Christine Webb: September 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 9/19/2017

Latitude: 42.2917° N (Back home again!)

Longitude: 85.5872° W

Wind Speed: 6 mph

Air Temperature: 65 F

Weather Observations: Rainy

Here I am, three weeks deep in a new school year, and it’s hard to believe that less than a month ago I was spotting whales while on marine mammal watch and laughing at dolphins that were jumping in our wake. I feel like telling my students, “I had a really weird dream this summer where I was a marine biologist and did all kinds of crazy science stuff.”

IMG_20170817_103950017_HDR

Me on marine mammal watch

If it was a dream, it certainly was a good one! Well, except for the part when I was seasick. That was a bit more of a nightmare, but let’s not talk about that again. It all turned out okay, right?

I didn’t know what to expect when signing on with the Teacher at Sea program, and I’m amazed at how much I learned in such a short period of time. First of all, I learned a lot about marine science. I learned how to differentiate between different types of jellyfish, I learned what a pyrosome is and why they’re so intriguing, I learned that phytoplankton are way cooler than I thought they were, and I can now spot a hake in any mess of fish (and dissect them faster than almost anyone reading this).

I also learned a lot about ship life. I learned how to ride an exercise bike while also rocking side to side.  I learned that Joao makes the best salsa known to mankind. I learned that everything – everything – needs to be secured or it’s going to roll around at night and annoy you to pieces. I even learned how to walk down a hallway in rocky seas without bumping into walls like a pinball.

Well, okay. I never really mastered that one. But I learned the other things!

Beyond the science and life aboard a ship, I met some of the coolest people. Julia, our chief scientist, was a great example of what good leadership looks like. She challenged us, looked out for each of us, and always cheered us on. I’m excited to take what I learned from her back to the classroom. Tracie, our Harmful Algal Bloom specialist, taught me that even the most “boring” things are fascinating when someone is truly passionate about them (“boring” is in quotes because I can’t call phytoplankton boring anymore. And zooplankton? Whoa. That stuff is crazy).

329 hobbit house 2

Phytoplankton under a microscope

Lance taught me that people are always surprising – his innovative ways for dissecting fish were far from what I expected. Also, Tim owns alpacas. I didn’t see that one coming. It’s the surprising parts of people that make them so fun, and it’s probably why our team worked so well together on this voyage.

I can’t wait to bring all of this back to my classroom, specifically to my math class. My students have already been asking me lots of questions about my life at sea, and I’m excited to take them on my “virtual voyage.” This is going to be a unit in my eighth and ninth grade math classes where I show them different ways math was used aboard the ship. I’ll have pictures and accompanying story problems for the students to figure out. They’ll try to get the same calculations that the professionals did, and then we’ll compare data. For example, did you know that the NOAA Corps officers still use an old-fashioned compass and protractor to track our locations while at sea? They obviously have computerized methods as well, but the paper-and-pencil methods serve as a backup in case one was ever needed. My students will have fun using these on maps of my locations.

They’ll also get a chance to use some of the data the scientists took, and they’ll see if they draw the same conclusions the NOAA scientists did. A few of our team were measuring pyrosomes, so I’ll have my students look at some pyrosome data and see if they get the correct average size of the pyrosome sample we collected. We’ll discuss the implications of what would happen if scientists got their math wrong while processing data.

I am so excited to bring lots of real-life examples to my math classroom. As I always tell my students, “Math and science are married.” I hope that these math units will not only strengthen my students’ math skills, but will spark an interest in science as well.

This was an amazing opportunity that I will remember for the rest of my life. I am so thankful to NOAA and the Teacher at Sea program for providing this for me and for teachers around the country. My students will certainly benefit, and I have already benefited personally in multiple ways. To any teachers reading this who are considering applying for this program – DO IT. You won’t regret it.

CWeb

Me working with hake!

Kate Schafer: Setting off for Brownsville, TX, September 18, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 18, 2017

 

Weather Data from the Bridge:

Latitude: 27o 02.5’ N
Longitude: 94o 32.6’ W

Scattered clouds

Visibility 14 nautical miles

Wind speed 10 knots

Sea wave height 1 foot

Temperature Seawater 29.9 o Celsius

 

Personal log

Sunday afternoon, September 17

I arrived in Pascagoula, Mississippi in the late afternoon on Saturday after a long day of travel.  Things were so quiet on the ship that evening as most of the crew had gone home during the break between legs of the survey.  It was great to be met and shown around by a friendly face, the Officer on Duty (OOD) David Reymore.  I definitely was feeling a bit like a fish out of water, even though we hadn’t even left the dock yet. As people start to arrive back on the ship, they all know their role and are busy getting ready for our departure later on today. It’s a good experience to feel like you’re out of your element every now and again and I guess a small part of why I decided to apply for a Teacher at Sea position in the first place.

NOAA

As I was preparing to depart on this adventure and was explaining that I was going to be a NOAA Teacher at Sea, I had a number of people ask me what NOAA stood for, so I thought I’d provide a bit of information about what they are and what they do.  First, NOAA stands for the National Oceanic and Atmospheric Administration, and the name definitely suggests the broad mission that the agency has.  Their mission involves striving to understand the oceans, atmosphere, climate, coastlines and weather and making predictions about how the interactions between these different entities might change over time.

That is a tall order, and the agency is divided up into different offices that focus on different aspects of their mission.  The National Weather Service, for example, is focused on forecasting the weather and makes predictions about things like where hurricanes will travel and how intense they will be when they get there.  The National Marine Fisheries Service is tasked with studying the ocean resources and habitats in U.S. waters and to use that understanding to create sustainable fisheries.

So far, I’ve met many people that I’ll be sharing the boat with over the next two weeks.  They have all taken time to introduce themselves and talk for a bit, even though I know that they’ve got tons to do before we sail.

Sunday evening

Well, we’re underway towards our first sampling sites off the coast of Brownsville, Texas.  The seas are really calm, and I’m sitting up on the deck enjoying the light breeze and digesting the delicious dinner of jambalaya, vegetables and blackberry cobbler.  On our way out from Pascagoula, we saw a few dolphins, beautiful white sand barrier islands and mile after mile of moon jellies, but now we’re no longer in sight of land.

P1030600

Barrier island off the coast of Mississippi

We’ve passed an occasional oil rig off in the distance but haven’t seen much else.  The sun just set behind just enough clouds to make the colors spectacular and then as I was climbing down the stairs, I saw a handful of dolphins playing in the boat’s wake.

IMG_3919

Sunset over the Gulf of Mexico

Monday, September 18

Today will be a full day of travel to reach our fishing grounds.  Assuming we continue to make steady progress, we should arrive in the late afternoon or early evening on Tuesday to begin fishing.  We will be baiting 100 hooks that, once deployed, will remain in the water for an hour before we pull them back in.  We’ll be fishing in a variety of depths while working our way back towards Pascagoula.  We practiced some drills this afternoon, including a “man overboard” simulation, using a couple of orange buoys.  They deployed a rescue boat and had retrieved the buoys in a matter of minutes.  I have to admit that watching them get out there with such speed and skill put me at ease.

IMG_3927

Rescue boat deployed during the “man overboard” drill

 

 

Kate Schafer: Off to the Gulf, September 16, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 16, 2017

Introduction

Welcome to my Teacher at Sea blog!  My name is Kate Schafer, and I am a teacher at the Upper School at the Harker School in San Jose, California, right in the middle of Silicon Valley.  I teach biology, marine biology and food science to mostly juniors and seniors.  This may seem like an odd mix of courses, but I am so fortunate to be able to teach students about all my favorite topics.  I have heard that the food is delicious on the Oregon II, and I’m interested in learning more about the challenges of keeping a crew fed when you can’t pop down to the corner grocery store when you realize that you forgot to order that crucial ingredient.  I have spent many hours on the ocean, and spent six years studying coral reefs in Belize, Central America, but I’ve never been to sea on a research vessel.  I’m thrilled to have that opportunity and to share it with my students.

My husband, daughter and I ready to tour the Atlantis in Woods Hole, MA this summer

Weather Data

The weather has been a big topic of conversation of late here in San Jose.  Two weekends ago set all-time record high temperatures throughout the Bay Area, even along the coast.  Living in close proximity to the ocean, we expect relief from that rare hot day to come rather quickly, but the heat lingered for days.  We’re back to normal fall weather as I head off, though.  This morning is cool and seasonable.  I know from growing up in Atlanta, Georgia, that I’m heading to warm and humid conditions on the other end of my travels.

Science and Technology Log

On this research cruise, we will be conducting long line surveys, looking at shark and red snapper populations in the Gulf of Mexico.  I will report more on where we are going and what we’re studying once the leg of the survey begins. There are multiple legs to the survey, and I’ll be joining in for the fourth and final leg.  It has been a tumultuous time in the Gulf over the past few weeks, and it will be interesting to learn about how this has impacted the coastal waters in the area we will be surveying.

Personal Log

I am sitting in the airport in San Jose, ready to board my flight to Dallas, en route to Gulfport and my final destination of Pascagoula, Mississippi.  Wow! It’s been a frantic week of getting all sorts of last minute pieces put together to allow things to, hopefully, run smoothly in my absence.  It’s early morning, so I’m still in a bit of a groggy cloud, making the fact that I’m actually heading off on this adventure all the more unreal.

Even the grogginess cannot stifle my excitement, though, as I head off for two weeks of working with scientists and collecting data.  As I was packing last night, I couldn’t help but be reminded of all the previous trips I packed for more than 15 years ago to conduct field research on coral reefs in Belize.  I was studying a type of crustacean called the stomatopod and learning about the role that they play in coral reef ecosystems, how they interact with other species like pygmy octopus and crabs, their main source of prey.

I am thrilled to be heading out on this research trip and feel so fortunate for the opportunity.  I look forward to questions from you about what we are doing and learning on our voyage.  Check in frequently for updated blog posts once the trip commences.

Did You Know?

That the Oregon II has been part of the NOAA fleet since 1977?

Jenny Smallwood: Rough Seas Asea, September 13, 2017

NOAA Teacher at Sea

Jenny Smallwood

Aboard NOAA Ship Oscar Dyson

September 4 – 17, 2017

Mission: Juvenile Pollock Survey
Geographic Area of Cruise: Gulf of Alaska
Date: September 13, 2017

Weather Data from the Bridge
Latitude: 55 06.6N
Longitude:158 39.5W
Winds: 20 S
Temperature: 11 degrees Celsius (51.8 degrees Fahrenheit)

Up. Down. Up. Down. Left. Right….no I’m not in an aerobics class. High winds and seas cause my chair to slide across the floor as I type.

weather

Thus far we’ve been working 12 hour shifts, 24 hours a day. Today we’re sitting about twirling our thumbs as 12 feet seas toss us about. It’s not too bad actually, but it is bad enough to make operations unsafe for both crew and equipment. I’ve been impressed with the safety first culture on-board the Oscar Dyson. Hopefully, it’ll calm down soon, and we can start operations again.

Science and Technology Log

Ship support systems for power, water, sewage treatment, and heating/cooling are all several levels below the main deck, which makes ship engineers a bit like vessel moles. These hard working guys ensure important life support systems work smoothly. Highlights from my time with them include a lesson on the evaporator and engines.

The evaporator, which for some reason I keep calling the vaporizer, produces the fresh water drinking supply. The evaporator works by drawing in cold seawater and then uses excess engine heat to evaporate, or separate, the freshwater from the seawater. The remaining salt is discarded as waste. On average, the evaporator produces approximately 1,400 gallons of water per day.
*Side note: the chief engineer decided vaporizer sounds a lot more interesting than evaporator. Personally, I feel like vaporizer is what Star Trek-y people would have called the system on their ships.

IMG_20170909_145438

The evaporator in action.

The Oscar Dyson has 4 generators on board, two large, and two small. The generators are coupled with the engines. Combined they produce the electricity for the ship’s motors and onboard electrical needs, such as lights, computers, scientific equipment, etc.

IMG_20170909_145326

IMG_20170909_145132

I even got to see the prop shaft.

Personal Log

This week I also spent time in the Galley with Ava and Adam. (For those of you who know me, it’s no surprise that I befriended those in charge of food.) Read on for a summary of Ava’s life at sea story.

Me: How did you get your start as a galley cook?

Ava: When I was about 30 years old, a friend talked me into applying to be a deck hand.

Me: Wait. A deck hand?

Ava: That’s right. I was hired on to a ship and was about to set out for the first time when both the chief steward and 2nd cook on a different ship quit. My CO asked if I cook to which I replied “for my kids,” which was good enough for him. They immediately flew me out to the other ship where I became the 2nd cook. 12 years later I’m now a Chief Steward.

Me: Wow! Going from cooking for your kids to cooking for about forty crew members must have been a huge change. How did that go?

Ava: To be honest, I made a lot phone calls to my mom that first year. She helped me out a lot by giving me recipes and helping me figure out how to increase the serving sizes. Over the years I’ve paid attention to other galley cooks so I now have a lot of recipes that are my own and also borrowed.

Me: What exactly does a Chief Steward do?

Ava: The Chief Steward oversees the running of the galley, orders food and supplies, plans menus, and supervises the 2nd Cook. I’m a little different in that I also get in there to cook, clean, and wash dishes alongside my 2nd Cook. I feel like I can’t ask him to do something that I’m not willing to do too.

Me: So you didn’t actually go to school to be a chef. Did you have to get any certifications along the way?

Ava: When I first started out, certifications weren’t required. Now they are, and I have certifications in food safety and handling.

There are schools for vessel cooking though. My daughter just recently graduated from seafarers school. The school is totally free, except for the cost of your certification at the very end. For people interested in cooking as a career, it’s a great alternative to other, more expensive college/culinary school options. Now she’s traveling the world, doing a job she loves, and putting a lot of money into her savings.

Me: Talking with crew members on this ship, the one thing they all say is how hard it is to be away from family for long stretches of time. A lot of them are on the ship for ten months out of the year, and they do that for years and years. It’s interesting that your daughter decided to follow in your footsteps after experiencing that separation firsthand.

Ava: I was surprised too. Being away from friends and family is very hard on ship crew. Luckily for me, my husband is also part of the NOAA crew system so we get to work and travel together. Nowadays I’m part of the augment program so I get to set my own schedule. It gives me more flexibility to stay home and be a grandma!

Did You Know?

Nautical miles are based on the circumference of the earth and is 1 minute of latitude. 1 nautical mile equals 1.1508 statue miles.

Susan Brown: Who Needs Sharks Anyway? September 13, 2017

 

NOAA Teacher at Sea

Susan Brown

Aboard NOAA Ship Oregon II

September 3 – 15, 2017

 

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 13, 2017

IMG_6406

sunset through jaws of a blacktip shark

 

Science and Technology Log

We have been sampling along the coast of Florida, Alabama, Mississippi, Louisiana, and Texas at varying depths – “A” stations ( 5- 30 fathoms), “B” stations (30 -100 fathoms) and “C” stations (100 – 200 fathoms). A fathom is six feet or approximately 2 meters. The longlines are baited the same – mackerel on 100 hooks spread out across one nautical mile and then set on the bottom of the ocean. As we reel in the long line, the click and whine of the line as it’s being spooled, we wait in anticipation of what it may bring. Each station yields something different and you never know what you are going to get. Below is a list of some of the animals we have encountered.

 

IMG_6286

baby hammerhead

Shark species: blacktip, sharpnose, blacknose, scalloped hammerhead, great hammerhead, bull, tiger, spinner and bonnet head (to learn more about each of these species, select it for a NOAA fact sheet).

IMG_6273.jpg

Scallop Hammerhead in cradle

Other animals: southern ray, cownose ray, roughtail stingray, red snapper, black drum, sharksuckers, catfish, red drum, yellowedge grouper, king snake eels and even some blue crabs.

So why survey sharks? Did you know that people are one of only a few species that prey on sharks — killer whales and other sharks are the others– killing over a hundred million per year?* Sharks are apex or top predators in an ocean food web and play a vital role in keeping this food web in balance. With the hunting of sharks as well as over fishing the prey that sharks eat we are disturbing the natural balance. This survey is used determine the number of sharks and other species that are present in the Atlantic Ocean including the Caribbean Sea and the Gulf of Mexico. With these numbers, the National Marine Fisheries Service (NOAA Fisheries) regulate how many sharks, swordfish and tuna can be harvested without impacting the total population. In the Pacific Ocean, NOAA fisheries work with fisheries in developing how to best manage sharks.

IMG_6731

red snapper

Apex predators in any ecosystem are vital to the health of that ecosystem. These top predators keep numbers down on the more abundant prey species and keep their numbers in check. Here is a simplified illustration of what happens when we lose apex (top) predators in an ocean ecosystem.

If the number of sharks goes down then the food the sharks eat goes up (forage fish) because they are not being eaten by the sharks. With more of those forage fish around their need for food – the zooplankton – increase. With more forage fish eating the zooplankton there are less zooplankton and their numbers begin to decrease. If there are less zooplankton then the phytoplankton numbers increase because the zooplankton aren’t around the eat them. Removing top predators from any ecosystem can have an impact on the entire food web and this phenomena is called a trophic cascade.

IMG_6489

Removing Hook

Personal Log

When people think of sharks, they think of the movie Jaws. Unfortunately this has given sharks a bad reputation and has vilified these animals that are essential to the ocean food webs. Sure, there have been shark attacks, but did you know that more people are killed each year by electrocution by Christmas tree lights than by shark attacks? When people imagine sharks, they think of enormous sharks that eat everything in sight. The reality is that sharks come in all sizes and shapes. A mature Atlantic sharpnose shark will only get to be 3.5 feet long with the world’s smallest shark being the dwarf lantern shark that can fit in the palm of your hand. The largest shark is the harmless-to-human whale sharks that feeds primarily on plankton and can grow up to 60 feet!

IMG_6084

Smooth-hound (Mustelus Sinusmexicalis)

Did You Know?

Scientists can tell the age of a shark by counting the rings on its vertebrae (similar to how they can tell how old a tree is by counting its rings!)

Question of the day:

What is an example of a terrestrial (land) apex predator that has been over hunted impacting the entire ecosystem?

hint: watch this video clip: https://www.youtube.com/watch?v=ysa5OBhXz-Q

 

 

 

Amanda Dice: Using Light for Survival, September 13, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: September 13, 2017

Weather Data: Rainy, 76 F

Baltimore, MD

Science and Technology Log

Now that I am back home, I have some time to think about the variety of animals I saw on the cruise and do a little more research about them. Many of the animals we caught in our net have the ability to light up. This adaptation is known as bioluminescence. Different species use bioluminescence in different ways to help them survive.

 

Myctophids are a type of fish also known as a lantern fish. These small fish can occupy the same habitat as juvenile pollock, and we caught several of them at our sampling stations. I got a chance to look at them closely and I could see small spots, called photophores, along the sides of their bodies. In dark waters, these spots have bioluminescent properties. Lantern fish can control when to light them up and how bright the spots will glow.

 

There are many different species of lantern fish. Scientists have learned that each species has a unique pattern of bioluminescent photophores along the sides of their bodies. For this reason, it is believed that lantern fish use their bioluminescent properties to help them find a mate.

myctophid

The photophores can be seen as white spots on this lantern fish. Image courtesy of NOAA.

Lantern fish also have bioluminescent areas on the underside of their bodies. This adaptation helps them achieve what is known as counter-illumination. In the ocean, a predator can be lurking in the dark waters below its prey. Since many things feed on lantern fish, it is important for them to have a way to camouflage into the environment. When a predator looks up, during the day, a fish that is lit up on the bottom will blend in with the lighter waters above it, making it hard to see.

counterillumination 2

The camouflaging effect of counter-illumination can be seen when this bioluminescent fish lights up its underside. Image courtesy of the Smithsonian.

Lots of animals use this technique to help them hide from predators, including squid. We pulled in many small squid in with our samples that had patterns of photophores on them. Depending on the species, squid also use bioluminescence to attract mates and to confuse predators.

squid NOAA 2

The pattern of lighted photophores can be seen on this squid. Image courtesy of NOAA.

In addition to fish and crustaceans, we also pulled in a variety of jellyfish. Jellyfish also have bioluminescence characteristics. Many jellyfish use light as a way to protect themselves from predators. When a jellyfish is threatened by a predator, it flashes in a rapid pattern. This signals other fish nearby that it is being hunted. This can alert larger predators, who may be hunting the predator of the jellyfish. The larger predator will then swoop in after the jellyfish’s predator, allowing the jellyfish to escape!

Jellyfish NOAA

Many jellyfish use bioluminescence to protect themselves from predators. Image courtesy of NOAA.

Personal log

I have been home for over a week and I think I finally have my land legs back again. Looking back on the experience, there were so many little surprises that came with living onboard a ship. One thing I noticed is that I got much better at walking around the longer I was there. I learned to always have one hand available to grab a railing or brace myself during any sudden movements. However, I never quite mastered getting a decent workout in on the treadmill! Another surprise is how relaxing the rocking of the ship could be when I laid down. I thought the movement would be distracting, but it actually helped me drift off to sleep!

Did you know?

There are many superstitions surrounding life on a ship. It is considered bad luck to have bananas on board and whistling is discouraged. Whistling onboard a ship is thought to bring on wind and storms!

 

Lisa Battig: The Interview Issue, September 8, 2017

NOAA TAS Lisa Battig

Aboard Fairweather Alaskan Hydrographic Survey Ship

September 8, 2017

Location: Coast Guard Base, Kodiak Alaska

Weather from the bridge: 48o F, 1-2 knot wind from, Completely overcast,


XO Gonsalves

Executive Officer Michael Gonsalves in his overwhelming (because of all the things he does) office.

An Interview with XO (Executive Officer) Michael Gonsalves

How long have you been with NOAA?

I’ve been here for 13 years…I’ve been on the ship for about 6 months.

What brought you into NOAA?

Certainly I’ve always had an interest in the ocean and in the environment. One of my undergraduate degrees was in oceanography. So I think that’s what steered me towards NOAA. My other undergraduate degree was in math, so I liked the idea of being able to apply math in an environmental setting.

As a side note, XO Gonsalves also has a MS in Applied Math and a PhD in Marine Science

What is it that you do – what is the job of an executive officer?

The Executive Officer position is second in command. So if anything should happen to the CO (commanding officer) I would assume command. Though that is a contingency; that is not my actual job… All administrative work goes through me. For example, the budget, payroll, travel, performance, disciplinary actions, scheduling, arranging all port logistics, …getting augmenters to come out to the ship to fill in… I do everything to allow everyone else to do their job. My job is not the mission. My job is keeping the ship safe and logistically ready to execute the mission.

This is typically a step on the path to becoming a CO, is that correct?

Typically, that’s right. Usually the average NOAA Corps officer will have four sea assignments. Basically every five years, give or take, they will be going back to sea. The first will be as a junior officer, an Ensign. The second is as an Operations Officer who will be coordinating the mission [of that ship]. On the hydro ships that means coordinating the hydrographic science. The third sea tour will be as an Executive Officer and the fourth, around year 15, will be as a Commanding Officer.

I know that NOAA Corp officers spend roughly two years at sea and then three at a land billet. So what has your path been thus far?

I lingered in nearly all of my assignments by a little bit. My first assignment was here, on Fairweather, just after she was reactivated. It was a very skeletal crew. I had opportunities to be trained quickly. We only had two launches at the time. There were so few boats, there were so few people trained in doing things, it was in the crew’s best interest to qualify me because very few people were qualified to do anything.

My first land assignment was at the University of Southern Mississippi. It was a double billet. Number one, it was full-time university training. There was also working with an inter-agency group, The Naval Oceanographic Office and the Army Corps of Engineers, both also conduct survey operations. It’s a nice inter-agency group with similar issues and problems and we can share best practices and things like that. Their particular niche is airborne laser bathymetry, so they are working from an airplane.

Back to University of Southern Mississippi, what was the degree you were pursuing?

Initially it was a master’s degree as a one year program. As it happened, there was a project that I could work on of suitable interest to the joint LIDAR center. We all agreed that I could continue to work on it. The university felt that it was dissertation worthy. So I received my Ph.D.

What was your second tour at sea?

My second tour was as an Operations Officer on Fairweather’s sister ship, Ranier. All three of my assignments thus far have been on hydro ships. There is something to be said for that. It’s a little bit tricky to bring someone in from the outside. It’s a steep learning curve.

My second land assignment was working for the NOAA Operations Branch in Washington D.C. This is a part of the Hydrographic Surveys Division. They govern the field units on the large scale. So I was making the big decisions for what the hydro ships would be responsible for during that particular season. We determined what type of coverage would be needed in each area. That is then the information that the Operations Officer on the ship is working from.

What made NOAA so attractive to you?

Giving service to the US government was a big part. I happily pay my taxes. I appreciate having a police force and knowing that my meat is safe. So that was definitely a big part of it. But NOAA also has a unique mission that I found attractive. And the variety is important to me – just knowing that every couple of years the assignment will change.

And what is it that keeps you going while you’re out here at sea? Is there anything you miss or are looking forward to when this sea tour is complete?

People are tricky and a lot of my job involves personnel. The whole job keeps me going, really. I do miss Washington, D.C. – the public transport, the museums and the shows. There are so many things to do and see. There are a lot of jobs in D.C. and I am making clear that is a desire for the next land billet.


ENS Calderon

ENS Carroll

Junior officers, ENS Calderon and ENS Carroll on the bridge working on the computer navigation system. Both also are intimately involved with the surveying program.

A quick one question survey for the junior officers on the ship… Why did you choose a hydrographic survey ship? A collection of the answers I received are below:

  • To have the opportunity to be much more deeply involved with the science
  • My background is math or math/mapping
  • To be in Alaska
  • This is a route to pursue flying with NOAA Corps
  • Didn’t want the technical skills developed in prior work to go to waste
  • Had already worked on fisheries ships with Department of Fish and Wildlife

As with all officers in our uniformed services; NOAA Corps officers have had degrees conferred prior to service. Most of the degrees are math and science. The hydrographic survey ships tend to attract the math, physics, and geological science degrees for obvious reasons. Many then go on to pursue advanced degrees as did LCDR Gonsalves, the focus of my interview.


 

An interview with Kathy Brandts and Tyrone Baker; Ships Stewards

How long have you been cooking for NOAA Ships and what were you doing prior?

Chief cook Tyrone in the kitchen

Chief Cook Tyrone Baker, master of the grill

T: I cooked for the Navy for 20 years out of school. When I finished, I went to work for a casino for a while – still cooking. Then NOAA called me up (he had put in an application a while before and forgotten about it) and here I am! That was back in 2005.

K: I started out in the Coast Guard…I wanted to be a bosun [boatswain] mate, which is what everyone wants to do. But it was going to take a long time to make grade, and hardly anyone wants to be a cook because it’s a lot of work. I decided to go through their school, which was two months. That was when it started, in ’94. My first ship assignment was the Polar Star, which was an ice breaker.

Chief steward Kathy B and me

Kathy Brandts, Queen of the kitchen – also known as the Chief Steward. This is the day she let me cook a bit with her.

Kathy, why did you get out of the Coast Guard and what finally got you to NOAA?

K:  All of the land assignments were being contracted out to [private companies]. So I was never going to get a chance to cook on land. So I decided that wasn’t for me. I got out after my four and a half years. I landed in Seattle, and that’s where NOAA was based. I had heard about them when I was in the Coast Guard. I knew they were hiring, talked with somebody, and essentially got hired on the spot. And I was in Alaska! I started out in the augmentation pool, I worked on Discovery and then on Ranier. Then a permanent position came up and I jumped at it. I didn’t really get along with the Chief Steward, though – so I left NOAA and worked for Keystone Ski Resorts in Colorado at their stables. [She spent several years on land at that point.]

The Chief Steward on Ranier tracked me down [in Colorado] and asked me to come back. There was talk of Fairweather coming back online and I wanted the Chief Steward job. I didn’t have the experience at that point, so I took a year off and went to Culinary School. I applied for the Chief Steward job on Fairweather and got it. I was on Fairweather from 2004-2013. [She is now the Chief Steward on Ruben Lasker, another NOAA ship, but is helping out on this leg]

Why be a ship cook?

T: I’ve been so many places and seen so many things I wouldn’t have otherwise seen. I’ve really been all around the world. I’ve been in almost every port of the world. How many people can say that? I wouldn’t trade it.

K: I was a restaurant cook for a while. I hated it. You’re either going 9 million miles an hour or there’s nothing. There’s a lot of alcoholism and drug use in that industry and they live a different life. The service industry… (laughs). And people are either sailors or they’re not. I think, much to my chagrin, I found it out after I quit the Coast Guard.

T: Yes, I agree. I’m a sailor. It was why I joined the Navy.

What are the best and most rewarding things about what you do?

T: I just really like it. I enjoy the cooking. I enjoy the work.

K: I like good food and I like when people are appreciative of what I do. And we’re all stuck out here together, why not make it the best that it can be. Meal time is what you look forward to when you’re on a ship.

David GVA and me

GVA Dave – he just joined Fairweather and was actually helping out the stewards on this leg, but now he’s where he’s supposed to be in the deck department.


Crew member of the Day: Electronic Technician (ET) Charlie Goertzen 

Charlie and me

Charlie Goertzen, tech guy extraordinaire!

So today as we pulled into Kodiak, the news came in that the long awaited new televisions were here. Immediately, Charlie was notified. And he will work hours to make sure that each crew member has a working television in their room.

He is the guy that keeps the connectivity going in pretty difficult conditions. He has to spend a lot of time keeping various computer components talking to each other. He has to content with all of the complaints about lack of bandwidth, slowness of applications, slowness of wireless – and he does his best to keep things optimized and clean and efficient all the time. Two of the things he loves the most are the ocean and working with electronic components. He gets both of them all the time!