Kacey Shaffer: Let’s Go Fishing! August 1, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 1, 2014

Weather information from the Bridge:

Air Temperature: 9.7° C

Wind Speed: 11.9 knots

Wind Direction: 153°

Weather Conditions: Foggy

Latitude: 58°19’42 N

Longitude: 175°14’66 W

 

Science and Technology Log:            

If you’ve ever been fishing, be it on a lake, river or stream, you know it is not productive to fish all day in a spot where they aren’t biting. If the fish aren’t biting in one spot, you would most likely pack up and move to a different spot. Now imagine trying to fish in an area that is 885,000 square miles. The equivalent to trying to find a needle in a haystack! Luckily, the Oscar Dyson has sophisticated equipment to help us determine where the fish are hanging out. Allow me to introduce you to a very important location on the ship – The Acoustics Lab.

When you enter The Acoustics Lab, you’ll immediately see a wall of nine computer screens. The data shown on the screens help Chief Scientist Taina and Fishery Biologist Darin make the key decision of where we will deploy the nets and fish. What information is shown on the screens? Some show our location on the transect lines we are following, which is similar to a road map we would use to get from point A to point B on land. The transect lines are predetermined “roads” we are following. Another screen tells us which direction the boat is heading, barometric pressure, air temperature, surface temperature, and wind direction and wind speed. The most technical screens show the data collected from transducers attached to the bottom of the ship on what is referred to as the Center Board. There are five transducers broadcasting varying frequencies. Frequency is the number of sound waves emitted from a transducer each second. The Dyson transducers emit sound waves at 18kHz, 38kHz, 70kHz, 120kHz and 200kHz (kHz= kilohertz). Why would it be necessary to have five transducers? Certain organisms can be detected better with some frequencies compared to others.  For example, tiny organisms like krill can be seen better with higher frequencies like the 120kHz compared to the lower frequencies. Also the lower frequencies penetrate farther into the water than the higher frequencies so they can be used in deeper water. Having this much data enables the scientists to make sound decisions when choosing where to fish.

A map of the Bering Sea showing transect lines in white. During this pollock survey the Oscar Dyson follows transect lines which benefits both the crew and scientists.
A map of the Bering Sea showing transect lines in white. During this pollock survey the Oscar Dyson follows transect lines which benefits both the crew and scientists.
Transducers produce these images displayed on the screens in the Acoustics Lab. The thick red line at the bottom is the sea floor and the  many red, oblong shaped areas indicate large clusters of fish. Let’s go fishing!
Transducers produce these images displayed on the screens in the Acoustics Lab. The thick red line at the bottom is the sea floor and the many red, oblong shaped areas indicate large clusters of fish. Let’s go fishing!

Personal Log:

Each time I share a blog post with you I am going to focus on one area of the ship so you can get acquainted with my new friend, Oscar Dyson. I’ll begin sharing about my stateroom and the lounge. I was very surprised by the size of my room when I arrived last Thursday. My roommate is Alyssa, a Survey Tech. You will learn more about her journey to the Dyson later. She has been on the ship for a while so she was already settled in to the top bunk which put me on the bottom bunk! The beds are very comfortable and the rocking motion of the ship is really relaxing. I’ve had no trouble sleeping, but then again, when have I ever had trouble sleeping?! We have our own private bathroom facilities, which is a definite bonus. Take a look at our room.

The stateroom Kacey shares with Alyssa.
The stateroom Kacey shares with Alyssa.
Our stateroom's private bath. Could that shower curtain be any more fitting?!
Our stateroom’s private bath. Could that shower curtain be any more fitting?!

Alyssa and I are on opposite shifts. She works midnight to noon and I work 4:00pm to 4:00am. There is a little bit of overlap time where she’s off and I haven’t gone to work yet. This is quite common for all of the people on the ship. This is a twenty-four hours a day, seven days a week operation. Someone is always sleeping and someone is always working. Fortunately there is a place where we can hang out without bothering our roommates. The Lounge is a great place to kick back and relax. There are comfy chairs and a very large couch and a television with the ability to play dvd’s or video games. Over the years people have brought books with them and then left them on the ship so we have an enormous library. Sometimes there are people just reading in the Lounge and other times a group of us will watch a movie together. There is one important rule of showing movies…if you start a movie you have to let it play all the way out. Even if you get bored with it or need to leave you must let it play because someone may be watching it in their room. It would be rude of us to continually shut movies off an hour into them!

Career Connections: ST Alyssa Pourmonir

ST Pourmonir checks data on the computer during a CTD deployment.
ST Pourmonir checks data on the computer during a CTD deployment.

Alyssa hails from Pennsylvania. During her senior year of high school she chose to further her education at the Coast Guard Academy. She spent three years studying with the Coast Guard, but ultimately graduated from SUNY Maritime this past January. Alyssa landed a 10 week internship with a NASA facility in Mississippi. During the course of her internship she learned of an opportunity with NOAA. This position would be a Survey Tech, traveling on one of NOAA’s many ships. She arrived at the Dyson only a few weeks before I did.

Alyssa has many responsibilities as a Survey Tech. She assists with the deploying and recovery of the CTD instrument, helps process fish in the wet lab, completes water tests, and serves as a liaison between the ship’s crew and its scientists. When a trawling net is deployed or recovered, Alyssa is on the deck to attach or detach sensors onto the net. She also looks for safety hazards during that time.

When asked what the best part of her job is she quickly responds learning so much science is the best! As a Survey Tech, she gets the chance to see how all the different departments on the ship come together for one mission. She works closely with the scientists and is able to learn about fish and other ocean life. On the other hand, she also works side-by-side with the ship’s crew. This allows her to learn more about the ship’s equipment. Being the positive person she is, Alyssa turned the hardest part of her job into a benefit for her future self. Adjusting to 12 hour shifts has been a challenge but she noted this can also be helpful. When she is super busy she is learning the most and it also makes the time go faster.

Looking ahead to her future, Alyssa sees herself getting a Master’s Degree in a science related field. Some areas of interest are oceanography, remote sensing or even meteorology. Alyssa’s advice for all high school students: STUDY SCIENCE!

Did you know?

Lewis Richardson, an English meteorologist, patented an underwater echo ranging device two months after the Titanic sunk in 1912.

Author

Leave a Reply