Emily Cilli-Turner: One Fish, Two Fish….Pollock Counting Techniques July 29, 2018

NOAA Teacher at Sea

Emily Cilli-Turner

Aboard NOAA Ship Oscar Dyson

July 24 – August 11, 2018

 

Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 29, 2018

 

Weather Data from the Bridge:

Latitude: 57° 10.46 N

Longitude: 171° 58.29 W

Wind Speed: 11.16 knots

Wind Direction: 77.54° (NW)

Air Temperature: 10.1° C (Manual Reading from the Bridge)

Barometric Pressure: 992.7 mb

Visibility: 6 nautical miles

Sea Wave Height: 3 feet

Sky: Overcast

 

Science Log:

How do the scientists aboard NOAA Ship Oscar Dyson estimate the number and biomass of pollock in the Eastern Bering Sea? By using the science of statistics, of course! When political strategists want to determine what percentage of voters support a specific candidate or issue, they take a sample from the population of all registered voters. Voters in this sample are then asked about their preferences and statistical techniques are employed to extrapolate the results from the sample to the entire population and measure the margin of error.  Similar statistical techniques are employed by the scientists on NOAA Ship Oscar Dyson, but as you can imagine it is more difficult to sample pollock than voters that can be called on the phone!

Before each pollock survey begins, a set of transects is created for the Eastern Bering Sea.  These transects are paths for the ship to follow along which the scientists sample the pollock.  As you can see below, the transects for this survey are a fixed distance apart and cover the entire area of interest.  Generally, the transects are straight lines created to be perpendicular to the ocean depth grade. This allows for the scientists to encounter a variety of species as well as different ages of pollock to gain a robust picture of the ocean life in the area.

transect

The transects for this survey leg can be seen as the straight lines. The other markings are places where the trawls have been done and other scientific instruments have been deployed.

The NOAA Ship Oscar Dyson follows the transects during daylight hours, continuously recording water column acoustic backscatter data using EK60 instruments mounted on the bottom of the centerboard.  Scientists monitor the backscatter images, and when they observe sufficient pollock or other fish aggregations they  use the trawling nets to take a random sample of the fish and other ocean life they observed.  The trawling net is 140 m long with a vertical mouth opening of 25 m and horizontal mouth opening of 35 m. The net is deployed from the back of the ship and dragged at a fixed depth for an amount of time determine by the lead scientist to ensure a large enough sample. Once the trawling net is hauled in, the sample of marine fish and invertebrates is processed in the wet lab and entered into a database. Later the pollock numbers and weights by length are combined with  recorded acoustic data to create a robust estimate of the pollock population in the Eastern Bering Sea.

After the catch comes in, the first job in processing the sample is to sort the specimens from the trawling net.  The first part of the net to come in is called the pocket net. This small net, also called a recapture net,  has a fine mesh and is designed to capture small species such as krill, age 0 pollock and jellyfish which slip through the meshes of the large trawl.  After the pocket net is processed, we process the codend, the closed end of the net and the main section where larger fish enter and are captured.  The fish in the codend are sorted by species.  The scientists can choose to measure the length of all the pollock in the haul or, if it is a particularly large catch, split the haul and measure length of a subsample of pollock.  Other species are also identified and their length is measured for later estimates of the total biomass that pollock make up as compared to other species.  Smaller species such as krill are weighed in aggregate instead of individually.

codend

The codend of the trawling net.

Sample analysis consists of measuring the lengths of approximately 200-400 adult pollock in the catch using the magnetic length board.  This is just one of the numerous software and instruments created by the MACE (Midwater Assessment and Conservation Engineering) group at NOAA in Seattle to make analysis easier and more automated.  The length distribution of the adult pollock helps scientists determine the approximate age distribution of pollock in the sample and it also helps them compare this distribution to other samples taken in the Eastern Bering Sea.  A subsample of about 50 pollock from the haul is taken to get more in-depth measurements. From these pollock, we measure both the length and weight and a subsample from the 50 is taken to determine the gender, measure maturity (i.e. what stage in the life cycle the pollock is at), and collect the otolith (ear bone), which gives a more accurate measurement of the pollock’s age.

Personal Log:

At this point, I am getting used to life at sea and have a nice routine.  The beginning of my shift, from 4am to a little past 7am, starts at sunrise and during which we resume our path along the transect.  No trawling operations are conducted at night, but there is still excitement.  If the underwater acoustics show that the pollock are at an appropriate depth, we can go pole fishing off the boat.  NOAA scientist Mike Levine is interested in post-capture mortality of pollock and the feasibility of tagging pollock.  Thus, he would like to catch pollock using a fishing pole, which puts much less stress on the pollock and increases the chance of their survival after the catch, instead of the trawling nets.

fishing

NOAA scientist Mike Levine with a pollock caught with a fishing pole.

As an instructor of mathematics, I have little knowledge of fish biology, but the scientists are great teachers!  I have been given a crash course on fish anatomy using specimens from the catch and I have learned how to sex the fish as well as how to collect the ovaries and the otoliths (ear bones).  If you asked me a week ago if I ever thought I would know so much about pollock after just a couple days on board, I would have laughed.  It has been great being the student and being able to learn so much in such a short time with real hands-on experience!

Did You Know?

Most of the personnel that are responsible for piloting and maintaining the ship are part of NOAA Corps, which is one of the seven uniformed services of the United States.

Emily Cilli-Turner: Getting Ready for an Adventure! July 22, 2018

NOAA Teacher at Sea

Emily Cilli-Turner

Aboard NOAA Ship Oscar Dyson

July 25 – August 15, 2018

Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Dutch Harbor, Alaska

Date: July 15, 2018

Personal Introduction:

Olympic Mountains

Hiking in the Olympic Mountains near Seattle, WA

Hello!  My name is Emily Cilli-Turner and I will be aboard the NOAA Ship Oscar Dyson as a participant in the 2018 NOAA Teacher at Sea program.  I am Assistant Professor of Mathematics at the University of La Verne in La Verne, California where I teach the entire undergraduate curriculum in mathematics.  This will be my sixth year teaching full-time. My bachelor’s degree in mathematics is from Colorado State University and I received my doctorate from University of Illinois at Chicago, where I specialized in undergraduate mathematics education.  I am especially interest in the transition students make when they enter a proof-based course and how to best acclimate them to the abstract and non-formulaic nature of proving.

I am passionate about math and science education and excited to use the data collected from my time on the ship to create real-world applications problems for my students.  I will be teaching Calculus I and II next semester and I plan to use the data gained from my experience to teach my students about concepts such as rates of change and statistical techniques.

I have a strong love for the ocean and so I am excited to be on the water for so long. I am transitioning to California after living in Washington, where I co-owned a 23-foot sailboat with some friends.  We often would sail to different islands and ports on Puget Sound, which was always a blast. When I am not teaching or sailing, I enjoy walking my dog, hiking and reading!

On a boat

TAS Emily Cilli-Turner on her boat in the Puget Sound

Personal Log

In about a week, I will fly to Dutch Harbor, Alaska to board the NOAA Ship Oscar Dyson and participate in the Alaska Pollock counting survey.  Before receiving this placement, I have never really heard of Pollock, but after researching it I realized it is an amazing fish! Pollock can easily taste like other fish and is often used for imitation crab amongst other things.

I am also really excited to meet the scientists and the crew.  The reason I know about the Teacher at Sea program is that I have a friend that works at NOAA in Seattle.  I mentioned offhandedly that I would love to go out on a NOAA cruise and she said, “Well…they do have the Teacher at Sea program.”  I was immediately intrigued and I wrote my application as soon as it was available. As a person who is passionate about education and the ocean, the Teacher at Sea program is a great fit for me and I know I will learn a lot that I can take back to my students. Hopefully, I can also inspire them to seek out a career with NOAA.

Did You Know?

Pollock eat crabs, shrimp and small fish.

Jenny Smallwood: Rough Seas Asea, September 13, 2017

NOAA Teacher at Sea

Jenny Smallwood

Aboard NOAA Ship Oscar Dyson

September 4 – 17, 2017

Mission: Juvenile Pollock Survey
Geographic Area of Cruise: Gulf of Alaska
Date: September 13, 2017

Weather Data from the Bridge
Latitude: 55 06.6N
Longitude:158 39.5W
Winds: 20 S
Temperature: 11 degrees Celsius (51.8 degrees Fahrenheit)

Up. Down. Up. Down. Left. Right….no I’m not in an aerobics class. High winds and seas cause my chair to slide across the floor as I type.

weather

Thus far we’ve been working 12 hour shifts, 24 hours a day. Today we’re sitting about twirling our thumbs as 12 feet seas toss us about. It’s not too bad actually, but it is bad enough to make operations unsafe for both crew and equipment. I’ve been impressed with the safety first culture on-board the Oscar Dyson. Hopefully, it’ll calm down soon, and we can start operations again.

Science and Technology Log

Ship support systems for power, water, sewage treatment, and heating/cooling are all several levels below the main deck, which makes ship engineers a bit like vessel moles. These hard working guys ensure important life support systems work smoothly. Highlights from my time with them include a lesson on the evaporator and engines.

The evaporator, which for some reason I keep calling the vaporizer, produces the fresh water drinking supply. The evaporator works by drawing in cold seawater and then uses excess engine heat to evaporate, or separate, the freshwater from the seawater. The remaining salt is discarded as waste. On average, the evaporator produces approximately 1,400 gallons of water per day.
*Side note: the chief engineer decided vaporizer sounds a lot more interesting than evaporator. Personally, I feel like vaporizer is what Star Trek-y people would have called the system on their ships.

IMG_20170909_145438

The evaporator in action.

The Oscar Dyson has 4 generators on board, two large, and two small. The generators are coupled with the engines. Combined they produce the electricity for the ship’s motors and onboard electrical needs, such as lights, computers, scientific equipment, etc.

IMG_20170909_145326

IMG_20170909_145132

I even got to see the prop shaft.

Personal Log

This week I also spent time in the Galley with Ava and Adam. (For those of you who know me, it’s no surprise that I befriended those in charge of food.) Read on for a summary of Ava’s life at sea story.

Me: How did you get your start as a galley cook?

Ava: When I was about 30 years old, a friend talked me into applying to be a deck hand.

Me: Wait. A deck hand?

Ava: That’s right. I was hired on to a ship and was about to set out for the first time when both the chief steward and 2nd cook on a different ship quit. My CO asked if I cook to which I replied “for my kids,” which was good enough for him. They immediately flew me out to the other ship where I became the 2nd cook. 12 years later I’m now a Chief Steward.

Me: Wow! Going from cooking for your kids to cooking for about forty crew members must have been a huge change. How did that go?

Ava: To be honest, I made a lot phone calls to my mom that first year. She helped me out a lot by giving me recipes and helping me figure out how to increase the serving sizes. Over the years I’ve paid attention to other galley cooks so I now have a lot of recipes that are my own and also borrowed.

Me: What exactly does a Chief Steward do?

Ava: The Chief Steward oversees the running of the galley, orders food and supplies, plans menus, and supervises the 2nd Cook. I’m a little different in that I also get in there to cook, clean, and wash dishes alongside my 2nd Cook. I feel like I can’t ask him to do something that I’m not willing to do too.

Me: So you didn’t actually go to school to be a chef. Did you have to get any certifications along the way?

Ava: When I first started out, certifications weren’t required. Now they are, and I have certifications in food safety and handling.

There are schools for vessel cooking though. My daughter just recently graduated from seafarers school. The school is totally free, except for the cost of your certification at the very end. For people interested in cooking as a career, it’s a great alternative to other, more expensive college/culinary school options. Now she’s traveling the world, doing a job she loves, and putting a lot of money into her savings.

Me: Talking with crew members on this ship, the one thing they all say is how hard it is to be away from family for long stretches of time. A lot of them are on the ship for ten months out of the year, and they do that for years and years. It’s interesting that your daughter decided to follow in your footsteps after experiencing that separation firsthand.

Ava: I was surprised too. Being away from friends and family is very hard on ship crew. Luckily for me, my husband is also part of the NOAA crew system so we get to work and travel together. Nowadays I’m part of the augment program so I get to set my own schedule. It gives me more flexibility to stay home and be a grandma!

Did You Know?

Nautical miles are based on the circumference of the earth and is 1 minute of latitude. 1 nautical mile equals 1.1508 statue miles.

Jenny Smallwood: WWE at Sea, September 5, 2017

NOAA Teacher at Sea
Jenny Smallwood
Aboard Oscar Dyson
September 2 – 17, 2017

Mission: Juvenile Pollock Survey
Geographic Area of Cruise: Gulf of Alaska
Date: September 5, 2017

Weather Data from the Bridge
Latitude: 56 38.8 N
Longitude: 155 34.8
Clear skies
Wind speed 10 mph NNE
Air temp 11.5 degrees Celsius (52.7 degrees Fahrenheit)

Science and Technology Log
Today I got smacked in the face by a jellyfish. It practically flew into my mouth. Don’t worry I’m perfectly fine. I’ll admit to a lot of silent shrieking when it happened. Perhaps even some gagging….How did this happen you might be asking yourself? Read on my friend, read on..

After a couple of days at the dock in Kodiak, Alaska, we are finally underway!  My first shift was spent hanging out and watching the scenery as we cruised to the first station.

Fluke

Here’s one of the whales we saw while cruising to our first station site. Photo courtesy of Jim McKinney

 We went through the aptly named Whale Passage where we saw orcas, whales, sea otters, and puffins!  It was also the first time we’d seen the sun in two days.  To be honest, that was more exciting than seeing whales.

It took about twelve hours for us to reach the first station site. The established routine is bongo net and Stauffer trawl, cruise to next site, bongo net and Stauffer trawl, cruise to next site, bongo net and…well you get the point.

When the Stauffer trawl net is hauled in, the science team and survey tech sort through everything in the net. Juvenile pollock (less than a year old) go into one bin, capelin into another bin, so on and so forth.

Stauffer Trawl Sorting

The science team and survey tech sort a pile of jellies and fish. *Caution! Watch out for flying jellyfish!*

Now what makes this really interesting is that we’re basically digging these fish out of one massive, gelatinous pile of jellyfish goop. Once all the fish are sorted, the jellies get sorted too, which is where the jellyfish face smack comes in. Picture a smallish conveyor belt with 5 people standing around throwing fish, squid, isopods, and jellyfish into appropriate bins. It turns out that when you throw jellyfish into a bin, it sometimes explodes on impact causing jellyfish goop to go flying, and sometimes it flies onto my face. *smh*

lumpsucker

We caught a cool looking smooth lumpsucker fish.

 

GOPR0491 - Edited.jpg

Here I am holding the smooth lumpsucker.

When the crew and science team aren’t working jellyfish laden Stauffer trawls, they’re busy with the bongo nets. These are my favorite because they pull up lots of plankton.

GOPR0498.JPG

The deck crew and survey tech bring in the bongo nets.

Most people would totally freak out if they knew how much stuff was swimming around in the water with them, including pteropods, which look a bit like slugs with wings. Pteropods are a type of zooplankton also know as sea butterflies for the small “wings” attached to their bodies. The ones we got today were big enough to be slugs. My goal over the next couple of weeks is to get a decent video of them swimming.

Personal Log
Peer pressure is a powerful thing. Even though I’ve never gotten seasick, I succumbed to peer pressure and took some meclizine before leaving the dock. I really didn’t want my memories of the Oscar Dyson to include yakking over the side of the ship. In this case, positive peer pressure was a good thing. I’ve been feeling just fine even when confined in small, fishy smelling rooms. Eau de poisson anybody?

The biggest adjustment has been the time change and 12 hour work shift from noon to midnight. I like to describe myself as the oldest, young person alive. We’re talking early bird specials, going to bed early, and waking up at the crack of dawn. So while the day shift I’m on is clearly a perk, it’s still taken me a few days to get used to it, especially since it’s 4 pm to 4 am east coast time. Judging by the 9.5 hours of sleep I got last night, it’ll be smooth sailing from here.

I can also report that the food on board is delicious. Ava and Adam crank out tasty options at every meal, and somehow meet the needs of about 35 people some of whom are vegetarian, vegan, low acid, etc. Since Kodiak was a washout, I tagged along on the shopping trip prior to our departure. Five shopping carts later we were ready to eat our way across the Gulf of Alaska!

Did You Know?
NOAA scientists on board the ship rotate through different at sea research cruises throughout the year. They even participate on cruises that have nothing to do with their actual research. It’s like a big group effort to get the data NOAA needs for its various research projects.

 

 

Jenny Smallwood: Adventure Awaits, August 29, 2017

NOAA Teacher at Sea

Jenny Smallwood

Aboard NOAA Ship Oscar Dyson

September 4 – 17, 2017

 

Mission: Juvenile Walleye Pollack Survey

Geographic Area of Cruise: Gulf of Alaska

Current Location: Virginia Beach, Virginia

Date: 8/29/2017

 

Weather Data from the beach

Currently Virginia Beach is experiencing Potential Tropical Cyclone 10.  The temperature is topped out at 75°F.  The winds are out of the NE at about 13 mph right now.  That’s expected to increase to 25-35 mph with gusts up to 50 mph this afternoon.  Forecasts predict mild flash flooding and some tidal flooding around the 2 pm high tide.

Potential Tropical Cyclone 10

Potential Tropical Cyclone 10 Wind Speed Probability Map. Image courtesy of the National Hurricane Center

Introduction – Personal Log

My name is Jenny Smallwood, and I’m a school and youth programs educator at the Virginia Aquarium & Marine Science Center in Virginia Beach, Virginia.  I’m in my 11th year as an educator, which included 8 years as a high school science teacher.  These days I get to hang out with and educate scouts, school groups, and other visitors to the Aquarium.  One of the coolest things I’ve experienced working here is watching as a student sees the ocean for the very first time!  It was that experience that helped me realize how important it is to share the oceans and oceanic research with people who can’t experience it themselves.  I want to bring my Teacher at Sea experience to those individuals who don’t have the Chesapeake Bay or an ocean in their backyard.  I want to help them experience the life of a marine researcher.

Outside of my role as an educator, I love to go on all the adventures.  My husband, Lee, and I enjoy traveling and have nicknamed ourselves “adventure nerds.”  We even have a theme song.  Like I said, we’re nerds.  I’m super excited about this latest adventure with Teacher at Sea.  I’m still amazed that I was one of the few chosen for this year’s research cruises.

Eldfell Volcano

Warming our hands from the heat emitted by Eldfell, a volcano located on the Westman Islands in Iceland.

Science and Technology Log

The Oscar Dyson is a NOAA research vessel used for fisheries surveys important to fisheries management.  Commissioned in 2005, this 208.6 feet long ultra-quiet survey ship is considered one of the most technologically advanced fisheries survey vessels in the world.  That’s right.  This ship is super stealthy so we can sneak up on the fish.  It also has numerous labs onboard, including a wet, dry, bio, and hydro lab.

Oscar Dyson

The Oscar Dyson near Dutch Harbor, Alaska. Courtesy of NOAA.

On this trip, the Oscar Dyson will pull out of Kodiak, Alaska and make its way southwest through the Gulf of Alaska to take up position for Leg 2 of the EMA-EcoFOCI Juvenile Walleye Pollock and Forage Fish Survey.

Leg 2 Map

Leg 2 Sampling Station Map in the Gulf of Alaska. Image courtesy of NOAA

What does that mean exactly?  Well, it means that scientists will collect Walleye Pollock data to get an idea of what the population looks like.  They’ll also take zooplankton samples, smaller prey fish samples, and collect environmental data to see how these factors might be affecting Pollock.  Basically scientists and policy makers need information in order to properly manage this fishery, and this is where NOAA comes in.  I can’t wait to learn more about the application of this research as scientists learn even more about the ecology of Pollock. 

To collect these samples, scientists will be using a variety of tools.  Bongo nets will be used to collect zooplankton samples.  From what I’ve learned so far, it sounds like specially mounted equipment collects water data along with the plankton.  A Stauffer trawl net will be used to sample fish species.  A CTD rosette (CTD stands for conductivity, temperature, and density) will be used along the way to corroborate that the other water data equipment is indeed working correctly.  Scientists, like mathematicians, do love to double check their work.

 

Did You Know?

Did you know that NOAA is part of our daily lives?  Both the National Weather Service and the National Hurricane Center are part of this organization.  To learn more about the National Hurricane Center, Hurricane Harvey, or Potential Tropical Cyclone 10, visit their website: http://www.nhc.noaa.gov/

 

 

 

Amanda Dice: Bongos in the Water, August 24, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: August 24, 2017

Weather Data: 11.5 C, Foggy

Latitude 56 35.5 N, Longitude 153 21.9 W

IMG_1101

This map on the bridge helps everyone keep track of where we are and where we are headed next.

Science and Technology Log

At each sampling site, we take two types of samples. First, we dip what are called bongo nets into the water off of the side of the boat. These nets are designed to collect plankton. Plankton are tiny organisms that float in the water. Then, we release long nets off of the back of the boat to take a fish sample. There is a variety of fish that get collected. However, the study targets five species, one of which is juvenile walleye pollock, Gadus chalcogrammus. These fish are one of the most commercially fished species in this area. I will go into more detail about how the fish samples are collected in a future post. For now, I am going to focus on how plankton samples are collected and why they are important to this survey.

IMG_1096

Juvenile walleye pollock are fish that are only a few inches long. These fish can grow to much larger sizes as they mature.

As you can see in the photos below, the bongo nets get their name because the rings that hold the nets in place resemble a set of bongo drums. The width of the nets tapers from the ring opening to the other end. This shape helps funnel plankton down the nets and into the collection pieces found at the end of the nets. These collection devices are called cod ends.

IMG_0993

Bongo nets being lowered into the water off of the side of the ship.

IMG_1092

This is the collection end, or cod end, of the bongo nets.

This study uses two different size bongo nets. The larger ones are attached to rings that are 60 centimeters in diameter. These nets have a larger mesh size at 500 micrometers. The smaller ones are attached to rings that are 20 centimeters in diameter and have a smaller mesh size at 150 micrometers. The different size nets help us take samples of plankton of different sizes. While the bongo nets will capture some phytoplankton (plant-like plankton) they are designed to mainly capture zooplankton (animal-like plankton). Juvenile pollock eat zooplankton. In order to get a better understanding of juvenile pollock populations, it is important to also study their food sources.

IMG_1081

Here I am, helping to bring the bongo nets back on to the ship.

Once the bongo nets have been brought back on board, there are two different techniques used to assess which species of zooplankton are present. The plankton in nets #1 of both the small and large bongo are placed in labeled jars with preservatives. These samples will be shipped to a lab in Poland once the boat is docked. Here, a team will work to identify all the zooplankton in each jar. We will probably make it to at least sixty sampling sites on the first leg of this survey. That’s a lot of zooplankton!

 

IMG_1121

A jar of preserved zooplankton is ready to be identified.

The other method takes place right on the ship and is called rapid zooplankton assessment (RZA). In this method, a scientist will take a small sample of what was collected in nets #2 of both the small and large bongos. The samples are viewed under a microscope and the scientist keeps a tally of which species are present. This number gives the scientific team some immediate feedback and helps them get a general idea about which species of zooplankton are present. Many of the zooplankton collected are krill, or euphausiids, and copepods. One of the most interesting zooplankton we have sampled are naked pteropods, or sea angels. This creature has structures that look very much like a bird’s wings! We also saw bioluminescent zooplankton flash a bright blue as we process the samples. Even though phytoplankton is not a part of this study, we also noticed the many different geometric shapes of phytoplankton called diatoms.

 

sea angel

A naked pteropod, or sea angel, as seen through the microscope.

Personal Log

Both the scientific crew and the ship crew work one of two shifts. Everyone works either midnight to noon or noon to midnight. I have been lucky enough to work from 6am – 6pm. This means I get the chance to work with everyone on board at different times of the day. It has been really interesting to learn more about the different ship crew roles necessary for a survey like this to run smoothly. One of the more fascinating roles is that of the survey crew. Survey crew members act as the main point of communication between the science team and the ship crew. They keep everyone informed about important information throughout the day as well as helping out the science team when we are working on a sample. They are responsible for radioing my favorite catchphrase to the bridge and crew, “bongos in the water.”

IMG_1105

A sign of another great day on the Gulf of Alaska.

Did You know?

You brush your teeth with diatoms! The next time you brush your teeth, take a look at the ingredients on your tube of toothpaste. You will see “diatomaceous earth” listed. Diatomaceous earth is a substance that contains the silica from ancient diatoms. Silica gives diatoms their rigid outer casings, allowing them to have such interesting geometric shapes. This same silica also helps you scrub plaque off of your teeth!

diatoms

Diatoms as seen through a microscope.

 

Staci DeSchryver: Exploring HICEAS on the High Seas! June 20, 2017

NOAA Teacher at Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

Mission:  Cetacean Study

Geographic Area of Cruise:  Hawaiian EEZ

Current Location:  Impatiently waiting to sail in Centennial, Colorado

Date:  June 20

Weather Data from the “Bridge” (AKA My Sun Porch):

wxdata_0620

Here’s the weather data from the “Bridge” in Centennial. (In Station Model format, of course. How else would we practice?)

 

Personal Log – An Introduction

Hello!  My name is Staci DeSchryver and I will be traveling this upcoming July on the Oscar Elton Sette as part of the HICEAS program!

I am an Oceanography, Meteorology, and Earth Science teacher at Cherokee Trail High School in Aurora, CO.  This August will kick off my 14th (yikes!) year teaching.  I know you might be thinking, “Why Oceanography in a landlocked state?”  Well, the reason why I can and do teach Oceanography is because of Teacher At Sea.  I am an alumna, so this is my second official voyage through the Teacher At Sea program.  It was all of the wonderful people I met, lessons I learned, and science that I participated in on the

 

DeSchryverIntroPic

This is my husband, Stephen, and I, at the game that sent the Broncos to the Superbowl!

 

Oscar Dyson in 2011 that led me to encourage my school to put an Oceanography course in place for seniors as a capstone course.  This past year was the first year for the Oceanography and Meteorology courses, and they were very well received!  I have three sections of each class next year, as well!  (Shout out to all my recent senior grads reading this post! You were awesome!)  We study our World’s Ocean from the top of the water column all the way to the deepest parts of the Marianas Trench, and from the tiniest atom all the way up to the largest whale.  I  believe it is one of the most comprehensive courses offered to our students – incorporating geology, chemistry, physics, and biology, but then again, I’m a bit biased.

Apart from being a teacher, I am a wife to my husband of 8 years, Stephen.  We don’t have children, but we do have two hedgehogs, Tank and Willa, who keep us reasonably busy.  Willa only has one eye, and Tank is named Tank because he’s abnormally large for a hedgie.  They are the best lil’ hedgies we know.  We enjoy camping, rock climbing, and hiking – the typical Coloradans, though we are both originally from Michigan.  When we aren’t spending time together, I like to dance ballet, read, write, and I recently picked up a new weightlifting habit, which has led me to an entire new lifestyle of health and wellness with an occasional interjection of things like Ice Cream topped with caramel and Nachos when in the “off” season (hey, nobody’s perfect).

I will be leaving for Honolulu, Hawaii on July 4th to meet up with the fine scientists that make up the HICEAS team.  What is HICEAS?  Read below to find out more about HICEAS and the research we will be doing onboard!

Science Log

The HICEAS (Hawaiian Islands Cetacean and Ecosystem Assessment Survey) is a study of Cetaceans (Whales, Dolphins, and Porpoises) and their habitats.  Cetaceans live in the ocean, and are characterized by being carnivorous (we will get along just fine at the dinner table) and having fins (since I am a poor swimmer, I will humbly yield to what I can only assume is their instinctive expertise).  This means that the study will cover all manners of these majestic creatures – from whales that are definitely easily identifiable as whales to whales that look like dolphins but are actually whales to porpoises that really look like whales but are actually dolphins and dolphins that look like dolphins that are dolphins and…  are you exhausted yet?  Here’s some good news – porpoises aren’t very common in Hawaiian waters, so that takes some of the stress out of identifying one of those groups, though we will still be on the lookout.  Here’s where it gets tricky – it won’t be enough to just sight a whale, for example and say, “Hey! We have a whale!”  The observers will be identifying the actual species of the whale (or dolphin or possible-porpoise).  The observers who tackle this task are sharp and quick at what is truly a difficult and impressive skill.  I’m sure this will be immediately confirmed when they spot, identify, and carry on before I say, “Wait! Where do you see it?”

hawaiian_archipelago_map_sm

This is the research area for the HICEAS project. Map/photo is credited directly to the HICEAS website, https://www.pifsc.noaa.gov/hiceas/whats_hiceas.php

There are 25 cetacean species native to Hawaiian waters, so that’s a big order to fill for the observers.  And we will be out on the water until we locate every last one.  Just kidding.  But we will be looking to spot all of these species, and once found, we will do our best to estimate how many there are overall as a stock estimate.  Ideally, these cetacean species will be classified into three categories – delphinids (dolphins and a few dolphin-like whales), deep diving whales (whales with teeth), and baleen whales (of the “swim away!” variety).  Once identified in this broad sense, they will then be identified by species.  However, I do have a feeling these two categorizations happen all at once.

Once the data is collected, there is an equation that is used to project stock estimates for the whole of the Pacific.  More on this later, but I will just start by saying for all you math folk out there, it’s some seriously sophisticated data extrapolation.  It involves maths that I have yet to master, but I have a month to figure it out, so it’s not looking too bleak for me just yet.  In the meantime, I’m spending my time trying to figure out which cetaceans that look like dolphins are actually possible-porpoises, and which dolphins that look like dolphins are actually whales.

Goals and Objectives of the HICEAS

The HICEAS study operates as a part of the Pacific Islands Fisheries Science Center (PIFSC) and the Southwest Fisheries Science Center (SFSC), both under the NOAA umbrella.  Our chief scientist is Dr. Erin Oleson, who will be the lead on this leg of the cruise. HICEAS last collected data in 2010, and is now ready for the next round of stock assessments.  HICEAS is a 187-day study, of which we will be participating in approximately 30 of those days for this particular leg.  Our research area is 2.5 million square kilometers, and covers the whole of the Hawaiian Archipelago and it’s Exclusive Economic Zone, or EEZ!  The HICEAS study has three primary goals:

  1.  Estimate the number of cetaceans in Hawaii.
  2.  Examine their population structure.
  3.   Understand their habitat.

Studies like the HICEAS are pretty rare (2002, 2010, and now 2017), so the scientists are doing their best to work together to collect as much information as they possibly can during the study.  From what I can gather in lead-up chats with on board scientist Kym Yano, we will be traveling along lines called “transects” in the Pacific Ocean, looking for all the popular Cetacean hangouts.  When a cetacean is sighted, we move toward the lil’ guy (or gal) and all his friends to take an estimate, and if it permits, a biopsy.  There is a second team of scientists working below deck listening for Cetacean gossip (whale calls) as well.  Acoustic scientists will record the whale or dolphin calls for later review and confirmation of identification of species, and, of course, general awesomeness.

But that’s not all!

We will also be dropping CTD’s twice per day, which is pretty standard ocean scientific practice.  Recall that the CTD will give us an idea of temperature, salinity, and pressure variations with depth, alerting us to the presence and locations of any of the “clines” – thermocline, halocline, and pycnocline.  Recall that in areas near the equator, rapid changes of temperature, salinity, and density with depth are pretty common year-round, but at the middle latitudes, these form and dissipate through the course of the solar year. These density changes with depth can block nutrients from moving to the surface, which can act as a cutoff to primary production.  Further, the CTD readings will help the acoustic scientists to do their work, as salinity and temperature variations will change the speed of sound in water.

There will also be a team working to sight sea birds and other marine life that doesn’t fall under the cetacean study (think sea turtles and other fun marine life).  This study is enormous in scope.  And I’m so excited to be a part of it!

Pop Quiz:

What is the difference between a porpoise and a dolphin?  

It has to do with 3 identifiers:  Faces, Fins, and Figures.

According to NOAA’s Ocean Service Website…

Faces:  Dolphins have prominent “beaks” and cone-shaped teeth, while Porpoises have smaller mouths and teeth shaped like spades.

Fins: Dolphin’s dorsal (back) fins are curved, while porpoises fins are more triangle-shaped

Figures: Dolphins are leaner, and porpoises are more “portly.”

Dolphins are far more prevalent, and far more talkative.  But both species are wicked-smart, using sonar to communicate underwater.

Resources:

HICEAS website

Bradford, A. L., Forney, K. A., Oleson, E. M., & Barlow, J. (2017). Abundance estimates of cetaceans from a line-transect survey within the U.S. Hawaiian Islands Exclusive Economic Zone. Fishery Bulletin, 115(2), 129-142. doi:10.7755/fb.115.2.1