Linda Kurtz: Women in STEM-(at Sea): Meet Allyson Causey, August 23, 2019

NOAA Teacher at Sea

Linda Kurtz

Aboard NOAA Ship Fairweather

August 12-23, 2019


Mission: Cascadia Mapping Project

Geographic Area of Cruise: Northwest Pacific

Date: 8/23/2019

engineer Allyson Causey
Allyson Causey – Engineer aboard NOAA Ship Fairweather

Women in STEM – Engineering

Meet Allyson Causey!  Engineer aboard NOAA ship Fairweather

Job Title:

3rd Assistant Engineer

Time in current position:

2 ½ months aboard Fairweather

Education and/or Specialized training:

Texas A & M- Bachelor of Science in Marine Engineering Technology

Wage Mariners-civil service federal employee (nonmilitary)

Do you have any plans for future education?

Currently investigating at master’s programs in Nuclear Engineering

Engineering aboard Fairweather

  • Generator
  • Boiler
  • Reverse Osmosis Machine
  • Reverse Osmosis Machine
  • Controller
  • Main engine
  • Air compressor
  • Fire main
  • Marine Sanitation Device

How did you find out about your current position at NOAA?

I met a NOAA recruiter at a job fair at Texas A & M, submitted resume and 3 weeks later I got the call!   After that the lengthy background check and physical for Federal employees, I came to work at NOAA aboard Fairweather.

1) When you were a child, what was your dream career?

I wanted to be an astronaut when I was young.   I looked into aeronautical engineering and attended a Federal Service academy – the United States Merchant Marine Academy.  My Dad is an engineer and contractor, so I grew up on job sites and always had the mindset of math and science.  I knew my career would be something in the STEM field

2)  What was your favorite subject in school?

My favorite class was differential equations.  Why I like engineering so much is everything is one big puzzle, and differential equations is like one big puzzle.

3)  Why is what you do important to on the ship?

Engineers on ships are essentially the lifeblood of the ship, we keep the ship moving.  We are the electricians, plumbers, the mechanics, and even the firefighters.  The ship can’t go anywhere without engineers!

4)  What would you tell an elementary school student about your work that is important to you?

 I enjoy solving the puzzles.  When something goes wrong, I enjoy finding out why something is not working and then solving the problem.  That is what is so rewarding — figuring out what is wrong and fixing it!

5)  Where do you do most of your work?

In the engine room.  That’s where I spend my 8-hour shifts.  The engineering room is on A & B deck — the 2 bottom-most levels of the ship.  That is where most of the mechanisms that run the ship are located. 

6)  What tool do you use in your work that you could not live without?

 A crescent wrench!  Mine is handy because it can measure and tell you the exact size of the nut which makes things a lot easier!

7)  If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

I would invent a tool that could reach bolts at odd angles.  Like a magnetic wrench that could adjust to the size bolt head you need and could bend around the odd angles and apply torque when I need it.

8)  What part of your job with NOAA did you least expect?

 I never expected to be in Alaska!

9)  How could teacher help students understand and appreciate NOAA engineering opportunities?

I think it would be valuable to have better understanding of what we engineers do!   It’s a really cool job, with a really good salary, and very few people know there are positions like this available. 

10)  What is your favorite part of your day when you are working and why?

Every day is a little different, you are never doing the same thing over and over again.  Something is always breaking and needs immediate attention.

11)  What was your favorite book growing up?

My favorite book series when I was growing up was Junie B. Jones!  I come from Florida and loved Jacques Cousteau.   He inspired me to become a scuba diver at 17.

12)  What do you think you would be doing if you were not working for NOAA?

I would be still be working on a boat!

13)  Do you have an outside hobby?

 I love camping and hiking, I’ve hiked 40 miles of the Appalachian Trail and would like to hike the rest!

14)  What is your favorite animal?

Manta Rays!

15)  If you could go back in time and tell your 10 year old self something, what would it be?

Take more math and science classes!  It really helps you get ahead in life! 

Did you know?

All of the electrical power on Fairweather comes from the generators, not the engines. It’s a common misconception!

Want to learn more about careers like and Allyson Causey’s and NOAA resources? See the resource links below:

NOAA ENGINEERING

US MERCHANT MARINES ACADEMY

NOAA Teacher Ready Resources

Erica Marlaine: What’s an Oiler? And Where Does All That Water Come From? July 14, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 14, 2019

Weather Data from the Bridge:

Latitude: 56º 58.03 N
Longitude: 151º 26.26W
Wind Speed: 17 knots
Wind Direction: 120º
Air Temperature:  13º Celsius
Barometric Pressure: 1010.5 mb
Depth of water column 565 m
Surface Sea Temperature: 12.9º Celsius


Science & Technology Log

Ever heard of oilers?  I hadn’t until I got to know Daniel Ruble, a member of the engineering crew on the NOAA Ship Oscar Dyson.

Oiler Daniel Ruble
Oiler Daniel Ruble

Daniel is originally from Chicago but now calls Virginia home.  After serving our country for 20 years in the Marine Corps, a friend mentioned that it was always good to have a Mariner’s Document (a license from the Coast Guard) “just in case.”  Years later, he finally decided to put it to use, and got a job with NOAA in 2014.  He started doing deck work, but his interest and experience in mechanical engineering eventually led him to the NOAA engineering crew.  He is what they call an “oiler.” Oilers maintain, clean, and oil the ship’s engine, including the motors, gears, and compressors. Daniel has worked on every class of NOAA vessel (Oceanographic and Atmospheric Research, Charting and Hydrographic, and Fisheries Research) and all but one of the NOAA ships. 

Daniel and the other engineers onboard the NOAA Ship Oscar Dyson are easy to spot as they often have bulky, protective ear coverings either on or nearby. That is because the engine room is VERY LOUD.  When I was given a tour, I was first given ear coverings, and much of the explanation about what I was seeing had to come later as it was too difficult to hear each other.  I was told that seeing the engine room is like looking under the hood of your car. Just imagine your car’s engine magnified 1000 times.

Control panel in the Engine Room
Control panel in the Engine Room
Engine Room
Engine Room

The engineering crew is responsible for all of the internal systems of the ship.  Without them, the ship wouldn’t run, and there would be no power or water. The engineering room actually makes all of the water we use onboard by distilling saltwater into potable (drinkable) water.  Here’s how it works.

Saltwater is boiled using energy from the ship itself. Hot engine steam is passed through an evaporation unit, causing the saltwater to boil. The saltwater steam rises and then travel through a water separator which prevents any droplets of saltwater from passing through. After the steam becomes pure water, it is then carried away by a distillate pump. It is then safe for drinking and showering.

Each of the two evaporators on the NOAA Ship Oscar Dyson can distill between 600-900 gallons of water per day, depending upon how fast the ship is moving.   On an average day, the ship uses 800-1000 gallons!

One of the two evaporators
One of the two evaporators

Erica Marlaine: Bear Onboard, July 12, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 12, 2019

Weather Data from the Bridge:

Latitude: 57º 9.61 N
Longitude: 152º 20.99W
Wind Speed: 15 knots
Wind Direction: 210 º
Air Temperature:  12º Celsius
Barometric Pressure: 1013 mb
Depth of water column 84 m
Surface Sea Temperature: 12º Celsius


Welcome to a tour of the NOAA Ship Oscar Dyson.

Your tour guide today is the Room 11 Bear.

Allow me to explain.

When I am not a Teacher at Sea on the NOAA Ship Oscar Dyson, I am the special education preschool teacher in Room 11 at Nevada Avenue Elementary School in Canoga Park, California. My classroom has a classroom bear (made of construction paper) that “hides” every night when the students go home. In the beginning of the year, he is sort of easy to find, but as the year progresses, he is harder and harder to find. By the end of the year, only a paw or an ear might be showing!

The first thing my students want to do every morning is look for the bear.  When they find it, they excitedly explain where it is. Speech and language are things we work on in class all the time, and the bear gives us something fun to talk about! For some students, a single word might be the goal. Other students may be working on putting a few words together, or even enough to make a sentence.  It’s also a great time for them to learn prepositional words or phrases to describe where the bear is hiding, such as next to, under, beneath, or on top of.

Now it’s YOUR turn.  I hope you have fun touring the NOAA Ship Oscar Dyson with the Room 11 Bear and finding him in the photos where he decided to hide in a tricky spot.   He is in EVERY picture.

bear in captain's chair
Commanding Officer Bear up on the Bridge (the part of the ship above the weather deck which houses the command center). I also spy a snack that is a favorite of some students in Room 11.
bear charting the course
Bear charting our course on the Bridge
bear steering
Steering the NOAA Ship Oscar Dyson (up on the Bridge)
bear lookout
Binoculars are used to check for whales or other boats before the trawl nets are put out.
bear in the galley
Food is cooked in the galley (the nautical term for kitchen)
bear in the mess hall
This is the mess (the nautical term for eating place) where all of the delicious meals are served.
bear in laundry
The laundry room
bear in gym
One of the two gyms onboard the NOAA Ship Oscar Dyson
bear in engine room
The engine room
bear at fire station
There are “fire stations” onboard in case of an emergency
bear in jackets
This is where we put on our waterproof rain gear and high boots before entering the fish lab
bear on rubber gloves
High rubber gloves are worn so that we stay somewhat clean and to protect our hands as we use sharp tools and touch jellyfish or pointy quills
bear in acoustics lab
Lastly, a visit to the acoustics lab, where the scientists read and analyze the data from the echo sounders and determine when and where to drop the trawl nets.

Jill Bartolotta: Start Your Engines, June 1, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 13, 2019

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 1, 2019

Weather Data:

Latitude: 28°19.3’ N

Longitude: 079°21.6’

Wave Height: 1-2 feet

Wind Speed: 11 knots   

Wind Direction: 195

Visibility: 10 nautical miles

Air Temperature: 28°C

Barometric Pressure: 1012.5

Sky: Broken

Making the Engines Run

Engines on this ship are run with marine grade diesel. Before the diesel can be put through the engine it must be cleaned of any impurities. A centrifuge system is used to spin the diesel at a very fast pace in a circle. As the diesel spins any impurities are flung out leaving behind the purified fuel. If the fuel is not purified before it is put through the engines, they will gunk up and not function properly. NOAA Okeanos Explorer has 4 engines. Currently we are running 3 of them and the fourth one is the backup. There is also a fifth generator that can serve as a backup if needed. There are roughly 180,000 gallons of diesel on the ship and roughly 2,200 gallons of fuel are used per day.  In order to make the engine work, air in the engine is compressed causing the air to heat up. Then you spray fuel into the compressed air and the heat of their air causes an explosion leading to the process of combustion. In order to determine if complete combustion is occurring and the engine fuel is clean of impurities you look at the exhaust. If the exhaust is clear it means you are seeing full combustion and the fuel is clean. If the exhaust is not clean, black for example, it means that combustion is not complete or the fuel is dirty.

Fuel purification centrifuge
The fuel purification centrifuge system. If you look closely you can see a pink liquid, purified diesel.
Engine
One of the engines. There are four engines on board. Three are running and the fourth will be used as a backup.

Cooling the Engines

The engines must run at a temperature below 200°F. When these engines run they create heat so to keep them at a temperature under 200°F you need to cool them off using a heat exchanger. A heat exchanger is a series of pipes that run hot substances past cooler substances. These substances do not come into contact with one another, but are piped past one another. The heat transfers to the cooler substance through the series of pipes thus cooling the previously hot substance. On this ship, oil is used to lubricate the pistons on the engine, but it also serves a coolant. The oil is then cooled via freshwater called jacket water and the freshwater is cooled via seawater taken from the ocean. The ocean surface water is 74°F when it enters the ship and leaves the ship at roughly 84°F.

However where does this heat go? The first law of thermodynamics, The Law of Conservation of Energy, tells us that energy cannot be created or destroyed, only transferred or converted. So why not convert this heat energy into some of use? Well guess what. The engineers on Okeanos Explorer do just that. Some of the heat goes into the seawater used to cool the jacket water and some of the heat is used in the desalination system.

Remember we left off with desalination in the previous blog.  They use the heat coming off the engines to heat the saltwater, evaporate it, and retrieve the freshwater. However, if you remember these engines must run below 200°F and in order to boil water you must be at a temperature of 212°F. I know many of you are probably thinking salt in water actually lowers the boiling point, but really the opposite is true. Salt actually increases the temperature needed to boil water. However, it is minimal so it won’t affect your pasta too much. Feel free to add that pinch of salt like a true chef.

In order to boil water with 200°F of temperature or less we need to change the pressure of the system. This is done through a vacuum that decreases the pressure in the system allowing water to boil at a lower temperature. It is similar to when you go hiking in the mountains (less pressure than when you are at sea level) and go to boil water. It boils quicker because less heat is needed since the pressure is lower. So by changing the pressure in the system to one that would be seen at a higher altitude, engineers are able to use the heat from the engines to boil the salt water on the ship, allowing us to have access to freshwater for drinking, bathing, and cooking purposes. Pretty ingenious right?

Maintaining Balance

Now hopefully you were paying attention in the first paragraph when I talked about how much fuel is on board and how much is used each day. As fuel is used, the weight on the ship will change affecting stability. A ship with weight is more stable in the water than a ship will little to no weight. Therefore as fuel weight is lost it must be replaced. One gallon of diesel weighs approximately 7 pounds. So if we are using 2200 gallons a day we are losing 15,400 pounds of weight. How do the engineers accomplish the task of adding more weight? What is all around us weighing 8.6 pounds per gallon??? Seawater! Yes! So ballast tanks are filled with seawater to add weight to the ship that is removed when fuel is used.

Ballast water filtration and UV purification system
Ballast water filtration and UV purification system. The parts to the right are the filtration system and the parts to the left are the UV system.

Ballast water is taken in through a filtration system before it even reaches its holding tanks (separate than the fuel tanks). The water first passes through a filter to remove large particles (such as larger pieces of plant material or debris) and then passes through a UV system that will kill any organisms. When the ballast water is released from their holding tanks in order to allow more fuel to come on board, the water must pass through the UV system once more to make sure nothing alive (plants, animals, bacteria, etc.) is getting into the water.

This purification of ballast water occurs to prevent invasive species from entering new areas. An invasive species is a plant or animal that is from somewhere else and is introduced through human actions. When these species establish in a new area and begin to outcompete native species, affect human health, and become costly to remove, they are classified as invasive.

Where I live on Lake Erie several species such as zebra and quagga mussels, round goby, and spiny water flea have all been introduced from ballast water from ships coming from the inland lakes of Eurasia. These ships would need to dump their water when they entered the shallower river ports of the Great Lakes, spurring a silent invasion. All four species are negatively affecting native populations of important species and are costly to manage. Then same is happening along the East Coast with species such as European green crab.

I would like each of you reading this blog to learn more about a species introduced to U.S. waters, whether they be fresh or salt, through ballast water. Feel free to let me know which organism you chose to learn more about in the comments section of the blog.

Personal Log

Today was a really special day at sea. It was my 30th birthday. I could not have imagined a more amazing place to turn 30. I spent the day learning all about the engine systems on board, out on the bow enjoying the breeze and sunshine while looking for ocean critters, and was treated to the sweetest cake ever. It was so kind of the chefs on board to make me a cake for my birthday. It was a red velvet cake (my favorite) with chocolate frosting and decorated with chocolate pieces and white icing. We had it with some chocolate raspberry swirl ice cream. Truly a wonderful celebration with my new friends.

Jill with birthday cake!
My delicious birthday cake. Thank you everyone for a great birthday!

I spent the hour before sunset enjoying a nice yoga and meditation session before the most amazing sunset we have seen at sea yet. The clouds and sun put on the most spectacular display of color. Afterwards I learned more about the happenings of the mission control room (basically the mapping hub for the ship). I learned how we launch equipment to collect water column data and how we clean the data removing noise. I will be writing a blog on the mapping mission soon.

After our shift ended, my roommate and I ventured to the bridge to learn about piloting a vessel at night. We learned what equipment they rely on and how they manage their night vision. And then the most spectacular part of the whole night! The stars! Wow! It looks like someone through glitter (plastic free glitter preferably) into the sky. I have never seen so many stars in my life. We saw the Milky Way, Big Dipper, Little Dipper, North Star, Jupiter and so many other constellations. It was a wonderful end to a great birthday day.

Did You Know?

Even numbered locations (such as muster stations or staterooms) on ships are located on the port (left) side of the ship and odd numbered locations are located on the (starboard) right side of the ship.

Sea Measurements

Different ways to measure are used at sea. You can see some measurement conversions below.

1 nautical mile = 1.151 statute mile

1 knot = 1 nautical mile per hour = 1.151 statute mile per hour

1° Celsius = 33.8 °F

Animals Seen Today

Flying fish

Northern gannet

Jill Bartolotta: The Ins and Outs of Going, May 31, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 13, 2019

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: May 31, 2019

Weather Data:

Latitude: 28°29.0’ N

Longitude: 079°34.1’ W

Wave Height: 1-2 feet

Wind Speed: 15 knots

Wind Direction: 155

Visibility: 10 nautical miles

Air Temperature: 27.6 °C

Barometric Pressure: 1013.7

Sky: Few

Science and Technology Log

Today and tomorrow I am learning all about the who and how of making the ship go. Ric Gabona, the Acting Chief Marine Engineer, has been teaching me all about the mechanics of powering the ship, managing waste, and providing clean drinking water. Today I will focus on two aspects of making it possible to live on a ship for weeks on end. First, I will teach you about waste management. Second, I will explain how freshwater is made to support cooking, drinking, cleaning, and bathing needs. In conjunction, all of these systems contribute to our comfort on board but also our safety.

Wastewater Management

Waste on board has many forms and it all must be handled in some way or it can lead to some pretty stinky situations. The main forms of waste I will focus on include human waste and the waste that goes down the drains. The waste is broken down into two categories. Black water and gray water. Gray water is any water that goes down the drain as a result of us washing dishes, our hands, or ourselves. Gray water is allowed to be discharged once we are 3 miles from shore. The water does not need to be treated and can be let off the ship through the discharge valve. Black water is water that is contaminated with our sewage. It can be discharged when we are 12 miles from shore. Black water goes into a machine through a macerator pump and it gets hit with electricity breaking the solid materials into smaller particles that can be discharged into the ocean.

Discharge of gray or black water has its limitations. These discharge locations follow strict rules set in the Code of Federal Regulations (CFR) and by the International Convention for the Prevention of Pollution from Ships (MARPOL). The CFR are set by the federal government and the regulations tell you where (how far from shore) you are allowed to discharge both gray and black water. However, sometimes Okeanos Explorer is in areas where black water cannot be discharged so the black water must be turned into gray water. At this point, once the black water has been mashed it will pass through a chlorine filter that will treat any contamination and then the waste can be discharged. However, there are places where nothing can be discharged such as Papahānaumokuākea Marine National Monument in Hawai’i. When in these no discharge areas the ship will store the gray and black water and then discharge when regulated to do so.

It is important to follow these regulations because as Ric says, “We are ocean stewards.” It is important that ships such as Okeanos Explorer be able to explore the ocean while making the smallest environmental impact as possible. The engineers and other ship and science mission personnel are dedicated to reducing our impact as much as possible when out at sea.

Making Water

Water makes up 60% of the human body and is vital for life. However, 71% of the water on earth is saltwater, not able to be taken up by humans, making it challenging to access freshwater unless you live near an inland freshwater system like where I come from up in Ohio along the Great Lakes. While out at sea, we have no access to freshwater and we cannot store freshwater from land on the ship so we must make it. On Okeanos Explorer freshwater is made using two types of systems, reverse osmosis and desalination. Reverse osmosis is used by seabirds to turn saltwater into freshwater. Saltwater passes through a semipermeable membrane allowing the smaller water particles to pass through while leaving the larger salt particles and other impurities behind. If you are seabird, you excrete this salt by spitting it out the salt glands at the top part of your bill or if you are a ship out through a separate pipe as brine, a yellow colored super salty liquid. The other method on the ship used to make water is desalination. Desalination is the process of boiling salt water, trapping the water that evaporates (freshwater), and then discharging the salty water left behind. The engineers could use a separate boiling system to heat the salt water however they have a much more inventive and practical way of heating the water. But before I can let you know of their ingenious solution we must learn how the engines run. Oops! Sorry, I need to go. Need to switch my laundry. So sorry. We will explore ship movement and the engines in the next blog. Stay tuned…

Reverse osmosis system
Reverse osmosis system on the ship.
flow meters for potable water and brine
Can you see the yellow colored brine and the clear colored potable water?
Filtered water station
Filtered water station on the ship. Look familiar? You may have one like this in your school.

 

Personal Log

I really enjoyed learning all about the mechanics of operating the ship. It takes lots of very skilled people to make the equipment work and I love the ingenuity of the machines and those who run them. Space is limited on a ship and I am just fascinated by how they deal with the challenges of managing waste and making freshwater 50 plus nautical miles from coast for up to 49 people. Today was a great learning day for me. I do not know much about engines, wastewater treatment, and water purification systems so I really learned a lot today. I now have one more puzzle piece of ship operations under my belt with many more to go.

Aside from my lesson in thermodynamics, combustion, chemistry, physics, and other sciences that I have not touched since college, I learned about the safety operations on the vessel. Today we practiced a fire drill and an abandon ship drill. We learned where we need to go on the ship should one of these events ever occur and which safety gear is needed. I donned my immersion suit and PFD (Personal Flotation Device) to make sure they fit and all the pieces/parts work. Being in the ocean would be a bad time to realize something isn’t right. Donning the safety suit was a funny situation for all movement is super restricted and you feel like a beached whale trying to perform Swan Lake on point shoes.

Jill in immersion suit
Me in my immersion suit, fondly known as the gumby suit.

However, with some help from my friends we were all able to get suited up in case an emergency should arise.

Tonight I look forward to another sunset at sea, some yoga on the deck, and seeing a spectacular star display.  

view of deck with sunset
My yoga spot

Did You Know?

Eating an apple a day while at sea can keep seasickness at bay.

Ship Words

Different terms are used to describe items, locations, or parts of the ship. As I learn new words I would like to share my new vocabulary with all of you. If there is a ship term you want to know more about let me know and I will find out!

Galley: Kitchen

Mess Deck: Space that crew eat aboard ship

Fantail: Rear deck of a ship

Pipe: Announcement on the ship via a PA system

Muster: Process of accounting for a group of people. Used in safety drills on a ship such as a fire or abandon ship drills.

Stateroom: Sleeping quarters on the ship

Abeam: On the beam, a relative bearing at right angles to the ship’s keel

Bearing: The horizontal direction of a line of sight between two objects

Animals Seen Today

1 flying fish

Whales (Too far away to tell what they were but we saw their spouts!)

Kristin Hennessy-McDonald: Engineer for a Day, September 18, 2018

NOAA Teacher at Sea

Kristin Hennessy-McDonald

Aboard NOAA Ship Oregon II

September 15 – 30, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 18, 2018

 

Weather Data from the Bridge

Latitude: 2901.62N

Longitude: 0932.87W

Sea Wave Height: 0m

Wind Speed: 6.63 knots

Wind Direction: 203֯

Visibility: 10 nautical miles

Air Temperature: 32.4

Sky: 0% cloud cover

 

Science and Technology Log

My first day onboard was spent following around 2nd Engineer Will Osborn.  Will is an officer in the Merchant Marines, and a NOAA Augmentation Pool Engineer assigned to the Oregon II.  He invited me to follow him around and learn how the engineers prepare the ship for sea.  One of the duties of the engineers is to check the liquid levels of each of the tanks prior to sailing.  They do this by performing soundings, where they use a weighted measuring tape and a conversion chart to determine the number of gallons in each of the tanks.

 

The engineering team then prepared the ship to sail by disconnecting shore power and turning on the engines aboard ship.  I got to flip the switch that disconnects the ship from shore power.  I followed the engineering team as they disconnected the very large cable that the ship uses to draw power from shore.  I then got to follow 2nd Engineer Will as he turned on the engines aboard ship.

turning off the shore power
Kristin Hennessy-McDonald turning off the shore power in the engine room

Once we set sail, the science team met and discussed how longline surveys would work.  I am on the day shift, which is from noon to midnight.  We got the rest of the day, after onboard training and group meetings, to get used to our new sleep schedule.  Because I was on the day shift, I stayed up and got to watch an amazing sunset over the Gulf.

Our second day out, we set our first two longlines.  The first one was set before shift change, so the night shift crew bated the hooks and set the line.  My shift brought the line in, and mostly got back unbaited hooks.  We got a few small Atlantic Sharpnose (Rhizoprionodon terraenovae) sharks on the line, and used those to go over internal and external features that differentiated the various species we might find.

 

After the lines were in, it was time for safety drills.  These included the abandon ship drill, which required us to put on a submersion suit, which is affectionately referred to as a Gumby suit.  You can see why below.  It was as hard to get into as it looks, but it will keep you warm and afloat if you end up in the water after you abandon ship.

Gumby Suit
Kristin Hennessy-McDonald in the Gumby Suit

 

Personal Log

I have learned a few rules of the boat on my first days at sea.  First, always watch your head.  The stairwells sometimes have short spaces, and you have to make sure not to hit them on your way up.  Second, always keep a hand free for the boat.  It is imperative at sea that you always have a hand free, in case the boat rocks and you need to catch yourself.  Third, mealtimes are sacred.  There are 31 people aboard the boat, with seating for 12 in the galley.  In order for everyone to get a chance to sit down and eat, you can’t socialize in the galley.

Did You Know?

In order for the crew to have freshwater to drink, the Oregon II uses a reverse osmosis machine.  They create 1000-1200 gallons of drinkable water per day, running the ocean water through the reverse osmosis generator at a pressure of 950 psi.

Quote of the Day

And when there are enough outsiders together in one place, a mystic osmosis takes place and you’re inside.

~Stephen King

Question of the Day

How do sharks hear in the water?

Eric Koser: Getting Underway! June 25, 2018

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 22 – July 9, 2018


Mission: Lisianski Strait Survey

Geographic Region: Southeast Alaska

Date: June 25, 2018, 1500 HRS

Weather Data From the Bridge
Lat: 56°59.4’, Long:135°53.9’
Skies: Broken
Wind 19 kts at 340°
Visibility 10+ miles
Seas: 3-4’ with swells of 2-3’
Water temp: 9.4°C

Science and Technology Log

Rainier and her sister ship Fairweather celebrated their 50th anniversary together this past March. The bell on the bow of each ship is now plated in gold to celebrate the event.

This vessel has quite a physical plant below deck maintained by the competent team in the Engineering Department. For propulsion, there are two V-12 Diesel Locomotive Engines. After bathing the valves in fresh oil, each engine is started with compressed air at the press of a button. Once up and running, the Rainier’s engines often run for several days at a time. There is no “transmission” on this vessel. Instead, the two propellers utilize what is called ‘variable pitch’. When the pitch is set to zero, the props spin but push water neither back or forward – and thus don’t force the ship to move. When the prop pitched is increased in a forward direction – up to a pitch of 10, the ship is pushed forward. Of course, this is really the water pushing the ship forward as the propellers push the water backward. A pitch of “10” means that for each single rotation of the prop, the blades will move water ten feet back. When reverse is desired, the props can each pitch back to a maximum of ‘6’. Now the water is pushed forwards by the prop so the water can push the ship backward.

Prop Pitch Control
This is the variable prop pitch control system. Notice the silver digital actuator at the top which provides an electronic signal back to the bridge.

Push to Start
This is how the Engineering Department can start the engines.

As there are two engines and two propellers, the Rainier’s crew can run one prop forwards and the other backward to turn the vessel around nearly in place. This could be called a ‘split 6’ – where one prop is pitched forward 6 to match the other prop’s pitch backward of 6.

Rainier Engines
This is one side of one of Rainier’s two V-12 Diesel locomotive engines.

Another device the crew can use to manipulate the ship in the water is called a ‘bow thruster’.   This is an open tube from port (left) to starboard (right) near the bow of the ship underwater. There is a propeller mounted in this open tube which is powered by a separate engine. The engineering team can have the bow thruster system up and running in just a matter of minutes when called on by the bridge to prepare for its use! By pushing water to one side, the water pushes the bow the other way. This is a great tool to maneuver this large vessel in tight spaces.

In addition to the two engines plus the bow thruster, there are several other important systems maintained on The Rainier. There are a pair of 4000 Watt diesel electric generators to provide electricity. There is a water purification system – to isolate salt from seawater and make clean drinking water and a wastewater treatment plant to process waste. There are air compressors to supply the ship’s systems.

There are 45 individuals on board this ship – and they pull together into five teams to make operations happen on board. The NOAA Corps is responsible for the administration and navigation of the ship. The Deck crew handles all things on the surface of the ship including handling all lines, cranes, and davits (to manipulate the launches—small boats). The Engineering Crew is responsible for all the mechanical systems on board.  The Electronics Department handles all instrumentation and wiring on the ship. The Stewards run the ever important galley – keeping the entire group well fed. All of this supports the work of the survey team of Hydrographers, the team of scientists that are mapping the sea floor.

 

Personal Log

I’ve enjoyed both finding my way around the ship and getting to know the crew. These people work as a team!

I came in early enough to enjoy a few days exploring Sitka, Alaska. This is a small port town that is really the first city in Alaska. Russians originally settled here in 1799 and eventually sold the city to the US in 1867. Sitka is a beautiful place to explore – being primarily a port for commercial and private fishing operations.

Sitka Bridge
This bridge spans the main channel in Sitka.

Sitka Harbor
This is one of Sitka’s many harbors.

We’ve just left port this afternoon [Monday] as we transit to Lisianski Strait to being the hydrographic mission of this leg. We’ll arrive there late tonight/early Tuesday morning to collect data first from the Rainier itself. The experience on the ocean has been great thus far, and I look forward to much more!

departing Sitka
Here we are departing Sitka Monday afternoon – headed to the open Pacific to transit north.

Did You Know?

Sitka is the largest city, by area, in the United States in terms of land area! It occupies 2870 square miles yet has only a population of about 9,000 people—located mostly on the port location of Sitka.

The Rainier holds about 80,000 gallons of diesel fuel that is located in several tanks below deck. The weight of the fuel serves as ballast to help keep the ship stable while at sea! Fuel can be shifted between tanks to adjust the trim [front or back tilt] and list [port or starboard tilt] of the ship.  Typically Rainier refuels when the tanks reach about half full.

Jennifer Dean: Extra Operations and Daily Duties, May 19, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 19, 2018

Weather from the Bridge
Latitude: 29°55.8590’ N
Longitude: 80°16.9468’ W
Sea Wave Height: 2-4 feet
Wind Speed:  18.1 knots
Wind Direction: 210.6°
Visibility:  1 nautical mile
Air Temperature: 25.3°C
Sky: Overcast

Science and Technology Log

Extra Operations- Zodiac Hurricane Fast Rescue Boat:
Occasionally these Fast Rescue Boats are used for more than real emergencies and drills, practicing the pick-up of a man-overboard and rescue diver missions, in the case of day 2 of my trip on NOAA Ship Pisces, a camera replacement part became necessary.  When a small crew change is needed or to pick up a repair part for an essential item, instead of bringing the ship to dock, the FRB (Fast Rescue Boat)  is sent in.

coxswain
Lead Fishermen, Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat

The LF or Lead Fishermen,  Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat).  His navigation skills were developed by working in the hydrographic division that performs regular bathymetry readings using these vessels on NOAA Ship Thomas Jefferson, making him a very capable pilot of this small watercraft in the NOAA fleet.  The FRB has seating for 6, with 2 aft of console, 1 forward of engine cover, 2 sitting on foredeck on engine cover and 1 prone on deck by stretcher.

Some other specs on the boat includes the following:
Length overall=6.81 meters including jet
Beam overall=2.59 meters
Fuel capacity=182 litres (48 US Gal)
Bollard Pull ~600 kg/5884 N
Endurance (hours @ 20 knots)~6.75 hours
Max  Horse Power=235kW, 315 hp
At Light Load Operation Displacement = 2150 kg/4750 lbs
Full Speed ~32 knots
Fuel System =48 US gallon tank

 

Engine Room Tour Pictures and Learnings:

Daily Duties: Freshwater NeedsReverse Osmosis and Evaporators
Freshwater is necessary for a variety of reasons beyond drinking water for the crew.  It is used for laundry, cooking, showers and on NOAA Ship Pisces, to fill the ballast water tanks.  Approximately 31 gallons of freshwater is used on average per person per day, with 29 people on board for 12 days, totaling nearly 11,000 gallons by the end of the trip.   One method to supply this freshwater supply is through reverse osmosis.  Osmosis is the diffusion of water across a membrane.

 

Normally water moves, without an energy input from high to low concentrations.  In reverse osmosis, water is moved in the opposite direction of its natural tendency to find equilibrium.  The force at which water wants to move through the membrane is called its osmotic pressure.  To get water to move against the osmotic pressure another force must be applied to counteract and overcome this tendency.  Sea water is found in abundance and can be forced across a semi-permeable membrane leaving the ions on one-side and the freshwater to be collected into containment chambers on the other side.  Technology has impacted this process by discoveries of better semi-permeable membranes that allow for faster and larger amounts of sea-water to be moved through the system.  Pisces uses reverse osmosis and a back-up freshwater system of 2 evaporators.  When the temperatures are high (as they were in the first few days of the cruise) the evaporators are the go-to system and make for tasty drinking water.

Evaporators take in sea water and distill the liquid water using waste heat collected from the engines that raises the temperature of water in the pipes.  This temperature provides the energy that forces the liquid freshwater to vaporize and enter its gaseous phase, then under pressure this vapor is condensed and can be collected and separated from the brine that is removed and discharged.

 

Wastewater:  There are different types of water that can be used for different tasks aboard a ship.  Typically gray water (which is relatively clean wastewater from showers and sinks but may contain soaps, oils, and human hair/skin)  is placed in the MSD (Marine Sanitation Device), which is similar to a septic system.  Black water is wastewater from toilets, or any water that has come into contact with fecal matter and may carry potential disease carrying pathogens. Black water is also treated in the MSD.  This black water sewage is first subjected to a macerator pump that breaks the fecal matter into smaller pieces, enzymes are added to further decompose and before disposal a bit of chlorine is added to ensure no bacteria remain alive.  This water can be disposed of into the ocean if the ship is over 12 miles offshore.  If the ship is within 12 miles the sewage must be either stored in containment system on board the vessel or taken to dock and disposed of by an in-shore treatment facility. For more information on the regulations for wastewater disposal while at sea see the  Ocean Dumping Act.

Valves for ballast water tanks
Valves for ballast water tanks on NOAA Ship Pisces that are filled with freshwater to prevent the spread of nonnative species

Ballast Water and New Regulations:  Ballast water tanks are compartments used to hold water to provide stability for the ship.  This balance is necessary for better maneuverability and improved propulsion through the water.  It can allow the crew to compensate and adjusts for changes in the ships cargo load or fuel/water weight changes over the course of a trip.  Historically this water has been drawn up from the surrounding sea water to fill the tanks.  Unfortunately, in the not so distant past, the ballast water from one location on the globe has been deposited into another area along with it, all of it foreign plants, animals and microbiota.  This act led to the introduction of a host of exotic and non-native species to this new area, some of which became invasive and wreaked havoc on the existing ecosystems.  Today there are a host of case studies in my students’ textbook like the Zebra Mussels (Dreissena polymorpha) and the European Green Crabs (Carcinus maenas) that were introduced in this way that resulted in devastating impacts both environmentally and economically to the invaded area.

The International Maritime Organization (IMO) passed new regulations in September of 2017 calling for better management of this ballast water exchange.  Ballast Water Management Convention 2017.

Another high tech approach to this problem has been the development of a sea-water filtration systems, but these carry a heavy price tag that can range anywhere from  $750,000 to $5 million.

The engine room area is staffed by 7 crew members.  Back-up systems and  the amount of en route repair necessary to keep the ship running and safe was apparent in the engine room.  There were redundancies in the engines, HVAC, hydraulics, and fuel systems.  Spare parts are stored for unexpected breaks or other trouble-shooting needs.  The control panels throughout the tour had screens that not only allowed a check of every level of function on every system on the ship, there was another screen that demonstrated the electrical connections on how all these monitoring sensors were wired, in case a reading needed to be checked back to its source.

Engine 4
One of the 4 NOAA Ship Pisces CAT engines

Pictured here is a diesel engine on NOAA Ship Pisces. Pisces has 4 of these on board: 2 bigger engines that are CAT model 3512 vs. 2 smaller engines that are CAT 3508. When the ship is going at full steam they use 3 of 4 to provide power to turn the shaft, and when they need less power, they can modify their engine choices and power, therefore using less fuel.  CAT engines are models 3512 and 3508 diesel driven at provide 1360 KW and 910 KW, respectively.  There is also an emergency engine (CAT model 3306) on board as well providing 170 kw of power.

Control panels in engine room
Control panel of screens for monitoring and controlling all mechanical and tank/fluid functions

 

hydraulics
Steven Clement, first assistant engineer, is showing me some of the hydraulics in the engine room.

The pressurized fluid in these pipes are used to move devices.  Pisces is in the process of converting certain hydraulic systems to an organic and biodegradable “green” oil called Environmentally Acceptable Lubricants (EALs).

The Bridge

panopic bridge
NOAA Ship Pisces’ Bridge

This area is command central.  I decided to focus on only a few features for this blog from a handful of screens found in this room that monitor a variety of sensors and systems about both the ships conditions and the environmental factors surrounding the ship.   Commanding Officer CDR Nicholas Chrobak, NOAA demonstrated how to determine the difference on the radar screen of rain scatter vs. another vessel.  In the image the rain gives a similar color pattern and directionality, yet the ship appeared more angular and to have a different heading then those directed by wind patterns.  When clicking on the object or vessel another set of calculations began and within minutes a pop-up reading would indicate characteristics such as CPA (closest point of approach) and TCPA (Time of Closest Point Approach) as seen in the image.

 

These safety features let vessels avoid collisions and are constantly being calculated as the ship navigates.  GPS transponders on the ships send signals that allow for these readings to be monitored.    ECDIS (Electronic Chart Display and Information System) charts provide a layered vector chart with  information about the surrounding waters and hazards to navigation.  One screen image displayed information about the dynamic positioning system.

ECDIS
ECDIS (Electronic Chart Display and Information System)

Paths and positions can be typed in that the software then can essentially take the wheel, controlling main propulsion, the bow thruster and rudder to keep the ship on a set heading, and either moving on a desired course or hold in a stationary position.  These computer-based navigation systems integrate GPS (Global Positioning System) information along with electronic navigational charts, radar and other sailing sensors to ensure the ship can navigate safely while effectively carrying out the mission at hand.

The Mess Deck and Galley:

This location serves up delicious and nutritious meals.  Not only do the stewards provide the essential food groups, they provide vegetarian options and make individual plates for those that may miss a meal during shift work.

mess deck
The mess

Dana Reid, who I interviewed below, made me some amazing omelets on the trip and had a positive friendly greeting each time I saw him. I decided a few days into the cruise to start taking pictures of my meals as proof for the nature of how well fed the crew is on these adventures.

 

 

dana and ray
Steward CS Ray Mabanta and 2C Dana Reid in the galley of NOAA Ship Pisces

Each day a new screen of menus appeared on the ship’s monitors, along with other rotating information from quotes, to weather to safety information.

Personal Log

Today a possible shipwreck is evident on the sonar maps from the previous night’s multibeam readings.  If weather permits, the science team plans to check out the unknown structure en route to the next MPA. This scientific study reminds me of one of the reasons I fell in love with science.  There is that sense of discovery.  Unlike pirates and a search for sunken gold, the treasure to be found here is hopefully a diversity of fish species and thriving deep coral communities.  I found myself a bit lost during the discussions of fishing regulations for these areas designated as MPAs (Marine Protected Areas).  I had always thought ‘protected’ would mean prohibitive to fishing.   So I did a little research and will share a little of the basics learned.  And I hope someday these regulations will become more restrictive in these fragile habitats.

The MPA , “marine protected area”  definition according to the implementation of an Executive Order 13158 is “…any area of the marine environment that has been reserved by federal, state, territorial, tribal, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein.” But what that actually means in terms of the size of the area and approach to conservation, or the level protection and the fishing regulations seems to vary from location to location.  The regulations are governed by a variety of factors from the stakeholders, agencies and scientists to the population numbers and resilience of the habitat to distances offshore.
For more information on MPAs visit
https://oceanservice.noaa.gov/facts/mpa.html

Did You Know?
Some species of coral, like Ivory Tree Coral, Oculina varicosa, can live without their zooxanthellae.

Oculina varicosa
Oculina varicosa

Very little is known about how they do this or how their zooxanthellae symbiotic partners return to their coral home after expulsion.

Fact or Fiction?
Oculina varicosa can grow to up to 10 feet high and have a growth rate of ½ inch per year. Check out the scientific validity of this statement at one of the following links:

http://www.sms.si.edu/irlspec/oculin_varico.htm

What’s My Story? Dana Reid
The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

Dana in scullery
Dana Reid pictured here in the scullery, the ship’s kitchen area for cleaning dishes

What is your specific title and job description on this mission?  Second Cook. His job description includes assisting the Chief Steward in preparing meals and maintaining cleanliness of the galley (kitchen), mess deck (tables picture where crew eats), scullery (part of the kitchen where dishes get washed) fridge/freezer and storage areas.

How long have you worked for NOAA?  5th year

What is your favorite and least favorite part of your job? His favorite part of this job is getting a chance to take care of people, putting a smile on people’s faces and making them happy.  His least favorites are tasks that involve standing in the freezer for extended periods of time to stock and rotate foods.  In addition he mentioned that he isn’t too fond of waking up very early in the morning.

When did you first become interested in this career and why?  His initial food as a career-interest started when he was in high school working for Pizza Hut.  He later found himself working for 2 years cooking fried chicken for Popeyes.  His interest in the maritime portion of his career also began right after high school when he joined the Navy.  In the Navy he worked in everything from the galley to a plane captain and jet mechanic.  During his time in the Navy he worked on 5 different carriers and went on 9 different detachments including Desert Storm. After hurricane Katrina in 2006 he found himself interested in finding another job through government service and began working on a variety of NOAA’s vessels.

What is one of the most interesting places you have visited?  He found the culture and terrain of Oahu one of his most interesting.  He enjoys hiking and Hawaii, Alaska and Seattle have been amazing places to visit.

Do you have a typical day? Or tasks and skills that you perform routinely in this job? He spends the majority of his time prepping  (washing and chopping)  vegetables and a majority of his time washing dishes.  In addition he is responsible for keeping beverages and dry goods stocked. 

Questions from students in Environmental Science at Camas High School

  • How is cooking at sea different from cooking on land?
    He said that he needs to spend more effort to keep his balance and if in rough weather the ship rocks. This impacts his meal making if he is trying to cook an omelet and if mixing something in keeping the bowl from sliding across the prep table.  He mentioned that occasionally when baking a cake that it might come out lopsided depending upon the angle of the ship and timing of placement in the oven.
  • What do you have to consider when planning and cooking a meal?
    He plans according to what meal of the day it is, breakfast, lunch or dinner.  The number of people to cook for, number of vegetarians and the part of the world the cruise is happening in are all factored in when planning and making meals. For example, when he has been in Hawaii he’d consider cooking something more tropical – cooking with fish, coconut and pineapple; if in the Southeast they tend to make more southern style cooking, sausage/steak lots of greens; if in the Northeast more food items like lobster and clam chowder make their way onto the menu.
  • What is the best meal you can make on the ship, and what is the worst? He said he makes a pretty good Gumbo. He said one of his weakness is cooking with curry and said that the Chief Steward is more skilled with dishes of that flavor.
  • How many meals do you make in a day? 3; In addition he hosts occasional special events like ice cream socials, banana splits or grilling party with smoker cooking steaks to hamburgers on the back deck.

————————————————————————————————————————————–

 

Cathrine Prenot: Lights in the Ocean. Thursday, July 21, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 21, 2016

Weather Data from the Bridge
Lat: 46º18.8 N
Lon: 124º25.6 W
Speed: 10.4 knots
Wind speed: 12.35 degree/knots
Barometer: 1018.59 mBars
Air Temp: 16.3 degrees Celsius

 

Science and Technology Log

The ship’s engineering staff are really friendly, and they were happy to oblige my questions and take me on a tour of the Engine Rooms. I got to go into the ‘belly of the beast’ on the Oscar Dyson, but on the tour of the Shimada, Sean Baptista, 1st assistant engineer, hooked us up with headsets with radios and microphones. It is super loud below decks, but the microphones made it so that we could ask questions and not just mime out what we were curious about.

I think the job of the engineers is pretty interesting for three main reasons.

On the way to see the bow thruster below decks
On the way to see the bow thruster below decks

One, they get to be all over the ship and see the real behind-the-scenes working of a huge vessel at sea. We went down ladders and hatches, through remotely operated sealed doors, and wound our way through engines and water purifiers and even water treatment (poo) devices. Engineers understand the ship from the bottom up.

One of four Caterpillar diesel engines powering the ship
One of four Caterpillar diesel engines powering the ship

Second, I am sure that when it is your Job it doesn’t seem that glamorous, but an engineer’s work keeps the ship moving. Scientists collect data, the Deck crew fish, the NOAA Corps officers drive the ship, but the engineers make sure we have water to drink, that our ‘business’ is treated and sanitary, that we have power to plug in our computers (the lab I am writing in right now has 6 monitors displaying weather from the bridge, charts, ship trackers, and science data) and science equipment.

I did not touch any buttons. Promise.
I did not touch any buttons. Promise.

Finally, if something breaks on the ship, engineers fix it. Right there, with whatever they have on hand. Before we were able to take the tour, 1st Assistant Engineer Baptista gave us a stern warning to not touch anything—buttons, levers, pipes—anything. There is a kind of resourcefulness to be an engineer on a ship—you have to be able to make do with what you have when you are in the middle of the ocean.

The engineers all came to this position from different pathways—from having a welding background, to being in the navy or army, attending the U.S. Merchant Marine Academy, or even having an art degree.  The biggest challenge is being away from your family for long periods of time, but I can attest that they are a pretty tight group onboard.

 

In terms of the science that I’ve been learning, I’ve had some time to do some research of some of the bycatch organisms from our Hake trawls. “Bycatch” are nontargeted species that are caught in the net.  Our bycatch has been very small—we are mostly getting just hake, but I’ve seen about 30-40 these cute little fish with blue glowing dots all over their sides. Call me crazy, but anything that comes out of the ocean with what look like glowing sparkling sapphires is worthy of a cartoon.

So… …What is small, glows, and comprises about 65% of all deep-sea biomass? Click on the cartoon to read Adventures in a Blue World 3.

Adventures in a Blue World, CNP. Lights in the Ocean
Adventures in a Blue World, CNP. Lights in the Ocean

 

Personal Log

The weather is absolutely beautiful and the seas are calm. We are cruising along at between 10-12 knots along set transects looking for hake, but we haven’t seen—I should say “heard” them in large enough groups or the right age class to sample.  So, in the meanwhile, I’ve taken a tour of the inner workings of the ship from the engineers, made an appointment with the Chief Steward to come in and cook with him for a day, spent some time on the bridge checking out charts and the important and exciting looking equipment, played a few very poor rounds of cornhole, and have been cartooning and reading.

I was out on the back deck having a coffee and an ice cream (I lead a decadent and wild life as a Teacher at Sea) and I noticed that the shoreline looked very familiar. Sure enough—it was Cannon Beach, OR, with Haystack Rock (you’ll remember it from the movie The Goonies)! Some of my family lived there for years; it was fun to see it from ten miles off shore.

Chart showing our current geographic area. Center of coast is Cannon Bean, Oregon.
Chart showing our current geographic area. Center of coast is Cannon Beach, Oregon.

View of Tillamook Head and Cannon Beach. It looked closer in person.
View of Tillamook Head and Cannon Beach. It looked closer in person.

 

Did You Know?

One of the scientists I have been working with knows a lot about fish. He knows every organism that comes off the nets in a trawl down to their Genus species. No wonder he knows all the fish—all of the reference books that I have been using in the wet lab were written by him. Head smack.

Dan Kamikawa, our fish whisperer
One of the books written by Dan Kamikawa, our fish whisperer

 

Resources

My sister (thank you!) does my multi media research for me from shore, as I am not allowed to pig out on bandwidth and watch lots of videos about bioluminescence in the ocean.  This video is pretty wonderful.  Check it out.

If you want to geek out more about Lanternfish, read this from a great site called the Tree of Life web project.

Interested in becoming a Wage Mariner in many different fields–including engineering?  Click here.

Vincent Colombo, What makes the Oscar Dyson tick?, June 29, 2015

NOAA Teacher at Sea
Vincent Colombo
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Annual Walleye Pollock Survey
Geographical area of the cruise: The Gulf of Alaska
Date: June 29, 2015

Weather Data from the Bridge:

  • Wind Speed: 10.7 knots
  • Sea Temperature: 9.6 degrees Celsius
  • Air Temperature: 10.5 degrees Celsius
  • Air Pressure: 1008.8 mb

Sunrise in Alaska
Sunrise in Alaska

When the fog lifts, hidden beauties and dangers are revealed

Another picture of Shishaldin Volcano – taken by scientist on board the Oscar Dyson, Robert Levine

A view of the Gulf of Alaska
A view of the Gulf of Alaska

In front of Kuiukta Bay
In front of Kuiukta Bay

Mitrofania Bay
Mitrofania Bay

Sandy Point, Alaska
Sandy Point, Alaska


The NOAA Vessel Oscar Dyson is named after the late Oscar E. Dyson. His placard reads the following:

Oscar Dyson

A Friend of Fisheries

Oscar promoted research and effective management

to sustain Alaska’s fisheries for future generations.

Oscar Dyson Plaque
Oscar Dyson Plaque

http://www.noaanews.noaa.gov/stories2003/s2102.htm
Learn more about the Oscar Dyson here

The small vessel on the Oscar Dyson is named after his wife
The small vessel on the Oscar Dyson is named after his wife


Science and Technology Log:

If you read the link under my page: http://teacheratsea.noaa.gov/#/2015/Vincent*Colombo/ship , it will tell you all about the ship, Oscar Dyson. This ship is nothing less than a modern marvel of technology. Luckily my fellow teacher at sea, Nikki Durkan and I got to experience the science of this ship first hand. Our Chief engineer, Mr. Alan Bennett took us for a tour of the inner workings of this ship.

Chief Engineer Alan Bennett
Chief Engineer Alan Bennett

Our tour started with a look at the Ship’s control panel. From this set of computers and controls, everything, and I mean everything on the ship can be controlled.

The Control Panel below deck
The Control Panel below deck

"We can control the entire ship from right here."
“We can control the entire ship from right here.”

From there, we went into the main engine room. One may recognize the Rime of the Ancient Mariner by Samuel Taylor Coleridge, which in part of the poem says:

“Water, water, everywhere,

And all the boards did shrink;

Water, water, everywhere,

Nor any drop to drink.”

Not the case on the Oscar Dyson, because the heat from the engines is used to distill up to 1,000 gallons of freshwater each day!

Where the Oscar Dyson makes fresh water
Where the Oscar Dyson makes fresh water

The ship also uses an Ultra Violet filter to kill all the undesirables in the water just in case.

Ultraviolet Filter
Ultraviolet Filter

Warning for the filter
Warning for the filter

From there, we got to travel through water tight doors into the rear of the ship. These doors are intimidating, and as our Chief Engineer said, in case there is a loss of power, the door can be bypassed so no one is trapped under the ship.

Alan in front of the door showing us the manual bypass
Alan in front of the door showing us the manual bypass

Water tight door. You DO NOT want to be in the way when this closes.
Water tight door. You DO NOT want to be in the way when this closes.

Here you can see one of the massive winches used for the trawl net the ship uses to catch fish. One winch is over 6 foot in diameter and has a thousand meters of steel cable. I wonder if it will fit on the front of a Jeep…

Those winches are no joke. The ship also has a bunch of hydraulic pumps ready and able to bring those trawl nets in fast if need be. Each of these hydraulic pumps has 1,000 gallons of fluid ready to retrieve a net in a hurry if the need exists.

The hydraulic pumps
The hydraulic pumps

One really cool thing I learned was that in case the ship had a major issue and could not be steered from the bridge, there is a way to use the ship’s heading underneath for someone to manually operate the rudder.

Yes you can drive the ship blind
Yes you can drive the ship blind

The manual rudder control
The manual rudder control

From there we got a tour of the remainder of the ship.

One of the ship's massive generators
One of the ship’s massive generators

A water pump for a fire station
A water pump for a fire station

A transformer to convert all that electrical energy
A transformer to convert all that electrical energy

The Oscar Dyson creates ALOT of energy. Here is a read out for one of the many generators on board. Take a look at the Amps produced.

818.6 Amps!
818.6 Amps!

A ship this big also has multiple fuel tanks. Here the engineers can choose which tank they want to draw from. Interesting also is the engineers have ballast tanks to fill with water to compensate for the fuel the ship uses. Alan also showed us the log book for this, as ships taking on ballast water can be an environmental issue. The crew of the Oscar Dyson follows this protocol as set forth by the United States Coast Guard. You can learn more about that protocol by clicking here

Fuel tank selection
Fuel tank selection

Our last stop was seeing the bow thruster. It was a tight space, but the bow thruster can actually power the ship if the main engine loses power.

In the bow thruster room
In the bow thruster room

Here are some other pictures from the tour:

Nikki, Alan, and I in the engine room
Nikki, Alan, and I in the engine room

A serious pipe wrench
A serious pipe wrench

This surface is squishy and covers the entire engine room. It makes the boat super quiet!
This surface is squishy and covers the entire engine room. It makes the boat super quiet!


 

After our tour, it was back to business as usual, the Walleye Pollock Survey. Our Chief Scientist spends countless hours analyzing the acoustics data then sampling the fish.

Our Chief Scientist, Dr. Patrick Ressler analyzing the acoustic data from the survey
Our Chief Scientist, Dr. Patrick Ressler analyzing the acoustic data from the survey

The Walleye Pollock which we are studying is a very integral part of the Alaskan ecosystem, as well as a highly monetary yielding fishery. One thing I noticed almost immediately is the color change between juveniles and adults. It is theorized that as the fish get older, they move lower in the water column towards the bottom, thus needing camouflage. Take a look at this picture that shows a mature Walleye Pollock and it’s juvenile counterparts.

The adult Walleye Pollock gets "brassy" spots on it's body.
The adult Walleye Pollock gets “brassy” spots on it’s body.

You can learn more about the life cycle of Pollock by clicking here.

Here is another site with some useful information on Pollock, click here.


Personal Log: 

Working on the deck of the Oscar Dyson is no laughing matter. What is required to step on deck? A hard hat, float coat, and life jacket. Watching the deck crew, controlled by the lead fisherman, is like watching an episode of Deadliest Catch… just without the crabs. Giant swells that make the boat go up and down while maintaining a solid footing on a soaking wet deck is no joke. My hat is off to our hard working deck crew and fisherman.

 

The deck crew and fisherman deploying an Aleutian Wing Trawl
The deck crew and fisherman deploying an Aleutian Wing Trawl

Fisherman Brad Kutyna retrieving an Aleutian Wing Trawl
Fisherman Brad Kutyna retrieving an Aleutian Wing Trawl

The best part about fishing, is it is just that, fishing. NOAA sets the standard when reducing by-catch (fish you do not want to catch), but sometimes a fish’s appetite gets the best of him/her.

This Pacific Cod ended up in our Aleutian Wing Trawl, it wanted Pollock for lunch
This Pacific Cod ended up in our Aleutian Wing Trawl, it wanted Pollock for lunch

These Pacific Cod were 8 pounds each.
These Pacific Cod were 10 pounds each.

Fishing has always been apart of my life. My Grandfather always said, “If the birds are working, you will find the fish.” A good piece of advice… Look for circling gulls and chances are a group of bigger fish has some bait fish balled up under the surface.

Here the birds are working off the stern of the boat
Here the birds are working off the stern of the boat


Meet the Scientist: 

On board the Oscar Dyson this part of the Walleye Pollock survey is scientist Tom Weber. Tom lives in Durham, New Hampshire and is here to test new custom acoustic equipment. Tom is married to his wife Brinda and has two sons, Kavi and Sachin.

Tom has a Bachelor’s and Master’s degree in Ocean Engineering from the University of Rhode Island. He attained his PhD in Acoustics from Penn State in State College, PA.  Currently Tom is an Assistant Professor of Mechanical Engineering at the University of New Hampshire. He also is a faculty member of the Center for Coastal and Ocean Mapping (CCOM for short). Both places of employment are located in his hometown of Durham, New Hampshire.

Tom explaining the brand new acoustic technology
Tom explaining the brand new acoustic technology

Tom has been affiliated with NOAA and their projects since 2006 and is here to test a custom Acoustic Transducer (a piece of technology that sends out a signal to the ocean floor) and sonar transceiver. As he explained to me, this technology sends out a multi-band frequency and the echo which returns could potentially identify a species of fish hundreds of meters below the boat. He is also here to study Methane gas seeps found along the convergent boundary in the Aleutian Islands.  Methane gas seeps are of particular curiosity on this trip because of their unique properties.

Tom busy at work in the Acoustic Lab on board the Oscar Dyson
Tom busy at work in the Acoustic Lab on board the Oscar Dyson

On a side note, Tom saw the first grizzly bear of our trip just hanging out on one of the many coastlines we have passed. He said being on the Oscar Dyson is “Not like being in Beaver Stadium, but the ship moves as much as your seats do during a game.”  When I asked Tom for any words of advice, he said: “Never name your boat after a bottom fish.” Apparently that is bad luck.

A methane gas seep on the ocean floor makes quite a disturbance. Here Chris Bassett is observing what it looks like.
A methane gas seep on the ocean floor makes quite a disturbance. Here Chris Bassett is observing what it looks like.

Tom loves working side by side with the scientists on this study and is ecstatic to see this new technology being used on this survey.


Meet the NOAA Corps Officer: 

Meet Lieutenant Carl Rhodes, the Oscar Dyson’s Operations Officer, and acting Executive Officer for this part of the Walleye Pollock Survey. LT Rhodes is from Bayfield, Colorado and joined the NOAA Corps to use his degree in science. LT Rhodes has a Bachelors degree in Marine Science with an Associates Degree in Small Vessel Operations from Maine Maritime Academy in Castine, Maine. LT Rhodes also has a Masters of Science in Facilities Management from Massachusetts Maritime Academy.

His job as Operations Officer on board the Oscar Dyson includes:

  • Ensuring all scientific operations are conducted safely and efficiently.
  • Act as a liaison between all members of the ship’s crew and scientific parties.
  • Record and observe all scientific missions during the day.

His extra duties as acting executive officer include:

  • Managing the ship’s personnel and human resources
  • Taking care of payroll and travel requests
  • Supervising junior officers and crew members

Lieutenant Carl Rhodes on the bridge of the Oscar Dyson
Lieutenant Carl Rhodes on the bridge of the Oscar Dyson

Hands down, the best job of all not mentioned above is driving the boat! All officers stand watch (aka drive the boat) for two, four hour shifts a day. Not to mention all the other work they are required to do. Being a NOAA Corps officer is no easy job. LT Rhodes has the goal to one day be the Captain of a NOAA research vessel.

In his free time, LT Rhodes enjoys scuba diving, climbing mountains, hiking, camping, biking, photography, and flying drones. LT Rhodes shared with me how he has overcome many obstacles in his life. His words of advice to any student are: “Anyone can get anywhere if they try hard and really fight for it.”

LT Rhodes and all the rest of the crew of the Oscar Dyson have not had a day off yet on this research cruise, and work 12 hour shifts around the clock. Seeing this first hand has given me much respect for the type of work NOAA does!


 

Did You Know? 

Seafood is a billion dollar industry in Alaska, with more than half of U.S. commercially captured fish caught in the state nicknamed “The Last Frontier.” According to Alaska’s Department of Labor and Workforce, around 32,200 people fished commercially in Alaska in 2011, averaging 8,064 people per month. Salmon harvesting represents half of all fishing jobs in Alaska, with ground fish and halibut following in second and third place, respectively, according to the state’s labor bureau. Read more here.


 Thanks for reading my blogs! I am hooked on Alaska and would love to come back! I will see you all soon in Delaware!

DJ Kast, Engine Room Tour with the Chief Engineer, June 2, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast
Date: June 2, 2015

Chief Engineer Tour of Engine Room!

IMG_2044
Selfie with the Chief Engineer! Photo by DJ Kast

IMG_7398
John Hohmann, Chief Engineer on NOAA Ship Henry B. Bigelow. Photo by DJ Kast

SCHEMATICS- Drawn by John

IMG_2091
The upper level of the engine room. Drawn out by John Hohmann and photographed by DJ Kast

IMG_2092
The lower level of the engine room. Drawn out by John Hohmann and photographed by DJ Kast

Chief Engineer John Hohmann took me on a tour of  the Engine room here on NOAA Ship Henry B. Bigelow. It was fascinating to learn all of the components that make this type of research vessel work. The electrical components, the seawater distillation apparatus, biological sewage treatment, etc. It was an amazing tour. The Bigelow has a diesel-electric drive system using four diesel generators to power to two electric motors. The motors turn one shaft which rotates the propeller. Overall rated horsepower for main propulsion is 3017hp.

The biological system utilises bacteria to completely break down the sewage into an acceptable substance for discharge into any waters. The extended aeration process provides a climate in which oxygen-loving bacteria multiply and digest the sewage, converting it into a sludge. These oxygen-loving bacteria are known as aerobic. The treatment plant uses a tank which is divided into three watertight compartments: an aeration compartment, settling compartment and a chlorine contact compartment . The sewage enters the aeration compartment where it is digested by aerobic bacteria and micro-organisms, whose existence is aided by atmospheric oxygen which is pumped in. The sewage then flows into the settling compartment where the activated sludge is settled out. The clear liquid flows to the chlorinator and after treatment to kill any remaining bacteria it is discharged. Tablets are placed in the chlorinator and require replacement as they are used up. The activated sludge in the settling tank is continuously recycled and builds up, so that every two to three months it must be partially removed. This sludge must be discharged only in a decontrolled area. Photo and Caption info by Machinary Spaces.com
The biological system utilizes bacteria to completely break down the sewage into an acceptable substance for discharge into any waters. The extended aeration process provides a climate in which oxygen-loving bacteria multiply and digest the sewage, converting it into a sludge. These oxygen-loving bacteria are known as aerobic. The treatment plant uses a tank which is divided into three watertight compartments: an aeration compartment, settling compartment and a chlorine contact compartment .
The sewage enters the aeration compartment where it is digested by aerobic bacteria and micro-organisms, whose existence is aided by atmospheric oxygen which is pumped in. The sewage then flows into the settling compartment where the activated sludge is settled out. The clear liquid flows to the chlorinator and after treatment to kill any remaining bacteria it is discharged. Tablets are placed in the chlorinator and require replacement as they are used up. The activated sludge in the settling tank is continuously recycled and builds up, so that every two to three months it must be partially removed. This sludge must be discharged only in a decontrolled area. Photo and Caption info by Machinary Spaces.com

The most fascinating part for me was the Evaporator.

The inside Mechanics of the evaporator machine. Photo by: Machinery Spaces.com
The inside Mechanics of the evaporator machine. Photo by: Machinery Spaces.com

Distillation is the production of pure water from sea water by evaporation and re-condensing. Distilled water is produced as a result of evaporating sea water either by a boiling or a flash process. This evaporation enables the reduction of the 32 parts per thousand of dissolved solids in sea water down to the one or two present in distilled water. The machine used is called an ‘evaporator’, although the word ‘distiller’ is also used.

Boiling process:

The vacuum in the evaporation machine reduces the pressure to 30 inches of Hg or Mercury to boil water at 180F instead of 212 F

The vacuum in the evaporation machine uses 30 inches of Hg or Mercury to boil water at 180F instead of 212 F. Photo by DJ Kast.
The vacuum in the evaporation machine uses 30 inches of Hg or Mercury to boil water at 180F instead of 212 F. Photo by DJ Kast.

The sea water from the ship’s services is first circulated through the condenser and then part of the outlet is provided as feed to the evaporation chamber. Hot diesel engine jacket water or steam is passed through the heater nest and, because of the reduced pressure in the chamber, the sea water boils. The steam produced rises and passes through a water separator, or demister, which prevents water droplets passing through. In the condensing section the steam becomes pure water, which is drawn off by a distillate pump. The sea water feed is regulated by a flow controller and about half the feed is evaporated. The remainder constantly overflows a weir and carries away the extra salty water or brine. A combined brine and air ejector draws out the air and brine from the evaporator.

Evaporation machine connected to the Ship Service Diesel Generator. Photo by DJ Kast
Evaporation machine connected to the Ship Service Diesel Generator. Photo by DJ Kast

They need to make their own electricity on board ranging from 110 Volts for phones and computers to 750 Volts for some of the ship propulsion motors. Each of those require various circuit breakers seen below.

480 Volt Machines. Photo by DJ Kast
480 Volt Circuit Breaker. Photo by DJ Kast

600 Volt Machines. Photo by DJ Kast
600 Volt Circuit Breaker. Photo by DJ Kast

Its going 1000 amps. WOW. Photo by DJ Kast
Its conducting 1000 amps. WOW. Photo by DJ Kast

Air Compressors. Photo by DJ Kast
Air Compressors. Photo by DJ Kast

The air in the compressors is moist and hot so this cools it down and removes moisture. Photo by DJ Kast
The air in the compressors is moist and hot so this machine cools it down and removes moisture. Photo by DJ Kast

Air pressure holding tanks. Photo by DJ Kast
Air pressure holding tanks. Photo by DJ Kast

Drives. Photo by DJ Kast
Electric Motor Drives. Photo by DJ Kast

 

Engines and generators. Photo by DJ Kast
Engines and generators. Photo by DJ Kast

Evaporation controls. Photo by DJ Kast
Evaporator controls. Photo by DJ Kast

Freshwater Generator. Photo by DJ Kast
Freshwater Generator. Photo by DJ Kast

Generator! Photo by DJ Kast
Ship Service Diesel Generator (SSDG)! Photo by DJ Kast

Jacket Water Tanks on the SSDG
Jacket Water Tanks on the SSDG. This water is used to cool the generators. Photo by DJ Kast

Machine operates the cranes. Photo by DJ Kast.
Hydraulic pump that operates the cranes. Photo by DJ Kast.

Maintenance Service Board. Photo by DJ Kast.
Maintenance Service Board. Photo by DJ Kast.

 

Motor Controls. Photo by DJ Kast.
Motor Controls. Photo by DJ Kast.

Power supply 1, 2D. Photo by Dj Kast.
Power supply 1, 2D. Photo by Dj Kast.

Teal pump that separates oil. Photo by DJ Kast
Oily water separator reduces the water mixed with oil to 115 ppm for overboard discharge. The oil is retained on board. Photo by DJ Kast

Smoke Stacks! Photo by DJ Kast.
Smoke Stacks! Photo by DJ Kast.

Trawling Winch line. Photo by DJ Kast.
Trawling Winch line. Photo by DJ Kast.

Two blue boxes that are motors connected to the propeller. Photo by DJ Kast.
Two blue boxes are electric motors connected to the propeller. Photo by DJ Kast.

Third Engineer John fixing a pipe with a large wrench. Photo by DJ Kast
Third Engineer John is all smiles while he works. Photo by DJ Kast

Amy Orchard: Day 7 & 8 – ROV, Multibeam, New Scientists, More Dolphins, September 22, 2014

NOAA Teacher At Sea
Amy Orchard
Aboard NOAA Ship Nancy Foster
September 14 – 27, 2014

Mission: Deep Habitat Classification
Geographical area of cruise: Tortugas Ecological Reserve and surrounding non-reserve area
Date: September 21 & 22, 2014

Weather: September 22, 2014 20:00 hours
Latitude 24° 25.90 N Longitude 83° 80.0 W
Few clouds, clear
Wind speed 10 knots
Air Temperature: 28.5° Celsius (83.3° Fahrenheit)
Sea Water Temperature: 29.9° Celsius (86° Fahrenheit)

CLICK ON THE SMALL PHOTOS TO MAKE THEM LARGER

SATURDAY:

The ROV

All week we have had the privilege of using the Remotely Operated Vehicle.  This model is the Mohawk 18.  It has two cameras, one that provides still photographs and the other takes high-definition video.  Both are geo-referenced so we know exactly which latitude and longitude we are working.

It has an amazing maneuverability and gets around, over and under things quite quickly.  The footage is sent back up aboard in real time via a long fiber optic umbilical cord.

This amazing piece of equipment has allowed us to see down to depths that the divers would not have been able to reach.  It has also allowed us lengthy bottom times that the divers would not have been able to sustain.  Most of the divers have been trained to dive with double air supply tanks, which affords them more bottom time, but the ROV can stay down for hours and hours at a time.  The only limitation is the stress it puts on the pilots. Jason and Lance, our pilots, said that a four hour dive is about all they can run at a time without getting extremely crossed-eyed and need a break!  However, they are troopers and we have been doing multiple ROV dives each day, some lasting up to 4 hours.

Here are some fun things we have seen.

The last ROV dive of our day (& this cruise) was to a 56’ shrimp boat wreck which was down 47 meters (154 ft) just along the boundary of the North Reserve.  We saw nine Goliath Groupers (Epinephelus itajara) all at once.  Groups of these fish are often seen on wrecks, but the scientists were a bit surprised about the high density on such a small boat.  Due to over fishing of the Goliath Grouper, about twenty years ago, a moratorium was placed on fishing them and they were being considered for Endangered Status.  After just 10 years, a significant increase in population size was observed.  It’s still illegal to bring them over board but they are not on the Endangered Species list.  Juveniles live in the mangroves but adults live in deeper waters where our scientists were able to observe them with the ROV.

During the last 6 days we spent 14 hours and 20 minutes underwater with the ROV.  The entire time was recorded in SD and the scientists recorded the most significant events in HD.  They also sat at the monitors the entire time snapping still shots as often as they saw things they wanted photos of.  957 digital stills were taken.  The longest dive was 4 hours and 10 minutes.  Our deepest dive was 128 meters (420 feet!)

The screen on the left shows the map of the area the ROV is surveying.

These maps were created by the Multibeam Echo Sounder (MBES) The ROV depends on the MBES as do the fish scientists.  Without these maps, the ROV would not know where to dive and the fish scientists would not know where to conduct their research.  The MBES gives the fish scientists a wider view of the terrain than they can get on their own by SCUBA diving in smaller areas.

Multibeam Sonar

The Multibeam Echo Sounder (MBES) uses SOund NAvigation and Ranging (Sonar) to create high-definition maps of the sea floor and it’s contours (as well as other objects such as shipwrecks) by shooting sound waves (from 512 sonic beams) down to the seabed and then listening as they reflect back up to the ship.

cartoon of MBES
On the Nancy Foster, the Multibeam Echo Sounder sends down 512 sonic beams and listens as they return. Image courtesy of NOAA

This is very similar to the way a topographic (topo) map represents the three-dimensional features (mountain and valleys) of the land above water.  Instead of using contour lines to show variations in relief, MBS uses color to depict the bathymetry (submarine topography)  Red shows the shallowest areas, purple the deepest.

Another important element of the MBES for the fish researchers is called backscatter.  This byproduct of the sonar action wasn’t always collected.  Not until advances in technology allowed for an understanding of how to gather useful information from the backscatter did technicians realized how valuable it can be.  Backscatter is the amount of acoustic energy being received by the sonar after it is done interacting with the seafloor.  It is now recognized that the information from backscatter can determine substrate type.  Different types of substrate will “scatter” the sound energy differently. For example, a softer bottom such as mud will return a weaker signal than a harder bottom, like rock.

Layering together the multibeam data (which provides seafloor depth information and is computed by measuring the time that it takes for the signal to return to the sonar) with the backscatter, provides information which is especially helpful to fish researchers as it can assist them in classifying habitat type.  This allows them to know where they might find the species of fish they are looking to study.

Engine Room

Tim Olsen, Chief Engineer, toured Camy and I through the engine room.  It was overwhelming how many wires, cranks, moving parts and metal pieces there were.  Tim and the other engineers are brilliant.  I can not fathom what it takes to keep this 187 foot ship going with it’s multiple cranes, winches, engines, thrusters, small boats, air conditioners, toilets, kitchen appliances, etc.

I was most interested in the water systems.  The ship makes all its own drinking water since salt water is non-potable and it would take a lot of storage space to carry fresh water (space its tight on a ship!)  They have two systems.  One is a reverse osmosis system which, using lots of pressure, moves sea water through a membrane to remove the salts.  This system produces 1500 gallons of potable water a day. The second one is a flash distiller.  In this system, seawater is heated by the engine and then pumped into a vacuum chamber where it is “flashes” into water vapor which is condensed and collected.  The distilling system makes 1800 gallons a day aboard the Nancy Foster.  Distillers, in some form, have been used on ships since the 1770s.

The other thing that caught my attention was the sewage treatment system.  Earth Campers, this one is a bit smaller than the one we toured!

 

sewage treatment "plant"
sewage treatment “plant”

Of course, I also took a ride out in one of the small boats to assist the divers.  Sometimes all I do is fill out the dive log and pull the buoys back into the boat but I really enjoy being out in the open ocean, feeling the sea spray in my face and watching the light move across the top of the water.

Amy on boat
I always am happy to get out on the little boats!

Mexican Train

This week Tim has been coming around every now and then wearing his Domino King’s crown and cape, reminding us all to come challenge him to a game of Mexican Train (a fun dominos game).

Mexican Train
Mexican Train is played by building runs on each others dominoes. There has been some fun and some definite sassy times.

 

Tim has won every tournament game on the Nancy Foster in the last three months and has the bling to show for it! Then tonight, to the surprise of all, one of the scientists, Mike, dethroned the king!  This was the first time ever that a member of the science team has won the championship game.

SUNDAY:

Today was a fairly quiet day.  Not too much science was done except setting out a few more fish traps.

The big news was that we steamed back to Key West and made a science crew change.  We said goodbye to Jason, Lance & the ROV as well as Sean, Brett, Linh, Alejandro, Ariel, Ben and Camy.  They will all be missed.  Be sure you see Camy’s Miami Herald news articles–the first: (http://www.miamiherald.com/news/local/community/florida-keys/article2113805.html); and second: (http://www.miamiherald.com/news/local/community/florida-keys/article2500074.html)

New Scientists

We welcomed aboard NOAA’s Mary Tagilareni, Deputy Superintendent for Operations & Education and Beth Dieveney, Deputy Superintendent for Science & Policy as well as Lonny Anderson, our new dive master.  From the FWC, Bill Sympson, Biological Scientist, as well as our conch biologists Bob Glazer, Associate Research Scientist and Einat Sandbank, Biological Scientist.

Ship Propeller 

Also while in port, a few of the crew dived under the ship to check for any calcium carbonate secreting critters that may be growing on the transducer.  While down there, they found some lobster pot line that had caught on the propeller.

Sam dives under ship
Samantha Martin, Senior Survey Technician, is seen here diving to remove the lobster pot line. Again and again I was incredibly impressed with the NOAA crew. Their skill set was so vast. Sam not only runs the multibeam system but also dives, loads the small boats on & off the ship, drives the small boats and just about anything that needs done. This was the same for all the crew members. Photo taken by Sam’s diving buddy, the Commanding Officer, LCDR Jeff Shoup.

More Dolphins

To end the evening, a pod of dolphins can by again and Ensign Conor Maginn caught this video.

WORD OF THE DAY:  Extirpated

BONUS QUESTION:  Tell me about any Sonoran Desert species which were once being listed as Threatened or Endangered (or were being considered to be listed) and then had their populations recover.

Answer to the quiz from the last blog:  Lion Fish are INVASIVE.

IMG_7087

Mary Murrian: NOAA, Science, Education, and the Bering Sea! July 20, 2014

NOAA Teacher at Sea

Mary Murrian

Aboard NOAA Ship Oscar Dyson

July 4 – 22, 2013

Mission: Annual Walleye Pollock Survey

Geographical Area of Cruise: Bering Sea South of Russia

Date: July 20, 2014

Weather Data from the Bridge

Wind Speed: 15.11 kt

Air Temperature: 9.5 degrees Celsius

Barometric Pressure: 1016.9

Latitude: 5717.3530 N

Longitude: 17317.1393 W

Almost 70 cm long pollock.  That's big!
Almost 70 cm long pollock. That’s big!

Science and Technology Log:

CamTrawl

Kresimir in the Acoustics Lab
Kresimir in the Acoustics Lab

Kresimir Williams, one of the scientists on board the Oscar Dyson, has been with NOAA for over ten years.  He is a Fisheries Biologist.  He was born in Switzerland and moved to Yugoslavia, now Croatia, a year and half later.  Kresimir has always loved fish ever since he was a little boy.  He as many as ten aquariums in his house growing up.  He moved to the United States when he was 17 years old.  His mother is from Croatia, and his dad is from the United States.  Kresimir received his bachelor’s degree from Samford University in Birmingham, Alabama with a degree in Biology and Marine Science.  He received his Master’s degree from Auburn University, in Alabama with a degree in Aquaculture Fisheries.  He continued his education at the University of Washington, where he earned his PhD in fisheries and aquatic sciences.  He currently lives in Seattle with his wife and two children.  Kresimir current interests include integrating new technologies into marine surveys.

Cam trawl attached to trawl net
Cam trawl attached to trawl net

Trawl net with cam trawl attached being deployed to fish
Trawl net with camtrawl attached being deployed to fish

He is a fisheries biologist for NOAA and works on fishery surveys investigating new technology to make the survey process more accurate and effective.  Kresimir, along with fellow scientists Rick Towler and Scott McEntire, invented the camtrawl.  The camtrawl is made up of two small industrial cameras, protected by water proof, pressure resistant housing.  The cameras are attached to the trawl nets when deployed for fishing.  The cameras continuously take pictures (about eight pictures per second) in the net.  It photographs the animals as they swim through the net.

Picture from cam trawl of a lamprey
Picture from camtrawl of a lamprey

Cam trawl picture of a rockfish
Camtrawl picture of a rockfish

When the camtrawl is returned to the ship, the pictures can be downloaded for observation.  Using two cameras in stereo, allows scientists, to accurately length the fish they observe.  Looking at an object from two different perspectives allows you to see how far away an object is.  If you close one eye and look at an object, it is harder to tell how far it is away, however, if you use both eyes you have better depth-perception.  How will seeing the fish inside the net, in the ocean, help with the surveying process?  The camtrawl will make the process more efficient and save time.  Fewer people will be needed to conduct the surveys therefore reducing cost. It uses a non-lethal method of sampling the fish; the codend (the end of the trawl net that collects all the fish) can be left open allowing the fish to swim through easily, so the fish will not be captured and killed. And finally, it allows scientists to sample a greater range of animals sizes. Kresimir is still experimenting with the camtrawl and testing out its’ effectiveness. He is very enthusiastic about its prospects.  I really enjoy viewing the pictures and seeing the fish on the monitor.  I have attached a couple of my favorite pictures for you to view.

The Scientific Method in Action:

The Scientific Method is actively used in science careers and is very similar to the Engineering Design Process.  It is a process that scientists follow to solve problems in order to test a theory or answer a need.   In order for the camtrawl to be invented, Kresimir and Rick had to have an idea or question to get the process started.  Next, the idea had to be constructed, researched, and tested (testing is the fun part) numerous times.  During testing, data is collected and organized and then a conclusion can be generated based on the data.  If the idea is not successful, then it is important to go back to the beginning, make changes, and experiment again. If the idea is successful, then all is good, however, there is always room for improvement.  Scientists continue to test and retest until they get their expected results or prove themselves wrong and learn something totally new in the process.

Touring the Engine Rooms

First Engineer Kyle
First Engineer Kyle

 

I got the chance to tour the engine rooms at the bottom of the Oscar Dyson.  First Engineer, Kyle Chernoff, graciously escorted me and explained how everything works.  He received his bachelors degree in Marine Engineering at California Maritime University.  After graduation he had to take a series of seven coast guard exams in order to be qualified to work as a marine engineer.

Two of the ship's engines
Two of the ship’s engines

One of the evaporator machines
One of the evaporator machines

Besides the controls on the bridge, you can control the direction of the ship from the engine room.  The ship has many back up motors and generators so that if one breaks down or a fire ensues, the ship can continue on its course.  This is reassuring news for me and all of the 29 other crew aboard the ship.  I had to wear ear plugs while walking through the generator room.  It was extremely loud due to the noise the generators make to keep the ship running.  One of the pieces of equipment, I found most interesting, was the evaporator.  The Oscar Dyson has two.  The evaporators use heat to remove the salt from the sea water and convert it into drinking water.  During the process UV (ultraviolet) is used to kill any bacteria in the water to make it safe for drinking.  As well as the evaporators, the ship has a special machine that removes any oil before water is released back into the ocean.  This protects wildlife living in the ocean.  What a great use of resources.

I am in the engine room
I am in the engine room

Personal Log:

While on the bridge this week, I saw porpoises and whales.  I did not get pictures because the ship moves fast and so do the animals.  I had two gorgeous days, where the sun was out and I could feel the heat on my face.  Even the foggy days are nice, however ominous.  It rarely rained and the seas were relatively calm.  Thankfully, I did not have to don my survival suit except during weekly drills.  I participated in a really cool experiment on this trip.  Alyssa, the survey technician, gave me two Styrofoam cups (the exact same size) and asked me to color them, in which, I did. The next morning during the scheduled CTD, Alyssa placed one of my cups into a small net bag and attached it to the CTD device.  The bag was deployed to the bottom of the ocean floor.  Once back on deck of the ship, she retrieved the cup and returned it to me.  It looked the exact same with the exception that it shrunk.   Really awesome!  The air bubbles in the styrofoam cup and the pressure from the depth of the ocean cause this to happen.  It would shrink even more if we were in deeper waters.

Two cups I decorated before deploying into the ocean.
Two cups I decorated before deploying into the ocean.

I only sent the second cup into the ocean.  Notice the difference in size.   Talk about "under pressure"!
I only deployed the second cup into the ocean. Notice the difference in size.
Talk about “under pressure”!

Over the past couple of weeks, I have learned so much.  My voyage on the Bering Sea is quickly coming to an end.  In a couple of days, I will board the small puddle jumper from Dutch Harbor to Anchorage and eventually end up in Delaware.  The science team, NOAA Corps, and crew have been wonderful to work with during my time at sea.  This has truly been an experience of a lifetime.

Puddle Jumper from Dutch Harbor to Anchorage
Puddle Jumper from Dutch Harbor to Anchorage

Another beautiful sunrise on the Bering Sea
Another beautiful sunrise on the Bering Sea

Getting to know the Crew:

LT Greg Schweitzer, XO
LT Greg Schweitzer, XO

NOAA Corps LT Greg Schweitzer, Executive Officer or XO

In my last blog, I introduced you to the Commanding Officer of the Oscar Dyson.  Another vital member of the NOAA Corps and the crew of the Oscar Dyson, is the Executive Officer (XO), LT Greg Schweitzer. He is married and has four children.  He has been with NOAA for seven years and was in the Air Force before that for 10 years.  He received a bachelor’s degree in Meteorology and in Management. He received his Master’s Degree in Environmental Science.  While not at sea, he resides with his family in Kentucky.  He is second in command of the Oscar Dyson.  He  reports directly to the Commanding Officer and oversees the officers, stewards (cooks), engineers, deck crew, survey technicians, and scientists.  He is in charge of the ship’s budget, time cards and attendance, discipline, and port-side logistics.  He started his NOAA career, after a four month officer training, then aboard the NOAA ship Henry Bigelow for 2 ½ years out of Newport, Rhode Island. Because of his past military experience, he became an XO after only six years.  This is his last leg at sea before he starts a new land assignment.

An experience he really enjoyed during his NOAA career, was working on his first land assignment in Fernandina Beach, Florida.  He worked for NOAA’s Protected  Resource Division. Part of the XO’s job was to go out, on a small boat, off the coast of Florida and Georgia, to help disentangle North Atlantic Right Whales. The XO describes the whales as curious animals that spend most of their time at the surface of the water. Because they like to hang out on the surface of the water, they easily get tangled in nets and crab pots. Right Whales are on the critically endangered list.  In the past, they were hunted to almost extinction.  They got their name because they are easy to see and catch, so therefore fishermen, called them the Right Whales to fish.  There are approximately 350 North Atlantic Right Whales living at this time. They eat mainly plankton and krill. The Right Whales are migratory animals.  They are located off the Florida-Georgia coast during the winter where they calve and then travel up the east coast to Cape Code in the summertime.  They swim along the Atlantic Ocean, right outside of Delaware. Check out this website for more information on the North Atlantic Right Whales.

I asked the XO if he had any advice for my students.  He said to remember that there is no perfect path and that students should be open to new opportunities and be willing to take on new adventures. He lived in Kentucky until he was out of high school.  He never imagined he would ever leave. His Air Force and NOAA careers have given him opportunities, he might never had experienced.  He also adds, that it is important to go out and contribute and remember that there is still a lot of unknown discoveries on our planet, just waiting to be explored.

North Atlantic Right Whale: http://www.biologicaldiversity.org/
North Atlantic Right Whale: http://www.biologicaldiversity.org/

Meet the Scientist:  Carwyn Hammond

Carwyn working in the wet lab with Emily
Carwyn working in the wet lab with Emily

Title: NOAA Research Fisheries Biologist—10 years

Job Responsibilities:  Commercial fishing gear research: she looks for ways to modify the fishing gear to reduce impacts to the seafloor habitat and reduce bycatch (animals caught in net other than intended; i.e.  Dolphin caught in a crab fisheries net) of commercially important species.  She works directly with commercial fisheries as well as helps conduct surveys for NOAA.

Education:  Undergraduate Degree in Marine Resource Development at the University of Rhode Island; Master’s Degree in Fisheries at the University of Washington.

Hometown: She was born in Brooklyn, NY and moved to Hancock, MA at the age of six.

Current Residence: Seattle, Washington

Why pursue this career?  When deciding on a career, she asked, “What degree will let me play in the ocean?” and that is how she got started in the fisheries field of work.

Recently, she and her co-worker, Craig Rose, won the best paper award for their work on RAMP or Reflex Assessment Mortality Predictor.  Medical doctors use RAMP to check patients’ vital signs or reflexes such as tapping your knee to see if your leg reacts or kicks.  They applied this method to crabs.  On crabs they check six different reflexes: flare (legs moving up and down), leg retraction (pulling on leg), chela (claws), eyes, mouth, and abdomen.  Checking their vital signs allows scientists to help fishermen modify their fishing gear in order to reduce the mortality rate of their catch.

Good advice:  I asked Carwyn, “What would you tell kids interested in pursuing a science career?”she responded, “follow your gut and never stop asking questions”.

Meet the Scientist:  Dr. Mikhail A. Stepanenko

Mikhail helping process a trawl
Mikhail helping process a trawl

Title:  Senior Biologist, Northern Pacific Fish Resources Laboratory, Russia

Job Responsibilities:  In charge of pollock stock assessment and providing data for total allowable catch for Russia.  Building a international relationship with the United States of America.  He works closely with the New Fisheries Agreement between Russia, United States, Japan, Korea, and China, which works on improving fishery management for all fish.  He works on both Russian and United States fishery vessels, including NOAA’s Oscar Dyson as part of the science team.

Home: Vladivostok, Russia where his wife currently lives.  He has two daughters and four grandchildren, all of whom reside in the United States.

Why pursue this career?   He has always had a dream to be a seaman and he loves sport fishing.  He has an interest in animals and marine biology.

Mikhail has been working in the fisheries industry since graduating university in 1968.

 

New Riddle from the Oscar Dyson Crew:  Why does a wet deck remind you of music?

 Scroll to the bottom of my blog for the answer!

 

Did you know?

Did you know, during a new moon (the moon is not shining) out at sea, giant schools of anchovies glow on the ocean surface? 

Did you know the Oscar Dyson uses  500,000 gallons of fuel a year? 

 

Key Vocabulary:

Ultraviolet

Evaporation

Scientific Method

Engineering Design Process

Stereo

Meteorology

 

Squid
Squid

Sea stars or starfish
Sea stars or starfish

So cute! A the underside of a skate
So cute!  The underside of a skate

I'm holding a skate
I’m holding a skate

Answer to riddle:  If you don’t C sharp, you’ll B flat.

Jennifer Petro: Finding the Fish, July 7, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July 7, 2013

Weather Data
Air temperature: 27.°C (81.5°F)
Barometer: 1022.50 mb
Humidity: 73%
Wind direction: 195°
Wind speed: 6.1 knots
Water temp: 26.6° C (79.3°F)
Latitude: 34 44.62 N
Longitude: 75 91.98 W

Science and Technology Log

Today we find ourselves off of the coast of northern North Carolina where we will be for the next few days.  An exciting aspect about this cruise is that we will be multi-beam mapping (a blog about that very soon) and sending the ROV down for surveys in new areas off of North Carolina.  For the past few days I have been working with the team from the Panama City Southeast Fisheries Science Center identifying fish.  This can sometimes be a very difficult prospect when the ROV is flying over the fish at 2 knots.  The team from SEFSC consists of Andy David, Stacey Harter and Heather Moe.  David is a 23 year veteran of NOAA and has been working on the MPA project since 2004.  Stacey has been working on this project since its inception as well.  Heather is new to the team and is just coming off of a 1 year assignment with the NOAA Corps at the South Pole.
There are several major objectives of this survey cruise.

There are several major objectives of this survey cruise.

(1)  To survey established MPAs to collect data to compare to previous years’ surveys.

An important aspect of these cruises is to establish the effectiveness of an MPA.  In some MPAs there is usually no fishing allowed.  This includes trolling. bottom fishing (hook and line) as well as all commercial methods of fishing.  The MPAs we are studying are Type II MPAs where trolling is permitted.  They are looking for seven specific target species.

According to Andy, these species have been chosen due to their commercial value.  During each dive a record is taken as to the type of species seen.  We are specifically looking for the target species but we are keeping track of ALL the species that we see.  I think it is fantastic to see scientists get excited about seeing something new.  So far we have seen Oceanic Sunfish (2), Redband Parrotfish, Tautog (a more northerly found fish), Longsnout Butterflyfish and one fish species that we have not identified yet.  There is an emphasis on Lionfish counts to assist in gauging how the introduction of this invasive species is affecting the overall fish populations.  In some areas the Lionfish numbers have increased dramatically over the years.  Today we actually saw one try to eat a smaller fish!  They are very abundant in some locations and not in others but they have been present in 95% of our dives.

A Speckled Hind seen inside the North Florida MPA.
A Speckled Hind seen inside the North Florida MPA.

A Warsaw Grouper seen inside the North Florida MPA.
A Warsaw Grouper seen inside the North Florida MPA.

Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.
Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.

(2) Survey outside of the MPAs.

You may ask “Why survey outside the area?”  We want to know if the MPAs are indeed doing what they were designed to do: protect fish species.  That was very evident in Jacksonville where the numbers and size of Gag Grouper and Scamp far exceeded the numbers and size outside the MPA.

Andy David recording for the ROV video log species of fish we are seeing on the dive.
Andy David recording for the ROV video log species of fish we are seeing on the dive.

(3)  Survey new sites for possible MPA designation.

There is a process that is followed when determining if an area is a suitable MPA candidate.  What we are doing on this cruise is both mapping and surveying new areas that have been proposed as MPA sites.  This is the ground level stage.  The MPAs in the region that we are in are ultimately determined by the South Atlantic Fishery Management Council.

A Gray Triggerfish protecting a nest of eggs.  Seen in the Edisto MPA as well as in a proposed site off of North Carolina.
A Gray Triggerfish protecting a nest of eggs. Seen in the Edisto MPA as well as in a proposed site off of North Carolina.

Data during the dives is collected in a few ways.  There are several video monitors that we watch and we call out species that we see.  A data keyboard, like the one Harbor Branch uses for invertebrates counts, is used to keep track of types and number of each species seen.  During every dive a video from the camera on the ROV is recorded and species are highlighted and recorded on to the DVD.  This data will be analyzed thoroughly back at the lab and then sent to the South Atlantic Fishery Management Council.

Personal Log

I am happy to announce that I have finally gotten my sea legs.  It wasn’t as bad as I had envisioned but I was definitely concerned that it would be a major issue.  We had some weather on Thursday, July 4 and that was the worst of it for me.  I now hardly feel the vessel move.  It has been fun over the past several days.  We are in the lab most of the days so we only get to really see the crew at mealtimes and after dinner.  The crew, from the CO to the engineers, are all great people.  They are happy to answer questions, point you in the right direction and are quick to say hi and ask you about your day.  Yesterday afternoon one of the engineers, Steve, gave us a tour of the engine room.  All of the ship’s infrastructure is supported by this room.  The engines run the generators for power, support the a/c, house the desalination filters (all the fresh water on board comes from salt water) as well as getting the boat from point A to point B.  I was impressed!

One of the 4 Caterpillar engines that keep Pisces running ship shape.
One of the 4 Caterpillar engines that keep Pisces running ship shape.

Today after our last ROV dive, a school of Mahi mahi followed it (the ROV) up to the surface.  The fishing was on!  The crew brought out rods, reels and bait and the fishing commenced.  Collectively we managed to land one bull or male and 2 smaller Mahi mahi.  It was a nice diversion for all of us, scientists and crew, as we were back to work all too quickly.  Fish tacos for dinner!

Hoping I can land this one!
Hoping I can land this one!

Fair weather and calm seas.

Jennifer

Did you know that…

Some grouper can grow to be so huge that when they open their mouths to feed, they create a suction that is powerful enough to inhale small prey.

Marsha Skoczek: Plotting Our Course, July 15, 2012

NOAA Teacher at Sea
Marsha Skoczek
Aboard NOAA Ship Pisces
July 6-19, 2012

Mission: Marine Protected Areas Survey
Geographic area of cruise:  Subtropical North Atlantic, off the east coast of Georgia.
Date:  July 15, 2012

Location:
Latitude:  32.47618N
Longitude: 78.19054 W

Weather Data from the Bridge
Air Temperature:  27.6C (81.7 F)
Wind Speed:  6 knots (6.9 mph)
Wind Direction:  From the SE
Relative Humidity: 75 %
Barometric Pressure:  1018.3
Surface Water Temperature:  28.4C (83.12 F)

Science and Technology Log

In order for the scientists to find the fish they are studying on this cruise, they need to know where the areas of favorable habitat are located.  Old nautical charts are not one hundred percent accurate–sometimes they can be hundreds of kilometers off. Early ocean floor mapping used long lines with a lead weight which was hung off the side of the ship.  As the ship moved forward through the water, the long lines would get behind the ship making it very difficult to get an exact reading.  It wasn’t until sonar came into general use during World War II, that it was discovered to be useful for bathymetric mapping.

Sonar works by sending a single sound wave to the ocean floor.  As it reflects back toward the ship, a hydrophone listens for the return sound.  The length of time it takes for that sound wave to return to the ship can be used to calculate the depth of the ocean in that location. The speed of sound in water travels at approximately 1,500 meters per sec (m/s) which is about five times faster than sound travels in air.  The problem with single beam sonar is that the data only plots the one single line beneath the ship.  It does not give the complete picture and gaps in data were often filled in using the readings taken around the area as an estimate.

Planned acoustic survey lines

So how is multibeam sonar different from single beam sonar?  With multibeam sonar, it is just as the name implies–multiple sound beams are sent toward the ocean bottom.  For the depths we are working on, the multibeam sonar on the Pisces sends out 70 beams of sound every .67 seconds.  Within a fraction of a second, these “pings” are reflected off of the ocean bottom and back to the transducer.  The time it takes for all 70 of those pings to return to the transducer determines the depth at each point.  The echogram screen illustrates the bottom features in real time and will even pick up large schools of fish in the water column.  As the ship continues to move up and down the survey lines, the raw data is collected.  The distance between the survey lines is determined by the depth of the area to be mapped.  To set the survey lines, we are using 1.5 times depth so, if the water depth averages 100 meters at the mapping location, the survey lines are set at 150 meters, (.08 nautical miles) apart.  Tonight, the ocean depth at our mapping location is about 60 m so the survey lines are set at 90 meters (.05 nm) apart.  The goal when laying out the survey lines is to overlap the previous lines by about 25%.  This will insure a more complete picture.

Echogram of ridge

It is not simple enough to just take the raw data from the return pings.  The temperature, salinity and depth of the ocean in the mapping area can create slight variations in the return speed.   Temperature, salinity and depth can influence the speed of the return signal, so we use the CTD to gather readings each morning as they are wrapping up the mapping for the night.  This information along with the information on the ship’s roll, pitch, and yawl from the Position and Orientation System for Marine Vessels (POSMV)  are plugged into software that helps process and clean up the data.  From there, the data is converted into a “geo tif” file where it can be  plugged into GIS mapping . The final product is a full color 3-dimensional image of the mapping area.

Completed multibeam image

Ideally the scientists would have multibeam information for each of the sites they want to study that day.  To make this happen, the night before the ROV dive the ship will make its way to the next day’s study area so the geographers can map all night.  The survey lines are selected using bathymetry maps as well as looking at the existing multibeam maps of the area to see if there are any gaps that need to be filled in.  The idea is to give the scientists as much information as possible so they can make informed decisions about where to study.  Time on the ship is extremely expensive and they want to make sure they take full advantage of that time by finding the best habitats to study.  Without the multibeam images, the scientists have to make a best guess as to where to map using old and possibly out of date information.

Personal Log

This is the engine monitoring station.

Today I took a tour of the  Pisces’ engine roomEngineer Steven Clement was nice enough to show me around and explain everything for me.  It is amazing to me how this ship is like its own little city.  The ship creates its own electricity using diesel-powered generators.  It takes four generators to power the ship at full speed which is about 15 knots.  The engines are so loud that I had on double ear protection and it was still extremely loud to walk past them. Using all four engines all day would burn up 3,000 gallons of diesel fuel.  The Pisces is capable of holding 100,000 gallons of fuel which should last the ship several months at sea.  The electricity that is left over from powering the engines is used as the power supply for all of the electronics on board.

Other ways that the Pisces reminds me of a small city is the water.  The ship creates its own drinking water with a reverse osmosis system complete with UV filter and is capable of producing 2.8 gallons per minute.  It also has two hot water heaters attached to a compressor to keep the hot water pumped up into the pipes of the ship.  I do have to say that the hot water on this ship is extremely hot!!  There is no need to wait for hot water, it comes out instantly when I turn on the faucet.  When I shower, I have the cold on full blast and just a smidge of hot water to get a normal temperature shower.  Even our waste water is cleaned up in the Pisces’ own waste water treatment facility which uses microbes to break down the waste products before it is released back out to sea.

Other than pulling into port occasionally for fuel and supplies, the Pisces is really a self-contained vessel capable of cruising at sea for long periods of time.

Ocean Careers Interview

In this section, I will be interviewing scientists and crew members to give my students ideas for careers they may find interesting and might want to pursue someday.  Today I interviewed Dr. Laura Kracker.

Dr. Laura Kracker

What is your job title?  I am a Geographer with NOAA National Ocean Service in Charleston, South Carolina.

What type of responsibilities do you have with this job? Usually I work on projects using acoustics to map fish in the water column.  Using fisheries acoustics, we can map the distribution of fish in an area and detect large schools as well. On this mission, I am using multibeam to map seafloor habitats.

What type of education did you need to get this job?  I earned my Associate’s Degree in agriculture from Alfred College in New York.  When my children were little, I stayed home with them.  While I was home with them I earned my Bachelors in Painting.  Then I went to work in a fisheries office for a couple of years before deciding to go back to college to get my Master’s Degree in Interdisciplinary Science from the University of Buffalo.  I then continued on to my PhD in Geography and GIS, also from the University of Buffalo.  My dissertation was on Using GIS to Apply Landscape Ecology to Fish Habitats.  So I have combined all of my experiences to get me to where I am today.

What are some of your best experiences have you had with this job?  I love being on a ship.  I spend as many as 55 days a year on ships, often at the request of other scientists that need help with multibeam sonar.  I love geography, it gives us  a framework to put everything together, you can layer more and more information onto a map to find a complete picture.

What advice do you have for students wanting a career in marine biology?  Get a broad foundation before you specialize.  You don’t have to take a direct route to where you want to go.  

Kaci Heins: Final Blog, October 7, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Farewell Alaska

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Friday, October 7, 2011


Weather Data from the Bridge

Clouds: Partly Cloudy  1/8
Visibility: 10+ Nautical Miles
Wind: 4 knots
Temperature
Dry Bulb: 8.5 degrees Celsius
Barometer: 1018.5 millibars
Latitude: 54.47 degrees North
Longitude: -132.32 degrees West

Science and Technology Log

One of the Main Engines

Every day we tend to take for granted the simple things in life such as having electricity to power to charge our cell phones, to be able to turn on the water whenever we need a drink, or to make sure the toilets flush in the restroom.  When we are on a ship at sea for a long period of time, it is important that all of these systems that impact of our daily life are functioning properly.  We cannot take an extension cord and run it from the port to wherever we are heading so that we have electricity.  The Rainier, like any other ship, is like a floating city and is self-sufficient in its abilities to generate its own electricity, create and store its own fresh water, process its own sewage, and still get to where it needs to go.

There are two 12 cylinder two-cycle diesel engines that power the ship.  Each engine is geared independently to individual propeller shafts.  This means that the ship can actually be steered by adjusting the pitch or “bite” of the propellers.  The average speed for the Rainier from these engines is about 12 knots.  Power is generated on the ship through two 415 kilowatt, 450 volt, 3 phase, 60 cycle generators, which are driven by the diesel engines.  The generated voltage is stepped down through transformers to supply the 120-volt power for lighting, appliances, and electronic equipment on the ship.  The heat rejection from the diesel engines is also used for the evaporators which help produce the ships water.

Engine for the Generator

There are two water storage tanks that can hold up to 8390 gallons of water.  This amount of water will only last us a couple of days because the ship uses about 2000 gallons of water a day.   There are two flash type distilling plants that generate our potable water, which converts sea water into our fresh water for the ship.  They are able to convert around 6000 gallons of fresh water a day for all of the needs of the ship.  Hot water and steam for our needs are provided by two pressurized hot water boilers that use diesel fuel to heat the water up to around 360 degrees Fahrenheit.

Hot Water Boiler

All of these various systems and machinery are the lifeblood of the ship.  They help provide the basic needs for the crew in order to survive for long periods of time at sea and for the ship to fulfill its mission. Without the engineers monitoring and maintaining the ships equipment we could not accomplish the tasks required of the ship .  There is extensive amounts of hands-on experience and training that comes with this territory of keeping the ship alive.  This training can come from collegiate academies, prior military service, trade schools, or wanting to come into an entry-level position to experience life at sea.

*Special thanks to Cliff Elsner for giving me an extensive tour of the engine room and helping me share this information about the heart of the ship.

Personal Log

Rainbow During a Survey

It’s funny how a person adapts to their environment over time.  I was so excited to be going to Alaska to take part in this experience, but I had no idea what it would be like or how much I would learn.  Noises that were beyond annoying at the beginning of the trip become a constant humming that the Rainier shares each day.  The vibrations and gentle sway that would keep you up until the wee hours of the morning, start to rock you to sleep each night in preparation for the days work ahead.  However, there are times when she may want to rock, but the Pacific Ocean wants you to roll. Then there isn’t much sleep to be had.  The weather would like to break the Rainier, but she is a floating fortress of steel that continues on knowing there is a job to be done.  It is a constant rhythm with this ship.  The waves keep time and rarely does anyone miss a beat.  The pulse and the life of the ship stay in complete sync.   With everyone doing their part we come to the finale as we finish the last day of work and pull into port.  There is a welcomed intermission between journeys as we head into Ketchikan, Alaska.

I did see a moose in Alaska!

I am so grateful for this experience to see Alaska, to see the wildlife, and to see what hydrographic surveying is all about.  However, I never imagined I would meet so many wonderful people on this ship.  Each person I came in contact with had wonderful characteristics, personalities, and skills to share.  I admire what each person has to contribute from every department on the ship.  If they were not here then the ship would not function to its fullest potential and complete its mission.  I am thankful for each handshake, each ear to ear smile, the jokes played on each other and myself, the hearty laughter at dinner that keeps us all sane, the hugs of support, the high fives of accomplishment, but most importantly the many lessons that you have taught me that I will keep with me for a lifetime.  I love this ship, I love this crew, and I loved this experience.  Thank you to everyone that made this possible.

Thank You Rainier!

Interview with the Captain

Crew Interviews

Animals Spotted!

Blue Heron

Whales (Species Unknown)

Sea Otters

Question of the Day

Staci DeSchryver: Don’t Hate, Just Calibrate! August 9, 2011

NOAA Teacher at Sea
Staci DeSchryver

Onboard NOAA Ship Oscar Dyson
July 26 – August 12, 2011 

Mission: Pollock Survey
Geographical Area of Cruise: Gulf of Alaska
Location: Barnabas Strait  57 deg 22.630 N, 152 deg 24.910W 
Heading: 67.8 deg
Date: August 9, 2011

Weather Data From the Bridge
Partly Cloudy Skies
Temp: 13.5 deg
Dewpoint:  6 deg
Barometric Pressure: 1020 mb, falling, then steady
Wind:  240 deg at 12kts
Seas:  Calm
stn model 08.11

Science and Technology Log

The start of my first official shift onboard the Oscar Dyson was an interesting one!  We had lost some time (11 days) to some complications, so our cruise goals shifted a bit from the original plan.  We had to focus on the most important aspects of the mission, and sacrifice carefully, as it wasn’t plausible to complete the entire mission in the time allotted.  One of the major steps for completing the season was to do what is known as a calibration.  In order to save time, we did the calibration on my first night out on the job!

Calibrations are typically done during the daytime because the fish are curious little beasts.  During the day, they move lower in the water column, and therefore do not interfere with the calibration of the system, mainly because they are so far away they are oblivious to it.  At night, however, they party at a shallower depth, and sometimes their acoustic signatures can mar the data collected during a calibration.  It is critical to the scientists that they calibrate the acoustic system accurately, and if there is a school of fish swarming the calibration tools, well, it’s a big ‘ole mess.  Given that we are on a shortened time schedule, it made practical sense to conduct the calibration overnight.

krill
Marshmallow has been very helpful on the trip. Here he is counting krill. I don't have the heart to inform him that these krill have already been counted.

Why do we calibrate the acoustic transducer?  Think of it like this.  Have you ever baked cookies before and followed the directions to the letter, only to have them come out of the oven like crispy critters or balls of goo?  Or, let’s say, you have a favorite recipe you use all the time, and you gave the recipe to a friend who makes the same cookies the same way, yet complains that they are overcooked?  Well, one of the reasons that the recipe may have not turned out was because either your oven, or your friend’s oven was not properly calibrated.  Let’s say, for example, the recipe calls to bake the cookies at 350 degrees for 15 minutes.

If you turn the dial to 350 degrees, it is reasonable to expect that the oven is, in fact, 350 degrees.  But there is an equal possibility that the oven is actually only 325, or maybe even 400 degrees.  How would you double check to see if your instrument is off its mark?  One solution is to heat the oven to 350, and use a meat or candy thermometer that you know has an accurate readout and then put the thermometer in the oven.  If the candy thermometer reads out at 350, you can be certain that your oven really is 350 when you turn it on.  If the candy thermometer reads out at 375, then you can be certain there’s an error in the readout of your instrument.  Calibration corrects for those errors.

downrigger
Here you see Cat and I showing off the downrigger - the piece of equipment that holds the calibration spheres under the ship.

Calibration on this survey is important because scientists use information from the acoustic transducer to determine the types and abundance of organisms in the water column.  If the instrument they use to make these predictions is off in any way, then all of the data they collect could be determined to be insufficient or unreliable.  Calibration also ensures that acoustic measurements (and survey results) are comparable between different cruises, locations, and times.

Calibration is done much in the same way as an oven is calibrated.     We take an object that has a known and reliable return rate on the acoustic transducer, and hang it below the ship.  Then, the scientists will “ping” acoustic soundings off of the object and see how well the return matches up with the known return rate.  If it’s off, then they can “tune” the transducers, much like a guitar is tuned.

downriggers ii
Here, the chief scientist, Chris Wilson, double checks our superior downrigging work!

It is only necessary to calibrate the transducers twice per survey – once at the beginning of the survey (one was done in June) and one at the end of the survey (which was now).  When the transducer is calibrating, the ship must be as close to stationary as possible.  This is why the lead scientist chose to do the calibration at night – we can’t calibrate and conduct assessment surveys at the same time.  Therefore, it’s a one-pony show when the transducer is calibrating.  Almost all other scientific field work ceases while the calibration is completed.

There are two materials used for calibration for this particular transducer on the Oscar Dyson.  The first is Tungsten Carbide, and the second is pure Copper.  These small, spherical objects are quite cleverly hung below the ship off of three downriggers attached to the port and starboard rails.  In order to hang the spheres, the strings on either side of the ship must connect.  In a sense, we ask the Dyson to “jump rope” to get the calibration sphere underneath the ship in the correct position.

Calibration takes about six to eight hours to complete.  I got to help with setting the downriggers up, changing out the calibration spheres, and breaking down the equipment.  As it turns out, the transducer only needed minor adjustments this time, which is pretty typical for the ship.  However, it’s important to double check so that if there is a problem, it can be detected early and corrected.

Personal Log

Today, the chief engineer of the ship, Jeff, gave us a tour of the engine room.  Holy cow, was that impressive!  I don’t know what I was thinking when I  thought that the guts of this beast were contained in one small room.  They most decidedly are not.  There are two whole decks below the lowest level I know of – and they are filled with all kinds of interesting equipment.  We got to see all of the engines (there are 4 diesel generators), where the water is purified for consumption, and all of the internal components of the winch system that lowers and raises our fishing nets.  As if that weren’t enough, we popped open a floor hatch, climbed down the ladder two flights, and got to stand right on the “skin” of the boat.  Translation:  The only thing separating my feet and the big blue sea was a thin little piece of metal.  It was so cool.  The ship is designed to be “acoustically silent” – like a stealth fighter, except they don’t call it stealth and we aren’t fighting enemies – we are hunting fish.  Because of this, many of the larger pieces of equipment are hoisted up on platforms that silence their working parts.  The ship has diesel-electric propulsion.

engine rm
Here is just ONE of the four massive engines on the ship!

This means that there are four diesel generators that make electricity,  which then gets split into two different forms  – one type is for propulsion, and the other is for our lights and other conveniences.  It sounds really complicated, and much of what the engineers do on board is quite complicated, but everything onboard is smartly labeled to help the engineers  get the job done.  I also learned today what the funny numbers on all of the passage doors mean.  See the caption for a description.

door signs
Here is one of the door signs on the ship, which act like a "you are here" sign on a map. The first number tells us what floor we are on. The second number tells us what area of the ship we are in. The third number tells us whether we are port, starboard, or in the center of the ship.

One thing that Cat and I were discussing this morning while searching through binoculars in Alitak Bay for interesting woodland creatures was that we can go pretty much wherever we want to go on this ship.  Everyone who works and lives here is so friendly and welcoming.  They answer any of our questions (even the silly ones) and they all have such cool life stories.  What’s better is that everyone is willing to share what they’ve learned, experiences they’ve had, and accomplishments they’ve achieved to make it here.  I am aboard a utopian city bursting with genuine people who love what they do.  Now, please understand that it’s not that I ever expected the opposite for even a single second.  The science and technology is definitely neat, but the people who live and work here are what is making this trip a once-in-a-lifetime experience.

Do you know….

Your Ship Superstitions?

1.  Bananas on a boat are considered bad luck.

2.  Black luggage for sailors is considered bad luck.

3.  One should never whistle – especially on the bridge or in the wheelhouse – you may whistle up a storm.

4.  To see a black cat before boarding is good luck.

5.  Dolphins swimming along the ship are good luck.

6.  Never sail on Friday – it’s unlucky.

7.  Never sail on the first Monday in April – also unlucky.

8.  Never say the word “Drown” on a ship, as it encourages the act.

9.  Sailors should avoid flat-footed people – they are bad luck.

10.  Never step onboard a ship with your left foot first.

John Taylor-Lehman, June 24, 2011

NOAA Teacher at Sea 
John Taylor-Lehman 
Onboard R/V Savannah 
June 24 – July 1, 2011 
NOAA Teacher at Sea: John Taylor-Lehman 
Ship: R/V Savannah 
Mission: Fisheries Survey
Geographical area of the cruise: Continental Shelf off of Florida
Date: 24 June 2011

Weather Data from the Bridge 
Winds from the South at 10 mph
Barometric Pressure 29.93

The Research Vessel Savannah sitting at dock in Savannah
The Research Vessel Savannah sitting at dock in Savannah

Science and Technology Log 

We departed on time from the Skidaway Institute of Oceanography dock at 0001 hours with 6 crew members, a compliment of 8 scientists and myself. The crew consists of Captain Raymond Sweatte, 1st Mate Michael Richter, Marine Technician John Bichy, 2nd Mate Kevin Holliday, Chief Engineer Richard Huguley, and Joel Formby. Though they have different titles, it became obvious from our discussions that their duties are often shared or overlap. This arrangement is necessary because the R/V Savannah is functioning 24 hours per day.

Because we are in transit to our first sampling site my interest has focused on the operators of the ship and how the ship functions.

Capt. Sweatte outlined for me the steps in his career that have led him to being Captain of this vessel. Though military training is one avenue to prepare for a commercial captain’s license he did not follow that path. He worked his way up through various jobs as an able bodied seaman second mate, first mate, and finally the captain with 1600 ton vessel certification. His training is ongoing through “continuing education” programs in fire safety, sonar, survival training, and first aid.

Chief engineer Richard Huguley gave me an interesting tour of the 4 compartments of the engine room. Water cooling systems, two 450 horse power Caterpillar brand engines, electrical and hydraulic system all have to be monitored and maintained during our cruise. Some systems are checked for pressure, temperature and fluid levels several times per day and around the clock. Engineer Richard Huguley had an interest in machines and an aptitude for mechanics at an early age. His skills have allowed him to have consistent employment in land based industrial enterprises and nautical work.

Personal Log 

Shelly in the “Gumby” suit
Shelly in the “Gumby” suit

My apprehensions about seasickness have been unfounded… thus far. I’m using a Transderm patch with scopolamine. It is difficult however to tease out the exact reason for my relatively calm stomach. Is it the chemical? Is it the relatively calm seas (4-5 ft. waves last night and 2-3 ft. waves today)?

During the safety instructions last night a person was required to don the “survival suit” (also known as the “Gumby” suit). The attempt to don the suit quickly is always good for a laugh. Shelly, part of the science party, was our reluctant “volunteer” for the demonstration.

Shelly in the “Gumby” suit

Since we are in transit, there has been time to explore the ship, talk with science staff and crew, as well as enjoy the view of the Atlantic from the deck. Today I saw dolphins, barracuda, and flying fish, close to the ship and a submarine off in the distance.

Melinda Storey, June 25, 2010

NOAA Teacher at Sea
Melinda Storey
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Friday, June 25, 2010

Weather Data from the Bridge
Time: 1000 hours (10 am)
Position: latitude = 27°53.9 N longitude = 093º 51.1 W
Present Weather: 5/8 cloudy (cumulonimbus/cumulus clouds)
Visibility: 10 nautical miles
Wind Direction: E Wind Speed: 4 knots
Wave Height: 1 foot
Sea Water Temp: 30.5°C
Air Temperature: dry bulb = 29.2°C, wet bulb = 26.3°C

Science and Technology Log

Video from the Camera Array
Video from the Camera Array

Echosounder
Echosounder

The technology on this ship is amazing! The picture on the left is video of what the camera array filmed yesterday. The fish just swim around and sometimes they even come right up to the camera like they are “kissing” it. Then they back away and swim off. It’s beautiful to watch. The picture on the right is the EK60 Echo Sounder. The red line that you see shows the bottom of the seafloor. The blue above the red line is the water itself and the white specks that you see are fish. The most recent reading is located on the right side of the screen. The echo sounder sends a “ping” to the computer and that “ping” is a fish. Sometimes we can see definite shark outlines in the images below our ship. If you look at the bottom right hand corner of the echo sounder photo, you will see a large white speck along the red line. This indicates a large fish (possibly a shark) trolling the bottom of the ocean. When we came upon the dead sperm whale, the Electronics Technician (ET) came to the lab and told us there were a lot of “large fish,” most likely Mahi Mahi or even sharks, swimming under the ship.
The Pisces would not be able to operate without the engineers who make sure that everything onboard is functioning properly, including the 4 massive diesel generators that power the ship, the freshwater generators that convert seawater into fresh drinking water, and the hydraulics that power the cranes to lift the cameras in and out of the water. Chief Engineer Garet Urban leads the team of engineers, oilers, and electrical experts who take care of all the mechanical issues on board the ship.

First Engineer, Brent Jones, took us on a tour of the very impressive engine room on the lower deck of the Pisces. He showed us the incinerator which burns all the trash, oil filters, and other waste at a temperature of 1200°C (2192°F). Paper, plastic, and aluminum is brought back to shore and recycled. Before entering the engine room, we were told to put in earplugs because the sound can damage your eardrums. In addition to not being able to hear a thing inside the engine room, the heat is incredible! The engineers need to be careful to stay hydrated while working in these conditions.

Engine room
Engine room

Diesel Generators
Diesel Generators

The Pisces is powered by 4 diesel fuel generators which generate electricity that drives two large electric motors. The photo above on the right shows one of the generators in yellow. The engineers are constantly monitoring the mechanics of the ship to make sure everyone on board has a safe and productive voyage while conducting scientific research on board.

Personal Log

All this technology on board makes me drool! The Pisces is certainly a beauty of the NOAA fleet. Each morning Chris Gledhill, our fishery biologist, looks at the video from the camera array and I’m hanging just over his shoulder watching all the coral and fish. It’s really interesting to see the fish swim by the camera and now I can even identify some of them. I never knew there was a type of coral called “wire coral.” It looks like curly-cue wire used in floral arrangements. One of our deck hands caught some on his fishing pole one night and when I held it, the coral moved! Wire coral is a living creature so, of course it moved!

What I thought was really funny was watching a big grouper swim by the camera and then we caught it on the Bandit Reel. Nothing like seeing your fish before you catch it! Here you can see Paul Felts and me holding the 21 pound grouper.

Big Grouper
Big Grouper

Big Grouper caught
Big Grouper caught

Just like school, the Pisces has drills – fire drills, man overboard drills, and abandon ship drills. It’s always good to be prepared. When we have an abandoned ship drill we have to put on our “Gumby Suit.” This survival suit would protect us by keeping us afloat and warm if we really had to go into the water. The Gumby Suit is not exactly the latest fashion but I would certainly want it if I have to abandon ship.

Gumby Suit
Gumby Suit

Teacher at Sea in their Gumby suits
Teacher at Sea in their Gumby suits

The day after this Abandon Ship drill, we had a REAL fire drill. Over the PA system we heard, “This is not a drill. This is not a drill.” The forward bow thruster was smoking. We “mustered,” or gathered, on the second deck, but when we got there we could really smell smoke. So, we were sent down to the main deck for precaution. Fortunately, we have an outstanding crew who fixed the problem immediately.

New Term/Vocabulary

Muster – to gather

“Something to Think About”

While on the bridge last night, I heard on the radio another ship broadcast they were “taking on water.” What would you do if you were on a boat in the Gulf and it suddenly started taking on water?

Linda Tatreau, MARCH 12, 2010

NOAA Teacher at Sea: Linda Tatreau
Onboard NOAA Ship Oscar Elton Sette

Mission: Fisheries Surveys
Geographical Area of Cruise: Equatorial Pacific
Date: March 12, 2010

Shark! and HARP

Tiger Shark
Tiger Shark

We are into the last day of work before returning to Guam. The first set of BRUVs is being recovered as I write. We will have time for one more set (8) and then we’ll secure the equipment and head for home (home for me anyway―everyone else will still be far from home). Steve is getting great data on the fish populations on the west side of Saipan. As much as we like watching the fish, we got more excited to see a turtle checking the bait, a moray eel chewing on the bait bag, and yesterday, a large tiger shark cruising back and forth nudging the bait bag. Unfortunately, the video ended while the shark was still at the BRUV. When we brought it up, the bait bag was gone.

E paraancora
E paraancora

John and Viv deploy the TOAD each night and make 3 or 4 passes over the reef to assess coral coverage and other bottom features. They were particularly happy to have found several areas of reef with the coral Euphyllia paraancora. This coral is found in the tropical Western Pacific and the Indian Ocean, but it is not common. It is heavily harvested for the aquarium trade and more susceptible to bleaching than more robust coral species. It is listed as vulnerable and is further threatened by the predicted threats of climate change and ocean acidification. It was put on the IUCN Red List and is protected via CITES, both as of October, 2009.

Above: HARP Diagram
Above: HARP Diagram

One night we deployed a HARP, a High-Frequency Acoustic Recording Package used to study cetaceans (whales and dolphins). The scientist in charge of this equipment was not onboard but had arranged with the Chief Scientist to put out this equipment near Saipan. This HARP will sit on the seafloor for 2 years collecting sounds. HARPs record ambient ocean noise including low-frequency baleen whale calls, high-frequency dolphin clicks, sounds in between and man-made sounds from ships, sonar, and seismic exploration. When the HARP is retrieved, the sounds can be analyzed and we will learn more about the cetacean populations of the Mariana Islands.

Engine Room
Engine Room

A few days ago, Glen gave me a great tour of the engine room. It is beyond the scope of this blog to describe it here, but I can’t resist including a few pictures. I am always amazed by what it takes to keep a ship like this running. They call it an “unmanned engine room” because an alarm will ring if something needs attention like overheating or low oil pressure. It may be called “unmanned” but it takes a lot of man-hours to keep it that way. The engine room and machine shop are really clean and well organized―I didn’t see a drip of oil or a smudge of grease.

Right: One of 4 diesel engines that provided the electricity for the ship and run the electric motors that drive the propellers.

Engine Room
Engine Room

Engine Room
Engine Room

Right: Glen, first assistant engineer and my tour guide.

Glen, First Assistant Engineer
Glen, First Assistant Engineer

Jeannine Foucault, November 14, 2009

NOAA Teacher at Sea
Jeannine Foucault
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Ecosystem Survey
Geographic Region: Southeast U.S.
Date: November 14, 2009

Science Log

Of the many things I have learned so far there are three things that are standing out in my mind right now that I can share…..1) there is so much ionization in the ocean (salinity) that if it’s not neutralized it can cause many rusting/electrical problems on the ship 2) water on the ship is purified by passing through a UV light before it is sent for drinking and using on the ship 3) plank owners are called the very first crew members on a new ship!

When I went on the tour of the engine room or should I say rooms. The engineer pointed to a sign that read “cathode”. Well, I know my physical science students remember that a cathode is an electrode where an electric current flows out of a polarized electrical device. Anyway, the ship has all this salt water flowing in (lots of NACL) that has an electric charge so it has to be neutralized using the cathode so the water doesn’t cause any high electrical charges that can be dangerous with so much high voltage already running on the ship. Cool, huh?

Then the engineer explained the process of making water. The ship goes through about 1800 gallons of water per day. Through the process of purifying the water at the final stage is a tiny box with a long rectangular tin attached to a long thick wire. Above this box water flows through another tube flowing across the rectangular box. It reads ‘CAUTION: UV radition light’. As the water flows across the UV light it is emitting short wavelengths of ionizing radiation to rid of any living microorganisms in the water making it suitable to drink.

Finally, another crew member discussed the aspect of the ‘plank owners’. This is an individual who was a member of the crew of a ship when that ship was placed in commission. So since PISCES was commission on November 6, 2009 and the entire crew that is with me now on the ship was a member of the crew then they are all the plank owners of PISCES and I am the office plank owner Teacher at Sea!

John Schneider, August 4-6, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: FISHPAC
Geographical Area: Bering Sea
Date: August 4-6, 2009

That’s 11:00 – PM!  Almost sunset
That’s 11:00 – PM! Almost sunset

Position
Bering Sea, AK

Weather Data from the Bridge 
Weather System: Nice
Barometer: Steady (falling slightly on the 6th after we were already close enough to Dutch to not feel the unsettled weather.)
Wind: light and variable
Temperature: 8.6º C
Sea State: < 3 feet

Personal Note 

For about half an hour after the photo above, I just sat on E-Deck and watched the sun set. As I write this and look at the picture, I’m sadly realizing that this incredible month is rapidly drawing to a close. While I miss my sons and dog, this has been one of the most rewarding experiences of my life and I wish it could continue.

Science and Technology Log 

Sunset on the Bering Sea
Sunset on the Bering Sea

While we were anchored up behind Hagemeister Island near Hagemeister Strait, I learned this island is named after Captain Leonty Andrianovich Gagemeister, a Russian Naval Commander in the early 1800’s. The island is undeveloped and has no permanent residents. It would have been fantastic to take a launch over to it, but there was a lot of work to be done on board the Fairweather. At 1400 hrs on the 4th, Dr. McConnaughey gave a one-hour briefing on the FISHPAC and EFH work his team has been working on. The briefing was voluntary, but as you can see, almost everyone on board was there.

The crew listens to Dr. McConnaughey’s presentation about the FISHPAC research.
The crew listens to Dr. McConnaughey’s presentation about the FISHPAC research.

Actually, Dr. McConnaughey could have finished in an hour, but the crew had so many questions – really good questions – that the ensuing discussions lasted another hour. Even afterwards, conversations at dinner were reflective of the seminar.  Once again, the collegial atmosphere on board the Fairweather was evident.  It was great to listen to and watch the physical scientists going back and forth with the biology folks in interpreting each others’ results and parameters. At 1000 hours on the 5th, we weighed anchor and got under way.  It took a few hours to get back to where we had ceased survey and sampling operations two days earlier and we picked right up where we left off. The weather was quite nice and we got the remaining samples done in just a couple of hours.

Electronics Technician Mike Hilton
Electronics Technician Mike Hilton

When we had finished that part of the work, there was enough time left on the mission to resurvey some anomalies that had been observed several years ago. The Fairweather had documented several “mud volcanoes” or “mud plumes” in Bristol Bay and the CO wanted to verify their presence. In order to do so, Launch 1018 was deployed for several hours to try to find the anomalies with the Multi-Beam sounder on board, knowing, however, that bottom structures like this are sometimes transient in nature. They were looking for a 3 meter high “cone-shaped” mound, but instead found a depression about two meters deep.  Perhaps the previous party had misinterpreted the side-scan data.  This is the type of ambiguity that calls for continued surveying, research and the development of new technologies.

E.T. Phone Home 
This leg has been a real busy one for Electronics Technician Mike Hilton. When we first arrived in Dutch prior to the leg, he had to go up into the satellite dome and reconfigure some of the internal settings in order to get internet and satellite access for the ship.  We had actually lost that capacity during the rough night on the last day of the Shumagin leg. When we first lost internet (all the computers aboard are connected to a LAN) and folks were a little impatient, there was an announcement on board something like this, “Attention on the Fairweather, for those of you suffering acute internet withdrawal symptoms, the ET recommends you lay to the lounge and take out a couple of books and read them!”  Without Mike, the ship would be severely handicapped.

Andy in the control room
Andy in the control room

Motorin’ 
During my time on the Fairweather, I was privileged to be given an under way tour of the engine room by Andy Medina (you remember Andy – with that big halibut!)  Fairweather’s main propulsion plant is a pair of General Motors Electro Motive Division 12-567 CLR engines. I realize this sounds long winded, but what the model designation indicates is that the engine (remember, we have 2 mains– port and starboard) has 12 cylinders each of which is 567 cubic inches in size. In comparison, a 2009 Mustang has an option for a 282 cubic inch V-8. That means that EACH of Fairweather’s cylinders is about double the size of the whole engine in a new Mustang! Further translation – Fairweather’s main engines have the equivalent of 48 Mustangs of engines!!! They are HUGE!  By the way, the Electro Motive Division is the division of GM that makes engines for Locomotives! 

That’s me next to the port main engine
That’s me next to the port main engine

Fairweather also has two generators, each putting out 330 kilowatts of electricity and an additional diesel engine just for the bow thruster. Also, four more small diesels on the launches and a few outboards for the skiff and we have a pretty complex engineering need.  Not only do they keep the engines running, but they are responsible for heating and cooling, waste water and sewage treatment (there’s a treatment system on board) and making fresh water. To keep all this running smoothly – as our mission is dependent on them all running flawlessly – two engineers stand each watch in a “4 and 8” rotation meaning they work for 4 hours and are off for 8 and we sail with a minimum of 8 members in the engineering department. (This is the standard watch schedule for officers and survey techs also.) There needs to be a member of the engineering department in the control room at all times while we are under way.

When I arrived in the control room for Andy to give me my tour, we could not leave because the other engineer on watch was on a short break and he was not permitted to leave the control room.  After we chatted for 3 or 4 minutes, Mitchell came down and we went through the engine department.  It took about half an hour and my eyes glazed over after only the first few minutes!  There is SO MUCH stuff going on in there that it’s amazing the guys can keep track of it all.

Personal Log 

As we headed back towards Dutch Harbor, I was again treated to a “whale show.”  I wish there had been someone on E-Deck with me to take pictures because although I had both my still and video cameras, I could only use one at a time.  In any event, I shot almost an hour of video and hope I got some good footage.  I think I may have even gotten a breach!  If so I’ll post it on my blog or perhaps NOAA will allow me one extra post as an “epilogue.”

I may be smiling on the outside . . .
I may be smiling on the outside . . .

Mary Patterson, June 28, 2009

NOAA Teacher at Sea
Mary Patterson
Onboard NOAA Vessel Rainier 
June 15 – July 2, 2009 

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, AK
Date: June 28, 2009

Weather Data from the Bridge 
Few clouds
Wind 10 kts
10 mi visibility
Pressure 1024 mb
Dry Bulb Temp 8.3˚ C, 47˚f Wet bulb 6.7˚ C, 44˚f
Seas 0-1 ft.
Water temp 7.8˚C

Science and Technology Log 

One of two main diesel engines
One of two main diesel engines

Today, I got to take a tour of the engine room. The first thing I noticed was how amazingly clean the forty-year old engines are kept. This is definitely a crew that takes pride in keeping their ship shipshape! There are two diesel engines. Each engine is about the size of a small car. There are twenty fuel tanks scattered throughout the ship. The Rainier does not carry any extra ballast, so the fuel tanks are often leveled and balanced for ballast. The Rainier can hold up to 107,000 gallons of fuel. Whew! I definitely would not want to pay that fuel bill! The ship can go through 120 gallons of fuel an hour. Oil is recycled using an oily water separator that can hold 1,700 gallons.  

Electrical control panel
Evaporator distiller

The engineering department also maintains the water evaporative distillers. These two evaporators can produce up to 7,000 gallons of freshwater (from saltwater) a day. The saltwater is heated to its boiling point and the evaporating freshwater is then cooled and collected. Normal consumption of freshwater for the ship is 3,500 gallons a day. Everyone tries to take quick showers. Toilets are flushed using saltwater. Faucets on the sink limit water usage by having to be held in the on position. You can’t just let water run from the faucet.  All of the electrical systems for the ship are monitored in the engineering control room. In an emergency, they can even control the steering of the ship.

An incinerator on the ship also takes care of some of the wastes produced. In the mess hall areas, there are labeled bins for recycling plastics, mixed paper and burnables. Those items that are burnable get incinerated while we are out at sea. Not only does the engineering crew take care of the ship’s main engines, they also maintain and troubleshoot the six launch engines as well.

Personal Log 

Electrical control panel
Electrical control panel

One of the first things I noticed in the engine room was the safety signs and equipment. No one could enter the area without hearing protection and I spotted several eye wash stations like ones we use at school. There were handrails and clear walkways and everything had labels. It’s great to see things we emphasize at school about safety are in the “real world” too.

Thought of the Day 

For this 18 day voyage, how much freshwater was consumed?

Eye wash station
Eye wash station

 

Jacob Tanenbaum, October 9, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 9, 2008

DSCN3867-789283Science Log

Hello everyone. I hope you are all enjoying your day off today. Since you have time off from school, I bet many of you are spending time observing these sea creatures…

Can you guess what they all have in common? Post your answers on the blog.

Need a hint? That crab is standing right by a sand dollar. Money. Hmmm.

This angler fish is an interesting character. It sits on the bottom of the water and blends in with its surroundings. It has a small hair that sticks out of its face that is use to lure prey closer to its mouth (just like its cousin from deeper waters, the angler fish). When the prey get close by it strikes. With all of those rows of sharp teeth it makes short work of smaller fish. Can you imagine a fish with a built in fishing rod. Very interesting. We came across a dead whale floating in the open sea. What an amazing sight (and smell). Yuk. Look how big it is next to the ship. The barnacles on its face were the size of baseballs.

A lot of you have asked what my stateroom looks like. Here are Snuggy and Zee in my “rack.” That’s what we call a bed. Do I have a roommate? Yes. Sean is very nice. I’ve only met him once or twice because he sleeps when I work and I sleep when he works, so we don’t run into each other much. That’s often how things work on a ship like this. The second picture is the door to the corridor. The locker to the right is where I keep my gear. The door on the left leads to the “head,” which is what we call the bathroom on a ship.

Many of you asked what the engine room is like. Joe Deltorto, our Chief Engineer, was kind enough to give me a tour. The Bigelow has an interesting engine room. Huge diesel generators make electricity. Lots of it. Enough to power all of our computers, sensors, lights, and even the ship itself. The propeller is turned by large electric motors. This makes the Bigelow one of the most quiet research ships anywhere. Why is that important? Sound is often used to see what is below the surface of the water. Sonars push sound through the water and listen when it echos back. That’s often how boats see what is under them. The Bigelow has a more sophisticated version of this called an echosounder. It can see much more, but still uses sound to see. So the engines have to be super quiet.

Today we will deploy our Drifter Buoy. This is an instrument that we are adopting. It will float in the open sea for the next 14 months or so and tell us where is has gone and what the temperature of the water around it is. Drifters are an important way that scientists measure. Keep watching here. I will update the blog when I deploy the drifter.

~~~~~~~~~~~~~~~~

Here are some answers to your wonderful questions and comments.

Have I gotten sea-sick? No. So far, the water has been very calm. I feel very luck. The ship has hardly moved at all.

Does it smell on board because of all the fish? Surprisingly, no. even the fish labs have lots of fresh ocean air coming through. There is no bad smell. When we came across a rotten whale floating in the ocean, then there was a smell! Oy!

The whales we have seen so far were all humpback. Even the dead one.

Have I seen fish that were new to me. Oh yes. Most of what we have seen has been new to me! That’s what makes these trips so much fun! I love learning new things.

What do I want to see that I have not seen yet? Dolphins.

In answer to so many of your questions, no, I have not fallen in yet. Either has anyone else. The Bigelow is a very safe ship. Everyone is well trained and very concerned for the saftey of themselves and all the others on board. I feel very safe here.

Hello to Ms. Farry and classes in TZE. I’m glad you are looking at the blog.

Hi Turtle. Nice to hear from you. Yes, I think we can work that out. We are on the shelf, so our deepest CTD deployment will be only be about 300 meters. Will that do?

FD and JEGB, thanks for your questions. No, so far we have not seen any 6 pack rings on any creatures. I did see some garbage float by many dozens of miles from shore. It was right where the whales were swimming. Sad.

IJ, cool idea, though I wonder, though if the water would carry toxins from the smoke into the streams rivers and oceans? Keep thinking maybe you will discover a way to solve this problem someday.

Mi Mrs. Bolte’s class. I’ll get you engine room photos very soon, and there is a photo of my stateroom for you today. I’m glad you like the blog.

MS, the people here are friendly, very professional and so helpful with everything I have needed for all my projects.

MH, yes I do miss my family.

MJ, we see lots of ships out here. Yes. It has been fun to see.

Several of you asked about cell phones. They do not work out here. We are way too far from land. All the crew were on deck as we left port making their last calls to their families. So was I.

Hello to Mrs. Ochman’s class, Mrs. De Vissers’s class, Mrs. Sheehy’s and TN’s class. I hope the pictures in the last few days answered lots of your questions.

Mrs. Christie Blick’s class, here are some answers to your questions: No, the clothes just keep you dry (and comfortable) when you are working. You get used to them. I am adjusting well to the time change. It is a little like going to New Zealand like Mrs. Christie-Blick did recently. I wake up at about 8:00 PM, go to work at midnight and then go to sleep in the early afternoon. Our time, that is. If I were in New Zealand, I would be on a normal schedule. I’ll post pictures for your soon for my stateroom. It is very relaxing here. There is not a whole lot to worry about. There is a lot of work, but it is not hard.

The zig in our course, by the way is probably where we stopped for a trawl. We sometimes circle around when we do that.

Hello Mrs. Benson. Thanks for checking out the blog. No artists here at the moment. I enjoy amature photography and what subjects there are out here!

Hello Guy D. Thanks for following the blog. I appreciate your support.

Marilyn Frydrych, September 18, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 18, 2008

Marilyn entering below deck.
Marilyn entering below deck.

Weather Data from the Bridge 
41.27 degrees N, 70.19 degrees W
Partly Cloudy
Wind out of the W at 19 knots
Dry Bulb Temperature: 26.0 degrees Celsius
Wet Bulb Temperature:  20.9 degrees Celsius
Waves: 9 feet
Visibility:  10 miles
Sea Surface Temperature:  21.6 degrees Celsius

Science and Technology Log 

We suspended operations. The seas were from 8 to 9 feet for the next day and a half. Conditions were unsafe for the fishermen to work.  Everyone spent the day reading, playing board games, watching movies, or typing on the three computers provided for everyone’s use. Erin Earley, the engineer wiper, took the opportunity to show Jacquie and me the engine room.  She took us through all the portals marked, “Do Not Enter”.  They all had ladders under them leading to the bowels of the ship. The engine area was compartmentalized and was entered from different spots from above. Erin showed us the ubiquitous colored handles which turned the various valves on and off.

Marilyn ducking under pipes below deck
Marilyn ducking under pipes below deck

There were yellow handles for transmission oil pipes, green for seawater, orange for hydraulic fluid, red for emergency fire hose water, blue for drinking water, and brown for engine oil. We headed down under the galley where we passed next to the 12-cylinder Detroit Diesel engine which powered the screw. It was about ten times the size of a good-sized pickup engine. Erin explained the importance of placing all this heavy machinery so that the weight is evenly distributed within the ship. The engine being so heavy is usually near the center of the ship.  This necessitates a huge long drive shaft connecting it to the screw. The drive shaft, spinning away at high speed, was out in the open just under and alongside the catwalk. One slip would be catastrophic.  Most of what we saw was large 5’ by 5’ or larger rectangular tanks for fuel, distilled water, black water, gray water, and used oil.  The black water from the toilets is stored in a tank with “bugs” or a bacteria in it which eat the refuse and in effect clean up the water. The gray water is from the sinks and showers and contains soap which kills the bugs. The gray water has to be saved in tanks separate from the black water.  All this is dumped into the sea in designated areas.  Only the used oil is saved to be offloaded back at the dock.

Erin Earley pointing out hydraulic fluid pipes.
Erin Earley pointing out hydraulic fluid pipes.

We saw two workshop areas, a storeroom with all the parts that might be needed for any possible repair, an extra emergency generator, and the Engine Control Room (CERC), where Engineer Chris O’Keefe was standing watch. The CERC room contained all the gauges to monitor all the engine systems.  By the end of the tour Jacquie and I were totally impressed with how clean and organized everything was and how much knowledge the engineers needed.  The four of them had to be experts in heating and cooling, in welding, in diesel engine repair, in electrical repairs, and hydraulics.  Each of them had either mastered these fields or was in an apprenticeship with that as their goal. Usually people master one of these fields in a lifetime. We were also impressed with how many safety features were built in everywhere.  It seemed everywhere we went there were three foot CO2 bottles which would automatically spray everywhere if a fire were to occur.

Personal Log 

Two holding tanks
Two holding tanks

Sleeping was difficult for me that evening.  I did succumb to seasickness Friday morning, but was fine after downing a sea sickness pill.  We frittered away the rest of the day.  Robert Gamble, second scientist under Mike Jech, got out his game called Hive and taught three or four of us how to play. Otherwise I read, did Sudoku, rode the exercise bike, and ate.

The food was tremendously good.  All of it was prepared from scratch.  The two cooks were at least four star cooks. They not only cooked, they also cleaned up their own mess, did the dishes, and cleaned up the dining area.  They appeared the hardest workers on board.  For both lunch and dinner they prepared two entrees, three veggies, homemade soup, and two salads.  They baked two luscious desserts as well. So far we have sampled lamb chops, salmon, lobster bisque, crab ravioli, pork chops with a luscious applesauce, and grilled swordfish. 

Jillian Worssam, July 29, 2008

NOAA Teacher at Sea
Jillian Worssam
Onboard U.S. Coast Guard Vessel Healy
July 1 – 30, 2008

Mission: Bering Sea Ecosystem Survey
Geographic Region: Bering Sea, Alaska
Date: July 29, 2008

was told yesterday that if you want too much, or have expectations too high you will be disappointed.  Well I disagree.  I believe in going full tilt into everything I do, and well, I want to do pretty much everything.

We have two more full days at sea and still I am learning.  Yesterday was busy for me, a 22 hour busy day.  The funny thing is, I slept in until 8:30 am, but didn’t go to bed until 6:30 this morning.

MK2 Jeffrey Coombe covered in grease after he emerges from the depths of the engine.
MK2 Jeffrey Coombe covered in grease after he emerges from the depths of the engine.

It all started with the Webinar and ended with three successive MOCNESS as Alexei tried unsuccessfully to catch pregnant Krill.  But I digress.  Yes the science is winding down, but there is still so much to do.  After the webinar I went to the engine room to watch the successful removal of a piston cylinder liner in one of the four main engines.  Salt water is used to cool fresh water to cool, I think, jacket water that cools the engine.  This is not a typical repair while at sea, but the engineering team in charge knew exactly what they were doing and proceeded with care and skill.

That is actually MKC John Brogan in the Engine.
That is actually MKC John Brogan in the Engine.

After the engine room, and dinner I joined FN Angela Ford as she did her TOW rounds.  The TOW (technician of the Watch) is responsible for walking the ship from stern to bow, covering all engineering spaces.  The TOWs are looking for water leaks, electrical concerns, fire, pretty much everything and anything out of place or potentially hazardous.  Even though I had already taken a tour of the vessel this trip was predominantly focused on safety and I was able to see new spaces I had not previously ventured into.

There is a right and wrong way to open, enter and leave all hatches aboard an ocean going vessel.
There is a right and wrong way to open, enter and leave all hatches aboard an ocean going vessel.

We even managed to find a crew member I had not previously met, Oscar.  This poor headless fellow is used in man overboard drills as well as other casualty drills during the voyage.  Oscar is also no light weight, weighing in at over 50 lbs he is a great way to practice and for crew members to realize what it would be like to actually work on an injured individual.

Oscar is also the designation of the flag flown when there is a man overboard.
Oscar is also the designation of the flag flown when there is a man overboard.

But the day is not over yet, we still had THREE MOCNESS drills to complete.  Alexei wants to find pregnant krill so that he can develop a baseline for aging.  Unfortunately after over four and a half hours of work all we had to show for our labors were some shrimp and krill that were not pregnant, bummer.

This could be a scientist, or a crew member, all we know is that the past 29 days have worked them to exhaustion!
This could be a scientist, or a crew member, all we know is that the past 29 days have worked them to exhaustion!

Quote of the Day: The “Control of nature” is a phrase conceived in arrogance, born of the Neanderthal age of biology and philosophy, when it was supposed that nature exists for the convenience of man.      Rachel Carson

FOR MY STUDENTS: Please find three authors who predominantly write about knowledge and preservation of the earth’s ecosystems and the species within.

Terry Welch, June 28, 2008

NOAA Teacher at Sea
Terry Welch
Onboard NOAA Ship Rainier
June 23-July 3, 2008

Mission: Hydrographic Survey
Geographical Area: Pavlov Islands, Gulf of Alaska
Date: June 28, 2008

A self-contained breathing apparatus
A self-contained breathing apparatus

Weather Data from the Bridge 
Wind: West/Southwest/10
Precipitation: rainy, drizzle, clearing
Temperature:  High 48
Seas 1-3’

Science and Technology Log 

Yesterday, I was able to go out on a launch and continue with the hydrographic survey around Belkofski Point with Ensign (ENS) Tim Smith as the Hydrographer in charge (HIC), Jodie, our Coxswain, and Fernando, a Hydrographer in training.  They use a lot of acronyms here on the ship that I’m learning.  We worked a long day until about 5:30 p.m. since the weather was nice and seas calm. The weather can change quickly in this area, so the survey team tries to work as much as possible when it’s nice out.

Ship Log 

A 10-minute air supply system
A 10-minute air supply system

Captain Don Haines and the crew are very safely conscious and we have already practiced several drills and we have a morning safely meeting before going out on the launches. On the first day out, I was issued a hard hat, survival suit (sometimes called a Mustang suite), life vest or PFD (personal floatation device) and float jacket.  When boarding the launches in the morning, we don the float jacket and hard hat. Once the launches are in the water and we have moved safely away from the Rainier ship, we can switch to our life vests (PFD), which are more comfortable to wear on the small boats.

Drills:  We practiced three drills while in route (or transit) to the Pavlof Islands; man-overboard, abandon ship, and fire. There is a different ship bell ring pattern for each event. When theses drills or event occur, all hands (crew) meet (muster) at a pre-assigned location.  The person in charge at our muster locations marks off if we are there. This system of accountability ensures that all personal is accounted for and safe.

The fire drill was interesting to me since I’m a volunteer fire fighter/EMT on Whidbey Island where I live. They use much of the same equipment as we do to fight fire including bunker gear (fire pants/coat/helmet), SCBA’s (self-contained breathing apparatus) and masks.  One of the crew demonstrated how to put on the SCBA and mask. Another safety air supply device is called an OCENCO EEBD. These 10 minute air supply systems are located all over the ship and would give someone enough clean air to exit the ship if an accident occurred.

Engine Room Tour 

Josh gave me a tour of the engine room and explained the basics of how the ships power is produced and maintained.  From a control room, the ship’s engine controls can be monitored by computer.  Every hour, the crew inspects the engine and support components and ensures that everything is running smoothly.  The area was loud, so we wore protective earplugs and it was also very clean considering all the oil that is used in the system. 

Garret in control room, control room gauges, and the main engine
Garret in control room, control room gauges, and the main engine 

Desalination System: Another interesting aspect of the ship is how the process water.  All fresh or potable water is made from salt water in an apparatus called an “Evaporator”.  Salt water is pumped into the evaporator and heated up to about 175 degrees.  Because it’s under pressure, the water boils at this lower temperature instead of the usual 212 degrees. The heat comes from generators that help create the electricity on the ship.  So, the whole system is very efficient.  Large 8000 gallon storage tanks hold the fresh water afterwards.  The evaporator produces about 500-550 gallons of fresh water per hour, so there is always plenty to use and it tastes good. 

Evaporator
Evaporator

Personal Log 

It was very informative for me to get a tour of the engine room today and learn how the ship’s power is produced.  Josh has the job of an “Oilier” and is only 23 years old.  He had an interest in welding and mechanics and has a high school degree.  Garret is the “First Engineer” and also has a high school degree. Both men enjoy working for NOAA and explained that many men and women learn skills on the job.  They stressed that you don’t need a college degree to work for NOAA, but it helps to have an aptitude for the job they are interested in such as working the engines.

Aleutian Islands
Aleutian Islands

Yesterday, several of us were able to scout out an abandoned settlement near to where the Rainier is anchored after dinner.  It is called “Native Village of Belkosfski”. Originally built for the fur trade in the 1860’s, it later became home to native Americans There were several old wooden structures and one larger cement and brick building that was the school.  Judging from the date on one of the food items in a kitchen, this area was inhabited in the early 1980’s last.  It’s amazing to see that many structures were still standing given the harsh climate around here.  More information can be found here. The teacher who taught there in the 60’s/70’s talks about his life there.

Dust and ash spew from the volcano .
Dust and ash spew from the volcano

Habitat Log 

According to the Global Volcanism Program, Pavlof volcano erupted in August 2007. NOAA’s satellite imagery recorded ash plumes and lava spewing from Pavlof and lahars or mudflows occurred.  The attached pictures are from Global Volcanism’s website, listed on the next page.

Questions of the Day: How do volcanoes shape the southeast strip of Alaska?  How active are they and why are they active?

Animals Seen Today: 

  • One young Grizzly bear
  • Humpback whales

Another map indicating the location of Pavlof
Another map indicating the location of Pavlof

Mary Ann Penning, July 19, 2007

NOAA Teacher at Sea
Mary Ann Penning
Onboard NOAA Ship Albatross IV
July 9 – 20, 2007

Mission: Sea Scallop Survey
Geographical Area: North Atlantic Ocean
Date: July 19, 2007

Weather Data from the Bridge 
Visibility: 7 nautical miles (nm)
Wind direction: 166 degrees
Wind speed: 7 knots (kts)
Sea wave height: 1 foot
Swell wave height: 2 feet
Seawater temperature: 23.1 degrees C
Sea level pressure: 1010.0 millibars (mb)
Air Temperature: 24.0 degrees C
Cloud cover: partly cloudy; hazy

Science and Technology Log  

This is our last full day on the ALBATROSS IV; it’s hard to believe that we’ve reached this point. We were not far from New York City this afternoon, when we did our final two tows. In our last tow, found among the scallops that we caught, was a ten pound goose fish, the biggest caught on our watch. (I understand that their tails are good to eat.)  Getting our picture taken with the goose fish for the “picture of the day”, signaled the end of the towing operations for this trip. We then took time to clean our areas and equipment.  We did the fantail, while the night shift did the interior wet room and the Chief Scientist’s office. We scrubbed all the baskets and buckets, the measuring equipment and our foul weather gear.  It was time consuming, but with a team approach, it didn’t take long. The Chief Scientist and the skilled fishermen were repairing the netting in the dredge. I would never have guessed the amount of effort it takes to run a scientific survey such as this one, until I participated in one.

The only part of the ship I hadn’t been to was the engine room.  So this afternoon, when life was much slower, I asked if I could see it. It was certainly noisy in the lower bowels of the ship, even with protective “earmuffs.” I learned that the ship took on 10,000 gallons of diesel fuel before we left Woods Hole.  The ship can carry 30,000 gallons total.  There are two big diesel Caterpillar engines that operate the ship.  The ship generates its own electricity, too. Two diesel generators drive the generators that manufacture electricity.  One diesel generator drives the hydraulic pumps for the winch operations. I had been curious about the fresh water on board the ship, when I first learned that the hoses we used to clean our equipment, used sea water.  The ship can carry 22,000 gallons of water. At the end of our two week trip, we had less than half of that left. The engineers said that the ship uses about 1000 gallons a day.  If the ship goes out for three weeks, two desalinators, located below the ship, are used to turn sea water into fresh water.  (They are not used exclusively for providing fresh water because of the slowing down and stopping process involved in towing the dredge.  There is not enough heat from the engine for the system to be the primary source of fresh water.  There are a series of filters that are used in the process.)  Big vessels, it seems, can be self sustaining, floating cities.

Personal Log 

I’m so glad that I had the opportunity to participate in this experience.  Before I could even be considered a candidate for the NOAA Teacher at Sea Program, I had to be cleared medically.  One lieutenant called me with a few questions and he cautioned me by saying, “You know this program is very competitive.  A lot of teachers want to participate.” I replied by saying that you never know until you try.  And try I did! Both in the application process and now while on board the ALBATROSS IV.  We actually measured and recorded electronically 53,077 scallops from the 210 various stations in the Mid-Atlantic that we surveyed. Expanding those numbers mathematically, the projected amount of scallops caught for these areas is – drumroll, please – 148,063 scallops.  From my perspective, these amounts are astounding, just astounding!  What more can I say.  When these statistics are analyzed, the actual number of scallops in the resource will be determined.  Then openings and closings of various scallop fishing areas will be decided; it is a complex process.

It was the people, ultimately, who helped make the trip enjoyable.  I enjoyed talking to the young NOAA officers about the NOAA Corps and their program at the US Merchant Marine Academy at Kings Point, Long Island. Many of them have science backgrounds – meteorology, ecology, oceanography, and geography.  One is going on to NOAA flight school soon. He might be responsible for monitoring whale migration for ships one day.  Their commanding officer, Kurt Zegowitz, a very kind, patient, and personable man, welcomed me aboard and offered his help.  His patience was certainly appreciated because he was instrumental in helping me get my logs published.

The other NOAA paid staff, with their varied interest and background in science, were wonderful to me.  Jonathon, Laura, and Heath, responsible for the day watch, were very patient and helped me identify the various fish so that I could help sort and weigh them.  When one fish couldn’t be identified immediately, Laura looked at the gills to help her make the decision.  Identification guides were available to help determine the identity of any specimens of which they were unsure.  It was fun to hear their stories of the numerous and varied NOAA survey trips with which they’ve been involved.  Dvora Hart and Victor Nordahl, whom I’ve mentioned throughout my logs, were dynamite individuals.

From the support staff – the computer techs, the cooks, the engineers, and the skilled fishermen – I heard interesting stories.  Many of them have worked, fished, and sailed all over the world. Their team approach and camaraderie was evident and neat to see.

On board with us, too, have been five awesome college volunteers who are interested in science careers. There were three women and two men from various universities in the Northeast. One young woman was from the Coast Guard Academy; she’ll be a senior next year. She’s coming back for the second leg of the trip when the vessel and scallop survey head north to Georges Bank. Another young woman, working on her Master’s Degree, has a dual major in Marine Biology and Marine Policy.  They were impressive, young and energetic; it felt good to be able to keep up with them.

Tomorrow morning at 7:00 AM our young officers will back the ship into the dock at Woods Hole after our whirlwind 1,554.3 nautical miles’ adventure into sampling sea scallops. The survey will continue for two more legs; each two week trips.  Their fish and terrain will be somewhat different, but the scallops the same.  I’m anxious to read the logs of the Teachers at Sea participating in those portions of the trip.  Because of this trip, I have greater respect for the scientific community and survey work such as this and for fishermen who make scallop fishing their life work.  Thanks to the NOAA Teacher at Sea program I have had a wonderful opportunity to participate in an amazing, once in a lifetime, learning adventure.

Jessica Schwarz, June 22, 2006

NOAA Teacher at Sea
Jessica Schwarz
Onboard NOAA Ship Rainier
June 19 – July 1, 2006

Mission: Hydrographic Survey
Geographical Area: Alaska
Date: June 22, 2006

Assistant Engineer Kelly Baughman at the center console in the engine room onboard the RAINIER.  Kelly fired up the engines to get the ship underway this morning!
Assistant Engineer Kelly Baughman at the center console in the engine room onboard the RAINIER. Kelly fired up the engines to get the ship underway this morning!

Science and Technology Log 

This morning the RAINIER changed locations from Kanga Bay to Hot Springs Bay. I had an opportunity to go down in the Central Engine Room Control (CERC) and see how the engines are fired up to get the ship moving again.  Kelly Baughman, the ship’s Third Assistant Engineer (3AE), took some time to explain what I was observing down there before she got the engines going. Being in the engine room was really cool.  I was completely surrounded by buttons to push and knobs to turn and although very tempting, I didn’t touch any of them. The RAINIER has two main engines to motor her, one on the port (left) side of the ship and one on the starboard (right) side of the ship.  There are two generators that put out a total of 400 kilowatts of electrical power to the ship.  An additional smaller emergency generator is also a part of the ship, but it puts out significantly less energy than the two main generators.

On the bridge, Vessel Assistant, Kelson Baird is logging the ships position from four points on the radar screen.  The position of the points is recorded every half hour to monitor the effectiveness of the anchor.
On the bridge, Vessel Assistant, Kelson Baird is logging the ship’s position from four points on the radar screen. The position of the points is recorded every half hour to monitor the effectiveness of the anchor.

Kelly also explained how the bow thruster works on the ship.  It basically looks like a fan and helps to maneuver the ship from the bow.  There are several other things that are monitored at the center console, but we weren’t able to get to all of them.  Kelly said tomorrow morning will be a better time to go over some of the other things in the engine room since we’ll be anchored in the bay. After visiting with Kelly, I had a nice afternoon talking with crew and soaking up ship life. I made my way up to the bridge where General Vessel Assistant (GVA) Kelson Baird was monitoring weather data. He was excellent at explaining all the different instruments used in collecting weather data onboard the ship. Every hour, on the hour, Kelson recorded weather information.  He started by logging the ship’s position (latitude/longitude).  Next he recorded an overall weather condition such as cloudy, rainy, drizzle etc. Today was cloudy and rainy. Kelson then stepped outside the bridge and looked to see what point of land was the furthest he could clearly see from the ship.  Once he found his point of land he came back inside the bridge and used the radar screen to determine a distance in nautical miles that point of land was from the ship.  This gave Kelson a visibility reading. Other information Kelson recorded was wind speed in knots, using the ship’s anemometer, as well as wind direction.  Wind direction (measuring from the direction the wind is coming from) can be measured using a gyrocompass, which is an electronic compass measuring to true north.

Dry bulb and wet bulb used to record air temperature from the RAINIER.
Dry bulb and wet bulb used to record air temperature from the RAINIER.

If the ship were underway he would have also had to record wave height, swell wave height, and sea wave height. Kelson said this would be done by a very scientific method called “eye balling it”…or as I like to say, EBI. Another measurement taken while at anchor was water temperature, which, by the way, was 49° F while I was in the bridge this afternoon.  Just as a quick side note: crew of the RAINIER surf in this water and are very excited to surf in the break off of Kodiak Island when we arrive in port.  I think they are crazy, but I’d love to watch them! The last weather measurements Kelson recorded were air temperature and atmospheric pressure. Two air temperature measurements are taken: one from what is called a wet bulb and one from a dry bulb.  Then he recorded sea level (atmospheric) pressure measured by a barometer.

Kelson went on to explain about “Big Weather”, which is an ongoing data collection project where weather information is sent every six hours via satellite to be used by NOAA’s National Weather Service.  Pretty amazing all the work that is being done on the RAINIER!

Personal Log 

I am seriously impressed by how well I am being fed on the ship.  Each meal I have several hot meal options to choose from and there is always a vegetarian option for those who do not eat meat.  The soup has been excellent!  There’s a full salad bar directly next to a freezer fully stocked with Haagen-Dazs ice cream!  I think that’s pretty good.  Coffee is available all day long as well which makes me very, very happy.  I won’t indulge on hydrographic survey days. We’ve already talked about that…

Calling All Middle Schoolers–We Need Help Answering a Few Questions! 

Third Assistant Engineer Kelly Baughman explained to me today that the ship can carry up to 16,800 gallons of freshwater. She went on to say that on average the ship’s crew uses anywhere between 1,500-2,000 gallons per day.

If the RAINIER were to be at sea for 21 days without coming into port to replenish its fresh water supply, how many days would it take for the ship to run out of fresh water?

How would the ship be able to produce more fresh water without having to go into port?

Linda Armwood, April 26, 2006

NOAA Teacher at Sea
Linda Armwood
Onboard NOAA Ship Fairweather
April 25 – May 5, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: April 26, 2006

Weather Data from Bridge 
Visibility:  5 nautical miles (nm)
Wind direction: 130 °
Wind speed:  12 kt
Sea level pressure: 1004.5 mb
Present weather: Drizzle, mostly cloudy
Temperature:  °C~ 7.5dry/6.5wet

Science and Technology Log 

During the morning I concentrated on the Electronics Department to see how this operation is run. This department covers a significantly large portion of the ship in several locations. The Chief Electronics Tech explained the functioning of the iridium and INMARSAT satellites. The iridium satellite is used for low speed communication such as the telephone and e-mail.  This is primarily used at sea for hourly email transit except when launches are out.  The iridium also has a tie-in for sensors such as wind speed and barometric pressure.  The INMARSAT satellite is for high speed communication such as voice, faxes and two-way data transfer.  The management of these satellites, the Automated Information System (AIS) and all other electronic/electrical systems for the ship are managed, coordinated and maintained by the Electronics Department.

The afternoon was spent on one of the launches to observe survey technician launch operations. During the training there was a demonstration of the use of several components of data acquisition and processing.  Some of the data that is collected is sonar, boat voltage, vertical waterfall, bathymetric in 2-D view, position and orientation, heave, distance and altitude. All of this data is then processed and becomes the responsibility of the survey technician to combine the data into a single file, known as a concantenated file.

Personal Log 

I appreciate the ability to view the hydrographic navigation charts in my room through INMARSAT. This allows me to know where we are while preparing for the day.  Thanks to the Chief Electronics Tech for giving me the ship tracker web site for students and other interested persons.

Mrs. Armwood

Linda Armwood, April 25, 2006

NOAA Teacher at Sea
Linda Armwood
Onboard NOAA Ship Fairweather
April 25 – May 5, 2006

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, Alaska
Date: April 25, 2006

Weather Data from Bridge 
Visibility:  10 nautical miles (nm)
Wind direction:  340°
Wind speed:  2 kt
Sea level pressure:  1018.8 mb
Present weather: Partly cloudy
Temperature:  °C~ 6.0 dry/5.0 wet

Science and Technology Log 

I woke up in time for breakfast at 0700.  I was joined at breakfast by the Commanding Officer, the Executive Officer, and the Chief Electronics Technician.  The conversation centered around the different careers that exist on the ship.  In addition to the careers, discussion was had regarding the ship being analogous to a city.  The XO gave me a tour of the engine room.  Amidst all of the engines and associated technology it was clear that the engine room could represent a city public utilities department and waste management facility. The sea water is the readily available water source that is filtered through a distillation process to be used on the ship for all purposes. The idea that the engineers are responsible for treating the water that is used on the ship is a credit to their knowledge and stamina.

I attended the briefing meeting conducted by the Field Operations Officer and the Chief Survey Technician. Several handouts were given and explained in reference to guidelines for this field season: presurvey, data acquisition, processing and deliverables.  These guidelines were synonymous in its most simplistic form with what I have presented to my students in preparation for laboratory experiences. Acronyms were used throughout the meeting, but I was able to follow along with the language thanks to a survey technician’s thoughtfulness in providing me with three pages of acronyms and their meanings.  As a part of the meeting, the Senior Survey Technician presented CUBE software. This software completes data analysis to offer the user possible hypotheses.  The Chief Survey Tech informed the techs against simply relying on the hypotheses offered by CUBE.

After lunch, I spent a considerable amount of time on the bridge checking out the weather monitoring instruments and the navigation technology.  The weather log is manually completed every four hours while the ship is docked and every hour while at sea.  The weather monitoring instruments and navigation technology range from simplistically designed wet/dry bulb thermometers for temperature readings to more complex in form and function technology such as the ECDIS (Electronic Chart Display Information System.)  The ECDIS has the capability to overlay radar on in use charts and display information about specific ships within the VHF radio range.  For example, information about a 1500 ton ship that is within 40 miles of the FAIRWEATHER can be displayed on the ECDIS.

Personal Log 

During the early evening I went to Settlers’ Cove to visit the rain forest. A bald eagle and two river otters were spotted feeding in the water.  Lush foliage and trees created a moderately warm and moist environment in the midst of the surrounding cold temperature.

Question of the Day 

Geospatial Semester Students 

What is the functional difference that exists between global positioning system (gps) and differential global positioning system (dgps)?

Environmental Science Students 

Compare the FAIRWEATHER survey technicians’ field survey guidelines to the Richmond Public Schools model for experimental design.

Bonus Question 

Provide a possible explanation for the Settlers’ Cove rain forest environment within the relatively cold environment of Ketchikan.

Mrs. Armwood

Eric Heltzel, October 11, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 11, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

The throbbing heart of the RONALD H. BROWN is the engine room and the associated systems.  Last night Assistant Engineer Wayne Smith gave me a tour.  I was impressed with the complexity and effectiveness of the systems.

The core of the power is six Caterpillar diesel engines.  These function as electric generators for the ship’s systems.  The three largest of these are dedicated to the propulsion of the ship. The ship is propelled and maneuvered by two aft thrusters and one bow thruster. The thrusters are propellers that have the ability to be rotated 360 degrees. Each thruster is driven by and independent Z-Drive that is actuated by an electric motor and shaft.  Under normal sailing only the two aft thrusters are in use.  The bow thruster is engaged when the ship is maneuvering into dock or holding a position.  As I write, we are holding position 0.25 nautical miles from the Stratus buoy.  By engaging the Dynamic Positioning System a location for the ship is established via GPS and a computer controls the direction and rpm of the thrusters.  This allows the BROWN to hold a position without having to drop anchor.  I was surprised to learn that this ship has no rudder—it is steered via the Z-Drive of the thrusters.

Since the BROWN is a research vessel it has on board many sophisticated electronic instruments.  The current running through its wires is like our household current, about 115 volts.  Because of the sensitive nature of some of the equipment there are outlets labeled “clean power”. This current runs through a secondary motor which ensures that there will be no power spikes that could damage electronic equipment.

Ventilation is very important and there are several air conditioning systems that control the temperature in most of the ship.  Different areas have independent thermostats so the ship is quite comfortable.  The science labs are generally kept quite cool.  Freshwater is supplied by using heat from the engines to evaporate seawater.  The condensed steam is run through bromine filters to ensure no bacteria in the water tanks.  The water is extremely soft, having no salts in it.  Wayne chuckled at the idea of people buying bottled water to drink on ship because the water provided is as pure as water gets.

The NOAA research vessel RONALD H. BROWN was launched in 1997.  It is the largest ship in the fleet and provides a state of the art research platform.  The versatility and capabilities of this ship and expertise of the crew allow up to 59 people to sail for extended periods of time and perform sophisticated oceanographic and atmospheric research.  I feel privileged to be along on the Stratus 6 cruise.

Personal Log

Wow! I can see my shadow.  This is cause for staying out on deck. We have been sailing under overcast skies since we crossed the equator.  I’m sitting out on the bench on the 03 deck beneath the Bridge. There’s a breeze blowing from the southeast but I’m comfortable in a light jacket and shorts.  It has been a surprise to be traveling in tropical waters with overcast skies and cool temperatures.  It makes me realize that we get a lot of sunny days in Wyoming.

At 1415 today we had a meeting outlining the program for tomorrow.  Jeff Lord from WHOI is coordinating the buoy recovery program.  He is very organized and has gone through step by step how it will be done.  It will be a very interesting, very busy day tomorrow.  It is very important to the success of this cruise that we recover all of the instruments and buoy safely.  At 0640 the acoustic release will be activated and the floats attached to the mooring will be released from the anchor.  The depth here is 4400 m and it will take the floats about 40 minutes to reach the surface.  This will be a major operation involving everyone on the ship.

Kimberly Pratt, July 10, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Jay Prueher
Jay Prueher

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 10, 2005

Crew Interviews: Interview with the Engineering Dept.

The Engineering Department onboard the McARTHUR II is really amazing.  They are responsible for many of the operations on board.  They maintain and operate the 4 generators that provide all the electricity.  One generator can power 10, 075 light bulbs!  The electric/diesel engine has 3400 HP and consumes 2,850 gallons of fuel a day.  The ship that was built in 1984 was originally a Navy spy ship, spying on submarines.  The ship also makes its own water by taking in sea water, boiling it, letting it evaporate, treating it, and then it can be used by everyone on the ship.  The ship processes approx. 2400 gallons of water and 2200 gallons are used, so a 2 day reserve is kept on board.  The ship also has a machine shop to fix or create parts that my break down while out at sea.  The ship has two propellers and its top speed is 11.5 knots.

Luke Staiger, Jim Reed
Luke Staiger, Jim Reed

The ship can go 90 days at 3 knots. The ship has 7 levels including the fly bridge.  The person in charge of the Engineering Department is Jay Prueher who is the Chief Engineer. He’s worked for NOAA for 10 years and has a total of 20 years in Alaska. His favorite ports are Sitka and Juneau. What he likes best about ship life is no commute and dislikes being away from his family.  His wife, who won the Washington State lottery, resides in their home in the Cascade Mountains with their 6 cats and 6 dogs. During his time off, he likes to visit his daughter in warm and dry Tennessee. He really likes this department because all the engineers work together to envision what the scientists need to complete their mission.  Then they plan to make it real.  Even though Jay does enjoy his job, he plans to retire in 1 year, 11 months and 13 days, to spend time with his family in their beautiful home.

Thanks to all the engineering staff for touring me around and teaching me about the ship.

Jim Johnson
Jim Johnson

June Bruns
June Bruns

 

Mary Cook, December 20, 2004

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: December 20, 2004

Location: Latitude 26º19.99’S, Longitude 77º07.65’W
Time: 0810

Weather Data from the Bridge
Air Temperature (Celsius) 17.88
Water Temperature (Celsius) 18.41
Relative Humidity (percent) 64.16
Air Pressure (millibars) 1016.86
Wind Direction (degrees) 183.76
Wind Speed (knots) 12.37
Wind Speed (meters/sec) 6.41
Sunrise 0714
Sunset 2101

Question of the Day

What is reverse osmosis?

Positive Quote of the Day

“Never spit into the wind.” Anonymous

Science and Technology Log

The last Argo float was deployed today. Bob Weller gave me the honor of waking it up! Waking up an Argo float is pretty simple. I passed a magnet across the “reset zone”. This triggers the float to inflate. The float is “awakened” a couple of hours before it is deployed.

Diane, Bruce and I continued working on the book. Bruce just has a few touch ups to do on the paintings. Diane and I are almost finished with the text and we’ve completed the scans of the original paintings. We must get finished soon because we’re doing a reading and presentation for everyone onboard tomorrow night at 7:30!

Mike Gowan, the Chief Engineer for the RONALD H. BROWN, gave us a tour of the engine room this afternoon. He said the ship’s engines are diesel/electric. We started in the control room which has a wall of computer screens, buttons and joysticks. They can drive the ship with joysticks from the engine room. But I wondered how they’d see where they’re going from deep inside the ship? There are huge computers and automated compartments through the engine room. I didn’t know the “engine room” was going to be numerous rooms located at different places throughout the ship. Our tour was like a hike from one end to the other going up and down several ladderways. After the control room we went into the engine room. It’s really LOUD in there. We were required to wear earplugs. The ship has six engines and one emergency engine. They provide electricity for propulsion and ship service needs. He showed us some huge canisters of carbon dioxide that are standing ready to be used to smother a fire in the engine room should one occur. Mike told us about the marine sewage device which works on a vacuum principal. When we push the flush button on the head (toilet) there is a great suction sound and all the “stuff” is whisked away! Mike also explained to us how they make water. There are two ways: reverse osmosis and evaporation. The reverse osmosis forces water through a semi-permeable membrane that separates the water molecules from everything else. The evaporation technique uses the excess heat from the ship’s generators to cause the water to evaporate and then the fresh water vapor is condensed and collected for use.

This afternoon was sunny and gorgeous! Diane and I took some time soaking in the warmth, enjoying the fresh air while gazing out across the glistening water. It can be mesmerizing.

This evening we interviewed Bruce Cowden, Chief Boatswain and artist-in-residence of the RONALD H. BROWN. Wow! Bruce has led an interesting life. He’s been working on ships since he was a teenager and started working for NOAA about 15 years ago. He has worked his way up to the boatswain position and he supervises seven people who keep the ship in good working order. They clean and paint all the time. Bruce also oversees the large machinery operations and conducts the buoy deployments. His main job is to make sure that everyone is safe and the equipment is kept in good condition. He has had “Captain Nemo” adventures like driving a one-man submarine at the bottom of the Caribbean in search of ancient fossils! The life of a seaman is not an easy life. He spends about ten months a year out to sea. He also shared with us his artistic hobbies. Bruce is a painter and carver. He showed us the carvings from the Taigwa nut. The Taigwa nut grows in Central America and looks like a small coconut. When carved and polished it looks like ivory. Bruce makes jewelry and whatnots. He is planning to have a craft show when he gets back to South Carolina.

This has been another great day at sea!

Until tomorrow,

Mary

Geoff Goodenow, May 21, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 21, 2004

Time: 1600

Lat: 19 25 N
Long: 156 54 W
Sky: Overcast today. A bright unthreatening sky but clouds thick enough to prevent casting of shadows.
Air temp: 26.3 C
Relative humidity: 70%
Barometer: 1015.7
Wind: 146 degrees at 14 knots
Sea temp: 26.5 C
Depth: 4738 m (at 1645 hrs)
Sea: Rolling today with 3-5 foot swells but not uncomfortable. Much calmer this evening now that we are nearer the Kona coast.

Science and Technology Log

We began our retrieval of the longline at 0600 today; usually we begin at 0800. This change was made in light of the fact that we have been catching swordfish in this area and that they are dead when we get to them. These are animals (when alive) that we would like to tag. The thought is that if we get to them sooner we will have live animals to work with. I hate to see any of them dead, but it was especially hard to accept the loss of that big guy yesterday.

Did it work? Well, we didn’t lose any swordfish today, but then we didn’t catch any either. It was a very poor catch — several escolar (apparently the most abundant fish in the sea), one snakemackeral, and, the only thing worth getting up for (personal commentary), a bigeye thresher shark. This one was tagged by Rich who harpooned the pop up into its back with one swift and well aimed lunge. He was then cut free of the line — another mobile laboratory.

Tonight we are again off the Kona coast for the line set. I don’t know why the decision was made to come here as opposed to staying over one of the seamounts.

Yesterday I had a tour of the engine room. I thought I’d mention a couple things going on below deck and perhaps a few other tidbits about our floating city of 30-40 people. In an earlier log, I think I mentioned that we make our own fresh water. Waste heat from the engine cooling water heats sea water held in a partial vacuum where it can boil at less than 100 degrees C. then be recondensed to yield our water supply.

Our waste water treatment system is a Class 2 type according to chief engineer, Frank. All human waste and gray water goes to a holding tank. From there it is pumped through a unit to macerated solids. The slurry then passes through an electrical cell that completes the purification process before discharge to the sea.

Our little city generates its share of trash as well. Bins around the ship are marked as to the specific kinds of refuse we may put into each. Here’s is what I understand concerning disposal of sewage and trash. Within 3 miles of shore everything must be held although I think if sewage is treated, as ours is, it is OK to let it go even there. Plastics are never to be dumped. From 3-12 miles out, we can dump trash and food waste ground to less than an inch, but no packaging and such that floats. At 12-25 miles, food wastes can go but again the floating debris is prohibited. Beyond 25 miles, I think all can go but the plastics. Cardboard boxes and paper trash go over the side out here and untreated sewage can be flushed.

And, of course, we have to eat. Todd and Susan are our stewards. Todd insisted that I write that “the second cook (in this case Susan) has the hardest job on the ship.” Susan agrees. For a typical 24 day cruise, Todd (chief steward) spends $5000-$6000. To mention just a few of his purchases for this trip he packed on 48 gallons of milk, six cases of juices, a case being containing 4 three-liter bottles of 4-1 concentrate, and over 80 loaves of bread. Whatever he buys is supplemented by our catch. He noted too that in different areas, crews have different likes. For example, in Hawaii he packs on lots of fruits. In cold Alaska, crews like to have soup everyday whereas here it’s not as welcome because of the heat.

Well, that diversion got me (and you) away from fish science for today. Sorry if anyone is disappointed.

Personal Log

I think the early start jolted everyone’s biorhythms or perhaps just mine. I liked being done with the line by 0830, but I did feel kind of lazy all day afterwards. Perhaps that along with the humid, overcast sky and an antibiotic the doc gave me for an infected finger combined to make napping the desired task of the day for me. So aside doing this log, soaking my finger and a bit of reading that’s about all that happened for me today.

Questions:

Perhaps this should have preceded yesterday’s questions. The Hawaiian Islands are some of the most remote island in the world. How did they originally (before the hands of humans) become inhabited by plants, animals, fungi? What are some of the mechanisms that permit dispersal of life to such isolated places as these?

Geoff