NOAA Teacher at Sea
Martha Loizeaux
Aboard NOAA Ship Gordon Gunter
August 22-31, 2018
Mission: Summer Ecosystem Monitoring Survey
Geographic Area of Cruise: Northeast Atlantic Ocean
Date: August 24, 2018
Weather Data from the Bridge
Latitude: 40.15 N
Longitude: 68.71 W
Wind direction: NE
Wind speed: 14 knots
Water temperature: 23.8 degrees C
Air pressure: 1023 millibars
Air temperature: 24.2 degrees C
Water depth: 165 meters
Science and Technology Log
What an exciting first full day out at sea! I have been so grateful that our science team has allowed me to be completely hands-on and take responsibility for some of the science happening on the ship. In addition to checking the Imaging Flow Cytobot (IFCB) periodically, I am very much involved in the data collection at each of our stations.
There are specific stations along our course where scientists need to collect data. The crew announces when we are close to the station. At that time, along with another volunteer on watch, I don my foul weather gear to head out to the deck. We get pretty splashed as we are working with the equipment so the gear is a good idea. We help the crew as they lower “bongo nets” into the water using a cable and pulley system. Can you guess why they are called bongo nets? These nets have a very fine mesh that helps collect, you guessed it, PLANKTON!


We also help raise the bongo nets after several minutes dragging them through the water. We rinse all of the plankton down to the bottom of the net and then open up the end of the net to allow all of the plankton into a sieve where we will collect it. I have been surprised by the amount of jelly-like animals that have shown up in the nets!
Then it’s time to use special liquids (ethanol or formalin) and water to wash the plankton into collection jars. These chemicals will preserve the plankton so scientists can study it back in the lab!
It has been so much fun working with this equipment, asking the scientists questions about the plankton, and being a part of it all.
Harvey, our chief scientist, explained to me that many scientists can use the plankton samples for all different studies. Some of the samples can be used to study larval fish (baby fish) otoliths, the tiny ear bones that can verify the identification of larval hake using genetics. Knowing this, scientists can do research to determine where the larval fish were born! What a great example of the beginning of a scientific

experiment!:
Question – Where are most larval red hake fish born in the Northeast Atlantic Ocean?
Research – Scientists might research currents in the area, wind patterns, and other things that would push plankton from place to place. They also would research what other scientists have already learned about larval red hake.
Hypothesis – Most larval red hake fish are born in the Southern New England and Georges Bank regions in the northeast US shelf.
Didn’t I tell you plankton were amazing?
At some of the stations, we also lower Niskin bottles and CTD instruments into the water to collect a lot more data! More on that to come!




NOAA Corps Corner
Today I spoke with Lola Ajilore, Officer with NOAA Corps, and asked her a few questions about her important work. A pod of humpback whales off the bow stole the show! Here’s what we got in before the exciting interruption…
Me – Tell me more about your roles on the ship.
Lola – I am the Navigation Officer, Medical Officer, Environmental Officer, Ship Store Officer, and Morale Officer. As you can see, we all have multiple roles on the ship. As Navigation Officer, for example, I plot charts, track directions, and coordinate with the Operations Officer and Commanding Officer on track lines and routes that are requested by the scientists.
Me – Where do you do most of your work?
Lola – I am always with NOAA Ship Gordon Gunter. The ship’s home port is in Pascagoula, Mississippi. Our missions often take place in the Gulf of Mexico but we also run these Northeast Shelf cruises for Ecosystem Monitoring every year.
Me – What kind of training is needed for your line of work?
Lola – We undergo an application process that includes several interview steps. We then train at the Coast Guard Academy. Much of our training parallels that of the Coast Guard, but we also do our own NOAA Corps training as well.
Me – What tool do you use in your work that you could not live without?
Lola – Radar! [Radar aids navigation by detecting things that are far away such as an island or another ship]


Personal Log

I cannot believe the amazing views that we have on this ship 24 hrs. a day! The water has been super calm and the sunrise, sunset, breaching whales, and pods of dolphins have taken my breath away.
Yesterday was emergency drill day! Libby, our Operations Officer, had given us directions on how to respond to emergencies prior to leaving the

dock. There are emergency drills for a fire (just like at school!), abandon ship (in the case that we had to immediately leave the ship in an emergency), and man overboard.
We practiced a fire drill and an abandon ship drill. The Officers on the ship sounded the alarm, using a different number and duration of blast based on the type of emergency. For a fire, we all “mustered” (got together in one place) in assigned areas. All of the science team members mustered together. For abandon ship, we all mustered near the life boats along with our life jackets and immersion suits (suits that can help you survive if you end up in the water).

The fun part of the abandon ship drill was donning our immersion suits in one minute or less! This was a great thing to practice so if there ever was a real emergency, we would know how to put on the suit. I thought I looked pretty cool in my immersion suit.
Did You Know?
Salps are barrel-shaped planktonic tunicates. Our plankton bongo nets always contain some jelly-like salps. Where I live in the Florida Keys, we see mangrove tunicates growing on mangrove roots. Here in the open ocean, salps stick together in long colonies and drift! Sometimes there are so many salps in our nets, we have to filter them out with sieves and put them back in the water.

Something to Think About
We have been finding up to 4,000 phytoplankton in 5 mL of water. A gallon of water is equal to about 3785 mL. There is about 352,670,000,000,000,000,000 gallons of water in the Atlantic Ocean. How much plankton is in the Atlantic? You do the math.