Martha Loizeaux: Sensational Satellites, August 29, 2018
NOAA Teacher at Sea
Martha Loizeaux
Aboard NOAA Ship Gordon Gunter
August 22-31, 2018
Mission: Summer Ecosystem Monitoring Survey
Geographic Area of Cruise: Northeast Atlantic Ocean
Date: August 29, 2018
Weather Data from the Bridge
Latitude:39.115 N
Longitude:74.442 W
Water Temperature: 26.4◦C
Wind Speed:11.7 knots
Wind Direction: SW
Air Temperature: 28.2◦C
Atmospheric Pressure:1017.03 millibars
Depth:22 meters
Science and Technology Log
Today I was excited to learn more about the work of Charles Kovach, Support Scientist with Global Science and Technology, a contractor to NOAA Center for Satellite Applications and Research (STAR).
Charles’s work may sound familiar.It is a bit similar to the work I wrote about yesterday that Audrey and Kyle are doing with the University of Rhode Island.He wants to match what satellite pictures are seeing to what is really here in the ocean.
Charles has another cool tool called a “hyperspectral profiler” or hyperpro for short.He can put this tool into the water to measure light at the surface, light coming down through the water, and light bouncing back up from the deep.He wants to know how the sunlight changes as it goes down into the deep and back up through the water.The hyperpro measures thousands of different colors as they travel through the water.Seeing what colors bounce back from the water can help you understand what is IN the water.For example, you can see some of this with your own eyes.Blue water is usually clean and clear, green water has a lot of algae, and brown water has a lot of particles like sand or dirt. But the hyperpro gets A LOT more detail than just our eyes.
Me assisting with the hyperpro deployment. I had to read the computer program and alert Charles regarding the depth of the instrument.
Charles deploying the hyperpro
The main purpose of this is to understand what satellites are seeing.We can get images from satellites out in space, like a picture of the ocean.But the satellite is outside of our atmosphere so it is seeing light that has gone through a lot of air and gases as well as the ocean.So when scientists can measure the light in the ocean at the same time that the satellite is taking a picture, they can use MATH to find a relationship between what the satellite sees and what is really happening on Earth.In this way, Charles can calibrate (make more accurate) and validate (make sure it is right) the satellite images.
This is helpful information for A LOT of people all over the world.Scientists are pretty good at collaborating because they know how important it is to share information with everyone so we can all be more aware of what is happening in our natural world.Charles collaborates with other countries and their satellites, as well as NOAA’s satellites.
Charles also collaborates with other scientists on the ship and in NOAA’s laboratories.This way he can compare his light data to other measurements such as chlorophyll (remember?It’s from phytoplankton!), turbidity, and even specific species of plankton.Then he can find relationships between things like the light and the plankton or turbidity.He can use MATH to write an equation for this relationship (we call that an algorithm).And you know what that means?We can use a satellite picture to tell what kind of plankton is in the water!We can see tiny plankton from space!WOW.
Collecting and Analyzing Data
When Charles uses his hyperpro, the machine automatically records the light data and we can see it on a computer screen.Then he uses special computer software to analyze the data to better understand what it means and how it relates to the satellite.He creates line graphs to understand the colors of light that are coming down into and up out of the water.
Charles’s data after it’s been processed or analyzed. He ends up with line graphs, satellite images, and photos as scientific evidence.
One thing I have noticed with all of the scientist on the ship is the importance of data collection!I have entered some of the data and have noticed data sheets around the wet lab.If we do not write or type every bit of data, then it can’t teach us anything.Scientists write data into a data table of columns and rows.This keeps it organized and easy to understand.When they analyze the data, they will often create a graph from the data table.This helps them to see a picture of relationships between the measurements.
Audrey and Kyle’s data sheet
A Few Questions for Charles
Me – How did you become interested in your field of study?
Charles – I worked in Florida as a water quality manager.It became obvious that we needed to see the bigger picture to truly understand what was happening in the water.Satellites are the best way to try to get a picture of what is happening over a large space at the same time.
Me – What would you recommend to a young person exploring ocean and science career options?
Charles – Work hard in MATH!I use math every day and would not be able to do this work without it.It is very important!Computer coding is also important in the work I do.
Charles surrounded by his work.
Personal Log
Wow, I cannot believe how much I am learning during this experience.It is truly fascinating.
In my past blogs, I mentioned spending some down time on the fly bridge.I wanted to share more about that part of the ship because it is a truly peaceful place and really allows you to feel that you are in the middle of the ocean!
The fly bridge is the uppermost deck
The fly bridge is the highest of the decks on the ship.It is above the “bridge deck” (where NOAA Corps operates the ship) and just under the radar sensors.At any given time during the day, you can find some of the science team and sometimes the NOAA Corps team up on the fly bridge.We might be checking with the seabird observers to see what animals have been spotted, taking a nap in the sun at the picnic table, staring out at the water with binoculars, or getting cozy with a good book.It’s a great place to soak it all in and my favorite place on the ship.
The view from the fly bridge
One level below the fly bridge is the bridge deck where the ship is operated.NOAA Corps Officers are happy to answer questions and it’s also a fun and interesting place to visit.It’s a great place to see the charts that officers use to navigate, radar screens, and other cool ship operating tools.They even let me take control of the ship!JUST KIDDING!That would never happen, unless I trained to become an officer myself and was authorized to control the ship.Maybe one day!
Me driving the ship. Just kidding. But I could pose for a photo just for fun.
Did You Know?
The largest species of plankton is called a Mola mola.It is a large fish that looks like it had its tail cut off!It’s flat, rounded shape allows it to flow with the currents along with its food source, other plankton!Because the Mola mola is a living thing that drifts with currents, it is plankton!The seabird observers have seen several Mola mola on this trip.Maybe I’ll see one tomorrow…
A mola mola at the surface. Photo courtesy of NOAA.
Mystery Photo
Can you guess what this photo is?Add your guess to the comments below!