Trawl hauls are how fishing is conducted. A large net is dropped into the water for a specific amount of time. By catching exactly what is in the ocean, the acoustic backscatter can be identified (what the various colored pixels on the echograms represent). Below is an echogram on the screen, the black line is the path of the trawl through the backscatter, the little red circle indicated where the camera was, and the picture at left is pollock passing by the camera and into the back of the net at that point.
Screenshot of an echogram. The black line is the path of the trawl through the backscatter, the little red circle indicates where the camera was, and the picture at left is pollock passing by the camera and into the back of the net at that point.
Samples of pollock and other organisms can be studied and other biological data collected. By counting, measuring, and weighing the pollock and other animals caught in each haul, calculations can estimate the amount of fish in a given area. Acoustic data can be used to determine the number of fish by dividing the measured backscatter by the backscattered energy from one fish (target strength, discussed in the last blog). That gives the number of fish:
To get the backscatter from one fish for the above calculation, we need to know the size and species of the fishes. The trawl provides that information. In the fish lab, species including pollock are identified, lengths are taken, and the number of fish at each length is entered in the computer. Also, the animals including pollock are weighed and a mean weight is determined. The number of fish computed from the acoustic and trawl data multiplied by the mean weight of a fish equals the biomass of the fish (total weight of the population in a given area).
The fisheries biologists developed the software used for all these calculations. This information coupled with the echograms can answer those earlier questions…Where are the pollock in the Bering Sea? How many are there? How big are they? How many adult pollock are there (fish that can be caught) and how many young pollock are present (providing information about future availability and how healthy the population is)?
When I first boarded the ship, I asked the fisheries biologists how they would describe what they do. They responded that they count fish, it’s not rocket science. But you know what? It kind of is!
TAS Joan Shea-Rogers at work in the Fish Lab
What is this information used for?
This information is used to manage the Pollock fishery. Numerical data is given to the entities that set the fishing quotas for the Bering Sea area. Quotas are then divided up between the commercial and individual fishing companies/boats. Once fishermen reach these quotas they must stop fishing. This protects the fishery to ensure that this food source will be healthy and strong for years to come. A similar example from my home state is that of the Illinois is the Department of Conservation. One of their responsibilities is to manage the deer population. Then they can determine how many deer can be harvested each season that still allows for the deer population to thrive.
Personal Blog:
In my last blog post, I talked about preparing for and “weathering the storm”. As with most things at sea and on land, things don’t always turn out as we plan. The stormy weather began with wave heights between 8-10 feet. The ship continually rocked back and forth making walking and everything else difficult. You can tell the experienced sailors because they were much more graceful than I was. I held on to every railing and bolted down piece of furniture that I could. And even then, I would forget and place a pen on the table, which immediately rolled off. While eating I held onto my glass and silverware because as I ate and placed my knife on my plate it rolled off. Dressing was a balancing act, which I was not good at. I finally figured out it was better if I sat in a chair. Luckily for me, my patch for seasickness worked.
While I was sitting in the mess hall (dining room) an alarm rang. The engineers got up read the screen and left. The decision was made by the acting CO (Commanding Officer) that we would have to go back to Dutch Harbor. And now, as I write this, we are docked in Dutch Harbor waiting for word about the status of our voyage. Out here in Dutch Harbor, everything must be shipped in. We wait until parts and people are flown in. The fisheries biologists also have to determine the validity of the data collected on such a short voyage. They also must decide in a timely matter, can this data collection continue after returning to port?
For me, I am holding out hope that all these factors are resolved so that we can go back out to sea. Since November when I turned in my application, this voyage has been such a focal point of my life. If it doesn’t work out (I’ll try not to cry), I will still have had the adventure and learning experience of a lifetime. So here’s hoping……
What kinds of fish live in the Bering Sea? How many pollock are in the Bering Sea? Where are the pollock in the Bering Sea? How big are the pollock in the Bering Sea?
Those are just a few of the questions that the fisheries biologists on NOAA Ship Oscar Dyson work to answer during each voyage. In my last blog, I talked about the need to manage the pollock fishery in order to protect this important ocean resource because it provides food for people all over the world. It is important, then, to be able to answer the above questions, in order to make sure that this food source is available each year.
How do they do it? There are two main sources of information used in the Acoustics-Trawl (or Echo Integration Trawl) survey to determine the abundance and distribution of pollock in a targeted area of the Bering Sea. One is acoustics data, and the other is biological-trawl data.
Acoustics:
Acoustic data is continuously collected along a series of parallel transects with a Simrad EK60 scientific echo integration system incorporating five centerboard-mounted transducers (18-, 38-, 70-, 120-, and 200- kHz). In other words: There are 5 sound wave producers (transducers) attached to the bottom of the ship, each one emitting sound waves at different frequencies. This allows scientists to look at different organisms in the water column. Different types of organisms reflect different amounts of energy at different frequencies. The amount of acoustic energy reflected by an individual animal is called the target strength, and is related to the size and anatomy of the species. For example, a fish with a swimbladder (like pollock) reflects more energy than a fish without a swimbladder because its properties are very different from the surrounding water. Some ocean dwelling organisms don’t have swim bladders. Flatfish stay on the bottom so they don’t need the buoyancy. Floating organisms like jellyfish don’t have them. These organisms will look differently than pollock on an echogram because they have a smaller target strength.
Transducer
Transducers convert mechanical waves (sound waves) into an electrical signal and vice versa (like both a loudspeaker and a microphone combined). They contain piezoelectric materials sensitive to electricity and pressure: if a voltage is applied to them, they make a pressure or sound wave (transmit), and when a sound wave passes over them, it produces a voltage (receive). When a sound wave (echo from a fish) is received, electoral signal is sent to a computer, which displays the signals as pixels of varying colors as the ship moves along (depth changes up and down on the left of the image, and time and location changes along the bottom of the image). This datum is used to estimate the number and type of fish in the water column, and to determine where the ship should fish next.
The size and colors on the images (called echograms) represent the backscatter at different depths and is related to the density of fish and their target strength. But, since they are dots on a screen, specific identification is not possible. The scientists assume certain strong signals are pollock based on the information they have but, those dots could be other fish. To determine what kind of fish are in the water column at this location, how many are there, and how big they are, other data must be obtained. Biological Trawl Data provides that additional information. More about that in my next blog post……I bet you can’t wait!
Personal Log
The Calm Before the Storm:
So far my trip has been smooth sailing, literally. As NOAA Ship Oscar Dyson sails across the Bering Sea there is a bit of rocking the ship experiences at all times. This is easy enough for one to get used to and sometimes it even becomes comforting, like being rocked to sleep as a child. You adjust to the motion. Over the past couple of days I have been hearing talk of a storm coming our way. On a ship, there are many preparations that occur in order to get ready for a storm. Many items are always secured, such as shelves that have a wall in front so that things don’t fall off. There are “handle bars” in showers and next to toilets (think about that). Along hallways and stairways there are handrails on each side. Mini refrigerators in staterooms are bolted to walls. In fact most things are bolted to walls or stored in containers that are bolted to the wall. In the mess hall (dining room) condiments on tables are in a box so they can’t slide off.
Why do you think this coffee mug is shaped like this (wider at the bottom than the top)?
At-Sea Coffee Mug
Ans. The wider bottom of the mug above prevents it from sliding as the ship rocks.
Our bulletin board reminds us to secure for bad weather. This morning, I put small items in drawers, stowed books on shelves and packed my equipment (phone, laptop, camera, chargers and small items in a backpack that can be safely secured in my locker (the “closet” in my stateroom).
In talking to my shipmates with at sea experience, I am getting lots of helpful hints about storm preparations and strategies to use during the storm. Here are some of those suggestions:
*always hold on to railings with both hands when walking or going up steps. At all other times, remember to keep one hand for you (to do whatever you are doing) and one hand for the ship (to hold on).
*keep something in your stomach at all times, even if you are not feeling well
*eat saltines
*drink lots of water
*when sleeping in your bunk, place pillows between you and the edge so as not to roll off (I will definitely follow this one, as I am on the top bunk) It also depends upon which direction the ship is rolling. Pillows may need to be put between your head and the wall to prevent head bumps
*go to the lower parts of the ship because the top part will sway more with the waves
I also have been wearing patches to prevent seasickness. Hopefully they will continue to help. Only time will tell how we weather the storm (pun intended). Let’s hope it moves through quickly.
My last few days at sea were rather exciting. Wednesday, I got to attend some medical training necessary at sea in the morning, and then in the afternoon we practiced safety drills. The whole crew ran through what to do in the case of three different ship emergencies: Fire, Abandon Ship and Man Overboard. These drills were pretty life-like, they had a fog machine which they use to simulate smoke for the fire drill. Once the alarm was triggered people gather in their assigned areas; roll was taken, firemen and women suited up and headed to the location where smoke was detected, and from there teams are sent out to assess damage or spreading of the fire, while medical personnel stood prepared for any assistance needed. The abandon ship drill required all men and women on board to acquire their life preserver and full immersion suit, and head to their lifeboat loading locations. Roll is then taken and an appointed recorder jots down the last location of the ship. Once this is done, men and women would have deployed the life rafts and boarded (luckily we did not have to). And for the man overboard drill they threw their beloved mannequin Oscar overboard in a life vest and had everyone aboard practice getting in their look out positions. Once Oscar was spotted, they turned the ship around, deployed an emergency boat and had a rescue swimmer retrieve him.
Deployed emergency boat for rescue of the beloved mannequin, Oscar.
These drills are necessary so that everyone on board knows what to do in these situations. While no one hopes these emergencies will happen, knowing what to do is incredibly important for everyone’s safety.
Thursday was maybe my favorite day on board. Due to the fact that there are a handful of new personnel on board, practice launching and recovering the survey launch boats was necessary. There are 4 launch boats on top of NOAA Ship Fairweather, each equipped with their own sonar equipment. These boats sit in cradles and can be lowered and raised from the sea using davits (recall the video from the “Safety First blog a few days ago). These four boats can be deployed in an area to allow for faster mapping of a region and to allow for shallower areas to be mapped, which the NOAA Ship Fairweather may not be able to access. Since this is a big operation, and one which is done frequently, practice is needed so everyone can do this safely and efficiently.
Launch boat on a davit
Davit lowering a launch boat
Ali Johnson inside one of the launch boats
With the aid of Ali Johnson as my line coach, I got to help launch and recover two of the survey launch boats from the davits on the top of the ship into the Bering Sea. This is an important job for all personnel to learn, as it is a key part of most survey missions. Learning line handling helps to make sure the survey launches are securely held close to the ship to prevent damage and to safely allow people on and off the launch boats as they are placed in the sea. From learning how to handle the bow and aft lines, to releasing and attaching the davit hooks, and throwing lines from the launches to the ship (which I do poorly with my left hand), all is done in a specific manner. While the practice was done for the new staff on board, it was fun to be involved for the day and I got to see the beauty of the NOAA Ship Fairweather from the Bering Sea.
And I truly enjoyed being on the small launch boats. I then understood what many of the officers mentioned when they told me they enjoyed the small boat work. It’s just fun!
Me on a launch boat, taken by AB Colin Hogan
NOAA Ship Fairweather from a launch
My trip ended in Nome, Alaska, which was in and of itself an experience. Students, you will see pictures later. I am extremely thankful for the crew on board NOAA Ship Fairweather, they are a wonderful mix of passionate, fun professionals. I learned so much!
Personal Log
Being a Teacher at Sea is a strange, yet wonderful experience. Being a teacher, I normally spend the vast majority of my day at work being in charge of my classroom and beautiful students; leading lesson and activities, checking-in with those who need extra help and setting up/tearing down labs all day, as well as hopefully getting some papers graded. However during this experience, I was the student, learning from others about their expertise, experience and passions, as well as their challenges; being in charge of nothing. And given that I had no prior knowledge of hydrography, other than its definition, I was increasingly impressed with the level of knowledge and enthusiasm those on board had for this type of work. It drove my interest and desire to learn all I could from the crew. In fact, I often thought those on board were older than they were, as they are wiser beyond their years in many area of science, technology, maritime studies, NOAA Ship Fairweather specifics and Alaskan wildlife.
Crew of NOAA Ship Fairweather
NOAA offers teachers the opportunities to take part in different research done by their ships throughout the research season as a Teacher at Sea. The 3 main types of cruises offered to teachers include (taken from the NOAA Teacher at Sea website):
Fisheries research cruises perform biological and physical surveys to ensure sustainable fisheries and healthy marine habitats.
Oceanographic research cruises perform physical science studies to increase our understanding of the world’s oceans and climate.
Hydrographic survey cruises scan the coastal sea floor to locate submerged obstructions and navigational hazards for the creation and update of the nation’s nautical charts.
I was excited to be placed on a Hydrographic Survey boat, as this is an area in my curriculum I can develop with my students, and one which I think they are going to enjoy learning about!
While I was sad to leave, and half way through had a “I wish I would have known about this type of work when I was first looking at jobs” moment (which I realize was not the goal of this fellowship or of my schools for sending me), I am super excited to both teach my students about this important work and also be a representative of this awesome opportunity for teachers. I will wear my NOAA Teacher at Sea swag with pride!
From New Hampshire and coming soon this August from the Arctic
Yesterday, June 21, 2018, was the last day of school for us at the Maple Street School in Hopkinton, New Hampshire. It was an appropriate day for the last day of school as summer vacation starts on the summer solstice this year. We ended the school year with a promotion of the NOAA research mission I will be taking part in this summer. Part of this unique learning opportunity is to bring the learning experience to students and the general public, not only in Hopkinton, NH but across the country. If you have found my blog, congratulations! Please follow the blog so you to can join me on this adventure.
Above are the students of Maple Street during the end of year assembly. The Maple Street School is located in the village of Contoocook in the town of Hopkinton, New Hampshire. The school is composed of students in grades 4-6 grade and approximately 210 students.
Overview of Mission
There will be over 40 scientists and I the Science teacher headed into the Arctic Ocean sailing out of Nome Alaska to the Barrow Canyon. The Barrow Canyon is an underwater gorge that runs East to North West of Barrow Alaska and is known for its rich marine life. Scientists will be conducting numerous studies and observations at many locations during the trip. The scientific studies taking place will have a common theme, how are the rapid changing Arctic Sea Ice conditions affecting the region?
This NOAA image from November shows the historically low ice in the study area this fall. Historically the Chukchi Sea has had sea ice at this time. This map is a good guide to orient you to the study area from Nome to the north-northwest of Barrow, Alaska.
For the last two years, regional sea ice in the Bering Sea has been at a historic low. What changes does this have on the region’s ecosystem? This includes the microscopic plankton to fish, marine birds to larger marine mammals. These creatures live anywhere from the sea floor to the air, and all these areas will be observed. As we observed in my 6th-grade science class this year, in an ecosystem the living (biotic) is affected by the non-living (or abiotic). Non-living factors that will be measured will include the salinity of the water, the water temperature, and changes in ocean currents themselves. Changes in ocean currents have larger effects on local and regional climates, which include those on land.
This annual survey will allow for changes over time to monitored. What will scientists learn this year? Follow this blog to find out. To sign up to be notified of updates click the follow button on the bottom right of your screen and you will be notified when there is a new post to read. The blog will be updated at the start of and during the mission from the from one of the most remote areas of the world, north of the Arctic Circle in the Arctic Ocean. I look forward to talking to you again soon from the Arctic Ocean during the first week of August!
I must begin by trying to convey how honored and excited I am to be a part of NOAA’s Teacher At Sea program. I will be sailing aboard NOAA Ship Oscar Dyson with another teacher, Lee Teevan. What an adventure! More importantly, it’s an opportunity to gain knowledge about the management of the Bering Sea Fishery, the commercial fishing industry and how these forces impact both the ocean ecosystem and our lives. It is an opportunity to educate my students and community about these factors and the career opportunities that support them. It also demonstrates the fact that, life long learning opportunities come in many forms.
For the last five years I have been teaching at Lanphier High School in Springfield, Illinois. I look forward to bringing lessons into the classroom that can spark an interest in an unfamiliar aspect of scientific research and its real-life implications. Through these lessons, I also hope to expand student awareness of the related realm of job opportunities associated with this work.
I graduated with a Bachelor’s degree in Biology and a concentration in Fishery Science. I earned my Teacher Certification in Biology and the Sciences. Following graduation, I chose a career in teaching. Through my education at the University of Wisconsin – Superior, I became interested in the Foreign Fishery Observer Program. I was a Foreign Fishery Observer on Japanese fishing ships that fished primarily for Arrowtooth Flounder in the Bering Sea. This involved sampling the catches, and determining how much of each species of fish were caught to guard against exceeding their assigned quota. I spent a month and a half aboard 3 different ships. The opportunity to work on NOAA Ship Oscar Dyson will allow me to learn about the Fisheries Management aspect of the Bering Sea.
I returned to school to earn my Special Education Teaching Certification and earned a Master’s Degree in Educational Administration. As a teacher, I continued going to school and learning about many topics that supported my work. In order to increase my knowledge about Fishery Science, I took a class in which I created a teacher’s manual (An Aquatic Organisms Educational Module for the Therkildsen Field Station at the Emiquon Wetland Area on the Illinois River). This manual allows teachers to bring students to the field station, collect plankton samples and use the labs to study the results of their sampling. Students learn about the many aspects of the wetland ecosystem and even calculate estimates of the planktonic biomass of the wetland. How fun is that!
Traveling and Learning About the World Around Me
I hope with my introduction, I peak your interest in this aspect of our world. I invite you to be a part of my experience in order to continue your life long learning journey as I continue mine.
NOAA Teacher at Sea Vincent Colombo Aboard NOAA Ship Oscar Dyson June 11 – 30, 2015
Mission: Annual Walleye Pollock Survey Geographical area of the cruise: The Gulf of Alaska Date: June 21, 2015
Weather Data from the Bridge:
Wind Speed: 6.02 knots
Sea Temperature: 9.99 degrees Celsius
Air Temperature: 9.06 degrees Celsius
Air Pressure: 1016.59 mb
Unimak Island at sunriseUnimak BightShishaldin Volcano – One of Alaska’s many active volcanoes
Science and Technology Log:
You are sleeping soundly in your bed. Awakening you is your phone ringing… it’s 5:30 am… that could only mean one thing, it’s the school calling to say school is delayed 2 hours… FOG. No, it’s not the kind of fog depicted in John Carpenter’s thriller; it’s the kind that the local weatherman says is a localized phenomenon that reduces visibility to less than a quarter mile. If you live on Delmarva, you have experienced this sort of fog and know that it can turn a normal commute into a complicated one.
Here in the Alaskan summer, especially the Aleutian Chain, Gulf of Alaska, and the Bering Sea, fog is a normal, and potentially ALL day event. The only constant on this research cruise so far has been waking up every day and watching our NOAA Corps Officers navigate through a very dense fog.
A view from the bridge of the fog. You can barely see past the bow
But what causes fog, and why is it so prevalent here?
Fog is most simply described as a cloud on the ground. It is made up of condensed water droplets that have encircled some sort of condensation nuclei (something water can attach to). On the open sea, that condensation nuclei is salt, which has upwelled (brought to the surface) from turbulent seas or breaking waves. That translates to the rougher the seas, the more chance there is for condensation nuclei, and thus fog.
Fog is able to be formed when the air temperature is cooler than the dew point. The dew point refers to the specific temperature which water can condense. Dew point varies with humidity and temperature, you can calculate dew point here.
Because the sun exposure is so long here in the Alaskan summer day, there is ample time for the sun’s radiant energy to heat up the upper layer of the ocean causing evaporation. The now warmer air, filled with water vapor, meets the cool waters of the Northern Pacific or Bering Sea, and bam, here comes a fog bank. The most common name for this type of fog is Sea Fog, scientifically called Advection fog. The combination of salt is especially important because salt is a unique condensation nuclei in that it will allow fog to form when the humidity is as low as 70%. It can also turn from a gentle fog to a dense fog in little to no time. Air movement, or wind can actually cause more fog, rather than the contrary belief it will just blow away.
As the day goes on, the fog lowers. Notice the sea is calm, and the dew point is raising.The sky is crystal clear, however the surface is still covered in dense fog
So what have I learned? NOAA Ship Oscar Dyson has a very loud fog horn which the NOAA Corps Officers sound on a regular basis during these conditions.
Here is what you need to know if you are ever on the ocean in a fog bank!
One prolonged sounding of the horn – this means “Hey! I am here and moving, don’t hit me!”
Two prolonged soundings of the horn – this means “Hey! I am a big boat, but not moving, don’t hit me!”
One prolonged sounding of the horn followed by two short blasts – “Hey! I am a big boat and am either towing something (like a fishing net) or lowered in my ability to maneuver. Stay away and make room!”
One prolonged sounding of the horn followed by three short blasts – “Hey! I am a big boat that is being towed. Stay away from me because I have no power!”
One short blast of the horn, followed by a prolonged sounding, then one short blast; or rapidly ringing of a bell for five seconds every minute – “Hey I am anchored over here, you can’t see me, stay away.”
Here the land is still covered. This is what is called radiant fog. The conditions on land are still perfect for fog to exist. Radiation fog typically disappears as the sun warms up the land. Under that fog blanket is another mountain.The sun is able to eliminate and produce fog
You have to trust the Radar
Personal Log:
The life at sea is quite interesting. Luckily we have every luxury of home on board the Oscar Dyson, to include internet (sometimes), hot showers, and a nice bed. I have also been introduced to the game of Cribbage, an apparent maritime tradition. I cannot say that I fully understand it, but there are bunches of ways the number 15 can be made.
Busy on the ship’s fantail
Fishing is life up here, and every day I can expect at least one or two trawls (pulling of a net behind the ship). I was introduced to what is called a Methot net, which is used for catching smaller organisms. I was able to look at Krill for the first time in my life the other day, a keystone organism for a lot of the Alaskan food web.
Krill!
Also very cool was seeing the MACE scientists use a cool underwater camera. Ever wonder what is under 300 meters of water? With this camera that can be deployed in less than 5 minutes, scientists can get a picture of the sea floor on a live feed.
Looking at the live feed of the sea floor
Meet the Crew:
Richardo Guevara. Richardo has been with NOAA for 7 years and is the Ship’s Electronics Technician. What does this mean? Richardo works on various systems on the ship that involve communications, such as radios, acoustics, data sensors, radar, telephones, televisions, navigation, and computer systems. Richardo is the IT guru and knows everything about the ship’s day to day mission with technology. Richardo works for NOAA because he enjoys the life at sea, its benefits, and the satisfaction of working side by side with scientists.
Richardo Guevara, Electronics Technician
Richardo is a 23 year veteran of the United States Air Force. During his service he gained a plethora of knowledge suited towards his current position on board the Oscar Dyson. Richardo was born and raised in Pensacola, Florida, but now resides on the Oregon coast. Richardo says that this job requires a lot of flexibility, and his time in the military gave him this valuable life skill. According to Richardo: “A lot of times people seem to get the notion that you must have college to succeed, but I do not have a college degree. I cannot understate how important it is to get your high school diploma and to value that. Then it is up to you to go your own way and have success.”
Meet the crew:
Kirk Perry. Kirk is the lead fisherman aboard the Oscar Dyson and is acting Chief Boatswain for our research cruise. Kirk has been with NOAA since 2004, and is in charge of any activity which takes place on deck. His job includes, but is not limited to, using fishing equipment, deploying science equipment, anchoring, net maintenance, standing lookout on the bridge, being a helmsman, managing a deck crew of 6, and operating a crane. Kirk joined NOAA for the adventure of a lifetime, to fish in Alaska. He never intended to stay this long but absolutely loves his job and he says working with scientists is very rewarding.
Kirk Perry, Lead Fisherman
Out of curiosity in the neighborhood, Kirk discovered the world of fishing and hunting from a Czechoslovakian neighbor in San Jose, California. Kirk started commercially fishing at age 10 in Monterey Bay, California and has not looked back since. He graduated from Cal Poly SLO with a degree in Natural Resources Management while on scholarship for college baseball. Kirk loves baseball and football and is a diehard San Francisco Giants and 49ers fan. He also isn’t too bad on the guitar either.
Kirk was my unofficial, but official Alaskan fishing guide. It was his handy work that set me up with rigs and a tackle for my Halibut at the beginning of my trip. Kirk and I have a lot in common and have had countless discussions about the outdoors. A fun fact about Kirk, he can identify any bird that flies by the ship, whether it’s out of necessity or because he has been hunting so long.
Before we get into detail about data and where all of it ends up, let’s talk acronyms. This trip has been a lot like working in the Special Education world with what we like to call “Alphabet Soup.” We use acronyms a lot and so does the NOAA Science world. Here are a few important acronyms…
AFSC – Alaska Fisheries Science Center (located in Seattle, WA)
MACE – Midwater Assessment and Conservation Engineering Program (also in Seattle)
CLAMS – Catch Logger for Acoustic Midwater Surveys
We recorded data in a program called CLAMS as we processed each haul. The CLAMS (see above: Catch Logger for Acoustic Midwater Surveys) software was written by two NOAA Scientists. Data can be entered for length, weight, sex and development stage. It also assigns a specimen number to each otolith vial so the otoliths can be traced back to a specific fish. This is the CLAMS screen from my very first haul on the Oscar Dyson.
Kacey’s first haul on the Oscar Dyson.
From the Species List in the top left corner you can see I was measuring the length of Walleye Pollock- Adult. In that particular haul we also had Age 2 Pollock, a Chum Salmon and Chrysaora melanaster (a jellyfish or two). There is the graph in the lower left corner that plots the sizes in a bar graph and the summary tells me how many fish I measured – 462! When we finish in the Wet Lab we all exit out of CLAMS and Robert, a zooplankton ecologist working on our cruise, ducks into the Chem Lab to export our data. There were a total of 142 hauls processed during the 2014 Summer Walleye Pollock Survey (June 12 – August 13) so this process has happened 142 times in the last two months!
Next, it is time to export the data we collected onto a server known as MACEBASE. MACEBASE is the server that stores all the data collected on a Pollock survey. Not only will the data I helped collect live in infamy on MACEBASE, all the data collected over the last several years lives there, too. CLAMS data isn’t the only piece of data stored on MACEBASE. Information from the echosounding system, and SBE (Sea-bird Electronics temperature depth recorder) are uploaded as well.
We’ve reached the end of the summer survey. Now what? 142 hauls, two months of echosounder recordings, four Drop TS deployments and 57 CTD’s. There have also been 2660 sets of otoliths collected. Scientists who work for the MACE program will analyze all of this information and a biomass will be determined. What is a biomass? Some may think of it as biological material derived from living or recently living organisms. In this case, biomass refers to the total population of Walleye Pollock in the Bering Sea. In a few weeks our Chief Scientist Taina Honkalehto will present the findings of the survey to the Bering Sea Plan Team.
That team reviews the 2014 NOAA Fisheries survey results and Pollock fishing industry information and makes science-based recommendations to the North Pacific Fishery Management Council, who ultimately decide on Walleye Pollock quotas for 2015. Think about Ohio’s deer hunting season for a minute. Each hunter is given a limit on how many deer they can tag each year. In Pickaway & Ross counties we are limited to three deer – two either sex permits and one antlerless permit. If every deer hunter in Ohio was allowed to kill as many deer as they pleased the deer population could be depleted beyond recovery. The same goes for Pollock in the Bering Sea. Commercial fisheries are given quotas and that is the maximum amount of Pollock they are allowed to catch during a given year. The scientific research we are conducting helps ensure the Pollock population remains strong and healthy for years to come.
Personal Log:
Earlier today I took a trip down to the Engine Room. I can’t believe I waited until we were almost back to Dutch Harbor to check out this part of the ship. The Oscar Dyson is pretty much a floating city! Put on some ear protection…it’s about to get loud!
Kacey stands by one of four diesel engines on the Oscar Dyson. (Photo credit: Sweet William)
Why must we wear ear protection? That large machine behind me! It is a 3512 Caterpillar diesel engine. The diesel engine powers an electric generator. The electric generator gives power to an electric motor which turns the shaft. There are four engine/generator set ups and one shaft on the Dyson. The shaft turns resulting in the propeller turning, thus making us move! When we are cruising along slowly we can get by with using one engine/generator to turn the shaft. Most of the time we are speeding along at 12 knots, which requires us to use multiple engines/generators to get the shaft going. Here is a shot of the shaft.
The shaft of the Oscar Dyson.
Engineering Operation Station
The EOS, or Engineering Operation Station, is the fifth location where the ship can be controlled. The other four locations are on the Bridge.
Engine Data Screen provides information about the engines, generators and shaft.
This screen provides Engineers with important info about the generators (four on board) and how hard they’re working. At the time of my tour the ship was running on two generators (#1 and #2) as shown on the right side of the screen. #3 and #4 were secured, or taking a break. The Officer of the Deck, who is on the Bridge, can also see this screen. You can see an Ordered Shaft RPM (revolutions per minute) and an Actual Shaft RPM boxes. The Ordered Shaft RPM is changed by the Officer on Deck depending on the situation. During normal underway conditions the shaft is running at 100-110 RPMs. During fishing operations the shaft is between 30 and 65 RPMs.
The port side winch of the Oscar Dyson.
When I talked about the trawling process I mentioned that the Chief Boatswain is able to extend the opening of the net really far behind the stern (back) of the ship. This is the port side winch that is reeled out during trawling operations. There are around 4300 meters of cable on that reel! How many feet is that?
The rudder of the Oscar Dyson is right below this part of the hydraulic system.
Part of the hydraulic system on the Oscar Dyson.
When Lt. Ostapenko and ENS Gilman were teaching me how to steer this ship they emphasized how sensitive the steering wheel is. Only a little fingertip push to the left can really make a huge difference in the ship’s course. This is the hydraulic system that controls the rudder, which steers the ship left or right. The actual rudder is hidden down below, under water. I’m told it is a large metal plate that stands twice as tall as me. This tour really opened my eyes to a whole city that operates below the deck I’ve been working on for the last 18 days. Without all of these pieces of equipment long missions would not be possible. Because the Oscar Dyson is well-equipped it is able to sail up to forty days at a time. What keeps it from sailing longer voyages? Food supply!
And just like that I remembered all good things must come to an end. This is the end of the road for the Summer Walleye Pollock Survey and my time with the Oscar Dyson. We have cleaned and packed the science areas of the ship. Next we’ll be packing our bags and cleaning our staterooms. In a matter of hours we’ll be docking and saying our goodbyes. There have been many times over the last 19 days where I’ve stood, staring out the windows of the Bridge and thinking about how lucky I am. I will never be able to express how thankful I am for this opportunity and how it will impact my life for many, many years. A huge THANK YOU goes to the staff of NOAA Teacher at Sea. My fellow shipmates have been beyond welcoming and patient with me. Thank you, thank you, THANK YOU to everyone on board the Dyson!! I wish you safe travels and happy fishing!
To Team Bluefin Tuna (night shift Science Crew), thank you for your guidance, ice cream eating habits, card game instruction, movie watching enthusiasm, many laughs and the phrase “It is time.” Thanks for the memories! I owe y’all big time!
Did you know? The ship also has a sewage treatment facility and water evaporation system onboard. The MSD is a septic tank/water treatment machine and the water evaporation system distills seawater into fresh potable (drinking and cooking) water.
A shot of Captain’s Bay from the Flying Bridge of the Oscar Dyson. (Photo credit: Robert)
Kacey on the Flying Bridge of the Oscar Dyson. (Photo credit: Emily)
Kacey on the NOAA Ship Oscar Dyson R-224. (Photo Credit: Emily)
Last night and afternoon was by far the craziest we’ve seen on the Oscar Dyson. The winds were up to 35 knots (about 40 miles an hour). The waves were averaging 12 feet in height, and sometimes reaching 15-18 feet in height. Right now I’m sitting on the bridge and waves are around 8 feet. With every rise the horizon disappears and I’m looking up at stark grey clouds. With every drop the window fills with views of the sea, with the horizon appearing just below the top of the window frames.
In the space of three seconds, the view from atop the bridge of the Oscar Dyson goes from looking up to the sky to down at the sea. The above pic is a MILD example.
Ensign Gilman, a member of NOAA Corps, explains to me how the same thing that makes the Bering Sea good for fish makes things rough for fishermen.
“This part of the Bering Sea is shallow compared to the open ocean. That makes the water easier for the wind to pick up and create waves. When strong winds come off Russia and Alaska, it kicks up a lot of wave action,” Ensign Gilman says.
Lt. Andrew Ostapenko, Survey Tech Bill Potts, and Ens. Nathaniel Gilman on the Bridge
“It’s not so much about the swells (wave height),” he continues. “It’s about the steepness of the wave, and how much time you have to recover from the last wave.” He starts counting between the waves… “one… two… three… three seconds between wave heights… that’s a pretty high frequency. With no time to recover, the ship can get rocked around pretty rough.”
Rough is right! Last night I got shook around like the last jelly bean in the jar. I seriously considered finding some rope to tie myself into my bunk. There were moments when it seemed an angry giraffe was jumping on my bunk. I may or may not have shouted angrily at Sir Isaac Newton that night.
Which brings us to Sea Sickness.
Lt. Paul Hoffman, a Physician’s Assistant with the U.S. Public Health Service, explains how sea sickness works.
“The inner ears are made up of tubes that allow us to sense motion in three ways,” Hoffman explains. “Forward/back, left/right, and up/down. While that’s the main way our brain tells us where we are, we use other senses as well.” He goes on to explain that every point of contact… feet and hands, especially, tell the brain more information about where we are in the world.
“But another, very important piece, are your eyes. Your eyes are a way to confirm where you are in the world. Sea Sickness tends to happen when your ears are experiencing motion that your eyes can’t confirm,” Hoffman says.
For example, when you’re getting bounced around in your cabin (room), but nothing around you APPEARS to be moving (walls, chair, desk, etc) your brain, essentially, freaks out. It’s not connected to anything rational. It’s not enough to say “Duhh, brain, I’m on a boat. Of course this happens.” It happens in a part of the brain that’s not controlled by conscious thought. You can’t, as far as I can tell, think your way out of it.
Hoffman goes on to explain a very simple solution: Go look at the sea.
“When you get out on deck, the motion of the boat doesn’t stop, but your eyes can look at the horizon… they can confirm what your ears have been trying to tell you… that you really are going up and down. And while it won’t stop the boat from bouncing you around, your stomach will probably feel a lot better,” Hoffman says.
Everything is easier on deck! Clockwise from left: Winch Operator Pete Stoeckle and myself near Cape Navarin, Russia. Oceanographer Nate Lauffenburger and myself crossing the International Date Line. Survey Tech Alyssa Pourmonir and Chief Scientist Taina Honkalehto near Cape Navarin, Russia.
And he’s right. Being up on the bridge… watching the Oscar Dyson plow into those stout waves… my brain has settled into things. The world is back to normal. Well, as normal as things can get on a ship more than a third of the way around the world, that is.
Personal Log:
Let’s meet a few of the good folks on the Oscar Dyson.
NOAA Crew Member Alyssa Pourmonir
Job Title: Survey Technician
Survey Tech Alyssa Pourmonir assesses a giant jelly fish!
Responsibilities on the Dyson: “I’m a liaison between crew and scientists, work with scientists in the wet lab, put sensors onto the trawling nets, focus on safety, maintaining all scientific data and equipment on board.” A liaison is someone who connects two people or groups of people.
Education Level Required: “A Bachelors degree in the sciences.” Alyssa has a BS in Marine and Environmental Science from SUNY Maritime with minors in oceanography and meteorology.
Job or career you’ve had before this: “I was a life guard/swim instructor in high school, then I was in the Coast Guard for three years. Life guarding is the BEST job in high school!”
Goal: “I strive to bring about positive change in the world through science.”
Weirdest thing you ever took out of the Sea: “Lump Sucker: They have big flappy eyebrows… they kinda look like a bowling ball.”
Lump Sucker! When provoked, this fish sucks in so much water that it becomes too big for most other fish to swallow. That’s its defense mechanism! It sort of looks like a cross between a bowling ball and grumpy cat!
Dirtiest job you’ve ever had to do on a ship: “Sexing the fish (by cutting them open and looking at the fish’s gonads… sometimes they explode!) is pretty gross, but cleaning the PCO2 filter is nasty. There are these marine organisms that get in there and cling to the filter and you have to push them off with your hands… they get all slimy!”
Engineer Rico Speights shows off how nasty a filter can be! He and his wife (Chief Steward Ava) sail the Bering Sea together with NOAA!
NOAA Rotating Technician Ricardo Guevara
Job Title: Electronics Technician
Responsibilities on the Dyson: “I maintain and upkeep most of the low voltage electronics on the ship, like computer networking, radio, television systems, sensors, navigation systems. All the equipment that can “talk,” that can communicate with other devices, I take care of that.”
Education level Required: High school diploma and experience. “I have a high school diploma and some college. The majority of my knowledge comes from experience… 23 years in the military.”
Technician Ricardo Guevara shows me an ultrasonic anemometer… It can tell the wind speed by the time it takes the wind to get from one fork to the other.
Job or career you’ve had before this: “I was a telecommunications specialist with the United States Air Force… I managed encryption systems and associated keymat for secure communications.” This means he worked with secret codes.
Trickiest problem you’ve solved for NOAA: “There was a science station way out on the outer edge of the Hawaiian Islands that was running their internet off of dial-up via satellite phone when the whole thing shut down on them… ‘Blue Screen of Death’ style. We couldn’t just swap out the computer because of all the sensitive information on it. I figured out how to repair the disk without tearing the machine apart. Folks were extremely happy with the result… it was very important to the scientists’ work.”
What are you working on now? “I’m migrating most of the ship’s computers from windows xp to Windows 7. I’m also troubleshooting the DirecTV system. The problem with DirecTV is that the Multi-Switch for the receivers isn’t communicating directly with the satellite. Our antenna sees the satellite, but the satellite cannot ‘shake hands’ with our receiver system.” And that means no Red Sox games on TV! Having entertainment available for the crew is important when you’re out to sea for two to three weeks at a time!
What’s a challenging part of your job on the Dyson? “I don’t like it, but I do it when I have to… sometimes in this job you have to work pretty high up. Sometimes I have to climb the ship’s mast for antenna and wind sensor maintenance. It’s windy up there… and eagles aren’t afraid of you up there. That’s their place!”
Lt. Paul Hoffman
Job Title: Physician Assistant (or P.A.) with the U.S. Public Health Service
Lt. Paul Huffman and the small boat Peggy D behind him. Lt. Huffman is with the U.S. Public Health Service. But secretly I call him the Bat Man of Health Care. Peggy Dyson is a beloved part of the Alaska Fishing Industry’s history. Before the internet and satellite telephones, her radio service served as a vital link home for fishermen out at sea. She was married to Oscar Dyson, the man for whom the ship was named.
Responsibilities on the Dyson: He’s effectively the ship’s doctor. “Whenever a NOAA ship travels outside 200 miles of the U.S. coast, they need to be able to provide an increased level of medical care. That’s what I do,” says Hoffman.
Education required for this career: “Usually a Masters degree from a Physician’s Assistant school with certification.”
Job or career you’ve had before this: “Ten and a half years in the U.S. Army, I started off as an EMT. Then I went on to LPN (Licensed Practical Nurse) school, and then blessed with a chance to go on to PA school. I served in Iraq in 2007-2008, then returned for 2010-2011.”
Most satisfying thing you’ve seen or done in your career: “Knowing that you personally had an impact on somebody’s life… keeping somebody alive. We stabilized one of our soldiers and then had a helicopter evac (evacuation) under adverse situations. Situations like that are what make being a PA worthwhile.”
Could you explain what the Public Health Service is for folks that might not be familiar with it?
“The Public Health Service is one of the seven branches of the U.S. Military. It’s a non-weaponized, non-combative, all-officer corps that falls under the Department of Health and Human Services. We’re entirely medical related. Primary deployments (when they get sent into action) are related to national emergency situations… hurricanes, earth quakes… anywhere where state and local resources are overrun… they can request additional resources… that’s where we step in. Hurricane Katrina, the Earthquake in Haiti… a lot of officers saw deployment there. Personally, I’ve been employed in Indian Health Services in California and NOAA’s Aircraft Operations Center (AOC)… they’re the hurricane hunters,” Hoffman concludes.
Kids, when you’ve been around Lt. Hoffman for a while, you realize “adverse conditions” to him are a little tougher than a traffic jam or missing a homework assignment. I’ve decided to call him, and the rest of the Public Health Service, “The Batman of Health Care.” When somebody lights up the Bat Signal, they’re there to help people feel better.
Date: August 8, 2014 Weather information from the Bridge:
Air Temperature: 11° C
Wind Speed: 27 knots
Wind Direction: 30°
Weather Conditions: High winds and high seas
Latitude: 60° 35.97 N
Longitude: 178° 56.08 W Science and Technology Log:
If you recall from my last post we left off with fish on the table ready to be sorted and processed. Before we go into the Wet Lab/Fish Lab we need to get geared up. Go ahead and put on your boots, bibs, gloves and a jacket if you’re cold. You should look like this when you’re ready for work…
This is the gear you’ll need in the Wet Lab. It can get pretty slimy in there! (Photo Credit: Emily)
The first order of business is sorting the catch. We don’t have a magic net that only catches Pollock. Sometimes we pick up other treats along the way. Some of the cool things we’ve brought in are crabs, squid, many types of jellyfish and the occasional salmon. One person stands on each side of the conveyor belt and picks these other species out so they aren’t weighed in with our Pollock catch. It is very important that we only weigh Pollock as we sort so our data are valid. After all the Pollock have been weighed, we then weigh the other items from the haul. Here are some shots from the conveyor belt.
Kacey lifts the door on the table so the fish will slide down onto the conveyor belt. This is when other species are pulled out. (Photo Credit: Sandi)At the end of the conveyor belt, Pollock are put into baskets, weighed and put into the sorting bin. (Photo Credit: Sandi)
Not every single fish in our net is put into the sorting bin. Only random selection from the catch goes to the sorting bin. The remaining fish from the haul are returned back to the sea. Those fish who find themselves in the sorting bin are cut open to determine their sex. You can’t tell the sex of the fish just by looking at the outside. You have to cut them open, slide the liver to the side and look for the reproductive organs. Males have a rope-like strand as testes. Females have ovaries, which are sacs similar to the stomach but are a distinctly different color.
This is the sorting bin. Can you guess what Blokes and Sheilas means?The white, rope-like structure is the male reproductive organ.The pinkish colored sac is one of the female’s ovaries. It contains thousands of eggs!Kacey uses a scalpel to cut the fish. She slides the liver out and looks for the reproductive organs. Is it a male or female? (Photo Credit: Darin)
Okay, no more slicing open fish. For now! The next step is to measure the length of all the fish we just separated by sex. One of the scientists goes to the blokes side and another goes to the sheilas side. We have a handy-dandy tool used to measure and record the lengths called an Ichthystick. I can’t imagine processing fish without it!
The Ichthystick is used to record the length of fish. A special tool held in the hand has a magnet inside that makes a connection with a magnet strip inside the board. It automatically registers a length and records it in a computer program called ClamsKacey measures the length of a male with the Ichthystick. She holds the tool in her right hand and places it at the fork in the fish’s tail. A special sound alerts her when the data is recorded. (Photo Credit: Darin)
That is the end of the line for those Pollock but we still have a basket waiting for us. A random sample is pulled off the conveyor belt and set to the side for another type of data collection. The Pollock in this special basket will be individually weighed, lengths will be taken and a scientist will determine if it is a male or female. Then we remove the otoliths. What are otoliths? They are small bones inside a fish’s skull that can tell us the age of the fish. Think of a tree and how we can count the rings of a tree to know how old it is. This is the same concept. For this special sample we remove the otoliths, which are labeled and given to a lab on land where a scientist will carefully examine them under a microscope. The scientist will be able to connect the vial containing the otoliths to the other data collected on that fish (length, weight, sex) because each fish in this sample is given a unique specimen number. This is all part of our mission, which is analyzing the health and population of Pollock in the Bering Sea!
Kacey scans a barcode placed on an otolith vial. Robert is removing the otoliths from each fish and Kacey places them in the vial. It is important to make sure the otoliths are placed in the vial that corresponds to the fish Robert measured. (Photo Credit: Emily)
Kacey removes an otolith from a fish Robert cut open. The otoliths are placed in the vial Kacey is holding. (Photo Credit: Emily)
At this point we have just about collected all the data we need for this haul. Each time we haul in a catch this process is completed. As of today, our survey has completed 28 hauls. Thank goodness we have a day shift and a night shift to share the responsibility. That would be a lot of fish for one crew to process! For our next topic we’ll take a look at how the data is recorded and what happens after we’ve completed our mission. By the way, “blokes” are males and “sheilas” are females. Now please excuse us while we go wash fish scales off of every surface in the Wet Lab, including ourselves!
Personal Log:
Just so you know, we’re not starving out here. In fact, we’re stuffed to the gills – pun completely intended. Our Chief Steward Ava and her assistant Adam whip up some delicious meals. Since I am on night shift I do miss the traditional breakfast served each morning. Sometimes, like today, I am up for lunch. I’m really glad I was or I would have missed out on enchiladas. That would have been a terrible crisis! Most people who know me realize there is never enough Mexican food in my life! Tacos (hard and soft), rice and beans were served along with the enchiladas. Each meal is quite a spread! If I have missed lunch I’ll grab a bowl of cereal to hold me over until supper. I bet you’ll never guess we eat a lot of seafood on board. There is usually a fish dish at supper. We even had crab legs one night and fried shrimp another. Some other supper dishes include pork chops, BBQ ribs, baked steak, turkey, rice, mashed potatoes, and macaroni and cheese plus there are always a couple vegetable dishes to choose from. We can’t forget about dessert, either. Cookies, cakes, brownies or pies are served at nearly every meal. It didn’t take long for me to find the ice cream cooler, either. What else would one eat at midnight?!
Ava and Adam are always open to suggestions as well. Someone told Ava the night shift Science Crew was really missing breakfast foods so a few days ago we had breakfast for supper. Not only did they make a traditional supper meal, they made a complete breakfast meal, too! We had pancakes, waffles, bacon, eggs, and hashbrowns. It was so thoughtful of them to do that for us, especially on top of making a full meal for the rest of the crew. Thanks Ava and Adam!
There are situations where a crew member might not be able to make it to the Mess during our set serving schedule. Deck Crew could be putting a net in or taking it out or Science Crew could be processing a catch. We never have to worry, though. Another great thing about Ava and Adam is they will make you a plate, wrap it up and put it in the fridge so you have a meal for later.
Like I said, we’re not going hungry any time soon! Here are some shots from the Mess Deck (dining room).
Mess Deck on the Oscar Dyson.Mess Deck on the Oscar Dyson. Can you guess why there are tennis balls on the legs of the chairs?There are always multiple options for every meal. If you’re hungry on this ship you must be the pickiest eater on Earth!
Did you know?
Not only are otoliths useful to scientists during stock assessment, they help the fish with balance, movement and hearing.
Science and Technology Log: Abiotic Factors in the Bering Sea
Ecosystems are made up of biotic and abiotic factors. Biotic is just another word for “stuff that is, or was, alive.” In a forest, that would include everything from Owl to Oak Tree, from bear to bacteria, and from fish to fungi. It includes anything alive, or, for that matter, dead. Keep in mind that “dead” is not the same as “non-living.”
The salmon and the black-legged kittiwake are both biotic members of the sub-arctic ecosystem.
“Non-living” describes things that are not, cannot, and never will be “alive.” These things are referred to as “abiotic.” (The prefix a- basically means the same as non-). Rocks, water, wind, sunlight and temperature are all considered abiotic factors. And while the most obvious threat to a salmon swimming up river might be the slash of a bear’s mighty claw, warm water could be even more deadly. Warm water carries less dissolved oxygen for the fish to absorb through their gills. This means that a power plant or factory that releases warm water into a river could actually cause fish to suffocate and, well, drown.
A 90 degree panorama of the Bering Sea from atop the Oscar Dyson. I’d show you the other 270°, but it’s pretty much the same. The sea and sky are abiotic parts of the sub-arctic ecosystem.
Fish in the Bering Sea have the same kind of challenges. Like Goldilocks, Pollock are always looking for sea water that is just right. The Oscar Dyson has the tools for testing all sorts of Abiotic factors. This is the Conductivity Temperature Depth sensor (Also known as the CTD).
Survey Technicians Allen and Bill teach me how to launch The Conductivity Temperature Depth Probe (or CTD).
The CTD sends signals up to computers in the cave to explain all sorts of abiotic conditions in the water column. It can measure how salty the water is by testing how well the water conducts electricity. It can tell you how cloudy, or turbid, the water is with a turbidity sensor. It can even tell you things like the amount of oxygen dissolved in the ocean.
To see how abiotic factors drive biotic factors, take a look at this.
The graph above is depth-oriented. The further down you go on the graph, the deeper in the water column you are. The blue line represents temperature. Does the temperature stay constant? Where does it change?
I know, you may want to turn the graph above on its side… but don’t. You’ll notice that depth is on the y-axis (left). That means that the further down you are on the graph, the deeper in the sea you are. The blue line represents the water temperature at that depth. Where do you see the temperature drop?
Right… The temperature drops rapidly between about 20 and 35 meters. This part of the water column is called the Thermocline, and you’ll find it in much of the world’s oceans. It’s essentially where the temperature between surface waters (which are heated by the sun) and the deeper waters (typically dark and cold) mix together.
OK, so you’re like “great. So what? Water gets colder. Big deal… let’s throw a parade for science.”
Well, look at the graph to the right. It was made from another kind of data recorded by the CTD.
Fluoresence: Another depth-oriented graph from the CTD… the green line effectively shows us the amount of phytoplankton in the water column, based on depth.
The green line represents the amount of fluorescence. Fluorescence is a marker of phytoplankton. Phytoplankton are plant-like protists… the great producers of the sea! The more fluorescence, the more phytoplankton you have. Phytoplankton love to live right at the bottom of the thermocline. It gives them the best of both worlds: sunlight from above and nutrients from the bottom of the sea, which so many animals call home.
Now, if you’re a fish… especially a vegetarian fish, you just said: “Dinner? I’m listening…” But there’s an added bonus.
Look at this:
Oxygen data from the CTD! This shows where the most dissolved oxygen is in the water column, based on depth. Notice any connections to the other graphs?
That orange line represents the amount of oxygen dissolved in the water. How does that compare to the other graphs?
Yup! The phytoplankton is hanging down there at the bottom of the thermocline cranking out oxygen! What a fine place to be a fish! Dinner and plenty of fresh air to breathe! So here, the abiotic (the temperature) drives the biotic (phytoplankton) which then drives the abiotic again (oxygen). This dance between biotic and abiotic plays out throughout earth’s ecosystems.
Another major abiotic factor is the depth of the ocean floor. Deep areas, also known as abyss, or abyssal plains, have food sources that are so far below the surface that phytoplankton can’t take advantage of the ground nutrients. Bad for phytoplankton is, of course, bad for fish. Look at this:
The blue cloud represents a last grouping of fish as the continental shelf drops into the deep. Dr. Mikhail examines a cod.
That sloping red line is the profile (side view of the shape of the land) of the ocean floor. Those blue dots on the slope are fish. As Dr. Mikhail Stepanenko, a visiting Pollock specialist from Vladivostok, Russia, puts it, “after this… no more Pollock. It’s too deep.”
He goes on to show me how Pollock in the Bering Sea are only found on the continental shelf between the Aleutian Islands and Northeastern Russia. Young Pollock start their lives down near the Aleutians to the southeast, then migrate Northwest towards Russia, where lots of food is waiting for them.
Alaskan Pollock avoid the deep! Purple line represents the ocean floor right before it drops off into the Aleutian Basin… a very deep place!
The purple line drawn in represents the drop-off you saw above… right before the deep zone. Pollock tend to stay in the shallow areas above it… where the eating is good!
Once again, the dance between the abiotic and the biotic create an ecosystem. Over the abyss, Phytoplankton can’t take advantage of nutrients from the deep, and fish can’t take advantage of the phytoplankton. Nonliving aspects have a MASSIVE impact on all the organisms in an ecosystem.
Next time we explore the Biotic side of things… the Sub-arctic food web!
Personal Log: The Order of the Monkey’s Fist.
Sweet William, a retired police officer turned ship’s engineer, tells the story of the order of the monkey’s fist.
Sweet William the Engineer shows off a monkey’s fist
The story goes that some island came up with a clever way to catch monkeys. They’d place a piece of fruit in a jar just barely big enough for the fruit to fit through and then leave the jar out for the monkeys. When a monkey saw it, they’d reach their hand in to grab the fruit, but couldn’t pull it out because their hands were too big now that they had the fruit in it. The monkey, so attached to the idea of an “easy” meal wouldn’t let go, making them easy pickings for the islanders. The Monkey’s Fist became a symbol for how clinging to our desires for some things can, in the end, do more harm than good. That sometimes letting go of something we want so badly is, in the end, what can grant us relief.
Another story of the origin of the monkey’s fist goes like this: A sea captain saw a sailor on the beach sharing his meal with a monkey. Without skipping a beat, the monkey went into the jungle and brought the sailor some of HIS meal… a piece of fruit.
No man is an Island. Mt. Ballyhoo, Unalaska, AK
Whatever the true origin of the Order is, the message is the same. Generosity beats selfishness at sea. It’s often better to let go of your own interests, sometimes, and think of someone else’s. Onboard the Oscar Dyson, when we see someone committing an act of kindness, we put their name in a box. Every now and then they pull a name from the box, and that person wins something at the ship store… a hat or a t-shirt or what have you. Of course, that’s not the point. The point is that NOAA sailors… scientists, corps, and crew… have each other’s backs. They look out for each other in a place where all they really have IS each other.