Joan Shea-Rogers: Do You See What We See, July 10, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA Ship Oscar Dyson

July 1-22, 2018

 

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 10, 2018

 

Weather Data from the Bridge

Latitude: 53ºN

Longitude: 166ºW

Sea Wave Height: 1.5 feet

Wind Speed: 25 knots

Wind Direction: SW

Visibility: 15 Miles

Air Temperature: 52º F

Barometric Pressure: 1010.61mb

Sky: Overcast

Biological Trawl Data:

Letting the Net Out to Sea

Letting the Net Out to Sea

Trawl hauls are how fishing is conducted. A large net is dropped into the water for a specific amount of time. By catching exactly what is in the ocean, the acoustic backscatter can be identified (what the various colored pixels on the echograms represent). Below is an echogram on the screen, the black line is the path of the trawl through the backscatter, the little red circle indicated where the camera was, and the picture at left is pollock passing by the camera and into the back of the net at that point.

Echogram

Screenshot of an echogram. The black line is the path of the trawl through the backscatter, the little red circle indicates where the camera was, and the picture at left is pollock passing by the camera and into the back of the net at that point.

Samples of pollock and other organisms can be studied and other biological data collected. By counting, measuring, and weighing the pollock and other animals caught in each haul, calculations can estimate the amount of fish in a given area. Acoustic data can be used to determine the number of fish by dividing the measured backscatter by the backscattered energy from one fish (target strength, discussed in the last blog). That gives the number of fish:

To get the backscatter from one fish for the above calculation, we need to know the size and species of the fishes. The trawl provides that information. In the fish lab, species including pollock are identified, lengths are taken, and the number of fish at each length is entered in the computer. Also, the animals including pollock are weighed and a mean weight is determined. The number of fish computed from the acoustic and trawl data multiplied by the mean weight of a fish equals the biomass of the fish (total weight of the population in a given area).

The fisheries biologists developed the software used for all these calculations. This information coupled with the echograms can answer those earlier questions…Where are the pollock in the Bering Sea? How many are there? How big are they? How many adult pollock are there (fish that can be caught) and how many young pollock are present (providing information about future availability and how healthy the population is)?

When I first boarded the ship, I asked the fisheries biologists how they would describe what they do. They responded that they count fish, it’s not rocket science. But you know what? It kind of is!

 

At Work in the Fish Lab

TAS Joan Shea-Rogers at work in the Fish Lab

 

What is this information used for?

This information is used to manage the Pollock fishery. Numerical data is given to the entities that set the fishing quotas for the Bering Sea area. Quotas are then divided up between the commercial and individual fishing companies/boats. Once fishermen reach these quotas they must stop fishing. This protects the fishery to ensure that this food source will be healthy and strong for years to come. A similar example from my home state is that of the Illinois is the Department of Conservation. One of their responsibilities is to manage the deer population. Then they can determine how many deer can be harvested each season that still allows for the deer population to thrive.

 

Personal Blog:

In my last blog post, I talked about preparing for and “weathering the storm”. As with most things at sea and on land, things don’t always turn out as we plan. The stormy weather began with wave heights between 8-10 feet. The ship continually rocked back and forth making walking and everything else difficult. You can tell the experienced sailors because they were much more graceful than I was. I held on to every railing and bolted down piece of furniture that I could. And even then, I would forget and place a pen on the table, which immediately rolled off. While eating I held onto my glass and silverware because as I ate and placed my knife on my plate it rolled off. Dressing was a balancing act, which I was not good at. I finally figured out it was better if I sat in a chair. Luckily for me, my patch for seasickness worked.

While I was sitting in the mess hall (dining room) an alarm rang. The engineers got up read the screen and left. The decision was made by the acting CO (Commanding Officer) that we would have to go back to Dutch Harbor. And now, as I write this, we are docked in Dutch Harbor waiting for word about the status of our voyage. Out here in Dutch Harbor, everything must be shipped in. We wait until parts and people are flown in. The fisheries biologists also have to determine the validity of the data collected on such a short voyage. They also must decide in a timely matter, can this data collection continue after returning to port?

For me, I am holding out hope that all these factors are resolved so that we can go back out to sea. Since November when I turned in my application, this voyage has been such a focal point of my life. If it doesn’t work out (I’ll try not to cry), I will still have had the adventure and learning experience of a lifetime. So here’s hoping……

NOAA Ship Oscar Dyson at Port in Dutch Harbor, AK

NOAA Ship Oscar Dyson at Port in Dutch Harbor, AK

 

Joan Shea-Rogers: Do You Hear What They Hear, July 8, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA Ship Oscar Dyson

July 1-22, 2018

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 8, 2018

Weather Data from the Bridge

Latitude: 53º N

Longitude: 166ºW

Sea Wave Height: 1.5 feet

Wind Speed: 25 Knots

Wind Direction: SW

Visibility: 15 miles

Air Temperature: 52ºF

Water Temperature: 46º F

Barometric Pressure: 1010.61mb

Sky: Overcast

Science and Technology Log

What kinds of fish live in the Bering Sea? How many pollock are in the Bering Sea? Where are the pollock in the Bering Sea? How big are the pollock in the Bering Sea?

Those are just a few of the questions that the fisheries biologists on NOAA Ship Oscar Dyson work to answer during each voyage. In my last blog, I talked about the need to manage the pollock fishery in order to protect this important ocean resource because it provides food for people all over the world. It is important, then, to be able to answer the above questions, in order to make sure that this food source is available each year.

How do they do it? There are two main sources of information used in the Acoustics-Trawl (or Echo Integration Trawl) survey to determine the abundance and distribution of pollock in a targeted area of the Bering Sea. One is acoustics data, and the other is biological-trawl data.

Acoustics:

Acoustic data is continuously collected along a series of parallel transects with a Simrad EK60 scientific echo integration system incorporating five centerboard-mounted transducers (18-, 38-, 70-, 120-, and 200- kHz). In other words: There are 5 sound wave producers (transducers) attached to the bottom of the ship, each one emitting sound waves at different frequencies. This allows scientists to look at different organisms in the water column. Different types of organisms reflect different amounts of energy at different frequencies. The amount of acoustic energy reflected by an individual animal is called the target strength, and is related to the size and anatomy of the species. For example, a fish with a swimbladder (like pollock) reflects more energy than a fish without a swimbladder because its properties are very different from the surrounding water. Some ocean dwelling organisms don’t have swim bladders. Flatfish stay on the bottom so they don’t need the buoyancy. Floating organisms like jellyfish don’t have them. These organisms will look differently than pollock on an echogram because they have a smaller target strength.

Transducer

Transducer

Transducers convert mechanical waves (sound waves) into an electrical signal and vice versa (like both a loudspeaker and a microphone combined). They contain piezoelectric materials sensitive to electricity and pressure: if a voltage is applied to them, they make a pressure or sound wave (transmit), and when a sound wave passes over them, it produces a voltage (receive). When a sound wave (echo from a fish) is received, electoral signal is sent to a computer, which displays the signals as pixels of varying colors as the ship moves along (depth changes up and down on the left of the image, and time and location changes along the bottom of the image). This datum is used to estimate the number and type of fish in the water column, and to determine where the ship should fish next.

The size and colors on the images (called echograms) represent the backscatter at different depths and is related to the density of fish and their target strength. But, since they are dots on a screen, specific identification is not possible. The scientists assume certain strong signals are pollock based on the information they have but, those dots could be other fish. To determine what kind of fish are in the water column at this location, how many are there, and how big they are, other data must be obtained. Biological Trawl Data provides that additional information. More about that in my next blog post……I bet you can’t wait!

Personal Log

The Calm Before the Storm:

So far my trip has been smooth sailing, literally. As NOAA Ship Oscar Dyson sails across the Bering Sea there is a bit of rocking the ship experiences at all times. This is easy enough for one to get used to and sometimes it even becomes comforting, like being rocked to sleep as a child. You adjust to the motion. Over the past couple of days I have been hearing talk of a storm coming our way. On a ship, there are many preparations that occur in order to get ready for a storm. Many items are always secured, such as shelves that have a wall in front so that things don’t fall off. There are “handle bars” in showers and next to toilets (think about that). Along hallways and stairways there are handrails on each side. Mini refrigerators in staterooms are bolted to walls. In fact most things are bolted to walls or stored in containers that are bolted to the wall. In the mess hall (dining room) condiments on tables are in a box so they can’t slide off.

Why do you think this coffee mug is shaped like this (wider at the bottom than the top)?

 

At-Sea Coffee Mug

At-Sea Coffee Mug

Ans. The wider bottom of the mug above prevents it from sliding as the ship rocks.

Our bulletin board reminds us to secure for bad weather. This morning, I put small items in drawers, stowed books on shelves and packed my equipment (phone, laptop, camera, chargers and small items in a backpack that can be safely secured in my locker (the “closet” in my stateroom).

In talking to my shipmates with at sea experience, I am getting lots of helpful hints about storm preparations and strategies to use during the storm. Here are some of those suggestions:

*always hold on to railings with both hands when walking or going up steps. At all other times, remember to keep one hand for you (to do whatever you are doing) and one hand for the ship (to hold on).

*keep something in your stomach at all times, even if you are not feeling well

*eat saltines

*drink lots of water

*when sleeping in your bunk, place pillows between you and the edge so as not to roll off (I will definitely follow this one, as I am on the top bunk) It also depends upon which direction the ship is rolling. Pillows may need to be put between your head and the wall to prevent head bumps

*go to the lower parts of the ship because the top part will sway more with the waves

I also have been wearing patches to prevent seasickness. Hopefully they will continue to help. Only time will tell how we weather the storm (pun intended). Let’s hope it moves through quickly.

 

 

 

 

 

 

 

 

Victoria Obenchain: Launching Boats, July 9, 2018

Teacher at Sea Blog

Victoria Obenchain

Aboard NOAA Ship Fairweather

June 25 – July 6, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Northwest, Alaska

Date: July 9, 2018

Science and Technology Log

My last few days at sea were rather exciting.  Wednesday, I got to attend some medical training necessary at sea in the morning, and then in the afternoon we practiced safety drills. The whole crew ran through what to do in the case of three different ship emergencies: Fire, Abandon Ship and Man Overboard.  These drills were pretty life-like, they had a fog machine which they use to simulate smoke for the fire drill. Once the alarm was triggered people gather in their assigned areas; roll was taken, firemen and women suited up and headed to the location where smoke was detected, and from there teams are sent out to assess damage or spreading of the fire, while medical personnel stood prepared for any assistance needed. The abandon ship drill required all men and women on board to acquire their life preserver and full immersion suit, and head to their lifeboat loading locations. Roll is then taken and an appointed recorder jots down the last location of the ship. Once this is done, men and women would have deployed the life rafts and boarded (luckily we did not have to). And for the man overboard drill they threw their beloved mannequin Oscar overboard in a life vest and had everyone aboard practice getting in their look out positions. Once Oscar was spotted, they turned the ship around, deployed an emergency boat and had a rescue swimmer retrieve him.

Fast Rescue Boat

Deployed emergency boat for rescue of the beloved mannequin, Oscar.

These drills are necessary so that everyone on board knows what to do in these situations. While no one hopes these emergencies will happen, knowing what to do is incredibly important for everyone’s safety.

Thursday was maybe my favorite day on board. Due to the fact that there are a handful of new personnel on board, practice launching and recovering the survey launch boats was necessary. There are 4 launch boats on top of NOAA Ship Fairweather, each equipped with their own sonar equipment. These boats sit in cradles and can be lowered and raised from the sea using davits (recall the video from the “Safety First blog a few days ago). These four boats can be deployed in an area to allow for faster mapping of a region and to allow for shallower areas to be mapped, which the NOAA Ship Fairweather may not be able to access.  Since this is a big operation, and one which is done frequently, practice is needed so everyone can do this safely and efficiently.

 

With the aid of Ali Johnson as my line coach, I got to help launch and recover two of the survey launch boats from the davits on the top of the ship into the Bering Sea. This is an important job for all personnel to learn, as it is a key part of most survey missions. Learning line handling helps to make sure the survey launches are securely held close to the ship to prevent damage and to safely allow people on and off the launch boats as they are placed in the sea.  From learning how to handle the bow and aft lines, to releasing and attaching the davit hooks, and throwing lines from the launches to the ship (which I do poorly with my left hand), all is done in a specific manner. While the practice was done for the new staff on board, it was fun to be involved for the day and I got to see the beauty of the NOAA Ship Fairweather from the Bering Sea.

And I truly enjoyed being on the small launch boats. I then understood what many of the officers mentioned when they told me they enjoyed the small boat work. It’s just fun!

 

My trip ended in Nome, Alaska, which was in and of itself an experience. Students, you will see pictures later.  I am extremely thankful for the crew on board NOAA Ship Fairweather, they are a wonderful mix of passionate, fun professionals. I learned so much!

Personal Log

Being a Teacher at Sea is a strange, yet wonderful experience. Being a teacher, I normally spend the vast majority of my day at work being in charge of my classroom and beautiful students; leading lesson and activities, checking-in with those who need extra help and setting up/tearing down labs all day, as well as hopefully getting some papers graded. However during this experience, I was the student, learning from others about their expertise, experience and passions, as well as their challenges; being in charge of nothing.  And given that I had no prior knowledge of hydrography, other than its definition, I was increasingly impressed with the level of knowledge and enthusiasm those on board had for this type of work.  It drove my interest and desire to learn all I could from the crew. In fact, I often thought those on board were older than they were, as they are wiser beyond their years in many area of science, technology, maritime studies, NOAA Ship Fairweather specifics and Alaskan wildlife.

Crew of NOAA Ship Fairweather

Crew of NOAA Ship Fairweather

NOAA offers teachers the opportunities to take part in different research done by their ships throughout the research season as a Teacher at Sea. The 3 main types of cruises offered to teachers include (taken from the NOAA Teacher at Sea website):

  • Fisheries research cruises perform biological and physical surveys to ensure sustainable fisheries and healthy marine habitats.
  • Oceanographic research cruises perform physical science studies to increase our understanding of the world’s oceans and climate.
  • Hydrographic survey cruises scan the coastal sea floor to locate submerged obstructions and navigational hazards for the creation and update of the nation’s nautical charts.

I was excited to be placed on a Hydrographic Survey boat, as this is an area in my curriculum I can develop with my students, and one which I think they are going to enjoy learning about!

While I was sad to leave, and half way through had a “I wish I would have known about this type of work when I was first looking at jobs” moment (which I realize was not the goal of this fellowship or of my schools for sending me), I am super excited to both teach my students about this important work and also be a representative of this awesome opportunity for teachers. I will wear my NOAA Teacher at Sea swag with pride!

Teacher at Sea gear!

Me in my awesome Teacher at Sea gear!

 

Roy Moffitt: Last Day of School, Onward to Summer in the Arctic Ocean. June 21, 2018

NOAA Teacher at Sea
Roy Moffitt
Aboard Ship: USCGC Healy
Cruise Dates: 8/7/2018 – 8/25/2018

Mission: Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: June 22, 2018

From New Hampshire and coming soon this August from the Arctic

Yesterday, June 21, 2018, was the last day of school for us at the Maple Street School in Hopkinton, New Hampshire. It was an appropriate day for the last day of school as summer vacation starts on the summer solstice this year. We ended the school year with a promotion of the NOAA research mission I will be taking part in this summer. Part of this unique learning opportunity is to bring the learning experience to students and the general public, not only in Hopkinton, NH but across the country. If you have found my blog, congratulations! Please follow the blog so you to can join me on this adventure.

Above are the students of Maple Street during the end of year assembly. The Maple Street School is located in the village of Contoocook in the town of Hopkinton New Hampshire. The school is composed of students in grades 4-6 grade and approximately 210 students.

Above are the students of Maple Street during the end of year assembly. The Maple Street School is located in the village of Contoocook in the town of Hopkinton, New Hampshire. The school is composed of students in grades 4-6 grade and approximately 210 students.

Overview of Mission

There will be over 40 scientists and I the Science teacher headed into the Arctic Ocean sailing out of Nome Alaska to the Barrow Canyon. The Barrow Canyon is an underwater gorge that runs East to North West of Barrow Alaska and is known for its rich marine life. Scientists will be conducting numerous studies and observations at many locations during the trip.   The scientific studies taking place will have a common theme, how are the rapid changing Arctic Sea Ice conditions affecting the region?

This NOAA image from November shows the historically low ice in the study area this fall. Historically the Chukchi Sea has had sea ice at this time. This map is a good guide to orient you to the study area from Nome to the north-northwest of Barrow Alaska.

This NOAA image from November shows the historically low ice in the study area this fall. Historically the Chukchi Sea has had sea ice at this time. This map is a good guide to orient you to the study area from Nome to the north-northwest of Barrow, Alaska.

For the last two years, regional sea ice in the Bering Sea has been at a historic low. What changes does this have on the region’s ecosystem? This includes the microscopic plankton to fish, marine birds to larger marine mammals. These creatures live anywhere from the sea floor to the air, and all these areas will be observed. As we observed in my 6th-grade science class this year, in an ecosystem the living (biotic) is affected by the non-living (or abiotic). Non-living factors that will be measured will include the salinity of the water, the water temperature, and changes in ocean currents themselves. Changes in ocean currents have larger effects on local and regional climates, which include those on land.

This annual survey will allow for changes over time to monitored. What will scientists learn this year? Follow this blog to find out. To sign up to be notified of updates click the follow button on the bottom right of your screen and you will be notified when there is a new post to read.  The blog will be updated at the start of and during the mission from the from one of the most remote areas of the world, north of the Arctic Circle in the Arctic Ocean.  I look forward to talking to you again soon from the Arctic Ocean during the first week of August!

Joan Shea-Rogers: Teacher at Sea becomes Student at Sea, June 19, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA Ship Oscar Dyson

July 1-22, 2018

 

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 19, 2018

Personal Log

I must begin by trying to convey how honored and excited I am to be a part of NOAA’s Teacher At Sea program.  I will be sailing aboard NOAA Ship Oscar Dyson with another teacher, Lee Teevan. What an adventure! More importantly, it’s an opportunity to gain knowledge about the management of the Bering Sea Fishery, the commercial fishing industry and how these forces impact both the ocean ecosystem and our lives. It is an opportunity to educate my students and community about these factors and the career opportunities that support them. It also demonstrates the fact that, life long learning opportunities come in many forms.

For the last five years I have been teaching at Lanphier High School in Springfield, Illinois. I look forward to bringing lessons into the classroom that can spark an interest in an unfamiliar aspect of scientific research and its real-life implications. Through these lessons, I also hope to expand student awareness of the related realm of job opportunities associated with this work.

I graduated with a Bachelor’s degree in Biology and a concentration in Fishery Science. I earned my Teacher Certification in Biology and the Sciences. Following graduation, I chose a career in teaching. Through my education at the University of Wisconsin – Superior, I became interested in the Foreign Fishery Observer Program. I was a Foreign Fishery Observer on Japanese fishing ships that fished primarily for Arrowtooth Flounder in the Bering Sea. This involved sampling the catches, and determining how much of each species of fish were caught to guard against exceeding their assigned quota. I spent a month and a half aboard 3 different ships. The opportunity to work on NOAA Ship Oscar Dyson will allow me to learn about the Fisheries Management aspect of the Bering Sea.

I returned to school to earn my Special Education Teaching Certification and earned a Master’s Degree in Educational Administration. As a teacher, I continued going to school and learning about many topics that supported my work. In order to increase my knowledge about Fishery Science, I took a class in which I created a teacher’s manual (An Aquatic Organisms Educational Module for the Therkildsen Field Station at the Emiquon Wetland Area on the Illinois River). This manual allows teachers to bring students to the field station, collect plankton samples and use the labs to study the results of their sampling. Students learn about the many aspects of the wetland ecosystem and even calculate estimates of the planktonic biomass of the wetland. How fun is that!

TAS Joan Shea-Rogers and a Glacier

Traveling and Learning About the World Around Me

I hope with my introduction, I peak your interest in this aspect of our world. I invite you to be a part of my experience in order to continue your life long learning journey as I continue mine.

 

 

 

 

 

 

 

 

 

Vincent Colombo, Into the Fog, June 21, 2015

NOAA Teacher at Sea
Vincent Colombo
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Annual Walleye Pollock Survey
Geographical area of the cruise: The Gulf of Alaska
Date: June 21, 2015

Weather Data from the Bridge:

  • Wind Speed: 6.02 knots
  • Sea Temperature: 9.99 degrees Celsius
  • Air Temperature: 9.06 degrees Celsius
  • Air Pressure: 1016.59 mb
Unimak Island at sunrise

Unimak Island at sunrise

Unimak Bight

Unimak Bight

Shishaldin Volcano - One of Alaska's many active volcanoes

Shishaldin Volcano – One of Alaska’s many active volcanoes

Science and Technology Log:

You are sleeping soundly in your bed. Awakening you is your phone ringing… it’s 5:30 am… that could only mean one thing, it’s the school calling to say school is delayed 2 hours… FOG. No, it’s not the kind of fog depicted in John Carpenter’s thriller; it’s the kind that the local weatherman says is a localized phenomenon that reduces visibility to less than a quarter mile. If you live on Delmarva, you have experienced this sort of fog and know that it can turn a normal commute into a complicated one.

Here in the Alaskan summer, especially the Aleutian Chain, Gulf of Alaska, and the Bering Sea, fog is a normal, and potentially ALL day event. The only constant on this research cruise so far has been waking up every day and watching our NOAA Corps Officers navigate through a very dense fog.

A view from the bridge of the fog. You can barely see past the bow

A view from the bridge of the fog. You can barely see past the bow

But what causes fog, and why is it so prevalent here?

Fog is most simply described as a cloud on the ground. It is made up of condensed water droplets that have encircled some sort of condensation nuclei (something water can attach to). On the open sea, that condensation nuclei is salt, which has upwelled (brought to the surface) from turbulent seas or breaking waves. That translates to the rougher the seas, the more chance there is for condensation nuclei, and thus fog.

Fog is able to be formed when the air temperature is cooler than the dew point. The dew point refers to the specific temperature which water can condense. Dew point varies with humidity and temperature, you can calculate dew point here.

Because the sun exposure is so long here in the Alaskan summer day, there is ample time for the sun’s radiant energy to heat up the upper layer of the ocean causing evaporation. The now warmer air, filled with water vapor, meets the cool waters of the Northern Pacific or Bering Sea, and bam, here comes a fog bank. The most common name for this type of fog is Sea Fog, scientifically called Advection fog. The combination of salt is especially important because salt is a unique condensation nuclei in that it will allow fog to form when the humidity is as low as 70%. It can also turn from a gentle fog to a dense fog in little to no time. Air movement, or wind can actually cause more fog, rather than the contrary belief it will just blow away.

As the day goes on, the fog lowers

As the day goes on, the fog lowers. Notice the sea is calm, and the dew point is raising.

The sky is crystal clear, however the surface is still covered in dense fog

The sky is crystal clear, however the surface is still covered in dense fog

So what have I learned? NOAA Ship Oscar Dyson has a very loud fog horn which the NOAA Corps Officers sound on a regular basis during these conditions.

Here is what you need to know if you are ever on the ocean in a fog bank!

  • One prolonged sounding of the horn – this means “Hey! I am here and moving, don’t hit me!”
  • Two prolonged soundings of the horn – this means “Hey! I am a big boat, but not moving, don’t hit me!”
  • One prolonged sounding of the horn followed by two short blasts – “Hey! I am a big boat and am either towing something (like a fishing net) or lowered in my ability to maneuver. Stay away and make room!”
  • One prolonged sounding of the horn followed by three short blasts – “Hey! I am a big boat that is being towed. Stay away from me because I have no power!”
  • One short blast of the horn, followed by a prolonged sounding, then one short blast; or rapidly ringing of a bell for five seconds every minute –  “Hey I am anchored over here, you can’t see me, stay away.”
Here the land is still covered. Under that blanket is another mountain.

Here the land is still covered. This is what is called radiant fog. The conditions on land are still perfect for fog to exist. Radiation fog typically disappears as the sun warms up the land.  Under that fog blanket is another mountain.

The sun is able to eliminate and produce fog

The sun is able to eliminate and produce fog

 

You have to trust the Radar

You have to trust the Radar

 

Personal Log:

The life at sea is quite interesting. Luckily we have every luxury of home on board the Oscar Dyson, to include internet (sometimes), hot showers, and a nice bed. I have also been introduced to the game of Cribbage, an apparent maritime tradition. I cannot say that I fully understand it, but there are bunches of ways the number 15 can be made.

?

Busy on the ship’s fantail

Fishing is life up here, and every day I can expect at least one or two trawls (pulling of a net behind the ship). I was introduced to what is called a Methot net, which is used for catching smaller organisms. I was able to look at Krill for the first time in my life the other day, a keystone organism for a lot of the Alaskan food web.

Krill!

Krill!

Also very cool was seeing the MACE scientists use a cool underwater camera. Ever wonder what is under 300 meters of water? With this camera that can be deployed in less than 5 minutes, scientists can get a picture of the sea floor on a live feed.

colombo3

Looking at the live feed of the sea floor

Meet the Crew:

Richardo Guevara. Richardo has been with NOAA for 7 years and is the Ship’s Electronics Technician. What does this mean? Richardo works on various systems on the ship that involve communications, such as radios, acoustics, data sensors, radar, telephones, televisions, navigation, and computer systems. Richardo is the IT guru and knows everything about the ship’s day to day mission with technology. Richardo works for NOAA because he enjoys the life at sea, its benefits, and the satisfaction of working side by side with scientists.

Richardo Guevara, Electronics Technician

Richardo Guevara, Electronics Technician

Richardo is a 23 year veteran of the United States Air Force. During his service he gained a plethora of knowledge suited towards his current position on board the Oscar Dyson. Richardo was born and raised in Pensacola, Florida, but now resides on the Oregon coast. Richardo says that this job requires a lot of flexibility, and his time in the military gave him this valuable life skill. According to Richardo: “A lot of times people seem to get the notion that you must have college to succeed, but I do not have a college degree. I cannot understate how important it is to get your high school diploma and to value that. Then it is up to you to go your own way and have success.”

Meet the crew:

Kirk Perry. Kirk is the lead fisherman aboard the Oscar Dyson and is acting Chief Boatswain for our research cruise. Kirk has been with NOAA since 2004, and is in charge of any activity which takes place on deck. His job includes, but is not limited to, using fishing equipment, deploying science equipment, anchoring, net maintenance, standing lookout on the bridge, being a helmsman, managing a deck crew of 6, and operating a crane. Kirk joined NOAA for the adventure of a lifetime, to fish in Alaska. He never intended to stay this long but absolutely loves his job and he says working with scientists is very rewarding.

?

Kirk Perry, Lead Fisherman

Out of curiosity in the neighborhood, Kirk discovered the world of fishing and hunting from a Czechoslovakian neighbor in San Jose, California. Kirk started commercially fishing at age 10 in Monterey Bay, California and has not looked back since. He graduated from Cal Poly SLO with a degree in Natural Resources Management while on scholarship for college baseball. Kirk loves baseball and football and is a diehard San Francisco Giants and 49ers fan. He also isn’t too bad on the guitar either.

Kirk was my unofficial, but official Alaskan fishing guide. It was his handy work that set me up with rigs and a tackle for my Halibut at the beginning of my trip. Kirk and I have a lot in common and have had countless discussions about the outdoors. A fun fact about Kirk, he can identify any bird that flies by the ship, whether it’s out of necessity or because he has been hunting so long.

Kacey Shaffer: All Good Things… August 13, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 13, 2014

Weather information from the Bridge:

Air Temperature: 12º C

Wind Speed: 10 knots

Wind Direction: 306.62 º

Weather Conditions: Clear

Latitude: 53º 51.38 N

Longitude: 166º 34.85 W

Science and Technology Log:

Before we get into detail about data and where all of it ends up, let’s talk acronyms. This trip has been a lot like working in the Special Education world with what we like to call “Alphabet Soup.” We use acronyms a lot and so does the NOAA Science world. Here are a few important acronyms…

AFSC – Alaska Fisheries Science Center (located in Seattle, WA)

MACE – Midwater Assessment and Conservation Engineering Program (also in Seattle)

CLAMS – Catch Logger for Acoustic Midwater Surveys

Drop TS – Dropped Target Strength System

CTD – Conductivity, Temperature and Depth System

SBE – Sea-bird Electronics Temperature-Depth Recorder

We recorded data in a program called CLAMS as we processed each haul. The CLAMS (see above: Catch Logger for Acoustic Midwater Surveys) software was written by two NOAA Scientists. Data can be entered for length, weight, sex and development stage. It also assigns a specimen number to each otolith vial so the otoliths can be traced back to a specific fish. This is the CLAMS screen from my very first haul on the Oscar Dyson.

Kacey's first haul on the Oscar Dyson.

Kacey’s first haul on the Oscar Dyson.

From the Species List in the top left corner you can see I was measuring the length of Walleye Pollock- Adult. In that particular haul we also had Age 2 Pollock, a Chum Salmon and Chrysaora melanaster (a jellyfish or two). There is the graph in the lower left corner that plots the sizes in a bar graph and the summary tells me how many fish I measured – 462! When we finish in the Wet Lab we all exit out of CLAMS and Robert, a zooplankton ecologist working on our cruise, ducks into the Chem Lab to export our data. There were a total of 142 hauls processed during the 2014 Summer Walleye Pollock Survey (June 12 – August 13) so this process has happened 142 times in the last two months!

Next, it is time to export the data we collected onto a server known as MACEBASE. MACEBASE is the server that stores all the data collected on a Pollock survey. Not only will the data I helped collect live in infamy on MACEBASE, all the data collected over the last several years lives there, too. CLAMS data isn’t the only piece of data stored on MACEBASE. Information from the echosounding system, and SBE (Sea-bird Electronics temperature depth recorder) are uploaded as well.

We’ve reached the end of the summer survey. Now what? 142 hauls, two months of echosounder recordings, four Drop TS deployments and 57 CTD’s. There have also been 2660 sets of otoliths collected. Scientists who work for the MACE program will analyze all of this information and a biomass will be determined. What is a biomass? Some may think of it as biological material derived from living or recently living organisms. In this case, biomass refers to the total population of Walleye Pollock in the Bering Sea. In a few weeks our Chief Scientist Taina Honkalehto will present the findings of the survey to the Bering Sea Plan Team.

That team reviews the 2014 NOAA Fisheries survey results and Pollock fishing industry information and makes science-based recommendations to the North Pacific Fishery Management Council, who ultimately decide on Walleye Pollock quotas for 2015. Think about Ohio’s deer hunting season for a minute. Each hunter is given a limit on how many deer they can tag each year. In Pickaway & Ross counties we are limited to three deer – two either sex permits and one antlerless permit. If every deer hunter in Ohio was allowed to kill as many deer as they pleased the deer population could be depleted beyond recovery. The same goes for Pollock in the Bering Sea. Commercial fisheries are given quotas and that is the maximum amount of Pollock they are allowed to catch during a given year. The scientific research we are conducting helps ensure the Pollock population remains strong and healthy for years to come.

Personal Log:

Earlier today I took a trip down to the Engine Room. I can’t believe I waited until we were almost back to Dutch Harbor to check out this part of the ship. The Oscar Dyson is pretty much a floating city! Put on some ear protection…it’s about to get loud!

Kacey stands by one of four diesel engines on the Oscar Dyson.

Kacey stands by one of four diesel engines on the Oscar Dyson. (Photo credit: Sweet William)

Why must we wear ear protection? That large machine behind me! It is a 3512 Caterpillar diesel engine.  The diesel engine powers an electric generator. The electric generator gives power to an electric motor which turns the shaft. There are four engine/generator set ups and one shaft on the Dyson. The shaft turns resulting in the propeller turning, thus making us move! When we are cruising along slowly we can get by with using one engine/generator to turn the shaft. Most of the time we are speeding along at 12 knots, which requires us to use multiple engines/generators to get the shaft going. Here is a shot of the shaft.

The shaft of the Oscar Dyson.

The shaft of the Oscar Dyson.

 

Engineering Operation Station

Engineering Operation Station

The EOS, or Engineering Operation Station, is the fifth location where the ship can be controlled. The other four locations are on the Bridge.

Engine Data Screen provides information about the engines, generators and shaft.

Engine Data Screen provides information about the engines, generators and shaft.

This screen provides Engineers with important info about the generators (four on board) and how hard they’re working. At the time of my tour the ship was running on two generators (#1 and #2) as shown on the right side of the screen. #3 and #4 were secured, or taking a break. The Officer of the Deck, who is on the Bridge, can also see this screen. You can see an Ordered Shaft RPM (revolutions per minute) and an Actual Shaft RPM boxes. The Ordered Shaft RPM is changed by the Officer on Deck depending on the situation. During normal underway conditions the shaft is running at 100-110 RPMs. During fishing operations the shaft is between 30 and 65 RPMs.

The port side winch of the Oscar Dyson.

The port side winch of the Oscar Dyson.

When I talked about the trawling process I mentioned that the Chief Boatswain is able to extend the opening of the net really far behind the stern (back) of the ship. This is the port side winch that is reeled out during trawling operations. There are around 4300 meters of cable on that reel! How many feet is that?

When Lt. Ostapenko and ENS Gilman were teaching me how to steer this ship they emphasized how sensitive the steering wheel is. Only a little fingertip push to the left can really make a huge difference in the ship’s course. This is the hydraulic system that controls the rudder, which steers the ship left or right. The actual rudder is hidden down below, under water. I’m told it is a large metal plate that stands twice as tall as me.  This tour really opened my eyes to a whole city that operates below the deck I’ve been working on for the last 18 days. Without all of these pieces of equipment long missions would not be possible. Because the Oscar Dyson is well-equipped it is able to sail up to forty days at a time. What keeps it from sailing longer voyages? Food supply!

And just like that I remembered all good things must come to an end. This is the end of the road for the Summer Walleye Pollock Survey and my time with the Oscar Dyson. We have cleaned and packed the science areas of the ship. Next we’ll be packing our bags and cleaning our staterooms. In a matter of hours we’ll be docking and saying our goodbyes. There have been many times over the last 19 days where I’ve stood, staring out the windows of the Bridge and thinking about how lucky I am. I will never be able to express how thankful I am for this opportunity and how it will impact my life for many, many years. A huge THANK YOU goes to the staff of NOAA Teacher at Sea. My fellow shipmates have been beyond welcoming and patient with me. Thank you, thank you, THANK YOU to everyone on board the Dyson!! I wish you safe travels and happy fishing!

To Team Bluefin Tuna (night shift Science Crew), thank you for your guidance, ice cream eating habits, card game instruction, movie watching enthusiasm, many laughs and the phrase “It is time.” Thanks for the memories! I owe y’all big time!  

Did you know? The ship also has a sewage treatment facility and water evaporation system onboard. The MSD is a septic tank/water treatment machine and the water evaporation system distills seawater into fresh potable (drinking and cooking) water.