Linda Kurtz: Women in STEM-(at Sea): Meet Allyson Causey, August 23, 2019

NOAA Teacher at Sea

Linda Kurtz

Aboard NOAA Ship Fairweather

August 12-23, 2019


Mission: Cascadia Mapping Project

Geographic Area of Cruise: Northwest Pacific

Date: 8/23/2019

engineer Allyson Causey
Allyson Causey – Engineer aboard NOAA Ship Fairweather

Women in STEM – Engineering

Meet Allyson Causey!  Engineer aboard NOAA ship Fairweather

Job Title:

3rd Assistant Engineer

Time in current position:

2 ½ months aboard Fairweather

Education and/or Specialized training:

Texas A & M- Bachelor of Science in Marine Engineering Technology

Wage Mariners-civil service federal employee (nonmilitary)

Do you have any plans for future education?

Currently investigating at master’s programs in Nuclear Engineering

Engineering aboard Fairweather

  • Generator
  • Boiler
  • Reverse Osmosis Machine
  • Reverse Osmosis Machine
  • Controller
  • Main engine
  • Air compressor
  • Fire main
  • Marine Sanitation Device

How did you find out about your current position at NOAA?

I met a NOAA recruiter at a job fair at Texas A & M, submitted resume and 3 weeks later I got the call!   After that the lengthy background check and physical for Federal employees, I came to work at NOAA aboard Fairweather.

1) When you were a child, what was your dream career?

I wanted to be an astronaut when I was young.   I looked into aeronautical engineering and attended a Federal Service academy – the United States Merchant Marine Academy.  My Dad is an engineer and contractor, so I grew up on job sites and always had the mindset of math and science.  I knew my career would be something in the STEM field

2)  What was your favorite subject in school?

My favorite class was differential equations.  Why I like engineering so much is everything is one big puzzle, and differential equations is like one big puzzle.

3)  Why is what you do important to on the ship?

Engineers on ships are essentially the lifeblood of the ship, we keep the ship moving.  We are the electricians, plumbers, the mechanics, and even the firefighters.  The ship can’t go anywhere without engineers!

4)  What would you tell an elementary school student about your work that is important to you?

 I enjoy solving the puzzles.  When something goes wrong, I enjoy finding out why something is not working and then solving the problem.  That is what is so rewarding — figuring out what is wrong and fixing it!

5)  Where do you do most of your work?

In the engine room.  That’s where I spend my 8-hour shifts.  The engineering room is on A & B deck — the 2 bottom-most levels of the ship.  That is where most of the mechanisms that run the ship are located. 

6)  What tool do you use in your work that you could not live without?

 A crescent wrench!  Mine is handy because it can measure and tell you the exact size of the nut which makes things a lot easier!

7)  If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

I would invent a tool that could reach bolts at odd angles.  Like a magnetic wrench that could adjust to the size bolt head you need and could bend around the odd angles and apply torque when I need it.

8)  What part of your job with NOAA did you least expect?

 I never expected to be in Alaska!

9)  How could teacher help students understand and appreciate NOAA engineering opportunities?

I think it would be valuable to have better understanding of what we engineers do!   It’s a really cool job, with a really good salary, and very few people know there are positions like this available. 

10)  What is your favorite part of your day when you are working and why?

Every day is a little different, you are never doing the same thing over and over again.  Something is always breaking and needs immediate attention.

11)  What was your favorite book growing up?

My favorite book series when I was growing up was Junie B. Jones!  I come from Florida and loved Jacques Cousteau.   He inspired me to become a scuba diver at 17.

12)  What do you think you would be doing if you were not working for NOAA?

I would be still be working on a boat!

13)  Do you have an outside hobby?

 I love camping and hiking, I’ve hiked 40 miles of the Appalachian Trail and would like to hike the rest!

14)  What is your favorite animal?

Manta Rays!

15)  If you could go back in time and tell your 10 year old self something, what would it be?

Take more math and science classes!  It really helps you get ahead in life! 

Did you know?

All of the electrical power on Fairweather comes from the generators, not the engines. It’s a common misconception!

Want to learn more about careers like and Allyson Causey’s and NOAA resources? See the resource links below:

NOAA ENGINEERING

US MERCHANT MARINES ACADEMY

NOAA Teacher Ready Resources

Erica Marlaine: What’s an Oiler? And Where Does All That Water Come From? July 14, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 14, 2019

Weather Data from the Bridge:

Latitude: 56º 58.03 N
Longitude: 151º 26.26W
Wind Speed: 17 knots
Wind Direction: 120º
Air Temperature:  13º Celsius
Barometric Pressure: 1010.5 mb
Depth of water column 565 m
Surface Sea Temperature: 12.9º Celsius


Science & Technology Log

Ever heard of oilers?  I hadn’t until I got to know Daniel Ruble, a member of the engineering crew on the NOAA Ship Oscar Dyson.

Oiler Daniel Ruble
Oiler Daniel Ruble

Daniel is originally from Chicago but now calls Virginia home.  After serving our country for 20 years in the Marine Corps, a friend mentioned that it was always good to have a Mariner’s Document (a license from the Coast Guard) “just in case.”  Years later, he finally decided to put it to use, and got a job with NOAA in 2014.  He started doing deck work, but his interest and experience in mechanical engineering eventually led him to the NOAA engineering crew.  He is what they call an “oiler.” Oilers maintain, clean, and oil the ship’s engine, including the motors, gears, and compressors. Daniel has worked on every class of NOAA vessel (Oceanographic and Atmospheric Research, Charting and Hydrographic, and Fisheries Research) and all but one of the NOAA ships. 

Daniel and the other engineers onboard the NOAA Ship Oscar Dyson are easy to spot as they often have bulky, protective ear coverings either on or nearby. That is because the engine room is VERY LOUD.  When I was given a tour, I was first given ear coverings, and much of the explanation about what I was seeing had to come later as it was too difficult to hear each other.  I was told that seeing the engine room is like looking under the hood of your car. Just imagine your car’s engine magnified 1000 times.

Control panel in the Engine Room
Control panel in the Engine Room
Engine Room
Engine Room

The engineering crew is responsible for all of the internal systems of the ship.  Without them, the ship wouldn’t run, and there would be no power or water. The engineering room actually makes all of the water we use onboard by distilling saltwater into potable (drinkable) water.  Here’s how it works.

Saltwater is boiled using energy from the ship itself. Hot engine steam is passed through an evaporation unit, causing the saltwater to boil. The saltwater steam rises and then travel through a water separator which prevents any droplets of saltwater from passing through. After the steam becomes pure water, it is then carried away by a distillate pump. It is then safe for drinking and showering.

Each of the two evaporators on the NOAA Ship Oscar Dyson can distill between 600-900 gallons of water per day, depending upon how fast the ship is moving.   On an average day, the ship uses 800-1000 gallons!

One of the two evaporators
One of the two evaporators

Erica Marlaine: Bear Onboard, July 12, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 12, 2019

Weather Data from the Bridge:

Latitude: 57º 9.61 N
Longitude: 152º 20.99W
Wind Speed: 15 knots
Wind Direction: 210 º
Air Temperature:  12º Celsius
Barometric Pressure: 1013 mb
Depth of water column 84 m
Surface Sea Temperature: 12º Celsius


Welcome to a tour of the NOAA Ship Oscar Dyson.

Your tour guide today is the Room 11 Bear.

Allow me to explain.

When I am not a Teacher at Sea on the NOAA Ship Oscar Dyson, I am the special education preschool teacher in Room 11 at Nevada Avenue Elementary School in Canoga Park, California. My classroom has a classroom bear (made of construction paper) that “hides” every night when the students go home. In the beginning of the year, he is sort of easy to find, but as the year progresses, he is harder and harder to find. By the end of the year, only a paw or an ear might be showing!

The first thing my students want to do every morning is look for the bear.  When they find it, they excitedly explain where it is. Speech and language are things we work on in class all the time, and the bear gives us something fun to talk about! For some students, a single word might be the goal. Other students may be working on putting a few words together, or even enough to make a sentence.  It’s also a great time for them to learn prepositional words or phrases to describe where the bear is hiding, such as next to, under, beneath, or on top of.

Now it’s YOUR turn.  I hope you have fun touring the NOAA Ship Oscar Dyson with the Room 11 Bear and finding him in the photos where he decided to hide in a tricky spot.   He is in EVERY picture.

bear in captain's chair
Commanding Officer Bear up on the Bridge (the part of the ship above the weather deck which houses the command center). I also spy a snack that is a favorite of some students in Room 11.
bear charting the course
Bear charting our course on the Bridge
bear steering
Steering the NOAA Ship Oscar Dyson (up on the Bridge)
bear lookout
Binoculars are used to check for whales or other boats before the trawl nets are put out.
bear in the galley
Food is cooked in the galley (the nautical term for kitchen)
bear in the mess hall
This is the mess (the nautical term for eating place) where all of the delicious meals are served.
bear in laundry
The laundry room
bear in gym
One of the two gyms onboard the NOAA Ship Oscar Dyson
bear in engine room
The engine room
bear at fire station
There are “fire stations” onboard in case of an emergency
bear in jackets
This is where we put on our waterproof rain gear and high boots before entering the fish lab
bear on rubber gloves
High rubber gloves are worn so that we stay somewhat clean and to protect our hands as we use sharp tools and touch jellyfish or pointy quills
bear in acoustics lab
Lastly, a visit to the acoustics lab, where the scientists read and analyze the data from the echo sounders and determine when and where to drop the trawl nets.

Jill Bartolotta: Start Your Engines, June 1, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 13, 2019

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 1, 2019

Weather Data:

Latitude: 28°19.3’ N

Longitude: 079°21.6’

Wave Height: 1-2 feet

Wind Speed: 11 knots   

Wind Direction: 195

Visibility: 10 nautical miles

Air Temperature: 28°C

Barometric Pressure: 1012.5

Sky: Broken

Making the Engines Run

Engines on this ship are run with marine grade diesel. Before the diesel can be put through the engine it must be cleaned of any impurities. A centrifuge system is used to spin the diesel at a very fast pace in a circle. As the diesel spins any impurities are flung out leaving behind the purified fuel. If the fuel is not purified before it is put through the engines, they will gunk up and not function properly. NOAA Okeanos Explorer has 4 engines. Currently we are running 3 of them and the fourth one is the backup. There is also a fifth generator that can serve as a backup if needed. There are roughly 180,000 gallons of diesel on the ship and roughly 2,200 gallons of fuel are used per day.  In order to make the engine work, air in the engine is compressed causing the air to heat up. Then you spray fuel into the compressed air and the heat of their air causes an explosion leading to the process of combustion. In order to determine if complete combustion is occurring and the engine fuel is clean of impurities you look at the exhaust. If the exhaust is clear it means you are seeing full combustion and the fuel is clean. If the exhaust is not clean, black for example, it means that combustion is not complete or the fuel is dirty.

Fuel purification centrifuge
The fuel purification centrifuge system. If you look closely you can see a pink liquid, purified diesel.
Engine
One of the engines. There are four engines on board. Three are running and the fourth will be used as a backup.

Cooling the Engines

The engines must run at a temperature below 200°F. When these engines run they create heat so to keep them at a temperature under 200°F you need to cool them off using a heat exchanger. A heat exchanger is a series of pipes that run hot substances past cooler substances. These substances do not come into contact with one another, but are piped past one another. The heat transfers to the cooler substance through the series of pipes thus cooling the previously hot substance. On this ship, oil is used to lubricate the pistons on the engine, but it also serves a coolant. The oil is then cooled via freshwater called jacket water and the freshwater is cooled via seawater taken from the ocean. The ocean surface water is 74°F when it enters the ship and leaves the ship at roughly 84°F.

However where does this heat go? The first law of thermodynamics, The Law of Conservation of Energy, tells us that energy cannot be created or destroyed, only transferred or converted. So why not convert this heat energy into some of use? Well guess what. The engineers on Okeanos Explorer do just that. Some of the heat goes into the seawater used to cool the jacket water and some of the heat is used in the desalination system.

Remember we left off with desalination in the previous blog.  They use the heat coming off the engines to heat the saltwater, evaporate it, and retrieve the freshwater. However, if you remember these engines must run below 200°F and in order to boil water you must be at a temperature of 212°F. I know many of you are probably thinking salt in water actually lowers the boiling point, but really the opposite is true. Salt actually increases the temperature needed to boil water. However, it is minimal so it won’t affect your pasta too much. Feel free to add that pinch of salt like a true chef.

In order to boil water with 200°F of temperature or less we need to change the pressure of the system. This is done through a vacuum that decreases the pressure in the system allowing water to boil at a lower temperature. It is similar to when you go hiking in the mountains (less pressure than when you are at sea level) and go to boil water. It boils quicker because less heat is needed since the pressure is lower. So by changing the pressure in the system to one that would be seen at a higher altitude, engineers are able to use the heat from the engines to boil the salt water on the ship, allowing us to have access to freshwater for drinking, bathing, and cooking purposes. Pretty ingenious right?

Maintaining Balance

Now hopefully you were paying attention in the first paragraph when I talked about how much fuel is on board and how much is used each day. As fuel is used, the weight on the ship will change affecting stability. A ship with weight is more stable in the water than a ship will little to no weight. Therefore as fuel weight is lost it must be replaced. One gallon of diesel weighs approximately 7 pounds. So if we are using 2200 gallons a day we are losing 15,400 pounds of weight. How do the engineers accomplish the task of adding more weight? What is all around us weighing 8.6 pounds per gallon??? Seawater! Yes! So ballast tanks are filled with seawater to add weight to the ship that is removed when fuel is used.

Ballast water filtration and UV purification system
Ballast water filtration and UV purification system. The parts to the right are the filtration system and the parts to the left are the UV system.

Ballast water is taken in through a filtration system before it even reaches its holding tanks (separate than the fuel tanks). The water first passes through a filter to remove large particles (such as larger pieces of plant material or debris) and then passes through a UV system that will kill any organisms. When the ballast water is released from their holding tanks in order to allow more fuel to come on board, the water must pass through the UV system once more to make sure nothing alive (plants, animals, bacteria, etc.) is getting into the water.

This purification of ballast water occurs to prevent invasive species from entering new areas. An invasive species is a plant or animal that is from somewhere else and is introduced through human actions. When these species establish in a new area and begin to outcompete native species, affect human health, and become costly to remove, they are classified as invasive.

Where I live on Lake Erie several species such as zebra and quagga mussels, round goby, and spiny water flea have all been introduced from ballast water from ships coming from the inland lakes of Eurasia. These ships would need to dump their water when they entered the shallower river ports of the Great Lakes, spurring a silent invasion. All four species are negatively affecting native populations of important species and are costly to manage. Then same is happening along the East Coast with species such as European green crab.

I would like each of you reading this blog to learn more about a species introduced to U.S. waters, whether they be fresh or salt, through ballast water. Feel free to let me know which organism you chose to learn more about in the comments section of the blog.

Personal Log

Today was a really special day at sea. It was my 30th birthday. I could not have imagined a more amazing place to turn 30. I spent the day learning all about the engine systems on board, out on the bow enjoying the breeze and sunshine while looking for ocean critters, and was treated to the sweetest cake ever. It was so kind of the chefs on board to make me a cake for my birthday. It was a red velvet cake (my favorite) with chocolate frosting and decorated with chocolate pieces and white icing. We had it with some chocolate raspberry swirl ice cream. Truly a wonderful celebration with my new friends.

Jill with birthday cake!
My delicious birthday cake. Thank you everyone for a great birthday!

I spent the hour before sunset enjoying a nice yoga and meditation session before the most amazing sunset we have seen at sea yet. The clouds and sun put on the most spectacular display of color. Afterwards I learned more about the happenings of the mission control room (basically the mapping hub for the ship). I learned how we launch equipment to collect water column data and how we clean the data removing noise. I will be writing a blog on the mapping mission soon.

After our shift ended, my roommate and I ventured to the bridge to learn about piloting a vessel at night. We learned what equipment they rely on and how they manage their night vision. And then the most spectacular part of the whole night! The stars! Wow! It looks like someone through glitter (plastic free glitter preferably) into the sky. I have never seen so many stars in my life. We saw the Milky Way, Big Dipper, Little Dipper, North Star, Jupiter and so many other constellations. It was a wonderful end to a great birthday day.

Did You Know?

Even numbered locations (such as muster stations or staterooms) on ships are located on the port (left) side of the ship and odd numbered locations are located on the (starboard) right side of the ship.

Sea Measurements

Different ways to measure are used at sea. You can see some measurement conversions below.

1 nautical mile = 1.151 statute mile

1 knot = 1 nautical mile per hour = 1.151 statute mile per hour

1° Celsius = 33.8 °F

Animals Seen Today

Flying fish

Northern gannet

Jill Bartolotta: The Ins and Outs of Going, May 31, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 13, 2019

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: May 31, 2019

Weather Data:

Latitude: 28°29.0’ N

Longitude: 079°34.1’ W

Wave Height: 1-2 feet

Wind Speed: 15 knots

Wind Direction: 155

Visibility: 10 nautical miles

Air Temperature: 27.6 °C

Barometric Pressure: 1013.7

Sky: Few

Science and Technology Log

Today and tomorrow I am learning all about the who and how of making the ship go. Ric Gabona, the Acting Chief Marine Engineer, has been teaching me all about the mechanics of powering the ship, managing waste, and providing clean drinking water. Today I will focus on two aspects of making it possible to live on a ship for weeks on end. First, I will teach you about waste management. Second, I will explain how freshwater is made to support cooking, drinking, cleaning, and bathing needs. In conjunction, all of these systems contribute to our comfort on board but also our safety.

Wastewater Management

Waste on board has many forms and it all must be handled in some way or it can lead to some pretty stinky situations. The main forms of waste I will focus on include human waste and the waste that goes down the drains. The waste is broken down into two categories. Black water and gray water. Gray water is any water that goes down the drain as a result of us washing dishes, our hands, or ourselves. Gray water is allowed to be discharged once we are 3 miles from shore. The water does not need to be treated and can be let off the ship through the discharge valve. Black water is water that is contaminated with our sewage. It can be discharged when we are 12 miles from shore. Black water goes into a machine through a macerator pump and it gets hit with electricity breaking the solid materials into smaller particles that can be discharged into the ocean.

Discharge of gray or black water has its limitations. These discharge locations follow strict rules set in the Code of Federal Regulations (CFR) and by the International Convention for the Prevention of Pollution from Ships (MARPOL). The CFR are set by the federal government and the regulations tell you where (how far from shore) you are allowed to discharge both gray and black water. However, sometimes Okeanos Explorer is in areas where black water cannot be discharged so the black water must be turned into gray water. At this point, once the black water has been mashed it will pass through a chlorine filter that will treat any contamination and then the waste can be discharged. However, there are places where nothing can be discharged such as Papahānaumokuākea Marine National Monument in Hawai’i. When in these no discharge areas the ship will store the gray and black water and then discharge when regulated to do so.

It is important to follow these regulations because as Ric says, “We are ocean stewards.” It is important that ships such as Okeanos Explorer be able to explore the ocean while making the smallest environmental impact as possible. The engineers and other ship and science mission personnel are dedicated to reducing our impact as much as possible when out at sea.

Making Water

Water makes up 60% of the human body and is vital for life. However, 71% of the water on earth is saltwater, not able to be taken up by humans, making it challenging to access freshwater unless you live near an inland freshwater system like where I come from up in Ohio along the Great Lakes. While out at sea, we have no access to freshwater and we cannot store freshwater from land on the ship so we must make it. On Okeanos Explorer freshwater is made using two types of systems, reverse osmosis and desalination. Reverse osmosis is used by seabirds to turn saltwater into freshwater. Saltwater passes through a semipermeable membrane allowing the smaller water particles to pass through while leaving the larger salt particles and other impurities behind. If you are seabird, you excrete this salt by spitting it out the salt glands at the top part of your bill or if you are a ship out through a separate pipe as brine, a yellow colored super salty liquid. The other method on the ship used to make water is desalination. Desalination is the process of boiling salt water, trapping the water that evaporates (freshwater), and then discharging the salty water left behind. The engineers could use a separate boiling system to heat the salt water however they have a much more inventive and practical way of heating the water. But before I can let you know of their ingenious solution we must learn how the engines run. Oops! Sorry, I need to go. Need to switch my laundry. So sorry. We will explore ship movement and the engines in the next blog. Stay tuned…

Reverse osmosis system
Reverse osmosis system on the ship.
flow meters for potable water and brine
Can you see the yellow colored brine and the clear colored potable water?
Filtered water station
Filtered water station on the ship. Look familiar? You may have one like this in your school.

 

Personal Log

I really enjoyed learning all about the mechanics of operating the ship. It takes lots of very skilled people to make the equipment work and I love the ingenuity of the machines and those who run them. Space is limited on a ship and I am just fascinated by how they deal with the challenges of managing waste and making freshwater 50 plus nautical miles from coast for up to 49 people. Today was a great learning day for me. I do not know much about engines, wastewater treatment, and water purification systems so I really learned a lot today. I now have one more puzzle piece of ship operations under my belt with many more to go.

Aside from my lesson in thermodynamics, combustion, chemistry, physics, and other sciences that I have not touched since college, I learned about the safety operations on the vessel. Today we practiced a fire drill and an abandon ship drill. We learned where we need to go on the ship should one of these events ever occur and which safety gear is needed. I donned my immersion suit and PFD (Personal Flotation Device) to make sure they fit and all the pieces/parts work. Being in the ocean would be a bad time to realize something isn’t right. Donning the safety suit was a funny situation for all movement is super restricted and you feel like a beached whale trying to perform Swan Lake on point shoes.

Jill in immersion suit
Me in my immersion suit, fondly known as the gumby suit.

However, with some help from my friends we were all able to get suited up in case an emergency should arise.

Tonight I look forward to another sunset at sea, some yoga on the deck, and seeing a spectacular star display.  

view of deck with sunset
My yoga spot

Did You Know?

Eating an apple a day while at sea can keep seasickness at bay.

Ship Words

Different terms are used to describe items, locations, or parts of the ship. As I learn new words I would like to share my new vocabulary with all of you. If there is a ship term you want to know more about let me know and I will find out!

Galley: Kitchen

Mess Deck: Space that crew eat aboard ship

Fantail: Rear deck of a ship

Pipe: Announcement on the ship via a PA system

Muster: Process of accounting for a group of people. Used in safety drills on a ship such as a fire or abandon ship drills.

Stateroom: Sleeping quarters on the ship

Abeam: On the beam, a relative bearing at right angles to the ship’s keel

Bearing: The horizontal direction of a line of sight between two objects

Animals Seen Today

1 flying fish

Whales (Too far away to tell what they were but we saw their spouts!)

Kristin Hennessy-McDonald: Engineer for a Day, September 18, 2018

NOAA Teacher at Sea

Kristin Hennessy-McDonald

Aboard NOAA Ship Oregon II

September 15 – 30, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 18, 2018

 

Weather Data from the Bridge

Latitude: 2901.62N

Longitude: 0932.87W

Sea Wave Height: 0m

Wind Speed: 6.63 knots

Wind Direction: 203֯

Visibility: 10 nautical miles

Air Temperature: 32.4

Sky: 0% cloud cover

 

Science and Technology Log

My first day onboard was spent following around 2nd Engineer Will Osborn.  Will is an officer in the Merchant Marines, and a NOAA Augmentation Pool Engineer assigned to the Oregon II.  He invited me to follow him around and learn how the engineers prepare the ship for sea.  One of the duties of the engineers is to check the liquid levels of each of the tanks prior to sailing.  They do this by performing soundings, where they use a weighted measuring tape and a conversion chart to determine the number of gallons in each of the tanks.

 

The engineering team then prepared the ship to sail by disconnecting shore power and turning on the engines aboard ship.  I got to flip the switch that disconnects the ship from shore power.  I followed the engineering team as they disconnected the very large cable that the ship uses to draw power from shore.  I then got to follow 2nd Engineer Will as he turned on the engines aboard ship.

turning off the shore power

Kristin Hennessy-McDonald turning off the shore power in the engine room

Once we set sail, the science team met and discussed how longline surveys would work.  I am on the day shift, which is from noon to midnight.  We got the rest of the day, after onboard training and group meetings, to get used to our new sleep schedule.  Because I was on the day shift, I stayed up and got to watch an amazing sunset over the Gulf.

Our second day out, we set our first two longlines.  The first one was set before shift change, so the night shift crew bated the hooks and set the line.  My shift brought the line in, and mostly got back unbaited hooks.  We got a few small Atlantic Sharpnose (Rhizoprionodon terraenovae) sharks on the line, and used those to go over internal and external features that differentiated the various species we might find.

 

After the lines were in, it was time for safety drills.  These included the abandon ship drill, which required us to put on a submersion suit, which is affectionately referred to as a Gumby suit.  You can see why below.  It was as hard to get into as it looks, but it will keep you warm and afloat if you end up in the water after you abandon ship.

Gumby Suit

Kristin Hennessy-McDonald in the Gumby Suit

 

Personal Log

I have learned a few rules of the boat on my first days at sea.  First, always watch your head.  The stairwells sometimes have short spaces, and you have to make sure not to hit them on your way up.  Second, always keep a hand free for the boat.  It is imperative at sea that you always have a hand free, in case the boat rocks and you need to catch yourself.  Third, mealtimes are sacred.  There are 31 people aboard the boat, with seating for 12 in the galley.  In order for everyone to get a chance to sit down and eat, you can’t socialize in the galley.

Did You Know?

In order for the crew to have freshwater to drink, the Oregon II uses a reverse osmosis machine.  They create 1000-1200 gallons of drinkable water per day, running the ocean water through the reverse osmosis generator at a pressure of 950 psi.

Quote of the Day

And when there are enough outsiders together in one place, a mystic osmosis takes place and you’re inside.

~Stephen King

Question of the Day

How do sharks hear in the water?

Eric Koser: Getting Underway! June 25, 2018

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 22 – July 9, 2018


Mission: Lisianski Strait Survey

Geographic Region: Southeast Alaska

Date: June 25, 2018, 1500 HRS

Weather Data From the Bridge
Lat: 56°59.4’, Long:135°53.9’
Skies: Broken
Wind 19 kts at 340°
Visibility 10+ miles
Seas: 3-4’ with swells of 2-3’
Water temp: 9.4°C

Science and Technology Log

Rainier and her sister ship Fairweather celebrated their 50th anniversary together this past March. The bell on the bow of each ship is now plated in gold to celebrate the event.

This vessel has quite a physical plant below deck maintained by the competent team in the Engineering Department. For propulsion, there are two V-12 Diesel Locomotive Engines. After bathing the valves in fresh oil, each engine is started with compressed air at the press of a button. Once up and running, the Rainier’s engines often run for several days at a time. There is no “transmission” on this vessel. Instead, the two propellers utilize what is called ‘variable pitch’. When the pitch is set to zero, the props spin but push water neither back or forward – and thus don’t force the ship to move. When the prop pitched is increased in a forward direction – up to a pitch of 10, the ship is pushed forward. Of course, this is really the water pushing the ship forward as the propellers push the water backward. A pitch of “10” means that for each single rotation of the prop, the blades will move water ten feet back. When reverse is desired, the props can each pitch back to a maximum of ‘6’. Now the water is pushed forwards by the prop so the water can push the ship backward.

Prop Pitch Control

This is the variable prop pitch control system. Notice the silver digital actuator at the top which provides an electronic signal back to the bridge.

Push to Start

This is how the Engineering Department can start the engines.

As there are two engines and two propellers, the Rainier’s crew can run one prop forwards and the other backward to turn the vessel around nearly in place. This could be called a ‘split 6’ – where one prop is pitched forward 6 to match the other prop’s pitch backward of 6.

Rainier Engines

This is one side of one of Rainier’s two V-12 Diesel locomotive engines.

Another device the crew can use to manipulate the ship in the water is called a ‘bow thruster’.   This is an open tube from port (left) to starboard (right) near the bow of the ship underwater. There is a propeller mounted in this open tube which is powered by a separate engine. The engineering team can have the bow thruster system up and running in just a matter of minutes when called on by the bridge to prepare for its use! By pushing water to one side, the water pushes the bow the other way. This is a great tool to maneuver this large vessel in tight spaces.

In addition to the two engines plus the bow thruster, there are several other important systems maintained on The Rainier. There are a pair of 4000 Watt diesel electric generators to provide electricity. There is a water purification system – to isolate salt from seawater and make clean drinking water and a wastewater treatment plant to process waste. There are air compressors to supply the ship’s systems.

There are 45 individuals on board this ship – and they pull together into five teams to make operations happen on board. The NOAA Corps is responsible for the administration and navigation of the ship. The Deck crew handles all things on the surface of the ship including handling all lines, cranes, and davits (to manipulate the launches—small boats). The Engineering Crew is responsible for all the mechanical systems on board.  The Electronics Department handles all instrumentation and wiring on the ship. The Stewards run the ever important galley – keeping the entire group well fed. All of this supports the work of the survey team of Hydrographers, the team of scientists that are mapping the sea floor.

 

Personal Log

I’ve enjoyed both finding my way around the ship and getting to know the crew. These people work as a team!

I came in early enough to enjoy a few days exploring Sitka, Alaska. This is a small port town that is really the first city in Alaska. Russians originally settled here in 1799 and eventually sold the city to the US in 1867. Sitka is a beautiful place to explore – being primarily a port for commercial and private fishing operations.

Sitka Bridge

This bridge spans the main channel in Sitka.

Sitka Harbor

This is one of Sitka’s many harbors.

We’ve just left port this afternoon [Monday] as we transit to Lisianski Strait to being the hydrographic mission of this leg. We’ll arrive there late tonight/early Tuesday morning to collect data first from the Rainier itself. The experience on the ocean has been great thus far, and I look forward to much more!

departing Sitka

Here we are departing Sitka Monday afternoon – headed to the open Pacific to transit north.

Did You Know?

Sitka is the largest city, by area, in the United States in terms of land area! It occupies 2870 square miles yet has only a population of about 9,000 people—located mostly on the port location of Sitka.

The Rainier holds about 80,000 gallons of diesel fuel that is located in several tanks below deck. The weight of the fuel serves as ballast to help keep the ship stable while at sea! Fuel can be shifted between tanks to adjust the trim [front or back tilt] and list [port or starboard tilt] of the ship.  Typically Rainier refuels when the tanks reach about half full.