being measured on the cradle or sling used for measuring larger, heavier sharks.

Sometimes, we didn’t catch any fish, but we did bring up a small piece of coral, brittle sea stars, and a crinoid. All three are marine animals, so I was excited to see them in person.

In between stations, there was some downtime to prepare for the next one. One of my favorite moments was watching the GoPro camera footage from the CTD. A camera is attached to the device as it sinks down through the depths to the bottom and back up to the surface again. The camera allowed me to visually ‘dive along’ as it collected water samples and data about the water temperature, salinity, pressure, and other information. Even though I watch ocean documentaries frequently and am used to seeing underwater footage on a screen, this was extremely exciting because the intriguing ecosystem on the screen was just below my feet!

Personal Log

Perhaps it is sea lore and superstition, but so far, the journey has been peppered with fortuitous omens. One of my ocean-loving former students and her Disney-bound family just happened to be on my flight to Orlando. Yes, it’s a small world after all. Her work samples were featured in our published case study, reminding me of the importance and impact of ocean literacy education. Very early the next morning, NASA’s promising Parker Solar Probe thunderously left the Sunshine State, hurtling toward the sun. New York’s state motto: Excelsior. Later that morning, a rainbow appeared shortly before the Oregon II left Port Canaveral. Although an old weather proverb states: “rainbow in the morning gives you fair warning,” we’ve had very pleasant weather, and I chose to interpret it as a reassuring sign. Sailing on the Oregon II as a Teacher at Sea is certainly my pot of gold at the end of the rainbow.

 

According to seafaring superstition, women on board, whistling, and bananas are supposed to be bad luck on a boat. On the Oregon II, folks do not seem to put much stock into these old beliefs since I’ve encountered all three aboard the ship and still feel very lucky to be here.

A fruit basket and a bunch of bananas
The rest of the fruit seems to think that bananas are bad luck…the crew doesn’t!

In another small-world coincidence, two of the volunteers on the Second Leg of the Shark/Red Snapper Longline Survey recently graduated from SUNY Potsdam, my undergrad alma mater. What drew us from the North Country of New York to Southern waters? A collective love of sharks.

These small-world coincidences seemed indicate that I was on the right path. Out on the ocean, however, the watery world seems anything but small. The blue vastness and unseen depths fill me with excitement and curiosity, and I cannot wait to learn more. For the next two weeks, the Oregon II will be my floating classroom. Instead of teaching, I am here to learn.

As a fourth generation teacher, education is in my blood. One great-grandmother taught in a one-room schoolhouse in 1894. My other great-grandmother was also a teacher and a Potsdam alumna (Class of 1892). As we traverse the Atlantic Ocean, I wonder what my academic ancestors would think of their great-granddaughter following in their footsteps…whilst studying sharks and snapper at sea. Salt water equally runs through my veins.

 

This slideshow requires JavaScript.

As we steamed, or traveled, to our first station (research location), I wondered about the unfamiliar waters and equipment around me. Before I could indulge my questions about marine life, however, I first needed to focus on the mundane: daily life at sea. In many ways, I was reminded of the first day at a new school. It was junior high all over again, minus the braces and bad bangs. At first, those long-forgotten new school worries resurfaced: What if I get lost? Where is my locker (or, in this case, my stateroom)? What if I forget my schedule? What if I have to sit by myself at lunch? To combat these thoughts, I draw upon a variety of previous travel and life experiences: studying abroad, backpacking, camping, meeting new friends, volunteering, working with a marine science colleague, and sailing on other vessels. Combined, those experiences provided me with the skills to successfully navigate this one.

The Atlantic Ocean and a high flyer buoy
The Atlantic Ocean and a high flyer buoy

I’ve spent the first few days getting acquainted with the layout, personnel, safety rules, and routines of the Oregon II. My students wondered about some of the same aspects of life at sea.

Where do I sleep on the ship?

The staterooms remind me of a floating college dorm, only much quieter. I’m sharing a small stateroom with Kristin Hannan, a scientist. We are on opposite work shifts, so one of us is sleeping while the other is working. I am assigned to the day shift (noon to midnight) while she is assigned to the night shift (midnight to noon). Inside the stateroom, we have berths (similar to bunk beds), a sink, and large metal storage cabinets that are used like a closet or dresser. Space is limited on the ship, so it must be used efficiently and sometimes creatively.

A view of water, a pier, and a pulley
The view as we leave Port Canaveral.

Do you know anyone else on the ship?

No, but I’m meeting lots of new people. They have been welcoming, offering interesting information and helpful reminders and pointers. Those first-day-of-school jitters are fading quickly. I didn’t get lost, but I got a bit turned around at first, trying to figure out which deck I needed for the galley (like the ship’s cafeteria), where we eat our meals. And I only had to eat lunch by myself once. On the first day at sea, I made a PB & J sandwich. Eating that, I felt like a kid again (only without my lunchbox), but it was nice to be at a point in my life where I’m confident enough to be all by myself and feel a bit out of place. That’s how you learn and grow. Everything is new to me right now, but with time, it’ll start to make sense. Pretty soon, the equipment and unfamiliar routines will start to feel more familiar. Hopefully, the sharks will like me.

Did You Know?

The Gulf of Mexico is home to approximately 200 orcas (scientific name: Orcinus orca, also known as killer whales).

Recommended Reading 

As an introduction to biographies in grades 4 and up, I recommend Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman. Ruth and her stuffed shark explore a maritime history museum, learning about the important roles women have held at sea. Inspired by female sea captains, explorers, and naturalists, Ruth imagines herself in the photographs and paintings, part of an actual exhibit in the Mystic Seaport Museum in Mystic, Connecticut. For more information about the intrepid women featured in the book, brief biographical information is provided at the end. Ruth would no doubt be impressed with the seafaring women (and men) aboard NOAA Ship Oregon II.

A children's book about women at sea
Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman; published by Mystic Seaport (2004)

Tom Savage: Surveying the Coastline of Point Hope, Alaska, August 12, 2018

NOAA Teacher at Sea

Tom Savage

Aboard NOAA Ship Fairweather

August 6 – 23, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, northwest Alaska

Date: August 12, 2018

Weather data from the Bridge

Wind speed 8 knots
Visibility: 10 nautical miles
Barometer: 1010.5 mB
Temp:  8.5 C     47 F
Dry bulb 8   Wet bulb 6.5
Cloud Height: 5,000 ft
Type: Alto Stratus
Sea Height 2 feet

Science and Technology

Why is NOAA taking on this challenging task of mapping the ocean floor?  As mentioned in an earlier blog, the ocean temperatures worldwide are warming and thus the ice in the polar regions are melting. As the ice melts, it provides mariners with an option to sail north of Canada, avoiding the Panama Canal. The following sequence of maps illustrates a historical perspective of receding ice sheet off the coast of Alaska since August 1857.  The red reference point on the map indicates the Point Hope region of Alaska we are mapping.

This data was compiled by NOAA using 10 different sources. For further information as how this data was compiled visit https://oceanservice.noaa.gov/news/mar14/alaska-sea-ice.html. 

The light grey indicates  0-30% Open Water – Very Open Drift.  The medium grey indicates 30 – 90 % Open drift – Close Pack.  The black indicates 90 – 100% very close compact.

Sea Ice Concentration August 1857
Sea Ice Concentration August 1857

Ice Concentration August 1957
Ice Concentration August 1957

Sea Ice Concentration August 2016
Sea Ice Concentration August 2016

Ships that sail this region today rely on their own ships sonar for navigating around nautical hazards and this may not be as reliable especially if the ships sonar is not properly working (it’s also problematic because it only tells you how deep it is at the ship’s current location – a sonar won’t tell you if an uncharted hazard is just in front of the ship). Prior to mapping the ocean floor in any coastal region, it requires a year of planning in identifying the exact corridors to be mapped. Hydrographers plot areas to be mapped using reference polygons overlaid on existing nautical charts.  Nautical charts present a wealth of existing information such as ocean depth, measured in fathoms(one fathom is equal to six feet) and other known navigation hazards.

As mariners sail closer to the shorelines, the depth of the ocean becomes increasingly important.  Because of this uncertainty in the depth, the Fairweather herself cannot safely navigate safely (or survey) close to shore.  In order to capture this data, small boats called “launches” are used. There are a total of four launch boats that are housed on the boat deck of the Fairweather. Each boat can collect data for up to twelve hours with a crew of 2-5. Depending on the complexity of the area, each daily assignment will be adjusted to reasonably reflect what can be accomplished in one day by a single launch. Weather is a huge factor in the team’s ability to safely collect data. Prior to deployment, a mission and safety briefing is presented on the stern of the ship by the Operations Officer. During this time, each boat coxswain generates and reports back to the operations officer their GAR score (safety rating) based on weather, crew skills and mission complexity (GAR stands for Green-Amber-Red … green means low risk, so go ahead, amber means medium risk, proceed with caution; red means high risk, stop what you’re doing).  In addition, a mission briefing is discussed outlining the exact area in which data will be collected and identified goals.

 

Safety Briefing
Safety Briefing by LT Manda – photo by Tom Savage

 

Deploying a launch boat
Deploying a launch boat – photo by Tom Savage

The sonar equipment that transmits from the launch boats is called EM2040 multi beam sonar. A multi beam sonar is a device that transmits sound waves to determine the depth of the ocean. It is bolted to the hull that runs parallel to the boat, yet emits sound perpendicular to the orientation of the sonar. In the beginning of the season, hydrographers perform a patch test where they measure the offsets from the sonar to the boat’s GPS antenna, as well as calculating any angular misalignments in pitch, roll or yaw. These measurements are then entered in to software that automatically corrects for these offsets.

deploying CTD
TAS Tom Savage deploying the conductivity, temperature and density probe ~ photo by Megan Shapiro

The first measurement to collect is the ocean’s conductivity, temperature and depth. From this information, the scientists can determine the depths in which the density of the water changes. This data is used to calculate and correct for the change in speed of sound in a given water column and thus provide clean data. The boats travel in pre-defined set lines within a defined polygon showing the identified corridor to be collected. Just like mowing a lawn, the boat will travel back and forth traveling along these lines. The pilot of the boat called the Coxswain, uses a computer aided mapping in which they can see these set lines in real time while the boat moves. This is an extremely valuable piece of information while driving the boat especially when the seas are rough.

Coxswain
Coxswain Zucker – photo by Tom Savage

The coxswain will navigate the boat to the position where data collection will begin inside a defined polygon. Since the multibeam echosounder transmits sound waves to travel through a deep column of water, the area covered by the beam is wide and takes longer to collect. In such stretches of water, the boat is crawling forward to get the desired amount of pings from the bottom needed to produce quality hydrographic data. The reverse is true when the boat is traveling in shallow water. The beam is very narrow, and the boat is able to move at a relatively fast pace. The boat is constantly rolling and pitching as it travels along the area.

 

 

 

 

Hydrographer Megan analyzing the data
Hydrographer Megan analyzing the data

As the boat is moving and collecting data, the hydrographer checks the course and quality of the data in real time. The depth and soundings comes back in different colors indicating depth. There is at least four different software programs all talking to one another at the same time. If at any point one component stops working, the boat is stopped and the problem is corrected.  The technology driving this collection effort is truly state of the art and it all has to operate correctly, not an easy feat. Every day is different and provides different challenges making this line of work interesting.  Troubleshooting problems and the ability to work as a team is crucial for mission success!

 

Personal Log

I have found the work on the Fairweather to be extremely interesting. The crew onboard has been exceptional in offering their insights and knowledge regarding everything from ship operations to their responsibilities.  Today’s blog marks my first week aboard and everyday something new and different is occurring. I look forward in developing new lesson plans and activities for my elementary outreach program. Prior to arriving, I was expecting the weather to be mostly overcast and rainy most of the time. However, this has not been the case. Clear blue skies has prevailed most days; in fact I have seen more sun while on the Fairweather than back home in Hendersonville in the entire month of July!  For my earth science students, can you make a hypothesis as to why clear skies has prevailed here? Hint, what are the five lifting mechanisms that generate instability in the atmosphere and which one(s) are dominant in this region of Alaska?

Question of the day.  Can you calculate the relative humidity based on the dry and wet bulb readings above?      Data table below……    Answer in the next blog

What is the relative humidity?
What is the relative humidity?

 

Until next time, happy sailing !

Tom

Stephen Kade: Conductivity, Temperature, and Depth, August 5, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: 30 54 760 N, 76 32 86.0 W, 40 nautical miles E of Cape Lookout, North Carolina

Date: August 5, 2018

Weather Data from the Bridge:

Wind speed 11 knots,
Air Temp: 30.c,
Visibility 10 nautical miles,
Wave height 1 foot

Science and Technology Log

While our main mission aboard the NOAA Ship Oregon II is to survey and study sharks and red snapper, it is also very important to understand the environmental conditions and physical properties of the sea water in which these animals live. The CTD instrument is used to help understand many different properties within the water itself. The acronym CTD stands for Conductivity (salinity), Temperature, and Depth. Sensors also measure dissolved oxygen content and fluorescence (presence of cholorphyll).

CTD
The CTD instrument itself is housed in a steel container and is surrounded by a ring of of steel tubing to protect it.

Conductivity is a measure of how well a solution conducts electricity and it is directly related to salinity, or the salt that is within ocean water. When salinity measurements are combined with temperature readings, seawater density can be determined. This is crucial information since seawater density is a driving force for major ocean currents. The physical properties and the depth of the water is recorded continuously both on the way down to the ocean floor, and on the way back up to the surface.  There is a light, and a video camera attached to the CTD to provide a look at the bottom type, as that is where the long line is deployed, and gives us a good look at the environment where our catch is made. These data can explain why certain animals gather in areas with certain bottom types or physical parameters. This can be particularly important in areas such as the hypoxic zone in the Gulf of Mexico. This is an area of low oxygen water caused by algal blooms related to runoff of chemical fertilizers from the Mississippi River drainage.

The CTD instrument itself is housed in a steel container and is surrounded by a ring of of steel tubing to protect it while deployed and from bumping against the ship or sea floor. Attached water sampling bottles can be individually triggered at various depths to collect water samples allowing scientists to analyze water at specific depths at a particular place and time. The entire structure is slowly lowered by a hydraulic winch, and is capable of making vertical profiles to depths over 500 meters. An interior computer display in the ship’s Dry Science Lab profiles the current location of the CTD and shows when the winch should stop. We have found this to be a tricky job, during large wave swells, as the boat rocks quite a bit and changes the depth by a meter or more. The operator must be very careful that the CTD doesn’t hit the ocean floor too hard which can damage the equipment.

Dry Lab
An interior computer display in the ship’s Dry Science Lab profiles the current location of the CTD and shows when the winch should stop.

The data collected while deployed at each station is instantly uploaded to NOAA servers for immediate use by researchers and scientists. The current data is also available the general public as well, on the NOAA website. Once safely back aboard the Oregon II, the CTD video camera is taken off and uploaded to the computer, The CTD must be washed off and the lines flushed for one minute with fresh water, as the salt water from the ocean can damage and corrode the very sensitive equipment inside. The instrument is also calibrated regularly to ensure it is working correctly throughout all legs of the long line survey.

Personal Log

TAS Stephen Kade
TAS Stephen Kade

I am having such a great time during my Teacher at Sea experience. In the 9 days aboard ship so far, we have traveled the entire coasts of Mississippi, Arkansas, Florida, South Carolina, and North Carolina. Never in my life did I think I would get an opportunity to do something like this as I’ve dreamed about it for decades, and now my dreams have come true. I’m learning so much about fishing procedures, the biology of sharks, navigational charting, and the science of collecting data for further study while back on land at the lab. I can’t wait to get home and spread the word about NOAA’s mission and how they are helping make the world a better place, and are advocating for the conservation of these beautiful animals!

 

Animals Seen: Sharpnose shark, Tiger Shark, Grouper, Red Drum fish, Moray Eel, Blue Line Tile fish

Meredith Salmon: CTDs and Cribbage! July 24, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

 

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.34°N

Longitude: 64.14°W

Air Temperature: 28.16°C

Wind Speed:  17.34 knots

Conditions: partly sunny  

Depth: 5060.32 meters

Science and Technology Log

Understanding the physical properties of seawater such as temperature, salinity, and depth are important parameters for studying ocean processes. Fortunately, A CTD is an acronym for an electronic instrument that is used on research vessels to measure three important factors: conductivity, temperature, and depth. These data points are key exploration components used aboard the Okeanos Explorer.

 

Conductivity is a measure of how well a solution conducts electricity and it is directly related to salinity. When salinity measurements are combined with temperature readings, seawater density can be determined. This is crucial information since seawater density is a driving force for major ocean currents.

 

The CTD itself is housed in a steel container and is surrounded by a ring of plastic bottles. These water sampling bottles can be individually triggered at various depths to collect water samples allowing scientists to analyze water at specific depths at a particular place and time. The entire structure is connected to a rosette that is lowered by a hydrographic winch crane, and this rosette is capable of making vertical profiles to depths up to 6,800 meters.  

ctd 3
CTD unit aboard the Okeanos Explorer

 

Features in the deep ocean such as hydrothermal vents and underwater volcanoes are associated with changes in chemical properties of seawater, so CTDs are used to measure chemical and physical properties associated with these structures. For instance, changes in water temperature may indicate the presence of hydrothermal vents or volcanoes. Since these features are located in deep waters, a CTD will be raised and lowered throughout the water column as the ship moves over the survey area. Although a CTD cast has not been completed on our expedition, these procedures require effective communication between scientists in the lab and the hydrographic crane operator. Scientists in the lab can monitor the CTD measurements in real time in the lab, and communicate depth for water capture in the rosette bottles to the crane operator. Once back on board, scientists can retrieve the water samples from the bottles and take them into the lab for further analysis.

ctd1
CTD rosette complete with water sampling containers

Personal Log

We have continued to map the survey area, load XBTs, and take sunphotometer readings throughout the course of the week. Since they are few and far between, everyone looks forward to turns. The entire turning process requires effective communication with the bridge and survey team and can take approximately 15 to 20 minutes to complete.

SISTurn
A turn pictured in the Seafloor Information System (SIS) program

Aside from waiting for turns, we have been playing daily trivia or bingo as well as card games including cribbage! Since the cribbage tournament is underway, we have been practicing, playing, and watching other games. There have been some serious upsets and victories so the finals are going to be interesting for sure.

Okeanos Cribbage Tournament Bracket
Okeanos Cribbage Tournament Bracket

cribbage tournament
Savannah vs. Charlie!

cribbage 6
Fernando vs. Christian!

We learned that we are heading back to Norfolk for dry dock towards the end of July so we will need to stop surveying soon to transit back to Virginia. It is crazy to think that we only have a couple more days at sea!

double rainbow.jpeg
A double rainbow seen from the boat deck!

 

Double Rainbow
Savannah, Sally, and I enjoying the view!

Did You Know?

Some CTD instruments are so fast that they measure the conductivity, temperature, and depth 24 times each second! This provides a very detailed description of the water being tested.

Resources: 

https://oceanexplorer.noaa.gov/facts/ctd.html

https://www.windows2universe.org/earth/Water/CTD.html

Pam Schaffer: Oceanographers Toolbox: What is a CTD? July 7,2018

NOAA Teacher at Sea

Pam Schaffer

Aboard NOAA Ship Bell M. Shimada

[July 2-10, 2018]

Mission: ACCESS Cruise

Geographic Area of Cruise: North Pacific:  Greater Farallones National Marine Sanctuary, Cordell Bank National Marine Sanctuary

Weather Data from the Bridge

Date July 7 2018
Time 1200  (noon)
Latitude 37° 58.3’ N
Longitude 123° 06.4’ W
Present Weather/ Sky Cloudy
Visibility (nm) 10
Wind Direction (true) 341°
Wind Speed (kts) 18
Atmospheric Pressure (mb) 1018
Sea Wave Height (ft) 3-5
Swell Waves Direction (true) 330°
Swell Waves Height (ft) 3-5
Temperature  Sea Water (C) 13.2°
Temperature Dry Bulb (C)

Air Temperature

13.1°
Temp Wet Bulb (C ) 12.1°

 

Science and Technology Log

Marine life is not evenly distributed throughout the World’s oceans.  Some areas contain abundant and diverse life forms and support complex food webs whereas other areas are considered a desert.  This variation is due to environmental factors like temperature, salinity, nutrients, amount of light, underlying currents, oxygen levels and pH.  Some of these variables, such as temperature, oxygen levels, and pH, are experiencing more variability as a result of climate change.  In order to understand the health of marine environments, scientists explore the chemical and physical properties of seawater using a set of electronic instruments on a device called a CTD.   CTD stands for conductivity, temperature and depth and is the standard set of instruments used to measure variables in the water column.

Source: ACCESS www.ACCESSoceans .org
Source: ACCESS http://www.ACCESSoceans .org

The CTD is the bread and butter of oceanography research. It is primarily used to profile and assess salinity and temperature differences at varying depths in a water column.  But the device can also carry instruments used to calculate turbidity, fluorescence (a way to measure the amount of phytoplankton in the water), oxygen levels, and pH.  Conductivity is a way of determining the salinity of water. It measures how easily an electric current passes through a liquid.  Electric currents pass much more easily through seawater than fresh water.  A small electrical current is passed between two electrodes and the resulting measurement is interpreted to measure the amount of salt and other inorganic compounds in a water sample. Dissolved salt increases the density of water, and the density of water also increases as temperature decreases.  Deeper water is colder and denser.  Density is also affected by water pressure. Since water pressure increases with increasing depth, the density of seawater also increases as depth increases.

Optical sensors are used to measure the amount of turbidity, fluorescence, and dissolved oxygen at various depths in the water column.  Dissolved oxygen levels fluctuate with temperature, salinity and pressure changes and is a key indicator of water quality.  Dissolved oxygen is essential for the survival of fish and other marine organisms.  Oxygen gets into the water as gas exchange with the atmosphere and as a by-product of plant photosynthesis (algae, kelp etc.).

Photo Credit: Julie Chase/ACCESS/NOAA/Point Blue
Photo Credit: Julie Chase/ACCESS/NOAA/Point Blue

Typically, CTD instruments are attached to a large circular metal frame called a Rosette, which contains water-sampling bottles that are remotely opened and closed at different depths to collect water samples for later analysis. Using the information and samples collected, scientists can make inferences about the occurrence of certain chemical properties to better understand the distribution and abundance of life in particular areas of the ocean.

Scientist Carina Fish collects samples from CTD
Scientist Carina Fish collects samples from CTD

On our mission, scientists deploy the CTD to a depth of 500 meters at most stations. On the shelf break, the researchers deployed the CTD to 1200 meters (more than 3/4 of a mile below the surface) to collect samples.    The pressure is so great at this depth that a 1 foot by 1 foot square of Styrofoam is crushed to a quarter of its size(3″x 3″).

Retrieving the CTD Rosette
Retrieving the CTD Rosette

Personal Log

Around 01:30 last night we lost our Tucker Trawl net as it was being re-positioned.  The winds had picked up to around 20 knots and the sea height was around 5-8 feet according to the bridge log.   The sea state complicated the retrieval and as best we can conclude the wind and seas pushed the net bridle into a prop blade which swiftly and effortlessly cut the 1/3” thick metal wire cable and separated the net from its tether.  Mishaps at sea are part and parcel of working in a harsh and variable environments. Even the very best and most experienced captain and crew encounter unforeseen issues from time to time.   Dr. Jaime Jahncke quickly stepped into action and made contact with onshore colleagues to arrange for another net for the next research cruise.   In the meantime, we plan to use the hoop net to collect krill samples, weather permitting.

Did You Know?

According to NOAA scientists, only about 5% of the Earth’s oceans have been explored.

Angela Hung: “The Solution to Pollution is Dilution”, July 3, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 27-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 3, 2018

 

Weather Data from the Bridge

Conditions at 1610

Latitude: 29° 30’ N

Longitude: 92° 51’ W

Relative Humidity: 83%

Temperature: 26° C

Wind Speed: 13 knots

Cloudy with rain

 

Science and Technology Log

“The solution to pollution is dilution” was a common refrain during the midcentury as large scale factories became more common. This mindset applied to both air and water as both seemed limitless. Looking out over the Gulf of Mexico, a relatively small body of water, it’s easy to see how this logic prevailed. Even the Great Lakes, the largest body of fresh surface water in the world, accepted incalculable amounts of pollution and sewage from coastal factories, steel and wood mills, and of course major cities.

Sky and water as far as the eye can see. (It's hard to take a steady shot on a rocking boat!)
Sky and water in the Gulf of Mexico as far as the eye can see from the deck of NOAA Ship Oregon II. (It’s hard to take a steady shot on a rocking boat!)

The rise of the modern technological age that took humans to the moon gave us the first glimpse of the fallacy of the “solution”. “Earthrise” is the first photo of the entire Earth taken from space, showing us how thin our protective atmosphere really is and how delicately the Blue Planet floats in the vastness of space. This is the beginning of the modern environmental movement.

"Earthrise" Photo courtesy of nasa.gov
“Earthrise” Photo courtesy of nasa.gov

To truly guide the development of national policies including those that protect air and water quality, federal agencies such as NOAA are responsible for collecting data about our atmosphere and oceans, now knowing that these ecological compartments cannot endlessly dilute the pollution we generate. What seemed to be an obvious solution has today ballooned into a number of serious problems, from acid rain and blinding smog in cities to burning rivers, mass fish die offs that wash up on Lake Michigan beaches and dying coral reefs in the oceans.

The Cuyahoga River that runs through Cleveland, OH caught fire over a dozen times. This fire in 1969 finally motivated action towards creating the Clean Water Act.
The Cuyahoga River that runs through Cleveland, OH caught fire over a dozen times. This fire in 1969 finally motivated action towards creating the Clean Water Act. Photo from: https://www.alleghenyfront.org/how-a-burning-river-helped-create-the-clean-water-act/

A major pollutant in the Gulf is sourced from industrial agriculture practices from as far away as Illinois and the rest of the Midwest farm belt. Fertilizer and pesticides enter local rivers that find their way to the Mississippi River which carries contaminants into the Gulf of Mexico.

We have reached the Gulf’s “Dead Zone”, yielding a few tiny catches. Station W1601 may have given the smallest catch ever—a clump of seaweed and a whole shrimp.

The case of the shrinking trawls. On left, a catch from the night of July 2. Center and right, samples from two stations in hypoxic waters. The fish in the right photo may have been stuck in the net from the previous trawl.
The case of the shrinking trawls. On left, a catch from the night of July 2. Center and right, July 3 samples from two stations in hypoxic waters. The fish in the right photo may have been stuck in the net from the previous trawl.

Hypoxia literally means “low oxygen”. When fertilizers used to grow corn and soy enter bodies of water, they likewise feed the growth of algae, which are not technically plants but they are the aquatic equivalent. But plants make oxygen, how can this lead to low oxygen? Algae and land plants only produce oxygen during the day. At night, they consume oxygen gas through respiration. They do this during the day as well, but overall produce more oxygen in the light through photosynthesis. For hundreds of millions of years, that’s been fine, but the recent addition of fertilizers and the warm Gulf waters cause an explosion of the kind of microscopic algae that are suspended in the water column and turn water bright green, or red in the case of “red tides”. These explosions are called algal blooms.

Red tide. Photo credit: https://ocean.si.edu/ocean-life/plants-algae/red-tide
Red tide. Photo credit: https://ocean.si.edu/ocean-life/plants-algae/red-tide

Algal blooms can cloud up water, making life hard for other photosynthetic organisms such as coral symbionts and larger seaweeds. At night, animals can suffocate without oxygen. During red tides, some algae release toxins that harm other life. When these organisms die and sink, bacteria go to work and decompose their bodies. The population of bacteria explodes, consuming the remaining oxygen at the sea floor. Animals that wander into the hypoxic zone also suffocate and die, feeding more decomposer bacteria that can survive with little to no oxygen. Thus, hypoxic areas are also called “dead zones”.  The hypoxic zone is just above the sea floor, as little as a half a meter above, and oxygen levels can drop precipitously within a meter of the bottom.

NOAA scientists including those conducting the SEAMAP Summer Groundfish survey on Oregon II track the location, size and movement of the Gulf hypoxic zone using the conductivity-temperature-dissolved oxygen probe, or CTD. The CTD is sent into the water before every trawl to take a variety of measurements. Besides conductivity (a measure of ions), temperature and oxygen, the CTD also checks the salinity, clarity and amount of photosynthetic pigments in the water, which gives an idea of plankton populations. Ours uses two different sensors for conductivity, salinity, temperature and oxygen, double-checking each other. A pump pulls water through the various sensors and the measurements are sent directly to a computer in the dry lab to record these data.

The CTD is lowered to just under the surface of the water to make sure the pump is working and to flush the system. Then it is lowered to within a meter of the bottom. The CTD also has an altimeter to measure the distance from the bottom, while the ship also uses sonar to determine the water depth at each station. Water is measured continuously as the CTD is lowered and raised, creating a graph that profiles the water column. Crewmen are on deck controlling the winches according to the directions from a scientist over the radio who is monitoring the water depth and measurements in the dry lab.

Conductivity, temperature, dissolved oxygen sensor (CTD). The gray cylinders are bottles that can store water samples.
Conductivity, temperature, dissolved oxygen sensor (CTD). The gray cylinders are bottles that can store water samples.

Casting the CTD is a coordinated effort.
Casting the CTD is a coordinated effort.

The CTD also has bottles that can store water samples so oxygen can be tested a third time in the lab onboard. When we only get a few fish where the CTD recorded normal oxygen, the CTD is launched again to verify oxygen levels using all three methods. In the CTD output, oxygen is coded in green as a line on the graph and in the data tables. Most stations read in the 5-6 range, the cutoff for hypoxia is 2. We are reading less than 1 in the Dead Zone.

CTD output. Depth is on the vertical axis and each measurement is scaled on the horizontal axis, showing how each variable changes as the CTD moves to the bottom and back to the surface.
CTD output. Depth is on the vertical axis and each measurement is scaled on the horizontal axis, showing how each variable changes as the CTD moves to the bottom and back to the surface.

Quadruple check on dissolved oxygen in Gulf waters the "old fashioned" way using a Winkler titration.
Triple check on dissolved oxygen in Gulf waters the “old fashioned” way using a Winkler titration.

 With storms in the path and not-so-plenty of fish in the sea, today is a slow day.

 

Personal Log

Looking out over the water, I can’t help but think how intrepid, even audacious, early mariners must have been. I know we are within a couple miles of the coast but there’s no sign of land anywhere in any direction. Even with the reassurance that satellites, radar, radios, AND trained NOAA Corps officers steering in the bridge are all keeping track of us, I still swallow a moment of panic. What kind of person decides to sail out in search of new continents when it only takes a couple hours to lose track of where you came from? And yet, the Polynesians set out thousands years ago in canoes from mainland Asia, the Aborigine ancestors managed to find Australia, and of course, Europeans sailed across the Atlantic to the Americas, whether they knew it or not. It was all possible through careful observations of the winds, waves, ocean currents, stars and other indications of direction, but I still have to think that that’s a pretty bold move when you don’t know if land lies ahead.

No land in sight.
No land in sight.

At least we’re not alone out here. These are some other animals that we’ll leave for the mammal survey and birders to count.

 

Did You Know?

The CTD also shows the layers of ocean water. Looking at the graph again for the red (salinity) and blue (temperature) lines, we can see where they cross at about 15 meters. This shows where colder, saltier water starts compared to the warm surface water that is diluted by fresh water and mixed by wind.

Lacee Sherman: Teacher Running Out of Witty Blog Titles June 27, 2018

NOAA Teacher at Sea

Lacee Sherman

Aboard NOAA Ship Oscar Dyson

June 6, 2018 – June 28, 2018

 

Mission: Eastern Bering Sea Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date:  June 27, 2018

Snailfish!!!
TAS Lacee Sherman with an Okhotsk Snailfish

Weather Data from the Bridge at 15:00 on 6/27/18

Latitude: 56° 32.03 N

Longitude: 168° 08.15 W

Sea Wave Height: 2 ft

Wind Speed: 9 knots

Wind Direction: 229° (SW)

Visibility: 8 nautical miles

Air Temperature: 9.8° C

Water Temperature: 8.5° C

Sky:  Broken cloud cover

Water and cloud cover
Water and cloud cover on 6/27/18 @ 15:00

Science and Technology Log

Sometimes the pursuit of scientific knowledge requires very precise scientific instruments, and sometimes it just requires a bucket, funnel, and a coffee filter.  During the CTD casts, a special bottle collects water samples from a specific depth.  The CTD can hold multiple water sample bottles, so a few days ago I was able to choose the location for an extra water sample to be taken.  The required water sample was taken near the ocean floor, and I requested one at about 15 meters below the surface.

On the EK60 we had noticed a lot of “munge” in the water near the surface and we wanted to know exactly what was in the water that was reflecting an acoustic signal back up to the transducers since it did not appear to be fish.  The upper part of the water column that had the munge was expected to have more small and microscopic organisms than the sample taken at a lower depth because of what had been seen on the EK60.

Water Collection Bottle
CTD water collection bottles

The CTD water bottles have flaps on the ends that can be triggered at specific depths.  When the two CTD bottles were brought back on the ship, they were opened to pour out the water samples.  Once the required 1 liter sample from the bottle taken near the ocean floor was put aside for another scientific study, the rest of the water was put into large white buckets to be sampled and inspected as we saw fit.  We had one large bucket filled with water from near the bottom which we labeled “deep” and the water from only 15 meters down, which we labeled “shallow”.

We used coffee filters placed in funnels to strain out any microscopic organisms from the water.  We had one set up for the “shallow” water sample, and another for the “deep” water sample.  When there was a tiny bit of water left in the filter, we used a pipette to suck up the slurry of microscopic organisms and a bit of water and place them in a glass dish.  From there, we took a few drops from each dish and put them under a dissecting microscope.

Filtering Ocean Water
Funnel and coffee filter straining the living organisms out of ocean water

 

Using the dissecting microscope we were able to identify a few things that we were seeing, and even take photos of them through a special part of the microscope where a camera could be attached.  We did not individually identify everything that we saw, but we did notice that there were diatoms, rotifers, crab larvae, and some type of egg.  There was a noticeable difference though between the quantity of organisms in the shallow and deep samples.  As predicted, the shallow water sample had many more microscopic organisms than the deep water sample.

 

Personal Log

Yesterday we did two trawls and one Methot sample.  I understand so much more now about exactly how all of the instruments work and how to operate some of them.  I finally feel like I was getting the hang of everything and able to be more helpful.  Each trawl takes about 3 hours plus processing time, so the days pass much quicker when we are fishing often.

Methot net being brought on deck
Methot net coming on deck after a haul

In our second trawl of the day we ended  up catching a really neat kind of snailfish that isn’t very common.  It’s always exciting to get something other than pollock in the nets, and it was really neat this time since no one else had ever seen one before either!  After spending a lot of time taking photos, looking at identifying features and using books and the internet to help, we finally were able to identify it as an Okhotsk Snailfish.

Today we are steaming back to Dutch Harbor, AK and I have to admit that I have mixed feelings about leaving life on the ship behind.  I will miss being a part of research and working with the MACE team.  I love being able to do research, and work closely with scientists and learn more about something that I really enjoy.  I will also definitely miss seeing the ocean every day.  I think it will probably be strange to walk on land now.  Since the ground won’t be moving anymore, hopefully that means that I can stop walking into walls!

All operations stopped on the ship last night so that we can have enough time to make it back to land before 09:00 on June 28, 2018.  Today I will be packing up my things, cleaning up my room for the next person, and then helping to clean and scrub the fish lab. Tomorrow I will return to life as a land dweller, although hopefully not forever.

Did You Know?

According to the Encyclopaedia Britannica, “The Bering Sea has more than 300 species of fish, including 50 deep-sea species, of which 25 are caught commercially. The most important among them are salmon, herring, cod, flounder, halibut, and pollock.”

 

 

 

Kimberly Godfrey: Night time..Day time! June 10, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

May 31 – June 11, 2018

 

Mission: Rockfish recruitment and ecosystem assessment survey

Geographic Range: California Coast

Date: June 10, 2018

Data from the Bridge

Latitude: 36° 39.980′ N

Longitude: 122° 33.640′ W

Wind: 30.87 Knots from the SE

Air Temperature: 12° C

Waves: 2-3 feet with 6-8 foot swells

Science Log

As you may have gathered from my previous blogs, I spent my time working with the night scientists. However, there was a lot happening during the daylight hours that I would like to highlight. There was a separate team assigned to the day shift. Some of their tasks included analyzing water samples, fishing, and surveying marine mammals and seabirds.

Catching fish during the day allowed them to see what prey were available to diurnal predators, and they could also compare their daytime catch to the evening catches. They used a different net called a MIK Net, which is a smaller net used for catching smaller and younger fish.

MIK Net
The MIK net used by the day time scientists to catch juvenile fish.

The day shift is also the best time for spotting seabirds and marine mammals. Some of the bird species spotted included brown pelican, common murre, terns, black-footed albatross, shearwaters, and at least 1 brown booby. The marine mammals we spotted included humpback whales, fin whales, blue whales, common dolphins, and sea lions.

I had an opportunity to speak with Whitney Friedman, a postdoctoral researcher with NOAA, and she explained to me some of the goals of their marine mammal survey. Many may recall that there was a time when whale populations, especially humpback whales, were in significant decline. Today, humpback whales are considered a success story because of rebounded populations. The concern now is monitoring the success of their food sources. Humpback whales feed on krill and fish like anchovies. However, it is possible that when these sources are less available or as competition increases, they may feed on something else. The question is, what is that something else? During this survey, one goal was to collect whale scat for analysis. Studies have found that some seabirds feed on juvenile salmon incidentally when their preferred local prey is limited, and they move inshore to feed on anchovy. Is it possible that whales might do the same? What else might they be foraging on? Unfortunately, we did not have much luck catching whale scat this time around, but they will try again in the future, and hopefully will find the answers they are looking for.

As previously mentioned, we also did water quality tests and took water samples using the Conductivity, Temperature, and Depth (CTD) Rosette. This instrument has multiple functions. As the initials suggest, it detects conductivity (the measure of how well a solution conducts electricity) and temperature at any given depth. Salinity (the amount of dissolved salts and other minerals) and conductivity are directly related. By knowing the salinity and temperature, one can determine the density. Density is one of the key factors that drives the ocean currents. Many species depend on the ocean currents to bring in nutrients and food. It all comes full circle.

CTD
CTD Rosette used to capture conductivity, temperature, and depth. We also used this to take water samples at specified depths.

CTD
The CTD is lowered into the water by a winch with the assistance of the deck crew.

When we lowered the CTD we could also take water samples at any given depth. This allowed scientist to test for various parameters. For example, we filtered various water samples to determine the amount of chlorophyll at certain depths. This can help scientists estimate the growth rates of algae, which in the open ocean are called phytoplankton. One of the scientists collected water to analyze for environmental DNA (eDNA). This is DNA that might be left in the air, soil, or water from feces, mucus, or even shed skin of an organism. In her case, she was trying to find a way to analyze the water samples for sea turtle DNA.

I’ve heard of eDNA, but I have never actually understood how they collected and analyzed samples for this information. My understanding is that it can be used to detect at least the presence of an extant species. However, when collecting these samples, it is likely to find more than one species. Scientists can use previously determined DNA libraries to compare to the DNA found in their samples.

Personal Log

We started trawling again on the evening of June 7th. By then we settled ourselves into the protection of the Monterey Bay due to the weather getting bad. While we still had some off-shore stations, we tried our best to stay close to the bay because of the wind and swells. We had some interesting and challenging trawls in this area: lots of jellyfish. Some of the trawls were so full we had to actually drop the catch and abort the trawl. If not, we risked tearing the net. We tried to mitigate the overwhelming presence of jellies by reducing our trawls to 5 minutes instead of 15 minutes, and we still had similar results. One night, we had to cancel the final trawl to sew up the net. I’ve been told that sewing a fish net is an art form. Our deck hands and lead fisherman knew exactly what to do.

Let me tell you my experience with jellyfish during the survey. As you may recall, someone must be on watch for marine mammals on the bridge. This is the ship’s control room that sits on the 5th level above water.

Reuben Lasker
The Bridge of the Reuben Lasker is where we do inside Marine Mammal Watch. This is where the main controls of the ship are located.

From here you can see the surface of the water quite well, which makes it a great spot for the marine mammal watch. It was also great for watching hundreds of moon jellies and sea nettles float right by. It was one of the coolest things to watch. It was somewhat peaceful, especially hanging your head out of the window, the cool air blowing against your face, and the occasional mist of sea spray as the ship’s hull crashes against some of the larger swells. However, that same peaceful state disappears the moment you realize, “I’m gonna have to lift, count, and sort all those jellies!” I wasn’t too concerned about being stung; we had gloves for the sea nettles and the moon jellies were no real threat. However, the sea nettles (Chrysaora fuscenscens) smelled AWFUL, and the moon jellies (Aurelia spp.) are quite large and heavy. I’m honestly not sure how much they weighed; we did measure up to 20 per haul, some of them measuring over 400 mm. Even if they weighed about 5 pounds, lifting 50-60 of them consecutively until the count is complete is enough to get the muscles burning and the heart rate elevated. It was a workout to say the least. I was literally elbows deep in jellyfish. I also wore my hair in a ponytail most of the time. Anyone that knows me knows well enough that my hair is long, and definitely spent some time dipping into the gelatinous goop. I smelled so bad! HAHAHAHA! Nonetheless, it was still one of the most intriguing experiences I’ve had. Even though the jelly hauls proved to be hard work, I enjoyed it.

In those last few days, I felt like I became integrated into the team of scientists, and I felt comfortable with living out at sea. I had a few moments of nausea, but never really got sea sick. I still couldn’t walk straight when the ship rocked, but even the experts wobbled when the ship hit the big swells. Then, that was it for me. By the time I got the hang of it all, it was time to leave. I wish there were more hours in the day, so I could have experienced more of the day time activities, but I still got to see more than I thought I would, and for that I am grateful.

Did you know…

NOAA offers many career options. As a scientist, here are some things one might study:

  • track and forecast severe storms like hurricanes and tornadoes; monitor global weather and climatic patterns
  • Research coastal ecosystems to determine their health, to monitor fish populations, and to create policies that promote sustainable fisheries
  • Charting coastal regions and gathering navigational data to protect the ship from entering unsafe waters

NOAA Corps allows one to serve as a uniformed officer, commanding a ship or piloting aircraft. On NOAA Ships, they need engineers, technicians, IT specialists, deck hands, fishermen, and even cooks (The Reuben Lasker had two of the best, Kathy (Chief Steward) and Susan (second cook)). There are many opportunities available through NOAA, and there is a longer list of amazing experiences one can have working for this organization. If you want to explore in more detail, visit http://www.careers.noaa.gov/index.html

 

Heather O’Connell: Soil Samples, Surveying and Sumdum Glacier, June 17, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 21, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Sitka, Alaska

Date: 6/17/18

Weather Data from the Bridge

Latitude and Longitude: 57°43.2’ N, 133 °35.7’ W, Sky Condition: Overcast , Visibility: 10+ nautical miles, Wind Speed: 2 knots, Sea Level Pressure: 1024.34 millibars, Sea Water Temperature: 7.2°C, Air Temperature: Dry bulb: 11.78°C, Wet bulb: 10.78°C

Science and Technology Log

I was part of the crew launched on RA-3 where I learned to turn towards a man overboard in order to ensure that the stern of the ship turns away from them. Communicating via the radio was another highlight where I was certain to follow the proper protocol.

RA- 3 Launch with Multi-beam sonar
RA- 3 Launch with Multi-beam sonar

Next, we moved onto deploying the C.T.D., conductivity, temperature and depth device to determine the sound profile of the water. The winch is a pulley system off the back of the launches that casts the C.T.D. and functions similar to a crab pot winch with an addition of a pressure bar to alleviate the weight of the thirty pound C.T.D.

Deploying the C.T.D.
Able Bodied Seaman Tyler Medley and Junior Officer Michelle Levano deploying the C.T.D.

After passing an iceberg with a seal, we began collecting soil samples with a device called a grab sampler. This was connected to the winch and went down about three hundred and thirty feet to collect a bottom sample. The first sample consisted of small shells of mostly barnacles, along with some medium grained sand and large silt submerged in solution.  The second sample was pristine clay with a slight green color created from the physical erosion of the surrounding rocks of the mountains. Soil sample data is collected and included in the data report because it can affect the sound speed of water. It can also provide useful information about the types of organisms that could live in this ecosystem, along with the types of resources available in this area.

Grab Sampler
Grab Sampler

Next, we connected with RA-6 and had a crew transfer so that I could learn how hydrographic surveying actually works. Newly certified H.I.C., hydrographer in charge, Audrey Jerauld was kind enough to share her knowledge of conducting surveying within Tracy’s Arm. Since Rainier surveyed most of the channel, RA-6 was simply collecting near shore data using the multi-beam sonar. The I.M.U., inertial measuring unit, (not to be confused with the Hawaiian imu which is an underground cooking pit) accurately records the pitch, roll, heave and yaw of the boat. This allows GPS receivers to function even when a satellite is not available. I learned that this is important since when surveying next to a steep cliff,when the satellite cannot reach the small launch, this provides an alternate, accurate means of placement. It determines a D.R., or dead reckoning based on the I.M.U. accelerators and creates a plot of where it thinks the launch is. 

deploying C.T.D.
Junior Officer ENS Collin Walker and H.S.T Audrey Jerauld deploying C.T.D.

Personal Log

The sun was shining yesterday afternoon and I loved soaking up the Vitamin D offered by the sun’s rays while practicing yoga on the flying bridge. When Junior Officer Ian Robbins invited me to go kayaking, I eagerly accepted the opportunity to explore Holkham Bay on a kayak with more maneuverability. I descended into the kayak via a rope ladder off the ship and paddled about three miles through a kelp forest to the nearby Sandy Island. Here, there were endless barnacles, urchins, starfish and kelp to explore near the shore in this inter tidal ecosystem. After pulling the kayaks up to shore and exploring land, I had the realization that with each step I was crushing more living organisms than I cared to consider. The rocks and shells soon turned to rye grass and marshland with some larger rocks.

Sunflower Star
Sunflower Star, Photo Credit: Ian Robbins

Seastar in Intertidal Zone
Seastar in Intertidal Zone

We eventually pulled the kayaks to the other side of the island and kayaked our way next to a blue iceberg. Seeing concentric circles and the intricate pattern of the frozen water crystals was a spectacular sight. Kayaking around such a beautiful natural phenomenon that has been in existence much before I have, was again, a humbling experience.

Iceberg off Sandy Island
Iceberg off Sandy Island

Paddling back to the ship with Sumdum glacier to the right and passing through a narrow channel that lead to the beautiful golden glow of the sun about to set proved to be a perfect ending to an exciting day. Feeling amazed at the sight in every direction made me once again feel extreme gratitude for this exceptional opportunity to be around such vast beauty.

Holkham Bay Sunset
Holkham Bay Sunset

Did You Know?

Mooring line, or the rope used to tie a ship to the dock, is often made of spectra. This synthetic polymer, spectra, doesn’t stretch and is extremely strong, so much so that it can bend metal if enough tension is put on it. It is three times stronger than polyester.

Heather O’Connell: Sound in Seawater and Sleeping at Sea, June 8, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 21

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Southeast, Alaska

Date: 6/8/18

Weather Data from the Bridge: Latitude: 48.15° N, Longitude: 122 ° South 58.0’  West, Visibility: 8 nautical miles, Wind: 24 knots, Temperature: 14.2° C

Science and Technology Log

I was fortunate enough to sit in on a survey orientation for new survey technicians and junior officers with Lieutenant Steven Loy. He was on Rainier as the Field Operations Officer, F.O.O., in the past and is currently here as an augmenter filling the role of Senior Watch Officer since he has navigated through the Inside Passage several times. In his two hour orientation, he shared a wealth of knowledge and discussed how multibeam sonar and ultrasounds are two opposite ends to the ultrasonic pulse spectrum.

Multibeam sonar sends out sound and measures the time it takes to return to calculate the depth of the ocean floor. The accuracy of the depth data generated from the multibeam sonar relies on the sound speed profile of the water. The combined effects of temperature, salinity and pressure generate a sound speed profile. Because of the inherent importance of this profile, there are several different ways to measure it. The sound velocity profiler measures this right at the interface of the multibeam sonar. C.T.D.s., or conductivity temperature and depth machines, measure water profile while the ship is stopped. M.V.P.s, or moving vessel profilers, take the water profile as the vessel is moving. Lastly, XBTs are expendable bathythermographs that measure temperature while the ship is in motion.

Sound is affected by different variables as it is energy that travels through a medium as a wave. Lieutenant Loy shared an informative website, The Discovery of Sound in the Sea, where I was able to enhance my understanding. Sound can travel through a liquid, such as water, a gas like air, or a solid like the sea floor. On average, sound travels about 1500 meters per second in sea water. However, the rate changes at different times of day, various locations, changing seasons and varying depths of the water. By looking at sound speed at one particular place in the ocean, you can determine how the different variables affect this sound. Usually, as depth increases, temperature decreases, while salinity and pressure increase.

A multi-beam sensor has a metal plate receiver and a transmitter perpendicular to one another. This array geometry enhances sound.  The sound velocity profiler is next to the receiver and measures right at the interface. To determine the speed of sound right where the beam is generated, sonar is used to measure speed sound across a known distance. This information is then utilized in the overall determination of the depth of the ocean floor. Once this cast is taken, the Seafloor Information System (SIS), can adjust sonar measurements accordingly.

Another way to measure the sound profile of water includes a C.T. D.  This device measures the conductivity, temperature and depth of the water. Conductivity measures the electrical current of the water. The more dissolved salt, or ions in solution, the greater the conductivity and salinity of the water. The depth of the water is directly related to the pressure of the water. Salinity, temperature and pressure affect the sound speed profile of water. This machine has a high data rate that goes up and down the water column. The titanium C.T.D. operates at a high pressure and costs about forty thousand dollars. This accurate technology can only be utilized when the boat is stopped and is used on the smaller survey launches.

C.T.D. used for sound speed profile of water
C.T.D. used for sound speed profile of water

A third method of measuring sound profile is the M.V.P., moving vessel profiler, which takes the data when the ship is moving. These are calibrated before a survey begins and are an efficient way to collect data. An expansive crane lowers the metal torpedo with the sensor off the fantail, the overhanging back part of the ship, into the water to collect the data. The fish is programmed to stop twenty meters above the ocean floor, at which point it returns to its docked position. On ship Rainier, the deck department deploys the fish with a cable wire and the plot room with the survey technicians controls the sensor.  

Boatswain Kinyon and Survey Technicians Finn and Stedman releasing the torpedo of the M.V.P. into the water
Boatswain Kinyon and Survey Technicians Finn and Stedman releasing the torpedo of the M.V.P. into the water

Another way to collect the sound profile of water with a moving vessel is to use an expendable probe. As temperature decreases, the sound speed decreases. Since temperature is the most important factor affecting the speed of sound, an X.B.T., Expendable Bathythermograph, or expendable probe created by the military. With bathy relating to depth and thermo meaning heat, this measures the temperature of the water at a cost of about one hundred dollars. These probes descend at a known rate, so, depth is a function of time.

Sources – Discovery of Sound in the Sea

Personal Log

We left port yesterday at 16:30, which has been a highlight of my NOAA Teacher at Sea Experience thus far. Before leaving port, all hands were assigned a different assignment to help with the launch. I watched the crew bring in the gangway that connects the ship to the port then disassemble it. The crew with hard hats and orange work vests took down poles and neatly tied up different sections by knotting ropes. We slowly progressed out of the port after a cargo ship passed us.  

The deck crew preparing to leave port
The deck crew preparing to leave port

Once the ship picked up speed and the ocean breeze was in my hair, I felt a new kind of freedom. With the Seattle skyline behind us and the beautiful green peninsulas in front of us, I was content to be moving forward. Everyone seemed to feel relieved once we were underway. I felt gratitude as I enjoyed watching the sunset from the flying bridge, the area of the ship above the bridge at the front of the ship.

Seattle Skyline
Seattle Skyline

After sunset, I returned to my berth, or sleeping quarters, located in the bow of the ship on the C-deck. I heard the constant white noise of the propellers that got much louder when the pitch, or angle, of them changed. This sound of seawater combined with the rocking motion of the ship lulled me to sleep on our first night at sea.

20180607_203558.jpg
Sunset

Did You Know?

Juneau, the American capital of Alaska, can only be entered by plane or boat. It is inaccessible by roads due to large mountain ranges on either side.

Susan Dee: To the Gulf of Maine and Georges Bank, June 1, 2018

 

NOAA Teacher at Sea

Susan Dee

Aboard NOAA Ship Henry B. Bigelow 

May 23 – June 7, 2018

Mission:  Spring Ecosystem Monitoring Survey

Geographic Area of Cruise: Northeastern Coast of U.S.

Date:  June 1,  2018

Weather From Bridge

Latitude: 41° 25.4′ N
Longitude: 068° 16.3′ W
Sea Wave Height: 1-2 ft
Wind Speed: 16 kts
Wind Direction: SE
Visibility: Hz
Air Temperature:  12.5°C
Sky:  OVC

Science and Technology Log

After completing a southern route past Long Island, New Jersey and Delaware, the Henry B. Bigelow  headed north to the Gulf of Maine (GOM).  The first sampling stations in GOM were  located on the continental shelf close to the slope. After sampling in  the  Northeast Channel of the GOM, stations will be dispersed throughout the Gulf of Maine. Phytoplankton is continuously imaged through the Imaging Flow Cyto Bot and collection is going well. Below is a recent image taken.  Can you  find Thallasonemia  or Ceratium?  

phytoplankton 3
Image of Phytoplankton taken by IFCB

At various stations instead of  towing  bongo nets  with a CTD attached,  a CTD, Rosette, is deployed with niskin bottles.  CTD contain sensors that measure Conductivity (salinity), Temperature and Depth.   The data gathered provides profiles of chemical and physical parameters of the ocean.

CTD with 12 canisters on deck
CTD on bottom of instrument with 12 Niskin bottles forming a rosette.

 

CTD Rosette entering-water.jpg
CTD, commonly known as Rosette. Note the rosette shape at top of bottles

The great feature of the rosette is its ability to collect water using Niskin bottles as hydrographic instruments.  Opened bottles are lowered into the ocean and at the desired depth a   bottle is closed and brought to the surface without mixing with other water so pure samples can be taken at different depths. Back on board, water is  taken from the Niskin bottles and  nutrient, chlorophyll and carbon dioxide tests are run on the samples.

taking water samples susan
Susan taking water samples from niskin bottles to perform chlorophyll tests at 3 different depths.

chlorophyll extraction
Chlorophyll extraction set up

Georges Bank is  in the southern part of the Gulf of Maine.  The bank separates the Gulf of Maine from the Atlantic Ocean.  It is a huge shoal that is 100 meters higher  than the surrounding ocean floor and is a very productive area of the continental shelf.   The mingling of the Labrador current from the north and the Gulf stream on the eastern edge plus sunlight in shallow waters, creates an ideal environment for phytoplankton and zooplankton. Once a bountiful fishery, it is presently recovering from over fishing. Federal Fishery regulations aim to ensure recovery of the area and future sustainability. The data samples collected will give a good idea of the recovery of this area.    The pink line below shows  the route taken by our ship in the southern Gulf  of Maine and  Georges Bank.

IMG_2518

When  we were near the Northeast  Channel  in the Gulf of Maine, Latitude 41° 53.2′ N and Longitude 65°47.0′ W,  I deployed a  satellite-tracked Drifter Buoy decorated with our school name May River Sharks.  The drifter buoy will send GPS and temperature data to a NOAA website and students will be able to track its path.  This area was chosen to deploy because the Labrador current   from the north meets with the Gulf Stream and hopefully the buoy will get caught up in one of the currents. It will be fun  for students to track the buoy path in the fall. Wonder where it will go???

 

Susan&Buoy
Susan decorating Buoy- May River High School Sharks

 

 

Buoy 1
Buoy READY

 

Buoy Released
Buoy Released

 

DCIM100GOPROG0021640.
Buoy splashing into water

buoy floating
Oh where, oh where, will you go?

 

Personal Log:

So far this trip the weather has been great. Seas have been calm and temperatures good. I have fallen into a nice routine each day.  My shift concludes at midnight; I go to bed till 9:00AM; work out; shower and get ready for next 12 hour shift. I eat lunch and dinner each day and a midnight snack.  The days are long but never boring. The crew aboard the Henry B Bigelow  is awesome.  Internet is sporadic but  I was able to face-time with my daughter. Technology is a big part of this whole operation. All the programs collecting temperature, salinity and phytoplankton rely on computer programs to run. Second  to the chef, the IT person is invaluable.  They are trouble shooting problems all day to make sure the collection  of data is working.   During the longer steams from station to station, I  have the opportunity to talk to crew and other scientists.  Each person is excited about science.  I have never  been involved in real  science research and I  find each day to be fascinating. There is so much time and effort put into collecting the samples.  This cruise  will collect samples from over 100 stations that will be analyzed and supply much data to give a good picture of the state of our Northeast coastline waters and fisheries.

Today was the last day of school for the year for May River High School.  Graduation is Tuesday and my thoughts will be with everyone.  Congratulations to all my students, especially the seniors.

Answers to Phytoplankton Identification:

Thallasonemia- upper left corner

Ceratium- middle top

Victoria Cavanaugh: West of Prince of Wales Island, April 26, 2018

NOAA Teacher at Sea
Victoria Cavanaugh
Aboard NOAA Ship Fairweather
April 16-27, 2018

MissionSoutheast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: April 26, 2018

Weather Data from the Bridge

Latitude: 54° 40.914′ N
Longitude: 134° 05.229′ W
Sea Wave Height: 8-9feet
Wind Speed: 15 knots
Wind Direction: NNW
Visibility: 10 km
Air Temperature: 9.5oC  
Sky:  Partly Sunny in the AM, Cloudy in the PM

Science and Technology Log

Over the past two days, the crew of NOAA Ship Fairweather has been hard at work on the first major project of the season, charting the ocean floor along the Queen Charlotte-Fairweather Fault System.  The project itself will take seven days, though with two days at sea before heading to port in Ketchikan, the survey techs have been focusing on the first sheet, D00245, roughly 900 kilometers offshore in an area known as West of Prince of Wales Island.

Chart of survey area
The Survey Starts Here: Note Sheet D00245 to the Left in Blue

Fairweather is completing the survey in collaboration with the United States Geological Survey (USGS) which has spent the last three years researching and mapping the seafloor along the fault.  Geologists are particularly interested in this fault as little is known about the region and the seafloor here is largely unexplored.  Geologists believe that by studying the fault line and the geology of the ocean floor, they may be able to unlock secrets about the history of our oceans as well as develop new understanding of seismic activity that can keep communities safer when future earthquakes strike.

Plot room
The Plot Room: Survey Techs aboard Fairweather Can View the Data Being Collected in Real-Time

One of the reasons the USGS turned to NOAA to complete its charting efforts is because of the tremendous ocean depths.  The survey techs are using  Fairweather multibeam echosounders for the project which will take a total of seven days to complete.  Sonar pings from the ship’s transducer hit the ocean floor and bounce back to the ship, creating 2D and 3D charts of the ocean floor.  Additionally, survey techs can learn more information about the type of surface on the ocean floor (sandy, rocky, etc.)  based on the strength of the return of the sonar pings. Despite the seafloor in the area being some 15,000 years old, it has never been explored!   Thus, for the survey techs and geologists working on this project, there is a sense of pure excitement in being able to explore and discover a new frontier and help others sea what humans have never seen before.

Depth reading
1520 Meters Down: The Number at the Top Left of the Screen Shows We’re in Water Nearly a Mile Deep!

One of the geologists remarked that he was surprised to see that despite how old the ocean floor in the area is, little appears to have changed, geologically speaking in thousands of years.  Another surprise for geologists is how the fault appears to be one large, long crack.  Many other fault areas appear to be made up of lots of small, jagged, and complicated “cracks.”  Another question to explore!

Shallower depth reading
A Much More Shallow Area: Notice the Sonar Here Shows We’re Just 247 Meters Deep

Notice the colors which help survey techs see the changing depths quickly.  The green, mostly vertical lines, show the ship’s course.  To collect data, Fairweather  runs about 6 hours in one direction, before turning around to run 6 hours in the opposite direction.  This allows survey techs to gather more data about ocean depths with each turn.  In total, survey techs collected nearly 48 hours of data.  This meant survey techs working all night long to monitor and process all of the new information collected.

Bekah and CTD
Survey Tech Bekah Gossett Prepares to Launch a CTD off the Ship’s Stern

Just like on the launches during patch tests, survey techs deploy CTD’s to measure the water’s conductivity (salinity), temperature, and pressure.  This information is key in order to understand the speed of sound in a given area of water and ensure that the sonar readings are accurate.

Survey techs ready CTD
The Survey Techs Work in Rough Seas to Ready the CTD

Personal Log

View off bow
Nothing But Blue Skies in Every Direction!

In striking contrast to the beautiful coastlines that framed the Inside Passage, the last two days have provided endless blue skies mixing with infinite blue seas.  No land in sight!

Nautical chart
Finding the Survey Area West of Prince of Wales Island on a Chart

Radar
The Ship’s Radar Shows Just One Vessel Nine Miles Due East

The open ocean is challenging (huge waves make the entire ship sway constantly and gives new meaning to earning one’s “sea legs”), but far more inspiring.  I’m grateful for the glimpse into life at sea that NOAA has provided me.  There is deep sense of trust among the crew, in their collective hard work that keeps us all safe in the middle of the ocean.  There is also a wonderful sense of adventure, at being part of discovering something new.  Just as explorers have sought after new frontiers for hundreds of years, Fairweather today is charting areas still unknown to humankind.  There is something truly invigorating about watching the sonar reflect the ocean floor in a rainbow of colors, in watching as peaks and valleys slowly are painted across the monitors in the plot room and bit by bit, another sliver of science is added to the charts.  There is something particularly refreshing and exciting about seeing whales spray and play in the waves while standing on the ship’s bridge.  I’m truly grateful to all onboard Fairweather and NOAA’s Teacher at Sea Program for this remarkable opportunity, and I look forward to sharing what I’ve learned with students back at Devotion.

Wave heights
The View out a Port Window Shows Some of the More Extreme Wave Heights as Fairweather Rocks and Rolls

Did You Know?

Prince of Wales Island is one of the southernmost parts of Alaska.  Home to some 4,000 inhabitants, Prince of Wales Island is the 4th largest island in the US and the 97th largest island in the world.   Originally home to the indigenous Kaigani Haida people,  Spanish, British, and French explorers all passed by the island in the 1700 and 1800’s.  In the late 1800’s, miners came to the island looking for gold, copper, and other metals.  Today, most of the land is protected as the Tongass National Forest covers a great portion of the island.

Challenge Question #5: Devotion 7th Graders – Can you find the depths of the Charles River, the Boston Harbor, and 900 kilometers offshore the Massachusetts coast?  What sort of aquatic life exists in each area?  What does the river/seafloor look like in these areas?  Create a comic strip or cartoon showing your findings.

Susan Brown: Let’s Go Fishing, September 4, 2017

 

NOAA Teacher at Sea

Susan Brown

NOAA Ship Oregon II

September 3 – 15, 2017

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 4, 2017

Weather Data from the Bridge

Latitude: 29 43.931N
Longitude: 086 09.617W
Sea wave height: .5 meters
Wind Speed: 2
Wind Direction: 250 degrees
Visibility: good
Air Temperature: 28.3 degrees Celsius
Barometric Pressure: 1016 mb
Sky: partly cloudy

Science and Technology Log

Numbered tags used for each hook

Mackerel used for bait

Today was my first shift. We are using mackerel to bait the 100 hooks that will be places into the water at a specific station. Each hook is numbered so that we can collect data on which hook brought in a fish and entered into the database. There are several jobs out here from baiting the hooks, placing the buoys, flinging the baited hooks out, and recording data in the computer. My job today is the computer.

entering data on the deployment of the baited hooks

The longline is set and left to sit in the ocean for approximately one hour before we start bringing up the line to see if we have a fish on. Out of the 100 hooks we got one fish, a baby tiger shark and a larger juvenile tiger shark coming in at six feet or so. This tiger shark had several hooks in its mouth as well as a tag so when she was brought up on board, all the hooks were removed and the tag replaced with a new one.

IMG_5947
Removing hooks from the tiger shark’s mouth

The tag that was on the tiger shark was opened up to reveal a small scroll of paper with a unique number so that this shark can be tracked from where it was first picked up to when it ended up with us for the brief visit. Below is a short video of us bringing up the shark in the cradle! [no dialogue or narration.]

We will be setting another line tonight at our second station as we continue to motor southeast following the coast of Florida.

Beside recording data on the sharks, a CTD is deployed to collect data on conductivity, temperature and depth. We will use this data in the classroom to look for trends between the abiotic factors that may influence where we are finding certain shark species and the number of overall sharks at any given station.

The CTD that measure conductivity, temperature and depth

Personal Log

There are many different scientists on board researching different things. I am sharing a stateroom with Dani who is on the night shift. She is looking into how different sharks handle stress. I see very little of her since we are on opposite shifts so we get a quick visit at noon when there is a changing of the guards so of say. Brett and Carlos, as mentioned in an earlier post, are looking into parasites that inhabit the various animals we are bringing up. I will do a separate blog on those two and their research later this week to share what they are finding.

Donning the survival suit during abandon ship drill

Today we had a few drills to practice in case of an emergency. One was a fire drill and the other was an abandon ship drill where I had to don a large neoprene suit in less than two minutes. Here I am in that suit! It was quite cumbersome to put on.

Learning new words as I get acclimated to the ship. Here are a few for you:

The head = bathroom

Stateroom = room where I sleep

Muster = to assemble

Bow = the front of the ship

Stern = the back of the ship

Did You Know?

Military time is used on board this ship. See the photo of the clock below.

Question of the Day: Why use military time?

NOAA clock

Lisa Battig: Nome, Alaska & Launch 2808, August 30, 2017

NOAA Teacher at Sea

Lisa Battig

Aboard NOAA Ship Fairweather

August 28 – September 8, 2017

 

Mission: Hydrographic Survey leg IV

Geographic Area of Cruise: Alaska

Date: Wednesday, August 30, 2017
Location: Port Clarence: 65o14.034N 166o43.072W

Weather on the bridge:
30+ knot winds, 42o F, 4ft seas, heavy stratocumulus clouds (9/10 coverage)

Science & Technology Log

Over the past two days I have been introduced to tremendous amounts of the science of hydrography. In this blog post I will focus on the hardware used and the process of surveying. There are two types of sonar that are being employed. The first is side scan sonar and the second is multibeam sonar.

Side Scan
Side scan array sonar housed underneath one of the small launch vessels

 

Side scan is shorter range and performs better in shallower water. Side scan is used in conjunction with multibeam, however, as side scan does not give true depth values. The function of side scan is to show features evident on the ocean floor. For this reason, multibeam is run in conjunction with side scan in order to keep an accurate record of depths.

Multibeam
Multibeam sonar housed underneath another of the small launch vessels

Multibeam shows an exact depth. Due to the fact that it is an angular spreading band from the center of the underside of the launch, at shallow depths it will only show a very narrow strip of ocean floor.


Stop and imagine…a lit flashlight shining on a wall from only a few centimeters away. What happens to the image on the wall as you pull the flashlight back? The area of coverage of the image will become larger. The concept is similar for the multibeam in shallow versus deeper water.


Using multibeam in shallow water then would create a need for more passes closer together in order to cover an area. There are instances where using this technology even in shallow water would make sense, but for a full coverage survey, this would not be the case.

CTD Image 2
A CTD; it contains sensors for conductivity, temperature and density of the water column

The third piece of hardware used for the standard small boat launch hydrographic surveys is the CTD device. The CTD will measure conductivity of the water and also give both a temperature and density profile. The CTD is deployed multiple times during a survey as a tool to calibrate the data that is coming in via the sonar. Conductivity of the water gives an estimate of the total dissolved solids in the water. This information, along with the temperature and density will give an estimate of sound speed through the water column.


Stop and try this one for better understanding… knock on a door normally with your head roughly arm’s distance from the point where you are knocking. Now repeat the process of knocking, but with your ear pressed against the door approximately an arm’s length away from the knock. What is different? You should have noticed that a more precise (and typically louder) sound reached your ear. If you pay close attention, you will also notice that the sound reaches your ear more quickly. This is roughly analogous to how changes in the water column will affect sound speed.


The final piece of equipment used regularly for surveys is a HorCon (horizontal control) station. This is a land-based station that will help to define accurate position in the water. It allows for greater precision with global positioning data. The signals of satellites responsible for global position are affected daily by changing atmospheric conditions. Moreover, the precise positions of the satellites themselves are actually not well known in advance. This may result in a GPS location moving a few centimeters in one direction or another. While this is not going to heavily impact your ability to find a Starbucks in a strip mall, it can have a definite impact on the accuracy of charts for navigation. The HorCon station always remains in the same place on land, and can therefore be used to calibrate the measurements being read in the survey waters nearby and that information can be used along with corrected satellite positions since it is coming after the fact.

Port Clarence chart
A nautical chart of the Port Clarence and Grantley Harbor area where we were surveying

Today we worked in Port Clarence, Alaska, both outside and inside of Grantley Harbor. Most of the depths being surveyed are in the 4-6 meter range. The particular area being surveyed had been previously surveyed in the 1950s by the US Coast and Geodetic Survey, likely using a single beam sonar system. The current survey is intended to note changes that have occurred since that prior survey and to accurately update all of the charts. The area of western Alaska is expected to increase in boat traffic over the coming years due to the opening of the Northwest Passage from the Pacific to the Atlantic via the Arctic. This route is significantly shorter for most shipping traffic than the route through the Panama Canal. Because of this expected increase in traffic, there is a need to identify areas for sheltering during heavy seas. Port Clarence is a natural inlet that offers some protection and holds potential for this purpose.

The process of surveying:
Two launches were deployed. I was on launch 2808, the second described here. The first was equipped with only multibeam sonar and the second had both multibeam and side scan. The plans for the two launches were different. The launch with only multibeam was working in an area of Grantley Harbor and covering an area that had previously been mapped to insure that the values were acceptably accurate. This focus existed primarily because of extra time available up in this area. The launch running the side scan was completing some unfinished work in Port Clarence and then did further work inside of Grantley Harbor. These areas, or “sheets” are described below. As a side note, small boat deployment is a fascinating and involved activity that I will discuss in a later blog.

Survey areas are broken up into sections known as “sheets” – each sheet has a manager. This person will be from either the NOAA Corps or a civilian member of the scientific survey team. The sheet manager will be responsible for setting up the plan for survey and doing all of the final checks after data has been gathered, cleaned and examined to determine if there are areas that should be rechecked or run again before it is completed and undergoes final processing.

A sheet manager will need to consider several questions prior to setting up the initial parameters for the survey. What is the depth being surveyed? What type of bottom is it? What type of coverage is needed? All of these factors will come into play when determining how the lines will be run – how long, how far apart, which sonar type, etc.
Once the plan is determined, it will be the job of the Operations Officer, LT Damian Manda, to parse out the duties and create a daily work plan to cover all of the areas. Each day, multiple launches will be sent out to gather data as described above. As the fieldwork finishes for the day, data will be transferred to a drive and then brought into the ship’s mapping room where night processers will begin the lengthy work of checking and cleaning the data so that it can all be ready for the final processing step prior to being sent to the client.

HMarshburn at computer
Senior surveyor Hannah Marshburn at the computer terminal in launch 2808

How good are those data?
There are several checks built into the data collection process. First, the survey team members on the launches are watching in real time. With three screens to work from, they are able to see what the sonars are seeing and can also set certain limits for the data that will alarm when something appears to be contrary to what’s expected. Night processors look for anomalies in the data like sudden inexplicable drops in depth in an otherwise flat surface or an extremely “noisy” area with little good data. Any area with a former survey will also be compared to the previous values with large differences signaling possible issues. Many trained eyes look at the data before it is accepted for charting and there will commonly be at least one return to an area to check and recheck prior to completion. One area in the current survey has continued to show odd results, so trained NOAA divers will dive the area to find out what is really going on.

Personal Log

So far this has been an amazing experience. I fully enjoy being among the crew of the Fairweather and living on the ship. It’s hard to say what my favorite part has been so far because I have honestly enjoyed all of it! Since we didn’t get underway until Monday, I had the opportunity on Sunday to roam around Nome with a couple of the other folks that are just here for two weeks, LT Joe Phillips and LCDR Ryan Toliver. I learned a lot more about both the NOAA Corps and the Public Health Service of which they are respectively a part. (These are two of the seven uniformed services – can you name the other five?) NOAA Corps officers are in command on all of the active NOAA commissioned ships and aircraft and you will learn a lot more about them in future posts. The PHS is an organization made up primarily of medical professionals. These folks serve in various medical and medical research positions around the nation. There are many who will work for the National Institutes of Health in research, or the Bureau of Prisons or commissioned vessels like Fairweather as practitioners. Unlike NOAA Corps, PHS is not on a billet cycle where every two to three years you will be moved to a new position in a different office or location. Similar to all of the other uniformed services, though, promotion through the ranks is both encouraged and desired.

Traditional Boat - Nome
As we walked all around Nome, this was one of the sights – the frame of a traditional fishing boat.

We also saw the marker for the end of the Iditarod race. I was able to see the historic beginning in Seward, Alaska back in 2010, so seeing the end in Nome was an unexpected treat. Nome also has Cold War-era missile early warning system arrays at the top of a mountain nearby. We had a chance to hike around them and see some of the interesting geologic features of the area. There’s so much more to talk about, but I think I’ll stop here and save shipboard life for my next post.

Did You Know…

… that the Iditarod has its historic beginnings with the Public Health Service? There were many children in interior and western Alaska dying of diphtheria in the early 1920s. When it reached epidemic proportions, the only doctor in Nome reached out to the PHS in the lower 48 to ask for help. Vials of serum were found and sent north to Seward, but then because of heavy ice and storming, dog sled teams were used to get the vials to the interior towns and to Nome. The original race along the Iditarod Trail was run as a memorial to the “Serum Run” and eventually evolved into the highly competitive race it is today.

Amanda Dice: Ending Week 1 at Line 8, August 26, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

map cropped
Oscar Dyson moves across the Shelikof Straight to collect the Line 8 samples

Geographic area of cruise: Western Gulf of Alaska

Date: August 26, 2017

Weather Data: 13.2 C, cloudy with light rain

Latitude 57 36.6 N, Longitude 155 .008 N

 

 

Science and Technology Log

As part of this survey, the scientists onboard collect data from what is known as “Line 8”. This is a line of seven sampling stations, positioned only a few miles apart, near the southern opening of Shelikof Straight between Kodiak Island and the Alaskan Peninsula. Water samples are taken at different depths at each sampling station to measure several different properties of the water. This study is focused on profiling water temperature and salinity, and measuring the quantities of nutrients and phytoplankton in the water.

IMG_0988
The CTD rosette is lowered into the water using a winch – as seen from above.

To collect this data, a conductivity and temperature at depth (CTD) instrument is lowered into the water. This instrument can take water samples at different depths, by using its eleven canisters, or Niskin bottles. The water collected in the Niskin bottles will be used to determine the nutrient quantities at each station. The rosette of Niskin bottles also has sensors on it that measure phytoplankton quantities, depth, temperature, and how conductive the water is. Scientists can use the readings from conductivity and temperature meters to determine the salinity of the water.

Each Niskin bottle has a stopper at the top and the bottom. The CTD goes into the water with both ends of each Niskin bottle in the open position. The CTD is then lowered to a determined depth, depending on how deep the water is at each station. There is a depth meter on the CTD that relays its position to computers on board the ship. The survey team communicates its position to the deck crew who operate the winch to raise and lower it.

IMG_1164
Niskin bottles are lowered into the water with the stoppers at both ends open.

When the CTD is raised to the first sampling depth, the survey crew clicks a button on a monitor, which closes the stoppers on both ends of Niskin bottle #1, capturing a water sample inside. The CTD is then raised to the next sampling depth where Niskin bottle #2 is closed. This process continues until all the samples have been collected. A computer on board records the depth, conductivity and temperature of the water as the CTD changes position. A line appears across the graph of this data to show where each sample was taken. After the Niskin bottles on the CTD are filled, it is brought back onto the deck of the ship.

IMG_1173
They let me take control of closing the Niskin bottles at the sampling depths!

CTD screen cropped
I used this screen to read the data coming back from the CTD and to hit the bottle to close each Niskin bottle. The purple horizontal lines on the graph on the right indicate where each one was closed.

Water is collected through a valve near the bottom of each Niskin bottle. A sample of water from each depth is placed in a labeled jar. This study is interested in measuring the quantity of nutrients in the water samples. To do this it is important to have samples without phytoplankton in them. Special syringes with filters are used to screen out any phytoplankton in the samples.

Screen Shot 2017-08-26 at 8.28.56 PM
Syringes with special filters to screen out phytoplankton are used to collect water samples from the Niskin bottles.

The “Line 8” stations have been sampled for nutrient, plankton, and physical water properties for many years. The data from the samples we collected will be added to the larger data set maintained by the Ecosystems and Fisheries-Oceanography Coordinated Investigations (Eco-FOCI), Seattle, Washington. This NOAA Program has data on how the marine ecosystem in this area has changed over the last few decades. When data spans a long time frame, like this study does, scientists can identify trends that might be related to the seasons and to inter-annual variation in ocean conditions. The samples continue to be collected because proper nutrient levels are important to maintaining healthy phytoplankton populations, which are the basis of most marine food webs.

 

IMG_1171
Collecting water samples from a Niskin bottle.

Personal Log

As we travel from one station to the next, I have some time to talk with other members of the science team and the crew. I have really enjoyed learning about places all over the world by listening to people’s stories. Most people aboard this ship travel many times a year for their work or have lived in remote places to conduct their scientific studies. Their stories inspire me to keep exploring the planet and to always search for new things to learn!

Did you know?

Niskin bottles must be lowered into the water with both ends open to avoid getting an air bubble trapped inside of them. Pressure increases as depth under water increases. Niskin bottles are often lowered down below 150 meters, where the pressure can be intense. If an air bubble were to get trapped inside, the pressure at these depths would cause air bubble to expand so much that it might damage the Niskin bottle!

Anna Levy: Fish Rules, July 17, 2017


NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10-20, 2017

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 17, 2017

Weather Data from the Bridge

Warm weather and blue skies are making it easy to spend a lot of time out on deck, looking for wildlife! In addition to the lazy seagulls who keep hitching a ride on the ship’s trawling gear, we continue to spot dolphins, flying fish, and even a shark feeding frenzy!

IMG_1191
Lazy sea gulls hitch a ride on our trawling gear

Latitude: 28 24.13 N
Longitude: 83 57.32 W
Air temp: 27.7 C
Water temp: 31.3 C
Wind direction: light and variable
Wind speed: light and variable
Wave height: 0.3 meter
Sky: 50% cloud cover, no rain

 

Science and Technology Log

The organisms in each catch provide a snap shot of the marine life in one location in one moment in time. It’s interesting to see what we catch, but there are not many scientific conclusions that we can draw based on what we see in just 10 days. However, this survey has been completed twice per year (once in the summer and once in the fall) for over 35 years. It is looking at trends, or changes and patterns over time, that allows scientists to draw conclusions about the health and ecology of the Gulf of Mexico.

One of the major practical applications of this research is to prevent overfishing, the removal of too many individuals from a population causing that population to become unstable. Continued overfishing can lead to the extinction of a species because it leaves too few mature individuals to reproduce and replace those that are removed.

Cod Graph
Graph Created by Boston Globe

One famous example of overfishing and its consequences occurred in the late 1980’s off the Atlantic coast of Canada. Cod was a major food source and commercial industry in the provinces of Newfoundland and Labrodor. However, unregulated overfishing depleted the cod population and, between 1988 and 1992 the cod population crashed, losing more than 99% of its biomass – they were essentially gone. This destroyed the industry, putting over 40,000 people out of work. In 1992, the government finally imposed a complete ban on cod fishing in hopes that the cod population could still recover. The fishing ban is still in place today, though just last year, Canadian scientists released a report stating that there are some signs of hope!

When NOAA scientists notice overfishing occurring in US waters, they can recommend that protective regulations, or rules, are put in place to limit or even stop fishing in an area until the species has had a chance to recover.

Here are a few examples of the types of regulations that have been created in the Gulf of Mexico in response to the data from the Groundfish Survey.

Texas Shrimping Closure

To prevent overfishing of shrimp in the western Gulf of Mexico, NOAA and the Texas Department of Wildlife collaborated to implement an annual closure of state and federal waters off the coast of Texas to shrimping. This is called the “Texas Closure.”

The Texas closure runs each year from about May 15 to July 15, though the exact dates vary depending on the health of the shrimp population that year. This break allows the shrimp time to mature to an age at which they can reproduce, and to migrate out to deeper waters, which is where females spawn. It also allows the shrimp to grow to a size that is more commercially valuable.

IMG_1177
A shrimp we caught off the coast of Florida.

We saw quite a few shrimp in our recent catches. Because this species is being more intensively monitored, we collected more detailed data about the individuals we caught, including the length, mass, and sex of a sample of least 200 individual shrimp (instead of a the smaller sample size of 20 that we used for most other species.)

In addition to sending out an annual notice to fisherman of the dates of the Texas Closure, NOAA also makes all of the shrimp survey data available. This can help fishermen to target the best fishing locations and work efficiently. For example, this is a plot showing the amount of brown shrimp found at various locations, created using this year’s survey data.

Shrimp Map
Plot Created By NOAA

Red Snapper Regulation

Another species that is currently under regulation is the red snapper, which has been a popular seafood in the US since the 1840s. As fishing technology improved and recreational fishing expanded in the 1950’s, the number of red snapper captured each year increased dramatically. The shrimp industry was also expanding rapidly at this time, and juvenile red snapper were often accidentally caught and killed in shrimp trawls. As a result of these three pressures, the red snapper population began to decline dramatically.

Red Snapper SP
Graph created by NOAA

By 1990, the spawning potential, or the number of eggs produced by the population each year, was only 2% of what it would have been naturally, without any fishing. This was far below the target spawning potential level of 26% that is necessary to sustain the species.

 

Several types of regulations were implemented to protect the snapper. These included:

  • Limiting the number of commercial and recreational fishing licenses issued each year
  • Restricting the size and number of fish that a fisherman could collect on a fishing trip
  • Reducing the amount of time each year that fishermen could fish for red snapper
  • Regulating the type of fishing gear that could be used
  • Requiring commercial shrimp fishermen to install devices on their trawls to reduce the by-catch of juvenile red snapper
  • Requiring fishermen to avoid areas where red snapper spawn

Survey results in the last 5 years show that these regulations are working and that the red snapper population is growing. This is good news. However, the red snapper is not out of the woods yet. It is important to understand that, as a species with a long life span (they can live over 50 years!), it will take time for the population to regain

Red Snapper Productivity
Graphic created by NOAA

its normal age structure. Currently, the majority of red snapper found in the Gulf are less than 10 years old. These fish are still juveniles capable of producing only a fraction of the offspring a fully mature individual would produce. It is important to continue to closely monitor and regulate the fishing of snapper until both the number and age of individuals has been restored to a sustainable level.

We were fortunate to catch members of three different species of red snapper during my leg of the survey. I did notice that most of them were relatively small – less than 10 inches – which is consistent with the concern that the population is still disproportionately young.

As with the shrimp, we collected more detailed information about these individuals. We also removed the stomachs of a sample of snappers. As I discussed in my last blog (“What Tummies Tell Us”), scientists back on land will examine the contents of their stomachs as part of a diet study to better understand what snapper are eating. Because the invasive lionfish has a competitive relationship with red snapper, meaning that it eats many of the same foods that red snapper eat, fisheries biologists are concerned that red snapper may be forced to settle for alternative and/or reduced food sources and that this could also slow their recovery.

IMG_1235
A typical red snapper from our catch. Note that each mark on the ruler is one centimeter.

IMG_0045
Red snapper from one catch.

 

Hypoxia Watch

CTD
Getting ready to deploy the CTD sensors.

In addition to collecting data about the fish and other organisms we find, remember that we also use a group of instruments called a CTD to collect information about the quality of the water at each survey station. (For more about CTDs, please see my previous blog “First Day of Fishing.”)

One of the measurements the CTD takes is the amount of oxygen that is dissolved in the water. This is important because, just like you and me, fish need to take in oxygen to survive. (The difference is that you and I use our lungs to remove oxygen from the air, whereas fish use gills to remove oxygen from the water!) When dissolved oxygen concentrations in the water drop below 2 mg/L, a condition called hypoxia, most marine organisms cannot survive.

When waters become hypoxic, organisms that are able to migrate (like some fishes) will leave the area. Organisms that cannot migrate (like corals or crabs) will die from lack of oxygen. This creates large areas of ocean, called dead zones, that are devoid of typical marine life. Often anaerobic microorganisms, some of which are toxic to humans, will then grow out of control in these areas. Not only is this stressful for the marine populations, it hampers regular fishing activities, and can even pose a threat to human health.

The Gulf of Mexico is home to the largest hypoxic zone in US waters. Nitrogen-rich fertilizers and animal waste from farming activities throughoAnnual Hypoxic Zone Graphut the Midwest United States all collect in the Mississippi River, which drains into the Gulf. Though nitrogen is a nutrient that organisms need in order to grow and be healthy, excess nitrogen causes an imbalance in the normal nitrogen cycle, and stimulates high levels of algae plant growth called an algal bloom. Once the algae use up the excess nitrogen, they begin to die. This causes the population of decomposers like fungi and bacteria to spike. Like most animals, these decomposers consume oxygen. Because there are more decomposers than usual, they begin to use up oxygen faster than it can be replenished.

This hypoxic zone is largest in the summer, when farming activities are at their peak. In the winter, there is less farming, and therefore less nitrogen. As the hypoxic water continues to mix with normal ocean water, the levels of oxygen begin to return to normal. (When there are tropical storms or hurricanes in the Gulf, this mixing effect is more significant, helping to reduce the impact of the hypoxia. This is often the primary cause of low-hypoxia years like 2000.) Unfortunately, the average size of the annual dead zone remains at nearly 15,000 square kilometers, three times the goal of 5,000 square kilometers.

The data collected from this year’s Groundfish Survey was used to create this map of hypoxic areas. How might this map be different if tropical storm Cindy had not occurred this summer?

This Years Hypoxic Zone
A plot of dissolved oxygen levels created from this year’s survey data.

The data we collect on the Groundfish survey is combined with data gathered during other NOAA missions and by other organizations, like NASA (the National Aeronautics and Space Administration) and USGS (the United States Geologic Survey). By collaborating and sharing data, scientists are able to develop a more complete and detailed understanding of hypoxia levels.

In response to the levels of hypoxia seen in the data, the federal Environmental Protection Agency (EPA) has required Midwestern states to develop and implement plans that will allow them to make greater progress in reducing the nutrient pollution that flows into the Mississippi. Specifically, the EPA wants states to do things like:

  • Identify areas of land that have the largest impact on pollution in the Mississippi
  • Set caps on how much nitrogen and other nutrients can be used in these areas
  • Develop new agricultural practices and technologies that will reduce the amount of these pollutants that are used or that will flow into the water
  • Ensure that the permitting process that states use to grant permission to use potential pollutants is effective at limiting pollutants to reasonable levels
  • Develop a plan for monitoring how much nutrient pollution is being released into waters

These EPA regulations were only recently implemented, so it is still unclear what, if any, impact they will have on the hypoxic zone in the Gulf. It will be interesting to keep an eye on the data from the Groundfish survey in coming years to help answer that question!

In the mean time, though, things still seem to be moving in the wrong direction. In fact, NOAA just announced that this summer’s dead zone is the largest ever recorded.

summer-dead-zone.adapt.885.1
Photo credit: Goddard SVS, NASA

Personal Log

Getting a PhD in your chosen field of science is an awesome accomplishment and is necessary if your goal is to design and carry out your own research projects. However, I’ve noticed that the PhD is often presented to students as the only path into a career in science. I think this is unfortunate, since this often discourages students who know they do not want to pursue a graduate degree from entering the field.

I’ve noticed that most of the scientists I’ve met while on board the Oregon II and in the NOAA lab at Pascagoula do not hold PhDs, but are still deeply involved in field work, lab work, and data analysis every day.

I asked Andre DeBose, a senior NOAA fishery biologist and the Field Party Chief for this mission, if he feels a PhD is necessary for those interested in fishery biology. Andre agreed that a graduate degree is not necessary, but he cautioned that it is a very competitive field and that education is one way to set yourself apart – “if you have the opportunity to get an advanced degree, take the opportunity.”

However, he continued, “the MOST important thing you can do is take the opportunity to do internships, volunteering, and fellowships. Those open a lot of doors for you in the world of biology.” Andre himself holds a bachelors degree in biology, but it was his years of experience working in aquaculture and as a contractor with NOAA that were most helpful in paving the way to the permanent position he holds today. “When I graduated from college, I took a low-paying job in aquaculture, just to start learning everything I could about fish. When contract [or short-term] positions became available at the NOAA lab, I applied and tried to make myself as useful as possible. It took time and I had to be really persistent – I would literally call the lab all the time and asked if they had anything they needed help with – but when a full time position finally became available, everyone knew who I was and knew that I had the right skills for the job.”

Now, Andre tries to help others navigate the tricky career path into marine biology. In addition to his responsibilities as a biologist, he is also the Outreach and Education Coordinator for the NOAA lab, which allows him to mentors all of interns (and Teachers at Sea like me!) and to talk with students at schools in the community.

If you’re interested in pursuing a career in marine biology, it’s never to early to start looking for some of those volunteer opportunities! There are lots of scientists out there like Andre who are excited to share their knowledge and experience.

IMG_0092
The Day-Shift Science Team as we head back in to port.  From left to right:  TAS Anna Levy, NOAA Summer Intern Jessica Pantone, NOAA Biologist & Field Party Chief Andre DeBose, NOAA Fellow Dedi Vernetti Duarte, NOAA Volunteer Elijah Ramsey.

Did You Know?

In the Gulf of Mexico, each state has the authority to regulate the waters that are within about 9 miles of the coast. (This includes making rules about fishing.) Beyond that, the federal government, with the help of federal agencies like NOAA, make the rules!

 

Questions to Consider:

Research:  This article discussed the political side of the Snapper situation. Research other news articles about this issue to ensure that you have a balanced perspective.

Reflect: To what extent do you believe this issue should be governed by science? To what extent do you believe this issue should be governed by politics?

Take action: Propose some specific ways that fisherman, scientists, and policy-makers could work together to address issues like the overfishing of red snapper fairly and effectively.

Review: Examine the graph showing the size of the hypoxic zone in the Gulf each summer. There are unusually small zones in 1988 and 2000. How do you explain this?

Research: Two other reoccurring hypoxic zones in the US are found in Chesapeake Bay and Lake Erie. What is the cause of each of these zones?

 

 

 

 

Samantha Adams: Day 6 – Testing… 1 – 2 – 3, July 29, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard NOAA Ship Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Saturday, 29 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 22o 45’N, 157o 56’W. Ship speed: 1.3 knots. Air temperature: 27.8oC. Sea temperature: 27.0oC. Humidity: 72%.Wind speed: 14 knots. Wind direction: 107 degrees. Sky cover: Few.

Science and Technology Log:

The most difficult part of Thursday’s buoy deployment was making sure the anchor was dropped on target. Throughout the day, shifting winds and currents kept pushing the ship away from the anchor’s target location. There was constant communication between the ship’s crew and the science team, correcting for this, but while everyone thought we were close when the anchor was dropped, nobody knew for sure until the anchor’s actual location had been surveyed.

blog.4.Day6.image1
Triangulation of the WHOTS-14 buoy’s anchor location. Look at how close the ‘Anchor at Depth’ location is to the ‘Target’ location — only 177.7 meters apart! Also notice that all three circles intersect at one point, meaning that the triangulated location of the anchor is quite accurate.

To survey the anchor site, the ship “pinged” (sent a signal to) the acoustic releases on the buoy’s mooring line from three separate locations around the area where the anchor was dropped. This determines the distance from the ship to the anchor — or, more accurately, the distance from the ship to the acoustic releases. When all three distances are plotted (see the map above), the exact location of the buoy’s anchor can be determined. Success! The buoy’s anchor is 177.7 meters away from the target location — closer to the intended target than any other WHOTS deployment has gotten.


After deployment on Thursday, and all day Friday, the Hi’ialakai stayed “on station” about a quarter of a nautical mile downwind of the WHOTS-14 buoy, in order to verify that the instruments on the buoy were making accurate measurements. Because both meteorological and oceanographic measurements are being made, the buoy’s data must be verified by two different methods.

Weather data from the buoy (air temperature, relative humidity, wind speed, etc.) is verified using measurements from the Hi’ialakai’s own weather station and a separate set of instruments from NOAA’s Environmental Sciences Research Laboratory. This process is relatively simple, only requiring a few quick mouse clicks (to download the data), a flashdrive (to transfer the data), and a “please” and “thank you”.

blog.4.Day6.image2
July 28, 2017, 5:58PM HAST. Preparing the rosette for a CDT cast. Notice that the grey sampling bottles are open. If you look closely, you can see clear plastic “wire” running from the top of the sampling bottles to the center of the rosette. The wires are fastened on hooks which, when triggered by the computer in the lab, flip up, releasing the wire and closing the sampling bottle.

Salinity, temperature and depth measurements (from the MicroCats on the mooring line), on the other hand, are much more difficult to verify. In order to get the necessary “in situ” oceanographic data (from measurements made close to the buoy), the water must be sampled directly. This is done buy doing something called a CTD cast — in this case, a specific type called a yo-yo. 

The contraption in the picture to the left is called a rosette. It consists of a PCV pipe frame, several grey sampling bottles around the outside of the frame, and multiple sets of instruments in the center (one primary and one backup) for each measurement being made.

blog.4.Day6.image3
July 28, 2017, 6:21PM HAST. On station at WHOTS-14, about halfway through a CDT cast (which typically take an hour). The cable that raises and lowers the rosette is running through the pulley in the upper right hand corner of the photo. The buoy is just visible in the distance, under the yellow arm.

The rosette is hooked to a stainless steel cable, hoisted over the side of the ship, and lowered into the water. Cable is cast (run out) until the rosette reaches a certain depth — which can be anything, really, depending on what measurements need to be made. For most of the verification measurements, this depth has been 250 meters. Then, the rosette is hauled up to the surface. And lowered back down. And raised up to the surface. And lowered back down. It’s easy to see why it’s called a yo-yo! (CDT casts that go deeper — thousands of meters instead of hundreds — only go down and up once.)

For the verification process, the rosette is raised and lowered five times, with the instruments continuously measuring temperature, salinity and depth. On the final trip back to the surface, the sampling bottles are closed remotely, one at a time, at specific depths, by a computer in the ship’s lab. (The sampling depths are determined during the cast, by identifying points of interest in the data. Typically, water is sampled at the lowest point of the cast and five meters below the surface, as well as where the salinity and oxygen content of the water is at its lowest.) Then, the rosette is hauled back on board, and water from the sampling bottles is emptied into smaller glass bottles, to be taken back to shore and more closely analyzed.

On this research cruise, the yo-yos are being done by scientists and student researchers from the University of Hawaii, who routinely work at the ALOHA site (where the WHOTS buoys are anchored). The yoyos are done at regular intervals throughout the day, with the first cast beginning at about 6AM HAST and the final one wrapping up at about midnight.

blog.4.Day6.image4
July 29, 2017, 9:43AM HAST. On station at WHOTS-13. One CDT cast has already been completed; another is scheduled to begin in about 15 minutes.

After the final yo-yo was complete at the WHOTS-14 buoy early Saturday morning, the Hi’ialakai traveled to the WHOTS-13 buoy. Today and tomorrow (Sunday), more in situ meteorological and oceanographic verification measurements will be made at the WHOTS-13 site. All of this — the meteorological measurements, the yo-yos, the days rocking back and forth on the ocean swell — must happen in order to make sure that the data being recorded is consistent from one buoy to the next. If this is the case, then it’s a good bet that any trends or changes in the data are real — caused by the environmental conditions — rather than differences in the instruments themselves.

Personal Log:

blog.4.Day6.image5
The Hi’ialakai’s dry lab. Everyone is wearing either a sweatshirt or a jacket… are we sure this is Hawaii?

Most of the science team’s time is divided between the Hi’ialakai’s deck and the labs (there are two; one wet, and one dry).  The wet lab contains stainless steel sinks, countertops, and an industrial freezer; on research cruises that focus on marine biology, samples can be stored there. Since the only samples being collected on this cruise are water, which don’t need to be frozen, the freezer was turned off before we left port, and turned into additional storage space.  The dry lab (shown in the picture above) is essentially open office space, in use nearly 24 hours a day. The labs, like most living areas on the ship, are quite well air conditioned. It may be hot and humid outside, but inside, hoodies and hot coffee are both at a premium!

Did You Know?

The acronym “CTD” stands for conductivity, temperature and depth. But the MicroCats on the buoy mooring lines and the CTD casts are supposed to measure salinity, temperature and depth… so where does conductivity come in? It turns out that the salinity of the water can’t be measured directly — but conductivity of the water can.

When salt is dissolved into water, it breaks into ions, which have positive and negative charges. In order to determine salinity, an instrument measuring conductivity will pass a small electrical current between two electrodes (conductors), and the voltage on either side of the electrodes is measured. Ions facilitate the flow of the electrical current through the water. Therefore conductivity, with the temperature of the water taken into account, can be used to determine the salinity.

Jenny Hartigan: Tucker Trawl: Collecting Sea Life! July 24, 2017

NOAA Teacher at Sea

Jenny Hartigan

Aboard NOAA Ship R/V Fulmar

July 21 – July 28, 2017

 

Mission:  Applied California Current Ecosystem Studies: Bird, mammal, zooplankton, and water column survey


Geographic Area:
North-central California

 

Date: July 24

 

Weather Data from the Bridge:

Latitude: 37.8591° N,

Longitude: 122.4853° W

Time: 0700

Sky: overcast, foggy

Visibility:   less than 1 nautical mile

Wind Direction: NW

Wind speed: 10-20 knots

Sea wave height: 2-4 feet

NW Swell 7-9 feet at 8 seconds

Air Temperature: 52 degrees F

Wind Chill: 34 degrees F

Rainfall: 0mm

 

 

Scientific Log:

On Sunday we encountered heavy fog as soon as we headed out to sea, so the captain sounded the foghorn every 2 minutes. The scientists Jaime, Ryan and Kirsten deployed the Tucker Trawl. It consists of a large net with 3 codends. A codend looks like a small cup that attaches to the end of the net. Each codend collects sea life at a different depth. The Tucker Trawl is always deployed at the edge of the continental shelf. The shelf is about 200 meters below sea level. The goal is to take organism samples from the pelagic (non-coastal or open) ocean. 400 meters of cable are deployed along with the net, so you can see that it goes deep in the ocean!

IMG_2519

The scientists deploying the Tucker Trawl.

Using the Tucker Trawl requires a whole team of people. 3 scientists deploy the net, and the captain operates the winch and A Frame so the net doesn’t hit the deck during the process. The NOAA Corpsman drives the boat so as to maintain alignment and speed. One scientist keeps an eve on the angle of the cable, and communicates with the driver to maintain the proper angle by adjusting speed. After recovering the net, all three samples must be rinsed into a bottle. Too much water pressure can mangle the specimens, so we use a gentle rinse. The bottle is then labeled and treated with fixative to preserve the samples. Then it is stored to later be sent to a lab for identification. I have learned that taking these samples requires a lot of communication, to maintain fidelity to a testable process, utilize equipment wisely, and to ensure safety of all personnel.

2017-07-26 09.16.36

A view from above as the Tucker Trawl goes out to sea.

 

Each offshore transect has one Tucker Trawl site. After that we move to another site and take Hoop net, CTD, Niskin, water, phytoplankton samples. I will explain these later. Sampling all of these sites provides data for the scientists to investigate the entire ecosystem. They collect plankton (producers) from shallow and deep water, observe marine mammals and birds (predators) on the surface, and sample the environmental conditions such as ocean temperature, salinity, nutrients, and ocean acidification indicators. These studies inform decisions for managing a sustainable environment for both sea life and humans.

2017-07-25 11.39.15

Two scientists collecting sea life from the Tucker Trawl.

 

Personal

I want to tell you about the galley. This is the kitchen where we store and prepare our food. We have an oven, stove, microwave, sink and two refrigerators, but everything is compact due to limited space. All of the cabinets and the fridge have latches on them to keep food from flying around when the seas are rough. I have to remind myself to latch the fridge each time I open it. I don’t want to be the person who created a giant smoothie in the kitchen!

 

We eat our meals at the table, which then converts to a bed for sleeping. Every little bit of space is used efficiently here.

 

Did you know?

An albatross is part of the tube-nose family of birds. One of its features is having a tube nose above the nares. Nares are the openings to the nostrils. The birds also have openings at the end of the tubes. This adaptation gives it a keen sense of smell. We saw black-footed albatross, which nests in the Hawaiian Islands, and flies long distances across the ocean to find food in the productive waters of Cordell Bank and Greater Farallones National Marine Sanctuaries. So this albatross has been traveling at sea for a long distance!

 

Animals Seen Today

We spotted a CA sea lion cavorting in the wake of the ship. It looked like it was having so much fun as it leaped and twisted above the waves.

 

I love hearing from you. Keep those comments coming!

Melissa Barker: Reflections from Land, July 20, 2017

 

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 20, 2017

Weather Data from the Bridge: I am now back in Longmont, Colorado

Latitude: 40 08.07 N

Longitude: 105 08.56 W

Air temp: 31.1 C

 

Science and Technology Log

One of the major questions I had before my Teacher at Sea voyage was how the level of oxygen in the water will affect the species we collect. Typically, in the summer, a dead zone forms in the Gulf of Mexico spreading out from the mouth of the Mississippi river. You can see an image of the dead zone from 2011 below.

Hypoxia2011
Bottom Dissolved Oxygen Contours, Gulf of Mexico, 2011

Phytoplankton, or microscopic marine algae, are the base of the marine food web. There are two main classes, diatoms and dinoflagellates, which are both photosynthetic and typically live towards the top of the water column. We did not sample plankton on our leg of the cruise, but if you want to learn more you can check out this site: https://oceanservice.noaa.gov/facts/phyto.html. In the summer, phytoplankton and algae can build up due to excess nutrients in the water that are running off from urban areas, agriculture and industry. Much of our sampling was near the mouth of the Mississippi River, which is a significant source of excess nutrients. The extra nitrogen and phosphorus in the runoff cause the excess growth of photosynthetic organisms which leads to a buildup of zooplankton (heterotrophic plankton). Once the phytoplankton and zooplankton die and sink to the bottom they are decomposed by oxygen consuming bacteria which deplete the oxygen in the water column. According to NOAA, hypoxia in aquatic systems refers to an area where the dissolved oxygen concentration is below 2 mg/L. At this point, most organisms become physiologically stressed and cannot survive.

4911433052_f535276bdf_b
How The Dead Zone Forms: Infographic by Dan Swenson, NOLA.com/The Times-Picayune

Tropical Storm Cindy, which kicked up just as I was arriving in Galveston, brought significant freshwater into the gulf and mixed that water around so we did not see as many low oxygen readings as expected. While I was talking with Andre about hypoxia when we were on the ship, he used the analogy of stirring a bowl of soup. There is a cool layer on top, but as you stir the top layer and mix it with the lower layers, the whole bowl cools. Similarly, the oxygen rich freshwater from the storm is mixed around with the existing water, reducing the areas of low oxygen. You can see in the map below that we had fewer hypoxic areas than in 2011.

2017-hypoxia-contours
Bottom Dissolved Oxygen Contours, Gulf of Mexico, 2017

We used the CTD to obtain oxygen readings in the water column at each station. In the visuals below you can see a CTD indicating high oxygen levels and a CTD indicating lower, hypoxic, oxygen levels. The low oxygen CTD was from leg one of the survey. It corresponds with the red area in the hypoxia map above.

Non Hypoxic station copy
CTD for a non-hypoxic station

Hypoxic Station copy
CTD of a hypoxic station

 Personal Log and Reflections

P1030035
Final sunset over the Gulf of Mexico

When I arrived back on land I still felt the rocking of the Oregon II. It took two to three days before I felt stable again. As friends and family ask about my experience, I find it hard to put into words. I am so grateful to the NOAA Teacher at Sea program for giving me this incredible experience and especially thankful to Science Field Party Chief Andre Debose and my day shift science team members, Tyler, David and Sarah, for teaching me so much, being patient and making my experience one that I will never forget.

The ocean is so vast and we have explored so little of it, but now, I have a strong understanding of how a large scale marine survey is conducted. Being an active participant in fisheries research was definitely out of my comfort zone. The experience helped stretch me and my learning and has giving me great insight to bring back to share with my students and school community. The map below shows our journey over the two weeks I was on the ship traveling along the Texas, Louisiana, Mississippi and Florida coasts.

Summer GroundfishLEG2 Oregon II ALL
The blue line maps our route on the Oregon II

My experience on Oregon II has also re-engaged me with the ocean. As a child, I spent time each summer on an island off the coast of Maine and even got to go fishing with my Dad and his lobsterman buddies. But for the last 20 years or so, my exposure to the ocean has been limited to just a few visits. My curiosity for the marine world has been reignited; I look forward to bringing more fisheries science and insight into my classroom.

P1030010 (1)
Brown shrimp (Penaeus aztecus) on the left Pink shrimp (Penaeus duorarum) on the right

I mentioned in a previous blog that our shrimp data was sent daily to SEAMAP and made available to fisheries managers and shrimpers to allow them to make the best decisions about when to re-open the shrimp season. According to Texas Parks and Wildlife (TPWD), the commercial shrimp season for both the state and federal waters re-opened just after sunset on July 15, 2017. TPWD said, “The opening date is based on an evaluation of the biological, social and economic impact to maximize the benefits to the industry and the public.” It is satisfying to know that I was part of the “biological evaluation” to which they refer.

 

Finally, I took some video while out at sea and now with more bandwidth and time, I’ve been able to process some of that video to shed additional light on how fisheries research is conducted. I’ve added two videos. The first one shows the process of conducting a bottom trawl and the second one show the fish sorting and measuring process. Enjoy!

 

 

 

 

 

 

Did You Know?

You can use the following sites to help you make smart sustainable seafood choices:

FishWatch (http://www.fishwatch.gov)

Monterey Bay Aquarium (http://www.seafoodwatch.org). There is also a free app you can put on your phone so you can do a quick look up when you are at a restaurant, the grocery or a fish market.

 

The largest Gulf of Mexico dead zone recorded was in 2002, encompassing 8,497 square miles. The smallest recorded dead zone measured 15 square miles in 1988. The average size of the dead zone from 2010-2015 was about 5,500 square miles, nearly three times the 1,900 square mile goal set by the Hypoxia Task Force in 2001 and reaffirmed in 2008.

(source: http://www.noaanews.noaa.gov)

 

Dawson Sixth Grade Queries

Thank you to the Dawson sixth graders (now seventh graders!) for your great questions. I look forward to speaking with you all when school starts in a few weeks.

What is at the bottom of the low oxygen part of the ocean? (Allison)

There is a lot of accumulated dead organic matter that is decomposed by oxygen consuming bacteria.

What do you find in the dead zone? Do less animals live there? (Leeham, Mae, Shane, Alfie, Bennett)

Typically, trawls are smaller and the diversity of organisms decreases in the low oxygen areas. Often you will find resilient organisms like croaker. There is a lot of research looking at which organisms can live in dead zones and how these organisms compensate for the low levels of oxygen.

Is there any way to fix the dead zone? What can we do about the dead zone? (Isaac, Owen, Ava)

It is estimated that seventy percent of the excess nitrogen and phosphorus that runs off into the Gulf of Mexico comes from industrial agriculture. Reducing the amount of fertilizer used to grow our food would help decrease the extent of the dead zone area. Perhaps one of you will come up with a way to feed our communities in a more sustainable way or a technology that can remove these excess nutrients before the water reaches the Gulf.

Thanks for reading my blog!

img_3346.jpg
Safety first on the Oregon II.

 

Anna Levy: First Day of Fishing! July 12, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 12, 2017

 

Weather Data from the Bridge

We’re traveling through some mild rainstorms. Nothing extreme, but we do feel a little more side to side rocking motion in the boat (which makes me feel sleepy!)

IMG_5433
Mild rainstorms on the horizon

Latitude: 29 degrees, 56.2 minutes North

Longitude: 86 degrees, 20.6 minutes West

Air temp: 24.7 degrees Celsius

Water temp: 30.1 degrees Celsius

Wind direction: light and variable

Wind speed: light and variable

Wave height: 1 foot (about 0.3 meters)

Sky: overcast with light rain

 

Science and Technology Log

Today I completed my first shift on the science team and we surveyed 3 complete stations. At each station, we carried out a multi-step protocol (or procedure). Here are the steps:

IMG_1039
The Depth Contour Output graph displays data collected from one station.

Before we begin fishing, the ship conducts a transect (or cross-section) of the survey area, using multiple pieces of equipment to observe the ocean floor. This tells us if it is safe (for both ship operations and for fragile coral that may exist) to trawl here. If a coral reef or other large obstacle was present, we would see significant variation in the depth of the ocean floor. This “depth contour output” graph shows the data we collected at one station. How deep is the water at this station? Is it safe to trawl here?

IMG_1028
The CTD collects information about water chemistry

We also use a collection of instruments called a “CTD” to collect information about the chemistry of water itself at different depths. This information is called the water’s “profile.” For fisheries studies, we are most interested in the amount of dissolved oxygen and the temperature at different depths. Why might this information be relevant for understanding the health of fish populations?

IMG_1025
Forel-Ule color scale

We also measure the water color using the Forel-Ule color scale by matching it to the samples shown in this photo. This gives scientists an indication of the amount of particulates, chlorophyll, and nutrients are in the water.

IMG_0033
Trawl Net being lowered into water

Once we determine it is safe to trawl, the ship returns to the starting location. We will trawl along the same path that we observed. Here’s the trawl net before it is lowered into the water. It will be pulled just along the bottom of the survey area, using tickler chains to agitate the ocean floor for benthic organisms for 30 minutes, and collecting whatever crosses its path!

IMG_1037
The catch is emptied into baskets

Once the trawl is finished, the deck crew uses a large crane to pull the trawl on board. We all help to empty the net and place everything into baskets. Most of what we catch are biological organisms, but small amounts of non-living material (like shells, dead coral, and even trash) come up as well.

IMG_1002
The Wet Lab

We then bring the baskets into the wet lab.

IMG_1046
Baskets are emptied into a long trough with a conveyor belt

We dump the baskets into a long metal trough that has a conveyor belt at the bottom.

IMG_1014
The catch is sorted into baskets by species

Next we sort the catch. Each species gets its own basket and we count the number of individuals for each species.

IMG_1032
Identifying organisms

Then, it’s time for the tough part (for me at least) – every organism has to be identified by its scientific name. That’s a lot of Latin! Fortunately, Andre and the senior scientists are very patient and happy to help those of us who are new. It’s amazing how many species these experienced scientists recognize off the top of their heads.

IMG_1030
Field Guides

We also have many field guides, which are books containing photos and descriptions of species, to help us.

IMG_1017
For each species, we record the total number of individuals and total mass

We are interested in how much of each species are present, so we record both the total number of individuals and total mass of each species.

IMG_1059
TAS Anna Levy measures the length of a flatfish using the Limnoterra Board

We also measure the length and mass of a sample of individuals. A handy device called a Limnoterra Electronic Measuring Board makes this process easy.  We place the mouth of the fish on one end of this board and then touch its tail fin with a pen-like magnetic wand. The board then automatically sends the fish’s length to the computer to be recorded.  We use an electronic balance that is also connected to the computer to measure and record mass.

IMG_1008
A computer screen displays FSCS software

All of the information is recorded in a database, using software called FSCS (pronounced “fiscus”).

Many of the specimens we collect are saved for use in further research on land.   Scientists at NOAA and other research institutions can request that we “bag and tag” species that they want. Those samples are then frozen and given to the scientists when we return to shore.

Any organisms or other material that remains is returned to the sea, where it can be eaten or continue its natural cycle through the ecosystem. The conveyor belt, conveniently, travels to a chute that empties back into the ocean. Now all that’s left is to clean the lab and wait for the process to begin again at the next station!

Our goal is to complete this process 48 times, at the 48 remaining stations, while at sea. 3 down, 45 to go!

Personal Log

IMG_1048
Sometimes the work is high-paced…

This work has real highs and lows for me, personally. There are dramatic, hold your breath, moments like when equipment is lifted off the deck with cranes and lowered into the water. There is the excitement of anticipating what data or species we will find. My favorite moment is when we dump the buckets and all of the different species become visible. I’m amazed at the diversity and beauty of organisms that we continue to see. It reminds me of all of the stereotypical “under the sea” images you might see in a Disney movie.

The more challenging part is the pace of the work. Sometimes there are many different things going on, so it’s easy to keep busy and focus on learning new things, so time passes quickly. Other times, though, things get repetitive. For example, once we start entering all of the data about the individual fish, one person calls out the length and mass of a fish, while the other enters it into the computer – over and over until we’ve worked through all of the fish.

IMG_1050
… but sometimes the work even stops altogether, especially when whether interferes.

Sometimes, the work even stops altogether, especially when the weather interferes. There have been mild rainstorms coming and going continually. It is not safe to have people on deck to deploy the CTD and trawling equipment when there is lightning in the area, so there is nothing for the science team to do but wait during these times.

Because the pace of the work is constantly changing, it’s difficult to get into a groove, so I found myself getting really tired at the end of the shift. However, an important part of collecting data out in the field is being flexible and adapting to the surroundings. There is a lot to accomplish in a limited amount of time so I keep reminding myself to focus on the work and do my best to contribute!

Did You Know?

When working at sea, scientists must use special balances that are able to compensate for the movement of the ship in order to get accurate measurements of mass.

To ensure that we are accurately identifying species, we save 1 individual from each species caught at a randomly selected station. We will freeze those individuals and take them back to NOAA’s lab in Pascagoula, where other scientists will confirm that we identified the species correctly!

Questions to Consider:

Review: Look at the “depth contour output” graph above: How deep is the water at this station? Is it safe to trawl here?

Research: What does “CTD” stand for?

Research: For fisheries studies, we are most interested in the amount of dissolved oxygen and the temperature at different depths. Why might this information be relevant for understanding the health of fish populations?

Reflect: Why might scientists decide to use three different pieces of equipment to collect the same data about the ocean floor? And, why might they have several different scientists independently identify the species name of the same individuals?

Staci DeSchryver: Exploring HICEAS on the High Seas! June 20, 2017

NOAA Teacher at Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

Mission:  Cetacean Study

Geographic Area of Cruise:  Hawaiian EEZ

Current Location:  Impatiently waiting to sail in Centennial, Colorado

Date:  June 20

Weather Data from the “Bridge” (AKA My Sun Porch):

wxdata_0620
Here’s the weather data from the “Bridge” in Centennial. (In Station Model format, of course. How else would we practice?)

 

Personal Log – An Introduction

Hello!  My name is Staci DeSchryver and I will be traveling this upcoming July on the Oscar Elton Sette as part of the HICEAS program!

I am an Oceanography, Meteorology, and Earth Science teacher at Cherokee Trail High School in Aurora, CO.  This August will kick off my 14th (yikes!) year teaching.  I know you might be thinking, “Why Oceanography in a landlocked state?”  Well, the reason why I can and do teach Oceanography is because of Teacher At Sea.  I am an alumna, so this is my second official voyage through the Teacher At Sea program.  It was all of the wonderful people I met, lessons I learned, and science that I participated in on the

 

DeSchryverIntroPic
This is my husband, Stephen, and I, at the game that sent the Broncos to the Superbowl!

 

Oscar Dyson in 2011 that led me to encourage my school to put an Oceanography course in place for seniors as a capstone course.  This past year was the first year for the Oceanography and Meteorology courses, and they were very well received!  I have three sections of each class next year, as well!  (Shout out to all my recent senior grads reading this post! You were awesome!)  We study our World’s Ocean from the top of the water column all the way to the deepest parts of the Marianas Trench, and from the tiniest atom all the way up to the largest whale.  I  believe it is one of the most comprehensive courses offered to our students – incorporating geology, chemistry, physics, and biology, but then again, I’m a bit biased.

Apart from being a teacher, I am a wife to my husband of 8 years, Stephen.  We don’t have children, but we do have two hedgehogs, Tank and Willa, who keep us reasonably busy.  Willa only has one eye, and Tank is named Tank because he’s abnormally large for a hedgie.  They are the best lil’ hedgies we know.  We enjoy camping, rock climbing, and hiking – the typical Coloradans, though we are both originally from Michigan.  When we aren’t spending time together, I like to dance ballet, read, write, and I recently picked up a new weightlifting habit, which has led me to an entire new lifestyle of health and wellness with an occasional interjection of things like Ice Cream topped with caramel and Nachos when in the “off” season (hey, nobody’s perfect).

I will be leaving for Honolulu, Hawaii on July 4th to meet up with the fine scientists that make up the HICEAS team.  What is HICEAS?  Read below to find out more about HICEAS and the research we will be doing onboard!

Science Log

The HICEAS (Hawaiian Islands Cetacean and Ecosystem Assessment Survey) is a study of Cetaceans (Whales, Dolphins, and Porpoises) and their habitats.  Cetaceans live in the ocean, and are characterized by being carnivorous (we will get along just fine at the dinner table) and having fins (since I am a poor swimmer, I will humbly yield to what I can only assume is their instinctive expertise).  This means that the study will cover all manners of these majestic creatures – from whales that are definitely easily identifiable as whales to whales that look like dolphins but are actually whales to porpoises that really look like whales but are actually dolphins and dolphins that look like dolphins that are dolphins and…  are you exhausted yet?  Here’s some good news – porpoises aren’t very common in Hawaiian waters, so that takes some of the stress out of identifying one of those groups, though we will still be on the lookout.  Here’s where it gets tricky – it won’t be enough to just sight a whale, for example and say, “Hey! We have a whale!”  The observers will be identifying the actual species of the whale (or dolphin or possible-porpoise).  The observers who tackle this task are sharp and quick at what is truly a difficult and impressive skill.  I’m sure this will be immediately confirmed when they spot, identify, and carry on before I say, “Wait! Where do you see it?”

hawaiian_archipelago_map_sm
This is the research area for the HICEAS project. Map/photo is credited directly to the HICEAS website, https://www.pifsc.noaa.gov/hiceas/whats_hiceas.php

There are 25 cetacean species native to Hawaiian waters, so that’s a big order to fill for the observers.  And we will be out on the water until we locate every last one.  Just kidding.  But we will be looking to spot all of these species, and once found, we will do our best to estimate how many there are overall as a stock estimate.  Ideally, these cetacean species will be classified into three categories – delphinids (dolphins and a few dolphin-like whales), deep diving whales (whales with teeth), and baleen whales (of the “swim away!” variety).  Once identified in this broad sense, they will then be identified by species.  However, I do have a feeling these two categorizations happen all at once.

Once the data is collected, there is an equation that is used to project stock estimates for the whole of the Pacific.  More on this later, but I will just start by saying for all you math folk out there, it’s some seriously sophisticated data extrapolation.  It involves maths that I have yet to master, but I have a month to figure it out, so it’s not looking too bleak for me just yet.  In the meantime, I’m spending my time trying to figure out which cetaceans that look like dolphins are actually possible-porpoises, and which dolphins that look like dolphins are actually whales.

Goals and Objectives of the HICEAS

The HICEAS study operates as a part of the Pacific Islands Fisheries Science Center (PIFSC) and the Southwest Fisheries Science Center (SFSC), both under the NOAA umbrella.  Our chief scientist is Dr. Erin Oleson, who will be the lead on this leg of the cruise. HICEAS last collected data in 2010, and is now ready for the next round of stock assessments.  HICEAS is a 187-day study, of which we will be participating in approximately 30 of those days for this particular leg.  Our research area is 2.5 million square kilometers, and covers the whole of the Hawaiian Archipelago and it’s Exclusive Economic Zone, or EEZ!  The HICEAS study has three primary goals:

  1.  Estimate the number of cetaceans in Hawaii.
  2.  Examine their population structure.
  3.   Understand their habitat.

Studies like the HICEAS are pretty rare (2002, 2010, and now 2017), so the scientists are doing their best to work together to collect as much information as they possibly can during the study.  From what I can gather in lead-up chats with on board scientist Kym Yano, we will be traveling along lines called “transects” in the Pacific Ocean, looking for all the popular Cetacean hangouts.  When a cetacean is sighted, we move toward the lil’ guy (or gal) and all his friends to take an estimate, and if it permits, a biopsy.  There is a second team of scientists working below deck listening for Cetacean gossip (whale calls) as well.  Acoustic scientists will record the whale or dolphin calls for later review and confirmation of identification of species, and, of course, general awesomeness.

But that’s not all!

We will also be dropping CTD’s twice per day, which is pretty standard ocean scientific practice.  Recall that the CTD will give us an idea of temperature, salinity, and pressure variations with depth, alerting us to the presence and locations of any of the “clines” – thermocline, halocline, and pycnocline.  Recall that in areas near the equator, rapid changes of temperature, salinity, and density with depth are pretty common year-round, but at the middle latitudes, these form and dissipate through the course of the solar year. These density changes with depth can block nutrients from moving to the surface, which can act as a cutoff to primary production.  Further, the CTD readings will help the acoustic scientists to do their work, as salinity and temperature variations will change the speed of sound in water.

There will also be a team working to sight sea birds and other marine life that doesn’t fall under the cetacean study (think sea turtles and other fun marine life).  This study is enormous in scope.  And I’m so excited to be a part of it!

Pop Quiz:

What is the difference between a porpoise and a dolphin?  

It has to do with 3 identifiers:  Faces, Fins, and Figures.

According to NOAA’s Ocean Service Website…

Faces:  Dolphins have prominent “beaks” and cone-shaped teeth, while Porpoises have smaller mouths and teeth shaped like spades.

Fins: Dolphin’s dorsal (back) fins are curved, while porpoises fins are more triangle-shaped

Figures: Dolphins are leaner, and porpoises are more “portly.”

Dolphins are far more prevalent, and far more talkative.  But both species are wicked-smart, using sonar to communicate underwater.

Resources:

HICEAS website

Bradford, A. L., Forney, K. A., Oleson, E. M., & Barlow, J. (2017). Abundance estimates of cetaceans from a line-transect survey within the U.S. Hawaiian Islands Exclusive Economic Zone. Fishery Bulletin, 115(2), 129-142. doi:10.7755/fb.115.2.1

 

 

 

 

 

Dawn White: Sampling the Pacific, June 24, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 25, 2017

 

Weather Data from the Bridge

 

Date: June 25, 2017                                                         Wind Speed: 22 kts

Time: 4:00 p.m.                                                                 Latitude: 5026.55N

Temperature: 14.3oC                                                      Longitude: 12808.11W

 

Science and Technology Log

 

Although the scientists have not performed any fishing trawls since departing San Diego, there is a survey crew on board that has continuously been monitoring the water column for a variety of factors using acoustics and an instrument called a Conductivity/Temp/Depth (CTD) probe.

Last night I was able to observe the launch and retrieval of a small, handheld CTD probe.  It looks very much like a 2 ft torpedo. The electronics and sensors built into the probe measure such factors as salinity, sound speed, depth, and water temperature.  This smaller probe is launched off the tail of the boat and let out on a line of filament from a reel that appears very similar to a typical fishing reel.  It does not take more than a couple of minutes for the probe to sink to a depth of about 300 meters.  Data is collected from the probe at various depths on the way down.  Once the probe has reached its target depth, it is simple reeled back in using a winch to retrieve it.  This requires quite a bit of energy as the probe is deployed with enough line for it to end up about 3 miles behind the ship.  The data from this probe is then blue-toothed to the program used by those monitoring the water column acoustically.  It help the techs make corrections in their acoustical readings.

 

White_scientists deploying probe_R
Surveyor Jian Liu and scientist Juan Zwolinski deploy the smaller CTD probe off the stern of NOAA Ship Reuben Lasker

 

The Reuben Lasker also carries a larger version of the CTD probe with the additional capabilities such as water collection at various depths.  However, this version requires the ship to be stationary.  Taking measurements with the unit slows down the work of the day as each stop takes about 30 minutes from launch until retrieval.  The launch of the larger CTD can be seen below.

 

White_CTD probe in basket
CTD Probe in steel protected basket

 

The data from the CDT probe is recorded real-time on the survey team’s computers.  Below you can see how this data presents itself on their video screens.

 

On the left video display you can see that there are several variables that are plotted against a depth vs. temperature. The green line tracks fluorescence (a measure of the chlorophyll concentration); the light blue line tracks dissolved oxygen; the red line represents temperature; the blue line is for salinity.

 

Extension question for my students reading this:  What correlations or relationships do you see happening as you observe the change in variables relative to changes in depth?

 

White_Lasker route
Route of NOAA Ship Reuben Lasker

Here is the route taken by the Reuben Lasker during the past 24 hours or so.  As you can see from the chart, the ship has now reached the northern-most end of Vancouver Island.  This is where the CDT recordings, marine mammal watching, deployment of two sets of plankton nets (to be explained later) and fish trawling will begin along the predetermined transect lines.

Note at the base of the screen the other parameters that are continuously recorded as the ship moves from place to place.

 

 

Personal Log

The action on-board is increasing dramatically today.  We have arrived at our outermost destination today, along the northernmost coast of Vancouver Island.  The sights from the bridge are amazing…all this blue water and rugged, pine covered coastline.  I am still waiting for that orca whale sighting!

The waves are up today but I’m holding my own.  Yeay!  Especially as the night fishing will begin in a few hours.

Unique activity of the day – I just finished a load of laundry!  The ship possesses 3 small washer/dryer units so we can redo our towels and whatever else we have used up during the course of this first week.  How serviceable can you get! I’ll retrieve mine as soon as dinner is over.  We have set meal hours and if you miss…it’s leftovers for you!  Best part of this is I am actually ready to eat a normal meal, even with the ship rocking the way it is today.

I have now been assigned deck boots and a heavy duty set of rain gear to cover up with when the fish sorting begins.  I can’t wait to see what all we pull up from these nutrient rich waters!

 

Did You Know?

Much of the data collected by the CTD and acoustic equipment from the Reuben Lasker is entered into a large data set managed by CalCOFI (California Cooperative Oceanic Fisheries Investigation).  Anyone interested in utilizing and analyzing this data can access it via the organization’s website located here.  There is an incredible amount of information regarding the work and research completed by this group found on this site. Check it out!

Melissa Barker: Going Fishing, June 25, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 25, 2017

Weather Data from the Bridge

Latitude: 28 30.0 N

Longitude: 94 00.4 W

Air temp: 26.7 C

Water temp: 28.8 C

Wind direction: 130 degrees

Wind speed: 14 knots

Sky: rain squall

Science and Technology Log

We left port Friday evening and by 10:00pm we were fishing. We move from stations to station, often in a zig zag pattern to retrieve our samples. As I mentioned in a previous blog, the stations we will visit are randomly generated for us. I will use this post to give you an idea of what we do at each station.

P1020827
CTD instrument ready for deployment

As we come upon a station, we first deploy a scientific instrument called the CTD, which stands for conductivity, temperature, and depth which it measures. Additionally, this instrument measures dissolved oxygen. During day light hours, we also take additional environmental data including water color, percent cloud cover and wave height. At least once per day, we take a water sample which will be titrated using the Winkler method to double check our dissolved oxygen readings. The CTD is first calibrated at the surface for three minutes, then lowered to approximately two meters above the bottom, with a maximum depth of 200 meters. Teamwork is critical here as the officers in the bridge announce that we have arrived at a station. The Science Field Party Chief (FPC), Andre, tells the fisherman the depth and watches the data come into a computer in the dry lab near the stern. They are all in radio communication to make sure everything goes smoothly.

P1020924
Trawl headed into the water

Then the fishermen prepare to deploy a 40-foot trawl within a 2.5 mile radius of the station coordinates. Again, with communication from the fisherman, bridge and the FPC, the trawl is lowered into the ocean and moves along the bottom collecting organisms for exactly 30 minutes after which the trawl is raised and the net is brought onto the boat. The organisms caught in the net are then released into baskets,which are weighed on deck to get a total mass for the catch.

 

 

Then the fun begins! The full catch is poured out into the trough or if big enough, brought in via a conveyor belt. If the catch is 24 kg or under, we will log the entire catch.

P1020854
Catch poured out into the trough

If it is over 24 kg, then we will split the catch and log a representative sample. When splitting the catch, we first place all the organisms in the trough and roughly divide the catch in half. Before we send the half that we will not log back to the ocean, we must pull out commercial species, such as shrimp and snapper, and any individual species not found in the half we will log. Then we take the half of the catch that we will log and start the sorting.

P1020860
Splitting the catch

We sort all organisms that are the same species into one basket, then count and take a total mass for each species group. You can see images below of a sorted catch.

IMG_3163
Sorted fish

For most species, we will sample up to 20 random individuals. We record length for all 20 and then take a mass and sex every fifth organism. Logging is a bit different for shrimp, we will record length, mass and sex for all organisms up to 200 individuals. We will do the same for any other commercial species.

P1020945
Measuring a fish with the Limnoterra board

We use a Limnoterra measuring board with a magnetic wand which gives an accurate length by connecting to a magnetic strip on the board. This tool saves a lot of time and allow us to get accurate measurements.

In future posts, I’ll talk more about what we are finding and learning from our data.

P1020864
Trying to sex a fish which can be sometimes be challenging

Personal Log

I am starting to find my sea legs. The seas were a bit rough as we left port after the storm. It was touch and go for the first 24-36 hours, but with the help of Meclizine (a motion sickness medication) and sea bands (wrist bands that push on a pressure point in your wrist) I am now feeling pretty good. I’m also getting used to the constant movement of the Oregon II which makes everyday activities like walking, showering and sleeping quite interesting. When I lay down in bed and close my eyes, I can feel the troughs of the waves push me down into my mattress and then I spring up at the tops of the waves. It is very relaxing and helps lull me to sleep. When showering, I frequently need to hold on so as to not fall over. As some of you know, I have a habit of moving pretty fast around school. Often in a rush to check items off my to-do list or get to my classes. On the boat, we need to move slowly due to the constant motion. You also never know when someone is going to open a door into the hallway or come around the corner. There is not much space, so you must move slowly and cautiously.

P1020910
Day shift crew from left to right: David, Tyler, Field Party Chief Andre, Sarah and Melissa

I am also getting use to the fish smell in the wet lab where I spend most of time when working. I’m on the day shift, which runs from noon to midnight. I’ve tried to soak up as much information as I can over the last couple days and have really enjoyed the learning. The hardest part for me is trying to learn scientific names for the 30-40 species we find in each catch. The Latin names go in one ear and out the other. Having never worked with fish, this part pretty challenging, but luckily Andre is very patient and always willing to answer my questions. My day-shift teammates, Tyler, David and Sarah, are terrific, keep the atmosphere fun and teach me each day. It has been really interesting to see the increase and decrease of certain species from different stations.

P1020865
Melissa and Tyler measuring fish in the wet lab

Did You Know?

The Texas shrimp fishery closed on May 15, 2017 and will re-open on a yet to be determined date in July. This is what is referred to as the “Texas Closure”. The shrimp data that we are collecting will be sent to the state to help them determine the health of the fishery and when to open it back up. According to the Coastal Fisheries Division of the Texas Parks and Wildlife Department (TPWD), “The closure is designed to allow escapement of shrimp out to the gulf where they can grow to a larger, more valuable size before they are vulnerable to harvest. The goal is to provide shrimp of a size that are more valuable for the shrimping industry while ensuring sustainable stocks in the future.”

P1020883
A large Brown Shrimp: Penaeus aztecus

 

Dawson Sixth Grade Queries

How many different species did you find? (Owen, Sylvia, Tyler, Maylei, Ben)

The number of species we find varies with each trawl, but recently we have been finding about 35-40 species per trawl. The picture below show the diversity a typical catch.

 What organisms other than fish did you find? (Badri, Tyler, Alexa, Lorena, Wanda)

We find many other species besides fish. Some of the more common groups of organisms we find are squid, jelly fish, shrimp, sea stars, scallops, crabs, and vacated shells. Occasionally we catch a small shark or sting ray.

P1020954
Example catch diversity

Marsha Lenz: The Octopus and the CTD, June 21, 2017

 

NOAA Teacher at Sea

Marsha Lenz

Aboard Oscar Dyson

June 8-28, 2017

 

Mission: MACE Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 21, 2017

 

Weather Data from the Bridge

Latitude: 54 38.9 N

Longitude: 161 39.2 W

Time: 0800

Visibility: 10 Nautical Miles

Wind Direction: 185

Wind Speed: 9 Knots

Sea Wave Height: 3-4 foot swell

Barometric Pressure: 1003.4 Millibars

Sea Water Temperature: 7.4°C

Air Temperature: 7.0°C

Science and Technology Log

Every morning when I come to start my shift, the scientists on the previous shift are in the middle of doing “DropCam’s.”   The DropCam is a camera that drops down to the ocean floor and takes pictures of what is going on down there. We have been getting some amazing pictures from the DropCam. The camera goes down about 150 meters (depending on the depth of the ocean floor). Sometimes, the ocean is very sandy and has very little (that we can see) activity going on. Other times, the video feed is full of fish and other marine life. We have seen so much diversity on the ocean floor.

This slideshow requires JavaScript.

Since being on the Oscar Dyson, we now have seen two octopuses on the boat (well, one was on the DropCam); one was in the juvenile stage and one in the adult stage of life. I’d like to take a moment to talk about how amazing an octopus is. First of all, let’s talk about how they can change color to match their surroundings. They use special pigment cells in their skin to change colors. They have the ability to even blend into patterned rocks and corrals. When we caught the baby octopus, we saw it change its color to white to blend into the white cup we were holding it in.

Screen Shot 2017-06-21 at 2.48.10 PM
An octopus can fit through spaces as small as the size of its beak (photo credit: factsandideas.com).

They are considered to be very intelligent animals. They have been known to be able to open jars, escape from enclosures, solve mazes, and squirt water at targets. They have the ability to squeeze through things that are as small as the size of their beaks. In aquariums, they have also been known to mimic (and actually learn from) other octopuses.

Even though they can get up to be 16 feet long and weigh up to 110 pounds, they only live to be about 4 years old. That is a very short lifespan. After the females lay their eggs (they lay about 100,00 eggs), they brood over them for many months. During this time, they often do not eat. She protects her eggs for 6-7 months, and then she dies shortly after they are born.

When they are looking over their eggs they do eat, they primarily eat shrimp, fish, clams, and lobsters. They have a beak-like mouth that they can use to puncture and tear fish. They have also been known to eat sharks and birds. During the first 3 months of their lives, they eat plankton. Plankton are small and microscopic organisms that drift or float in the sea. They consist of diatoms, protozoans, small crustaceans, and the eggs and larval stages of larger animals.

The CTD

After the last DropCam is retrieved, a CTD (Conductivity-Temperature-Depth) is usually deployed, which collects data from various depths of the oceans. The primary function of the CTD is to measure the conductivity and temperature of the water column at various depths. Conductivity is related to the salinity, or saltiness, of the water. Studying the salinity of the water is a very critical part of studying the ocean, which is made up of salt water. The conductivity, along the temperature and depth, provide scientists with profiles of various parts of the ocean.

This slideshow requires JavaScript.

The CTD is attached to a larger frame called a rosette.   This holds various water-sampling bottles and other sensors that measure the physical and chemical properties of the water at various depths. With this information, scientists can make inferences about changes that they may be seeing in the data and this can give them a better understanding about the oceans.  The data collected daily from the CTD is analyzed by Pacific Marine Environmental Laboratory at the end of the survey.

Personal Log

Things on the boat are definitely becoming more routine. We continue to work in 12-hour shifts (mine starting at 4 am). The days consist of getting up, having coffee and a bagel, coming down to the Chem Lab to relieve the night shift, where we take over doing DropCams.  After our DropCams, we get to watch the sunrise or other spectacular views.

This slideshow requires JavaScript.

We then will go up for breakfast at 7. I have really been enjoying having someone else (Lenette and Kimrie) not only make meals for me every day, but also do my dishes. What a luxury! After breakfast, we’ll “go fishing” and suit up to analyze the catch. (I’ll go into details about in the next blog) and then we’ll go have lunch. After lunch, we brainstorm the plans for the afternoon and take care of small projects. Before we know it, 4 pm rolls around and the next crew starts their shift.

IMG_2373
Chief Scientist, Darin Jones, shows me how to conduct a trawl.

I make it to dinner at 5, and then I slowly make my way back to the stateroom.  If it is  nice out, I will go up to the bridge to look for marine animals or walk around looking at the amazing landscape.  I find myself extremely tired around 7 and get ready for bed.  I am usually asleep by 8. It’s “good night” and sweet dreams for me!

2017-06-20-PHOTO-00000007
Despite the occasional wind, the views are breathtaking.

Did You Know?

 The oldest octopus fossil is from an animal that lived 296 million years ago — millions of years before the dinosaurs lived.

Question for my class:

 What is the name of this weather instrument?

19251093_10211620451204938_1276981242_n

This year we learned about various tools to help measure weather. I saw this on the bridge of the ship. It measures the speed and direction of the wind. Do you remember what it is called?

 answer:  A  ___ ___  M  ___ ___  E  ___ ___  R                                                                                      

Interview with Darin Jones

IMG_2395
Darin analyzes backscatter from a recent transect.

What role do you play on this survey?

I am the Field Party Chief which means that I am the member of the science party that is responsible for making sure as much of our original objective gets completed as possible and I also serve as the main contact between the officers that operate the ship and the science party when important decisions or changes in the plan occur.

What inspired you to pursue this as a career?

I was a contract observer for the National Marine Fisheries Service following college and dreamed about one day working directly for them.  I thought that would be an awesome career and I feel lucky to have had my dreams realized.

How long have you been working in this field?

I have been in my current position for 10 years but have been in the marine biology field for the last 25 years.

What sort of training/education did you receive?

I got my Undergraduate degree in Marine Biology and a Masters of Science in Fisheries Resources.  I was also an observer aboard commercial fishing vessels for 5 years which provided invaluable sea going experience and knowledge.

Are fisheries something that more people need to know about? Why?

I think fisheries and the health of the oceans is something that people should know more about because they are vital to life on land and important indicators of the status and health of our climate and planet. The oceans are the heart of the earth and drive many other processes.

 

What interests you most about the data collected on this survey?

The data that we collect is directly used to sustainably manage the pollock fishery so I am proud to contribute to that.  It’s neat to be able to track a fish population as it grows through the years and watch how many survive from one year to the next. We are also collecting interesting data on the percentage of certain rockfish species in different types of habitat that can be used to help determine the abundance of those species.

What is the most challenging part of your job?  The most rewarding?

The most challenging part of my job is being away from my family for long periods of time. Another challenging aspect is the time management of planning and executing the survey objectives in a finite amount of time. Plans have to be constantly monitored and adjusted depending on weather, equipment malfunction, and other unexpected circumstances. The most rewarding part of my job is knowing that I am contributing to the scientific knowledge that is helping to sustainably manage fisheries.

What words of advice do you have for my students if they want to pursue a career is biology or the sciences?

Math skills are a very important part of biology and the sciences so learn as much as you can.  Also getting experiences in fields that you are interested in is very important so volunteer with organizations that interest you and unexpected opportunities will open up.

 

 What is your favorite marine animal?

I think my favorite marine animal is the Pacific viperfish.  It is a creature from the deep and has very long teeth and looks very ferocious, however they only grow to a maximum of about a foot long, but I’ve only seen specimens that were about 2 inches long. It amazes me how creatures can survive in the dark depths and immense pressures of the deep ocean.

Screen Shot 2017-06-22 at 6.16.33 AM
The Pacific viperfish can be found 200-5,000 feet below the ocean surface. (photo credit: Earthguide & Scripps Institution of Oceanography)

Do you have anything else that you would like to add or share?

Do your homework and get all the extra credit that you can, kid!

 

 

Sam Northern: Catching Plankton and Catching On, June 3, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: June 3, 2017

Weather Data from the Bridge:

Latitude: 42°29.9’N

Longitude: -67°44.8’W

Sky: Scattered Clouds

Visibility: 12 Nautical Miles

Wind Direction: 270°W

Wind Speed: 8 Knots

Sea Wave Height: 2-3 Feet

Swell Wave: 1-3 Feet

Barometric Pressure: 1009.5 Millibars

Sea Water Temperature: 10.2°C

Air Temperature: 11°C

Science and Technology Log

Plankton Samples

IMG_8984
Here I am with a canister of plankton we collected from the bongo nets.

You may have begun to notice that there are several methods of sampling plankton. Each technique is used several times a day at the sampling stations. The baby bongo nets collect the same type plankton as the large bongos. The primary difference is that the samples from the baby bongos are preserved in ethanol, rather than formalin. Chief Scientist, David Richardson explained that ethanol is being used more and more as a preservative because the solution allows scientists to test specimens’ genetics. Studying the genetics of plankton samples gives researchers a greater understanding of the ocean’s biodiversity. Genetics seeks to understand the process of trait inheritance from parents to offspring, including the molecular structure and function of genes, gene behavior in the context of a cell or organism, gene distribution, and variation and change in populations.

IMG_8833
Jars and jars of plankton samples ready to be studied.

The big bongos use formalin to preserve plankton samples. Formalin has been used by scientists for decades, mainly because the preservative makes it easier for labs to study the samples. Today’s scientists continue to use formalin because it lets them compare their most recent sampling data to that from years ago. This presents a clearer picture of how marine environments have or have not changed.

IMG_8861.JPGEvery so often, we use smaller mesh nets for the baby bongos which can catch the smallest of zooplanktons. The specimens from these special bongo nets are sent to CMarZ which stands for Census of Marine Zooplankton. CMarZ are scientists and students interested in zooplankton from around the world who are working toward a taxonomically comprehensive assessment of biodiversity of animal plankton throughout the world ocean. CMarZ samples are also preserved in ethanol. The goal of this organization is to produce a global assessment of marine zooplankton biodiversity, including accurate and complete information on species diversity, biomass, biogeographical distribution, and genetic diversity. [Source — Census of Marine Zooplankton]. Their website is incredible! They have images galleries of living plankton and new species that have been discovered by CMarZ scientists.

Another interesting project that Chief Scientist, David Richardson shared with me is the Census of Marine Life. The Census of Marine Life was a 10-year international effort that assessed the diversity (how many different kinds), distribution (where they live), and abundance (how many) of marine life—a task never before attempted on this scale. During their 10 years of discovery, Census scientists found and formally described more than 1,200 new marine species. [Source —Census of Marine Life] The census has a webpage devoted to resources for educators and the public. Contents include: videos and images galleries, maps and visualizations, a global marine life database, and links to many other resources.

IMG_8940
Plankton samples are preserved in jars with water and formalin.

It is incredibly important that we have institutes like CMarZ, the Census of Marin Life, and the Sea Fisheries Institute in Poland where samples from our EcoMon Survey are sent. Most plankton are so small that you see them best through a microscope. At the lab in Poland, scientists remove the fish and eggs from all samples, as well as select invertebrates. These specimens are sent back to U.S. where the data is entered into models. The information is used to help form fishing regulations. This division of NOAA is called the National Marine Fisheries Service, or NOAA Fisheries. NOAA Fisheries is responsible for the stewardship of the nation’s ocean resources and their habitat. The organization provide vital services for the nation: productive and sustainable fisheries, safe sources of seafood, the recovery and conservation of protected resources, and healthy ecosystems—all backed by sound science and an ecosystem-based approach to management. [Source —NOAA Fisheries]

Vertical CTD Cast

In addition to collecting plankton samples, we periodically conduct vertical CTD casts. This is a standard oceanographic sampling technique that tells scientists about dissolved inorganic carbon, ocean water nutrients, the levels of chlorophyll, and other biological and chemical parameters.

IMG_8731
The CTD’s Niskin bottles trap water at different depths in the ocean for a wide-range of data.

The instrument is a cluster of sensors which measure conductivity, temperature, and pressure. Depth measurements are derived from measurement of hydrostatic pressure, and salinity is measured from electrical conductivity. Sensors are arranged inside a metal or resin housing, the material used for the housing determining the depth to which the CTD can be lowered. From the information gathered during CTD casts, researchers can investigate how factors of the ocean are related as well as the variation of organisms that live in the ocean.

Here’s how a vertical CTD cast works. First, the scientists select a location of interest (one of the stations for the leg of the survey). The ship travels to that position and stays as close to the same spot as possible depending on the weather as the CTD rosette is lowered through the water, usually to within a few meters of the bottom, then raised back to the ship. By lowering the CTD close to the bottom, then moving the ship while cycling the package up and down only through the bottom few hundred meters, a far greater density of data can be obtained. This technique was dubbed a CTD cast and has proven to be an efficient and effective method for mapping and sampling hydrothermal plumes. [Source —NOAA]

IMG_8741
Survey Tech, LeAnn Conlon helps recover the CTD.

During the vertical CTD cast, I am in charge of collecting water samples from specified Niskin bottles on the rosette. The Niskin bottles collected water at different levels: surface water, maximum depth, and the chlorophyll maximum where the greatest amount of plankton are usually found. I take the collected seawater to the lab where a mechanism filters the water, leaving only the remainder plankton. The plankton from the water contains chlorophyll which a lab back on land tests to determine the amount of chlorophyll at different water depths. This gives researchers insight about the marine environment in certain geographic locations at certain times of the year.

Meet the Science Party

Meet Chief Scientist, David Richardson!

IMG_8520
David Richardson planning our cruise with Operations Officer, Libby Mackie.

What is your position on NOAA Ship Gordon GunterI am the Chief Scientist for this 10 day cruise.  A large part of the Chief Scientist’s role is to prioritize the research that will happen on a cruise within the designated time period.  Adverse weather, mechanical difficulties, and many other factors can alter the original plans for a cruise requiring that decisions be made about what can be accomplished and what is a lower priority.  One part of doing this effectively is to ensure that there is good communication among the different people working on the ship.

What is your educational/working background? I went to college at Cornell University with a major in Natural Resources.  After that I had a number of different jobs before enrolling in Graduate School at the University of Miami. For my graduate research I focused on the spawning environment of sailfish and marlin in the Straits of Florida.  I then came up to Rhode Island in 2008, and for the last 10 years have been working as a Fisheries Biologist at the National Marine Fisheries Service.

What is the general purpose of the EcoMon Survey? The goal of the Ecosystem Monitoring (EcoMon) surveys is to collect oceanographic measurements and information on the distribution and abundance of lower trophic level species including zooplankton.  The collections also include fish eggs and larvae which can be used to evaluate where and when fish are spawning.  Over the years additional measurements and collections have been included on the EcoMon surveys to more fully utilize ship time. Seabirds and Marine Mammals are being identified and counted on our ship transits, phytoplankton is also being imaged during the cruise.  Finally, the EcoMon cruises serve as a means to monitor ocean acidification off the northeast United States.

What do you enjoy most about your work? I really enjoy pursuing scientific studies in which I can integrate field work, lab work and analytical work.  As I have progressed in my career the balance of the work I do has shifted much more towards computer driven analysis and writing.  These days, I really enjoy time spent in the lab or the field.

What is most challenging about your job? I imagine the challenge I face is the similar to what many scientists face.  There are many possible scientific studies we can do in our region that affect the scientific advise used to manage fisheries.  The challenge is prioritizing and making time for those studies that are most important, while deprioritizing some personally interesting work that may be less critical.

When did you know you wanted to pursue a career in science? By the end of high school I was pretty certain that I wanted to pursue a career in science.  Early in college I settled on the idea of pursuing marine science and ecology, but it was not until the end of college that I decided I wanted to focus my work on issues related to fish and fisheries.

What is your favorite marine animal? Sailfish, which I did much of my graduate work on, remains one of my favorite marine animals.  I have worked on them at all life stages from capturing the early life stages smaller than an inch to tagging the adults. They are really fascinating and beautiful animals to see.  However, now that I live in Rhode Island I have little opportunity to work on sailfish which tend to occupy more southern waters. 

In terms of local animals, one of my favorites is sand lance which can be found very near to shore throughout New England.  These small fish are a critical part of the food web, and also have a really unique behavior of burying in the sand when disturbed, or even for extended periods over the course of the year.  In many respects sand lance have received far less scientific attention than they deserve in our region.

Meet CTD Specialist, Tamara Holzwarth-Davis!