Phil Moorhouse: The Rest of the Story, September 22, 2019

airport meal

NOAA Teacher at Sea

Phil Moorhouse

Aboard NOAA Ship Oscar Dyson

August 27, 2019 – September 15, 2019


Mission: Fisheries-Oceanography Coordinated Investigations.

Geographic Area of Cruise: Gulf of Alaska (Kodiak – Aleutian Islands)

Date: September 22, 2019


Weather Data from Richmond, Virginia

Latitude: 37 44.36 N
Longitude: 77 58.26 W
Wind Speed: 5 knots
Wind Direction: 195 degrees
Air Temperature: 31 C
Barometric Pressure: 1018 mBar
Sky:  Clear

Conclusion

Wow, it’s hard to believe that my time on the waters of Alaska aboard the Oscar Dyson are over.  It was an experience I will never forget.  I just hope that I can instill in my students the idea that all kinds of things are possible when you follow your interests. 

It has taken me several days to reacclimatize to life on land.  Standing in front of my class, I have caught myself swaying.  It also took several days to readjust my sleep schedule.  (I don’t get rocked to sleep anymore and my hours are completely different.)

There were so many things I will miss and never forget: all of the unique experiences and sights I got to see, starting with my side trip to Barrow and swimming in the Arctic Ocean before the start of the expedition, getting to explore some of Kodiak before we left port, all of the open sea and species that were part of the random samples, the little coves we snuck into when storms were approaching, getting a “close-up” of the Pavlof volcano, and getting to explore the native land around Dutch Harbor where we were able to watch Salmon spawning and Bald Eagles doing their thing. 

It was also interesting talking to and learning from the ship crew.  There are some interesting stories there about how they got to NOAA and what they have experienced since then.

At the top of the list though would have to be the connections I made with the scientists I spent almost three weeks with.  Being able to go out into the field with them and talking about what they have seen and learned over years of research has really reenergized my love for science in general.  Starting my shift looking forward to seeing what each Bongo station would bring up or what each trawl would bring to the sorting table, made for an expedition that went much too quickly.  It was interesting listening to my fellow scientists comparing how the numbers and ages of pollock caught at the various stations compared to what they had found in the Spring and in previous years. 

airport meal
The science crew all had the chance for one last meal together at the Anchorage airport before parting ways. I am very thankful for being accepted so well and for everything I have learned.

Overall, this has been an experience I will never forget.  I have learned so much about Alaska, the ocean, marine species, global warming, and scientific technology.  My time as a Teacher at Sea aboard the Oscar Dyson is something I will never forget and hope I can pass the excitement and experiences on to my students.

Emily Cilli-Turner: One Fish, Two Fish….Pollock Counting Techniques July 29, 2018

NOAA Teacher at Sea

Emily Cilli-Turner

Aboard NOAA Ship Oscar Dyson

July 24 – August 11, 2018

 

Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 29, 2018

 

Weather Data from the Bridge:

Latitude: 57° 10.46 N

Longitude: 171° 58.29 W

Wind Speed: 11.16 knots

Wind Direction: 77.54° (NW)

Air Temperature: 10.1° C (Manual Reading from the Bridge)

Barometric Pressure: 992.7 mb

Visibility: 6 nautical miles

Sea Wave Height: 3 feet

Sky: Overcast

 

Science Log:

How do the scientists aboard NOAA Ship Oscar Dyson estimate the number and biomass of pollock in the Eastern Bering Sea? By using the science of statistics, of course! When political strategists want to determine what percentage of voters support a specific candidate or issue, they take a sample from the population of all registered voters. Voters in this sample are then asked about their preferences and statistical techniques are employed to extrapolate the results from the sample to the entire population and measure the margin of error.  Similar statistical techniques are employed by the scientists on NOAA Ship Oscar Dyson, but as you can imagine it is more difficult to sample pollock than voters that can be called on the phone!

Before each pollock survey begins, a set of transects is created for the Eastern Bering Sea.  These transects are paths for the ship to follow along which the scientists sample the pollock.  As you can see below, the transects for this survey are a fixed distance apart and cover the entire area of interest.  Generally, the transects are straight lines created to be perpendicular to the ocean depth grade. This allows for the scientists to encounter a variety of species as well as different ages of pollock to gain a robust picture of the ocean life in the area.

transect
The transects for this survey leg can be seen as the straight lines. The other markings are places where the trawls have been done and other scientific instruments have been deployed.

The NOAA Ship Oscar Dyson follows the transects during daylight hours, continuously recording water column acoustic backscatter data using EK60 instruments mounted on the bottom of the centerboard.  Scientists monitor the backscatter images, and when they observe sufficient pollock or other fish aggregations they  use the trawling nets to take a random sample of the fish and other ocean life they observed.  The trawling net is 140 m long with a vertical mouth opening of 25 m and horizontal mouth opening of 35 m. The net is deployed from the back of the ship and dragged at a fixed depth for an amount of time determine by the lead scientist to ensure a large enough sample. Once the trawling net is hauled in, the sample of marine fish and invertebrates is processed in the wet lab and entered into a database. Later the pollock numbers and weights by length are combined with  recorded acoustic data to create a robust estimate of the pollock population in the Eastern Bering Sea.

After the catch comes in, the first job in processing the sample is to sort the specimens from the trawling net.  The first part of the net to come in is called the pocket net. This small net, also called a recapture net,  has a fine mesh and is designed to capture small species such as krill, age 0 pollock and jellyfish which slip through the meshes of the large trawl.  After the pocket net is processed, we process the codend, the closed end of the net and the main section where larger fish enter and are captured.  The fish in the codend are sorted by species.  The scientists can choose to measure the length of all the pollock in the haul or, if it is a particularly large catch, split the haul and measure length of a subsample of pollock.  Other species are also identified and their length is measured for later estimates of the total biomass that pollock make up as compared to other species.  Smaller species such as krill are weighed in aggregate instead of individually.

codend
The codend of the trawling net.

Sample analysis consists of measuring the lengths of approximately 200-400 adult pollock in the catch using the magnetic length board.  This is just one of the numerous software and instruments created by the MACE (Midwater Assessment and Conservation Engineering) group at NOAA in Seattle to make analysis easier and more automated.  The length distribution of the adult pollock helps scientists determine the approximate age distribution of pollock in the sample and it also helps them compare this distribution to other samples taken in the Eastern Bering Sea.  A subsample of about 50 pollock from the haul is taken to get more in-depth measurements. From these pollock, we measure both the length and weight and a subsample from the 50 is taken to determine the gender, measure maturity (i.e. what stage in the life cycle the pollock is at), and collect the otolith (ear bone), which gives a more accurate measurement of the pollock’s age.

Personal Log:

At this point, I am getting used to life at sea and have a nice routine.  The beginning of my shift, from 4am to a little past 7am, starts at sunrise and during which we resume our path along the transect.  No trawling operations are conducted at night, but there is still excitement.  If the underwater acoustics show that the pollock are at an appropriate depth, we can go pole fishing off the boat.  NOAA scientist Mike Levine is interested in post-capture mortality of pollock and the feasibility of tagging pollock.  Thus, he would like to catch pollock using a fishing pole, which puts much less stress on the pollock and increases the chance of their survival after the catch, instead of the trawling nets.

fishing
NOAA scientist Mike Levine with a pollock caught with a fishing pole.

As an instructor of mathematics, I have little knowledge of fish biology, but the scientists are great teachers!  I have been given a crash course on fish anatomy using specimens from the catch and I have learned how to sex the fish as well as how to collect the ovaries and the otoliths (ear bones).  If you asked me a week ago if I ever thought I would know so much about pollock after just a couple days on board, I would have laughed.  It has been great being the student and being able to learn so much in such a short time with real hands-on experience!

Did You Know?

Most of the personnel that are responsible for piloting and maintaining the ship are part of NOAA Corps, which is one of the seven uniformed services of the United States.

Emily Cilli-Turner: Getting Ready for an Adventure! July 22, 2018

NOAA Teacher at Sea

Emily Cilli-Turner

Aboard NOAA Ship Oscar Dyson

July 25 – August 15, 2018

Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Dutch Harbor, Alaska

Date: July 15, 2018

Personal Introduction:

Olympic Mountains
Hiking in the Olympic Mountains near Seattle, WA

Hello!  My name is Emily Cilli-Turner and I will be aboard the NOAA Ship Oscar Dyson as a participant in the 2018 NOAA Teacher at Sea program.  I am Assistant Professor of Mathematics at the University of La Verne in La Verne, California where I teach the entire undergraduate curriculum in mathematics.  This will be my sixth year teaching full-time. My bachelor’s degree in mathematics is from Colorado State University and I received my doctorate from University of Illinois at Chicago, where I specialized in undergraduate mathematics education.  I am especially interest in the transition students make when they enter a proof-based course and how to best acclimate them to the abstract and non-formulaic nature of proving.

I am passionate about math and science education and excited to use the data collected from my time on the ship to create real-world applications problems for my students.  I will be teaching Calculus I and II next semester and I plan to use the data gained from my experience to teach my students about concepts such as rates of change and statistical techniques.

I have a strong love for the ocean and so I am excited to be on the water for so long. I am transitioning to California after living in Washington, where I co-owned a 23-foot sailboat with some friends.  We often would sail to different islands and ports on Puget Sound, which was always a blast. When I am not teaching or sailing, I enjoy walking my dog, hiking and reading!

On a boat
TAS Emily Cilli-Turner on her boat in the Puget Sound

Personal Log

In about a week, I will fly to Dutch Harbor, Alaska to board the NOAA Ship Oscar Dyson and participate in the Alaska Pollock counting survey.  Before receiving this placement, I have never really heard of Pollock, but after researching it I realized it is an amazing fish! Pollock can easily taste like other fish and is often used for imitation crab amongst other things.

I am also really excited to meet the scientists and the crew.  The reason I know about the Teacher at Sea program is that I have a friend that works at NOAA in Seattle.  I mentioned offhandedly that I would love to go out on a NOAA cruise and she said, “Well…they do have the Teacher at Sea program.”  I was immediately intrigued and I wrote my application as soon as it was available. As a person who is passionate about education and the ocean, the Teacher at Sea program is a great fit for me and I know I will learn a lot that I can take back to my students. Hopefully, I can also inspire them to seek out a career with NOAA.

Did You Know?

Pollock eat crabs, shrimp and small fish.

Jenny Smallwood: Rough Seas Asea, September 13, 2017

NOAA Teacher at Sea

Jenny Smallwood

Aboard NOAA Ship Oscar Dyson

September 4 – 17, 2017

Mission: Juvenile Pollock Survey
Geographic Area of Cruise: Gulf of Alaska
Date: September 13, 2017

Weather Data from the Bridge
Latitude: 55 06.6N
Longitude:158 39.5W
Winds: 20 S
Temperature: 11 degrees Celsius (51.8 degrees Fahrenheit)

Up. Down. Up. Down. Left. Right….no I’m not in an aerobics class. High winds and seas cause my chair to slide across the floor as I type.

weather

Thus far we’ve been working 12 hour shifts, 24 hours a day. Today we’re sitting about twirling our thumbs as 12 feet seas toss us about. It’s not too bad actually, but it is bad enough to make operations unsafe for both crew and equipment. I’ve been impressed with the safety first culture on-board the Oscar Dyson. Hopefully, it’ll calm down soon, and we can start operations again.

Science and Technology Log

Ship support systems for power, water, sewage treatment, and heating/cooling are all several levels below the main deck, which makes ship engineers a bit like vessel moles. These hard working guys ensure important life support systems work smoothly. Highlights from my time with them include a lesson on the evaporator and engines.

The evaporator, which for some reason I keep calling the vaporizer, produces the fresh water drinking supply. The evaporator works by drawing in cold seawater and then uses excess engine heat to evaporate, or separate, the freshwater from the seawater. The remaining salt is discarded as waste. On average, the evaporator produces approximately 1,400 gallons of water per day.
*Side note: the chief engineer decided vaporizer sounds a lot more interesting than evaporator. Personally, I feel like vaporizer is what Star Trek-y people would have called the system on their ships.

IMG_20170909_145438
The evaporator in action.

The Oscar Dyson has 4 generators on board, two large, and two small. The generators are coupled with the engines. Combined they produce the electricity for the ship’s motors and onboard electrical needs, such as lights, computers, scientific equipment, etc.

IMG_20170909_145326

IMG_20170909_145132
I even got to see the prop shaft.

Personal Log

This week I also spent time in the Galley with Ava and Adam. (For those of you who know me, it’s no surprise that I befriended those in charge of food.) Read on for a summary of Ava’s life at sea story.

Me: How did you get your start as a galley cook?

Ava: When I was about 30 years old, a friend talked me into applying to be a deck hand.

Me: Wait. A deck hand?

Ava: That’s right. I was hired on to a ship and was about to set out for the first time when both the chief steward and 2nd cook on a different ship quit. My CO asked if I cook to which I replied “for my kids,” which was good enough for him. They immediately flew me out to the other ship where I became the 2nd cook. 12 years later I’m now a Chief Steward.

Me: Wow! Going from cooking for your kids to cooking for about forty crew members must have been a huge change. How did that go?

Ava: To be honest, I made a lot phone calls to my mom that first year. She helped me out a lot by giving me recipes and helping me figure out how to increase the serving sizes. Over the years I’ve paid attention to other galley cooks so I now have a lot of recipes that are my own and also borrowed.

Me: What exactly does a Chief Steward do?

Ava: The Chief Steward oversees the running of the galley, orders food and supplies, plans menus, and supervises the 2nd Cook. I’m a little different in that I also get in there to cook, clean, and wash dishes alongside my 2nd Cook. I feel like I can’t ask him to do something that I’m not willing to do too.

Me: So you didn’t actually go to school to be a chef. Did you have to get any certifications along the way?

Ava: When I first started out, certifications weren’t required. Now they are, and I have certifications in food safety and handling.

There are schools for vessel cooking though. My daughter just recently graduated from seafarers school. The school is totally free, except for the cost of your certification at the very end. For people interested in cooking as a career, it’s a great alternative to other, more expensive college/culinary school options. Now she’s traveling the world, doing a job she loves, and putting a lot of money into her savings.

Me: Talking with crew members on this ship, the one thing they all say is how hard it is to be away from family for long stretches of time. A lot of them are on the ship for ten months out of the year, and they do that for years and years. It’s interesting that your daughter decided to follow in your footsteps after experiencing that separation firsthand.

Ava: I was surprised too. Being away from friends and family is very hard on ship crew. Luckily for me, my husband is also part of the NOAA crew system so we get to work and travel together. Nowadays I’m part of the augment program so I get to set my own schedule. It gives me more flexibility to stay home and be a grandma!

Did You Know?

Nautical miles are based on the circumference of the earth and is 1 minute of latitude. 1 nautical mile equals 1.1508 statue miles.

Jenny Smallwood: WWE at Sea, September 5, 2017

NOAA Teacher at Sea
Jenny Smallwood
Aboard Oscar Dyson
September 2 – 17, 2017

Mission: Juvenile Pollock Survey
Geographic Area of Cruise: Gulf of Alaska
Date: September 5, 2017

Weather Data from the Bridge
Latitude: 56 38.8 N
Longitude: 155 34.8
Clear skies
Wind speed 10 mph NNE
Air temp 11.5 degrees Celsius (52.7 degrees Fahrenheit)

Science and Technology Log
Today I got smacked in the face by a jellyfish. It practically flew into my mouth. Don’t worry I’m perfectly fine. I’ll admit to a lot of silent shrieking when it happened. Perhaps even some gagging….How did this happen you might be asking yourself? Read on my friend, read on..

After a couple of days at the dock in Kodiak, Alaska, we are finally underway!  My first shift was spent hanging out and watching the scenery as we cruised to the first station.

Fluke
Here’s one of the whales we saw while cruising to our first station site. Photo courtesy of Jim McKinney

 We went through the aptly named Whale Passage where we saw orcas, whales, sea otters, and puffins!  It was also the first time we’d seen the sun in two days.  To be honest, that was more exciting than seeing whales.

It took about twelve hours for us to reach the first station site. The established routine is bongo net and Stauffer trawl, cruise to next site, bongo net and Stauffer trawl, cruise to next site, bongo net and…well you get the point.

When the Stauffer trawl net is hauled in, the science team and survey tech sort through everything in the net. Juvenile pollock (less than a year old) go into one bin, capelin into another bin, so on and so forth.

Stauffer Trawl Sorting
The science team and survey tech sort a pile of jellies and fish. *Caution! Watch out for flying jellyfish!*

Now what makes this really interesting is that we’re basically digging these fish out of one massive, gelatinous pile of jellyfish goop. Once all the fish are sorted, the jellies get sorted too, which is where the jellyfish face smack comes in. Picture a smallish conveyor belt with 5 people standing around throwing fish, squid, isopods, and jellyfish into appropriate bins. It turns out that when you throw jellyfish into a bin, it sometimes explodes on impact causing jellyfish goop to go flying, and sometimes it flies onto my face. *smh*

lumpsucker
We caught a cool looking smooth lumpsucker fish.

 

GOPR0491 - Edited.jpg
Here I am holding the smooth lumpsucker.

When the crew and science team aren’t working jellyfish laden Stauffer trawls, they’re busy with the bongo nets. These are my favorite because they pull up lots of plankton.

GOPR0498.JPG
The deck crew and survey tech bring in the bongo nets.

Most people would totally freak out if they knew how much stuff was swimming around in the water with them, including pteropods, which look a bit like slugs with wings. Pteropods are a type of zooplankton also know as sea butterflies for the small “wings” attached to their bodies. The ones we got today were big enough to be slugs. My goal over the next couple of weeks is to get a decent video of them swimming.

Personal Log
Peer pressure is a powerful thing. Even though I’ve never gotten seasick, I succumbed to peer pressure and took some meclizine before leaving the dock. I really didn’t want my memories of the Oscar Dyson to include yakking over the side of the ship. In this case, positive peer pressure was a good thing. I’ve been feeling just fine even when confined in small, fishy smelling rooms. Eau de poisson anybody?

The biggest adjustment has been the time change and 12 hour work shift from noon to midnight. I like to describe myself as the oldest, young person alive. We’re talking early bird specials, going to bed early, and waking up at the crack of dawn. So while the day shift I’m on is clearly a perk, it’s still taken me a few days to get used to it, especially since it’s 4 pm to 4 am east coast time. Judging by the 9.5 hours of sleep I got last night, it’ll be smooth sailing from here.

I can also report that the food on board is delicious. Ava and Adam crank out tasty options at every meal, and somehow meet the needs of about 35 people some of whom are vegetarian, vegan, low acid, etc. Since Kodiak was a washout, I tagged along on the shopping trip prior to our departure. Five shopping carts later we were ready to eat our way across the Gulf of Alaska!

Did You Know?
NOAA scientists on board the ship rotate through different at sea research cruises throughout the year. They even participate on cruises that have nothing to do with their actual research. It’s like a big group effort to get the data NOAA needs for its various research projects.

 

 

Jenny Smallwood: Adventure Awaits, August 29, 2017

NOAA Teacher at Sea

Jenny Smallwood

Aboard NOAA Ship Oscar Dyson

September 4 – 17, 2017

 

Mission: Juvenile Walleye Pollack Survey

Geographic Area of Cruise: Gulf of Alaska

Current Location: Virginia Beach, Virginia

Date: 8/29/2017

 

Weather Data from the beach

Currently Virginia Beach is experiencing Potential Tropical Cyclone 10.  The temperature is topped out at 75°F.  The winds are out of the NE at about 13 mph right now.  That’s expected to increase to 25-35 mph with gusts up to 50 mph this afternoon.  Forecasts predict mild flash flooding and some tidal flooding around the 2 pm high tide.

Potential Tropical Cyclone 10
Potential Tropical Cyclone 10 Wind Speed Probability Map. Image courtesy of the National Hurricane Center

Introduction – Personal Log

My name is Jenny Smallwood, and I’m a school and youth programs educator at the Virginia Aquarium & Marine Science Center in Virginia Beach, Virginia.  I’m in my 11th year as an educator, which included 8 years as a high school science teacher.  These days I get to hang out with and educate scouts, school groups, and other visitors to the Aquarium.  One of the coolest things I’ve experienced working here is watching as a student sees the ocean for the very first time!  It was that experience that helped me realize how important it is to share the oceans and oceanic research with people who can’t experience it themselves.  I want to bring my Teacher at Sea experience to those individuals who don’t have the Chesapeake Bay or an ocean in their backyard.  I want to help them experience the life of a marine researcher.

Outside of my role as an educator, I love to go on all the adventures.  My husband, Lee, and I enjoy traveling and have nicknamed ourselves “adventure nerds.”  We even have a theme song.  Like I said, we’re nerds.  I’m super excited about this latest adventure with Teacher at Sea.  I’m still amazed that I was one of the few chosen for this year’s research cruises.

Eldfell Volcano
Warming our hands from the heat emitted by Eldfell, a volcano located on the Westman Islands in Iceland.

Science and Technology Log

The Oscar Dyson is a NOAA research vessel used for fisheries surveys important to fisheries management.  Commissioned in 2005, this 208.6 feet long ultra-quiet survey ship is considered one of the most technologically advanced fisheries survey vessels in the world.  That’s right.  This ship is super stealthy so we can sneak up on the fish.  It also has numerous labs onboard, including a wet, dry, bio, and hydro lab.

Oscar Dyson
The Oscar Dyson near Dutch Harbor, Alaska. Courtesy of NOAA.

On this trip, the Oscar Dyson will pull out of Kodiak, Alaska and make its way southwest through the Gulf of Alaska to take up position for Leg 2 of the EMA-EcoFOCI Juvenile Walleye Pollock and Forage Fish Survey.

Leg 2 Map
Leg 2 Sampling Station Map in the Gulf of Alaska. Image courtesy of NOAA

What does that mean exactly?  Well, it means that scientists will collect Walleye Pollock data to get an idea of what the population looks like.  They’ll also take zooplankton samples, smaller prey fish samples, and collect environmental data to see how these factors might be affecting Pollock.  Basically scientists and policy makers need information in order to properly manage this fishery, and this is where NOAA comes in.  I can’t wait to learn more about the application of this research as scientists learn even more about the ecology of Pollock. 

To collect these samples, scientists will be using a variety of tools.  Bongo nets will be used to collect zooplankton samples.  From what I’ve learned so far, it sounds like specially mounted equipment collects water data along with the plankton.  A Stauffer trawl net will be used to sample fish species.  A CTD rosette (CTD stands for conductivity, temperature, and density) will be used along the way to corroborate that the other water data equipment is indeed working correctly.  Scientists, like mathematicians, do love to double check their work.

 

Did You Know?

Did you know that NOAA is part of our daily lives?  Both the National Weather Service and the National Hurricane Center are part of this organization.  To learn more about the National Hurricane Center, Hurricane Harvey, or Potential Tropical Cyclone 10, visit their website: http://www.nhc.noaa.gov/

 

 

 

Amanda Dice: Bongos in the Water, August 24, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: August 24, 2017

Weather Data: 11.5 C, Foggy

Latitude 56 35.5 N, Longitude 153 21.9 W

IMG_1101
This map on the bridge helps everyone keep track of where we are and where we are headed next.

Science and Technology Log

At each sampling site, we take two types of samples. First, we dip what are called bongo nets into the water off of the side of the boat. These nets are designed to collect plankton. Plankton are tiny organisms that float in the water. Then, we release long nets off of the back of the boat to take a fish sample. There is a variety of fish that get collected. However, the study targets five species, one of which is juvenile walleye pollock, Gadus chalcogrammus. These fish are one of the most commercially fished species in this area. I will go into more detail about how the fish samples are collected in a future post. For now, I am going to focus on how plankton samples are collected and why they are important to this survey.

IMG_1096
Juvenile walleye pollock are fish that are only a few inches long. These fish can grow to much larger sizes as they mature.

As you can see in the photos below, the bongo nets get their name because the rings that hold the nets in place resemble a set of bongo drums. The width of the nets tapers from the ring opening to the other end. This shape helps funnel plankton down the nets and into the collection pieces found at the end of the nets. These collection devices are called cod ends.

IMG_0993
Bongo nets being lowered into the water off of the side of the ship.

IMG_1092
This is the collection end, or cod end, of the bongo nets.

This study uses two different size bongo nets. The larger ones are attached to rings that are 60 centimeters in diameter. These nets have a larger mesh size at 500 micrometers. The smaller ones are attached to rings that are 20 centimeters in diameter and have a smaller mesh size at 150 micrometers. The different size nets help us take samples of plankton of different sizes. While the bongo nets will capture some phytoplankton (plant-like plankton) they are designed to mainly capture zooplankton (animal-like plankton). Juvenile pollock eat zooplankton. In order to get a better understanding of juvenile pollock populations, it is important to also study their food sources.

IMG_1081
Here I am, helping to bring the bongo nets back on to the ship.

Once the bongo nets have been brought back on board, there are two different techniques used to assess which species of zooplankton are present. The plankton in nets #1 of both the small and large bongo are placed in labeled jars with preservatives. These samples will be shipped to a lab in Poland once the boat is docked. Here, a team will work to identify all the zooplankton in each jar. We will probably make it to at least sixty sampling sites on the first leg of this survey. That’s a lot of zooplankton!

 

IMG_1121
A jar of preserved zooplankton is ready to be identified.

The other method takes place right on the ship and is called rapid zooplankton assessment (RZA). In this method, a scientist will take a small sample of what was collected in nets #2 of both the small and large bongos. The samples are viewed under a microscope and the scientist keeps a tally of which species are present. This number gives the scientific team some immediate feedback and helps them get a general idea about which species of zooplankton are present. Many of the zooplankton collected are krill, or euphausiids, and copepods. One of the most interesting zooplankton we have sampled are naked pteropods, or sea angels. This creature has structures that look very much like a bird’s wings! We also saw bioluminescent zooplankton flash a bright blue as we process the samples. Even though phytoplankton is not a part of this study, we also noticed the many different geometric shapes of phytoplankton called diatoms.

 

sea angel
A naked pteropod, or sea angel, as seen through the microscope.

Personal Log

Both the scientific crew and the ship crew work one of two shifts. Everyone works either midnight to noon or noon to midnight. I have been lucky enough to work from 6am – 6pm. This means I get the chance to work with everyone on board at different times of the day. It has been really interesting to learn more about the different ship crew roles necessary for a survey like this to run smoothly. One of the more fascinating roles is that of the survey crew. Survey crew members act as the main point of communication between the science team and the ship crew. They keep everyone informed about important information throughout the day as well as helping out the science team when we are working on a sample. They are responsible for radioing my favorite catchphrase to the bridge and crew, “bongos in the water.”

IMG_1105
A sign of another great day on the Gulf of Alaska.

Did You know?

You brush your teeth with diatoms! The next time you brush your teeth, take a look at the ingredients on your tube of toothpaste. You will see “diatomaceous earth” listed. Diatomaceous earth is a substance that contains the silica from ancient diatoms. Silica gives diatoms their rigid outer casings, allowing them to have such interesting geometric shapes. This same silica also helps you scrub plaque off of your teeth!

diatoms
Diatoms as seen through a microscope.

 

Staci DeSchryver: Exploring HICEAS on the High Seas! June 20, 2017

NOAA Teacher at Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

Mission:  Cetacean Study

Geographic Area of Cruise:  Hawaiian EEZ

Current Location:  Impatiently waiting to sail in Centennial, Colorado

Date:  June 20

Weather Data from the “Bridge” (AKA My Sun Porch):

wxdata_0620
Here’s the weather data from the “Bridge” in Centennial. (In Station Model format, of course. How else would we practice?)

 

Personal Log – An Introduction

Hello!  My name is Staci DeSchryver and I will be traveling this upcoming July on the Oscar Elton Sette as part of the HICEAS program!

I am an Oceanography, Meteorology, and Earth Science teacher at Cherokee Trail High School in Aurora, CO.  This August will kick off my 14th (yikes!) year teaching.  I know you might be thinking, “Why Oceanography in a landlocked state?”  Well, the reason why I can and do teach Oceanography is because of Teacher At Sea.  I am an alumna, so this is my second official voyage through the Teacher At Sea program.  It was all of the wonderful people I met, lessons I learned, and science that I participated in on the

 

DeSchryverIntroPic
This is my husband, Stephen, and I, at the game that sent the Broncos to the Superbowl!

 

Oscar Dyson in 2011 that led me to encourage my school to put an Oceanography course in place for seniors as a capstone course.  This past year was the first year for the Oceanography and Meteorology courses, and they were very well received!  I have three sections of each class next year, as well!  (Shout out to all my recent senior grads reading this post! You were awesome!)  We study our World’s Ocean from the top of the water column all the way to the deepest parts of the Marianas Trench, and from the tiniest atom all the way up to the largest whale.  I  believe it is one of the most comprehensive courses offered to our students – incorporating geology, chemistry, physics, and biology, but then again, I’m a bit biased.

Apart from being a teacher, I am a wife to my husband of 8 years, Stephen.  We don’t have children, but we do have two hedgehogs, Tank and Willa, who keep us reasonably busy.  Willa only has one eye, and Tank is named Tank because he’s abnormally large for a hedgie.  They are the best lil’ hedgies we know.  We enjoy camping, rock climbing, and hiking – the typical Coloradans, though we are both originally from Michigan.  When we aren’t spending time together, I like to dance ballet, read, write, and I recently picked up a new weightlifting habit, which has led me to an entire new lifestyle of health and wellness with an occasional interjection of things like Ice Cream topped with caramel and Nachos when in the “off” season (hey, nobody’s perfect).

I will be leaving for Honolulu, Hawaii on July 4th to meet up with the fine scientists that make up the HICEAS team.  What is HICEAS?  Read below to find out more about HICEAS and the research we will be doing onboard!

Science Log

The HICEAS (Hawaiian Islands Cetacean and Ecosystem Assessment Survey) is a study of Cetaceans (Whales, Dolphins, and Porpoises) and their habitats.  Cetaceans live in the ocean, and are characterized by being carnivorous (we will get along just fine at the dinner table) and having fins (since I am a poor swimmer, I will humbly yield to what I can only assume is their instinctive expertise).  This means that the study will cover all manners of these majestic creatures – from whales that are definitely easily identifiable as whales to whales that look like dolphins but are actually whales to porpoises that really look like whales but are actually dolphins and dolphins that look like dolphins that are dolphins and…  are you exhausted yet?  Here’s some good news – porpoises aren’t very common in Hawaiian waters, so that takes some of the stress out of identifying one of those groups, though we will still be on the lookout.  Here’s where it gets tricky – it won’t be enough to just sight a whale, for example and say, “Hey! We have a whale!”  The observers will be identifying the actual species of the whale (or dolphin or possible-porpoise).  The observers who tackle this task are sharp and quick at what is truly a difficult and impressive skill.  I’m sure this will be immediately confirmed when they spot, identify, and carry on before I say, “Wait! Where do you see it?”

hawaiian_archipelago_map_sm
This is the research area for the HICEAS project. Map/photo is credited directly to the HICEAS website, https://www.pifsc.noaa.gov/hiceas/whats_hiceas.php

There are 25 cetacean species native to Hawaiian waters, so that’s a big order to fill for the observers.  And we will be out on the water until we locate every last one.  Just kidding.  But we will be looking to spot all of these species, and once found, we will do our best to estimate how many there are overall as a stock estimate.  Ideally, these cetacean species will be classified into three categories – delphinids (dolphins and a few dolphin-like whales), deep diving whales (whales with teeth), and baleen whales (of the “swim away!” variety).  Once identified in this broad sense, they will then be identified by species.  However, I do have a feeling these two categorizations happen all at once.

Once the data is collected, there is an equation that is used to project stock estimates for the whole of the Pacific.  More on this later, but I will just start by saying for all you math folk out there, it’s some seriously sophisticated data extrapolation.  It involves maths that I have yet to master, but I have a month to figure it out, so it’s not looking too bleak for me just yet.  In the meantime, I’m spending my time trying to figure out which cetaceans that look like dolphins are actually possible-porpoises, and which dolphins that look like dolphins are actually whales.

Goals and Objectives of the HICEAS

The HICEAS study operates as a part of the Pacific Islands Fisheries Science Center (PIFSC) and the Southwest Fisheries Science Center (SFSC), both under the NOAA umbrella.  Our chief scientist is Dr. Erin Oleson, who will be the lead on this leg of the cruise. HICEAS last collected data in 2010, and is now ready for the next round of stock assessments.  HICEAS is a 187-day study, of which we will be participating in approximately 30 of those days for this particular leg.  Our research area is 2.5 million square kilometers, and covers the whole of the Hawaiian Archipelago and it’s Exclusive Economic Zone, or EEZ!  The HICEAS study has three primary goals:

  1.  Estimate the number of cetaceans in Hawaii.
  2.  Examine their population structure.
  3.   Understand their habitat.

Studies like the HICEAS are pretty rare (2002, 2010, and now 2017), so the scientists are doing their best to work together to collect as much information as they possibly can during the study.  From what I can gather in lead-up chats with on board scientist Kym Yano, we will be traveling along lines called “transects” in the Pacific Ocean, looking for all the popular Cetacean hangouts.  When a cetacean is sighted, we move toward the lil’ guy (or gal) and all his friends to take an estimate, and if it permits, a biopsy.  There is a second team of scientists working below deck listening for Cetacean gossip (whale calls) as well.  Acoustic scientists will record the whale or dolphin calls for later review and confirmation of identification of species, and, of course, general awesomeness.

But that’s not all!

We will also be dropping CTD’s twice per day, which is pretty standard ocean scientific practice.  Recall that the CTD will give us an idea of temperature, salinity, and pressure variations with depth, alerting us to the presence and locations of any of the “clines” – thermocline, halocline, and pycnocline.  Recall that in areas near the equator, rapid changes of temperature, salinity, and density with depth are pretty common year-round, but at the middle latitudes, these form and dissipate through the course of the solar year. These density changes with depth can block nutrients from moving to the surface, which can act as a cutoff to primary production.  Further, the CTD readings will help the acoustic scientists to do their work, as salinity and temperature variations will change the speed of sound in water.

There will also be a team working to sight sea birds and other marine life that doesn’t fall under the cetacean study (think sea turtles and other fun marine life).  This study is enormous in scope.  And I’m so excited to be a part of it!

Pop Quiz:

What is the difference between a porpoise and a dolphin?  

It has to do with 3 identifiers:  Faces, Fins, and Figures.

According to NOAA’s Ocean Service Website…

Faces:  Dolphins have prominent “beaks” and cone-shaped teeth, while Porpoises have smaller mouths and teeth shaped like spades.

Fins: Dolphin’s dorsal (back) fins are curved, while porpoises fins are more triangle-shaped

Figures: Dolphins are leaner, and porpoises are more “portly.”

Dolphins are far more prevalent, and far more talkative.  But both species are wicked-smart, using sonar to communicate underwater.

Resources:

HICEAS website

Bradford, A. L., Forney, K. A., Oleson, E. M., & Barlow, J. (2017). Abundance estimates of cetaceans from a line-transect survey within the U.S. Hawaiian Islands Exclusive Economic Zone. Fishery Bulletin, 115(2), 129-142. doi:10.7755/fb.115.2.1

 

 

 

 

 

Virginia Warren: Home Sweet Home

NOAA Teacher at Sea Virginia Warren
Mission: Acoustic and Trawl Survey of Walleye Pollock
Geographical Area of Cruise: Shelikof Strait
on NOAA ship Oscar Dyson
Date: 3/25/2016

Science and Technology Log:

This slideshow requires JavaScript.

 

I created the video below  to document some of my activities aboard the Oscar Dyson during my 2016 Teacher at Sea research trip.

In this video, Virginia opens with exciting footage from the front of the Oscar Dyson’s bow as they transit through Alaska’s Shelikof Strait. Interspersed, she shares various steps involved in processing the fish caught in the survey: sorting the catch by species (0:34), collecting the pollock into bins (1:00), making an incision to determine the sex of the pollock (1:07), measuring the pollocks’ lengths and taking biological samples (1:33), removing the otoliths (2:23 and 3:29), preserving the otoliths for analyzing on shore (3:12), and measuring and recording other fish using the Ichthystick and the CLAMS computer program (3:57). Virginia also takes the opportunity to show off some interesting species—lumpsucker fish (2:18), starry flounder (2:53), and salmon (3:53). Finally, Virginia gives a brief tour of the deck (4:38) and finishes with a photo of her wearing a survival (or “Gumby”) suit (5:02.)

My students know a good bit about my previous Teacher at Sea experience out of Woods Hole, Massachusetts where we used the HabCam to look at the ocean floor. With that knowledge in mind a couple of my students asked me if there was a way that we were able to look at the fish while they were still in the water. The simple answer to that question is yes. While my previous TAS experience used the HabCam, the Oscar Dyson uses a CamTrawl. The CamTrawl is attached to the net and it records pictures as fish enter the  cod end of the net.

AWT001_camtrawl2
Image from the CamTrawl

 

DSC02936
CamTrawl

DSC02920
Nick and Ryan Attaching the CamTrawl to the Net

 

After each trawl we would use custom software written in MATLAB to measure lengths of pollock while they were in the water. This program uses the pictures taken from the CamTrawl during the trawl to measure the length of the fish. The CamTrawl takes two pictures at different angles so that most of the time we can see the same fish from two different angles. Fish length irregularities occur in the MATLAB program when it selects nets or two fish at one time to length, so therefore a person has to go back and check to make sure that the program has selected valid fish to length. As the fish pictures come up on the MATLAB screen the person rating the fish selects the fish when the yellow box around the fish covers most of the fish from both angle camera shots of the CamTrawl.

Untitled
A Screen in MATLAB that Shows Valid Fish Lengths

The above picture shows three different fish that were valid choices for length measurement. The pictures on the left show one camera angle and the pictures on the right show the other camera angle. When both angles have a valid fish with the correct placement of the yellow box, the person selecting the fish will click the fish to tell the program to use that fish in the measurement data.

 

Interview With a NOAA Survey Technician: Alyssa Pourmonir 

Alyssa Pourmonir inside the Wet Lab
Alyssa Pourmonir inside the Wet Lab

  1. How did you come to be in NOAA Corps? (or what made you decide to join NOAA Corps and not another military branch.

I am not in the NOAA Corps, instead I am a civilian government employee under the title of Survey Technician. I was in the US Coast Guard for 3 years where I took many courses related to navigation, leadership, and ship life. I feel my background in the Coast Guard has allowed me to excel in this demanding environment.

  1. What is your educational/working background?

I have been lucky to have the opportunity to be in the Coast Guard which taught me many professional skills and built me up to be stronger and more independent. I also spent an entire summer forecasting for the weather in Pennsylvania. Here I gained an abundance of practice presenting the weather on the green screen and performing on live television for WNEP TV. Before coming to Alaska for this job, I worked as a consultant at NASA Stennis Space Center performing remote sensing analysis of forests using data from the MODIS and VIIRS data.

Academically, I have a BS in Marine Environmental Science from SUNY Maritime College, although most of my college experience took place at the US Coast Guard Academy.

  1. How long have you been in NOAA Corps?

I’m not in the NOAA Corps, but I have worked for NOAA for almost 2 years as a Survey Technician. May 2014 to present.

  1. How long have you been on the Dyson?

June 2014 to present.

  1. How long do you usually stay onboard the ship before going home?

In the past 2 years I have visited my family one time. Partly because I wish to send money home so my family can struggle a little less and hopefully enjoy a life with less debt; especially as my father passes retirement age. He has worked several full time jobs at a time for many years just to support my mom and sisters. Potentially, his work ethic and care giving nature is what I try to embody each day.

  1. Have you worked on any other NOAA ships? If so, which one and how long did you work on it?

Nope

  1. What is your job description on the Dyson?

On the NOAA Oscar Dyson, I am a crew member who acts as a liaison to the scientific personnel on board. I work up to 12 hours each day, 7 days per week maintaining the scientific data, equipment, and lab spaces on board. I also work alongside the scientists, deck department, and bridge watch standers to collect data by completing many different oceanographic or fishing operations.

  1. How is your science job on the Dyson different from the NOAA Scientists that you work with?

As a crew member, I facilitate a positive environment with the needed resources for the scientists to fulfill their data analysis and data collection. I also work alongside the scientists to process the fishing catch in our lab. So you can imagine me suited up with the scientists analyzing the fish’s reproduction development stages and extracting otoliths.

  1. What is the best part of your job?

I get to explore and work in the infamous Bering Sea Alaska, Gulf of Alaska, and Aleutian Island chain which most people can’t even imagine doing. Here in Alaska, I do not have the luxuries found in Continental US, so I believe out here there is a great opportunity for character building. It takes someone pretty amazing to live out here and do what we do.

  1. What is the most difficult part of your job?

Being in remote places and not seeing family or friends, but also being so far away that it is super expensive to try to see them.

  1. Do you have any career highlights or something that stands out in your mind that is exceptionally interesting?

I began my BS absolutely hating biology. I dislike and do not eat seafood. I was skittish and would let my partners do all of the dissections during classes, and I felt that I knew nothing about biology. As a Marine Environmental Science major I decided to take as many biology electives as I could. I went from the lowest grade in my classes to someone who received one of the highest grades in each class. I graduated just one class shy of a minor in Marine Biology and now toss around fish on the NOAA Ship Oscar Dyson, a fisheries research vessel. While my first day I would jump when the fish would move unexpectedly, now I can analyze characteristics of the fish with little alarm and much confidence. It is amazing how I enjoy biology now. I hope to encourage others to confidently try new things, for with a little practice and hard work you may accomplish anything or overcome fears you may not have realized you had.

  1. Do you have any advice for students who want to pursue a career with NOAA?

If you wish to pursue a career with NOAA, be sure to work hard to learn as much as you can, but also come out of your comfort zone to pursue as many volunteer or paid jobs that will give you work experience that correlates with your interests. Time management and resilience is often my secret to success.

Personal Log:

I had a fabulous time aboard NOAA Ship Oscar Dyson and I’m very thankful to NOAA giving me the opportunity to travel to Alaska and learn from their scientists!!!

This slideshow requires JavaScript.

My flight home started on a small plane from Kodiak to Anchorage.

20160324_144957
Ravn Alaska’s Bombardier DHC-8-100

 

After the plane got into the air and was flying away from Kodiak, we were treated to a flyby of the Kodak Harbor and even got to see the Dyson outside of the harbor as we flew away.

20160324_150614
Aerial view of the Kodiak Harbor

We flew into Anchorage, Alaska and I was amazed at the beauty of the mountains in Alaska!

20160324_195443
Mountains Outside the Anchorage, Alaska Airport

A little while before sunset I caught a plane from Anchorage to the Chicago, O’Hare airport. The scenery and sunset leaving Alaska was beautiful!!!! I hope this won’t be the last time I get to come to Alaska, because it is a beautiful, adventure-filled part of the United States.

This slideshow requires JavaScript.

 

It was good to be back on land again when we got back to Kodiak, but I do miss being on the ocean!!

20160324_132915
Bow of the Oscar Dyson

20160324_103709
NOAA Ship Oscar Dyson

 

20160324_103737
Finally back on land in front of the NOAA Ship Oscar Dyson!

This experience was wonderful for me, however for my students this experience was invaluable. I was able to communicate and share my experiences with them through email almost daily and they were also able to read my TAS blogs as they were posted. If they don’t learn anything else from my experiences in Alaska, which I know that they will, I hope they will learn that the world is theirs to explore, study, and learn about no matter how small the town is that they come from!!

Virginia Warren: CLAMS and Trawls March 22, 2016

NOAA Teacher at Sea Virginia Warren
Mission: Acoustic and Trawl Survey of Walleye Pollock
Geographical Area of Cruise: Shelikof Strait
on NOAA ship Oscar Dyson
Date: 3/20/16 – 3/22/16

Data from the Bridge (3/21/16):
Sky: Snow
Visibility: 8 to 10 nautical miles (at one point it was more like 2 to 3 nautical miles)
Wind Speed: 23 knots
Sea Wave Height: 4 – 6 feet
Sea Water Temperature: 5° C (41°)
Air Temperature: 0° C (32° F)
Barometric (Air) Pressure: 994.3 Millibars

Science and Technology Log:
The purpose of this research survey is to collect data on walleye pollock (Gadus chalcogrammus) that scientists will use when the survey is complete to help determine the population of the pollock. This data also helps scientists decide where and when to open the pollock fishery to fishermen. Data collection such as this survey are critical to the survival and health of the pollock fishery.

As I mentioned in a previous blog post, we use an AWT (Aleutian Wing Trawl) to complete the pollock survey. The AWT has two doors that glide through the water and hold the net open. The cod end of the net is where all of the fish end up when the trawl is complete.

awt-model-commented1
Scale model of the Aleutian Wing Trawl (AWT) net courtesy of NOAA Scientist Kresimir Williams (Source: TAS Melissa George)

After the trawl is brought back onto the boat, the cod end of net is dumped onto a hydraulic table. The hydraulic table is then lifted up so that it angles the fish down a shoot into the Wet Lab on a conveyor belt.

 

Once the pollock come through the shoot and onto the conveyor belt, the first thing that we do is pick out every type of animal that is not a pollock. So far we have found lots of eulachons (Thaleichthys pacificus), jellyfish (Cnidaria), isopods, and squid. We have even found the occasional chinook salmon (Oncorhynchus tshawytscha), rock fish (Sebastes spp.), and a lumpsucker (Cyclopteridea). The pollock continue to roll down the conveyor belt into a plastic bin until the bin is full. Then the bin of pollock are weighed.

Contents of the Trawl

This slideshow requires JavaScript.

 

The data from every fish we sample goes into a computer system called CLAMS. CLAMS stands for Catch Logger for Acoustic Midwater Survey. While we are taking samples of the fish our gloves get covered in fish scales and become slimy, so to be able to enter the data into the CLAMS system without causing damage there is a touch screen on all of the computers in the Wet Lab.

 

20160322_161321
CLAMS computer system with a touch screen.

 

Once the pollock are weighed, a sample of the fish are taken to be sexed. To sex the fish, we use a scalpel to slice into the side of the fish. The picture of the chart below shows what we are looking for to determine if a pollock is male or female. Once we know what sex the fish is, we put it into a bin that says “Sheilas” for the female fish and “Blokes” for the male fish.

DSC02989

This chart of the Maturity Scale for Walleye Pollock is hanging in the Wet Lab.

DSC02937
Up-close of the Maturity Scale for female pollock.

DSC02988

Up-close of the Maturity Scale for male pollock.

 

Sexing the fish1

Kim showing Virginia what to look for when sexing the fish.

Once the fish are in their correct male/female bin, they are then measured for their length using an Ichthystick.

The Ichtystick was designed and built by MACE staff Rick Towler and Kresimir Williams who wrote a paper on it: http://www.sciencedirect.com/science/article/pii/S0165783610001517

The Ichthystick has a magnet under the board. When the fish is placed on top of the board, a hand held magnet is placed at the fork of the fish tale. Where the hand held magnet is attracted to the magnet under the board tells the computer the length of the fish and the data is automatically stored in the CLAMS program.

DSC03092
Ichtystick

Starry Flounder Length
Getting the length of the starry flounder using the Ichthystick.

The next station is where the stomach, ovaries, and otoliths are removed from the fish and preserved for scientists to research when the survey is over. The ovaries of a female fish are weighed as well. Depending on the size of the ovaries, they may be collected for further research. Once all of the data has been collected from the fish, a label is printed with the data on it. This label is placed in the bag with the stomach or ovaries sample. Kim completes a special project for this survey. She is a stomach content analysist, so she collects stomachs from a sample of fish that will be taken back to her lab to analyze the stomach content of what she collected. She puts the stomach and the label with the fish’s information, into a bag that is placed in a solution of formalin that preserves the samples.

This slideshow requires JavaScript.

The next step is to get the otoliths out of the fish. A knife is used to cut across the head of the pollock. Otoliths are used to learn the age of the fish. The otoliths are placed in a glass vile that has a barcode number that can be scanned and put with all of the fish’s information in CLAMS. This number is used to keep track of the fish data for when the otoliths get analyzed later on.

Getting the Otoliths

This slideshow requires JavaScript.

We also collect length, weight, sex, and stomach samples from other fish that come up in the trawl as well.

Interview with a NOAA Corps Officer: Ensign Caroline Wilkinson
Caroline is a Junior NOAA Corps Officer on board the NOAA ship Oscar Dyson. She is always very helpful with any information asked of her and always has a smile on her face when she does so. Thank you Caroline for making me feel so welcomed on board the Dyson!

DSC03089
Ensign Caroline Wilkinson

How did you come to be in NOAA Corps? (or what made you decide to join NOAA Corps and not another military branch?

  • I graduated from college in May of 2015. I was looking for a job at a career fair at my school and discovered the NOAA Corps. I had heard of NOAA, but didn’t know a lot about NOAA Corps. I wanted to travel and NOAA Corps allowed me that opportunity. I was unsure what type of work I wanted to do, so I decided to join and explore career options or make a career out of NOAA Corps.

What is your educational/working background?

  • I went to the University of Michigan where I received an undergraduate degree in ecology and evolutionary biology and a minor in physical oceanography.

How long have you been in NOAA Corps?

  • July of 2015 I started basic training. Training was at the Coast Guard academy in a strict military environment. We had navigation and ship handling classes seven hours a day.

How long have you been on the Dyson?

  • I have been here since December of 2015.

How long do you usually stay onboard the ship before going home?

  • We stay at sea for two years and then in a land assignment for 3 years before heading back to sea.

Have you worked on any other NOAA ships? If so, which one and how long did you work on it?

  • Nope, no other ships. I had no underway experience except a five-day dive trip in Australia.

Where have you traveled to with your job?

  • We were in Newport, Oregon and then we went to Seattle, Washington for a couple of weeks. Then we went to Kodiak and then to Dutch Harbor.

What is your job description on the Dyson?

  • I’m a Junior Officer, the Medical Officer, and the Environmental Compliance Officer. As a junior officer I am responsible for standing bridge watch while underway. As a Junior Officer I am responsible for standing 8 hours of watch, driving the ship, every day. As medical officer, we have over 150 drugs onboard that I am responsible for inventorying, administering, and ordering. I also perform weekly health and sanitary inspections and Weekly environmental walkthroughs where I’m looking for any safety hazards, unsecured items, leaks or spills that could go into the water.

What is the best part of your job?

  • Getting to drive the ship.

What is the most difficult part of your job?

  • Being so far away from my family and friends.

Do you have any career highlights or something that stands out in your mind that is exceptionally interesting?

  • During training we got to sail in the US Coast Guard Cutter Eagle. It’s a tall ship (like a pirate ship). We were out for eight days. We went from Baltimore to Port Smith, Virginia and had the opportunity to do a swim call 200 miles out in the Atlantic.

What kind of sea creature do you most like to see while you are at sea?

  • We have seen some killer whales and humpback whale in the bay we are in this morning. We’ve also seen some albatross.

Do you have any advice for students who want to join NOAA Corps?

  • You need an undergraduate degree in math or science. There are 2 classes of ten students a year. Recruiters look for students with research experience, a willingness to learn, and a sense of adventure.

DSC03090
Ensign Caroline Wilkinson at the helm.

 

Personal Log:
I have really been enjoying my time aboard the Oscar Dyson and getting to know the people who are on the ship with me. I love spending time on the Bridge because you can look out and see all around the ship. I also like being on the bridge because I get to witness, and sometimes be a part of, the interactions and camaraderie between the NOAA Corps Officers that drive/control the ship and the other ship workers.

DSC03085
Panoramic view of the NOAA Ship Oscar Dyson‘s Bridge. Look at all of those windows!

 

Arnold and Kimrie are responsible for making breakfast, lunch, and dinner for all 34 people on the Oscar Dyson. They also clean the galley and all of the dishes that go along with feeding all of those people. They probably have the most important job on the ship, because in my previous experiences, hungry people tend to be grouchy people.

20160322_095134
Arnold and Kimrie are the stewards of the Oscar Dyson.

 

We’ve had a variety of yummy dishes made for us while we’ve been at sea. Breakfast starts at 7 a.m. and could include a combination of scrambled eggs, breakfast casserole, French toast, waffles, chocolate pancakes, bacon, sausage, or my personal favorite, eggs benedict.

20160322_070541
Breakfast is served. YUM!!!

Lunch is served at 11 a.m. and seems like a dinner with all of the variety of choices. Lunch usually has some type of soup, fish, and another meat choice available, along with vegetables, bread, and desert. Dinner is served at 5 p.m. and usually soup, fish, and another meat choice available, along with vegetables, bread and desert. I loved getting to try all of the different types of fish that they fix for us and I also really liked getting to try Alaskan King Crab for the first time!!

If you are still hungry after all of that, then there is always a 24-hour salad bar, a variety of cereal, snacks, and ice cream available in the galley. The left-overs from previous meals are also saved and put in the refrigerator for anyone to consume when they feel the need. If we are working and unable to get to the galley before a meal is over, Arnold or Kimrie will save a plate for us to eat when we get finished.

I also tried Ube ice cream, which is purple and made from yams. At first I was very skeptical of any kind of sweet treat being made out of yams, but I was pleasantly surprised that it tasted really good!

DSC02999
Ube ice cream made from yams! Very YUMMY!!!

 

There is even a place to do laundry on this ship, which I was very happy about because fishy clothes can get pretty stinky!

DSC03081
Laundry Room

I can’t end a blog without showing off some of the beautiful scenery that I have been privileged to see on this journey. The pictures below are of the Semidi Islands.

This slideshow requires JavaScript.

 

Virginia Warren: Calibrations, Drills, and Interviews March 19, 2016

NOAA Teacher at Sea Virginia Warren
Mission: Acoustic Trawl Survey of Walleye Pollock
Geographical Area of Cruise: Shelikof Strait
on NOAA ship Oscar Dyson
Date: 3/17/16 – 3/18/16

Data from the Bridge:
Sky: Cloudy
Visibility: 10 Nautical Miles
Wind Direction: 0.2 (20°) From the Northeast
Wind Speed: 25 Knots (30 Knots at point during the day)
Sea Wave Height: 5 – 6 ft. on average (10 ft. at highest)
Sea Water Temperature: 5.6° C (42.08° F)
Dry Temperature: 4° C (40° F)
Barometric (Air) Pressure: 1018.4

Science and Technology Log:
When the wind picked up, it was decided that the ship would quit fishing and running transect lines with the echo-sounder and instead go into one of Kodiak’s bays to seek protection from the weather (>40 knot winds and 16 – 20 foot sea waves were forecast). While were were ‘hiding’, the ship’s crew had time to fix a trawl winch problem and change nets, and the scientists conducted a calibration of the echo-sounder (this is done at the beginning and end of surveys). When we left the transect line, we went through Alitak Bay and stopped the ship in front of Hepburn Peninsula, with Deadman Bay to the left of the peninsula and Portage Bay to the right (if you are looking at the map). Where the ship was sitting, the bay was 74.8 m (245.4068 ft) deep and 5.6° C (42.08° F). It was still pretty windy (15-20 knots), but the Hepburn Peninsula blocked us from a lot of the wind.

This slideshow requires JavaScript.

DSC02951
Deadman Bay to the left of Hepburn Peninsula and Portage Bay to the right

The calibration process of the echo sounder took some time. The science crew before me already started the process of calibrating the echo sounder before it was time for my shift to take over. They used three down riggers to send three lines under the center of the boat, where the echo sounder is positioned. A calibration sphere was placed a little further down one of the lines. There is also a lead weight put at the end of the line so that it will help hold the calibration sphere in place as the current moves.

tomichFig1
Echo Sounder Calibration Diagram (Source Credit: Sea Technology Website)

Then one of the science crew uses a system to align the calibration sphere with the echo sounder. There are two types of calibration spheres that we used today. The first, and smaller one, was made out of a tungsten-carbide alloy.

patrick-with-sphere1_small
Patrick holding the Tungsten-Carbide Calibration Sphere (photo by Julia Harvey, TAS summer 2013 DY1307)

The second calibration sphere was larger than the first and it was made out of solid copper. This made for a very easy, get a blog done, day for me because the job was completed by the lead scientist Patrick and Robert, one of the other science crew members.

DSC02956
Robert Putting the Copper Calibration Sphere on the Line

 

Echosounder calibration screen
Echo-sounder display during calibration. On the echogram (depth on vertical axis, time on horizontal axis) you can see the calibration spheres hanging below the ship above the seafloor. (credit: Patrick Ressler)

 

x6602ebs

Diagram to Describe Echo Sounder Technology (Source Credit: FAO Website)

x6602ebt
Diagram to Describe Echo Sounder Technology (Source Credit: FAO Link)

 

 

Interview with a Scientist: Kim
For this leg of the research cruise Kim is on the same shift that I work on and she’s also my roommate. She has been great in helping me get accustomed to sea life and training me on what to do while we are sorting trawls in the science lab. She also agreed to let me interview her to share her story with my students. I am extremely grateful for all of the help, training, and friendship she has provided while I have been on the Dyson. Her interview is below:

IMG_0399
Kim Holding a Smooth Lumpsucker from a Bottom Trawl Survey (photo credit: Kim)

What is your educational background?
I have a bachelor’s of science degree aquatic and fishery sciences and a minor in marine biology.

How long have you been working as a scientist?
About 10 years.

How long have you been working as a NOAA contractor?
6 years.

What is your job description?
I am a stomach content analyst.

How often do you go on a survey?
Usually twice during the summer for about three weeks at a time.

What is a highlight for you while at sea?
A family of 4 got lost at sea and had been missing for 60 hours. We were out on survey and came across them in their life raft. We were able to pull them out. They wrote a book about it called “Lost in the Shelikof: an Alaskan Family’s Struggle to Survive”.

If you would like to read more about this story, here is the link to the book:  http://www.amazon.com/Lost-Shelikof-Alaskan-Familys-Struggle/dp/145650584X

What made you want to be a scientist?
I spent a lot of time on the water as a kid crabbing and playing in the water. I was always drawn to sea life and I wanted to learn as much about it as I could.

What enjoy most about being a scientist?
The survey work is my favorite part of my job. You get to see a lot of unique species that most people don’t get to see. A lot of deep water species. I also like going out on survey because most of my work is done in the lab looking at samples under a microscope. It’s refreshing to be able to travel up here and work on a boat every summer. Sometimes when I’m out here I stop and think “I can’t believe this is my job.” I learn something new every time I come out here. It’s hard work, but it’s also a lot of fun.

What is the hardest part of your job?
We have a sampling plan that tells us what species and what size range of fish we want to collect stomachs from. It can be difficult to get stomachs from all the fish that you’d like to simply because the net doesn’t catch individuals of a certain size. Fish frequently regurgitate their food when they come up in the net and it can be a challenge sometimes to find ones that haven’t thrown up.

What is your favorite sea creature?
Cuttlefish, they are pretty cute.

Here is a short YouTube video about cuttlefish if you would like to see what they look like and how they act: https://www.youtube.com/watch?v=E-zodF-XrSE

Any advice for people who want to be a scientist?
Volunteer as much as you can. Internships, especially those involving field work, are a great way to gain experience and help you decide what aspects of a particular field of science you’re most interested in. Also, having enthusiasm for the work that you’re doing goes a long way towards helping you get possible internships and job opportunities in the future. Hard work and enthusiasm are what helped me get where I am today in my career.

Personal Log:
For the first couple of days on board the Dyson we had beautiful weather blue skies, pretty clouds, beautiful scenery, and calm seas. However, experiencing calm seas came to a halt on Thursday. The wind picked up which caused the ship to rock back and forth with the waves. Gusts of wind would cause water to splash over the bow of the ship, creating a very entertaining show. I loved to watch the waves move and feel the ship’s reaction to the power of the water. When I went to visit the bridge of the ship one wave hit the boat hard enough to ring a bell that is hanging in the bridge. Sitting down to do work or eating a meal can be kind of fun when the wind is up. It’s almost like a roller coaster, because you never know when your chair is going to slide sideways. Walking while the ship was rocking was also interesting because two normal steps could become 5 so that you can keep your balance and stay on your feet.

This slideshow requires JavaScript.

On Friday we had our mandatory at sea drills. The first was a fire drill which was very easy for me because all I had to do for that drill was meet up with the rest of the science crew in a preplanned muster station. The next drill was a little more eventful. We had to bring a survival suit, a life jacket, a hat, and gloves to the preplanned muster station. Once we were there roll was called to make sure we were in the correct station to get on the correct life raft should it became necessary. This part wasn’t too bad because the scenery outside was very pretty. However, after that part was complete the people new to the ship had to put on the survival suit, which is supposed to take less than a minute to put on. This was my first attempt to get into a survival suit and I needed a lot of guidance from ENS Ben Kaiser, one of the NOAA Corps officers. He was very patient with me and also took my picture when I was finally able to get it on.

DSC02993
My First Time in a Survival Suit

 

The Oscar Dyson takes safety very seriously!!

This slideshow requires JavaScript.

 

Virginia Warren: Life at Sea is GREAT!! March 15, 2016

NOAA Teacher at Sea Virginia Warren
Mission: Acoustic and Trawl Survey of Walleye Pollock
Geographical Area of Cruise: Shelikof Strait
on NOAA ship Oscar Dyson
Date: 3/15/2016

Data from the Bridge:
Sky:  Light and variable
Visibility: 10+ Nautical Miles
Wind Direction: West
Wind Speed: 2.50 (4 knots)
Sea Wave Height:  1 – 2, light swell
Air Temperature: 4.2 degrees C (40 degrees F)
Barometric Pressure: 1004.8

 

NOAA and NOAA Corps Information:

NOAA is an acronym that stands for National Oceanic and Atmospheric Administration. NOAA is a government agency that helps keep citizens informed on weather conditions and the climate. It also conducts fisheries management, and coastal restoration. As stated on their website, NOAA’s mission is to understand and predict changes in climate, weather, oceans, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources. NOAA has nine key focus areas, 12,000 NOAA personnel, and 6,773 scientists and engineers.

If you would like to read more about what NOAA does, please check out their website here: http://www.noaa.gov/about-our-agency

The NOAA Commissioned Corps Officers are in charge of running NOAA ship Oscar Dyson. The officers keep the ship functioning properly and the people safe. The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States. As stated on the NOAA Corps website, the NOAA Corps mission is to provide officers technically competent to assume positions of leadership and command in the National Oceanic and Atmospheric Administration (NOAA) and Department of Commerce (DOC) programs and in the Armed Forces during times of war or national emergency.  If you would like read more about what the NOAA Corps does, please check out their website here:  http://www.noaacorps.noaa.gov/about/about.html

You can also watch the NOAA Corps Recruitment video here: http://www.noaacorps.noaa.gov/audiovideo/noaacorps_video.html

 

Science and Technology Log:

This is my second full day on the ship and my science crew has sorted three trawls. On the first day on shift, I learned that there is a lot of waiting to get the fishing pollock job done correctly. The Chief Scientist, Patrick, is responsible for choosing where and when to launch the trawl. He does this by watching data on a screen that comes from the echo sounder, which is placed under the ship. When you see bright red color on the screen, then you know there is something registering on the echo sounder. This part of the process can take several hours.

Echo Sounder Screen
Echo Sounder Screen

Once you find the fish, then you have to launch the trawl net. This is a very intricate process because as the net is being launched, it has to be kept free of tangles. If tangles occur in the net it could cause the net to rip once the trawl has begun. At the mouth of the trawl where the opening is for fish to enter, there are two large trawl doors that glide through the water like airplane wings, except the “lift” is a spreading force that goes sideways to open the mouth of the trawl for fish to enter.

awt-model-commented1
Scale model of the Aleutian Wing Trawl (AWT) net courtesy of NOAA Scientist Kresimir Williams

 

Once the trawl is complete, the catch is dumped onto a table that lifts up to the conveyor belt where we separate pollock from all the other types of animals. The pollock are placed into baskets where they are then weighed. A sample of pollock is taken to examine further. Data on everything that we catch goes into a computer system called CLAMS, which is an acronym for Catch Logger for Acoustic Midwater Survey. I will further explain the sorting and data collection processes, and the CLAMS program on a future blog.

This slideshow requires JavaScript.

Personal Log: 

I’m happy to report that all of my flights went great and my luggage didn’t get lost on my way to Kodiak, Alaska. I spent Friday and Saturday nights in Kodiak waiting to rendezvous with the NOAA ship Oscar Dyson Sunday morning.

This slideshow requires JavaScript.

Kodiak is a beautiful, scenic fishing community. I love that Kodiak is able to use clean, alternative-renewable energy resources to make their energy for the island. Notice the wind turbines in the picture below, however Kodiak also uses hydroelectric dams to make most of their power.

Wind Powered Turbines
Wind Powered Turbines

The Oscar Dyson anchored up outside of the Kodiak harbor in efforts to save time by not having to completely dock up in the harbor. The Dyson sent out its small boat called “The Peggy D” to take people to and from the ship. We put really warm jackets that also served as life jackets(float coats).

The "Peggy"

I loved this boat ride because it gave me a view of the harbor I hadn’t been able to see yet!

Beautiful Mountains from the Harbor in Kodiak, Alaska
Beautiful Mountains from the Harbor in Kodiak, Alaska

My first view of the Oscar Dyson was spectacular. I saw it as we rounded a very small island outside of the harbor. With the mountains in the background, the ship made a pretty picture.

NOAA Ship Oscar Dyson
NOAA Ship Oscar Dyson

This is only the beginning of the trip and I am so looking forward to experience the rest of it.

This slideshow requires JavaScript.

 

Virginia Warren: All My Bags are Packed, I’m Ready to Go!!! March 9, 2016

Hi! My name is Virginia Warren. I teach 5th Grade math and science at Breitling Elementary School in Grand Bay, Alabama. I have been a teacher for 6 years. I am currently in the process of going back to graduate school at the University of South Alabama to get my Master’s Degree in Instructional Design and Development.

I am set to fly out of Pensacola, Florida this coming Thursday morning. I will have a short layover at the Dallas Fort Worth Airport in Texas.Then, I will be off again to Seattle, Washington where I will stay the night before finishing my journey the next day. I am excited about getting to spend even a short amount of time in Seattle because I have never been on the West Coast of the United States. I plan to get as much sight seeing in as possible before my flight to Anchorage, Alaska the next morning. Once I get to Anchorage, I will catch another plane to Kodiak, Alaska where I will rendezvous with the rest of the science crew and the NOAA Ship Oscar Dyson on Saturday.

Flight Diary
This image is created from http://flightdiary.net/ and it depicts the flights that I will take to get to Kodiak, Alaska.

 

This will be my second NOAA Teacher at Sea opportunity. In the summer of 2013 I participated in a sea scallop survey on the Research Vessel Hugh R. Sharp. As a teacher this experience has become invaluable to me because it made scientific research come alive to me in way that I had never been able to express to my students prior to this experience. I am extremely excited about having a second opportunity to travel the world and learn about real data research. I am also excited to be able to share this trip with my 5th grade students back home in Grand Bay, Alabama.

edited2 without man behind me.jpg
This picture is from my first NOAA Teacher at Sea research cruise in 2013 aboard the R/V Hugh R. Sharp

I will spend about 2 weeks aboard the NOAA Ship Oscar Dyson participating in an acoustic-trawl survey to estimate pollock abundance in Shelikof Strait.

 

 

 

 

Andrea Schmuttermair: Engineering Extravaganza! July 21, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 21, 2015

Weather Data from the Bridge:
Latitude: 57 09.0N
Longitude: 151 16.5W

Sky:  broken clouds

Visibility: 10nm
Wind Direction: 245 degrees

Wind Speed: 24 knots
Sea wave height: 3ft

Swell wave: 5-7 ft

Sea water temp: 11.3 C
Dry temperature: 11.1 C

Science and Technology Log

Aside from our survey, there is a lot of other science taking place on the ship. In fact, science is all around us. The officers on the bridge are using science when they use weather patterns and sea swells to calculate the best course of navigation for the ship. The survey technicians are using science when they collect water samples each day and test the salinity of the water. The engineers are using science when they are monitoring the ballast of the ship. Science is happening in places we don’t always take the time to look.

Today we look at a different realm of science, the engineering world. I recently had the opportunity to tour the brains of the ship with two of our engineers on board. I not only learned about the construction of the ship, but I also learned about the various components that help the ship run. The Oscar Dyson was constructed as one of NOAA’s first noise-reduced fisheries vessels. Data have been collected over the years that show fish avoid loud vessels by diving down deeper or moving out of the way of the noise. There was concern that this avoidance behavior would affect the survey results; thus the creation of acoustic quieting technology for research vessels. Another interesting part of the ship’s construction is the retractable centerboard, which allow the transducers to be lowered down below the ship and away from the hull in order to reduce noise and gather higher quality sound data for the surveys.

This slideshow requires JavaScript.

It turns out 2 of our engineers are from San Diego, the place I lived for my first 21 years of life. Nick even graduated from Westview High School, the rival of my high school, Mt. Carmel (albeit 10 years after me). The engineers are responsible for making sure everything is working on the ship. They, along with the rest of the engineering team, have to anticipate and troubleshoot problems, and be ready to fix something at a moment’s notice.

In addition to taking me on a tour around the innards of the ship, Nick and Rob also sat down for an interview about marine engineering.

Interview with the Engineers: Rob Ball and Nick Cuellar

Nick, Rob, and....Wilson!
Nick, Rob, and….Wilson!

What is your educational/working background?

Nick: I played soccer throughout high school and was recruited during my senior year by the US Merchant Marine Academy. I went to school there, played soccer, and received a BS degree in marine engineering. I spent 1 of my 4 years at sea doing hands-on training. I was also commissioned into the US Navy as a reservist.

Rob: I’m what they call a hawespiper in the merchant marine world- I started at the bottom and worked my way up. I started at Scripps Institute of Oceanography in 1988 and worked my way up ranks from oiler to engineer. I received my captain’s license, and ran sport fishing boats because I wanted to know boats from top to bottom. I went to professional college for refrigeration, and my main forte is refrigeration and air conditioning, I know I’ll never be out of work. I’m a first engineer now, and am going to go for my chief’s license.

How long have you been working on the Oscar Dyson?

Nick: I came on in August of 2014.

Rob: I just came on board in April of 2015

What are your main responsibilities as an engineer on board?

Nick: As a second engineer, I give fuel reports and transfer fuel to maintain stability of the ship. We have saltwater tanks for ballast, which changes as we burn fuel, and I help monitor this. I check the electricity, lights, fuel, water, and AC and make sure everything’s running. I fix anything that’s breaking.

Rob: As a first engineer, I am the supervisor of engine room and am responsible for how everything is operating. I get updates on the fuel status, and communicate with CO of the ship if changes need to be made. I also look at when the oil/filter needs to be changed. My position is more supervisory, and I oversee responsibilities and delegate tasks. I handle the plant and the people.

What is your favorite part of the job?

Nick: Travel; getting work experience, marine life

Rob: Money and travel; getting to see things in ocean that most people would only see on National Geographic

What is most challenging about your job?

Nick: The different personalities you have to work with

Rob: I agree with Nick. Our life exists in 204ft. I am able to take frustrations and put it into things I enjoy, such as working out, reading, or playing guitar.

What is something unique to being an engineer on a ship as opposed to an engineer on land?

Nick: You have to have knowledge of every square inch of the ship; the two things I think about are: are we sinking and are the lights on.

Rob: You have to keep things going when you have big seas, and you have to have the knowledge and ability to handle problems and stay on your feet (literally). You have everyone’s lives in your hands- you have to be on all the time.

What would tell students who are looking at careers in engineering?

Nick: Don’t give up and keep on fighting. Don’t let hardships get in the way. If it makes you happy, keep doing it. And know your math!

Rob: it’s a limitless field; you can build anything, and fix anything. If someone else made it, you’ll have the ability to figure out what they did. You get to break stuff and fix it.

What is your favorite marine animal?

Nick: Humpback whale

Rob: Orca and Great white shark

Rob, Nick and I
Rob, Nick and I

Thanks gentlemen for the interview!

 

Personal Log

This baby humpback whale was having a blast breaching over and over again.
This baby humpback whale was having a blast breaching over and over again.

The ringing of the phone woke me up from the gentle rolling of the ship. I had told the officers and scientists to wake me up if there was anything cool happening, and an excited ENS Gilman spoke into the receiver claiming there were hundreds (ok, maybe hundreds was a bit of an exaggeration) of whales breaching and swimming around the ship. Throwing on a sweatshirt and grabbing my camera, I raced up to the bridge to get a view of this. I had low expectations, as it seemed that every time we got the call that there were whales around, they left as soon as we got up there. This time, however, I was not disappointed. It was a whale extravaganza! Humpback whales, fin whales, orcas, there were so many whales it was hard to decide where to point my camera or binoculars. Like one of those fountains that spurt up water intermittently through different holes, the whales were blowing all around us. I was up on the bridge for over an hour, never tiring to see which one would spout next, or show us a fluke before it dove down deep, only to resurface somewhere else 15 minutes later. It was truly a treat to be able to watch them, and the weather couldn’t have been better. My favorite shot was of a baby humpback breeching – we had been tracking him for a while, his blow noticeably smaller than the adults around him. He looked as if he was just playing around in the water, enjoying himself without a worry in the world. I had been hoping to see Alaska wildlife on this trip, and am thrilled my wish was granted.

The bathroom in our staterooms
The bathroom in our staterooms

stateroomI had a question about our living accommodations on the ship, and I must admit they aren’t too shabby. I share a room with another one of the scientists, and she works the opposite shift. This works out nicely as we can each have our own time in the room, and can sleep uninterrupted. We have bunks, or racks as many refer to them, and I am sleeping on the top bunk. We have a bathroom with a shower in our room, and it’s nice not to have to share those amenities. The walls are pretty thin, and the ship can be loud when operations are going, making earplugs or headphones helpful.

Nikki Durkan: Parasites Abound, June 29, 2015

NOAA Teacher at Sea
Nikki Durkan
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Midwater Assessment Conservation Survey
Geographical area of cruise: Gulf of Alaska
Date: Monday, June 29, 2015

Weather Data from the Bridge:
Wind speed (knots): 8.25
Sea Temp (deg C): 10.59
Air Temp (deg C):  10

Science and Technology Log:

Parasites – some lurk inside our bodies without us knowing and some could even have an influence on our personalities. One of my favorite Radio Lab episodes describes research conducted on this subject. National Geographic Magazine also published a feature article I found quite interesting – Zombie Parasites that Mind Control Their Hosts.  In addition to capturing our interest because of their sci-fi-like existence, parasites may also be utilized to study ecological interactions.  Parasites a fish picks up throughout its life can indicate information about where the fish has traveled – these co-dependent organisms serve as biological tags that scientists can then interpret.

Nematodes on Pollock Liver - most of the Pollock we caught have had these in their guts.
Nematodes on Pollock Liver – most of the Pollock we caught have had these in their guts.

Parasites often require several hosts to complete their lifecycles and one nematode that can infect Pollock (and humans incidentally) is Anisakiasis.  While I love sushi, raw fish can pose serious risk to our health.  “Sushi-grade” labels, similar to the ubiquitous “natural” labels, do not meet any standardized specifications. However, the FDA does set freezing requirements for the sale of raw fish that commonly possess parasites…so enjoy your sushi 🙂

The pathobiologists at the Alaska Fisheries Science Center are currently investigating the impacts certain parasites may have on Pollock. While many species of parasites have been recognized, we still have a lot to learn about their impact on populations and ecosystems. Scientists are attempting to identify those that are likely to influence the booms and busts that can occur within the Pollock populations. More specifically, their current research centers around a microsporidian (pleistophora sp.) that lives within the muscle tissue of Pollock and may impact the fishes ability to swim and breed. (AFSC Pathobiology)

Microsporidian (pleistophora sp.) marked with asterisk Photo Credit: NOAA

These critters are found in most Pollock catches as well - they are sometimes called sea lice.
These critters are found in most Pollock catches as well – they are also called sea lice.

Sometimes ships pick up parasites too! The introduction of invasive species to fragile ecosystems is one of the leading causes of extinction and ballast water is the number one reason for the distribution of aquatic nuisance species. The Great Lakes region serves as a warning about the devastation ballast water can inflict on an ecosystem. Ships can transport ballast water from one region to another and then release the ballast water (along with numerous non-native organisms). No longer encumbered by natural predators or other environmental pressures that help to keep populations in check, the invasive species can flourish, often at the expense of the native species. NOAA has implemented strict guidelines for the release of ballast water to limit the spread of invasive species.  The Oscar Dyson also uses a lot of oil to keep all the working parts of our engine room functioning, but some of this oil drips off and collects in the bilge water. This oily bilge water is then separated and the oil is used in our trash incinerator (all garbage with the exception of food scraps is burned in the incinerator).  Thanks to our Chief Marine Engineer, Alan Bennett, for taking me and Vinny on a tour of the ship.

Thanks, Allan!
Thanks, Allan!

Personal Log:

Fortunately, after three weeks of being splattered with all parts of a Pollock you can think of and eating my fair share of fish, I am currently free of fish parasites…to my knowledge! Our wonderful chefs, Arnold Dones and Adam Staiger, have been cooking healthy, varied meals for 32 people over the course of three weeks – this is no small feat!  The soups are my favorite and have inspired me to make more when I return home. I know from camping experiences with my students and living at a boarding school campus, that food is directly connected to morale.  Last night, the chefs spoiled everyone with steak and crab legs!

Chef Adam Staiger is full of smiles!
Chef Adam Staiger is always full of smiles!

 

Vincent Colombo, What makes the Oscar Dyson tick?, June 29, 2015

NOAA Teacher at Sea
Vincent Colombo
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Annual Walleye Pollock Survey
Geographical area of the cruise: The Gulf of Alaska
Date: June 29, 2015

Weather Data from the Bridge:

  • Wind Speed: 10.7 knots
  • Sea Temperature: 9.6 degrees Celsius
  • Air Temperature: 10.5 degrees Celsius
  • Air Pressure: 1008.8 mb

Sunrise in Alaska
Sunrise in Alaska

When the fog lifts, hidden beauties and dangers are revealed

Another picture of Shishaldin Volcano – taken by scientist on board the Oscar Dyson, Robert Levine

A view of the Gulf of Alaska
A view of the Gulf of Alaska

In front of Kuiukta Bay
In front of Kuiukta Bay

Mitrofania Bay
Mitrofania Bay

Sandy Point, Alaska
Sandy Point, Alaska


The NOAA Vessel Oscar Dyson is named after the late Oscar E. Dyson. His placard reads the following:

Oscar Dyson

A Friend of Fisheries

Oscar promoted research and effective management

to sustain Alaska’s fisheries for future generations.

Oscar Dyson Plaque
Oscar Dyson Plaque

http://www.noaanews.noaa.gov/stories2003/s2102.htm
Learn more about the Oscar Dyson here

The small vessel on the Oscar Dyson is named after his wife
The small vessel on the Oscar Dyson is named after his wife


Science and Technology Log:

If you read the link under my page: http://teacheratsea.noaa.gov/#/2015/Vincent*Colombo/ship , it will tell you all about the ship, Oscar Dyson. This ship is nothing less than a modern marvel of technology. Luckily my fellow teacher at sea, Nikki Durkan and I got to experience the science of this ship first hand. Our Chief engineer, Mr. Alan Bennett took us for a tour of the inner workings of this ship.

Chief Engineer Alan Bennett
Chief Engineer Alan Bennett

Our tour started with a look at the Ship’s control panel. From this set of computers and controls, everything, and I mean everything on the ship can be controlled.

The Control Panel below deck
The Control Panel below deck

"We can control the entire ship from right here."
“We can control the entire ship from right here.”

From there, we went into the main engine room. One may recognize the Rime of the Ancient Mariner by Samuel Taylor Coleridge, which in part of the poem says:

“Water, water, everywhere,

And all the boards did shrink;

Water, water, everywhere,

Nor any drop to drink.”

Not the case on the Oscar Dyson, because the heat from the engines is used to distill up to 1,000 gallons of freshwater each day!

Where the Oscar Dyson makes fresh water
Where the Oscar Dyson makes fresh water

The ship also uses an Ultra Violet filter to kill all the undesirables in the water just in case.

Ultraviolet Filter
Ultraviolet Filter

Warning for the filter
Warning for the filter

From there, we got to travel through water tight doors into the rear of the ship. These doors are intimidating, and as our Chief Engineer said, in case there is a loss of power, the door can be bypassed so no one is trapped under the ship.

Alan in front of the door showing us the manual bypass
Alan in front of the door showing us the manual bypass

Water tight door. You DO NOT want to be in the way when this closes.
Water tight door. You DO NOT want to be in the way when this closes.

Here you can see one of the massive winches used for the trawl net the ship uses to catch fish. One winch is over 6 foot in diameter and has a thousand meters of steel cable. I wonder if it will fit on the front of a Jeep…

Those winches are no joke. The ship also has a bunch of hydraulic pumps ready and able to bring those trawl nets in fast if need be. Each of these hydraulic pumps has 1,000 gallons of fluid ready to retrieve a net in a hurry if the need exists.

The hydraulic pumps
The hydraulic pumps

One really cool thing I learned was that in case the ship had a major issue and could not be steered from the bridge, there is a way to use the ship’s heading underneath for someone to manually operate the rudder.

Yes you can drive the ship blind
Yes you can drive the ship blind

The manual rudder control
The manual rudder control

From there we got a tour of the remainder of the ship.

One of the ship's massive generators
One of the ship’s massive generators

A water pump for a fire station
A water pump for a fire station

A transformer to convert all that electrical energy
A transformer to convert all that electrical energy

The Oscar Dyson creates ALOT of energy. Here is a read out for one of the many generators on board. Take a look at the Amps produced.

818.6 Amps!
818.6 Amps!

A ship this big also has multiple fuel tanks. Here the engineers can choose which tank they want to draw from. Interesting also is the engineers have ballast tanks to fill with water to compensate for the fuel the ship uses. Alan also showed us the log book for this, as ships taking on ballast water can be an environmental issue. The crew of the Oscar Dyson follows this protocol as set forth by the United States Coast Guard. You can learn more about that protocol by clicking here

Fuel tank selection
Fuel tank selection

Our last stop was seeing the bow thruster. It was a tight space, but the bow thruster can actually power the ship if the main engine loses power.

In the bow thruster room
In the bow thruster room

Here are some other pictures from the tour:

Nikki, Alan, and I in the engine room
Nikki, Alan, and I in the engine room

A serious pipe wrench
A serious pipe wrench

This surface is squishy and covers the entire engine room. It makes the boat super quiet!
This surface is squishy and covers the entire engine room. It makes the boat super quiet!


 

After our tour, it was back to business as usual, the Walleye Pollock Survey. Our Chief Scientist spends countless hours analyzing the acoustics data then sampling the fish.

Our Chief Scientist, Dr. Patrick Ressler analyzing the acoustic data from the survey
Our Chief Scientist, Dr. Patrick Ressler analyzing the acoustic data from the survey

The Walleye Pollock which we are studying is a very integral part of the Alaskan ecosystem, as well as a highly monetary yielding fishery. One thing I noticed almost immediately is the color change between juveniles and adults. It is theorized that as the fish get older, they move lower in the water column towards the bottom, thus needing camouflage. Take a look at this picture that shows a mature Walleye Pollock and it’s juvenile counterparts.

The adult Walleye Pollock gets "brassy" spots on it's body.
The adult Walleye Pollock gets “brassy” spots on it’s body.

You can learn more about the life cycle of Pollock by clicking here.

Here is another site with some useful information on Pollock, click here.


Personal Log: 

Working on the deck of the Oscar Dyson is no laughing matter. What is required to step on deck? A hard hat, float coat, and life jacket. Watching the deck crew, controlled by the lead fisherman, is like watching an episode of Deadliest Catch… just without the crabs. Giant swells that make the boat go up and down while maintaining a solid footing on a soaking wet deck is no joke. My hat is off to our hard working deck crew and fisherman.

 

The deck crew and fisherman deploying an Aleutian Wing Trawl
The deck crew and fisherman deploying an Aleutian Wing Trawl

Fisherman Brad Kutyna retrieving an Aleutian Wing Trawl
Fisherman Brad Kutyna retrieving an Aleutian Wing Trawl

The best part about fishing, is it is just that, fishing. NOAA sets the standard when reducing by-catch (fish you do not want to catch), but sometimes a fish’s appetite gets the best of him/her.

This Pacific Cod ended up in our Aleutian Wing Trawl, it wanted Pollock for lunch
This Pacific Cod ended up in our Aleutian Wing Trawl, it wanted Pollock for lunch

These Pacific Cod were 8 pounds each.
These Pacific Cod were 10 pounds each.

Fishing has always been apart of my life. My Grandfather always said, “If the birds are working, you will find the fish.” A good piece of advice… Look for circling gulls and chances are a group of bigger fish has some bait fish balled up under the surface.

Here the birds are working off the stern of the boat
Here the birds are working off the stern of the boat


Meet the Scientist: 

On board the Oscar Dyson this part of the Walleye Pollock survey is scientist Tom Weber. Tom lives in Durham, New Hampshire and is here to test new custom acoustic equipment. Tom is married to his wife Brinda and has two sons, Kavi and Sachin.

Tom has a Bachelor’s and Master’s degree in Ocean Engineering from the University of Rhode Island. He attained his PhD in Acoustics from Penn State in State College, PA.  Currently Tom is an Assistant Professor of Mechanical Engineering at the University of New Hampshire. He also is a faculty member of the Center for Coastal and Ocean Mapping (CCOM for short). Both places of employment are located in his hometown of Durham, New Hampshire.

Tom explaining the brand new acoustic technology
Tom explaining the brand new acoustic technology

Tom has been affiliated with NOAA and their projects since 2006 and is here to test a custom Acoustic Transducer (a piece of technology that sends out a signal to the ocean floor) and sonar transceiver. As he explained to me, this technology sends out a multi-band frequency and the echo which returns could potentially identify a species of fish hundreds of meters below the boat. He is also here to study Methane gas seeps found along the convergent boundary in the Aleutian Islands.  Methane gas seeps are of particular curiosity on this trip because of their unique properties.

Tom busy at work in the Acoustic Lab on board the Oscar Dyson
Tom busy at work in the Acoustic Lab on board the Oscar Dyson

On a side note, Tom saw the first grizzly bear of our trip just hanging out on one of the many coastlines we have passed. He said being on the Oscar Dyson is “Not like being in Beaver Stadium, but the ship moves as much as your seats do during a game.”  When I asked Tom for any words of advice, he said: “Never name your boat after a bottom fish.” Apparently that is bad luck.

A methane gas seep on the ocean floor makes quite a disturbance. Here Chris Bassett is observing what it looks like.
A methane gas seep on the ocean floor makes quite a disturbance. Here Chris Bassett is observing what it looks like.

Tom loves working side by side with the scientists on this study and is ecstatic to see this new technology being used on this survey.


Meet the NOAA Corps Officer: 

Meet Lieutenant Carl Rhodes, the Oscar Dyson’s Operations Officer, and acting Executive Officer for this part of the Walleye Pollock Survey. LT Rhodes is from Bayfield, Colorado and joined the NOAA Corps to use his degree in science. LT Rhodes has a Bachelors degree in Marine Science with an Associates Degree in Small Vessel Operations from Maine Maritime Academy in Castine, Maine. LT Rhodes also has a Masters of Science in Facilities Management from Massachusetts Maritime Academy.

His job as Operations Officer on board the Oscar Dyson includes:

  • Ensuring all scientific operations are conducted safely and efficiently.
  • Act as a liaison between all members of the ship’s crew and scientific parties.
  • Record and observe all scientific missions during the day.

His extra duties as acting executive officer include:

  • Managing the ship’s personnel and human resources
  • Taking care of payroll and travel requests
  • Supervising junior officers and crew members

Lieutenant Carl Rhodes on the bridge of the Oscar Dyson
Lieutenant Carl Rhodes on the bridge of the Oscar Dyson

Hands down, the best job of all not mentioned above is driving the boat! All officers stand watch (aka drive the boat) for two, four hour shifts a day. Not to mention all the other work they are required to do. Being a NOAA Corps officer is no easy job. LT Rhodes has the goal to one day be the Captain of a NOAA research vessel.

In his free time, LT Rhodes enjoys scuba diving, climbing mountains, hiking, camping, biking, photography, and flying drones. LT Rhodes shared with me how he has overcome many obstacles in his life. His words of advice to any student are: “Anyone can get anywhere if they try hard and really fight for it.”

LT Rhodes and all the rest of the crew of the Oscar Dyson have not had a day off yet on this research cruise, and work 12 hour shifts around the clock. Seeing this first hand has given me much respect for the type of work NOAA does!


 

Did You Know? 

Seafood is a billion dollar industry in Alaska, with more than half of U.S. commercially captured fish caught in the state nicknamed “The Last Frontier.” According to Alaska’s Department of Labor and Workforce, around 32,200 people fished commercially in Alaska in 2011, averaging 8,064 people per month. Salmon harvesting represents half of all fishing jobs in Alaska, with ground fish and halibut following in second and third place, respectively, according to the state’s labor bureau. Read more here.


 Thanks for reading my blogs! I am hooked on Alaska and would love to come back! I will see you all soon in Delaware!

Nikki Durkan: Navigating the high seas, June 24, 2015

NOAA Teacher at Sea
Nikki Durkan
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Midwater Assessment Conservation Survey
Geographical area of cruise: Gulf of Alaska
Date: Wednesday, June 24, 2015

Weather Data from the Bridge:
Wind speed (knots): 6.5
Sea Temp (deg C): 11.1
Air Temp (deg C):  11.4

Meet:  Ensign Nate Gilman NOAA Corps Officer

Qualifications:  Master of Environmental Studies from Evergreen State College, Certificate in Fisheries Management from Oregon State University, Bachelors in Environmental Studies from Evergreen State College

Hails from:  Olympia, Washington

Photo Credit:  NOAA
Ensign Nate Gilman, Photo Credit: NOAA

What are your main responsibilities?  Nate is the ship Navigation Officer and Junior Officer On Deck. He not only drives the ship and carries out all the responsibilities that come with this job, but is also responsible for maintaining the charts on board, setting waypoints and plotting our course (manually on the charts and on the computer).  If an adjustment to our course is necessary, Nate must work with the scientific party on board to replot the transects.

What do you enjoy most about your job? Driving the ship, of course!  

Do you eat fish? **This is roughly how my conversation with Nate went on the subject of fish consumption: I don’t eat bugs. (He is referring to shrimp and lobster) – I thought I loved shrimp cocktail, now I know that I love cocktail sauce and butter, so celery and bread are just fine.

Aspirations?  Nate hopes to be stationed in Antarctica for his land deployment (NOAA Corps Officers usually spend two years at sea and three on land).  Ultimately, he wants to earn his teaching certificate and would be happy teaching P.E., especially if he can use these scooters, drink good coffee, ski, and surf.

Science and Technology Log

I spend much of my time on the bridge where I can learn more about topics related to geography and specifically navigation. This is also where I have easy access to fresh air, whale, bird, and island viewing, and comedic breaks. A personality quality the NOAA Corps officers all seem to share is a great sense of humor and they are all science nerds at heart!

Our sextant on board NOAA Ship Oscar Dyson
Our sextant on board NOAA Ship Oscar Dyson

Our Executive Officer, LT Carl Rhodes, showed me several pieces of equipment used to navigate and communicate at sea – the sextant, azimuth ring, and Morse code signaling lamp. Because the sextant relies on triangulation using the sun, moon, or stars – none of which we have seen often, the sextant is a beautiful, but not currently used piece of equipment for us on this trip. The majority of our navigation relies on GPS triangulation; however, the officers still need to mark on the charts (their lingo is to “drop a fix on”) our position roughly every 30 minutes just in case we lose GPS connection. Morse code is a universal language still taught in the Navy and NATO (they install infrared lights to avoid detection). Alternatively, on the radio English is King, but many of the captains know English only as a second language. Think you get frustrated on customer service phone calls? The NOAA Corps Officers actually go through simulations in order to prepare them for these types of issues. During one instance, the language barrier could have caused some confusion between LT Carl Rhodes and the ship he was hailing (the man had a thick Indian accent) but both were quite polite to each other, the other captain even expressed thanks for accommodating our maneuvers.  All the Officers attend etiquette classes as part of their training in NOAA Corps and I just read in their handbook that they must be courteous over the radio.

Unimak pass with lots of traffic – We are the green ship surrounded by other boats (black triangles) - we happened to want to fish in this area, but had to change plans.
Unimak pass with lots of traffic – We are the green ship surrounded by other boats (black triangles) – we happened to want to fish in this area, but had to change plans due to traffic.

Shipping with ships:  80% of our shipping continues to be conducted by sea and many of the ships we encounter here are transporting goods using the great circle routes. These routes are the shortest distance from one point on the earth to another, since the Earth is a spinning sphere, the shortest routes curve north or south toward the poles.  Look at your flight plan the next time you fly and you will understand why a trip from Seattle to Beijing involves a flight near Alaska. Airplanes and ships use great circle routes often and Unimak pass is a heavily trafficked course; however, ships also adjust their plans drastically to avoid foul weather – the risk to the cargo is calculated and often they decide to take alternative paths.

Look at a chart of the Aleutian Islands and you will quickly gain insight into the history of the area. On one chart, you will find islands with names such as Big Koniuji, Paul, Egg, and Chiachi, near Ivanof Bay and Kupreanof Peninsula. The Japanese and Russian influence is quite evident.  NOAA has other ships dedicated to hydrographic (seafloor mapping) surveys. The charts are updated and maintained by NOAA; however, in many cases, the areas in which we are traveling have not been surveyed since the early 1900s. Each chart is divided into sections that indicate when the survey was last completed:

  • A   1990-2009
  • B3 1940 – 1969
  • B4 1900 – 1939

An easy way to remember: When was the area last surveyed? B4 time. I told you they like their puns on the Bridge!

Flathead Sole - How these guys navigate the seafloor is beyond me!
Flathead Sole – How these guys navigate the seafloor is beyond me!

Personal Log

Maintaining fitness while at sea can be a challenge, and I am thankful the ship has a spin bike because trying to do jumping jacks while the boat is rocking all over is quite difficult, I am probably getting a better ab workout from laughing at myself.  Pushups and situps are an unpredictable experience – I either feel like superwoman or a weakling, depending on the tilt of the ship which erratically changes every few seconds.  Ultimately, I am finding creative ways to get my heart pumping – I do my best thinking while exercising!

One of my most valuable take-aways from this experience is my broadened perspective on those who choose to serve our country in the military and the varied personalities they can have.  Most of the individuals on board the ship year round have experience in the military and I have now met individuals from NOAA Corps, Coast Guard, Airforce, Army, Marines, and the U.S. Publice Health Service.  I am grateful to have the opportunity to meet them!

Vinny (my co-TAS) also served in the military.
Vinny (my co-TAS) also served in the military.

Did you know?  Saildrones are likely the next big step for conducting research at sea.  These 19 foot crafts are autonomous and have already proved capable of sailing from California to Hawaii.  Check out this article to learn more:  The Drone That Will Sail Itself Around The World 

Nikki Durkan: Fish Heads and Otoliths, June 21, 2015

NOAA Teacher at Sea
Nikki Durkan
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Midwater Assessment Conservation Survey
Geographical area of cruise: Gulf of Alaska
Date: Sunday, June 21, 2015

Weather Data from the Bridge:
Wind speed (knots):  13.01
Sea Temp (deg C):  10.45
Air Temp (deg C): 9.46

Career Highlight

Meet:  Patrick Ressler PhD, Chief Scientist on board the Oscar Dyson

Employed by: Resource Assessment and Conservation Engineering Division
Alaska Fisheries Science Center, NMFS, NOAA

Hails from: Seattle, Washington

Fun in the fish lab!  Happy Father's Day, Patrick!
Fun in the fish lab! Happy Father’s Day, Patrick!

What are your main responsibilities as Chief Scientist? As chief scientist I’m responsible for the scientific mission and for the scientific party.  In terms of the science, it’s my job to make sure that everything that needs to happen does happen, before as well as during the cruise, and that the scientists have positive and productive interactions with each other and with the ship’s crew.  Some of the decisions that need to be made are scientific or technical, some are logistical, some are managerial.  Though I don’t and can’t do all of the different jobs myself, I need to have some understanding of all the elements of our survey work and research projects, and pay attention to the ‘big picture’ of how it all fits together.   I am also the main line of communication between the scientific party and the ship (principally the captain), and between our scientific party and the lab back onshore.

What do you enjoy about your profession? Science involves a great deal of creativity and collaboration. The creativity comes into play when designing a study and also when problem solving; complications always arise in research, and it is part of Patrick’s job to address the issue or know who to ask to assist in overcoming the obstacle.  He also enjoys doing literature reviews because the process involves more than data collection and meta-analysis; the studies tell stories in a way, scientists leave clues about their interests, bias, and even personalities in their pursuit of research topics.

Do you eat fish? Yes! — Patrick uses the seafood guide when making decisions about purchases and eats salmon often. He smokes his own fish and looks forward to cooking at home with his wife and two children.

Vinny (TAS) and Emily Collins bringing in the catch of the day.
Vinny (my co-TAS) and Emily Collins bringing in the catch of the day.

Otolith extraction - the head incision is made just in front of the operculum (gill covering)…not my favorite part of the day, but as close as I’ll ever get to be a surgeon.
Otolith extraction – the head incision is made just in front of the operculum (gill covering)…not my favorite part of the day, but as close as I’ll ever get to be a surgeon.

 

Science and Technology Log

Fish heads and more fish heads: Once on board, the fish are sorted by species and we then determine length, weight, sex, and gonad development for the Pollock. The next step is to extract the otoliths, a calcium carbonate structure located in the skull that allows the fish to hear and provides orientation information. These small structures provide scientists with data on ages of the Pollock populations and environmental fluctuations. Understanding how Pollock populations respond to stresses such as the pressures of commercial fishing operations or variations in prey availability, help fisheries managers make informed decisions when setting quotas each year.

 

Pollock otolith
Pollock otolith

These structures are analogous to the human ear bones; the otoliths allow the fishes to determine horizontal and vertical acceleration (think of the feeling you experience while moving up and down in an elevator). The otoliths pull on the hair cells, which stimulate an auditory nerve branch and relay back to the brain the position of the head relative to the body. A disturbance in this function is also why we humans experience motion sickness. Many of you may also be familiar with the growth rings of a tree and how scientists can measure the width of the rings to determine age and growth rate; similarly, each year, a fish will accumulate deposits on the otoliths that can be interpreted by scientists back in the lab. NOAA has a neat program you can try: Age Reading Demonstration. My co-Teacher at Sea (Vinny Colombo) and I will be bringing back samples to use in our classrooms!

My cod-face with a Cod that tried to swallow a Pollock. Photo credit:  Patrick Ressler
My cod-face with a Cod that tried to swallow a Pollock. Photo credit: Patrick Ressler

For some species, the information gathered from these otoliths can also be used to infer characteristics about the environment in which the fish travels. Climate scientists use similar data from trees, ice cores, coral reef cores, and sediment deposits to produce geochemical records used in modeling paleoclimates and projecting future changes in climate. Likewise, the otoliths contain a geochemical record because the calcium carbonate and trace metals correlate with water samples from certain areas. Scientists can then ascertain the otolith’s chemical fingerprint using a mass spectrometer and uncover information on the fishes’ spawning grounds and migration routes. In some cases, these data are even used to establish marine protected areas.

Personal Log

I have great appreciation for the hard work the crew puts in on a daily basis and am thankful for the humor they continue to provide! I’ve seen more than a few impressions of overly stuffed Puffins and fish faces, shared laughs while Rico pulls fish scales out of my hair, danced to Persian pop songs, and continued to laugh at the ridiculously overused puns in the Bridge. Humor is vitally important out here! The ship operates 24 hours a day and shifts are long, with spurts of demanding physical labor. A lot of coffee is consumed on board and the Oscar Dyson even has a fancy espresso machine! Sadly, I figured out early on that coffee makes me quite nauseated on board. I am a firm believer in the health benefits of coffee and thanks to John Morse (a fellow teacher at Steamboat Mountain School), I have accumulated many scientific articles to back up my claims; however, in this case I had no choice, and after a few headaches, I am free from the bean addiction…for now!

Trying out the engine room sound powered phone

 

 

Did you know? In the event of a power failure, the Oscar Dyson is equipped with sound powered phones – the sound pressure created when a person speaks into the transmitter creates a voltage over a single wire pair that is then converted into sound at the receiver – no electricity necessary!

Nikki Durkan: Global Commons, June 13, 2015

NOAA Teacher at Sea
Nikki Durkan
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Midwater Assessment Conservation Survey
Geographical area of cruise: Gulf of Alaska
Date: Saturday, June 13, 2015

Weather Data from the Bridge:
Wind speed (knots):  14.16
Sea Temp (deg C):  8.97
Air Temp (deg C):  8.06

Science and Technology Log

During my first several days in Kodiak, I spent as much time as possible exploring the island on foot.  I hiked up Pillar Mountain to the wind turbines which now help to make Kodiak virtually 100% renewably powered; 14% comes from these turbines while the bulk of the electricity is generated by Terror Lake hydro-power facility located within the interior of the island.  The hydro and wind generation replaced a diesel powered generator and resulted in many benefits to the town and our atmospheric global commons.

View from Pillar Mountain
View of turbines from Pillar Mountain

The idea of a global commons is one I spend a lot of time discussing in the first days of my environmental science course.  The Global Commons includes resources or regions outside the political reach of any one nation state:  the Atmosphere, Outer Space, Antarctica, and you guessed it…the High Seas!

June is National Ocean Month – and the theme for this week is marine debris.  I recently learned a new doctrine of mare liberum (free sea for everyone), but I’d like to add the latin word for responsibility, officium.  Dumping wastes is commonplace with the mantra of “dilution is the solution to pollution” and this practice continues to create challenges in our oceans.  Plastics pose a major threat to our marine life and NOAA is taking significant steps toward reducing plastic pollution through a variety of educational campaigns.  Plastic marine debris can come from a variety of industrial and domestic products, as well as lost or discarded fishing equipment.

While exploring the lovely little town of Kodiak, I came upon the rare plastic Iqaluk (Iñupiaq word meaning fish):

Sculpture constructed from collected marine debris
Sculpture constructed from collected marine debris

Another challenge facing our Global Commons includes over fishing in the High Seas.  Have you eaten Fish sticks, Filet-o-fish, Imitation-crab….otherwise known as Alaskan Pollock?  My mother often told me she craved McDonald’s fish sandwiches while pregnant with me; perhaps those sandwiches somehow led me to this spot 20 miles off the Aleutian Islands?  One of the main reasons we are on the Oscar Dyson for the next three weeks is to gather data on the Alaskan Pollock populations so that the fishery can be maintained at a sustainable level.  This Alaskan Pollock commercial fishery is one of the most economically valuable and well managed fisheries in the world.  Part of this success is due to the implementation of the MSA (Magnuson-Stevens Fishery Conservation and Management Act) that set up a system governing the EEZ (Exclusive Economic Zone – waters three to 200 miles offshore), and also established NMFS (National Marine Fisheries Service) under NOAA (you better know what this means).  The UNCLOS (UN Convention on the Law of the Sea) provides international guidelines and law for our oceans.  Acronyms…scientists and the military love them.  I will learn to love them.

 Personal Log

On the topic of marine debris, there are often jokes made on the bridge about the too-fat-to-fly puffins. They furiously flap their little wings in front of our ship.

Tufted Puffin
Tufted Puffin Photo credit: NOAA image gallery

Apparently cribbage is the game to play on the Oscar Dyson and thanks to Emily Collins (fisheries biologist), I now have another card game to add to my repertoire.  Ever tried to ride a stationary bike on a ship?  The feeling is hard to describe and I must have a sensitive stomach because occasionally I feel as if I am on a roller coaster! Currently I am sitting in my stateroom listening to the sloshing ocean that gurgles and surges with the swell against the wall; the sounds are 95% soothing and 5% terrifying.  I will not get sea sick and I will do my best not to become marine debris….
Did You Know?  In the event that I have to abandon ship, my “Gumby suit” will help me survive the frigid waters of the Gulf of Alaska.

Donning my Immersion Suit!
Donning my Immersion “Gumby” Suit!

 

Vincent Colombo, Dynamic Positioning, June 15, 2015

NOAA Teacher at Sea
Vincent Colombo
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Annual Pollock Survey
Geographical Area of Cruise: The Gulf of Alaska
Date: June 15, 2015

Weather Data from the Bridge:

  • Wind Speed: 4.52 knots
  • Sea Temperature: 8.5 degrees C
  • Air Temperature: 6.4 degrees C
  • Air Pressure: 1034.33 mb

A United States Coast Guard Sikorsky MH-60 Jayhawk flying over the Oscar Dyson
A United States Coast Guard Sikorsky MH-60 Jayhawk flying over the deck of the Oscar Dyson

Science and Technology Log:

Are you a morning person? How about a night owl? Well if you said yes to the first question, then Alaska during the summer is your place to be. Currently where we are right now, the sun officially rises at 5:08 and sets at 23:12 (that’s 11:12 pm for those of you not used to 24 hour format). But, do not think that it means it turns dark by any means. Sunrise and Sunset are when the sun is officially seen, or disappears on the horizon respectively. So far in my time spent here in Alaska, I have only seen it dark for about one hour.

The 23.5 degree tilt of the Earth exaggerates the effect of the sun during the time around a solstice
The 23.5 degree tilt of the Earth exaggerates the effect of the sun during the time around a solstice

The reason why is easily explained, seasons. Students in Delaware learn about seasons in 8th grade, and again if they take Physics or Astronomy in high school. The tilt of the earth causes the northern hemisphere to be more exposed to the sun for longer periods of time. Thus the concept of day and night is greatly changed.

In order to fully grasp this concept, you must also understand why it never gets dark either. The term we use is twilight, or the time between darkness and sunrise in the morning,  and sunset and complete darkness in the evening. Twilight is also defined as when there is light outside, but the sun is below the horizon.

There are 3 types of twilight: civil, nautical, and astronomical.

  • Civil twilight occurs when the Sun is between 0 degrees and 6 degrees below the horizon. In the morning, civil twilight begins when the Sun is 6 degrees below the horizon and ends at sunrise. In the evening, it begins at sunset and ends when the Sun reaches 6 degrees below the horizon. Typically civil twilight begins and ends one half hour before or after sunrise or sunset. Most outdoorsmen know this as the 1/2 hour before and after rule. If you’re a deer hunter, civil twilight signifies legal shooting time has begun or ended.
  • Nautical twilight occurs when the geometrical center of the Sun is between 6 degrees and 12 degrees below the horizon. Nautical twilight is usually an hour before and after sunset. This twilight period is less bright than civil twilight and artificial light is generally required for activities.The term, nautical twilight, dates back to the time when sailors used the stars to navigate the seas. During this time, observers on Earth can easily see most stars. Although not completely dark outside, one could safely get around.
  • Last is Astronomical twilight, and this occurs when the Sun is between 12 degrees and 18 degrees below the horizon. In the morning, the sky is completely dark before the onset of the astronomical twilight, and in the evening, the sky becomes completely dark at the end of astronomical twilight. This is typically an hour and a half before or after sunrise or sunset respectively.
  • During the summer months, especially around the Summer Solstice, the North and South Poles experience several days with no complete darkness at all. Currently our civil, nautical, and astronomical twilights are exaggerated, only leaving about an hour of actual darkness.

My next scientific topic I would like to discuss is the system the vessel Oscar Dyson uses called Dynamic Positioning. When we were calibrating the acoustic equipment in my last post, the ship did not move more than 0.3 meters in any direction.

Dynamic positioning diagram
Dynamic positioning diagram

The ship uses GPS systems to hold it in one single place for a period of time. Using a minimum of three satellites and triangulation, the ship’s position is able to be maintained. The ship uses its main engines as well as bow thrusters to keep it steady in one position.  I was also introduced to some new vocabulary:

  • surge: moving the ship forward or back (astern)
  • sway: moving the ship starboard (right) or left (port)
  • heave: moving the ship up or down
  • roll: the rotation about surge axis
  • pitch: the rotation about sway axis
  • yaw: the rotation about heave axis

How a ship is able to maintain it's position
How a ship is able to maintain its position

Not only can the ship stay in one position, I also learned that it can stay in one position over a column of water, which is vital for a research ship like the Oscar Dyson when conducting research one specific area of the ocean.

A view of the dynamic positioning monitor from the bridge
A view of the dynamic positioning monitor from the bridge

A view of the current state of the rudder of the ship. It changes as the dynamic positioning controls the ship
A view of the current state of the rudder of the ship. It changes as the dynamic positioning controls the ship

The bow thruster control on the bridge of the ship
The bow thruster control on the bridge of the ship

Personal Log:

It took us almost three days to reach where the scientific study was to begin. For those of you who know me, it is hard for me to stay in one place for an extended period of time. Luckily the ship has an abundance of DVDs to watch, Direct TV and a fantastic galley (aka kitchen) to make it feel more like home. I can honestly say the food is some of the best I have ever eaten.

Luckily (knocking on wood), our ship has not hit any rough seas. It has taken a day or so to get used to the rocking, just make sure you have a free hand to grab hold of something when moving about.

Underway, I got to deploy the first An Expendable Bathy Thermograph or XBT for short. You can find out more by going to this NOAA website: XBT uses

Getting briefed on use of the sensor
Getting briefed on use of the sensor. Notice I am harnessed in.

Deploying the sensor
Deploying the sensor

According to our Executive Officer, LT Carl Rhodes, we will be seeing some AMAZING Alaskan geography including volcanoes. Check back for some awesome photos.

Did You Know?

Most modern oil rigs are not fixed to the sea floor! They also use dynamic positioning. Learn more about dynamic positioning here.

 

Vincent Colombo, Getting Ready to Leave, June 4, 2015

NOAA Teacher At Sea
Vincent Colombo
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Annual Walleye Pollock Survey
Geographical Area of Cruise: Bering Sea
Date: June 4, 2015

Introduction

Greetings from Delaware! This is my introductory post for my Teacher at Sea experience. I am set to arrive in Kodiak, Alaska on Monday June 8th. My name is Vinny Colombo, teacher at Sussex Technical High School in Georgetown, Delaware. I live near Bethany Beach, DE, and an experience on the water is less than a 5 minutes drive away. As you can see below, Delaware is part of the Delmarva Peninsula. A peninsula is an area surrounded on three sides by water. Accordingly, the Atlantic Ocean and tidal bays are part of our every day lives.

The Delmarva Peninsula
The Delmarva Peninsula

My next post will be from NOAA Ship Oscar Dyson. I am anxiously awaiting being a part of the annual walleye pollock survey. Some of the reasons I have decided to study fisheries is because I absolutely love the water. Below are some pictures of things I will be missing out on until I return in July.

Sunrise on Indian River Bay
Sunrise on Indian River Bay

A beautiful day on the Indian River Bay
A beautiful day on the Indian River Bay

Blue Crabs
Blue Crabs

Flounder Fishing in the Bay
Flounder Fishing in the Bay

Another Picture of Indian River Bay
Another Picture of Indian River Bay

While on the Bering sea, my research study will be to assess the population of Walleye Pollock, an integral part of the Alaskan ecosystem, economy and global commerce. Pollock are a key fish in the food web of the waters surrounding Alaska. The best comparison I have to the pollock is the Atlantic Menhaden found in the waters surrounding Delmarva. Menhaden have different names depending on where you live, such as Bunker, Elwys, Moss Bunker, and Pogy. The way we know exactly the species is by its scientific name: Brevoortia tyrannus.  Many other species of fish and invertebrates rely on this very special species of fish.

A juvenile menhaden
A juvenile menhaden

A catch of over 300 Menhaden
A catch of over 300 Menhaden

Sustaining fisheries is vitally important to all of the environment. I look forward to learning more and sharing my experiences with you right here. Please check back soon for more information.

Kacey Shaffer: All Good Things… August 13, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 13, 2014

Weather information from the Bridge:

Air Temperature: 12º C

Wind Speed: 10 knots

Wind Direction: 306.62 º

Weather Conditions: Clear

Latitude: 53º 51.38 N

Longitude: 166º 34.85 W

Science and Technology Log:

Before we get into detail about data and where all of it ends up, let’s talk acronyms. This trip has been a lot like working in the Special Education world with what we like to call “Alphabet Soup.” We use acronyms a lot and so does the NOAA Science world. Here are a few important acronyms…

AFSC – Alaska Fisheries Science Center (located in Seattle, WA)

MACE – Midwater Assessment and Conservation Engineering Program (also in Seattle)

CLAMS – Catch Logger for Acoustic Midwater Surveys

Drop TS – Dropped Target Strength System

CTD – Conductivity, Temperature and Depth System

SBE – Sea-bird Electronics Temperature-Depth Recorder

We recorded data in a program called CLAMS as we processed each haul. The CLAMS (see above: Catch Logger for Acoustic Midwater Surveys) software was written by two NOAA Scientists. Data can be entered for length, weight, sex and development stage. It also assigns a specimen number to each otolith vial so the otoliths can be traced back to a specific fish. This is the CLAMS screen from my very first haul on the Oscar Dyson.

Kacey's first haul on the Oscar Dyson.
Kacey’s first haul on the Oscar Dyson.

From the Species List in the top left corner you can see I was measuring the length of Walleye Pollock- Adult. In that particular haul we also had Age 2 Pollock, a Chum Salmon and Chrysaora melanaster (a jellyfish or two). There is the graph in the lower left corner that plots the sizes in a bar graph and the summary tells me how many fish I measured – 462! When we finish in the Wet Lab we all exit out of CLAMS and Robert, a zooplankton ecologist working on our cruise, ducks into the Chem Lab to export our data. There were a total of 142 hauls processed during the 2014 Summer Walleye Pollock Survey (June 12 – August 13) so this process has happened 142 times in the last two months!

Next, it is time to export the data we collected onto a server known as MACEBASE. MACEBASE is the server that stores all the data collected on a Pollock survey. Not only will the data I helped collect live in infamy on MACEBASE, all the data collected over the last several years lives there, too. CLAMS data isn’t the only piece of data stored on MACEBASE. Information from the echosounding system, and SBE (Sea-bird Electronics temperature depth recorder) are uploaded as well.

We’ve reached the end of the summer survey. Now what? 142 hauls, two months of echosounder recordings, four Drop TS deployments and 57 CTD’s. There have also been 2660 sets of otoliths collected. Scientists who work for the MACE program will analyze all of this information and a biomass will be determined. What is a biomass? Some may think of it as biological material derived from living or recently living organisms. In this case, biomass refers to the total population of Walleye Pollock in the Bering Sea. In a few weeks our Chief Scientist Taina Honkalehto will present the findings of the survey to the Bering Sea Plan Team.

That team reviews the 2014 NOAA Fisheries survey results and Pollock fishing industry information and makes science-based recommendations to the North Pacific Fishery Management Council, who ultimately decide on Walleye Pollock quotas for 2015. Think about Ohio’s deer hunting season for a minute. Each hunter is given a limit on how many deer they can tag each year. In Pickaway & Ross counties we are limited to three deer – two either sex permits and one antlerless permit. If every deer hunter in Ohio was allowed to kill as many deer as they pleased the deer population could be depleted beyond recovery. The same goes for Pollock in the Bering Sea. Commercial fisheries are given quotas and that is the maximum amount of Pollock they are allowed to catch during a given year. The scientific research we are conducting helps ensure the Pollock population remains strong and healthy for years to come.

Personal Log:

Earlier today I took a trip down to the Engine Room. I can’t believe I waited until we were almost back to Dutch Harbor to check out this part of the ship. The Oscar Dyson is pretty much a floating city! Put on some ear protection…it’s about to get loud!

Kacey stands by one of four diesel engines on the Oscar Dyson.
Kacey stands by one of four diesel engines on the Oscar Dyson. (Photo credit: Sweet William)

Why must we wear ear protection? That large machine behind me! It is a 3512 Caterpillar diesel engine.  The diesel engine powers an electric generator. The electric generator gives power to an electric motor which turns the shaft. There are four engine/generator set ups and one shaft on the Dyson. The shaft turns resulting in the propeller turning, thus making us move! When we are cruising along slowly we can get by with using one engine/generator to turn the shaft. Most of the time we are speeding along at 12 knots, which requires us to use multiple engines/generators to get the shaft going. Here is a shot of the shaft.

The shaft of the Oscar Dyson.
The shaft of the Oscar Dyson.

 

Engineering Operation Station
Engineering Operation Station

The EOS, or Engineering Operation Station, is the fifth location where the ship can be controlled. The other four locations are on the Bridge.

Engine Data Screen provides information about the engines, generators and shaft.
Engine Data Screen provides information about the engines, generators and shaft.

This screen provides Engineers with important info about the generators (four on board) and how hard they’re working. At the time of my tour the ship was running on two generators (#1 and #2) as shown on the right side of the screen. #3 and #4 were secured, or taking a break. The Officer of the Deck, who is on the Bridge, can also see this screen. You can see an Ordered Shaft RPM (revolutions per minute) and an Actual Shaft RPM boxes. The Ordered Shaft RPM is changed by the Officer on Deck depending on the situation. During normal underway conditions the shaft is running at 100-110 RPMs. During fishing operations the shaft is between 30 and 65 RPMs.

The port side winch of the Oscar Dyson.
The port side winch of the Oscar Dyson.

When I talked about the trawling process I mentioned that the Chief Boatswain is able to extend the opening of the net really far behind the stern (back) of the ship. This is the port side winch that is reeled out during trawling operations. There are around 4300 meters of cable on that reel! How many feet is that?

When Lt. Ostapenko and ENS Gilman were teaching me how to steer this ship they emphasized how sensitive the steering wheel is. Only a little fingertip push to the left can really make a huge difference in the ship’s course. This is the hydraulic system that controls the rudder, which steers the ship left or right. The actual rudder is hidden down below, under water. I’m told it is a large metal plate that stands twice as tall as me.  This tour really opened my eyes to a whole city that operates below the deck I’ve been working on for the last 18 days. Without all of these pieces of equipment long missions would not be possible. Because the Oscar Dyson is well-equipped it is able to sail up to forty days at a time. What keeps it from sailing longer voyages? Food supply!

And just like that I remembered all good things must come to an end. This is the end of the road for the Summer Walleye Pollock Survey and my time with the Oscar Dyson. We have cleaned and packed the science areas of the ship. Next we’ll be packing our bags and cleaning our staterooms. In a matter of hours we’ll be docking and saying our goodbyes. There have been many times over the last 19 days where I’ve stood, staring out the windows of the Bridge and thinking about how lucky I am. I will never be able to express how thankful I am for this opportunity and how it will impact my life for many, many years. A huge THANK YOU goes to the staff of NOAA Teacher at Sea. My fellow shipmates have been beyond welcoming and patient with me. Thank you, thank you, THANK YOU to everyone on board the Dyson!! I wish you safe travels and happy fishing!

To Team Bluefin Tuna (night shift Science Crew), thank you for your guidance, ice cream eating habits, card game instruction, movie watching enthusiasm, many laughs and the phrase “It is time.” Thanks for the memories! I owe y’all big time!  

Did you know? The ship also has a sewage treatment facility and water evaporation system onboard. The MSD is a septic tank/water treatment machine and the water evaporation system distills seawater into fresh potable (drinking and cooking) water.

Gregory Cook, On Sea Sickness and Good People, August 10, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 10, 2014


Science and Technology Log:

Last night and afternoon was by far the craziest we’ve seen on the Oscar Dyson. The winds were up to 35 knots (about 40 miles an hour). The waves were averaging 12 feet in height, and sometimes reaching 15-18 feet in height. Right now I’m sitting on the bridge and waves are around 8 feet. With every rise the horizon disappears and I’m looking up at stark grey clouds. With every drop the window fills with views of the sea, with the horizon appearing just below the top of the window frames.

UpDownUpDownUpDown
In the space of three seconds, the view from atop the bridge of the Oscar Dyson goes from looking up to the sky to down at the sea. The above pic is a MILD example.

Ensign Gilman, a member of NOAA Corps, explains to me how the same thing that makes the Bering Sea good for fish makes things rough for fishermen.

“This part of the Bering Sea is shallow compared to the open ocean. That makes the water easier for the wind to pick up and create waves. When strong winds come off Russia and Alaska, it kicks up a lot of wave action,” Ensign Gilman says.

Andrew, Bill and Nate
Lt. Andrew Ostapenko, Survey Tech Bill Potts, and Ens. Nathaniel Gilman on the Bridge

“It’s not so much about the swells (wave height),” he continues. “It’s about the steepness of the wave, and how much time you have to recover from the last wave.” He starts counting between the waves… “one… two… three… three seconds between wave heights… that’s a pretty high frequency. With no time to recover, the ship can get rocked around pretty rough.”

Rough is right! Last night I got shook around like the last jelly bean in the jar. I seriously considered finding some rope to tie myself into my bunk. There were moments when it seemed an angry giraffe was jumping on my bunk. I may or may not have shouted angrily at Sir Isaac Newton that night.

Which brings us to Sea Sickness.

Lt. Paul Hoffman, a Physician’s Assistant with the U.S. Public Health Service, explains how sea sickness works.

“The inner ears are made up of tubes that allow us to sense motion in three ways,” Hoffman explains. “Forward/back, left/right, and up/down. While that’s the main way our brain tells us where we are, we use other senses as well.” He goes on to explain that every point of contact… feet and hands, especially, tell the brain more information about where we are in the world.

“But another, very important piece, are your eyes. Your eyes are a way to confirm where you are in the world. Sea Sickness tends to happen when your ears are experiencing motion that your eyes can’t confirm,” Hoffman says.

For example, when you’re getting bounced around in your cabin (room), but nothing around you APPEARS to be moving (walls, chair, desk, etc) your brain, essentially, freaks out. It’s not connected to anything rational. It’s not enough to say “Duhh, brain, I’m on a boat. Of course this happens.” It happens in a part of the brain that’s not controlled by conscious thought. You can’t, as far as I can tell, think your way out of it.

Hoffman goes on to explain a very simple solution: Go look at the sea.

“When you get out on deck, the motion of the boat doesn’t stop, but your eyes can look at the horizon… they can confirm what your ears have been trying to tell you… that you really are going up and down. And while it won’t stop the boat from bouncing you around, your stomach will probably feel a lot better,” Hoffman says.

The Deck is your Friend.
Everything is easier on deck! Clockwise from left: Winch Operator Pete Stoeckle and myself near Cape Navarin, Russia. Oceanographer Nate Lauffenburger and myself crossing the International Date Line. Survey Tech Alyssa Pourmonir and Chief Scientist Taina Honkalehto near Cape Navarin, Russia.

And he’s right. Being up on the bridge… watching the Oscar Dyson plow into those stout waves… my brain has settled into things. The world is back to normal. Well, as normal as things can get on a ship more than a third of the way around the world, that is.

Personal Log:

Let’s meet a few of the good folks on the Oscar Dyson. 

NOAA Crew Member Alyssa Pourmonir

Job Title: Survey Technician

Alyssa and the Giant Jelly!
Survey Tech Alyssa Pourmonir assesses a giant jelly fish!

Responsibilities on the Dyson: “I’m a liaison between crew and scientists, work with scientists in the wet lab, put sensors onto the trawling nets, focus on safety, maintaining all scientific data and equipment on board.” A liaison is someone who connects two people or groups of people.

Education Level Required: “A Bachelors degree in the sciences.” Alyssa has a BS in Marine and Environmental Science from SUNY Maritime with minors in oceanography and meteorology.

Job or career you’ve had before this: “I was a life guard/swim instructor in high school, then I was in the Coast Guard for three years. Life guarding is the BEST job in high school!”

Goal: “I strive to bring about positive change in the world through science.”

Weirdest thing you ever took out of the Sea: “Lump Sucker: They have big flappy eyebrows… they kinda look like a bowling ball.”

Lump Sucker!
Lump Sucker! When provoked, this fish sucks in so much water that it becomes too big for most other fish to swallow. That’s its defense mechanism! It sort of looks like a cross between a bowling ball and grumpy cat!

Dirtiest job you’ve ever had to do on a ship: “Sexing the fish (by cutting them open and looking at the fish’s gonads… sometimes they explode!) is pretty gross, but cleaning the PCO2 filter is nasty.  There are these marine organisms that get in there and cling to the filter and you have to push them off with your hands… they get all slimy!”

Engineer Rico Speights
Engineer Rico Speights shows off how nasty a filter can be! He and his wife (Chief Steward Ava) sail the Bering Sea together with NOAA!

NOAA Rotating Technician Ricardo Guevara

Job Title: Electronics Technician

Responsibilities on the Dyson: “I maintain and upkeep most of the low voltage electronics on the ship, like computer networking, radio, television systems, sensors, navigation systems. All the equipment that can “talk,” that can communicate with other devices, I take care of that.”

Education level Required: High school diploma and experience. “I have a high school diploma and some college. The majority of my knowledge comes from experience… 23 years in the military.”

Tech Guevara
Technician Ricardo Guevara shows me an ultrasonic anemometer… It can tell the wind speed by the time it takes the wind to get from one fork to the other.

Job or career you’ve had before this: “I was a telecommunications specialist with the United States Air Force… I managed encryption systems and associated keymat for secure communications.” This means he worked with secret codes.

Trickiest problem you’ve solved for NOAA: “There was a science station way out on the outer edge of the Hawaiian Islands that was running their internet off of dial-up via satellite phone when the whole thing shut down on them… ‘Blue Screen of Death’ style. We couldn’t just swap out the computer because of all the sensitive information on it. I figured out how to repair the disk without tearing the machine apart. Folks were extremely happy with the result… it was very important to the scientists’ work.”

What are you working on now? “I’m migrating most of the ship’s computers from windows xp to Windows 7. I’m also troubleshooting the DirecTV system. The problem with DirecTV is that the Multi-Switch for the receivers isn’t communicating directly with the satellite. Our antenna sees the satellite, but the satellite cannot ‘shake hands’ with our receiver system.” And that means no Red Sox games on TV! Having entertainment available for the crew is important when you’re out to sea for two to three weeks at a time!

What’s a challenging part of your job on the Dyson? “I don’t like it, but I do it when I have to… sometimes in this job you have to work pretty high up. Sometimes I have to climb the ship’s mast for antenna and wind sensor maintenance. It’s windy up there… and eagles aren’t afraid of you up there. That’s their place!”

Lt. Paul Hoffman

Job Title: Physician Assistant (or P.A.) with the U.S. Public Health Service

Paul and Peggy
Lt. Paul Huffman and the small boat Peggy D behind him. Lt. Huffman is with the U.S. Public Health Service. But secretly I call him the Bat Man of Health Care. Peggy Dyson is a beloved part of the Alaska Fishing Industry’s history. Before the internet and satellite telephones, her radio service served as a vital link home for fishermen out at sea.  She was married to Oscar Dyson, the man for whom the ship was named.

Responsibilities on the Dyson: He’s effectively the ship’s doctor. “Whenever a NOAA ship travels outside 200 miles of the U.S. coast, they need to be able to provide an increased level of medical care. That’s what I do,” says Hoffman.

Education required for this career: “Usually a Masters degree from a Physician’s Assistant school with certification.”

Job or career you’ve had before this: “Ten and a half years in the U.S. Army, I started off as an EMT. Then I went on to LPN (Licensed Practical Nurse) school, and then blessed with a chance to go on to PA school. I served in Iraq in 2007-2008, then returned for 2010-2011.”

Most satisfying thing you’ve seen or done in your career: “Knowing that you personally had an impact on somebody’s life… keeping somebody alive. We stabilized one of our soldiers and then had a helicopter evac (evacuation) under adverse situations. Situations like that are what make being a PA worthwhile.”

Could you explain what the Public Health Service is for folks that might not be familiar with it?

“The Public Health Service is one of the seven branches of the U.S. Military. It’s a non-weaponized, non-combative, all-officer corps that falls under the Department of Health and Human Services. We’re entirely medical related. Primary deployments (when they get sent into action) are related to national emergency situations… hurricanes, earth quakes… anywhere where state and local resources are overrun… they can request additional resources… that’s where we step in. Hurricane Katrina, the Earthquake in Haiti… a lot of officers saw deployment there. Personally, I’ve been employed in Indian Health Services in California and NOAA’s Aircraft Operations Center (AOC)… they’re the hurricane hunters,” Hoffman concludes.

Kids, when you’ve been around Lt. Hoffman for a while, you realize “adverse conditions” to him are a little tougher than a traffic jam or missing a homework assignment. I’ve decided to call him, and the rest of the Public Health Service, “The Batman of Health Care.” When somebody lights up the Bat Signal, they’re there to help people feel better.

Coming up next: International Teamwork!

 

Kacey Shaffer: Fish Scales. Fish Tales. August 8, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

 

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 8, 2014
Weather information from the Bridge:

Air Temperature: 11° C

Wind Speed: 27 knots

Wind Direction: 30°

Weather Conditions: High winds and high seas

Latitude: 60° 35.97 N

Longitude: 178° 56.08 W
Science and Technology Log:

If you recall from my last post we left off with fish on the table ready to be sorted and processed. Before we go into the Wet Lab/Fish Lab we need to get geared up. Go ahead and put on your boots, bibs, gloves and a jacket if you’re cold. You should look like this when you’re ready for work…

 

This is the gear you'll need in the Wet Lab. It can get pretty slimy in there! (Photo Credit: Emily)
This is the gear you’ll need in the Wet Lab. It can get pretty slimy in there! (Photo Credit: Emily)

The first order of business is sorting the catch. We don’t have a magic net that only catches Pollock. Sometimes we pick up other treats along the way. Some of the cool things we’ve brought in are crabs, squid, many types of jellyfish and the occasional salmon. One person stands on each side of the conveyor belt and picks these other species out so they aren’t weighed in with our Pollock catch. It is very important that we only weigh Pollock as we sort so our data are valid. After all the Pollock have been weighed, we then weigh the other items from the haul. Here are some shots from the conveyor belt.

 

Kacey lifts the door on the table so the fish will slide down onto the conveyor belt. This is when other species are pulled out. (Photo Credit: Sandi)
Kacey lifts the door on the table so the fish will slide down onto the conveyor belt. This is when other species are pulled out. (Photo Credit: Sandi)

At the end of the conveyor belt, Pollock are put into baskets, weighed and put into the sorting bin. (Photo Credit: Sandi)
At the end of the conveyor belt, Pollock are put into baskets, weighed and put into the sorting bin. (Photo Credit: Sandi)

Not every single fish in our net is put into the sorting bin. Only random selection from the catch goes to the sorting bin. The remaining fish from the haul are returned back to the sea. Those fish who find themselves in the sorting bin are cut open to determine their sex. You can’t tell the sex of the fish just by looking at the outside. You have to cut them open, slide the liver to the side and look for the reproductive organs. Males have a rope-like strand as testes. Females have ovaries, which are sacs similar to the stomach but are a distinctly different color.

 

This is the sorting bin. Can you guess what Blokes and Sheilas means?
This is the sorting bin. Can you guess what Blokes and Sheilas means?

The white, rope-like structure is the male reproductive organ.
The white, rope-like structure is the male reproductive organ.

The pinkish colored sac is one of the female's ovaries. It contains thousands of eggs!
The pinkish colored sac is one of the female’s ovaries. It contains thousands of eggs!

Kacey uses a scalpel to cut the fish. She slides the liver out and looks for the reproductive organs. Is it a male or female? (Photo Credit: Darin)
Kacey uses a scalpel to cut the fish. She slides the liver out and looks for the reproductive organs. Is it a male or female? (Photo Credit: Darin)

Okay, no more slicing open fish. For now! The next step is to measure the length of all the fish we just separated by sex. One of the scientists goes to the blokes side and another goes to the sheilas side. We have a handy-dandy tool used to measure and record the lengths called an Ichthystick. I can’t imagine processing fish without it!

The Ichthystick is used to record the length of fish. A special tool held in the hand has a magnet inside that makes a connection with a magnet strip inside the board. It automatically registers a length and records it in a computer program called Clams
The Ichthystick is used to record the length of fish. A special tool held in the hand has a magnet inside that makes a connection with a magnet strip inside the board. It automatically registers a length and records it in a computer program called Clams

Kacey measures the length of a male with the Ichthystick. She holds the tool in her right hand and places it at the fork in the fish’s tail. A special sound alerts her when the data is recorded. (Photo Credit: Darin)
Kacey measures the length of a male with the Ichthystick. She holds the tool in her right hand and places it at the fork in the fish’s tail. A special sound alerts her when the data is recorded. (Photo Credit: Darin)

That is the end of the line for those Pollock but we still have a basket waiting for us. A random sample is pulled off the conveyor belt and set to the side for another type of data collection. The Pollock in this special basket will be individually weighed, lengths will be taken and a scientist will determine if it is a male or female. Then we remove the otoliths. What are otoliths? They are small bones inside a fish’s skull that can tell us the age of the fish. Think of a tree and how we can count the rings of a tree to know how old it is. This is the same concept. For this special sample we remove the otoliths, which are labeled and given to a lab on land where a scientist will carefully examine them under a microscope. The scientist will be able to connect the vial containing the otoliths to the other data collected on that fish (length, weight, sex) because each fish in this sample is given a unique specimen number. This is all part of our mission, which is analyzing the health and population of Pollock in the Bering Sea!

Kacey scans a barcode placed on an otolith vial. Robert is removing the otoliths from each fish and Kacey places them in the vial. It is important to make sure the otoliths are placed in the vial that corresponds to the fish Robert measured. (Photo Credit: Emily)
Kacey scans a barcode placed on an otolith vial. Robert is removing the otoliths from each fish and Kacey places them in the vial. It is important to make sure the otoliths are placed in the vial that corresponds to the fish Robert measured. (Photo Credit: Emily)

 

Kacey removes an otolith from a fish Robert cut open. The otoliths are placed in the vial Kacey is holding. (Photo Credit: Emily)
Kacey removes an otolith from a fish Robert cut open. The otoliths are placed in the vial Kacey is holding. (Photo Credit: Emily)

At this point we have just about collected all the data we need for this haul. Each time we haul in a catch this process is completed. As of today, our survey has completed 28 hauls. Thank goodness we have a day shift and a night shift to share the responsibility. That would be a lot of fish for one crew to process! For our next topic we’ll take a look at how the data is recorded and what happens after we’ve completed our mission. By the way, “blokes” are males and “sheilas” are females. Now please excuse us while we go wash fish scales off of every surface in the Wet Lab, including ourselves!

Personal Log:

Just so you know, we’re not starving out here. In fact, we’re stuffed to the gills – pun completely intended. Our Chief Steward Ava and her assistant Adam whip up some delicious meals. Since I am on night shift I do miss the traditional breakfast served each morning. Sometimes, like today, I am up for lunch. I’m really glad I was or I would have missed out on enchiladas. That would have been a terrible crisis! Most people who know me realize there is never enough Mexican food in my life! Tacos (hard and soft), rice and beans were served along with the enchiladas. Each meal is quite a spread! If I have missed lunch I’ll grab a bowl of cereal to hold me over until supper. I bet you’ll never guess we eat a lot of seafood on board. There is usually a fish dish at supper. We even had crab legs one night and fried shrimp another. Some other supper dishes include pork chops, BBQ ribs, baked steak, turkey, rice, mashed potatoes, and macaroni and cheese plus there are always a couple vegetable dishes to choose from. We can’t forget about dessert, either. Cookies, cakes, brownies or pies are served at nearly every meal. It didn’t take long for me to find the ice cream cooler, either. What else would one eat at midnight?!

Ava and Adam are always open to suggestions as well. Someone told Ava the night shift Science Crew was really missing breakfast foods so a few days ago we had breakfast for supper. Not only did they make a traditional supper meal, they made a complete breakfast meal, too! We had pancakes, waffles, bacon, eggs, and hashbrowns. It was so thoughtful of them to do that for us, especially on top of making a full meal for the rest of the crew. Thanks Ava and Adam!

There are situations where a crew member might not be able to make it to the Mess during our set serving schedule. Deck Crew could be putting a net in or taking it out or Science Crew could be processing a catch. We never have to worry, though. Another great thing about Ava and Adam is they will make you a plate, wrap it up and put it in the fridge so you have a meal for later.

Like I said, we’re not going hungry any time soon! Here are some shots from the Mess Deck (dining room).

Mess Deck on the Oscar Dyson.
Mess Deck on the Oscar Dyson.

Mess Deck on the Oscar Dyson. Can you guess why there are tennis balls on the legs of the chairs?
Mess Deck on the Oscar Dyson. Can you guess why there are tennis balls on the legs of the chairs?

There are always multiple options for every meal. If you’re hungry on this ship you must be the pickiest eater on Earth!
There are always multiple options for every meal. If you’re hungry on this ship you must be the pickiest eater on Earth!

Did you know?

Not only are otoliths useful to scientists during stock assessment, they help the fish with balance, movement and hearing.

Kacey Shaffer: That Is One BIG net! August 4, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 4, 2014

Weather information from the Bridge:

Air Temperature: 11° C

Wind Speed: 8.95 knots

Wind Direction: 327°

Weather Conditions: Foggy

Latitude: 58° 59’92 N

Longitude: 176° 55’09 W

Science and Technology Log:

Now that we have chosen a location to fish, the real fun begins! With a flurry of action, the Bridge (control center of the ship) announces we are going to trawl (fish). This alerts the Deck Crew who has the responsibility of deploying a net. There are three different types of trawls, AWT (Aleutian Wing Trawl), 83-112 Bottom Trawl, and the Marinovich. The type of trawl chosen depends on the depth in the water column and proximity to the bottom of what we want to catch. The 83-112 Bottom Trawl pretty much does what it is called. It is drug along the bottom of the ocean floor and picks up all sorts of awesome sea creatures. The Marinovich is a smaller net that is trawled near the surface. For this Pollock survey, we have primarily used the AWT. It is a mid-water net and that is the area where Pollock primarily live.

Diagram of the Aleutian Wing Trawl (AWT).
Diagram of the Aleutian Wing Trawl (AWT).

As you can see in the diagram, the AWT is cone-shaped. When fully deployed it is 491 feet long! The opening of the net, similar to a mouth, is about 115 feet wide. The Chief Boatswain (pronounced bo-sun) controls the winches that let wire out which extends the opening of the net at least another 500 feet from the aft (rear) deck of the ship.

The ITI screen located on the Bridge that allows us to see how far behind the boat and at what depth the net is located.
The ITI screen located on the Bridge that allows us to see how far behind the boat and at what depth the net is located.

The Deck Crew begins to roll out the net and prepares it for deployment. There are several pieces of equipment attached along the way. A Camtrawl is attached first. Can you guess what it does? It is essentially a camera attached to the net that records what is being caught in the net. Near the Camtrawl, a pocket net is attached to the bottom side of the AWT. This pocket net can show scientists what, if any, fish are escaping the AWT. On a piece of net called the kite that is attached to the headrope (top of the mouth/opening), the FS70 and SBE are attached. The FS70 is a transducer that reports data to the Bridge showing the scientist what is coming into the net, similar to a fish finder. The SBE is bathythermograph that records water temperature and depth. Tomweights are added next. These heavy pieces of chain help weigh the footrope (bottom of the mouth/opening) down, pulling it deeper into the water. The net continues to be reeled out and is finally connected to lines on each side of the deck. The horizontal distance between the lines helps the net to fully open its mouth.

The Camtrawl lets us see fish as they enter the net.
The Camtrawl lets us see fish as they enter the net.

Attaching the tomweights as the net is deployed.
Attaching the tomweights as the net is deployed.

While the net is out the Bridge crew, the Chief Boatswain, the Survey Tech and at least one scientist are on the Bridge communicating. Each person has a role to ensure a successful catch. The Bridge crew controls the speed and direction of the boat. The Chief Boatswain controls the net; changing the distance it is deployed. The Survey Tech has information to report on one of the computers. Lastly, the scientist watches multiple screens, making the decision on how far out the net goes and when to haulback (brings the net in). Ultimately, the Bridge crew is the liaison between all of the other departments and has the final decision on each step of the process, keeping everyone’s safety in mind. This piece of the fishing puzzle quickly became my favorite part of the survey. It is so neat to listen to the chatter of all these groups coming together for one purpose.

On the Bridge during a trawl - left to right: Lt. Frydrych, Officer on Duty; Taina, Chief Scientist; Allen, Survey Tech; Chief Boatswain Kirk.
On the Bridge during a trawl – left to right: Lt. Frydrych, Officer of the Deck; Taina Honkalehto, Chief Scientist; Allen Smith, Survey Tech; Chief Boatswain Kirk Perry.

Once we have reached haulback the Chief Boatswain alerts his deck crew and they begin reeling the net back in. They watch to make sure the lines are going back on the reel evenly. When the tomweights come back on deck they are removed. The next items to arrive are the FS70 and SBE. They are removed and the reeling in continues. The Camtrawl comes in and is removed and the pocket net is checked for fish. By that point we are almost to the end of the net where we’ll find our catch. Because the net is very heavy, the deck crew uses a crane to lift it and move it over the table. A member of the Deck Crew pulls a rope and all the fish are released onto the table. The table is a piece of equipment that holds the fish on the deck but feeds them into the Wet Lab by conveyor belt. Once the fish have been removed from the net it is finally rolled up onto the reel and awaits its next deployment. In my next blog we’ll get fishy as we explore the Wet Lab!

Deck Crew members Bill (left) and Mike (right) prepare a full net to be hoisted to the table by the crane.
Deck Crew members Bill (left) and Mike (right) prepare a full net to be hoisted to the table by the crane.

 

Personal Log:

I have delayed writing about this next location on the ship because it is my favorite place and I want to make sure I do it justice. Plus, the Officers who stand watch on the Bridge are really awesome and I don’t want to disappoint them with my lack of understanding. Here are a few pictures showing some of the things I actually do understand…

Display of tanks located on board the Dyson.
Display of tanks located on board the Dyson.

This screen provides Officers with valuable information about the ship’s engine, among other things. This diagram shows multiple tanks located on the ship. Some tanks take in seawater as we use diesel fuel, drinking water, etc. to counter balance that usage and keep the Dyson in a state of equilibrium. Also, if they are expecting high seas they may take in some of the seawater to make our ship heavier, reducing the effects of the waves on the ship. I’ve been told this may be important in a couple of days because we’re expecting some “weather.” That makes me a little nervous!

The General Alarm on the Bridge.
The General Alarm on the Bridge.

The General Alarm is really important to the safety of all those on the ship but it is not my favorite thing every day at noon. The General Alarm is used to signal us in an emergency – Abandon Ship, Man Overboard, Fire, etc. It is tested every day at noon…while I’m sleeping!! “Attention on the Dyson, this is a test of the ship’s General Alarm.” BEEEP. “That concludes the test of the ship’s General Alarm. Please heed all further alarms.”

Officer Gilman updates a chart during his watch.
ENS Gilman updates a chart during his watch.

What would happen if all of our fancy technology failed on us? How would we know where to tell the Coast Guard to find us? NOAA Corps Officers maintain paper charts as a back up method. At the time this photo was taken the Officer was predicting our location in 30 minutes and in 60 minutes. This prediction is updated at regular intervals so that we have a general area to report in the case of an emergency. Officer Gilman completes this task during his shift.

Kacey learns how to steer the Dyson from Officer Ostapeko.
Kacey learns how to steer the Dyson from Lt. Ostapenko. (Photo Credit: ENS Gilman)

Have I mentioned that the NOAA Corps Officers onboard the Dyson are awesome? They’re so great they let me steer the boat for a little while! In the photo Lt. Ostapenko teaches me how to maintain the ship in a constant direction. The wheel is very sensitive and it took some time to adjust to amount of effort it takes to turn left or right. We’re talking fingertip pushes! The rudder is so large that even just a little push left or right can make a huge difference in the ships course.

Kacey records data on the Bridge during an AWT.
Kacey records data on the Bridge during an AWT. (Photo Credit: Darin)

Since beginning our survey I’ve only missed being on the Bridge for one trawl. Because I have paid very close attention during those trawls Scientist Darin is now allowing me to record some data. I am entering information about the net in this photo. Survey Tech Allen is making sure I do it correctly!

There are so many other things on the Bridge that deserve to be showcased. The ship can be controlled from any one of four locations. Besides the main control center at the front of the Bridge, there are control stations on either side of the ship, port and starboard, as well as the aft (rear). There is the radar system, too. It is necessary so the Officers can determine the location of other vessels and the direction they are traveling. As I’ve been told, their #1 job responsibility is to look out the windows and make sure we don’t run into anything. They are self-proclaimed nerds about safety and that makes me feel very safe!

Did you know? The NOAA Commissioned Officers Corps is one of the seven uniformed services of the United States. There are currently 321 commissioned officers.

Gregory Cook, Super Fish, August 2, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 2, 2014

Science and Technology Log 

See this guy here? He’s an Alaskan Pollock.

If fish thought sunglasses were cool, this fish would wear sunglasses.
Alaskan Pollock, aka Walleye Pollock.
Credit: http://www.noaanews.noaa.gov

“Whatever,” you shrug.
“Just a fish,” you scorn.
“He’s slimy and has fish for brains,” you mock.
Well, what if I told you that guy there was worth almost one billion dollars in exports alone?
What if I told you that thousands of fishermen rely on this guy to provide for their families?
What if I told you that they were the heart of the Sub-Arctic food web, and that dozens of species would be threatened if they were to disappear?
What if I told you they were all secretly trained ninja fish? Ninja fish that carry ninja swords strapped to their dorsal fins?
Then I’d only be wrong about one thing.


Taina Honkalehto is the Chief Scientist onboard the Oscar Dyson. She has been studying Pollock for the last 22 years. I asked her what was so important about the fish.

“They’re the largest single species fishery in North America,” Taina says. That makes them top dog…err… fish… in the U.S. fishing industry.

Chief Scientist Taina Honkalehto decides where to fish based on data.
Chief Scientist Taina Honkalehto decides where to fish based on data.

“In the U.S. they are fish sticks and fish-wiches (like Filet-o-Fish from McDonalds). They’ve become, foodwise, what Cod used to be… inexpensive, whitefish protein,” Taina continues. They’re also the center of the sub-arctic food web. Seals, walruses, orca, sea lions, and lots of larger fish species rely on Pollock as an energy source.”
But they aren’t just important for America. Pollock plays an important role in the lives of people from all over the Pacific Rim. (Remember that the Pacific Rim is made up of all the countries that surround the Pacific Ocean… from the U.S. and Canada to Japan to Australia to Chile!)

Pollock Need Love, too!
Pollock Need Love, too!

“Pollock provide a lot of important fish products to many countries, including the U.S., Japan, China, Korea, and Russia,” Honkalehto says.

Making sure we protect Pollock is REALLY important. To know what can go wrong, we only have to look at the Atlantic Cod, the fish that Cape Cod was named after. In the last twenty years, the number of Atlantic Cod has shrunk dramatically. It’s cost a lot of fishermen their jobs and created stress in a number of families throughout New England as well as tensions between the U.S. and Canada. The U.S. and Canada share fish populations.

The primary job of the Oscar Dyson is to sample the Pollock population. Government officials use the results to tell fishermen what their quota should be. A quota is a limit on the number of fish you can catch. The way we gather that data, though, can be a little gross.

The Aleutian Wing Trawl (or AWT)

Fishermen Deploy the AWT
Fishermen Deploy the AWT.

The fishermen guide the massive Aleutian Wing Trawl (or AWT) onto the deck of the ship. The AWT is a 150 meters long net (over one and a half football fields in length) that is shaped like an ice cream cone. The net gets more and more narrow until you get all the way down to the pointy tip. This is known as the “cod end,” and it’s where most of the fish end up. Here’s a diagram that XO (Executive Officer) Kris Mackie was kind enough to find for me.

AWT
The Aleutian Wing Trawl (or AWT). over one and a half football fields worth of Pollock-Snatching Power.

The AWT is then hooked onto a crane which empties it on a giant mechanical table. The table has a hydraulic lift that lets us dump fish into the wet lab.

Allen pulls a cod from the Table
Survey Technician Allen pulls a cod from the Table

Kids, whenever you hear the term “wet lab,” I don’t want you to think of a water park. Wet lab is going to mean guts. Guts and fish parts.

In the wet lab, the contents of the net spills onto a conveyer belt… sort of like what you see at Shaw’s or Market Basket. First we sift through the Pollock and pull any odd things… jellyfish, skates, etc… and set them aside for measurement. Then it’s time to find out what sex the Pollock are.

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!
Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Genitals on the Inside!

Pollock go through external fertilization (EF). That means that the female lays eggs, and the males come along and fertilize them with their sperm. Because of that, there’s no need for the outside part of the sex organs to look any different. In science, we often say that form follows function. In EF, there’s very little function needed other than a hole for the sperm or egg cells to leave the body.

Because of that, the only way to tell if a Pollock is male or female is to cut them open and look for ovaries and testes. This is a four step process.

Ladies before Gentlemen: The female Pollock (in the front) has ovaries that look like two orange lobes. The Male (in the back) has structures that make him look like he ate Ramen noodles for dinner.
Ladies before Gentlemen:
The female Pollock (bottom) has ovaries that look like two orange lobes. The Male (itop) has testes that make him look like he ate Ramen noodles for dinner.

Step 1: Slice open the belly of the fish.

Step 2: Push the pink, flippy floppy liver aside.

Step 3: Look for a pair of lobes (a bag like organ) that is either purple, pink, or orange-ish. These are the ovaries! If you find this, you’ve got a female.

Step 4: If you strike out on step 3, look for a thin black line that runs behind the stomach. These are the testes… As Tom Hanks and Meg Ryan might say, you’ve got male.

Then the gender and length of the fish is then recorded using CLAMS… a software program that NOAA computer scientists developed for just this purpose. With NOAA, like any good science program, it’s all about attention to detail. These folks take their data very seriously, because they know that so many people depend on them to keep the fish population safe.

Personal Blog

Safety!

Lobster Gumby
Your teacher in an Immersion Suit. Sailors can survive for long periods of time in harsh environments in these outfits.

.

On the first day aboard the Oscar Dyson, we were trained on all matters of safety. Safety on a ship is often driven by sirens sounded by the bridge. Here’s a list of calls, what they mean, and what you should do when you hear them:

What you hear… What it means… What you should do…
 Three long blasts of the alarm: Man Over Board Report to safety station, be counted, and report in to the bridge (unless you’re the one that saw the person go overboard… then you throw them life rings (floaties) and keep pointing at them).
 One long blast of general alarm or ship’s whistle: Fire or Emergency onboard Report to safety station, be counted, and report in to the bridge. Bring Immersion Suit just in case.
 Six or more short blasts then one long blast of the alarm: Abandon Ship Grab your immersion suit, head to the aft (back) deck of the ship, be counted, and prepare to board a life raft.

 

The immersion suit (the thing that makes me look like lobster gumby, above) is made of thick red neoprene. It has two flashing lights also known as beacons…  one of them automatically turns on when it hits water! This helps rescuers find you in case you’re lost in the dark. It also has an inflatable pillow behind your head to help keep your head above water. Mostly just wanted to wear it to Starbucks some day.

Food!

Another thing I can tell you about life aboard the Oscar Dyson is that there is plenty to eat!

kind of awesome. For one thing, there is a never ending supply of food in the galley (the ship’s cafeteria). Eva is the Chief Steward on the Oscar Dyson (though I call her the Head Chef!).

Chief Steward Eva gets dinner done right!
Chief Steward Eva gets dinner done right!

You’ll never go hungry on her ship. Dinner last night? barbeque ribs and mac and cheese. Yesterday’s lunch? Steak and chicken fajitas. And this morning? Breakfast burritos with ham and fruit. I know. You were worried that if I lost any weight at sea that I might just disappear. I can confirm for you that this is absolutely not going to happen.

Tune in next time when I take you on a tech tour of the Oscar Dyson!

 

Kacey Shaffer: Here We Go! July 27, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

 

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: July 27, 2014

 

Weather information from the Bridge:

Air Temperature: 9º C

Wind Speed: 10 knots

Wind Direction: 350º

Weather Conditions: Overcast

Latitude: 56º 29.3 N

Longitude: 170º 35.0 W

 

Science and Technology Log:

Before we get into detail about the mission, let’s think about the Oscar Dyson’s geographical location. It is important for us to understand this background knowledge so that we may appreciate the scientific research conducted by NOAA. Most of you have gathered that I am aboard the Dyson somewhere off the coast of Alaska. Our survey began and will end at port in Dutch Harbor, Alaska. Where is Dutch Harbor? Let’s take a look at a map…

Map of Alaska and Bering Sea
Map of Alaska and Bering Sea

Dutch Harbor is on the island of Unalaska in the Aleutian Islands.  We will take a scientific look at the Aleutian Islands before we learn about the Bering Sea. The Aleutian Islands separate the Bering Sea from the Pacific Ocean. How did this chain of islands come to be? Continental drift and volcanoes! The Pacific Plate moves northward and has been pushing against the North American Plate, which moves southward, for millions of years. The North American Plate is much less dense than the Pacific Plate and has been riding up onto the Pacific Plate. Here is an image that shows this action.

The Pacific Plate is shown on the left and the North American Plate is shown on the right. The volcanoes and mountains represent the Aleutian Islands.
The Pacific Plate is shown on the left and the North American Plate is shown on the right. The volcanoes and mountains represent the Aleutian Islands.

As you can see in the diagram, the Aleutian Islands are formed by volcanic eruptions along the area where these two plates collide. As I read in the book The Bering Sea and Aleutian Islands: Region of Wonders, “During an eruption, lava, cinders, and ash burst through the earth’s surface at points of weakness in the globe’s mantle, caused by the collision of the plates, and each volcano leaves a telltale conical peak. Many of those eruptions have occurred below the surface of the sea, and only the tops of the mountains poke out of the water, making up many of the Aleutian Islands.” This is how the island of Unalaska came to be, thus Dutch Harbor was established!

Now we need to investigate the Bering Sea. What are some words we use to describe the Bering Sea? Cold, stormy, bleak, productive. If you have ever watched an episode of the Discovery Channel’s The Deadliest Catch, you’ve been given a peek at the “cold, stormy and bleak” aspect of the Bering Sea.

What about the “productive” side of this great sea? Three facts: 1. Alaska supplies about half of the total U.S. fishery. 2. The majority of this contribution comes from the Bering Sea. 3. The nation’s largest fishery is the Pollock fishery. NOAA has estimated that the 2012 Pollock catch value is more than $343 billion. Are you beginning to understand how valuable the Bering Sea is to our world?

In order to maintain or increase the value of the sea, management practices must be in place. The North Pacific Fishery Management Council provides advice to NOAA Fisheries. Also, NOAA conducts research cruises in the Bering Sea perform biological and physical surveys to ensure sustainable fisheries and healthy marine habitats. This is the ultimate purpose of the survey I’m joining. We are performing the third leg of the biannual Walleye Pollock Survey in the Bering Sea. In my upcoming blogs, we’ll dive into the technical aspects of the survey. Are you ready to see some sea life? I definitely can’t wait to get my hands on some critters! Prepare for sea selfies!

Personal Log:

As I type my blog, I’m sitting on the deck at a picnic table with the cool, crisp air blowing by. We are in transit to our first survey location. We got underway yesterday afternoon and I won’t see land again for many, many days. That is both exciting and scary at the same time! How do you think you’d feel knowing you are miles away from land? Would you worry about your safety? I am fully confident in the crew of the Oscar Dyson. They have been a great group of people to get to know and I’m sure they will take great care of everyone on board the cruise.

Backing up a couple of days, I want to share with you about my journey across North America and my first two days with the Dyson. After taking off from Columbus I made stops in Minneapolis and Anchorage before landing at the airport in Dutch Harbor. All three flights were smooth and I was thankful for a very calm landing in Dutch. The airport there is a real treat! Our pilot had everything under control though. From the airport we came straight to the ship. I was shown to my room and then we took off for supper at The Grand Aleutian Inn’s dining room. I was able to see a few bald eagles that night and we also took a scenic cruise around the two towns, Dutch Harbor and Unalaska. The next morning the other Teacher at Sea, Greg, and I hitched a ride to the Museum of the Aleutians. It was a great place to learn about the history of the Aleutian Islands. We also made stops at Alaska Ship Supply and Safeway. We had to make sure we were stocked up with the essentials (soda and some candy) to get us through the next three weeks!

Exhibit at the Museum of the Aleutians
Exhibit at the Museum of the Aleutians

Our departure from Dutch Harbor was a beautiful one. Many of the crew members commented on what a beautiful day we were having and how extraordinarily warm it was. The deck crew allowed me to stand on one of the front decks to watch the process of undocking and cruising out of the harbor. They wasted no time as we had our first three drills right away. I’m going to save myself some embarrassment and not share the photo of me donning the survival suit. Let’s just say I’m a little too short for it! Later on that evening we received a call in the lounge that the bridge crew was spotting some whales just west of the ship. I was able to reach the bridge just in time to see a few humpback whales breeching and a few dolphins playing in front of us. That short experience made me really look forward to sorting our first catch. What is one critter from the sea you would like to see in person?

 

Did you know?

There are nearly 40 active volcanoes that mark the line where the Pacific Plate and North American Plate meet.

Kacey Shaffer: Preparing for an Adventure, July 16, 2014

NOAA Teacher at Sea

Kacey Shaffer

(Almost) Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: July 16, 2014

Hello from beautiful Southern Ohio! My name is Kacey Shaffer and it is an honor to be an NOAA Teacher at Sea for the 2014 Field Season. I am thrilled to be sharing this once-in-a-lifetime opportunity with you. In a few days I’ll be flying across North America to spend nineteen days aboard the NOAA ship Oscar Dyson. Our mission will be to assess the abundance and distribution of Walleye Pollock along the Bering Sea shelf.

Next month I’ll begin my eighth year as an Intervention Specialist at Logan Elm High School in Circleville, Ohio. I teach Biology and Physical Science resource room classes and also co-teach in a Biology 101 class and Physical Science 101 class. Three summers ago I was able to participate in Honeywell’s Educators at Space Academy, held at the U.S. Space and Rocket Center in Huntsville, Alabama. That experience enabled me to bring a wealth of information and activities back to my students and colleagues. Because I had such a wonderful experience at Space Academy, I knew I would soon be seeking out other opportunities to perform hands-on work and gain knowledge not available in my geographic area. I was very excited when I found the NOAA Teacher at Sea program and applied immediately. When the congratulatory email arrived I acted like a little girl on Christmas morning, jumping up and down and squealing!

For our first team mission, I served as CapCom. I was the communication link between Mission Control and the shuttle.
In 2011, I attended Honeywell’s Educators at Space Academy. For our first team mission, I served as CapCom. I was the communication link between Mission Control and the shuttle. (Photo credit: Lynn of Team Unity)

Not only do I love adventure that is related to my teaching career, I love adventure in general! Two summers ago I had the privilege of joining one of Logan Elm’s Spanish teachers and four of her recent Spanish 4 graduates on a nine day tour of Spain. We were immersed in culture and history in several cities from Madrid to Barcelona. It was a wonderful experience and I really hope to travel abroad again. Last month the same Spanish teacher escorted four more recent graduates to Puerto Rico for a five day stay. Thankfully she felt I had behaved well enough in Spain to be invited on this trip! Our trip to Puerto Rico was very different from our travel in Spain. We were able to go ziplining in La Marquesa, hiking in El Yunque (which happens to be the U.S. National Park Service’s only tropical rain forest), and kayaking in Laguna Grande near Fajardo. The most amazing experience was kayaking at night in Laguna Grande. Why would you kayak at night? Because that is the home of a bioluminescent bay! You can learn more about this ocean phenomena here. I am very thankful to be able to travel as much as I do!

Last month I kayaked in a bioluminescent bay near Fajardo, Puerto Rico. I shared a kayak with my friend Megan, right.
Last month I kayaked in a bioluminescent bay near Fajardo, Puerto Rico. I shared a kayak with my friend Megan, right. (Photo credit: Luiz, our tour guide)

If I were driving to the Oscar Dyson, it would be about a 5,000 mile trip one way! I’m really glad the journey will be via airplane. I’ll be meeting the ship in Dutch Harbor, Alaska. Does that name sound familiar? Dutch Harbor is the home base of the Discovery Channel’s “The Deadliest Catch.” It is a very small town on one of the many islands that are collectively called the Aleutian Islands. From Dutch Harbor we will sail into the Bering Sea and begin our work. From the information I’ve read, we’ll spend our days gathering information about Walleye Pollock. Through my preparations I’ve gathered this is important because Walleye Pollock is one of the largest fisheries in the world. Why would Walleye Pollock be important to me or my students? This fish is often used in imitation crab or fried fish fillets. We could be eating this species the next time we have fish sticks for supper! For greater detail on Alaskan Walleye Pollock check out the NOAA’s FishWatch page here.

pollock
This is a basket of pollock from a previous survey. (Photo courtesy of NOAA files)

Goodbye Oscar Dyson!
See you in Dutch Harbor, Oscar Dyson! (Photo courtesy of NOAA files)

 

The next time I write to you I’ll be aboard the mighty Oscar Dyson. In the mean time I’ll continue to gather warm clothes and search for a box of seasickness medicine. As I’m packing I may need some advice. If you were leaving home for three weeks, what is the one item you wouldn’t leave without? Remember, I’ll be at sea. My cell phone will be rendered useless and my access to the internet will be limited.

 

Mary Murrian: Working at Sea on the Oscar Dyson! July 11, 2014

NOAA Teacher at Sea

Mary Murrian

Aboard NOAA Ship Oscar Dyson

July 4 – 22, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area of Cruise: Bering Sea North of Dutch Harbor

Date: Friday, July 11, 2014

Weather Data fro the Bridge:

Wind Speed: 17.02 kt

Air Temperature: 8.9 degrees Celsius

Barometric Pressure: 1004.3

Latitude: 5903.6745 N

Longitude: 17220..4880 W

noaa iphone pictures july 5 and 6 2014 1109
I’m sorting the jellyfish (Chrysaora Melanaster) from the pollock.

Science log:

I participated in my first live trawl, catch, sort and data collection survey. In my last blog, I talked about how we located and caught the pollock.  This blog will talk about what happens when the fish are unloaded into the wet lab and processed.  A wet lab is a science lab that is capable of handling excess water and houses the equipment need to to process the catch.

Fresh catch proceeding down the conveyor belt. Time to sort.
Fresh catch proceeding down the conveyor belt. Time to sort.

Once the crew off loads the fish, from the net to the short conveyor belt, into the wet lab or sometimes called the slime lab, (it really lives up to its name), I help the scientists sort the pollock from the other species caught in the net. A small sample of marine life, that is not a pollock, gets sorted, weighed and measured for data collection purposes. They are not the main target of our survey, however, they are interesting to see. Large quantities of jellyfish usually make the mix, but I have seen a variety of other animals, such as crabs, starfishes, clams, salmon, flatfishes, Pacific herring, Atka mackerel, and Yellow Irish Lord. The main character, the pollock, are weighed in batches and then placed on a small table to be sexed. In order to sex the fish, I had to cut across the side of the fish with a small scalpel. Next, I inserted my fingers into their guts and pulled out either the gonads (male) or ovaries (female). The gonads look like stringy romaine noodles and the ovaries look like whitish-pinkish oval sacs. Female pollock are placed in a bin labeled sheila’s and the male pollocks are placed in a bin labeled blokes. Sheila’s and blokes are Australian terms for female and male. Cute.

A female pollock full of eggs
A female pollock full of eggs

Sexing the pollock.  This one is a female.  You can see it oval shaped ovaries.
Sexing the pollock. This one is a female. You can see it oval shaped ovaries.

Once sexed and sorted, the fish are measured for their length. Two very ingenious scientists (one who is working on my trip, Kresimir Williams, and Rick Towler), invented an electronic measuring device. The device allows us to measure quickly and accurately while at the same time automatically recording the measurement on the computer. It looks like a cutting board with a ruler embedded in the center. Of course, all measurements used are metric, the primary form of measurement for scientists across the world.  I to place the fish’s mouth at the beginning of the board and line the back tail of the fish along the ruler. Next, a special tool (a stylus) embedded with a magnet (it’s small, white,and the front looks like a plastic arrowhead) is placed arrow side forward on the end of the tail fin. Once the tool touches the board (it makes a noise which sounds similar to “ta-da” to let you know it captured its measurement), it automatically records the length in the data program, on the computer. I wish I had one for my classroom. Oh, the fun my students could have measuring!  The device streamlines the data collecting process allowing scientists more precise data collection and more time for other research.

I’m measuring the pollock on the electronic scale called the Ichthy Stick

That was a lot to absorb, but there is more. If you tend to get squeamish, you might want to scroll past the next paragraph.

Although, I did not work hands on with the next data collection, I closely observed and took pictures. I will try it before my trip ends. The next step is the aging process. Aging a pollock is a vital part of determining the health and welfare of the species. Aging a pollock is similar to the method of aging a tree.  The Russian scientist, Dr. Mikhail Stepanenko, who has been surveying pollock for over twenty years and is part of the NOAA science team, has it down to a science. First, he cuts the pollock’s head off exposing the ear bones called Otoliths (Oto–means ear; liths–means stone).  He removes the tiny ear bones (about the size and shape of a piece of a navy bean), rinses them, and places them in a small vial labeled with a serial-numbered bar code. The bar code gets scanned and the code is assigned to the specific fish in the computer data base, which also includes their sex, weight and length. Once back at the lab, located in Seattle, Washington, the otoliths can be observed under a microscope and aged based on the number of rings they have: pollock otoliths have one ring for every year of age.  Only twenty fish from each trawl have their otoliths extracted.

Looking inside the pollock.  The little white bones are the ear bones or otoliths.
Looking inside the pollock. The little white bones are the ear bones or otoliths.

Dr. Mikhail Stepanenko placing the otoliths (ear bones) in the vial to be sent to the lab.
Dr. Mikhail Stepanenko placing the otoliths (ear bones) in the vial to be sent to the lab.

Mikhail Stepanenko or we call him Meesha
Mikhail Stepanenko or we call him Meesha

Once all data are collected, there is still more work to be completed. All of the fish that we sampled, were thrown back into the ocean for the sea birds and other carnivores (meat-eaters) to enjoy. Who wouldn’t enjoy a free meal? Then the equipment and work space must be sprayed down to get rid of all the fish particles (slime). It’s important to clean up after yourself to ensure a safe and healthy environment for everyone. Besides, the smell would be horrible.  I also had to spray myself down, it gets very messy.  I had fish guts and jellyfish slime all over my lab gear (orange outer wear provided by NOAA). Unfortunately, the guts occasionally get splattered on my face and hair!  Yuck, talking about fish face.  Thankfully, a bathroom is nearby, where I can get cleaned up.

Starfish that fell from the net when being towed back on board.
Starfish that fell from the net when being towed back on board.

Part of the snail family
Whelks (snails) and anemones

When all is clean, the scientists can upload and analyze the data. They will compare the data to past and current surveys. The data is a vital step to determining the health and abundance of pollock in our ecosystem. I am amazed at all the science, math, engineering, and technology that goes on during a fish survey. It takes many people and numerous skills to make the survey successful.

Brittle Sea Star

This is one of many experiences, I have had trawling and collecting data at sea aboard the Oscar Dyson.  The process will repeat several times over my three week trip.  As part of the science crew, I am responsible to help with all trawls during my shift.  I could have multiple experiences in one day.  I cannot wait!

Personal Log:

What’s it like to be on a NOAA ship out at sea? 

The deck hands, NOAA Corps, and the people I work closest with, the science team, are wonderful and welcoming. I’m super excited and I have to restrain myself from overdoing my questions. They have a job to do!

The weather is not what I expected.  It is usually foggy, overcast, and in the high 40’s and low 50’s.  Once in a while the sun tries to peek out through the clouds. The Bering Sea has been relatively calm. The heaviest article of clothing I wear is a sweatshirt.  It is still early, anything can happen.

On my first day at sea, we had a fire drill and an evacuation drill. Thankfully, I passed.  With help from Carwyn, I practiced donning (putting on) my survival suit.  I displayed a picture of me wearing it in my last blog.  It makes for a hilarious picture!   All kidding aside, NOAA takes safety seriously. The survival suit will keep me alive for several days in case of an evacuation in the middle of sea until someone can rescue me. It will protect me from the elements like water temperature, heat from sun, and it has a flashlight attached. Hopefully, I will not have to go through the experience of needing the suit; but I feel safer knowing it is available.

Carwyn Hammond

Besides the people, the best amenity aboard the Oscar Dyson is the food. Food is available around the clock. That is important because we work 12 hour shifts from 4:00 to 4:00. That means I work the morning 12-hour shift and my roommate, Emily Collins, works the night 12-hour shift. Hungry workers are grumpy workers. For breakfast, you can get your eggs cooked to order and choose from a variety of traditional breakfast food: French toast, grits, cereal, bacon, sausage, fresh fruit, etc…Hot meal options are served for lunch and dinner including a delicious dessert . Of course, ice cream is available always!  I hope I can at least maintain my weight while aboard.

The Galley
The Galley

Food Bar
Food Bar

If I get the urge, there is workout equipment including cardio machines and weights available to use. Other entertainment includes movies and playing games with the other crew members.  The Oscar Dyson also has a store where I can purchase sweatshirts, sweatpants, t-shirts, hats, and other miscellaneous souvenirs advertising the name of the ship. Who would have thought you could shop aboard a NOAA fishing vessel?  I am definitely going shopping.  One of my favorite things to do aboard the ship is to watch for marine life on the bridge, it is peaceful and relaxing.  For anyone that does not know, the bridge is where the Chief Commanding Officer, Chief Executive Officer, and crew navigate the ship.  It is the highest point in which to stand and watch safely out at sea and in my opinion, it has the best view on board.

Did you know?

Did you know when a marine animal such as a seal is close by during a trawl, the trawl process stops and is rerouted?   

The crew is very respectful of sea life and endeavors to complete their mission with the least negative impact on wildlife.  Also, while the ship is on its regular course, the officers on the bridge, sometimes with a deck hand who is available, keep an eye out for seals, sea lions, whales, and sharks, in order to maneuver around them and keep them safe.

NOAA Corps LT Greg Schweitzer, Executive Officer or XO
NOAA Corps LT Greg Schweitzer, Executive Officer or XO

NOAA Corps Ensign Ben VanDine, Safety Officer
NOAA Corps Ensign Ben VanDine, Safety Officer

 

Did you know you can track the Oscar Dyson and its current location?

Check out this link: http://shiptracker.noaa.gov/

Make sure you find the Bering Sea and click on the yellow dot; it will tell you our coordinates!

 

Meet the Scientist:  Emily Collins

Emily holding a Yellow Irish Lord

Title: Fisheries Observer (4 years)

Education:  Bachelor’s Degree in Biology, Marine Science, Boston University

Job Responsibilities: As an observer, Emily works aboard numerous fishing vessels, including the Oscar Dyson.  She collects data to find out what is being caught so that we can send the information to NMFS (National Marine Fisheries Services), a division of NOAA.  They use the data she collects to complete a stock assessment about what type of fish are caught and how much.  She is helping, as part of the science team, survey the pollock for all three legs of the survey.  When I get back to port, she has a couple of days to rest up in Dutch Harbor and then she will complete the last leg of the trip.

Living Quarters:  As a full-time observer, her home is wherever the next assignment is located, mostly on the Bering Sea and the Gulf of Alaska.  She is from Dundee, New York, where her family currently resides.

What is cool about her work?

She loves working at sea  and working with the marine life.  She especially loves it when the nets catch a species of fish she has not seen before.  Getting to know new people and traveling is also a plus.

The weirdest and definitely not her favorite experience, while working on a smaller fisheries boats, was having to use a bucket for the toilet.

Emily had a wonderful opportunity her senior year in high school, the chance to go on a National Geographic Expedition with her mom and then later while in college while taking classes abroad. She went to the Galapagos Islands and Ecuador to study marine biology. These experiences and the fact that her mother is a veterinarian exposed Emily to the love of animals the ocean, and her career choice.

 

Nate is holding a snow crab.

A flat fish
Rock Sole (a type of flatfish)

 

Lots of crabs!
Lots of crabs!

Sorting through the bottom trawl
Sorting through the bottom trawl

Korean Horsehair Crab

Kresimir Williams holding a crab
Kresimir Williams holding a crab

Alex De Robertis working in the wet lab.
Alex De Robertis working in the wet lab.

Mary Murrian: My First Days in Dutch Harbor, July 6, 2014

NOAA Teacher at Sea 

Mary Murrian

Aboard NOAA Ship Oscar Dyson

July 4 – 22, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area of Cruise: Bering Sea North of Dutch Harbor

Date: Sunday, July 6th, 2014

Weather Data from the Bridge:

Wind Speed: 6 kts

Air Temperature: 8.6 degrees Celsius

Weather conditions: Hazy

Barometric Pressure: 1009.9

Latitude: 5923.6198  N

Longitude: 17030.6395  W

 

Science and Technology Log

Part One of the Survey Trawl: Getting Ready to Fish

This is a picture of a pollock from our first trawl.
This is a picture of a pollock from our first trawl.

Today is my second day aboard the Oscar Dyson.  We are anxiously waiting for the echosounder (more information on echosounder follows) to send us a visual indication that a large abundance of fish is ready to be caught.  The point of the survey is to measure the abundance of Walleye Pollock throughout specific regions in the Bering Sea and manage the fisheries that harvest these fish for commercial use to process and sell across the world.  The Walleye Pollock are one of the largest populations of fish.  It is important to manage their populations due to over-fishing could cause a substantial decrease the species.  This would be detrimental to our ecosystem.  The food web [interconnecting food chains; i.e. Sun, plants or producers (algae), primary consumers, animals that eat plants (zooplankton), secondary consumers, animals that eat other animals (pollock), and decomposers, plants or animals that break down dead matter (bacteria)] could be altered and would cause a negative effect on other producers and consumers that depend on the pollock for food or maintain their population.

The main food source for young pollock is copepods, a very small marine animal (it looks like a grain of rice with handle bars).  They also eat zooplankton (animals in the plankton), crustaceans, and other bottom dwelling sea life.  On the weird side of the species, adult pollock are known to eat smaller pollock.  That’s right, they eat each other, otherwise known as cannibalism.  Pollock is one of the main food sources for young fur seal pups and other marine life in Alaskan waters.  Without the pollock, the food web would be greatly altered and not in a positive way.

How do we track the pollock?

Pollock
Pollock

Tracking begins in the acoustics lab.  Acoustics is the branch of science concerned with the properties of sound.  The acoustics lab on board the Oscar Dyson, is the main work room where scientists can monitor life in the ocean using an echosounder which measures how many fish there are with sound to track the walleye pollock’s location in the ocean.  They also use the ships’s GPS (Global Positioning System), a navigation system, to track the location of the NOAA vessel and trawl path.

Echo Sounder
Sonar Screen

What is sonar and how does it work? 

Sonar (sound ranging & navigation;  it’s a product of World War II) allows scientists to “see” things in the ocean using sound by measuring the amount of sound bouncing off of objects in the water.  On this survey, sonar images are displayed as colors on several computer monitors, which are used to see when fish are present and their abundance.  Strong echoes show up as red, and weak echoes are shown as white.  The greater the amount of sound reported by the sonar as red signals, the greater the amount of fish.

Echo Sonar Screen Showing the patterns of echos from the ocean.
Echo Sonar Screen Showing the patterns of echos from the ocean.

How does it work?  There is a piece of equipment attached to the bottom of the ship called the echosounder.  It sends pings (sound pulses) to the bottom of the ocean and measures how much sound bounces back to track possible fish locations.   The echo from the ocean floor shows up as a very strong red signal.   When echoes appear before the sound hits the ocean floor, this represents the ping colliding with an object in the water such as a fish.

The scientists monitor the echosounder signal so they can convey to the ships’s bridge and commanding officer to release the nets so that they can identify the animals reflecting the sound.  The net catches anything in its path such as jellyfish, star fish, crabs, snails, clams, and a variety of other fish species. Years of experience allows the NOAA scientists the ability to distinguish between the colors represented on the computer monitor and determine which markings represent pollock versus krill or other sea life.  We also measure the echoes at different frequencies and can tell whether we have located fish such as pollock, or smaller aquatic life (zooplankton). The red color shown on the sonar screen is also an indicator of pollock, which form dense schools.  The greater amount of red color shown on the sonar monitor, the better opportunity to we have to catch a larger sample of pollock.

The Science Team Wonderful group of people.

Once we have located the pollock and the net is ready, it is time to fish.  It is not as easy as you think, although the deck hands and surveyors make it look simple.  In order to survey the pollock, we have to trawl the ocean.  Depending on the sonar location of the pollock, the trawl can gather fish from the bottom of floor, middle level and/or surface of the ocean covering preplanned locations or coordinates. Note: Not all the fish caught are pollock.

The preplanned survey path is called transect lines with head due north for a certain distance. When the path turns at a 90 degree angle west (called cross-transect lines) and turns around another 90 degree angle heading back south again.  This is repeated numerous times over the course of each leg in order to cover a greater area of the ocean floor.  In my case we are navigating the Bering Sea.  My voyage, on the Oscar Dyson is actually the second leg of the survey, in which, scientists are trawling for walleye pollock.  There are a total of three legs planned covering a distance of approximately 6,200nmi (nautical miles, that is).

Trawling is where we release a large net into the sea located on the stern (the back of the boat).  Trawling is similar to herding sheep.  The fish swim into the net as the boat continues to move forward, eventually moving to the smaller end of the net.  Once the sonar screen (located on a computer monitor) shows that we have collected a large enough sample of pollock, the deck hands reel the net back on board the boat.

 

The crew are beginning to release the trawl net.
The crew are beginning to release the trawl net.

This is the stern of the boat where the trawl net gets released into the ocean.
This is the stern of the boat where the trawl net gets released into the ocean.

We have caught the fish, now what?  Stay tuned for my exciting experience in the wet lab handling the pollock and other marine wild life.  It is most certainly an opportunity of a lifetime.

Personal Log

What an adventure!

I was lucky enough to spend a day exploring Dutch Harbor, Alaska before departing on the pollock survey across the Bering Sea. It took me three plane rides, several short lay-overs and and a car ride to get here, a total of 16 hours. There is a four hour time difference between Dutch Harbor and Dover, Delaware. It takes some getting used to, but definitely worth it. The sun sets shortly after 12:00 midnight and appears again around 5:00 in the morning. Going to sleep when it’s still daylight can be tricky. Thank goodness I have a curtain surrounding my bed. Speaking of the bed, it is extremely comfortable. It is one of those soft pillow top beds. Getting in and out of the top bunk can be challenging. I haven’t fallen yet.

My bed is the top bunk.
My bed is the top bunk.

During my tour through the small town of Dutch Harbor, I have encountered very friendly residents and fishermen from around the world.  I was fortunate to see the U.S. Coast Guard ship Healy docked at the harbor. What a beautiful vessel.  Dutch Harbor has one full grocery store (Safeway) just like we have in Delaware, with the exception of some of the local Alaska food products like Alaska BBQ potato chips. They have a merchant store that sells a variety of items ranging from food, souvenirs, clothing, and hardware. They have three local restaurants and a mom and pop fast food establishment. One of the restaurants is located in the only local Inn the Aleutian hotel, which also includes a gift shop. Dutch Harbor is home to several major fisheries. Dutch Harbor is rich in history and is home to the native Aleutian tribe. I took a tour of their local museum. It was filled with the history and journey of the Aleutian people. While driving through town, I got a chance to see their elementary and high school. They both looked relatively new. Dutch Harbor is also home to our nation’s first Russian Orthodox Church. Alaska is our 50th state and was purchased from Russia in 1867.

Me and the Oscar Dyson
Mary Murian in front of the Oscar Dyson

A very funny photo of me in my survival suit.
A very funny photo of me in my survival suit.

One of the coolest parts of my tour was walking around the area known as the “spit”. The “spit” is located directly behind the airport. I’m told it is called the “spit” because the land and water are spitting distance in length and width. We walked along the shoreline and discovered hundreds of small snails gathered around the rocks. We also found hermit crabs, starfish, sea anemones, jellyfish, and red algae. We saw red colored water, which is a bloom or a population explosion of tiny algae that get so thick that they change the color of the water.

One of numerous amazing views in Dutch Harbor
One of numerous amazing views in Dutch Harbor

tas 2014 day 1 and perboarding july 2-4th 089
Starfish

Another animal in abundance in Dutch Harbor is the bald eagle. There is practically one on every light post or tall structure. Often the bald eagles are perched in small groups. Watch out: if you walk too close to a nesting mother, she will come after you. They are massive, regal animals. I never get tired of watching them.

We had to watch our step, the snails were everywhere along the shoreline of the Spit.
We had to watch our step, the snails were everywhere along the shoreline of the Spit.

A bald eagle hoping to find some lunch.
A bald eagle hoping to find some lunch.

Russian Orthodox Church in Dutch Harbor, AK
Russian Orthodox Church in Dutch Harbor, AK

Did You Know?

Did you know that Alaska’s United States Coast Guard vessel has the ability to break through sea ice? 

This is especially helpful if you want to study northern areas, which are often ice covered, in the winter, and to assist a smaller boat if it gets trapped in the ice.

U.S. Coast Guard Ship Healy docked at the Spit.
U.S. Coast Guard Ship Healy docked at the Spit.

Did you know that scientists set time to Greenwich Mean Time (GMT) which is the time in a place in England?

This reduces confusion (e.g. related to daylight savings, time zones) when the measurements are analyzed.

Key Vocabulary:

Carnivore

Primary Consumer

Secondary Consumer

Nautical Miles

Trawling

Stern

Acoustics

Decomposers

Echosounder

Meet the Scientist:

Alex De Biologist
Alex De Robertis Chief Scientist

Leg II Chief Scientist Dr. Alex De Robertis

Title: NOAA Research Fishery Biologist (10 years)

Education:  UCLA Biology Undergraduate Degree

Scripps Institute Oceanography San Diego, CA PhD.

Newport, Oregon Post Doctorate work

Living Quarters:

Born in Argentina and moved to England when one-year old.

Lived in Switzerland and moved to Los Angeles,CA at the age of 13.

Currently lives in Seattle, Washington, and he has two kids aged one and five.

Job Responsibilities:

Responsible for acoustic trawl surveying at Alaska Fisheries Science Center

Was able to help with the Gulf of Mexico oil spill clean-up using the same echo sonar used on trawl surveys.

What is cool about his work:

He enjoys his work, especially the chance to travel to different geographic locations and meet new people.  “You never know what you are going to encounter; there is always a surprise or curve ball, when that occurs you adjust and just go with it”.

In the near future, he would love to see or be part of the design for an autonomous ocean robot that will simplify the surveying process.

He has been interested in oceans and biology since a small boy.  He remembers seeing two divers emerge from the sea and was amazed it was possible.

Mary Murrian: Getting Ready to Fly to Alaska, July 1, 2014

NOAA Teacher at Sea

Mary Murrian

(Almost) Onboard NOAA Ship Oscar Dyson

July 19- July 22, 2014

 

Mission:  Annual Pollock Survey

Geographical area of cruise: Bering Sea and Gulf of Alaska

Date: July 1, 2014

Personal Log

Greetings from Dover, Delaware, the first state to ratify the United States Constitution!  My name is Mary Murrian and I teach math and science to a wonderful group of fifth grade students at William Henry Middle School.  My journey will begin early in the morning on Wednesday, July 2, 2014.  My son, Robert–an upcoming junior at the University of Delaware, is driving me to the Philadelphia airport at 3:00 am in the morning.  After transferring planes in Chicago, Illinois and then again in Anchorage, Alaska, I will finally make land at my final destination, Dutch Harbor, Alaska.

disney trip 2014 009

If you are a Deadliest Catch fan you will recognize Dutch Harbor as the home base for the popular television show on the Discovery Channel.  I will be aboard NOAA Ship Oscar Dyson, a NOAA (National Oceanic and Atmospheric Administration) ship.  I have the wonderful opportunity to work  with the crew and scientists aboard the Oscar Dyson to research and determine the abundance and health of walleye pollock, one of the largest fisheries in the world.  If you have ever eaten fish sticks or imitation seafood, most likely you have tried pollock!

Thanks to the NOAA Teacher at Sea program, I am afforded this wonderful opportunity to work hands-on, learning the science involved in research aboard a NOAA ship. I currently teach a unit on ecosystems, where my students learn about the ecosystem around them and the interrelationships between organisms in an environment focusing on food chains, food webs, and environmental factors that play a role in an ecosystem. This experience will enhance my knowledge of marine ecosystems and the important role the fish play in supporting a healthy and sustainable environment.  I look forward to learning and growing through my participation with experts in their field.  I want to gather as much information as possible, in order to bring it back to my classroom and share my real life experience with my students this upcoming school year and years to come.  What a wonderful way to bring real-life data and experiences to my students.

I have been asked numerous times if I am scared or nervous to be aboard a ship sailing on the Bering Sea.  My response, NO!  I am thrilled.  I cannot wait for my journey to begin.  I have cruised to Alaska before, however not as far north as the Dutch Harbor area and I was on a recreational cruise ship. It was beautiful and the scenery was amazing.  I never saw ice as blue as I did when we crossed Tracy Arm fjord.  A fjord is a typically long, narrow valley with steep sides that are created by advancing glaciers (http://oceanservice.noaa.gov/education/kits/estuaries/media/supp_estuar04_fjord.html).  The trip, although freezing, was amazing.  I also found out that glacial ice often appears blue because of years of compression gradually making the ice denser over time, forcing out the tiny air pockets between the crystals.  When glacier ice becomes extremely dense, the ice absorbs a small amount of red light, leaving a bluish tint in the reflected light (http://nsidc.org/cryosphere/glaciers/quickfacts.html).  Super cool!

Sawyer Glacier in Tracy Arm, showing the very blue ice.  Photo provided by personnel of the NOAA ship John N. Cobb
Sawyer Glacier in Tracy Arm, showing the very blue ice.
Photo provided by personnel of the NOAA ship John N. Cobb

I look forward to my upcoming experience, a trip of a lifetime.  There is more to come, I hope you will continue with me on my journey across the Gulf of Alaska and the Bering Sea!  Watch out Alaska, here I come!

Britta Culbertson: The Beat of the Bongo (Part 2) – Catching Zooplankton, September 12, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Wednesday, September 12th, 2013

Weather Data from the Bridge (for Sept 12th, 2013 at 9:57 PM UTC):
Wind Speed: 23.05 kts
Air Temperature: 11.10 degrees C
Relative Humidity: 93%
Barometric Pressure: 1012.30 mb
Latitude: 58.73 N              Longitude: 151.13 W

Science and Technology Log

Humpback Whale
A humpback whale. (Photo credit: NOAA)

We have been seeing a lot of humpback whales lately on the cruise.  Humpback whales can weigh anywhere from 25-40 tons, are up to 60 feet in length, and consume tiny crustaceans, plankton, and small fish.  They can consume up to 3,000 pounds of these tiny creatures per day (Source: NOAA Fisheries).  Humpback whales are filter feeders and they filter these small organisms through baleen.  Baleen is made out of hard, flexible material and is rooted in the whale’s upper jaw.  The baleen is like a comb and allows the whale to filter plankton and small fish out of the water.

Baleen
This whale baleen is used for filter feeding. It’s like a small comb and helps to filter zooplankton out of the water. (Photo credit: NOAA)

I’ve always wondered how whales can eat that much plankton! Three thousand pounds is a lot of plankton.  I guess I felt that way because I had never seen plankton in real-life and I didn’t have a concept of how abundant plankton is in the ocean. Now that I’m exposed to zooplankton every day, I’m beginning to get a sense of the diversity and abundance of zooplantkon.

In my last blog entry I explained how we use the bongo nets to capture zooplankton.  In this entry, I’ll describe some of the species that we find when clean out the codends of the net.  As you will see, there are a wide variety of zooplankton and though the actual abundance of zooplankton will not be measured until later, it is interesting to see how much we capture with nets that have 20 cm and 60 cm mouths and are towed for only 5-10 minutes at each location.  Whales have much larger mouths and feed for much longer than 10 minutes a day!

Cleaning the codends is fairly simple; we spray them down with a saltwater hose in the wet lab and dump the contents through a sieve with the same mesh size as the bongo net where the codend was attached.  The only time that this proves challenging is if there is a lot of algae, which clogs up the mesh and makes it hard to rinse the sample.  Also, the crab larvae that we find tend to hook their little legs into the sieve and resist being washed out.  Below are two images of 500 micrometer sieves with zooplankton in them.

Zooplankton
A mix of zooplankton that we emptied out of the codend from the bongo.

Crab larvae
Crab larvae (megalopae) that we emptied out of the codend.

Some of the species of zooplankton we are finding include different types of:

  • Megalopae (crab larvae)
  • Amphipods
  • Euphausiid (krill)
  • Chaetognaths
  • Pteropods (shelled: Limasina and shell-less: Clione)
  • Copepods (Calanus spp., Neocalanus spp., and Metridea spp.)
  • Larval fish
  • Jellyfish
  • Ctenophores

The other day we had a sieve full of ctenophores, which are sometimes known as comb jellies because they possess rows of cilia down their sides.  The cilia are used to propel the ctenophores through the water.  Some ctenophores are bioluminescent.  Ctenophores are voracious predators, but lack stinging cells like jellyfish and corals. Instead they possess sticky cells that they use to trap predators (Source:  UC Berkeley).  Below is a picture of our 500 micrometer sieve full of ctenophores and below that is a close-up photo of a ctenophore.

Ctenophores
A sieve full of ctenophores or comb jellies.

Ctenophore
A type of ctenophore found in arctic waters. (Photo credit: Kevin Raskoff, MBARI, NOAA/OER)

It’s fun to compare what we find in the bongo nets to the type of organisms we find in the trawl at the same station.  We were curious about what some of the fish we were eating, so we dissected two of the Silver Salmon that we had found and in one of them, the stomach contents were entirely crab larvae! In another salmon that we dissected from a later haul, the stomach contents included a whole capelin fish.

Juvenile pollock are indiscriminate zooplanktivores.  That means that they will eat anything, but they prefer copepods and euphausiids, which have a high lipid (fat) content. Once the pollock get to be about 100 mm or greater in size, they switch from being zooplanktivores to being piscivorous. Piscivorous means “fish eater.”  I was surprised to hear that pollock sometimes eat each other.  Older pollock still eat zooplankton, but they are cannibalistic as well. Age one pollock will eat age zero pollock (those that haven’t had a first birthday yet), but the bigger threat to age zero pollock is the 2 year old and older cohorts of pollock.  Age zeros will eat small pollock larvae if they can find them.  Age zero pollock are also food for adult Pacific Cod and adult Arrowtooth Flounder.  Older pollock, Pacific Cod, and Arrowtooth Flounder are the most voracious predators of age 0 pollock.  Recently, in the Gulf of Alaska, Arrowtooth Flounder have increased in biomass (amount of biological material) and this has put a lot of pressure on the pollock population. Scientists are not yet sure why the biomass of Arrowtooth Flounder is increasing. (Source: Janet Duffy-Anderson – Chief Scientist aboard the Dyson and Alaska Fisheries Science Center).

The magnified images below, which I found online, are the same or similar to some of the species of zooplankton we have been catching in our bongo nets.  Click on the images for more details.

Personal Log (morning of September 14, 2013)

I’m thankful that last night we had calm seas and I was able to get a full eight hours of sleep without feeling like I was going to be thrown from my bed.  This morning we are headed toward the Kenai Peninsula, so I’m excited that we might get to see some amazing views of the Alaskan landscape.  The weather looks like it will improve and the winds have died down to about 14 knots this morning.  Last night’s shift caught an octopus in their trawl net; so hopefully, we will find something more interesting than just kelp and jellyfish in our trawls today.

Did You Know?

I mentioned that we had found some different types of pteropods in our bongo nets.  Pteropods are a main food source for North Pacific juvenile salmon and are eaten by many marine organisms from krill to whales.  There are two main varieties of pteropods; there are those with shells and those without.  Pteropods are sometimes called sea butterflies.

Pteropod
A close-up of Limacina helicina, a shelled pteropod or sea butterfly. (Photo credit: Russ Hopcroft/University of Alaska, Fairbanks)

Unfortunately, shelled pteropods are very susceptible to ocean acidification.  Scientists conducted an experiment in which they placed shelled pteropods in seawater with pH and carbonate levels that are projected for the year 2100.  In the image below, you can see that the shell dissolved slowly after 45 days.  If pteropods are at the bottom of the food chain, think of the implications of the loss of pteropods for the organisms that eat them!

Pteropods
Shelled pteropods after being exposed to sea water that has the anticipated carbonate and pH levels for the year 2100. Notice the degradation of the shell after 45 days. (Photo credit: David Liittschwager/National Geographic Stock)

Read more about ocean acidification on the NOAA’s Pacific Marine Environmental Laboratory (PMEL) website. Also, check out this press release from November 2012 by the British Antarctic Survey about the first evidence of ocean acidification affecting marine life in the Southern Ocean.

Teacher’s Corner

In my last blog entry on the bongo, I talked about using the “frying pan” or clinometer to measure wire angle.  If you’re interested in other applications of clinometers, there are instructions for making homemade clinometers here and there’s also a lesson plan from National Ocean Services Education about geographic positioning and the use of clinometers this website.

If you are interested in teaching your students about different types of plankton, here is a Plankton Wars lesson plan from NOAA and the Southeast Phytoplankton Monitoring Network, which helps students to understand how plankton stay afloat and how surface area plays a role in plankton survival.

If you would like to show your students time series visualizations of phytoplankton and zooplankton, go to NOAA’s COPEPODite website.

Zooplankton time series
Zooplankton time series visualization from the COPEPODite website.

For more plankton visualizations and data, check out NOAA’s National Marine Fisheries Service website.

If you are interested in having your students learn more about ocean acidification, there is a great ocean acidification module developed for the NOAA Ocean Data Education Project on the Data in the Classroom website.

Britta Culbertson: The Beat of the Bongo (Part 1): Catching Zooplankton, September 11, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Wednesday, September 11th, 2013

Weather Data from the Bridge (for Sept 11th, 2013 at 10:57 PM UTC):
Wind Speed: 4.54 kts
Air Temperature: 10.50 degrees C
Relative Humidity: 83%
Barometric Pressure: 1009.60 mb
Latitude: 58.01 N              Longitude: 151.18 W

Science and Technology Log

What is a bongo net and why do we use it?

As I mentioned in a previous entry, one of the aspects of this cruise is a zooplankton survey, which happens at the same stations where we trawl for juvenile pollock.  The zooplankton are prey for the juvenile pollock.  There are many types of zooplankton including those that just float in the water, those that can swim a little bit on their own, and those that are actually the larval or young stage of much larger organisms like crab and shrimp.  We are interested in collecting the zooplankton at each station because because we are interested in several aspects of juvenile pollock ecology, including feeding ecology.  In order to catch zooplankton, we use a device called a bongo net.  The net gets its name because the frame resembles bongo drums.

20bon
Diagram of a 20 cm bongo net set-up. (Photo credit: NOAA – Alaska Fisheries Science Center)

The bongo net design we are using includes 2 small nets on a 20 cm frames with 153 micrometer nets attached to them and 2 large nets on 60 cm frames with 500 micrometer nets.  The 500 micrometer nets catch larger zooplankton and the 153 micrometer nets catch smaller zooplankton.  In the picture above, there are just two nets, but our device has 4 total nets.  At the top of the bongo net setup is a device called the Fastcat, which records information from the tow including the depth that bongo reaches and the salinity, conductivity, and temperature of the water.

Bongo in water
This is what the bongo looks like when it’s finally in the water (Photo credit: John Eiler)

What happens during a bongo net tow?

The process of collecting zooplankton involves many people with a variety of roles.  It usually takes three scientists, one survey tech, and a winch operator who will lower the bongo net into the water.  In addition, the officers on the bridge need to control the speed and direction of the boat.  All crew members are in radio contact with each other to assure that the operation runs smoothly.  Two scientists and a survey tech stand on the “hero deck” and work on getting the nets overboard safely.  Another scientist works in a data room at a computer which monitors the depth and angle of the bongo as it is lowered into the water.  It is important to maintain a 45 degree angle on the wire that tows the bongo to make sure that water is flowing directly into the mouth opening of the net.  One of the scientists on the hero deck will use a device that we lovingly call the “frying pan,” but more accurately it is called a clinometer or inclinometer. The flat side of the device gets lined up with the wire and an arrow dangles down on the plate and marks the angle.  The scientist calls out the angle every few seconds so that the bridge knows whether or not to increase or decrease the speed of the ship in order to maintain the 45 degree angle necessary.

Peter and the pan
Scientist Peter Proctor holds up the “frying pan” also known as a clinometer or inclinometer, which is used to measure the wire angle of the bongo when it’s in the water.

Meanwhile, back at the computer, we monitor how close the bongo gets to the bottom of the ocean.  We already know how deep the ocean is at our location because of the ship’s sonar.  The bongo operation involves a bit of simple triangle geometry.  We know the depth and we know the angles, so we just have to calculate the hypotenuse of the triangle that will be created when the bongo is pulled through the water to figure out how much wire to let out.  The survey tech uses a chart that helps him determine this quickly so he knows what to tell the winch operator in terms of wire to let out.  In the images below, you can see what we are watching as the bongo completes its tow.  The black line indicates the depth of the bongo, and the red, purple, and blue lines indicate temperature, conductivity, and salinity.

Good bongo tow
This is an example of a good bongo tow. The black line on the left of the graph shows a consistent tow angle both up and down. The key is that the black line should have a “v” shape on the graph if the tow is good.

Bad bongo
This graph shows what happens when a bongo gets caught in the current and stays at the same depth for a while. Look at how the black line isn’t smooth, but levels off for a bit. This happened with the bongo both when it was going down and coming back up to the surface.

When the bongo is within in 10 meters of the bottom, the survey tech radios the winch operator to start bringing the bongo back up.  It usually takes longer for it to come up as it does for it to go out, nevertheless, the 45 degree wire angle needs to be maintained.  When the survey tech sees the bongo at the surface of the water, the two scientists on the hero deck get ready to grab it.  This operation can be quite difficult when it’s windy and the seas are rough. If you look at the sequence of the photos below, pay attention to the horizon line where the water meets the sky and you can get a sense of the size of the swells that day.

When the bongo is safely back on deck, the person in the data room records the time of the net deployment, how long it takes to go down and up, how much wire gets let out, and the total depth at the station.  If anything goes wrong, this is also noted in the data sheet.

As the bongo reaches the surface, the scientists grab the net keep it from banging into the side of the ship.  When the net is on board, the next step is to read the flowmeters on the nets that indicate how much water has flowed through them.  Then we rinse the nets and wash all of the material down the nets and into the “codends” at the very end of the net.  These are little containers that can be detached and emptied to collect the samples.

Once the codends are detached, they are taken to the wet lab and rinsed.  Each of the four parts of the net has a codend where the zooplankton are caught. The zooplankton are rinsed out of the codends into a sieve and then collected in a jar and preserved with formalin.  The purpose of having two of each of the 20 cm and 60 cm bongo nets is to ensure that if one sample is bad or accidentally dumped, there is always a backup.  I have had to use the backup once or twice when there was a big jellyfish in the codend that kept me from getting all of the zooplankton out of the sample.

Codend
The codend from the 150 micrometer bongo net.

cleaning the codends and sieve
Britta rinsing the 500 micrometer sieve.

After we collect the zooplankton the samples are shipped to Seattle when we return to port. Back in the labs, the samples are sorted, the zooplankton are identified to species, and the catch is expressed at number per unit area.  This gives a quantitative estimate of the density of plankton in the water.  A high density of the right types of food means a good feeding spot for the juvenile walleye pollock!  This sorting process can take approximately one year.  I think it’s pretty amazing how much work goes into collecting the small samples we get at each station.  Just to think of all of the person hours and ship hours involved makes me realize how costly it is to study the ocean.

Colleen and zooplankton jar
Scientist Colleen Harpold holding up one of the preserved jars of zooplankton.

Colleen with zooplankton
Scientist Colleen Harpold holding up one of the preserved jars of zooplankton that has A LOT of algae in it too!

Personal Log

It is hard to believe that I’ve been on the ship a week now.  It feels strange that just 7 days ago I had never heard of a bongo net or an anchovy net.  Now I see them every day and I know how to identify several types of fish, jellyfish, and zooplankton.  I love working with the scientists and learning about the surveys we are doing.  Nearly every trawl reveals a special, new organism, like the Spiny Lumpsucker – go look that one up, I dare you!  We don’t have much down time and I’m trying to blog in between stations, but sometimes the time between stations after we finish our work can be 45 minutes and sometimes just 15 minutes.  So we are pretty much on the go for the whole 12-hour shift.  That’s where the fortitude part of Teacher at Sea comes in.  You definitely need to have fortitude to endure the long hours, occasional seasickness (I like to think of it as “sea discomfort”), and periodic bad weather.

By now though, it all seems routine and I’d like to think I’ve gotten used to being thrown around in my sleep a little now and again when we hit some rough seas.  This experience has been so worthwhile and even though I look forward to the comforts of home, I don’t really want it to end.  When I graduated from college, I worked with a herpetologist studying lizards in the desert south of Carlsbad, New Mexico.  I have fond memories of living in a tent for four months and collecting lizards all day to bring back to camp to measure and check for parasites.  I often miss doing scientific work, so Teacher at Sea has given me the opportunity to be a scientist again and to learn about a whole new world in the ocean.  What a treat! One of the reasons I chose to be a teacher was to be able to share my excitement about science with students and I feel so lucky that I get to share this experience too.

Did you know?

There are two species of Metridia, a type of copepod (zooplankton), that are found in the Gulf of Alaska/Bering Sea.  One of them is called Metridia lucens and the other one is Metridia oketensis.  These copepods are bioluminescent, which means that they glow when they are disturbed.  They sometimes glow when they are in the wake of the ship or on the crest of a wave.  Tonight when I was draining a codend into a sieve, my sieve looked like it had blue sparkles in it, but just for a second!  I asked our resident zooplankton expert, Colleen Harpold what they might be and she thought that my blue sparkles likely belonged to the genus Metridia.

If you are interested in reading a little more about Metridia, check out this blog from Scientific American on copepods in the Bering Sea!

Metridia longa
This is an image of Metridia longa. (Photo credit: NOAA/Hopcroft)

Glowing Metridia
This is a picture from Scientific American of Metridia spp. glowing while in a sieve. (Photo Credit: Chris Linder, Woods Hole Oceanographic Institute)

 Thanks for reading! Please leave me some comments or ask questions about any of the blog posts and feel free to ask other questions about the work we are doing or what it’s like at sea! I would love to be able to answer real-time while I am at sea.

Britta Culbertson: Hiding Out During Rough Seas, September 6, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Friday, September 6th, 2013

Weather Data from the Bridge (for Sept 6th at 5:57 PM UTC):
Wind Speed: 42.65 knots
Air Temperature: 11.8 degrees C
Relative Humidity: 81%
Barometric Pressure: 987.4 mb
Latitude:57.67 N          Longitude: 153.87 W

Science and Technology Log

Weather Advsisory
The weather advisory for the Gulf of Alaska and around Kodiak Island (screen shot from NOAA Alaska Region Headquarters)

Spiridon Bay
Spiridon Bay (screenshot from Shiptracker.noaa.gov)

As you can see from my weather data section, the wind speed this morning was up to 42.65 knots.  We had waves near 18 feet and thus the Oscar Dyson ran for cover and tucked itself in an inlet on the North side of Kodiak Island called Spiridon Bay.  The Oscar Dyson’s location can be viewed in near real-time using NOAA’s Shiptracker website.   The screenshot above was taken from the Shiptracker website when we were hiding from the weather. The weather forecast from NOAA’s Alaska Region Headquarters shows that the winds should diminish over the next few days.  I’m thankful to hear that!

…GALE WARNING TONIGHT….TONIGHT…S WIND 45 KT DIMINISHING TO 35 KT TOWARDS MORNING. SEAS 23FT. PATCHY FOG..SAT…SW WIND 30 KT DIMINISHING TO 20 KT IN THE AFTERNOON. SEAS15 FT. PATCHY FOG..SAT NIGHT…W WIND 15 TO 25 KT. SEAS 8 FT. RAIN..SUN…SW WIND 20 KT. SEAS 8 FT..SUN NIGHT…S WIND 25 KT. SEAS 8 FT..MON…SE WIND 25 KT. SEAS 13 FT..TUE…S WIND 30 KT. SEAS 11 FT..WED…S WIND 25 KT. SEAS 9 FT.

Since the Dyson has been in safe harbor in Spiridon Bay for the last few hours, I have had some time to catch up on some blogging!  Let’s backtrack a few days to Wednesday, September 4th, when the Dyson left Kodiak to begin its journey in the Gulf of Alaska.  We headed out after 1PM to pick up where the last cruise left off in the research grid.  We reached our first station later in the afternoon and began work.  A station is a pre-determined location where we complete two of our surveys (see map below).  The circles on the map represent a station location in the survey grid.  The solid circles are from leg 1 of the cruise that took place in August and the hollow circles represent leg 2 of the cruise, which is the leg on which I am sailing.

The first step once we reach a station is to deploy a Bongo net to collect marine zooplankton and the second step is to begin trawling with an anchovy net to capture small, pelagic juvenile pollock and forage fishes that are part of the main study for this cruise. Pelagic fish live near the surface of the water or in the water column, but not near the bottom or close to the shore.  Zooplankton are “animal plankton”.  The generic definition of plankton is: small, floating or somewhat motile (able to move on their own) organisms that live in a body of water. Some zooplankton are the larval (beginning) stages of crabs, worms, or shellfish.  Other types of zooplankton stay in the planktonic stage for the entirety of their lives. In other words, they don’t “grow up” to become something like a shrimp or crab.

Station Map
Station map for leg 1 and leg 2 of the juvenile pollock survey. I am on leg 2 of the survey, which is represented with hollow circles on the map.

Before we reached the first station, we conducted a few safety drills.  The first was a fire drill and the second was an abandon ship drill.  The purpose of these drills is to make sure we understand where to go (muster) in case of an emergency.   For the abandon ship drill, we had to grab our survival suits and life preservers and muster on the back deck.  The life rafts are stored one deck above and would be lowered to the fantail (rear deck of the ship) in the event of an actual emergency.  After the drill I had to test out my survival suit to make sure I knew how to put it on correctly.

Life Jacket
Britta Mustering for Abandon Ship Drill on Oscar Dyson

survival suit
Britta models a survival suit – they even found a size SMALL for me!

On the way to our first station, we traveled through Whale Pass next to Whale Island, which lies off of the northern end of Kodiak Island.  While passing through this area, we saw a total of 4 whales spouting and so many sea otters, I lost track after I counted 20.  Unfortunately, none of my pictures really captured the moment.  The boat was moving too fast to get the sea otters before they flipped over or were out of sight.

Whale Island
A nautical chart map for Whale Island and Whale Passage

Personal Log

secure for sea!
Last night’s warning about high seas in the early morning of September 6th.

A lot of people have emailed to ask me if I have been getting seasick.  So far, things haven’t been that bad, but I figured out that I feel pretty fine when I’m working and moving about the ship.  However, when I sit and type at a computer and focus my attention on the screen that seems to be when the seasickness hits. For the most part, getting some fresh air and eating dried ginger has saved me from getting sick and fortunately, I knew about the threat of high winds last night, so I made sure to take some seasickness medication before going to bed.  After what we experienced this morning, I am sure glad I took some medication.

Everyone on board seems very friendly and always asks how I am doing.  It has been a real pleasure to meet the engineers, fisherman, NOAA Corps officers, scientists, and all others aboard the ship.  Since we have to work with the crew to get our research done, it’s wonderful to have a positive relationship with the various crew members.  Plus, I’m learning a lot about what kinds of careers one can have aboard a ship, in addition to being a scientist.

So far, I’ve worked two 12-hour shifts and even though I’m pretty tired after my long travel day and the adjustment from the Eastern Time Zone to the Alaskan Time Zone (a four hour difference), I’m having a great time!  I really enjoy getting my hands dirty (or fishy) and processing the fish that we bring in from the trawl net.  Processing the haul involves identifying, sorting, counting, measuring the length, and freezing some of the catch.  The catch is mainly composed of different types of fish like pollock and eulachon, but sometimes there are squid, shrimp, and jellyfish as well.

One of the hardest parts of the trip so far is getting used to starting work at noon and working until midnight.  We have predetermined lunch and dinner times, 11:30 AM and 5:00 PM respectively, so I basically eat lunch for breakfast and dinner for lunch and then I snack a little before I go to bed after my shift ends at midnight.  As the days go by, I’m sure I’ll get more used to the schedule.

Did You Know?

During one of our trawls, we found a lanternfish.  Lanternfish have rows of photophores along the length of their bodies.  Photophores produce bioluminescence and are used for signaling in deep, dark waters.  The fish can control the amount of light that the photophores produce.  Lanternfish belong to the Family Myctophidae and are “one of the most abundant and diverse of all oceanic fish families” (NOAA Ocean Explorer).

lanternfish
Lanternfish caught during a trawl. Note the dots along the bottom of the fish, these are photophores that emit bioluminescence.

Lanternfish
Photo of bioluminescing lanternfish (Photo Credit: BBC Animal Facts http://www.bbc.co.uk/nature/blueplanet/factfiles/fish/lanternfish_bg.shtml)