Cara Nelson, The Gales of September, September 12, 2019

NOAA Teacher at Sea

Cara Nelson

Aboard USFWS R/V Tiglax

September 11-25, 2019


Mission: Northern Gulf of Alaska Long-Term Ecological Research project

Geographic Area of Cruise: Northern Gulf of Alaska – currently sampling in Prince William Sound

Date: September 12, 2019

Weather Data from the Bridge:

Time: 0830
Latitude: 60º16.073’ N
Longitude: 147º59.608’W
Wind: East, 10 knots – building to 30
Air Temperature: 13ºC (55ºF)
Air Pressure: 1003 millibars
Cloudy, light drizzle

Science and Technology Log

There is a tool for every job and the same holds true for sampling plankton and water in the Northern Gulf of Alaska (NGA).  As we sorted, shuffled and assembled equipment yesterday, what struck me the most was the variety of nets and other equipment needed for the different science research being performed as part of the LTER program. 

There are a variety of research disciplines comprising the LTER scientific team aboard the R/V Tiglax, each with their own equipment and need for laboratory space. These disciplines include physical oceanography, biological (phytoplankton and zooplankton), and chemical oceanography along with marine birds and mammal.  Their equipment has been transported from University of Alaska Fairbanks, as well as Western Washington University to the remote town of Seward AK and subsequently transferred to the ship before it could be either set up or stored away in the hold for later use.  Logistics is an important part of any research mission.

Immediately, it was obvious that some of the primary equipment on the ship, used for almost all the water sampling and plankton tows, require frequent maintenance in order to maintain function.  The winch for instance needed rewiring at port before we could depart. Winch runs the smart wire cable that allows the scientists to talk real time to the equipment (e.g., CTD and MultiNet).

v
The deck full of boxes being unpacked and stored away, as well as the winch pulled apart for rewiring

One of the most complex pieces of equipment and the workhorse of all oceanographic cruises, the CTD, takes a good deal of time to set up as well properly interface with the computers in the lab for real-time data communication.  A CTD, which stands for conductivity, temperature and depth, is a piece of equipment that accurately measures the salinity and water temperature at different depths.  The CTD is actually only a small portion of the device shown below.

CTD prep
The CTD is being put together and wired before departure.
CTD output
Temperature (blue line) salinity (red line) and fluorescence (chlorophyll) are transmitted and graphed on the computer as the CTD is lowered and raised.


The main gray bottles visible in a ring around the top are called Niskin bottles. These bottles are used to collect water samples and can be fired from the lab computer to close and seal water in at the desired depth.  These water samples are used by the team to examine both chlorophyll (abundance of phytoplankton) as well as nutrients.  As a side note, if these bottles are not reopened when the CTD is sent back down the pressure can cause the bottles to implode.  Two bottles were lost this way at our second station this morning, luckily spares were available onboard!

One bottle shattered from the pressure (on the right) and in the process, broke the neighboring bottle.

On the bottom of the CTD, there are several important sensors.  One is for nitrates and another for dissolved oxygen.  Additionally, there is a laser that detects particle size in the water, aiding in identifying plankton.  Much of this data is being fed to the computers but will not be analyzed until the scientists return the lab at the end of the cruise. 

A big decision had to be made before departing Seward late in the evening on the 11th.  A gale warning is in effect for the NGA with 30+ knot winds and high seas.  After several meetings between the chief scientists and the captain, it was determined to forego the typical sampling along GAK1 and the Seward line and head immediately to Prince William Sound (PWS) to escape the brunt of the storm. 

After getting underway late in the evening on Wednesday, the 11th, we stopped at a station called Res 2.5 in Resurrection Bay.  This station is used to test the CTD before heading out.  Just as with any complicated equipment it takes time to work out the glitches.  For example, it is imperative to have the CTD lower and raise at a particular rate of speed for consistent results and speed and depth sensor were not initially reading correctly.  Additionally, the winch continued to give a little trouble until all the kinks were worked out close to midnight. With a night focused on transiting to PWS, sampling was put on hold until this morning.


Personal Log

There are three F’s to remember when working aboard a NOAA research vessel: Flexibility, Fortitude and Following orders.  Flexibility was the word for everyone to focus on the first day.  I was immediately impressed with how everyone was able to adjust schedules based on equipment issues, coordination with other researchers on equipment loading and storage and most of all the weather.

Yesterday, there was help needed everywhere, so I was able to lend a hand with the moving and sorting and eventually assembly of some of our equipment.  The weather was beautiful in Seward as we worked in the sunshine on the deck, knowing that a gale was brewing and would follow us on our exit from Resurrection Bay.  Helping put together the variety of nets we are going to be able to use during our night shift, gave me time to ask our team a lot of questions.  I am amazed at how open and willing the entire team is to teach me every step of the way.  I am feverishly taking notes and pictures to take it all in.

Orientation and safety are also a big part of the first day on a new ship.  Dan, the first mate, gave us a rundown of the rules and regulations for R/V Tiglax along with a tour of the ship.  We ended on the deck with a practice drill and getting into our survival suits in case of a ship evacuation. 

survival suit practice
The new crew practices with their survival suits: Emily, Jake, Kira and Cara
Cara in survival suit
Although it has been a few years, I was able to don my survival suit pretty quickly.

Adjusting to a night time schedule will be one of my greatest challenges.  Usually we work the first night but we had a break due to the weather so we were able to put off our first nighttime sampling until Thursday night.  Everyone on the night crew has a different technique to adjust their body clock.  My plan was to stay up as late as possible and then rise early.  Last night however, between the ship noise and the rocking back & forth in the high seas during our transit from Seward to Knight Island passage, I did not sleep well.  Hopefully this will inspire a nap so I can wake refreshed for our first night shift. 

When I awoke this morning at 06:00, we had entered the sheltered waters of Knight Island passage. with calm seas and a light drizzle, ready to start a full day of collection.  I was able to watch the first plankton tows with the CalVet for the daytime zooplankton team with Kira Monell and Russ Hopcroft. Additionally, I made my rounds up to the fly bridge where Dan Cushing monitors for seabirds and mammals while we are underway.  I will share details of these experiences in the coming days.

For now, it is time for lunch and my power nap.


Did You Know:

There are a wide variety of plankton sampling nets each with a unique design to capture the desired type and size of plankton.  To name a few we will be using: Bongo nets, Mutlinets (for vertical and horizontal towing), Methot trawl nets, and CalVet nets.  As I get to assist with each one of these nets, I will highlight them in my blog to give you a better idea what they look like and how they work.

Ragupathy Kannan: Ocean Salinity to Ocean Sunfish, August 26, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast U.S. Atlantic Ocean

Date: August 26, 2019

Weather Data from the Bridge

Latitude: 41.27688
Longitude: -67.03071
Water temperature: 18.4°C
Wind Speed: 14.8 knots
Wind Direction: 41°
Air temperature: 18.6°C
Atmospheric pressure: 1021 millibars
Sky: Cloudy


Science and Technology Log

We entered Canadian waters up north in the Gulf of Maine, and sure enough, the waters are cooler, the sea choppier, and the wind gustier than before.  And the organisms are beginning to show a difference too.  Our Chief Scientist Harvey Walsh showed me a much longer arrow worm (Chaetognatha) from the plankton samples than we had encountered before (see photo below).  And there are more krill (small planktonic crustaceans) now. 

arrow worm
We got this beautiful arrow worm in our plankton sample as we entered colder waters

So far in my blogs, I have focused on sampling of biological organisms like plankton.  But recall that in an ecosystem monitoring survey like ours, we need to measure the abiotic (non-biological) aspects too because the word Ecosystem covers a community of organisms along with their biotic and abiotic environment. 

In today’s blog, I will highlight the ways various important abiotic components are measured.  You will learn about the interdisciplinary nature of science.  (Feel free to pass this blog on to physics, chemistry, and engineering majors you know—it may open up some career paths they may not have explored!).  I will come back to biotic factors in my next blog (seabirds and marine mammals!).

CTD

The CTD is a device that measures Conductivity, Temperature, and Depth.  We lower a heavy contraption called a Rosette (named due to its shape, see photo below) into the water. It has bottles called Niskin bottles that can be activated from a computer to open at specific depths and collect water samples.  Water samples are collected from various depths.  Electrical conductivity measurements give an idea of salinity in the water, and that in turn with water temperature determines water density.  The density of water has important implications for ocean circulation and therefore global climate.  In addition, dissolved inorganic carbon (DIC) is also measured in labs later to give an idea of acidity across the depths.  The increased CO2 in the air in recent decades has in turn increased the ocean’s acidity to the point that many shelled organisms are not able to make healthy shells anymore.  (CO2 dissolves in water to form carbonic acid).  Addressing the issue of increasing ocean acidity and the resulting mass extinction of shell-building organisms has become a pressing subject of study.  See the photos below of CTD being deployed and the real-time data on salinity and temperature transmitted by the CTD during my voyage.

lowering the CTD
I assist lowering the CTD Rosette into the water. The gray cylinders are Niskin bottles that can be activated to open at various depths.
CTD data
This display shows the real time data from each scan the CTD sends back to the computer. The y-axis is depth in meters, with sea surface at the top. The instrument was sent down to 500 meters deep. The green lines show fluorescence, an estimate of phytoplankton production. Note that the phytoplankton are at the photic (top) zone where more light penetrates. The blue line shows water temperature in degrees Celsius and the red line shows salinity. (Photo courtesy: Harvey Walsh)

EK-80

The ship is equipped with a highly sensitive sonar device called EK-80 that was designed to detect schools of fish in the water. (See photo of it attached to the hull of our ship, below).  It works by sending sound waves into the water.  They bounce off objects and return.  The device detects these echos and generates an image.  It also reflects off the sea bottom, thus giving the depth of the water.  See below an impressive image generated by our EK-80, provided kindly to me by our amicable Electronics Technician, Stephen.

EK-80 display
A remarkable screen shot of the EK-80 display of our ship passing over the Chesapeake Bay Bridge Tunnel as we headed out to sea from Norfolk, Virginia. To the left is a huge mound of dirt/rock, and just to the right of the mound, is a ravine and the tunnel (has a small peak and spikes). To the right (seaward side of the tunnel) you can see dredge material falling from the surface. We observed the sand and silt on the surface as we were passing through it. (Courtesy Stephen G. Allen).

The Acoustic Doppler Current Profiler (ADCP)

Scientists use this instrument to measure how fast water is moving across an entire water column. An ADCP is attached to the bottom of our ship (see photo below) to take constant current measurements as we move.  How does it work? The ADCP measures water currents with sound, using a principle of sound waves called the Doppler effect.  A sound wave has a higher frequency as it approaches you than when it moves away. You hear the Doppler effect in action when a car speeds past with a building of sound that fades when the car passes. The ADCP works by transmitting “pings” of sound at a constant frequency into the water. (The pings are inaudible to humans and marine mammals.) As the sound waves travel, they bounce off particles suspended in the moving water, and reflect back to the instrument. Due to the Doppler effect, sound waves bounced back from a particle moving away from the profiler have a slightly lowered frequency when they return. Particles moving toward the instrument send back higher frequency waves. The difference in frequency between the waves the profiler sends out and the waves it receives is called the Doppler shift. The instrument uses this shift to calculate how fast the particle and the water around it are moving. (From whoi.edu)

The University of Hawaii monitors ocean currents data from ADCPs mounted in various NOAA ships to understand global current patterns and their changes. 

hull of NOAA Ship Gordon Gunter
The hull (bottom surface) of the ship showing the EK-80 and ADCP systems, among other sensors. Photo taken at the ship yard. (Courtesy: Stephen G. Allen)

Hyperpro

Hyperpro is short for Hyperspectral profiler, a device that ground truths what satellites in outer space are detecting in terms of light reflectivity from the ocean.  What reflects from the water indicates what’s in the water.  Human eyes see blue waters when there isn’t much colloidal (particulate) suspensions, green when there is algae, and brown when there is dirt suspended in the water.  But a hyperpro detects a lot more light wavelengths than the human eye can.  It also compares data from satellites with what’s locally measured while actually in the water, and therefore helps scientists calibrate the satellite data for accuracy and reliability.  After all, satellites process light that has traversed through layers of atmosphere in addition to the ocean, whereas the hyperpro is actually there. 

deploying hyperpro
A Hyperpro being deployed

Career Corner

Three enterprising undergraduate volunteers.

Volunteers get free room and board in the ship in addition to invaluable, potentially career–making experience.

undergraduate volunteers
David Caron (far side), Jessica Lindsay, and Jonathan Maurer having some much-needed down time on the flying bridge

David Bianco-Caron is doing his B.A. in Marine Science from Boston University (BU).  His undergraduate research project at the Finnerty Lab in BU involves a comb-jelly (Ctenophore) native to the West Atlantic but which has become an introduced exotic in the East Atlantic.  David studies a cnidarian parasite of the comb-jelly in an attempt to outline factors that could limit the comb-jelly.  The project has implications in possible biological control. 

Jessica Lindsay finishes a B.S. in Marine Biology later this year and plans to get her Small Vessels operating license next year.  This is her 2nd year volunteering in a NOAA ship.  She received a NOAA Hollings Scholarship which provides up to $9500 for two years (https://www.noaa.gov/office-education/hollings-scholarship).  It entailed 10 weeks of summer research in a lab.  She studies how ocean acidification affects shelf clams. 

Jonathan Maurer is a University of Maine senior working on a B.S. in Climate Science.  He studies stable isotopes of oxygen in ocean waters to understand ocean circulation.  The project has implications on how oceanic upwelling has been affected by climate change.  He intends to go to graduate school to study glaciers and ocean atmosphere interactions. 

See my previous blog for information on how to become a volunteer aboard a NOAA research ship.

I also had the pleasure of interviewing our Executive Officer (XO), LCDR Claire Surrey-Marsden.  Claire’s smiling face and friendly personality lights up the ship every day. 

XO Claire Surrey-Marsden
Our Executive Officer (XO), LCDR Claire Surrey-Marsden

Claire is a Lieutenant Commander in the NOAA Corps:

The NOAA Commissioned Officer Corps is made up of 321 professionals trained in engineering, earth sciences, oceanography, meteorology, fisheries science, and other related disciplines. Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA. Learn more: https://www.omao.noaa.gov/learn/noaa-commissioned-officer-corps

Q. Thanks for your time, Claire. You’re the XO of this ship.  What exactly is your role?

A. The Executive Officer is basically the administrator on board.  We help with staffing, we manage all the crew, we have a million dollar budget for this ship every year that we have to manage.  Everything from food to charts to publications, all these get managed by one central budget. I’m kind of the paper work person on board.

Q. What’s your background?

A. I have a marine biology degree from Florida Tech. I’ve done marine mammal work most of my career. I joined NOAA in 2007, before that I was a biologist for Florida Fish and Wildlife [FFW].

Q. I heard you have done necropsies of marine mammals?

A. I was a manatee biologist for FFW for 3 years, we also dealt with lots of whales and dolphins that washed up on shore. I’ve also done marine mammal work in my NOAA career.  Worked with Southwest Fisheries Science Center on Grey Whales and dolphins, and worked with Right Whale management with the maritime industry and the coast guard.

Q. About a 100 college students, maybe even more are following my blog now.  What’s your advice to them, for someone interested in marine biology/NOAA Corps, what should they be doing at this stage?

A. Great question. Volunteer! Find all the opportunities you can to volunteer, even if it’s unpaid.  Getting your face out there, letting people see how good a worker you are, how interested and willing you are, sometimes you will be there right when there is a job opening. Even if it seems like a menial task, just volunteer, get that experience. 

Q. NOAA accepts volunteers for ships every summer?

A. Yes, ecomonitoring and other programs takes students out for 2-3 weeks, but there are other opportunities like the local zoo.  Even stuff that isn’t related to what you’re doing. Getting that work experience is crucial.

Q. What’s the most challenging part of your job as an XO in a ship like this?

A. Living on a small boat in the middle of the ocean can be challenging for people working together harmoniously.  Just making sure everyone is happy and content and getting fulfillment for their job.

At the end of the interview, Claire handed me a stack of brochures describing the NOAA Corps and how you can become part of it. Please stop by my office (Math-Science 222) for a copy.

Personal Log

The seas have become decidedly choppier the past few days.  It’s a challenge to stay on your feet!  The decks lurch unexpectedly.  Things get tossed around if not properly anchored.  I have fallen just once (touchwood!) and was lucky to get away with just a scratch.  I’ve had to take photo backups of my precious field notes lest they get blown away.  They came close to that once already.

The ship has a mini library with a decent collection of novels and magazines plus a lounge (with the ubiquitous snacks!).  I found a copy of John Grisham’s The Whistler, and this has become my daily bed time reading book. 

The lounge and library on board
The lounge and library on board

Interesting animals seen lately

I started this blog with a photo of an exceptionally long arrow worm.  The cold waters have brought some other welcome creatures.  I created a virtual stampede yesterday in the flying bridge when I yelled Holy Mola!  Everyone made a mad dash to my side to look over the railings at a spectacular Ocean Sunfish (Mola mola) floating by.  The name Mola comes from the Latin word meaning millstone, owing to its resemblance to a large flat and round rock.  I have been looking for this animal for days!  Measuring up to 6 feet long and weighing between 250 and 1000 kg, this is the heaviest bony fish in the world.  The fish we saw was calmly floating flat on the surface, lazily waving a massive fin at us as though saying good bye.  It was obviously basking.  Since it is often infested with parasites like worms, basking helps it attract birds that prey on the worms.

mola mola
Ocean Sunfish Mola mola. We saw this behemoth lying on its side basking, waving its massive dorsal fin as though greeting us. They allow birds and other fish to pick their ectoparasites as they float (from baliscuba.com)

Another animal that almost always creates a stir is the dolphin.  Schools of dolphins (of up to 3 species) never cease to amuse us.  They show up unexpectedly and swim at top speed, arcing in and out of the water, often riding our bow.  Sometimes, flocks of shearwaters circling around a spot alert us to potential dolphin congregations.  Dolphins drive fish to the surface that are then preyed upon by these birds.  My colleague Allison Black captured this wonderful photo of Common Dolphins frolicking by our ship in perfect golden evening light.

common dolphins
Common Dolphins swimming by our ship (Photo by Allison Black)

Did You Know?

Molas (Ocean Sunfish) are among the most prolific vertebrates on earth, with females producing up to 300,000,000 eggs at a time (oceansunfish.org).

Parting shot

NOAA does multiple concurrent missions, some focused on fisheries, some on oceanography, and some hydrography.  It has a ship tracker that tracks all its ships around the world.  Our ET Stephen Allen kindly shared this image of our ship’s location (marked as GU) plus the locations of two other NOAA ships. 

location on shiptracker
Our exact location (GU) on 25 August 2019, captured by NOAA’s ship tracker (Courtesy Stephen G. Allen)

David Madden: Land Ho! Return Home, August 2, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15 – 29, 2019

Back on land, in Tallahassee, FL

Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

Weather report in Tallahassee
Conditions early on Friday morning, Tallahassee, FL

Date: August 2, 2019

sunset over aft deck
Sunset aboard Pisces on my last night.

Gratitude Log:

My time on NOAA Ship Pisces is complete. Huge thanks to the folks who made it possible. I am grateful for the grand opportunity and grateful to the many people who helped me along the way. Starting with Emily and Jennifer at NOAA Teacher at Sea. They made everything smooth and easy on my end. Special thanks for allowing me to participate in Teacher at Sea this year, considering I was originally assigned to go last year. I was unable to go last year because my Dad got diagnosed with cancer right before the trip, and I elected to stay home with him during surgery and treatment. Emily, and the NOAA scientists involved, Zeb and Nate, made this year’s trip preparation a breeze. Thank you. Additionally, my Dad is doing well (and even back on the golf course)!

Processing fish
Processing fish with Mike B (the elder) and Todd K. photo by Mike B (the younger)

In some sense I was the little brother tag along on this cruise. “Aww come on, can I play?” was basically what I was saying each day to the scientists and NOAA officers. They were happy to oblige. Thank you for being patient and supportive while I learned how to work on your team.

  1. Zeb, Todd K, Todd W, and Brad were particularly helpful and knowledgeable and patient – thanks, guys!  * Thanks, Brad, for your rocks of the day.  Our minds and our chakras benefited.
  2. Thanks to my roommate, Mike B – for being a great roommate and for helping me out with a ton of things (including excellent slow mo footage of the XBT!)
  3. Thanks to the NOAA officers who were always happy to chat and tell me about how things work and about their careers. Thank you CO, XO, Jamie, Luke, Dan, and Jane. * Did you know that all NOAA officers have a college degree in a STEM field?
  4. And thank you to the scientific team of all stars: Dave H for always being hilarious, Zach for being hardworking and friendly to talk with, Mike B for being so wise and having good taste in music, Kevan, for lots of good chats during meal times, and Lauren, for making Oscar the octopus and being so friendly!
Engine Room
Just hanging out in the engine room one more time with Steve. Thanks to Steve and Garet!

Science and Technology Log

Todd W is the Senior Survey Technician. He works on Pisces full time and helped out the science team with running the CTD (conductivity, temperature, depth). Todd also helped me run a few experiments, and was overall real cool with helping me find random stuff during the cruise.

In particular, Todd and I, with Mike B’s help, tricked out the CTD to investigate how colors change with depth. We arts-and-crafted a few color strips and secured them to the CTD along with some GoPros to record video. We wanted to see what happened to various colors as the CTD descended to depth (~90m). See what it looked like at the top vs. the bottom (image below). You can see clearly that indeed the red color disappeared soonest while most everything took on a blue tone. This is because red is the longest wavelength on the visible spectrum and therefore the lowest energy (~ 700 nm); it’s the most easily absorbed by the water. Conversely, blue light has a shorter wavelength (~400 nm), and this means higher frequency and higher energy. I made a video with the footage we collected – coming soon. When it comes out you can see for yourself the reds disappear and the colors shift to blue. We also secured a Styrofoam cup to the CTD in order to watch what happens as the pressure increases on the way down. *See here for my pressure video covering similar topics. The CTD only went down to around 90 meters, but that was still enough to increase the pressure from 1 atm to around 9 atm. This nine fold increase shrunk the cup around 12%. Todd tells stories of taking Styrofoam manikin heads down to 300 + meters and watching them shrink to the size of a shot glass.

testing color and pressure
Science lab aboard the CTD – testing color and pressure.

In addition to CTD excitement, Todd let me conduct an XBT launch. XBT stands for Expendable Bathythermograph. * This cruise had the highest density of acronyms of any experience in my life. Geez. Here’s a link from NOAA describing XBTs.  And my pictures below.

 

This slideshow requires JavaScript.

Bravo, Todd & NOAA Ship Pisces – you got me!!

XBT certificate
Don’t worry, my XBT bravery and expertise didn’t go unrewarded.

Neato Fact:

We stopped by the NOAA Beaufort Lab shortly after we docked in Morehead City. Todd K was awesome and showed me around and introduced me to a series of interesting characters – it was nice to see the lab and see what everyone had been talking about. I spent a short time walking near the sea wall outside the lab. I ran into Larisa who pointed out two cute baby green sea turtles. She said that recently they’ve started coming into the inlet to feed.  Related neato fact: Hawksbill sea turtles have been shown to exhibit biofluorescence.

Baby green sea turtle.
Baby green sea turtle.

Personal Log

It’s good to be back on land, and fun to trade the breezy blue ocean seascape for the hot humid green treescape of Tallahassee. I’m busy trying to process the information from the trip and figure out ways to incorporate it into my teaching and lesson plans. Surely it’ll take two forms – a little bit of distilling and planning now, and a slow seep of info from memories later. I’m hoping the trickle of revisited memories pop up at opportune times during the school year for me to take advantage. We’ll see.

I’m back to school in a few days.  This is the last full blog. Coming up I’ll post some quick hit blogs with links to some videos. Stay tuned.

Sunset
Until we meet again!

Shelley Gordon: A Day on the Back Deck, July 20, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 20, 2019

Weather data: Wind – variable 5 knots or less, wind wave ~1’, Swell – NW 7’@ 10sec / S 1’ @ 11sec, Patchy fog


Science Log

7:39am – We are about to pass under the Golden Gate Bridge, heading west toward the Farallon Islands.  Several small fishing boats race out in a line off our port side, hulls bouncing against the waves and fishing nets flying in the wind.  I am aboard R/V Fulmar in transit toward data collection point 4E, the eastern most point along ACCESS Transect 4.  The TTG (“time to go,” or the time we expect to arrive at 4E) is estimated at 1h53’ (1 hour, 53 minutes), a figure that fluctuates as the boat changes course, speeds up, or slows down.  

This is my second day on an ACCESS research cruise.  Yesterday I got my boots wet in the data collection methods used on the back deck.  The ACCESS research project collects various types of data at specific points along transects (invisible horizontal lines in the ocean). Today we will be collecting samples at 6 different points along Transect 4.  With one day under my belt and a little better idea of what to expect, today I will aim to capture some of the action on the back deck of the boat throughout the day. 

9:41am – Almost to Station 4E. “5 minutes to station.”  This is the call across the radio from First Mate Rayon Carruthers, and also my signal to come down from the top deck and get ready for action.  I put on my rain pants, rubber boots, a float jacket, and a hard hat.  Once I have my gear on, I am ready to step onto the back deck just as the boat slows down for sample collection to commence.  At this first station, 4E, we will collect multiple samples and data.  Most of the sampling methods will be repeated multiple times through the course of the day at different locations and depths (most are described below). 

deploying hoop net
Dani Lipski and Shelley Gordon deploy the hoop net. Photo: Rachel Pound

10:53am – Station 4EX. We finished cleaning the hoop net after collecting a sample at a maximum depth of 33m.  The hoop net is a tool used to collect a sample of small living things in deep water.  This apparatus consists of an ~1m diameter metal ring that has multiple weights attached along the outside.  A 3m, tapered fine mesh net with a cod end (small plastic container with mesh vents) hangs from the hoop.  Attached to the net there is also a flow meter (to measure the amount of water that flowed through the net during the sample collection) and a depth sensor (to measure the depth profile of the tow).  To deploy the net, we used a crane and winch to hoist the hoop out over the surface of the water and drop the net down into the water. Once the net was let out 100m using the winch, we brought it back in and pulled it back up onto the boat deck.  Using a hose, we sprayed down the final 1m of the net, pushing anything clinging to the side toward the cod end.  The organisms caught in the container were collected and stored for analysis back at a lab.  On this haul the net caught a bunch of copepods (plankton) and ctenophores (jellyfish).

Kate Davis preps samples
Kate Davis fills a small bottle with deep water collected by the Niskin bottle.

11:10am – Station 4ME. Dani Lipski just deployed the messenger, a small bronze-colored weight, sending it down the metal cable to the Niskin sampling bottle.  This messenger will travel down the cable until it makes contact with a trigger, causing the two caps on the end of the Niskin bottle to close and capturing a few liters of deep water that we can then retrieve back up at the surface.  Once the water arrives on the back deck, Kate Davis will fill three small vials to take back to the lab for a project that is looking at ocean acidification.  The Niskin bottle is attached to the cable just above the CTD, a device that measures the conductivity (salinity), temperature, and depth of the water.  In this case, we sent the Niskin bottle and CTD down to a depth of 95m. 

deploying the CTD
Dani Lipski and Shelley Gordon deploy the CTD. Photo: Rachel Pound

12:16pm – Station 4M. Rachel Pound just threw a small plastic bucket tied to a rope over the side of the boat.  Using the rope, she hauls the bucket in toward the ship and up over the railing, and then dumps it out.  This process is repeated three times, and on the third throw the water that is hauled up is collected as a sample.  Some of the surface water is collected for monitoring nutrients at the ocean surface, while another sample is collected for the ocean acidification project.

surface water sample
Rachel Pound throws a plastic bucket over the side railing to collect a surface water sample.

1:36pm – Station 4W. Using a small hoop net attached to a rope, Rachel Pound collected a small sample of the phytoplankton near the surface.  She dropped the net down 30ft off the side of the boat and then towed it back up toward the boat.  She repeated this procedure 3 times and then collected the sample from the cod end.  This sample will be sent to the California Department of Public Health to be used to monitor the presence of harmful algal blooms that produce domoic acid, which can lead to paralytic shellfish poisoning.

Tucker trawl net
Shelley Gordon, Dru Devlin, Jamie Jahncke, and Kirsten Lindquist prepare the Tucker trawl net. Photo: Kate Davis

2:54pm – The final sample collection of the day is underway.  Jaime Jahncke just deployed the first messenger on the Tucker trawl net.  This apparatus consists of three different nets.  These nets are similar to the hoop net, with fine mesh and cod ends to collect small organisms in the water.  The first net was open to collect a sample while the net descended toward ocean floor.  The messenger was sent down to trigger the device to close the first net and open a second net.  The second net was towed at a depth between 175-225m for ~10 minutes.  After the deep tow, a second messenger will be sent down the cable to close the second net and open a third net, which will collect a sample from the water as the net is hauled back to the boat.  The Tucker trawl aims to collect a sample of krill that live near the edge of the continental shelf and the deep ocean.

3:46pm – After a full day of action, the boat is turning back toward shore and heading toward the Bodega Bay Marina. 

5:42pm – The boat is pulling in to the marina at Bodega Bay.  Once the crew secures the boat along a dock, our day will be “done.”  We will eat aboard the boat this evening, and then likely hit the bunks pretty early so that we can rise bright and early again tomorrow morning, ready to do it all again along a different transect line!


Did You Know?

The word copepod means “oar-legged.” The name comes from the Greek word cope meaning oar or paddle, and pod meaning leg. Copepods are found in fresh and salt water all over the world and are an important part of aquatic food chains. They eat algae, bacteria, and other dead matter, and are food for fish, birds, and other animals. There are over 10,000 identified species of copepods on Earth, making them the most numerous animal on the planet.

Hayden Roberts: Data and More Data… July 11, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 11, 2019

Weather Data from the Bridge:
Latitude: 28.29° N
Longitude: 83.18° W
Wave Height: 1-2 feet
Wind Speed: 11 knots
Wind Direction: 190
Visibility: 10 nm
Air Temperature: 29.8°C
Barometric Pressure: 1013.6 mb
Sky: Few clouds


Science Log

As I mentioned in my introductory post, the purpose of the SEAMAP Summer Groundfish Survey is to collect data for managing commercial fisheries in the Gulf of Mexico. However, the science involved is much more complex than counting and measuring fish varieties.

The research crew gathers data in three ways. The first way involves trawling for fish. The bulk of the work on-board focuses on trawling or dragging a 42-foot net along the bottom of the Gulf floor for 30 minutes. Then cranes haul the net and its catch, and the research team and other personnel weigh the catch. The shift team sorts the haul which involves pulling out all of the shrimp and red snapper, which are the most commercially important species, and taking random samples of the rest. Then the team counts each species in the sample and record weights and measurements in a database called FSCS (Fisheries Scientific Computer System).

Trawling nets
Trawling nets waiting on aft deck.

SEAMAP can be used by various government, educational, and private entities. For example, in the Gulf data is used to protect the shrimp and red snapper populations. For several years, Gulf states have been closing the shrimp fishery and putting limits on the snapper catches seasonally to allow the population to reproduce and grow. The SEAMAP data helps determine the length of the season and size limits for each species.

Tampa Bay area waters
Digital chart of the waters off the Tampa Bay area. Black dots represent research stations or stops for our cruise.

Another method of data collection is conductivity, temperature, and depth measurements (CTD). The process involves taking readings on the surface, the bottom of Gulf floor, and at least two other points between in order to create a CTD profile of the water sampled at each trawling locations. The data becomes important in order to assess the extent of hypoxia or “dead zones” in the Gulf (see how compounded data is used to build maps of hypoxic areas of the Gulf: https://www.noaa.gov/media-release/noaa-forecasts-very-large-dead-zone-for-gulf-of-mexico). Plotting and measuring characteristics of hypoxia have become a major part of fishery research especially in the Gulf, which has the second largest area of seasonal hypoxia in the world around the Mississippi Delta area. SEAMAP data collected since the early 1980s show that the zone of hypoxia in the Gulf has been spreading, unfortunately. One recent research sample taken near Corpus Christi, TX indicated that hypoxia was occurring further south than in the past. This summer, during surveys two CTD devices are being used. The first is a large cylinder-shaped machine that travels the depth of the water for its readings. It provides a single snapshot. The second CTD is called a “Manta,” which is a multi-parameter water quality sonde (or probe). While it can be used for many kinds of water quality tests, NOAA is using it to test for hypoxia across a swath of sea while pulling the trawling net. This help determine the rate of oxygenation at a different depth in the water and across a wider field than the other CTD can provide.

Setting up the CTD
Setting up the CTD for its first dive of our research cruise.


Did You Know?

Algae is a major problem in the Gulf of Mexico. Hypoxia is often associated with the overgrowth of certain species of algae, which can lead to oxygen depletion when they die, sink to the bottom, and decompose. Two major outbreaks of algae contamination have occurred in the past three years. From 2017-2018, red algae, which is common in the Gulf, began washing ashore in Florida. “Red Tide” is the common name for these algae blooms, which are large concentrations of aquatic microorganisms, such as protozoans and unicellular algae. The upwelling of nutrients from the sea floor, often following massive storms, provides for the algae and triggers bloom events. The wave of hurricanes (including Irma and during this period caused the bloom. The second is more recent. Currently, beaches nearest the Mississippi Delta have been closed due to an abundance of green algae. This toxic algae bloom resulted from large amounts of nutrients, pesticides, fertilizers being released into the Bonnet Carre Spillway in Louisiana because of the record-high Mississippi River levels near Lake Pontchartrain. The spillway opening is being blamed for high mortality rates of dolphins, oysters and other aquatic life, as well as the algae blooms plaguing Louisiana and Mississippi waters.


Personal Log

Pulling away from Pascagoula yesterday, I knew we were headed into open waters for the next day and half as we traveled east down the coast to the Tampa Bay, FL area. I stood on the fore deck and watched Oregon II cruise past the shipyard, the old naval station, the refinery, navigation buoys, barrier islands, and returning vessels. The Gulf is a busy place. While the two major oceans that flank either side of the U.S. seem so dominant, the Gulf as the ninth largest body of water in the world and has just as much importance. As a basin linked to the Atlantic Ocean, the tidal ranges in the Gulf are extremely small due to the narrow connection with the ocean. This means that outside of major weather, the Gulf is relatively calm, which is not the case with our trip.

Navigation buoy
Navigation buoy that we passed leaving Pascagoula harbor.

As we cruise into open waters, along the horizon we can see drilling platforms jutting out of the Gulf like skyscrapers or resorts lining the distant shore. Oil and gas extraction are huge in this region. Steaming alongside us are oil tankers coming up from the south and cargo ships with towering containers moving back and forth between Latin America and the US Coast. What’s in the Gulf (marine wildlife and natural resources) has geographic importance, but what comes across the Gulf has strategic value too.

The further we cruised away from Mississippi, the water became choppy. The storm clouds that delayed our departure the day before were now overhead. In the distances, rain connected the sky to sea. While the storm is predicted to move northwest, the hope is that we can avoid its intensification over the Gulf Stream as we move southeasterly.

Choppy seas
Choppy seas as we cruise across the Gulf to the West Coast of Florida to start our research.

I learned that water in the Gulf this July is much warmer than normal. As a result, locally produced tropical storms have formed over the Gulf. Typically, tropical storms (the prelude to a hurricane) form over the Atlantic closer to the Equator and move North. Sometimes they can form in isolated areas like the Gulf. Near us, an isolated tropical storm (named Barry) is pushing us toward research stations closer to the coast in order to avoid more turbulent and windy working conditions. While the research we are conducting is important, safety and security aboard the ship comes first.

Catherine Fuller: Maintaining Balance, July 1, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 28 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: 1 July 2019

Weather Data from the Bridge

Latitude: 60’ 15” N
Longitude: 145’ 30” N
Wave Height:
Wind Speed: 7 knots
Wind Direction: 101 degrees
Barometric Pressure: 1020 mb
Air Temperature:  13.2° C
Relative Humidity: 94%
Sky: Overcast


Science and Technology Log

When I read some the material online about the NGA LTER, what struck me was a graphic that represented variability and resiliency as parts of a dynamic system.  The two must coexist within an ecosystem to keep it healthy and sustainable; they must be in balance.  On board, there is also balance in the studies that are being done.  The Main Lab houses researchers who are looking at the physical aspects of the water column, such as sediment and plankton.  The Wet Lab researchers are looking at the chemical aspects and are testing properties such as fluorescence, DIC (dissolved inorganic carbon), and DOC (dissolved organic carbon). 

Working deck
This is the working deck of the ship, where the majority of equipment is deployed

Today we deployed Steffi’s sediment traps, a process during which balance was key. First of all, each trap was composed of four collection tubes arranged rather like a chandelier. 

collection tubes
These are the collection tubes that will be staged at selected depths to collect sediment

These were hooked into her primary line. Her traps were also attached to two sets of floaters: one at the surface and one as an intermediary feature on her line.  These allowed her traps to sit at the proper depths to collect the samples she needed.  The topmost trap sat 80m below the surface, while the next three were at subsequent 25m intervals. 

View this post on Instagram

Sediment trap #Sikuliaq

A post shared by Bern, (@bernm8r_) on

Bern’s time lapse of the sediment trap deployment
hazy sound
Steffi’s traps were released against the background of the smoky sound.

We also collected more samples from another run of the CTD today.  Again, the Niskin bottles (collection tubes) were “fired” or opened at various depths, allowing sampling through a cross section of the water at this particular data point PWS2. Unlike our previous collection, these samples were filtered with .45 micron mesh to eliminate extraneous particles.  This is a very careful process, we needed to be very careful to eliminate air bubbles and replace the filters regularly as the clogged quickly.  For one depth, we did collect unfiltered samples as a comparison to the filtered ones.  Many groups use the CTD to collect samples, so there must also be careful planning of usage so that there is enough water for each team.  Collection is a complicated dance of tubes, syringes, bottles, labels and filters all circling around the CTD. 

Steffi and buoys
Steffi looks over the sound as the buoys marking her traps recede into the distance.

Later this evening, we’ll have the chance to pull up Steffi’s sediment traps and begin to prepare her samples for analysis. 


Personal Log

Balance is key in more ways than one when you’re living aboard a research ship. Although it’s been very calm, we experience some rolling motion when we are transiting from one site to the next.  The stairways in the ship are narrow, as are the steps themselves, and it’s a good thing there are sturdy handrails!  Other than physical balance, it’s important to find personal balance.  During the day, the science work can be very intense and demanding.  Time schedules shift constantly, and it is important to be aware of when your experiments or data collection opportunities are taking place.  Down time is precious, and people will find a quiet space to read, go to the gym (a small one), catch up on sleep or even watch a movie in the lounge. 

A couple of weeks before I left, the Polynesian Voyaging Society hosted a cultural group from Yakutat, who had shipped in one of their canoes down for a conference.  We were able to take them out sailing, and the subject of balance came up in terms of the worldview that the Tlingit have.  People are divided between being Eagles and Ravens, and creatures are also divided along the lines of being herbivorous and carnivorous.  Rather than this being divisive within culture, it reflects the principle of balance.  Both types are needed to make an ecosystem whole and functional.  And so, as we progress, we are continually working on maintaining our balance in the R/V Sikuliaq ecosystem. 


Animals seen today:

A few dolphins were spotted off the bow this evening, but other than that, Prince William Sound has been relatively quiet.  Dan, our U.S. Fish and Wildlife person, remarked that there are more boats than birds today, which isn’t saying much as I’ve only seen three other boats.

Catherine Fuller: A Tropical Fish in an Alaskan Aquarium, June 30, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 28 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: 30 June 2019

Weather Data from the Bridge

Latitude: 60.32 N
Longitude: 147.48 W
Wind Speed: 3.2 knots
Wind Direction: 24 degrees
Air Temperature: 72 °F
Sky: Hazy (smoke)


Science and Technology Log

We arrived in Seward mid-day on Thursday, June 27th to find it hazy from fires burning north of us; the normally picturesque mountain ranges framing the bay were nearly obscured, and the weather forecast predicts that the haze will be with us at sea for a while as well.  Most of the two days prior to departure were busy with loading, sorting, unpacking and setting up of equipment. 

Ready to load
All equipment and supplies are placed on pallets to load on board

There are multiple experiments and different types of studies that will be taking place during the course of this cruise, and each set of researchers has a specific area for their equipment.  I am on the particle flux team with Stephanie O’Daly (she specifically requested to have “the teacher” so that she’d have extra hands to help her), and have been helping her as much as I can to set up.  Steffi has been very patient and is good about explaining the equipment and their function as we go through everything.  Particle flux is about the types of particles found in the water and where they’re formed and where they’re going.  In addition, she’ll be looking at carbon matter: what form it takes and what its origin is, because that will tell her about the movement of specific types of plankton through the water column.  We spent a part of Friday setting up a very expensive camera (the UVP or Underwater Visual Profiler) that will take pictures of particles in the water down to 500 microns (1/2 a millimeter), will isolate the particles in the picture, sort the images and download them to her computer as well. 

Steffi’s friend Jess was very helpful and instructive about setting up certain pieces of equipment.  I found that my seamanship skills luckily were useful in splicing lines for Steffi’s tows as well as tying her equipment down to her work bench so that we won’t lose it as the ship moves. 

As everyone worked to prepare their stations, the ship moved to the refueling dock to make final preparations for departure, which was about 8:30 on Saturday morning. 

Day one at sea was a warm up for many teams.  Per the usual, the first station’s testing went slowly as participants learned the procedures.  We deployed the CTD (conductivity, temperature and depth) at the second station.  A CTD is a metal framework that carries various instruments and sampling bottles called Niskin bottles.  In the video, you can see them arranged around the structure. The one we sent on June 28 had 24 plastic bottles that were “fired” at specific depths to capture water samples.  These samples are shared by a number of teams to test for things like dissolved oxygen gas, and nutrients such as nitrate, nitrites, phosphate and silicate, and dissolved inorganic carbon.  

Video coming soon!
The CTD is lowered over the side of the ship long enough to fill sample bottles and then is brought back on board. (This still photo is a placeholder for the video.)

One of my tasks today was to help her collect samples from specific bottles by attaching a tube to the bottle, using water from the sample to cleanse it and them fill it.  Another team deployed a special CTD that was built completely of iron-free materials in order to run unbiased tests for iron in the water. 

By late Saturday night, we will be in Prince William Sound, and will most likely spend a day there, before continuing on to Copper River.  Usually LTER cruises are more focused on monitoring the state of the ecosystem, but in this case, the cruise will also focus on the processes of the Copper River plume, rates and interactions.  This particular plume brings iron and fresh water into the Northern Gulf of Alaska ecosystem, where it is dispersed by weather and current.  After spending some time studying the plume, the cruise will continue on to the Middleton Line to examine how both fresh water and iron are spread along the shelf and throughout the food web.  


Personal Log

As the science team gathered yesterday, it became evident that the team is predominantly female.  According to lead scientist Seth Danielson, this is a big change from roughly 20 years ago, and has become more of the norm in recent times.  We also have five undergraduates with us who have never been out on a cruise, which is unusual.  They are all very excited for the trip and to begin their own research by assisting team leaders.  I’ve met most of the team and am slowly getting all the names down. 

I have to admit that I’m feeling out of my element, much like a fish in a very different aquarium.  I’m used to going to sea, yes, but on a vessel from another time and place.  There is much that is familiar about gear, lines, weather, etc., but there are also great differences.  The ship’s crew is a separate group from the science crew, although most are friendly and helpful.  Obviously, this is a much larger and more high tech vessel with many more moving parts.  Being on the working deck requires a hard hat, protective boots, and flotation gear.  There are viewing decks that are less restricted. 

I am excited to be at sea again, but a little bit nervous about meeting expectations and being as helpful as I can without getting in the way.  It’s a little strange to be primarily indoors, however, as I’m used to being out in the open! I’m enjoying the moments where I can be on deck, although with the haze in the air, I’m missing all the scenery! 

Did you know?

Because space is limited onboard, many of the researchers are collecting samples for others who couldn’t be here as well as collecting for themselves and doing their own experiments.

Something to think about:

How do we get more boys interested in marine sciences?

Questions of the day (from the Main Lab):

Do whales smell the smoke outside?

Answer: Toothed whales do not have a sense of smell, and baleen whales have a poor sense of smell at best.

Do scorpions get seasick?