Vincent Colombo, What makes the Oscar Dyson tick?, June 29, 2015


NOAA Teacher at Sea
Vincent Colombo
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Annual Walleye Pollock Survey
Geographical area of the cruise: The Gulf of Alaska
Date: June 29, 2015

Weather Data from the Bridge:

  • Wind Speed: 10.7 knots
  • Sea Temperature: 9.6 degrees Celsius
  • Air Temperature: 10.5 degrees Celsius
  • Air Pressure: 1008.8 mb
Sunrise in Alaska

Sunrise in Alaska

When the fog lifts, hidden beauties and dangers are revealed

Another picture of Shishaldin Volcano – taken by scientist on board the Oscar Dyson, Robert Levine

A view of the Gulf of Alaska

A view of the Gulf of Alaska

In front of Kuiukta Bay

In front of Kuiukta Bay

Mitrofania Bay

Mitrofania Bay

Sandy Point, Alaska

Sandy Point, Alaska


The NOAA Vessel Oscar Dyson is named after the late Oscar E. Dyson. His placard reads the following:

Oscar Dyson

A Friend of Fisheries

Oscar promoted research and effective management

to sustain Alaska’s fisheries for future generations.

Oscar Dyson Plaque

Oscar Dyson Plaque

The small vessel on the Oscar Dyson is named after his wife

The small vessel on the Oscar Dyson is named after his wife


Science and Technology Log:

If you read the link under my page: http://teacheratsea.noaa.gov/#/2015/Vincent*Colombo/ship , it will tell you all about the ship, Oscar Dyson. This ship is nothing less than a modern marvel of technology. Luckily my fellow teacher at sea, Nikki Durkan and I got to experience the science of this ship first hand. Our Chief engineer, Mr. Alan Bennett took us for a tour of the inner workings of this ship.

Chief Engineer Alan Bennett

Chief Engineer Alan Bennett

Our tour started with a look at the Ship’s control panel. From this set of computers and controls, everything, and I mean everything on the ship can be controlled.

The Control Panel below deck

The Control Panel below deck

"We can control the entire ship from right here."

“We can control the entire ship from right here.”

From there, we went into the main engine room. One may recognize the Rime of the Ancient Mariner by Samuel Taylor Coleridge, which in part of the poem says:

“Water, water, everywhere,

And all the boards did shrink;

Water, water, everywhere,

Nor any drop to drink.”

Not the case on the Oscar Dyson, because the heat from the engines is used to distill up to 1,000 gallons of freshwater each day!

Where the Oscar Dyson makes fresh water

Where the Oscar Dyson makes fresh water

The ship also uses an Ultra Violet filter to kill all the undesirables in the water just in case.

Ultraviolet Filter

Ultraviolet Filter

Warning for the filter

Warning for the filter

From there, we got to travel through water tight doors into the rear of the ship. These doors are intimidating, and as our Chief Engineer said, in case there is a loss of power, the door can be bypassed so no one is trapped under the ship.

Alan in front of the door showing us the manual bypass

Alan in front of the door showing us the manual bypass

Water tight door. You DO NOT want to be in the way when this closes.

Water tight door. You DO NOT want to be in the way when this closes.

Here you can see one of the massive winches used for the trawl net the ship uses to catch fish. One winch is over 6 foot in diameter and has a thousand meters of steel cable. I wonder if it will fit on the front of a Jeep…

Those winches are no joke. The ship also has a bunch of hydraulic pumps ready and able to bring those trawl nets in fast if need be. Each of these hydraulic pumps has 1,000 gallons of fluid ready to retrieve a net in a hurry if the need exists.

The hydraulic pumps

The hydraulic pumps

One really cool thing I learned was that in case the ship had a major issue and could not be steered from the bridge, there is a way to use the ship’s heading underneath for someone to manually operate the rudder.

Yes you can drive the ship blind

Yes you can drive the ship blind

The manual rudder control

The manual rudder control

From there we got a tour of the remainder of the ship.

One of the ship's massive generators

One of the ship’s massive generators

A water pump for a fire station

A water pump for a fire station

A transformer to convert all that electrical energy

A transformer to convert all that electrical energy

The Oscar Dyson creates ALOT of energy. Here is a read out for one of the many generators on board. Take a look at the Amps produced.

818.6 Amps!

818.6 Amps!

A ship this big also has multiple fuel tanks. Here the engineers can choose which tank they want to draw from. Interesting also is the engineers have ballast tanks to fill with water to compensate for the fuel the ship uses. Alan also showed us the log book for this, as ships taking on ballast water can be an environmental issue. The crew of the Oscar Dyson follows this protocol as set forth by the United States Coast Guard. You can learn more about that protocol by clicking here

Fuel tank selection

Fuel tank selection

Our last stop was seeing the bow thruster. It was a tight space, but the bow thruster can actually power the ship if the main engine loses power.

In the bow thruster room

In the bow thruster room

Here are some other pictures from the tour:

Nikki, Alan, and I in the engine room

Nikki, Alan, and I in the engine room

A serious pipe wrench

A serious pipe wrench

This surface is squishy and covers the entire engine room. It makes the boat super quiet!

This surface is squishy and covers the entire engine room. It makes the boat super quiet!


 

After our tour, it was back to business as usual, the Walleye Pollock Survey. Our Chief Scientist spends countless hours analyzing the acoustics data then sampling the fish.

Our Chief Scientist, Dr. Patrick Ressler analyzing the acoustic data from the survey

Our Chief Scientist, Dr. Patrick Ressler analyzing the acoustic data from the survey

The Walleye Pollock which we are studying is a very integral part of the Alaskan ecosystem, as well as a highly monetary yielding fishery. One thing I noticed almost immediately is the color change between juveniles and adults. It is theorized that as the fish get older, they move lower in the water column towards the bottom, thus needing camouflage. Take a look at this picture that shows a mature Walleye Pollock and it’s juvenile counterparts.

The adult Walleye Pollock gets "brassy" spots on it's body.

The adult Walleye Pollock gets “brassy” spots on it’s body.

You can learn more about the life cycle of Pollock by clicking here.

Here is another site with some useful information on Pollock, click here.


Personal Log: 

Working on the deck of the Oscar Dyson is no laughing matter. What is required to step on deck? A hard hat, float coat, and life jacket. Watching the deck crew, controlled by the lead fisherman, is like watching an episode of Deadliest Catch… just without the crabs. Giant swells that make the boat go up and down while maintaining a solid footing on a soaking wet deck is no joke. My hat is off to our hard working deck crew and fisherman.

 

The deck crew and fisherman deploying an Aleutian Wing Trawl

The deck crew and fisherman deploying an Aleutian Wing Trawl

Fisherman Brad Kutyna retrieving an Aleutian Wing Trawl

Fisherman Brad Kutyna retrieving an Aleutian Wing Trawl

The best part about fishing, is it is just that, fishing. NOAA sets the standard when reducing by-catch (fish you do not want to catch), but sometimes a fish’s appetite gets the best of him/her.

This Pacific Cod ended up in our Aleutian Wing Trawl, it wanted Pollock for lunch

This Pacific Cod ended up in our Aleutian Wing Trawl, it wanted Pollock for lunch

These Pacific Cod were 8 pounds each.

These Pacific Cod were 10 pounds each.

Fishing has always been apart of my life. My Grandfather always said, “If the birds are working, you will find the fish.” A good piece of advice… Look for circling gulls and chances are a group of bigger fish has some bait fish balled up under the surface.

Here the birds are working off the stern of the boat

Here the birds are working off the stern of the boat


Meet the Scientist: 

On board the Oscar Dyson this part of the Walleye Pollock survey is scientist Tom Weber. Tom lives in Durham, New Hampshire and is here to test new custom acoustic equipment. Tom is married to his wife Brinda and has two sons, Kavi and Sachin.

Tom has a Bachelor’s and Master’s degree in Ocean Engineering from the University of Rhode Island. He attained his PhD in Acoustics from Penn State in State College, PA.  Currently Tom is an Assistant Professor of Mechanical Engineering at the University of New Hampshire. He also is a faculty member of the Center for Coastal and Ocean Mapping (CCOM for short). Both places of employment are located in his hometown of Durham, New Hampshire.

Tom explaining the brand new acoustic technology

Tom explaining the brand new acoustic technology

Tom has been affiliated with NOAA and their projects since 2006 and is here to test a custom Acoustic Transducer (a piece of technology that sends out a signal to the ocean floor) and sonar transceiver. As he explained to me, this technology sends out a multi-band frequency and the echo which returns could potentially identify a species of fish hundreds of meters below the boat. He is also here to study Methane gas seeps found along the convergent boundary in the Aleutian Islands.  Methane gas seeps are of particular curiosity on this trip because of their unique properties.

Tom busy at work in the Acoustic Lab on board the Oscar Dyson

Tom busy at work in the Acoustic Lab on board the Oscar Dyson

On a side note, Tom saw the first grizzly bear of our trip just hanging out on one of the many coastlines we have passed. He said being on the Oscar Dyson is “Not like being in Beaver Stadium, but the ship moves as much as your seats do during a game.”  When I asked Tom for any words of advice, he said: “Never name your boat after a bottom fish.” Apparently that is bad luck.

A methane gas seep on the ocean floor makes quite a disturbance. Here Chris Bassett is observing what it looks like.

A methane gas seep on the ocean floor makes quite a disturbance. Here Chris Bassett is observing what it looks like.

Tom loves working side by side with the scientists on this study and is ecstatic to see this new technology being used on this survey.


Meet the NOAA Corps Officer: 

Meet Lieutenant Carl Rhodes, the Oscar Dyson’s Operations Officer, and acting Executive Officer for this part of the Walleye Pollock Survey. LT Rhodes is from Bayfield, Colorado and joined the NOAA Corps to use his degree in science. LT Rhodes has a Bachelors degree in Marine Science with an Associates Degree in Small Vessel Operations from Maine Maritime Academy in Castine, Maine. LT Rhodes also has a Masters of Science in Facilities Management from Massachusetts Maritime Academy.

His job as Operations Officer on board the Oscar Dyson includes:

  • Ensuring all scientific operations are conducted safely and efficiently.
  • Act as a liaison between all members of the ship’s crew and scientific parties.
  • Record and observe all scientific missions during the day.

His extra duties as acting executive officer include:

  • Managing the ship’s personnel and human resources
  • Taking care of payroll and travel requests
  • Supervising junior officers and crew members
Lieutenant Carl Rhodes on the bridge of the Oscar Dyson

Lieutenant Carl Rhodes on the bridge of the Oscar Dyson

Hands down, the best job of all not mentioned above is driving the boat! All officers stand watch (aka drive the boat) for two, four hour shifts a day. Not to mention all the other work they are required to do. Being a NOAA Corps officer is no easy job. LT Rhodes has the goal to one day be the Captain of a NOAA research vessel.

In his free time, LT Rhodes enjoys scuba diving, climbing mountains, hiking, camping, biking, photography, and flying drones. LT Rhodes shared with me how he has overcome many obstacles in his life. His words of advice to any student are: “Anyone can get anywhere if they try hard and really fight for it.”

LT Rhodes and all the rest of the crew of the Oscar Dyson have not had a day off yet on this research cruise, and work 12 hour shifts around the clock. Seeing this first hand has given me much respect for the type of work NOAA does!


 

Did You Know? 

Seafood is a billion dollar industry in Alaska, with more than half of U.S. commercially captured fish caught in the state nicknamed “The Last Frontier.” According to Alaska’s Department of Labor and Workforce, around 32,200 people fished commercially in Alaska in 2011, averaging 8,064 people per month. Salmon harvesting represents half of all fishing jobs in Alaska, with ground fish and halibut following in second and third place, respectively, according to the state’s labor bureau. Read more here.


 Thanks for reading my blogs! I am hooked on Alaska and would love to come back! I will see you all soon in Delaware!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s