Vincent Colombo, Into the Fog, June 21, 2015

NOAA Teacher at Sea
Vincent Colombo
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Annual Walleye Pollock Survey
Geographical area of the cruise: The Gulf of Alaska
Date: June 21, 2015

Weather Data from the Bridge:

  • Wind Speed: 6.02 knots
  • Sea Temperature: 9.99 degrees Celsius
  • Air Temperature: 9.06 degrees Celsius
  • Air Pressure: 1016.59 mb
Unimak Island at sunrise

Unimak Island at sunrise

Unimak Bight

Unimak Bight

Shishaldin Volcano - One of Alaska's many active volcanoes

Shishaldin Volcano – One of Alaska’s many active volcanoes

Science and Technology Log:

You are sleeping soundly in your bed. Awakening you is your phone ringing… it’s 5:30 am… that could only mean one thing, it’s the school calling to say school is delayed 2 hours… FOG. No, it’s not the kind of fog depicted in John Carpenter’s thriller; it’s the kind that the local weatherman says is a localized phenomenon that reduces visibility to less than a quarter mile. If you live on Delmarva, you have experienced this sort of fog and know that it can turn a normal commute into a complicated one.

Here in the Alaskan summer, especially the Aleutian Chain, Gulf of Alaska, and the Bering Sea, fog is a normal, and potentially ALL day event. The only constant on this research cruise so far has been waking up every day and watching our NOAA Corps Officers navigate through a very dense fog.

A view from the bridge of the fog. You can barely see past the bow

A view from the bridge of the fog. You can barely see past the bow

But what causes fog, and why is it so prevalent here?

Fog is most simply described as a cloud on the ground. It is made up of condensed water droplets that have encircled some sort of condensation nuclei (something water can attach to). On the open sea, that condensation nuclei is salt, which has upwelled (brought to the surface) from turbulent seas or breaking waves. That translates to the rougher the seas, the more chance there is for condensation nuclei, and thus fog.

Fog is able to be formed when the air temperature is cooler than the dew point. The dew point refers to the specific temperature which water can condense. Dew point varies with humidity and temperature, you can calculate dew point here.

Because the sun exposure is so long here in the Alaskan summer day, there is ample time for the sun’s radiant energy to heat up the upper layer of the ocean causing evaporation. The now warmer air, filled with water vapor, meets the cool waters of the Northern Pacific or Bering Sea, and bam, here comes a fog bank. The most common name for this type of fog is Sea Fog, scientifically called Advection fog. The combination of salt is especially important because salt is a unique condensation nuclei in that it will allow fog to form when the humidity is as low as 70%. It can also turn from a gentle fog to a dense fog in little to no time. Air movement, or wind can actually cause more fog, rather than the contrary belief it will just blow away.

As the day goes on, the fog lowers

As the day goes on, the fog lowers. Notice the sea is calm, and the dew point is raising.

The sky is crystal clear, however the surface is still covered in dense fog

The sky is crystal clear, however the surface is still covered in dense fog

So what have I learned? NOAA Ship Oscar Dyson has a very loud fog horn which the NOAA Corps Officers sound on a regular basis during these conditions.

Here is what you need to know if you are ever on the ocean in a fog bank!

  • One prolonged sounding of the horn – this means “Hey! I am here and moving, don’t hit me!”
  • Two prolonged soundings of the horn – this means “Hey! I am a big boat, but not moving, don’t hit me!”
  • One prolonged sounding of the horn followed by two short blasts – “Hey! I am a big boat and am either towing something (like a fishing net) or lowered in my ability to maneuver. Stay away and make room!”
  • One prolonged sounding of the horn followed by three short blasts – “Hey! I am a big boat that is being towed. Stay away from me because I have no power!”
  • One short blast of the horn, followed by a prolonged sounding, then one short blast; or rapidly ringing of a bell for five seconds every minute –  “Hey I am anchored over here, you can’t see me, stay away.”
Here the land is still covered. Under that blanket is another mountain.

Here the land is still covered. This is what is called radiant fog. The conditions on land are still perfect for fog to exist. Radiation fog typically disappears as the sun warms up the land.  Under that fog blanket is another mountain.

The sun is able to eliminate and produce fog

The sun is able to eliminate and produce fog

 

You have to trust the Radar

You have to trust the Radar

 

Personal Log:

The life at sea is quite interesting. Luckily we have every luxury of home on board the Oscar Dyson, to include internet (sometimes), hot showers, and a nice bed. I have also been introduced to the game of Cribbage, an apparent maritime tradition. I cannot say that I fully understand it, but there are bunches of ways the number 15 can be made.

?

Busy on the ship’s fantail

Fishing is life up here, and every day I can expect at least one or two trawls (pulling of a net behind the ship). I was introduced to what is called a Methot net, which is used for catching smaller organisms. I was able to look at Krill for the first time in my life the other day, a keystone organism for a lot of the Alaskan food web.

Krill!

Krill!

Also very cool was seeing the MACE scientists use a cool underwater camera. Ever wonder what is under 300 meters of water? With this camera that can be deployed in less than 5 minutes, scientists can get a picture of the sea floor on a live feed.

colombo3

Looking at the live feed of the sea floor

Meet the Crew:

Richardo Guevara. Richardo has been with NOAA for 7 years and is the Ship’s Electronics Technician. What does this mean? Richardo works on various systems on the ship that involve communications, such as radios, acoustics, data sensors, radar, telephones, televisions, navigation, and computer systems. Richardo is the IT guru and knows everything about the ship’s day to day mission with technology. Richardo works for NOAA because he enjoys the life at sea, its benefits, and the satisfaction of working side by side with scientists.

Richardo Guevara, Electronics Technician

Richardo Guevara, Electronics Technician

Richardo is a 23 year veteran of the United States Air Force. During his service he gained a plethora of knowledge suited towards his current position on board the Oscar Dyson. Richardo was born and raised in Pensacola, Florida, but now resides on the Oregon coast. Richardo says that this job requires a lot of flexibility, and his time in the military gave him this valuable life skill. According to Richardo: “A lot of times people seem to get the notion that you must have college to succeed, but I do not have a college degree. I cannot understate how important it is to get your high school diploma and to value that. Then it is up to you to go your own way and have success.”

Meet the crew:

Kirk Perry. Kirk is the lead fisherman aboard the Oscar Dyson and is acting Chief Boatswain for our research cruise. Kirk has been with NOAA since 2004, and is in charge of any activity which takes place on deck. His job includes, but is not limited to, using fishing equipment, deploying science equipment, anchoring, net maintenance, standing lookout on the bridge, being a helmsman, managing a deck crew of 6, and operating a crane. Kirk joined NOAA for the adventure of a lifetime, to fish in Alaska. He never intended to stay this long but absolutely loves his job and he says working with scientists is very rewarding.

?

Kirk Perry, Lead Fisherman

Out of curiosity in the neighborhood, Kirk discovered the world of fishing and hunting from a Czechoslovakian neighbor in San Jose, California. Kirk started commercially fishing at age 10 in Monterey Bay, California and has not looked back since. He graduated from Cal Poly SLO with a degree in Natural Resources Management while on scholarship for college baseball. Kirk loves baseball and football and is a diehard San Francisco Giants and 49ers fan. He also isn’t too bad on the guitar either.

Kirk was my unofficial, but official Alaskan fishing guide. It was his handy work that set me up with rigs and a tackle for my Halibut at the beginning of my trip. Kirk and I have a lot in common and have had countless discussions about the outdoors. A fun fact about Kirk, he can identify any bird that flies by the ship, whether it’s out of necessity or because he has been hunting so long.

Kacey Shaffer: All Good Things… August 13, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 13, 2014

Weather information from the Bridge:

Air Temperature: 12º C

Wind Speed: 10 knots

Wind Direction: 306.62 º

Weather Conditions: Clear

Latitude: 53º 51.38 N

Longitude: 166º 34.85 W

Science and Technology Log:

Before we get into detail about data and where all of it ends up, let’s talk acronyms. This trip has been a lot like working in the Special Education world with what we like to call “Alphabet Soup.” We use acronyms a lot and so does the NOAA Science world. Here are a few important acronyms…

AFSC – Alaska Fisheries Science Center (located in Seattle, WA)

MACE – Midwater Assessment and Conservation Engineering Program (also in Seattle)

CLAMS – Catch Logger for Acoustic Midwater Surveys

Drop TS – Dropped Target Strength System

CTD – Conductivity, Temperature and Depth System

SBE – Sea-bird Electronics Temperature-Depth Recorder

We recorded data in a program called CLAMS as we processed each haul. The CLAMS (see above: Catch Logger for Acoustic Midwater Surveys) software was written by two NOAA Scientists. Data can be entered for length, weight, sex and development stage. It also assigns a specimen number to each otolith vial so the otoliths can be traced back to a specific fish. This is the CLAMS screen from my very first haul on the Oscar Dyson.

Kacey's first haul on the Oscar Dyson.

Kacey’s first haul on the Oscar Dyson.

From the Species List in the top left corner you can see I was measuring the length of Walleye Pollock- Adult. In that particular haul we also had Age 2 Pollock, a Chum Salmon and Chrysaora melanaster (a jellyfish or two). There is the graph in the lower left corner that plots the sizes in a bar graph and the summary tells me how many fish I measured – 462! When we finish in the Wet Lab we all exit out of CLAMS and Robert, a zooplankton ecologist working on our cruise, ducks into the Chem Lab to export our data. There were a total of 142 hauls processed during the 2014 Summer Walleye Pollock Survey (June 12 – August 13) so this process has happened 142 times in the last two months!

Next, it is time to export the data we collected onto a server known as MACEBASE. MACEBASE is the server that stores all the data collected on a Pollock survey. Not only will the data I helped collect live in infamy on MACEBASE, all the data collected over the last several years lives there, too. CLAMS data isn’t the only piece of data stored on MACEBASE. Information from the echosounding system, and SBE (Sea-bird Electronics temperature depth recorder) are uploaded as well.

We’ve reached the end of the summer survey. Now what? 142 hauls, two months of echosounder recordings, four Drop TS deployments and 57 CTD’s. There have also been 2660 sets of otoliths collected. Scientists who work for the MACE program will analyze all of this information and a biomass will be determined. What is a biomass? Some may think of it as biological material derived from living or recently living organisms. In this case, biomass refers to the total population of Walleye Pollock in the Bering Sea. In a few weeks our Chief Scientist Taina Honkalehto will present the findings of the survey to the Bering Sea Plan Team.

That team reviews the 2014 NOAA Fisheries survey results and Pollock fishing industry information and makes science-based recommendations to the North Pacific Fishery Management Council, who ultimately decide on Walleye Pollock quotas for 2015. Think about Ohio’s deer hunting season for a minute. Each hunter is given a limit on how many deer they can tag each year. In Pickaway & Ross counties we are limited to three deer – two either sex permits and one antlerless permit. If every deer hunter in Ohio was allowed to kill as many deer as they pleased the deer population could be depleted beyond recovery. The same goes for Pollock in the Bering Sea. Commercial fisheries are given quotas and that is the maximum amount of Pollock they are allowed to catch during a given year. The scientific research we are conducting helps ensure the Pollock population remains strong and healthy for years to come.

Personal Log:

Earlier today I took a trip down to the Engine Room. I can’t believe I waited until we were almost back to Dutch Harbor to check out this part of the ship. The Oscar Dyson is pretty much a floating city! Put on some ear protection…it’s about to get loud!

Kacey stands by one of four diesel engines on the Oscar Dyson.

Kacey stands by one of four diesel engines on the Oscar Dyson. (Photo credit: Sweet William)

Why must we wear ear protection? That large machine behind me! It is a 3512 Caterpillar diesel engine.  The diesel engine powers an electric generator. The electric generator gives power to an electric motor which turns the shaft. There are four engine/generator set ups and one shaft on the Dyson. The shaft turns resulting in the propeller turning, thus making us move! When we are cruising along slowly we can get by with using one engine/generator to turn the shaft. Most of the time we are speeding along at 12 knots, which requires us to use multiple engines/generators to get the shaft going. Here is a shot of the shaft.

The shaft of the Oscar Dyson.

The shaft of the Oscar Dyson.

 

Engineering Operation Station

Engineering Operation Station

The EOS, or Engineering Operation Station, is the fifth location where the ship can be controlled. The other four locations are on the Bridge.

Engine Data Screen provides information about the engines, generators and shaft.

Engine Data Screen provides information about the engines, generators and shaft.

This screen provides Engineers with important info about the generators (four on board) and how hard they’re working. At the time of my tour the ship was running on two generators (#1 and #2) as shown on the right side of the screen. #3 and #4 were secured, or taking a break. The Officer of the Deck, who is on the Bridge, can also see this screen. You can see an Ordered Shaft RPM (revolutions per minute) and an Actual Shaft RPM boxes. The Ordered Shaft RPM is changed by the Officer on Deck depending on the situation. During normal underway conditions the shaft is running at 100-110 RPMs. During fishing operations the shaft is between 30 and 65 RPMs.

The port side winch of the Oscar Dyson.

The port side winch of the Oscar Dyson.

When I talked about the trawling process I mentioned that the Chief Boatswain is able to extend the opening of the net really far behind the stern (back) of the ship. This is the port side winch that is reeled out during trawling operations. There are around 4300 meters of cable on that reel! How many feet is that?

When Lt. Ostapenko and ENS Gilman were teaching me how to steer this ship they emphasized how sensitive the steering wheel is. Only a little fingertip push to the left can really make a huge difference in the ship’s course. This is the hydraulic system that controls the rudder, which steers the ship left or right. The actual rudder is hidden down below, under water. I’m told it is a large metal plate that stands twice as tall as me.  This tour really opened my eyes to a whole city that operates below the deck I’ve been working on for the last 18 days. Without all of these pieces of equipment long missions would not be possible. Because the Oscar Dyson is well-equipped it is able to sail up to forty days at a time. What keeps it from sailing longer voyages? Food supply!

And just like that I remembered all good things must come to an end. This is the end of the road for the Summer Walleye Pollock Survey and my time with the Oscar Dyson. We have cleaned and packed the science areas of the ship. Next we’ll be packing our bags and cleaning our staterooms. In a matter of hours we’ll be docking and saying our goodbyes. There have been many times over the last 19 days where I’ve stood, staring out the windows of the Bridge and thinking about how lucky I am. I will never be able to express how thankful I am for this opportunity and how it will impact my life for many, many years. A huge THANK YOU goes to the staff of NOAA Teacher at Sea. My fellow shipmates have been beyond welcoming and patient with me. Thank you, thank you, THANK YOU to everyone on board the Dyson!! I wish you safe travels and happy fishing!

To Team Bluefin Tuna (night shift Science Crew), thank you for your guidance, ice cream eating habits, card game instruction, movie watching enthusiasm, many laughs and the phrase “It is time.” Thanks for the memories! I owe y’all big time!  

Did you know? The ship also has a sewage treatment facility and water evaporation system onboard. The MSD is a septic tank/water treatment machine and the water evaporation system distills seawater into fresh potable (drinking and cooking) water.

Gregory Cook, On Sea Sickness and Good People, August 10, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 10, 2014


Science and Technology Log:

Last night and afternoon was by far the craziest we’ve seen on the Oscar Dyson. The winds were up to 35 knots (about 40 miles an hour). The waves were averaging 12 feet in height, and sometimes reaching 15-18 feet in height. Right now I’m sitting on the bridge and waves are around 8 feet. With every rise the horizon disappears and I’m looking up at stark grey clouds. With every drop the window fills with views of the sea, with the horizon appearing just below the top of the window frames.

UpDownUpDownUpDown

In the space of three seconds, the view from atop the bridge of the Oscar Dyson goes from looking up to the sky to down at the sea. The above pic is a MILD example.

Ensign Gilman, a member of NOAA Corps, explains to me how the same thing that makes the Bering Sea good for fish makes things rough for fishermen.

“This part of the Bering Sea is shallow compared to the open ocean. That makes the water easier for the wind to pick up and create waves. When strong winds come off Russia and Alaska, it kicks up a lot of wave action,” Ensign Gilman says.

Andrew, Bill and Nate

Lt. Andrew Ostapenko, Survey Tech Bill Potts, and Ens. Nathaniel Gilman on the Bridge

“It’s not so much about the swells (wave height),” he continues. “It’s about the steepness of the wave, and how much time you have to recover from the last wave.” He starts counting between the waves… “one… two… three… three seconds between wave heights… that’s a pretty high frequency. With no time to recover, the ship can get rocked around pretty rough.”

Rough is right! Last night I got shook around like the last jelly bean in the jar. I seriously considered finding some rope to tie myself into my bunk. There were moments when it seemed an angry giraffe was jumping on my bunk. I may or may not have shouted angrily at Sir Isaac Newton that night.

Which brings us to Sea Sickness.

Lt. Paul Hoffman, a Physician’s Assistant with the U.S. Public Health Service, explains how sea sickness works.

“The inner ears are made up of tubes that allow us to sense motion in three ways,” Hoffman explains. “Forward/back, left/right, and up/down. While that’s the main way our brain tells us where we are, we use other senses as well.” He goes on to explain that every point of contact… feet and hands, especially, tell the brain more information about where we are in the world.

“But another, very important piece, are your eyes. Your eyes are a way to confirm where you are in the world. Sea Sickness tends to happen when your ears are experiencing motion that your eyes can’t confirm,” Hoffman says.

For example, when you’re getting bounced around in your cabin (room), but nothing around you APPEARS to be moving (walls, chair, desk, etc) your brain, essentially, freaks out. It’s not connected to anything rational. It’s not enough to say “Duhh, brain, I’m on a boat. Of course this happens.” It happens in a part of the brain that’s not controlled by conscious thought. You can’t, as far as I can tell, think your way out of it.

Hoffman goes on to explain a very simple solution: Go look at the sea.

“When you get out on deck, the motion of the boat doesn’t stop, but your eyes can look at the horizon… they can confirm what your ears have been trying to tell you… that you really are going up and down. And while it won’t stop the boat from bouncing you around, your stomach will probably feel a lot better,” Hoffman says.

The Deck is your Friend.

Everything is easier on deck! Clockwise from left: Winch Operator Pete Stoeckle and myself near Cape Navarin, Russia. Oceanographer Nate Lauffenburger and myself crossing the International Date Line. Survey Tech Alyssa Pourmonir and Chief Scientist Taina Honkalehto near Cape Navarin, Russia.

And he’s right. Being up on the bridge… watching the Oscar Dyson plow into those stout waves… my brain has settled into things. The world is back to normal. Well, as normal as things can get on a ship more than a third of the way around the world, that is.

Personal Log:

Let’s meet a few of the good folks on the Oscar Dyson. 

NOAA Crew Member Alyssa Pourmonir

Job Title: Survey Technician

Alyssa and the Giant Jelly!

Survey Tech Alyssa Pourmonir assesses a giant jelly fish!

Responsibilities on the Dyson: “I’m a liaison between crew and scientists, work with scientists in the wet lab, put sensors onto the trawling nets, focus on safety, maintaining all scientific data and equipment on board.” A liaison is someone who connects two people or groups of people.

Education Level Required: “A Bachelors degree in the sciences.” Alyssa has a BS in Marine and Environmental Science from SUNY Maritime with minors in oceanography and meteorology.

Job or career you’ve had before this: “I was a life guard/swim instructor in high school, then I was in the Coast Guard for three years. Life guarding is the BEST job in high school!”

Goal: “I strive to bring about positive change in the world through science.”

Weirdest thing you ever took out of the Sea: “Lump Sucker: They have big flappy eyebrows… they kinda look like a bowling ball.”

Lump Sucker!

Lump Sucker! When provoked, this fish sucks in so much water that it becomes too big for most other fish to swallow. That’s its defense mechanism! It sort of looks like a cross between a bowling ball and grumpy cat!

Dirtiest job you’ve ever had to do on a ship: “Sexing the fish (by cutting them open and looking at the fish’s gonads… sometimes they explode!) is pretty gross, but cleaning the PCO2 filter is nasty.  There are these marine organisms that get in there and cling to the filter and you have to push them off with your hands… they get all slimy!”

Engineer Rico Speights

Engineer Rico Speights shows off how nasty a filter can be! He and his wife (Chief Steward Ava) sail the Bering Sea together with NOAA!

NOAA Rotating Technician Ricardo Guevara

Job Title: Electronics Technician

Responsibilities on the Dyson: “I maintain and upkeep most of the low voltage electronics on the ship, like computer networking, radio, television systems, sensors, navigation systems. All the equipment that can “talk,” that can communicate with other devices, I take care of that.”

Education level Required: High school diploma and experience. “I have a high school diploma and some college. The majority of my knowledge comes from experience… 23 years in the military.”

Tech Guevara

Technician Ricardo Guevara shows me an ultrasonic anemometer… It can tell the wind speed by the time it takes the wind to get from one fork to the other.

Job or career you’ve had before this: “I was a telecommunications specialist with the United States Air Force… I managed encryption systems and associated keymat for secure communications.” This means he worked with secret codes.

Trickiest problem you’ve solved for NOAA: “There was a science station way out on the outer edge of the Hawaiian Islands that was running their internet off of dial-up via satellite phone when the whole thing shut down on them… ‘Blue Screen of Death’ style. We couldn’t just swap out the computer because of all the sensitive information on it. I figured out how to repair the disk without tearing the machine apart. Folks were extremely happy with the result… it was very important to the scientists’ work.”

What are you working on now? “I’m migrating most of the ship’s computers from windows xp to Windows 7. I’m also troubleshooting the DirecTV system. The problem with DirecTV is that the Multi-Switch for the receivers isn’t communicating directly with the satellite. Our antenna sees the satellite, but the satellite cannot ‘shake hands’ with our receiver system.” And that means no Red Sox games on TV! Having entertainment available for the crew is important when you’re out to sea for two to three weeks at a time!

What’s a challenging part of your job on the Dyson? “I don’t like it, but I do it when I have to… sometimes in this job you have to work pretty high up. Sometimes I have to climb the ship’s mast for antenna and wind sensor maintenance. It’s windy up there… and eagles aren’t afraid of you up there. That’s their place!”

Lt. Paul Hoffman

Job Title: Physician Assistant (or P.A.) with the U.S. Public Health Service

Paul and Peggy

Lt. Paul Huffman and the small boat Peggy D behind him. Lt. Huffman is with the U.S. Public Health Service. But secretly I call him the Bat Man of Health Care. Peggy Dyson is a beloved part of the Alaska Fishing Industry’s history. Before the internet and satellite telephones, her radio service served as a vital link home for fishermen out at sea.  She was married to Oscar Dyson, the man for whom the ship was named.

Responsibilities on the Dyson: He’s effectively the ship’s doctor. “Whenever a NOAA ship travels outside 200 miles of the U.S. coast, they need to be able to provide an increased level of medical care. That’s what I do,” says Hoffman.

Education required for this career: “Usually a Masters degree from a Physician’s Assistant school with certification.”

Job or career you’ve had before this: “Ten and a half years in the U.S. Army, I started off as an EMT. Then I went on to LPN (Licensed Practical Nurse) school, and then blessed with a chance to go on to PA school. I served in Iraq in 2007-2008, then returned for 2010-2011.”

Most satisfying thing you’ve seen or done in your career: “Knowing that you personally had an impact on somebody’s life… keeping somebody alive. We stabilized one of our soldiers and then had a helicopter evac (evacuation) under adverse situations. Situations like that are what make being a PA worthwhile.”

Could you explain what the Public Health Service is for folks that might not be familiar with it?

“The Public Health Service is one of the seven branches of the U.S. Military. It’s a non-weaponized, non-combative, all-officer corps that falls under the Department of Health and Human Services. We’re entirely medical related. Primary deployments (when they get sent into action) are related to national emergency situations… hurricanes, earth quakes… anywhere where state and local resources are overrun… they can request additional resources… that’s where we step in. Hurricane Katrina, the Earthquake in Haiti… a lot of officers saw deployment there. Personally, I’ve been employed in Indian Health Services in California and NOAA’s Aircraft Operations Center (AOC)… they’re the hurricane hunters,” Hoffman concludes.

Kids, when you’ve been around Lt. Hoffman for a while, you realize “adverse conditions” to him are a little tougher than a traffic jam or missing a homework assignment. I’ve decided to call him, and the rest of the Public Health Service, “The Batman of Health Care.” When somebody lights up the Bat Signal, they’re there to help people feel better.

Coming up next: International Teamwork!

 

Kacey Shaffer: Fish Scales. Fish Tales. August 8, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

 

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 8, 2014
Weather information from the Bridge:

Air Temperature: 11° C

Wind Speed: 27 knots

Wind Direction: 30°

Weather Conditions: High winds and high seas

Latitude: 60° 35.97 N

Longitude: 178° 56.08 W
Science and Technology Log:

If you recall from my last post we left off with fish on the table ready to be sorted and processed. Before we go into the Wet Lab/Fish Lab we need to get geared up. Go ahead and put on your boots, bibs, gloves and a jacket if you’re cold. You should look like this when you’re ready for work…

 

This is the gear you'll need in the Wet Lab. It can get pretty slimy in there! (Photo Credit: Emily)

This is the gear you’ll need in the Wet Lab. It can get pretty slimy in there! (Photo Credit: Emily)

The first order of business is sorting the catch. We don’t have a magic net that only catches Pollock. Sometimes we pick up other treats along the way. Some of the cool things we’ve brought in are crabs, squid, many types of jellyfish and the occasional salmon. One person stands on each side of the conveyor belt and picks these other species out so they aren’t weighed in with our Pollock catch. It is very important that we only weigh Pollock as we sort so our data are valid. After all the Pollock have been weighed, we then weigh the other items from the haul. Here are some shots from the conveyor belt.

 

Kacey lifts the door on the table so the fish will slide down onto the conveyor belt. This is when other species are pulled out. (Photo Credit: Sandi)

Kacey lifts the door on the table so the fish will slide down onto the conveyor belt. This is when other species are pulled out. (Photo Credit: Sandi)

At the end of the conveyor belt, Pollock are put into baskets, weighed and put into the sorting bin. (Photo Credit: Sandi)

At the end of the conveyor belt, Pollock are put into baskets, weighed and put into the sorting bin. (Photo Credit: Sandi)

Not every single fish in our net is put into the sorting bin. Only random selection from the catch goes to the sorting bin. The remaining fish from the haul are returned back to the sea. Those fish who find themselves in the sorting bin are cut open to determine their sex. You can’t tell the sex of the fish just by looking at the outside. You have to cut them open, slide the liver to the side and look for the reproductive organs. Males have a rope-like strand as testes. Females have ovaries, which are sacs similar to the stomach but are a distinctly different color.

 

This is the sorting bin. Can you guess what Blokes and Sheilas means?

This is the sorting bin. Can you guess what Blokes and Sheilas means?

The white, rope-like structure is the male reproductive organ.

The white, rope-like structure is the male reproductive organ.

The pinkish colored sac is one of the female's ovaries. It contains thousands of eggs!

The pinkish colored sac is one of the female’s ovaries. It contains thousands of eggs!

Kacey uses a scalpel to cut the fish. She slides the liver out and looks for the reproductive organs. Is it a male or female? (Photo Credit: Darin)

Kacey uses a scalpel to cut the fish. She slides the liver out and looks for the reproductive organs. Is it a male or female? (Photo Credit: Darin)

Okay, no more slicing open fish. For now! The next step is to measure the length of all the fish we just separated by sex. One of the scientists goes to the blokes side and another goes to the sheilas side. We have a handy-dandy tool used to measure and record the lengths called an Ichthystick. I can’t imagine processing fish without it!

The Ichthystick is used to record the length of fish. A special tool held in the hand has a magnet inside that makes a connection with a magnet strip inside the board. It automatically registers a length and records it in a computer program called Clams

The Ichthystick is used to record the length of fish. A special tool held in the hand has a magnet inside that makes a connection with a magnet strip inside the board. It automatically registers a length and records it in a computer program called Clams

Kacey measures the length of a male with the Ichthystick. She holds the tool in her right hand and places it at the fork in the fish’s tail. A special sound alerts her when the data is recorded. (Photo Credit: Darin)

Kacey measures the length of a male with the Ichthystick. She holds the tool in her right hand and places it at the fork in the fish’s tail. A special sound alerts her when the data is recorded. (Photo Credit: Darin)

That is the end of the line for those Pollock but we still have a basket waiting for us. A random sample is pulled off the conveyor belt and set to the side for another type of data collection. The Pollock in this special basket will be individually weighed, lengths will be taken and a scientist will determine if it is a male or female. Then we remove the otoliths. What are otoliths? They are small bones inside a fish’s skull that can tell us the age of the fish. Think of a tree and how we can count the rings of a tree to know how old it is. This is the same concept. For this special sample we remove the otoliths, which are labeled and given to a lab on land where a scientist will carefully examine them under a microscope. The scientist will be able to connect the vial containing the otoliths to the other data collected on that fish (length, weight, sex) because each fish in this sample is given a unique specimen number. This is all part of our mission, which is analyzing the health and population of Pollock in the Bering Sea!

Kacey scans a barcode placed on an otolith vial. Robert is removing the otoliths from each fish and Kacey places them in the vial. It is important to make sure the otoliths are placed in the vial that corresponds to the fish Robert measured. (Photo Credit: Emily)

Kacey scans a barcode placed on an otolith vial. Robert is removing the otoliths from each fish and Kacey places them in the vial. It is important to make sure the otoliths are placed in the vial that corresponds to the fish Robert measured. (Photo Credit: Emily)

 

Kacey removes an otolith from a fish Robert cut open. The otoliths are placed in the vial Kacey is holding. (Photo Credit: Emily)

Kacey removes an otolith from a fish Robert cut open. The otoliths are placed in the vial Kacey is holding. (Photo Credit: Emily)

At this point we have just about collected all the data we need for this haul. Each time we haul in a catch this process is completed. As of today, our survey has completed 28 hauls. Thank goodness we have a day shift and a night shift to share the responsibility. That would be a lot of fish for one crew to process! For our next topic we’ll take a look at how the data is recorded and what happens after we’ve completed our mission. By the way, “blokes” are males and “sheilas” are females. Now please excuse us while we go wash fish scales off of every surface in the Wet Lab, including ourselves!

Personal Log:

Just so you know, we’re not starving out here. In fact, we’re stuffed to the gills – pun completely intended. Our Chief Steward Ava and her assistant Adam whip up some delicious meals. Since I am on night shift I do miss the traditional breakfast served each morning. Sometimes, like today, I am up for lunch. I’m really glad I was or I would have missed out on enchiladas. That would have been a terrible crisis! Most people who know me realize there is never enough Mexican food in my life! Tacos (hard and soft), rice and beans were served along with the enchiladas. Each meal is quite a spread! If I have missed lunch I’ll grab a bowl of cereal to hold me over until supper. I bet you’ll never guess we eat a lot of seafood on board. There is usually a fish dish at supper. We even had crab legs one night and fried shrimp another. Some other supper dishes include pork chops, BBQ ribs, baked steak, turkey, rice, mashed potatoes, and macaroni and cheese plus there are always a couple vegetable dishes to choose from. We can’t forget about dessert, either. Cookies, cakes, brownies or pies are served at nearly every meal. It didn’t take long for me to find the ice cream cooler, either. What else would one eat at midnight?!

Ava and Adam are always open to suggestions as well. Someone told Ava the night shift Science Crew was really missing breakfast foods so a few days ago we had breakfast for supper. Not only did they make a traditional supper meal, they made a complete breakfast meal, too! We had pancakes, waffles, bacon, eggs, and hashbrowns. It was so thoughtful of them to do that for us, especially on top of making a full meal for the rest of the crew. Thanks Ava and Adam!

There are situations where a crew member might not be able to make it to the Mess during our set serving schedule. Deck Crew could be putting a net in or taking it out or Science Crew could be processing a catch. We never have to worry, though. Another great thing about Ava and Adam is they will make you a plate, wrap it up and put it in the fridge so you have a meal for later.

Like I said, we’re not going hungry any time soon! Here are some shots from the Mess Deck (dining room).

Mess Deck on the Oscar Dyson.

Mess Deck on the Oscar Dyson.

Mess Deck on the Oscar Dyson. Can you guess why there are tennis balls on the legs of the chairs?

Mess Deck on the Oscar Dyson. Can you guess why there are tennis balls on the legs of the chairs?

There are always multiple options for every meal. If you’re hungry on this ship you must be the pickiest eater on Earth!

There are always multiple options for every meal. If you’re hungry on this ship you must be the pickiest eater on Earth!

Did you know?

Not only are otoliths useful to scientists during stock assessment, they help the fish with balance, movement and hearing.

Gregory Cook, The Dance, August 7, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 7, 2014

Science and Technology Log: Abiotic Factors in the Bering Sea

Ecosystems are made up of biotic and abiotic factors. Biotic is just another word for “stuff that is, or was, alive.” In a forest, that would include everything from Owl to Oak Tree, from bear to bacteria, and from fish to fungi. It includes anything alive, or, for that matter, dead. Keep in mind that “dead” is not the same as “non-living.”

Salmon and Black-Legged Kittiwake

The salmon and the black-legged kittiwake are both biotic members of the sub-arctic ecosystem.

“Non-living” describes things that are not, cannot, and never will be “alive.” These things are referred to as “abiotic.” (The prefix a- basically means the same as non-). Rocks, water, wind, sunlight and temperature are all considered abiotic factors. And while the most obvious threat to a salmon swimming up river might be the slash of a bear’s mighty claw, warm water could be even more deadly. Warm water carries less dissolved oxygen for the fish to absorb through their gills. This means that a power plant or factory that releases warm water into a river could actually cause fish to suffocate and, well, drown.

Bering Panorama

A 90 degree panorama of the Bering Sea from atop the Oscar Dyson. I’d show you the other 270°, but it’s pretty much the same. The sea and sky are abiotic parts of the sub-arctic ecosystem.

Fish in the Bering Sea have the same kind of challenges. Like Goldilocks, Pollock are always looking for sea water that is just right. The Oscar Dyson has the tools for testing all sorts of Abiotic factors. This is the Conductivity Temperature Depth sensor (Also known as the CTD).

CTD Deployment

Survey Technicians Allen and Bill teach me how to launch The Conductivity Temperature Depth Probe (or CTD).

The CTD sends signals up to computers in the cave to explain all sorts of abiotic conditions in the water column. It can measure how salty the water is by testing how well the water conducts electricity. It can tell you how cloudy, or turbid, the water is with a turbidity sensor. It can even tell you things like the amount of oxygen dissolved in the ocean.

To see how abiotic factors drive biotic factors, take a look at this.

Thermocline

The graph above is depth-oriented. The further down you go on the graph, the deeper in the water column you are. The blue line represents temperature. Does the temperature stay constant? Where does it change?

I know, you may want to turn the graph above on its side… but don’t. You’ll notice that depth is on the y-axis (left). That means that the further down you are on the graph, the deeper in the sea you are. The blue line represents the water temperature at that depth. Where do you see the temperature drop?


Right… The temperature drops rapidly between about 20 and 35 meters. This part of the water column is called the Thermocline, and you’ll find it in much of the world’s oceans. It’s essentially where the temperature between surface waters (which are heated by the sun) and the deeper waters (typically dark and cold) mix together.

OK, so you’re like “great. So what? Water gets colder. Big deal… let’s throw a parade for science.”

Well, look at the graph to the right. It was made from another kind of data recorded by the CTD.

Fluoresence

Fluoresence: Another depth-oriented graph from the CTD… the green line effectively shows us the amount of phytoplankton in the water column, based on depth.

The green line represents the amount of fluorescence. Fluorescence is a marker of phytoplankton. Phytoplankton are plant-like protists… the great producers of the sea! The more fluorescence, the more phytoplankton you have. Phytoplankton love to live right at the bottom of the thermocline. It gives them the best of both worlds: sunlight from above and nutrients from the bottom of the sea, which so many animals call home.

Now, if you’re a fish… especially a vegetarian fish, you just said: “Dinner? I’m listening…” But there’s an added bonus.

Look at this:

CTD Oxygen

Oxygen data from the CTD! This shows where the most dissolved oxygen is in the water column, based on depth. Notice any connections to the other graphs?

That orange line represents the amount of oxygen dissolved in the water. How does that compare to the other graphs?

Yup! The phytoplankton is hanging down there at the bottom of the thermocline cranking out oxygen! What a fine place to be a fish! Dinner and plenty of fresh air to breathe! So here, the abiotic (the temperature) drives the biotic (phytoplankton) which then drives the abiotic again (oxygen). This dance between biotic and abiotic plays out throughout earth’s ecosystems.

Another major abiotic factor is the depth of the ocean floor. Deep areas, also known as abyss, or abyssal plains, have food sources that are so far below the surface that phytoplankton can’t take advantage of the ground nutrients. Bad for phytoplankton is, of course, bad for fish. Look at this:

The Cliff and the Cod

The blue cloud represents a last grouping of fish as the continental shelf drops into the deep. Dr. Mikhail examines a cod.

That sloping red line is the profile (side view of the shape of the land) of the ocean floor. Those blue dots on the slope are fish. As Dr. Mikhail Stepanenko, a visiting Pollock specialist from Vladivostok, Russia, puts it, “after this… no more Pollock. It’s too deep.”

He goes on to show me how Pollock in the Bering Sea are only found on the continental shelf between the Aleutian Islands and Northeastern Russia. Young Pollock start their lives down near the Aleutians to the southeast, then migrate Northwest towards Russia, where lots of food is waiting for them.

Pollock Distribution

Alaskan Pollock avoid the deep! Purple line represents the ocean floor right before it drops off into the Aleutian Basin… a very deep place!

The purple line drawn in represents the drop-off you saw above… right before the deep zone. Pollock tend to stay in the shallow areas above it… where the eating is good!

Once again, the dance between the abiotic and the biotic create an ecosystem. Over the abyss, Phytoplankton can’t take advantage of nutrients from the deep, and fish can’t take advantage of the phytoplankton. Nonliving aspects have a MASSIVE impact on all the organisms in an ecosystem.

Next time we explore the Biotic side of things… the Sub-arctic food web!

Personal Log: The Order of the Monkey’s Fist.

Sweet William, a retired police officer turned ship’s engineer, tells the story of the order of the monkey’s fist.

William and the Monkey's Fist

Sweet William the Engineer shows off a monkey’s fist

The story goes that some island came up with a clever way to catch monkeys. They’d place a piece of fruit in a jar just barely big enough for the fruit to fit through and then leave the jar out for the monkeys. When a monkey saw it, they’d reach their hand in to grab the fruit, but couldn’t pull it out because their hands were too big now that they had the fruit in it. The monkey, so attached to the idea of an “easy” meal wouldn’t let go, making them easy pickings for the islanders. The Monkey’s Fist became a symbol for how clinging to our desires for some things can, in the end, do more harm than good. That sometimes letting go of something we want so badly is, in the end, what can grant us relief.

Another story of the origin of the monkey’s fist goes like this: A sea captain saw a sailor on the beach sharing his meal with a monkey. Without skipping a beat, the monkey went into the jungle and brought the sailor some of HIS meal… a piece of fruit.

No man is an Island. Mt. Ballyhoo, Unalaska, AK

No man is an Island. Mt. Ballyhoo, Unalaska, AK

Whatever the true origin of the Order is, the message is the same. Generosity beats selfishness at sea. It’s often better to let go of your own interests, sometimes, and think of someone else’s. Onboard the Oscar Dyson, when we see someone committing an act of kindness, we put their name in a box. Every now and then they pull a name from the box, and that person wins something at the ship store… a hat or a t-shirt or what have you. Of course, that’s not the point. The point is that NOAA sailors… scientists, corps, and crew… have each other’s backs. They look out for each other in a place where all they really have IS each other.

And that’s a beautiful thing.

Kacey Shaffer: That Is One BIG net! August 4, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 4, 2014

Weather information from the Bridge:

Air Temperature: 11° C

Wind Speed: 8.95 knots

Wind Direction: 327°

Weather Conditions: Foggy

Latitude: 58° 59’92 N

Longitude: 176° 55’09 W

Science and Technology Log:

Now that we have chosen a location to fish, the real fun begins! With a flurry of action, the Bridge (control center of the ship) announces we are going to trawl (fish). This alerts the Deck Crew who has the responsibility of deploying a net. There are three different types of trawls, AWT (Aleutian Wing Trawl), 83-112 Bottom Trawl, and the Marinovich. The type of trawl chosen depends on the depth in the water column and proximity to the bottom of what we want to catch. The 83-112 Bottom Trawl pretty much does what it is called. It is drug along the bottom of the ocean floor and picks up all sorts of awesome sea creatures. The Marinovich is a smaller net that is trawled near the surface. For this Pollock survey, we have primarily used the AWT. It is a mid-water net and that is the area where Pollock primarily live.

Diagram of the Aleutian Wing Trawl (AWT).

Diagram of the Aleutian Wing Trawl (AWT).

As you can see in the diagram, the AWT is cone-shaped. When fully deployed it is 491 feet long! The opening of the net, similar to a mouth, is about 115 feet wide. The Chief Boatswain (pronounced bo-sun) controls the winches that let wire out which extends the opening of the net at least another 500 feet from the aft (rear) deck of the ship.

The ITI screen located on the Bridge that allows us to see how far behind the boat and at what depth the net is located.

The ITI screen located on the Bridge that allows us to see how far behind the boat and at what depth the net is located.

The Deck Crew begins to roll out the net and prepares it for deployment. There are several pieces of equipment attached along the way. A Camtrawl is attached first. Can you guess what it does? It is essentially a camera attached to the net that records what is being caught in the net. Near the Camtrawl, a pocket net is attached to the bottom side of the AWT. This pocket net can show scientists what, if any, fish are escaping the AWT. On a piece of net called the kite that is attached to the headrope (top of the mouth/opening), the FS70 and SBE are attached. The FS70 is a transducer that reports data to the Bridge showing the scientist what is coming into the net, similar to a fish finder. The SBE is bathythermograph that records water temperature and depth. Tomweights are added next. These heavy pieces of chain help weigh the footrope (bottom of the mouth/opening) down, pulling it deeper into the water. The net continues to be reeled out and is finally connected to lines on each side of the deck. The horizontal distance between the lines helps the net to fully open its mouth.

The Camtrawl lets us see fish as they enter the net.

The Camtrawl lets us see fish as they enter the net.

Attaching the tomweights as the net is deployed.

Attaching the tomweights as the net is deployed.

While the net is out the Bridge crew, the Chief Boatswain, the Survey Tech and at least one scientist are on the Bridge communicating. Each person has a role to ensure a successful catch. The Bridge crew controls the speed and direction of the boat. The Chief Boatswain controls the net; changing the distance it is deployed. The Survey Tech has information to report on one of the computers. Lastly, the scientist watches multiple screens, making the decision on how far out the net goes and when to haulback (brings the net in). Ultimately, the Bridge crew is the liaison between all of the other departments and has the final decision on each step of the process, keeping everyone’s safety in mind. This piece of the fishing puzzle quickly became my favorite part of the survey. It is so neat to listen to the chatter of all these groups coming together for one purpose.

On the Bridge during a trawl - left to right: Lt. Frydrych, Officer on Duty; Taina, Chief Scientist; Allen, Survey Tech; Chief Boatswain Kirk.

On the Bridge during a trawl – left to right: Lt. Frydrych, Officer of the Deck; Taina Honkalehto, Chief Scientist; Allen Smith, Survey Tech; Chief Boatswain Kirk Perry.

Once we have reached haulback the Chief Boatswain alerts his deck crew and they begin reeling the net back in. They watch to make sure the lines are going back on the reel evenly. When the tomweights come back on deck they are removed. The next items to arrive are the FS70 and SBE. They are removed and the reeling in continues. The Camtrawl comes in and is removed and the pocket net is checked for fish. By that point we are almost to the end of the net where we’ll find our catch. Because the net is very heavy, the deck crew uses a crane to lift it and move it over the table. A member of the Deck Crew pulls a rope and all the fish are released onto the table. The table is a piece of equipment that holds the fish on the deck but feeds them into the Wet Lab by conveyor belt. Once the fish have been removed from the net it is finally rolled up onto the reel and awaits its next deployment. In my next blog we’ll get fishy as we explore the Wet Lab!

Deck Crew members Bill (left) and Mike (right) prepare a full net to be hoisted to the table by the crane.

Deck Crew members Bill (left) and Mike (right) prepare a full net to be hoisted to the table by the crane.

 

Personal Log:

I have delayed writing about this next location on the ship because it is my favorite place and I want to make sure I do it justice. Plus, the Officers who stand watch on the Bridge are really awesome and I don’t want to disappoint them with my lack of understanding. Here are a few pictures showing some of the things I actually do understand…

Display of tanks located on board the Dyson.

Display of tanks located on board the Dyson.

This screen provides Officers with valuable information about the ship’s engine, among other things. This diagram shows multiple tanks located on the ship. Some tanks take in seawater as we use diesel fuel, drinking water, etc. to counter balance that usage and keep the Dyson in a state of equilibrium. Also, if they are expecting high seas they may take in some of the seawater to make our ship heavier, reducing the effects of the waves on the ship. I’ve been told this may be important in a couple of days because we’re expecting some “weather.” That makes me a little nervous!

The General Alarm on the Bridge.

The General Alarm on the Bridge.

The General Alarm is really important to the safety of all those on the ship but it is not my favorite thing every day at noon. The General Alarm is used to signal us in an emergency – Abandon Ship, Man Overboard, Fire, etc. It is tested every day at noon…while I’m sleeping!! “Attention on the Dyson, this is a test of the ship’s General Alarm.” BEEEP. “That concludes the test of the ship’s General Alarm. Please heed all further alarms.”

Officer Gilman updates a chart during his watch.

ENS Gilman updates a chart during his watch.

What would happen if all of our fancy technology failed on us? How would we know where to tell the Coast Guard to find us? NOAA Corps Officers maintain paper charts as a back up method. At the time this photo was taken the Officer was predicting our location in 30 minutes and in 60 minutes. This prediction is updated at regular intervals so that we have a general area to report in the case of an emergency. Officer Gilman completes this task during his shift.

Kacey learns how to steer the Dyson from Officer Ostapeko.

Kacey learns how to steer the Dyson from Lt. Ostapenko. (Photo Credit: ENS Gilman)

Have I mentioned that the NOAA Corps Officers onboard the Dyson are awesome? They’re so great they let me steer the boat for a little while! In the photo Lt. Ostapenko teaches me how to maintain the ship in a constant direction. The wheel is very sensitive and it took some time to adjust to amount of effort it takes to turn left or right. We’re talking fingertip pushes! The rudder is so large that even just a little push left or right can make a huge difference in the ships course.

Kacey records data on the Bridge during an AWT.

Kacey records data on the Bridge during an AWT. (Photo Credit: Darin)

Since beginning our survey I’ve only missed being on the Bridge for one trawl. Because I have paid very close attention during those trawls Scientist Darin is now allowing me to record some data. I am entering information about the net in this photo. Survey Tech Allen is making sure I do it correctly!

There are so many other things on the Bridge that deserve to be showcased. The ship can be controlled from any one of four locations. Besides the main control center at the front of the Bridge, there are control stations on either side of the ship, port and starboard, as well as the aft (rear). There is the radar system, too. It is necessary so the Officers can determine the location of other vessels and the direction they are traveling. As I’ve been told, their #1 job responsibility is to look out the windows and make sure we don’t run into anything. They are self-proclaimed nerds about safety and that makes me feel very safe!

Did you know? The NOAA Commissioned Officers Corps is one of the seven uniformed services of the United States. There are currently 321 commissioned officers.

Gregory Cook, Super Fish, August 2, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 2, 2014

Science and Technology Log 

See this guy here? He’s an Alaskan Pollock.

If fish thought sunglasses were cool, this fish would wear sunglasses.

Alaskan Pollock, aka Walleye Pollock.
Credit: http://www.noaanews.noaa.gov

“Whatever,” you shrug.
“Just a fish,” you scorn.
“He’s slimy and has fish for brains,” you mock.
Well, what if I told you that guy there was worth almost one billion dollars in exports alone?
What if I told you that thousands of fishermen rely on this guy to provide for their families?
What if I told you that they were the heart of the Sub-Arctic food web, and that dozens of species would be threatened if they were to disappear?
What if I told you they were all secretly trained ninja fish? Ninja fish that carry ninja swords strapped to their dorsal fins?
Then I’d only be wrong about one thing.


Taina Honkalehto is the Chief Scientist onboard the Oscar Dyson. She has been studying Pollock for the last 22 years. I asked her what was so important about the fish.

“They’re the largest single species fishery in North America,” Taina says. That makes them top dog…err… fish… in the U.S. fishing industry.

Chief Scientist Taina Honkalehto decides where to fish based on data.

Chief Scientist Taina Honkalehto decides where to fish based on data.

“In the U.S. they are fish sticks and fish-wiches (like Filet-o-Fish from McDonalds). They’ve become, foodwise, what Cod used to be… inexpensive, whitefish protein,” Taina continues. They’re also the center of the sub-arctic food web. Seals, walruses, orca, sea lions, and lots of larger fish species rely on Pollock as an energy source.”
But they aren’t just important for America. Pollock plays an important role in the lives of people from all over the Pacific Rim. (Remember that the Pacific Rim is made up of all the countries that surround the Pacific Ocean… from the U.S. and Canada to Japan to Australia to Chile!)

Pollock Need Love, too!

Pollock Need Love, too!

“Pollock provide a lot of important fish products to many countries, including the U.S., Japan, China, Korea, and Russia,” Honkalehto says.

Making sure we protect Pollock is REALLY important. To know what can go wrong, we only have to look at the Atlantic Cod, the fish that Cape Cod was named after. In the last twenty years, the number of Atlantic Cod has shrunk dramatically. It’s cost a lot of fishermen their jobs and created stress in a number of families throughout New England as well as tensions between the U.S. and Canada. The U.S. and Canada share fish populations.

The primary job of the Oscar Dyson is to sample the Pollock population. Government officials use the results to tell fishermen what their quota should be. A quota is a limit on the number of fish you can catch. The way we gather that data, though, can be a little gross.

The Aleutian Wing Trawl (or AWT)

Fishermen Deploy the AWT

Fishermen Deploy the AWT.

The fishermen guide the massive Aleutian Wing Trawl (or AWT) onto the deck of the ship. The AWT is a 150 meters long net (over one and a half football fields in length) that is shaped like an ice cream cone. The net gets more and more narrow until you get all the way down to the pointy tip. This is known as the “cod end,” and it’s where most of the fish end up. Here’s a diagram that XO (Executive Officer) Kris Mackie was kind enough to find for me.

AWT

The Aleutian Wing Trawl (or AWT). over one and a half football fields worth of Pollock-Snatching Power.

The AWT is then hooked onto a crane which empties it on a giant mechanical table. The table has a hydraulic lift that lets us dump fish into the wet lab.

Allen pulls a cod from the Table

Survey Technician Allen pulls a cod from the Table

Kids, whenever you hear the term “wet lab,” I don’t want you to think of a water park. Wet lab is going to mean guts. Guts and fish parts.

In the wet lab, the contents of the net spills onto a conveyer belt… sort of like what you see at Shaw’s or Market Basket. First we sift through the Pollock and pull any odd things… jellyfish, skates, etc… and set them aside for measurement. Then it’s time to find out what sex the Pollock are.

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Genitals on the Inside!

Pollock go through external fertilization (EF). That means that the female lays eggs, and the males come along and fertilize them with their sperm. Because of that, there’s no need for the outside part of the sex organs to look any different. In science, we often say that form follows function. In EF, there’s very little function needed other than a hole for the sperm or egg cells to leave the body.

Because of that, the only way to tell if a Pollock is male or female is to cut them open and look for ovaries and testes. This is a four step process.

Ladies before Gentlemen: The female Pollock (in the front) has ovaries that look like two orange lobes. The Male (in the back) has structures that make him look like he ate Ramen noodles for dinner.

Ladies before Gentlemen:
The female Pollock (bottom) has ovaries that look like two orange lobes. The Male (itop) has testes that make him look like he ate Ramen noodles for dinner.

Step 1: Slice open the belly of the fish.

Step 2: Push the pink, flippy floppy liver aside.

Step 3: Look for a pair of lobes (a bag like organ) that is either purple, pink, or orange-ish. These are the ovaries! If you find this, you’ve got a female.

Step 4: If you strike out on step 3, look for a thin black line that runs behind the stomach. These are the testes… As Tom Hanks and Meg Ryan might say, you’ve got male.

Then the gender and length of the fish is then recorded using CLAMS… a software program that NOAA computer scientists developed for just this purpose. With NOAA, like any good science program, it’s all about attention to detail. These folks take their data very seriously, because they know that so many people depend on them to keep the fish population safe.

Personal Blog

Safety!

Lobster Gumby

Your teacher in an Immersion Suit. Sailors can survive for long periods of time in harsh environments in these outfits.

.

On the first day aboard the Oscar Dyson, we were trained on all matters of safety. Safety on a ship is often driven by sirens sounded by the bridge. Here’s a list of calls, what they mean, and what you should do when you hear them:

What you hear… What it means… What you should do…
 Three long blasts of the alarm: Man Over Board Report to safety station, be counted, and report in to the bridge (unless you’re the one that saw the person go overboard… then you throw them life rings (floaties) and keep pointing at them).
 One long blast of general alarm or ship’s whistle: Fire or Emergency onboard Report to safety station, be counted, and report in to the bridge. Bring Immersion Suit just in case.
 Six or more short blasts then one long blast of the alarm: Abandon Ship Grab your immersion suit, head to the aft (back) deck of the ship, be counted, and prepare to board a life raft.

 

The immersion suit (the thing that makes me look like lobster gumby, above) is made of thick red neoprene. It has two flashing lights also known as beacons…  one of them automatically turns on when it hits water! This helps rescuers find you in case you’re lost in the dark. It also has an inflatable pillow behind your head to help keep your head above water. Mostly just wanted to wear it to Starbucks some day.

Food!

Another thing I can tell you about life aboard the Oscar Dyson is that there is plenty to eat!

kind of awesome. For one thing, there is a never ending supply of food in the galley (the ship’s cafeteria). Eva is the Chief Steward on the Oscar Dyson (though I call her the Head Chef!).

Chief Steward Eva gets dinner done right!

Chief Steward Eva gets dinner done right!

You’ll never go hungry on her ship. Dinner last night? barbeque ribs and mac and cheese. Yesterday’s lunch? Steak and chicken fajitas. And this morning? Breakfast burritos with ham and fruit. I know. You were worried that if I lost any weight at sea that I might just disappear. I can confirm for you that this is absolutely not going to happen.

Tune in next time when I take you on a tech tour of the Oscar Dyson!