Lisa Carlson: “No life is too short, no career too brief, no contribution too small,” July 16, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 16, 2023

– – ⚓ – –

Weather Data from the Bridge

July 14 (1200 PT, 1500 EST)
Location: 38° 34.9’ N, 123° 42.7’ W
15nm (17mi) West of Stewarts Point, CA

Visibility: <1 nautical miles
Sky condition: Overcast, fog
Wind: 19 knots from NW 330°
Barometer: 1014.6 mbar
Sea wave height: 3-4 feet
Swell: 5-6 ft from NW 300°
Sea temperature: 11.0°C (51.8°F)
Air temperature: 13.1°C (55.6°F)
Course Over Ground: (COG): 330°
Speed Over Ground (SOG): 10 knots

July 15 (1200 PT, 1500 EST)
Location: 38° 56.3’ N, 124° 02.1’ W
13nm (15mi) West of Point Arena Lighthouse, Point Arena, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 20 knots from NW 340°
Barometer: 1013.1 mbar
Sea wave height: 3-4 feet 3-4
Swell: 7-8 ft from NW 320°
Sea temperature: 10.8°C (51.4°F)
Air temperature: 13.3°C (55.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 9 knots

July 16 (1200 PT, 1500 EST)
Location: 39° 36.2’ N, 124° 01.6’ W
14nm (16mi) Northwest of Fort Bragg, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 29 knots from NW 320°
Barometer: 1011.4 mbar
Sea wave height: 3-4 feet
Swell: 5-6 ft from NW 320°
Sea temperature: 11.3°C (52.3°F)
Air temperature: 13.9°C (57.0°F)
Course Over Ground: (COG): 280°
Speed Over Ground (SOG): 7 knots

– – ⚓ – –

Science and Technology Log

Without a vessel and without a crew, none of this mission would be possible. As I’ve said before, this crew is special. Like any job, employees are required, but that does not mean that you will work well cohesively and passionately towards a goal. The two weeks I’ve been spending with this crew who is so wholeheartedly excited about their job and role, while being on the ocean, has been so rewarding and inspiring. More later, this is starting to remind me of crying along with my sobbing fourth graders on the last day of school.

While I’ve discussed a lot of the daily operations of the crew and ship, and what I’ve been learning and working on myself, however, I have not discussed the vessel and agency that has made all of this possible. Many people question, “What is NOAA?” when I explain this opportunity.

About NOAA

NOAA logo: a circle bisected by the outline of a seagull, dark blue above the seagull's wings and lighter blue below. Around the circle read the words: National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

“The National Oceanic and Atmospheric Administration (NOAA) is a U.S. government agency that was formed in 1970 as a combination of several different organizations. The purpose of NOAA is to study and report on the ocean, atmosphere, and coastal regions of Earth.”

National Geographic Education: “National Oceanic and Atmospheric Administration (NOAA)

“Our mission: To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and managecoastal and marine ecosystems and resources.”
NOAA: “About Our Agency”

NOAA: “About Our Agency”

NOAA Ship Bell M. Shimada can carry a total crew of 24, which include NOAA Corps officers, engineers, other crew members, and scientists.

“The NOAA Commissioned Officer Corps (NOAA Corps) is one of the nation’s eight uniformed services. NOAA Corps officers are an integral part of the National Oceanic and Atmospheric Administration (NOAA), an agency of the U.S. Department of Commerce, and serve with the special trust and confidence of the President.”

NOAA OMO: “NOAA Commissioned Officer Corps

The Vessel

NOAA Ship Bell M. Shimada, commissioned in 2010, is a fisheries survey vessel designed to produce a low acoustic signature, built to collect data on fish populations, conduct marine mammal and seabird surveys, and study marine ecosystems. The quiet operation provides scientists the ability to study fish and marine mammals without significantly altering their behavior.

Stats and Specs (Link for more information)
Length: 208.60 ft
Beam (width): 49.2 ft
Draft (bottom of the lowered centerboard to waterline): 29.7 ft
Displacement (full load): 2,479 tons (4,958,000 lbs)
Speed: 11.00 knots
Endurance: 40 days
Range: 12,000 nautical miles
Home port: Newport, Oregon
Crew:
– 24 (5 NOAA Corps officers, 4 licensed engineers, and 15 other crew members)
– Plus up to 15 scientists

Namesake

“[Dr.] Bell M. Shimada (1922-1958), served with the United States Fish and Wildlife Service and the Inter-American Tropical Tuna Commission, and was known for his studies of tropical Pacific tuna stocks.”

Wikipedia: “NOAAS Bell M. Shimada

The ship’s namesake was known for his contributions to the study of Tropical Pacific tuna stocks, which were important to the development of West Coast commercial fisheries following World War II. Dr. Bell Shimada and colleagues at Pacific Oceanic Fisheries Investigations (POFI) Honolulu Laboratory were among the first to study the population dynamics of tunas and the oceanography affecting their abundance and distribution.

a man (Dr. Shimada) wearing a white t-shirt, shorts, and red baseball cap stands holding a penguin. He grasps the penguin securely beneath its wings, which are spread out to each side. The man, and the penguin, look at the camera. He appears to be on a vessel - we can see some ocean water in the background - and we can tell that two other people are behind him, mostly obscured.

Dr. Bell M. Shimada, circa 1957.
Wikipedia: “Bell M. Shimada

“In her remarks at the christening and launch, [Dr. Shimada’s daughter] Julie Shimada offered the following, “I hope the Bell M. Shimada is a lasting testament that no life is too short, no career too brief, no contribution too small, to make a difference.”

NVC Foundation: “NOAA Honors Nisei With Launch of Fisheries Vessel “Bell M. Shimada””

– – ⚓ – –

Interviews with the Crew
(Part 1 of 2)

(Take note of the similarities and differences between how these crew members chose an ocean-related career and got to be assigned to NOAA Ship Bell M. Shimada)


A photo of a photo in a wooden frame with a name plaque reading CDR Laura Gibson. The photo is a portait of a woman posing in a survival suit, hands in the air. She's wearing a navy blue hat that says Bell M Shimada R-227.

Executive Officer
Commander Laura Gibson

What is your role aboard NOAA Ship Bell M. Shimada?
CDR Gibson’s role includes a lot of administrative work, handling the budget, standing bridge watches as the Officer on Duty (OOD), along with other executive duties.

What do you enjoy the most about your role?
The mission and camaraderie of the crew, as well as getting to know the ship and happy, successful operations.

When did you know you wanted to pursue an ocean-related career?
CDR Gibson enjoys Scuba diving and grew up on lakes. She worked on a research ship in college and continued working on the water which led her to NOAA. She mentions her Dad as a large motivator and inspiration of wanting to pursue an ocean-related career.

What do you think you would be doing if you were not working for NOAA?
Working a boring 9-5 desk job!

Favorite animal
Rhinoceros

Fun Fact: she brings a stuffed animal dog with her from her son, named Barfolomew.

His nickname is Barf!

a stuffed animal (a brown dog with long black ears) photographed against a carpet

A photo of a photo in a wooden frame with a name plaque reading LT Nicole Chappelle. The photo is a portait of a woman wearing a blue jacket.

Operations Officer
Lieutenant Nicole Chappelle

What is your role aboard NOAA Ship Bell M. Shimada?
Coordinate with scientists to make the plan of the day, assist in navigation and operation of the vessel.

What do you enjoy the most about your role?
Nicole enjoys seeing all of the sea life and creatures, and hearing and learning what the scientists are doing and why.

When did you know you wanted to pursue an ocean-related career?
She originally wanted to work with animals, which she did as a member of a rehabilitation team at Sea World. She then wanted to join uniformed service. Nicole chose NOAA’s uniformed service (NOAA Corps) because their science missions aligned with her interests.

What do you think you would be doing if you were not working for NOAA?
Working with animals and marine life or being a scuba instructor.

Do you have an outside hobby?
Horseback riding, Scuba diving, jogging, kayaking, hiking.

What’s something you were surprised to see or learn about living and working onboard when you first started?
Nicole remarked on the times she’s been out in the ocean, hundreds of miles away from shore, and how few other vessels you see there. She says it gave her a much greater appreciation for just how big the ocean is.

Favorite animal
Horses


A photo of a photo in a wooden frame with a name plaque reading Deb Rose. This is a photo of woman wearing a green NOAA t-shirt, a purple bandana, and sunglasses.

Junior Engineer
Deb Rose

What is your role aboard NOAA Ship Bell M. Shimada?
Junior Engineer Deb Rose (in her words) handles the “hotel services” of the vessel. Her role includes plumbing, electrical work, repairs, and many other behind the scene tasks to keep the vessel running safely.

What do you enjoy the most about your role?
I get to fix stuff! Troubleshooting, figuring out what’s wrong, and fixing the problem were among steps that she described as part of her work onboard.

When did you know you wanted to pursue an ocean-related career?
While working at Firestone, Deb met and befriended Jason who became a wiper on NOAA Ship Oscar Elton Sette. She saw pictures and heard his stories of how he is now a licensed engineer, and decided to follow in his footsteps! She mentions Jason as a motivator that inspired her to pursue an ocean-related career.

What do you think you would be doing if you were not working for NOAA?
Continue to work on the Alaska Marine Highway ferries. (These ferries cover 3,500 miles of Alaska’s coastline.)

Outside hobbies: Video games, Scuba diving, swimming, fishing

What’s something you were surprised to see or learn about living and working onboard when you first started?
How few women there still are in the industry. Deb has often been the only or one of the only female crew members both on land and at sea. She hopes that this trend will keep changing and that women will be in more engineering industries.

Favorite animal
Her favorite animals are the Jackson Chameleon and dogs.

Fun Fact: Humans are more related to salps than any other creatures we catch. She can also identify 12 Rockfish species!


A photo of a photo in a wooden frame with a name plaque reading Connor Rauch. The photo is a portrait of a man with glasses standing against a wall.

Deck Department
Connor Rauch

What is your role aboard NOAA Ship Bell M. Shimada?
Connor is a General Vessel Assistant as part of the Deck Department. He helps deploy and recover the trawl net and CTD rosette, stands watch as a lookout, helps keep the ship clean, and much more! He took classes at Seattle Maritime Academy for one year and is now applying his education on his first NOAA vessel!

What do you enjoy the most about your role?
He is enjoying his first assignment on a NOAA vessel and traveling up and down the Pacific coast. He says he is also enjoying being on the water, applying new knowledge to tasks, and training to a real ship. He also enjoys learning about trawling and commented on how nice the people onboard are.

When did you know you wanted to pursue an ocean-related career?
He wanted to try something new after working for a non-profit group during the Covid-19 pandemic assisting those in need. He decided to work on the water since he grew up sailing and kayaking. He thought of working on local ferries, but after taking classes at Seattle Maritime Academy, he had the confidence to apply for NOAA.

Do you have an outside hobby?
Reading, kayaking, camping, and hiking.

What’s something you were surprised to see or learn about living and working onboard when you first started?
Connor said he was pleasantly surprised at how tight the crew is, how easy it is to sleep, how comfortable the ship is, and the good food!

Favorite animal
Beavers and dog

– – ⚓ – –

Personal Log

As this experience comes to the end, I reflect on all parts of this mission. The crew, vessel, marine life, food, sleep, friendships, and more. I’m so thankful I was able to have this experience and share NOAA’s Teacher at Sea program more with coworkers, family, friends, and my students. Meeting and talking with the crew resulted in long conversations and plenty of laughs and connections amongst each other that they previously had not known.

Winds and swells picked up over the weekend and on Sunday July 16 we only caught six Hake. After that trawl and an increase in marine mammals being sighted when we were trying to trawl, fishing was called off for the rest of the Leg. At 1020 Monday July 17, we completed our last transect for Leg 2 of the Survey and headed due North for the long trek to Newport, Oregon. We still found ways to entertain ourselves, nap, snack, share stories and riddles, take photos of sunsets and marine mammals, watch shooting stars and have a movie night. Below are photos of our art craft: fish prints of two Chilipepper Rockfish!

– – ⚓ – –

Did You Know?

NOAA Ship Bell M. Shimada has an endurance, the amount of time the vessel can be at sea in a row, of forty days. This is not because the ship can’t make its own fresh water through reverse osmosis from sea water, or a lack of fuel, oil, extra parts, or a way to exhume waste and trash in an environmentally friendly way…

but because of food!

Our galley crew is amazingly talented and spoils us with a huge all you can eat buffet, desserts, and drinks every day! But, as per various laws and for the safety of the crew, they are lawfully entitled to fresh fruit, vegetables, meat, etc. within set guidelines and window of time.


– – ⚓ – –

Animals Seen Today

Pacific White-Sided Dolphins! Although these energetic friends caused us to abandon a trawl attempt after multiple marine mammal watches ended early because of their presence, they were so much fun to watch! I brought my DSLR camera up to the bridge deck and eventually sat down on the deck watching them jump and race through the ocean waters next to the hull. Below are some of my favorite photos I took of the pod.

Lisa Carlson: Where Did You Come From, Where Did You Go? July 13, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 13, 2023

– – ⚓ – –

Weather Data from the bridge:

July 11 (1200 PT, 1500 EST)
Location: 37° 46.7’ N, 123° 26.6’ W
43nm (50mi) West of San Francisco, CA

Visibility: 2 nautical miles
Sky condition: Overcast, fog
Wind: 20 knots from N 250°
Barometer: 1015.2 mbar
Sea wave height: 2-3 feet
Swell: 6-7 ft from NW 320°
Sea temperature: 12.2°C (57.2°F)
Air temperature: 12.7°C (57.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 10 knots

July 12 (1200 PT, 1500 EST)
Location: 38° 06.8’ N, 123° 01.6’ W
7nm (8mi) North of Point Reyes Lighthouse, Inverness, CA

Visibility: 2 nautical miles
Sky condition: Overcast, fog
Wind: 12 knots from N 350°
Barometer: 1016.0 mbar
Sea wave height: 1-2 feet
Swell: 3-4 ft from W 280°
Sea temperature: 11.0°C (57.2°F)
Air temperature: 11.5°C (57.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 10 knots

July 13 (1200 PT, 1500 EST)
Location: 38° 17.3’ N, 123° 06.1’ W
2.5nm (4mi) Southwest of Bodega Bay, CA

Visibility: 3 nautical miles
Sky condition: Few clouds, fog
Wind: 13 knots from NW 300°
Barometer: 1015.9 mbar
Sea wave height: 1-2 feet 1-2
Swell: 3-4 ft from NW 300°
Sea temperature: 10.7°C (51.3°F)
Air temperature: 13.7°C (56.6°F)
Course Over Ground: (COG): 340°
Speed Over Ground (SOG): 10 knots

– – ⚓ – –

In my July 6 post, I explained how NOAA Ship Bell M. Shimada is equipped to collect acoustic data in the form of echo grams and therefore find fish to trawl for. In my July 10 post, I explained how we get the fish onboard, and what we do with the sample once it is collected from the net. These entries described what work is done in the Acoustics Lab and the Wet Lab, but there is one more Lab onboard to explore and explain: the Chemistry Lab.

view down the starboard side of NOAA Ship Bell M Shimada shows a wooden nameplate (reading Bell M Shimada) on a railing, the fast rescue boat mounted aftward, and the Golden Gate Bridge in the background.
NOAA Ship Bell M. Shimada leaving Pier 30/32 in San Francisco, CA on July 5, 2023. (Just a nice photo taken by me that I wanted to include)

Science and Technology Log

Each morning after breakfast, we usually gather in the Acoustics Lab, determine what transect we are on, if we are inshore or offshore, and in some ways: hurry up and wait. Once certain patterns and blips show up on the echo grams, the Acoustics team talks with the bridge and may request to turn around and attempt a trawl. After all marine mammal observations are completed, the net is retrieved, and the samples are brought to the Wet Lab, we sort and collect data on the samples. These operations usually take place between 0800 and 2000. (8am to 8pm)

So what happens at night? In the Chemistry Lab, scientists work with the Deck and Surveys Departments to deploy a collection of electronic instruments and 12 Niskin bottles (open bottles used to collect and hold water samples, about one meter long) secured to a cylindrical frame called a rosette. It is deployed from the side sampling station instead of the stern. Scientists onboard NOAA Ship Bell M. Shimada use the instruments and collection of water samples in two ways: measuring Conductivity, Temperature, and Depth (CTD) within a water column to study oceanography, and collecting environmental DNA (eDNA).

photo of a large piece of sampling equipment on deck. a large white metal cylindrical frame houses a ring of perhaps ten tall gray canisters - the Niskin bottles. The bottles circle the conductivity, temperature, and depth probe, which is barely visible. Behind the frame, past the ship's rail, we see vivid blue water with a few white caps and a coastal mountain range beyond.

CTD Niskin bottles arranged on a circular rosette frame.

“Nighttime operations primarily consists of deploying the Conductivity-Temperature [-Depth] (CTD) rosette which gathers oceanographic data such as conductivity, temperature, dissolved oxygen, and chlorophyll fluorescence. The CTD can also be triggered to collect water at specific depths.”

NOAA Fisheries: “eDNA Part 2: There’s a Lot of Water in the Sea – and the Chemistry Lab
NOAA Ocean Exploration: “What does “CTD” stand for?

Conductivity, Temperature and Depth: CTD

CTD stands for conductivity (ability to pass an electrical current), temperature, and depth. Scientists use the rosette frame, which is attached to the ship by cables, and has the CTD and 12 Niskin bottles attached, to collect electronic data and multiple water samples.

“A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity and it is directly related to salinity. By measuring the conductivity of seawater, the salinity can be derived from the temperature and pressure of the same water. The depth is then derived from the pressure measurement by calculating the density of water from the temperature and the salinity.”

NOAA Ocean Exploration: “What does “CTD” stand for?
Elysha, wearing an orange life vest and white NOAA logo hard hat, sits at a metal desk with two computer monitors and a keyboard. The monitors display data from the CTD. Elysha has her right hand on a computer mouse while her left grips a pen over a yellow legal pad. She is turning to smile at the camera.
Senior Survey Technician Elysha Agne gives commands to the Deck Department running the winch and cable to the rosette, and ensures quality data is being collected at each sampling depth.

“For more detailed analyses back in the lab, each of the large gray bottles captures a water sample at a different depth. The data provide scientists important information about the local aquatic environment.”

NOAA: “Photo story: Virtually cruise aboard a NOAA ship for a fish trawl survey

Depending on the depth at which the vessel is currently operating, the rosette will descend to one to five predetermined depths (50m-500m) for sampling. For example, if the vessel depth reads 400m, water samples will occur at 50m, 150m, 200m, and 300m (more information in Table 1 below). A water sample is also taken just below the ocean surface using a through hull fitting, which allows seawater to be collected via a hole in the hull that feeds directly to the Chem Lab.

Table 1. Sample depths for eDNA. Two independent samples should be taken at each depth. The total ocean depth of location for the CTD cast determines the depths at which water samples will be collected. The rows of the table are labeled Sampling Depth (m) and the columns are labeled Topography depth of CTD cast.
Table 1 in Protocol manual, written by Chem Lab member and eDNA scientist Abi Wells.

While the rosette descends, data is recorded from multiple sensors and are later used by scientists to compare with Acoustic and Wet Lab data and compile and categorize new information from the survey. Pressure, depth, temperature, conductivity, salinity, oxygen, fluorescence, and turbidity were all being recorded during this leg of the survey mission.

photo of a computer screen displaying data. two graphs depict depth (m) on the y-axis and salinity or dissolved oxygen on the x-axes.
Program displaying data collected from the CTD rosette in real time.

Environmental DNA: eDNA

During the day, Hake stay in deeper waters, averaging around 200-350m, but at night the nocturnal feeders start their daily migration through the water column to shallower depths. They feed primarily on zooplankton, shrimp, myctophids (Lanternfish), and even young Hake at this depth. As Hake move throughout the water column, they leave behind DNA in the water that can be collected later as sort of a signature of their presence in that location. The collection, filtering, and preservation of sampled water in the ocean environment is categorized as collecting eDNA. This environmental DNA can be in the form of gametes (reproductive cells), fish scales, feces, etc.

Collecting water samples at different depths in the same vertical column can show what marine life was present at that location, and what depth they were at. I relate it to reviewing school security cameras or talking to other teachers at the end of the school day, to determine where a student was at a certain time and why.

The apparatus housing the CTD probe and Niskin rosette sits on deck. Abi, wearing a yellow hard hat, orange life vest, blue gloves and brown rubber boots, stands between the equipment and the rail of the ship to empty water from a Niskin bottle into a plastic bag. The profile of her face is mostly obscured by her long yellow ponytail.
Chem Lab member and eDNA scientist Abi Wells collecting a 2.5L water sample from a Niskin bottle after a successful CTD deployment.

When the rosette is back on deck, scientists use gloves and new collection bags called Whirlpacks, to collect approximately 2.5L of water from each 10L Niskin bottle. This process is conducted with a great emphasis on sterility, including wiping the bottle spigot with DNAway to remove any contaminants, using new materials, and not allowing fingers or the spigot to touch the collection bag.

Once the collection bags are filled and brought to the Chem Lab, filtration occurs using 1.0 micron filters. Although this size of filter, compared to smaller filters, allows some cells to pass through and not be collected, it is faster and results in less breakage of cells and loss of DNA. After 2.5L of the water sample is poured through individual filters for each depth sample, they are placed in pre-labeled (location and depth information) tubes with 2mL of preservative buffer. The tubes are stored at room temperature and away from UV light until NOAA Ship Bell M. Shimada is back in port and the samples can be further researched in on-land laboratories. Results from additional studies help to compile lists of marine life that was present in the water column and can be compared to acoustic data and species caught and logged in the Wet Lab.

– – ⚓ – –

Personal Log

So, there you have it. Three Labs onboard that conduct very different research, but fit together in the puzzle of Hake development, migration, diet, niches, ecosystem, biomass, and supporting sustainable commercial fisheries. Each additional piece of data; whether it be echo sounds, physical samples, eDNA, or CTD information, strengthens the others and helps to create a cohesive summary of the data. 

This was a lot to learn in the first few days, but as I’ve said before, all of the crew has been welcoming, supportive, and educational. Having a strong team that works together is priceless, and thoroughly noticed and appreciated. 

A few days into the mission my Mom asked me what the best part of my day was. I had three answers and haven’t had a day yet with only one answer. I replied that it was the great salmon dinner, clean clothes, and seeing Risso’s Dolphins for the first time.

Video taken by me of Risso’s Dolphins surfacing for air. (Plays on loop)

We are now a little more than halfway through the mission and it has truly flown by. We’ve shared riddles and daily Final Jeopardy questions. We’ve laughed over daily experiences and the faces Hake fish make. We’ve played music and watched baseball during dinner. We enjoy watching marine life and breathe in the salt air while strengthening our sea legs. Sometimes we just drink coffee and snack and enjoy this opportunity with each other, and that makes every part of the day the best part.

– – ⚓ – –

Did You Know?

Although Hake are occasionally cannibalistic, they are not at the top of their food chain. Humboldt Squid (Remember those 15 foot long tentacles in my Wet Lab post?), Dogfish Sharks, and marine mammals are all predators, as well as commercial fishing.
Today well over 100 Spiny Dogfish Sharks were inadvertently caught in the trawl, in the same location as the baskets of Hake we sampled from.
Maybe there were baby Hake fish in the sharks’ stomachs… we didn’t attempt to find out.

– – ⚓ – –

New Terms/Phrases

Although I had learned the terms a few days earlier, I got to help Wet Lab Lead Ethan Beyer collect otolith and stomach samples for the first time from a sub-sample of Hake the other day.

I watched and learned, then helped scan barcodes of otolith sample bottles, add 95% ethanol that is diluted 50/50 with water, and delicately pick up the ear bones with tweezers and place them in the bottle.

Additionally, each Hake in the sub-sample has its weight recorded, along with length, sex, and developmental stage. From that sub-sample, five stomachs are removed for later analysis, and five have their stomachs opened and their diet is recorded. We often find Lanternfish (Myctophids), Krill (Euphausiidae) and small Hake.

Lisa Carlson: One Fish, Two Fish, Rockfish, Hake fish! July 10, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 10, 2023

– – ⚓ – –

Weather Data from the bridge:

July 7 (1200 PT, 1500 EST)
Location: 36° 00.4’ N, 122° 05.9’ W
16nm (21mi) West of Big Sur, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 20 knots from NW 330°
Barometer: 1013.1 mbar
Sea wave height: 3-4 feet
Swell: 6-7 ft from NW 320°
Sea temperature: 14.0°C (57.2°F)
Air temperature: 14.4°C (57.9°F)
Course Over Ground: (COG): 323°
Speed Over Ground (SOG): 10 knots

July 8 (1200 PT, 1500 EST)
Location: 36° 34.5’ N, 122° 05.3’ W
17nm (20mi) Southwest of Monterey, CA

Visibility: 10 nautical miles
Sky condition: Few clouds
Wind: 19 knots from NW 330°
Barometer: 1013.8 mbar
Sea wave height: 5-6 feet
Swell: 6-7 ft from NW 330°
Sea temperature: 14.0°C (57.2°F) 13.7
Air temperature: 14.4°C (57.9°F) 14.3
Course Over Ground: (COG): 089°
Speed Over Ground (SOG): 10 knots

July 9 (1200 PT, 1500 EST)
Location: 37° 06.8’ N, 123° 00.5’ W
30nm (35mi) West of Pigeon Point Light Station, Pescadero, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 13 knots from NW 332°
Barometer: 1016.0 mbar
Sea wave height: 2-3 feet
Swell: 4-5 ft from NW 310° 4-5
Sea temperature: 14.3°C (57.7°F)
Air temperature: 15.2°C (59.4°F)
Course Over Ground: (COG): 093°
Speed Over Ground (SOG): 10 knots

July 10 (1200 PT, 1500 EST)
Location: 37° 26.7’ N, 123° 06.4’ W
32nm (37mi) West of Pescadero, CA

Visibility: 8 nautical miles
Sky condition: Overcast, fog in vicinity
Wind: 20 knots from NW 330°
Barometer: 1015.9 mbar
Sea wave height: 2-3 feet
Swell: 3-4 ft from NW 320°
Sea temperature: 14.5°C (58.1°F)
Air temperature: 13.6°C (56.5°F)
Course Over Ground: (COG): 314°
Speed Over Ground (SOG): 3 knots

– – ⚓ – –

Science and Technology Log

Lisa poses for a photo in the wet lab with a hake fish. She's wearing heavy-duty orange overalls and large orange gloves. With her right hand, she grasps the fish by its open mouth, and her left hand holds on to the tail. We can see metal tables and equipment in the background.
Me holding a Hake before sorting. After observation, we determined this was a developmentally mature female, measuring 50cm (20in) long!

In my July 6 blog post, I explained how NOAA Ship Bell M. Shimada is equipped to collect acoustic data in the form of echo grams. The acoustics team uses the data to determine if there are enough return signals to suggest fish are present and attempt a trawl. In this blog post, I will explain how we get the fish onboard, and what we do with the sample of marine life once it is collected from the net.

One question I had after learning about the acoustics and environmental DNA (eDNA) pieces of the survey mission was, “How does physically collecting and researching Hake samples fit into the puzzle of understanding their ecosystem and supporting sustainable fisheries?” (NOAA Fisheries quick facts and video here)

“While echosounders are useful, they do not provide certain quantitative data that researchers need to understand the ecology of these organisms and the midwater zone. To collect quantitative data, such as biomass, length and weight, and age class distributions, researchers must gather representational samples and take direct measurements of them. The best way to do this is by employing trawls.”

NOAA Ocean Exploration: “Trawls

So, although acoustics and eDNA research is important to the overall survey, they are only pieces of the puzzle, and the puzzle is not complete without conducting trawls and physically researching samples. NOAA Ship Bell M. Shimada uses a midwater trawl net that is deployed from the stern over the transom, and towed behind the vessel. As the name suggests, midwater trawls occur in the middle section of the water column, versus surface and bottom trawls. The net is conical in shape and uses two metal Fishbuster Trawl Doors, and two sets of heavy chain links called Tom weights, in order to keep the trawl in the middle of the water column.

a simple and stylized monochrome illustration of a fishing vessel towing a midwater trawl behind it. The net in tow is conical, attached at four points to two bars that hold the opening apart, and these bars are attached to lines (ropes) extending back from the vessel. This net is capturing two fish and missing a third.
NOAA Fisheries: “Fishing Gear: Midwater Trawls

“The midwater region is especially important because the creatures that inhabit it constitute the majority of the world’s seafood. Understanding the ecology of midwater organisms and their vast environment can provide us with better information to manage these important natural resources and prevent their overexploitation.”

NOAA Ocean Exploration: “Trawls

Deck department assisting in recovering the trawl net after a successful deployment.

Two deck crewmembers work with an orange and white fishing net on the aft deck of NOAA Ship Bell M. Shimada. They are wearing foul weather gear, life vests, and hard hats. At right, one leans over the net, searching for remaining captured fish. The other approaches from the left, looking down at the net, to assist. We can see a cloud-capped mountain range in the distance beyond the water.

Once the net is onboard, the net is emptied one of two ways depending on the size of the sample. For large samples, marine life is deposited into a hopper and subsequent conveyor belt. For smaller samples, the Hake will be put into a large basket then divided into smaller baskets of approximately 100 Hake each. Any other marine life like Salps, Myctophids, Pyrosomes, Rockfish, King of the Salmon, and small bony fish, etc. are recorded in the database and returned to the ocean.

“The ship’s wet lab allows scientists to sort, weigh, measure and examine fish. The data is entered directly into the ship’s scientific computer network.”

NOAA Office of Marine and Aviation Operations (OMAO): “Bell M. Shimada
a large black plastic bin filled with fish - mostly hake, but a few splitnose rockfish (eyes bulging from the pressure change) stand out for their red color. An orange-gloved hand reaches toward the basket from the upper left corner of the image.

Large basket containing a sample of Hake with a few (red) Splitnose Rockfish.

With our boots and bright orange rubber pants and gloves on, our first task is to distribute the sample of Hake into baskets of about 100 each. Based on how many baskets we fill, a random selection of baskets will be kept, and the others will be returned to the ocean. With the remaining groups of Hake, we determine their sex and length.

In order to do this, we use a scalpel to make an incision on the underside/belly of the Hake. Once open, we are able to examine their organs, including the gonads to determine if the fish is male or female, and if they are developmentally immature or mature. Young Hake are difficult to sex, and it takes practice to get over any initial fears of cutting into an animal; let alone being able to locate and identify the gonads. Hake usually spawn in early winter, so many of the smaller Hake we sample from during the summer are age one or younger.

Our largest Hake thus far was a developmentally mature female, measuring 50cm (20in). In order to accurately and consistently measure the length of the sample, we use a waterproof, magnetic plastic board with metric (centimeter and millimeter) markings called an Ichthystick (think: high-tech meter stick). The fish is placed on the board with its mouth touching the black board at 0cm, then a magnetic stylus is placed at the fork of the fish’s tail. Once the magnetic stylus is placed on the board, the length to the nearest millimeter is displayed on the LCD screen and automatically entered into the database program. The length data is grouped with the date, time, and identified sex for later observation and comparison.

Additional information, abstracts and outline about Ichthystick here

Ichthystick’s LCD display, motherboard, magnetic board, and magnetic stylus. Digital scale in background.

Ichthystick’s LCD display, motherboard, magnetic board, and magnetic stylus. Digital scale in background.

An even smaller subgroup is then selected and examined to record weights of individual Hake, collect ear bones called Otoliths for aging, stomach samples for diet, liver for RNA, and ovaries for maturity development. Otolith bones help determine the age of the Hake because they grow a new “layer” of bone each year, similar to coral structures and annual tree rings. Organs and bones removed from the Hake are sent to NOAA Fisheries centers for analysis and included in databases with the date, identified sex, length, weight, and location in which they were collected.

This data is used to build more of the puzzle, along with acoustical information, water samples, and eDNA data in order to further understand the ecosystem, biomass, diet, and

“support sustainable populations of Pacific hake on the West Coast.” (…)
“It provides vital data to help manage the migratory coastal stock of Pacific hake. The hake survey, officially called the Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey, occurs every odd-numbered year.”

NOAA Fisheries: “Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey

– – ⚓ – –

Personal Log

Although this subtopic of explaining the Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey is a bit easier to understand than my July 6 Acoustics Lab post, it certainly does not mean it’s an easy task!

When I had a tour on July 4, I remarked how clean and
organized the Wet Lab is. I hadn’t see it in action yet, but noticed how everything had its place and use. On July 6 we conducted our first trawl and collected a sample of 11 baskets of Hake (approximately 1,100 Hake since we group about 100 Hake together in each basket.) From that sample, we kept four baskets and counted, sexed, and measured 541 Hake.

Five of us were working together in the Wet Lab for that haul. I’ll admit I probably
didn’t sex 100+ Hake. It took a few minutes of watching the others carefully and swiftly cut into the underside of a fish, open the two sides, and know what to look for to determine the sex of very young Hake. Eventually I found the courage to slice in and take a look. By the fourth or fifth Hake, the uneasiness had subsided and I found the process very interesting and educational. Although young samples are hard to sex as they are often undeveloped, the others encouraged me and answered my questions and guesses with enthusiasm and support.

While working on measuring the lengths of our samples, one Science Team member paused and remarked how beautiful he found the fish. Although they do not have vibrant, bold colors, shimmering scales, or anything else particularly remarkable, he found the beauty in them. He digressed into a conversation of their role in the ecosystem, how they are living and breathing creatures, and how they probably all have their own personalities and slight physical differences. I noticed some of their eyes were shiny and sparkling, and how their faces and expressions were
noticeably unique the more you looked. That “down to earth”, heartfelt discussion was very special and demonstrated how the crew respects the process of catching and sampling Hake, while keeping each other and marine mammals safe.

From the NOAA Corps Officers, to the deck department, to the engineers,
electronics, science team, survey team, galley crew, volunteers, and everyone in between; the crew on NOAA Ship Bell M. Shimada is special. They take pride in their vessel and job, and always seem to have a smile and kind greeting. Being away from land and loved ones for weeks and months at a time will certainly take a toll on the body and mind, but this team is there for each other. To all of the crew, thank you for making me feel so welcomed and appreciated. We’re almost halfway through the mission, and as tired as I may get after (sometimes) 12+ hour days, I sleep well knowing the crew trusts their vessel and each other; and look forward to learning and becoming more and more acquainted each day with the people that make this mission possible. Thank you!

– – ⚓ – –

Did You Know? (FAQs)

1. Are you finding schools of them?

We’ve had seven successful trawls out of nine attempts for Pacific Hake fish. They often come with pyrosomes (Sea Pickle) myctophids (Lanternfish), and salps in the net too. Some trawl attempts are successful without a hitch, but more often than not we have to restart our Marine Mammal watches a few times before deploying in order to keep our ocean life safe and not get tangled in the net. Two trawl attempts have been abandoned because of the amount of persistent marine mammal life and playfulness near the ship. (I think they know we’re watching and show off for our cameras.)

2. What’s your average depth?

The transects (Set and numbered longitudinal east-west lines NOAA Ship Bell M. Shimada navigates on while collecting acoustic data) usually range from 50m – 1,500m (164ft – 4,921ft) in depth.

  • However, right now one of the displays in the Acoustics Lab, the depth reading is 3,240m which is about 10,630ft or just over two miles deep! 
  • This depth is only 1,870ft shallower than the wreck of the RMS Titanic! 
  • (We were on a long transect, we do not often see depths this great.)

3. Have you gotten seasick? Seasickness should subside after about 3 days.

I’ve never gotten seasick thankfully! Knock on wood and all the other premonitions, please.

4. What is the Hake role in the ecosystem?

More info on this coming in later posts after explaining our Chemistry lab and technology aboard! 

  • However, as predators, they can be cannibalistic towards their own kind. 
  • As far as their role in human consumption: They are often used as a substitute for Cod and Haddock, and in fish sticks and imitation crab meat.

– – ⚓ – –

Animals seen July 5-July 10:

Mammals: Sea Lions, Harbor Seals, Dall’s Porpoise, Risso’s Dolphins, Pacific White-Sided Dolphins, Northern Right Whale Dolphins, Humpback Whales

Birds: Gulls, Black-Footed Albatross

Bony Fish: Hake, Lanternfish (Myctophid), Flatfish, King of the Salmon, Split Nose Rockfish, Chili Pepper Rockfish

Other Marine Life: Giant or Humboldt Squid (15 foot tentacles in trawl), Spiny Dogfish Shark, Shrimp, Plankton, Krill, Sea Pickle (Pyrosome), Salp, Eel Larva

Lisa Carlson: Come Out, Come Out, Wherever You Are, Hake! July 6, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 6, 2023

Weather Data from the Bridge:

— July 5 Departure
(1800 PT, 2100 EST)

Location: 37° 44.9’N, 122° 39.2’W
Docked at Pier 30/32
San Francisco, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 17 knots from NW 300°
Barometer: 1012.8 mbar
Sea wave height: 1-2 feet
Swell: 2-4 ft from W 270°
Sea temperature: 14.2°C (57.6°F)
Air temperature: 14.7°C (58.5°F)
Course Over Ground: (COG): N/A
Speed Over Ground (SOG): N/A

— July 6 (1200 PT, 1500 EST)
Location: 35° 38.2’ N, 121° 18.9’ W
16nm (18mi) West of San Simeon, CA

Visibility: 10nm
Wind: 6 knots from 330°
Barometer: 1013.9
Sea wave height: 1-2ft
Swell: 2-4ft from 280°
Sea wave temperature: 14.4°C (57.9°F)
Air temperature: 14.9°C (58.8°F)
Course Over Ground: (COG): W 270°
Speed Over Ground (SOG): 10 knots

– – ⚓ – –

Science and Technology Log

On July 6, our first full day at sea, we gathered in the acoustics lab to observe and keep watch on data from various screens. Data includes our current course plotted on a digital chart, a camera showing current sea state, measurements of the wind speed and direction, and displays of the multiple frequencies at which the Simrad EK80 transmitter emits sound. The EK80 is used while traveling on numbered longitudinal east-west lines called transects. NOAA Ship Bell M. Shimada navigates on these lines while collecting acoustic data along the west coast of the U.S. and into Canada, in hopes of finding schools of Hake to collect for surveying.

A topographic map of a portion of the coast of California. The topographies of the both the land (beige and green scales) and water (blue scale) are depicted. Black dots mark the locations of three coastal cities: Crescent City, near the top of the map; San Francisco, a little more than halfway down; and Morro Bay, toward the bottom of the map. Black horizontal lines mark transects extending west from the coast line. The black lines are marked with red or black x's (showing previous sampling locations, perhaps) and a couple have green triangles.
Map showing transects 1-45 off the coast of California. Transect 1 is south of Morro Bay, CA and transect 45 is near Crescent City, CA.
(We hope to survey transects 8-35 by Cape Mendocino, CA before traveling north to dock in Newport, OR.)

“For acoustic surveys, the ship uses a multibeam echo sounder (MBES) that projects a fan-shaped beam of sound that bounces back to the ship. The ship’s MBES—one of only three systems of its type worldwide—acquires data from both the water column and the sea floor.”

NOAA Office of Marine and Aviation Operations (OMAO): “Bell M. Shimada

The Simrad EK80 emits sound waves from the hull of the vessel down to the sea floor. The process is very similar to a dolphin or bat using echolocation to find prey. Any object the signal hits that has a different density and reflectivity than the surrounding water will cause the waves to bounce back to the ship. An image, called an echo gram, is pieced together each time this occurs and the acoustics team is able to use this information to determine if there are enough return signals that suggest fish are present to attempt a trawl.

Fish that have swim bladders, like bony fish, reflect or echo the sound wave back to the vessel very strongly. Other marine life such as myctophids and zooplankton also have a different density than the sea water, and reflect sound, although not as strongly as fish with air-filled swim bladders. The sea floor itself also reflects sound very strongly, because of the density difference between water and rocks, sand, and mud.

Marine life that have swim bladders (represented in blue) reflect or echo the sound wave back to the vessel. Examples of such marine life include bony fish, myctophids, and zooplankton, as well as the sea floor itself, which has a different density than the sea water.

Image: Cross section example of a Black Sea Bass to show a swim bladder.

an illustrated diagram of the internal anatomy of a bony fish (perhaps a black sea bass). Labels mark the locations of the gills, kidney, swim bladder, urine bladder, gonad, intestine, spleen, stomach, liver, and heart.

If the acoustics team determines there is enough marine life (that they are interested in surveying) to attempt a haul, they will notify the bridge deck and officers that they would like to have the fishing net deployed.

Before an attempted haul, the science team conducts a marine mammal watch for ten minutes. In this time window, several pairs of eyes are observing from the bridge deck and stern for any signs of dolphins, whales, sea lions, seals, and any other marine mammals that are within 500 meters of the vessel. If any marine mammals are spotted within the ten minute observation, we will stand down and wait ten minutes before restarting the marine mammal watch. Net deployment cannot occur until the full observation window has completed.

First haul July 6:
1422-1432 Mammal watch, no marine mammals spotted.
The net deployment started, at which time the vessel continues forward at two knots. Vessel speed increases to three knots when the net is fully deployed with doors and weights in the water, which assist in opening the conical shaped net outwards linearly and laterally. During this time the science team watches displays of the EK80 frequencies and observe the linear width and depth of the net. Scientists can compare these displays to determine if the net is in the correct position to have the best chance of collecting fish.

Hauling back the net occurs after several minutes, at which time the vessel returns to a speed of two knots, and we estimate how many fish were collected. The amount of time in which the net is submerged depends on the depth of the water and acoustic information about the size of the school of fish the net is (hopefully) sampling. After recovery, the haul is deposited into a hopper which feeds onto a conveyor belt in the wet lab, then into large baskets and the wet lab team takes over.

During the first attempt, two sea lions were spotted which required the haul attempt to be paused. We restarted the ten minute marine mammal watch from 1500-1510, the deck department retrieved and reset the net, and the vessel was turned around to return to the start of the noted longitudinal transect. With no marine mammals spotted during the observation period, the second attempt was successful and resulted in:

– 1604-1634: 30 minute haul at 350m depth.

– 11 baskets of Hake collected.

– 4 sample baskets kept at random.

– 541 Hake counted and studied in the wet lab.

Photo: Two deck department members about to open the net to allow the sample to drop into a large collection basket.

Two crewmembers, dressed in orange paints and black and neon yellow coats, face away from the camera, toward a large orange net suspended from above. They may be working to empty the net.

– – ⚓ – –

Personal Log

On July 4 I arrived to pier 30/32 in San Francisco, CA to board NOAA Ship Bell M. Shimada. Although I grew up volunteering on the 441’ WWII Liberty Ship SS John W. Brown in Baltimore, MD, seeing a new ship still resulted in a mix of emotions, nervousness, adrenaline, excitement, and everything in between. After five and a half years, finally seeing the 208’ vessel that would become my home for the next two weeks was a core memory and feeling I will always remember.

NOAA Ship Bell M Shimada in port, as seen from a point on the dock beyond the bow. We can see the NOAA logo and read: NOAA R 227. The water is calm and turqoise; the sky is blue with clouds. A portion of what may be the Golden Gate Bridge is visible in the background.
NOAA Ship Bell M. Shimada docked at Pier 30/32 in San Francisco, CA on July 4

Once onboard, I met Chief Scientist Steve de Blois and Wet Lab Lead Ethan Beyer. I was given a tour of the acoustic, chem, and wet labs and shown to my cabin. After dinner ashore, I joined some of the crew on the flying bridge to watch the July 4th fireworks. I met additional science team members and enjoyed a long night’s rest.

In the morning on July 5, we had a welcome aboard meeting, various trainings, a safety meeting and orientation, fire and abandon ship drills, and a science team meeting. We introduced ourselves, took an official team photo, and soon departed pier 30/32 for our 14 day mission. After passing under the Golden Gate Bridge and heading to the Pacific Ocean, our cold hands were warmed by a wonderful hot dinner of chicken, steak, fresh veggies, salad, and desserts from our galley crew. After dinner, we settled in for our first night at sea, waiting with anticipation for our first trawl on July 6.

– – ⚓ – –

Did You Know?

an orange-gloved hand holds a hake (fish) up so that it faces the camera. We can see the another smaller hake hanging limply across its open mouth

– Hake can be cannibalistic!
– Some larger Hake we have collected have had a smaller Hake in their mouth, throat, or stomach!
– Their very sharp teeth often stick to our thick rubber gloves.

– – ⚓ – –

New Terms/Phrases:

“Salp: Barrel-shaped, planktonic tunicate in the family Salpidae. It moves by contracting, thereby pumping water through its gelatinous body.”

Wikipedia: “Salp

“Myctophid: Lanternfish (or myctophids, from the Greek μυκτήρ myktḗr, “nose” and ophis, “serpent”) are small mesopelagic fish (…) Lanternfishes are aptly named after their conspicuous use of bioluminescence.”

Wikipedia: “Myctophid

Simrad EK80: Multibeam Echo Sounder (MBES) transducer that emits sound waves from the hull of the vessel down to the sea floor. It allows scientists to observe and study returned sound wave signals that may suggest marine life is present.

Transect: Set and numbered longitudinal east-west lines NOAA Ship Bell M. Shimada navigates on while collecting acoustic data.

Lisa Carlson: Anticipation… Does everything happen for a reason? July 3, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 3, 2023

Introduction and Background

Hello! My name is Lisa Carlson and I am an elementary school teacher in Virginia Beach, Virginia. I have taught third, fourth, and fifth grade general education with Special Education and English as a Second Language (ESL) inclusion. This coming fall I will be a second grade teacher, continuing with ESL inclusion! Although I was surprised to move down from fourth grade, I try to maintain the belief that everything happens for a reason, and the only constant in life is change.

Lisa Carlson on a boat, presumably a sailboat. We can see lines, some navigation equipment, portions of the railing, and water in the background. She's wearing a hat, sunglasses, and a blue life vest.

For example, if I not missed out on previous opportunities to join NOAA as a Teacher at Sea due to the pandemic, a short career change, and other extenuating circumstances; I wouldn’t be writing this blog from a hotel room in San Francisco, California, anticipating boarding and seeing July 4th fireworks from the deck tomorrow.

– – ⚓ – –

My introduction to NOAA’s Teacher at Sea program began in the fall of 2017. After student teaching in the fall/winter of 2016 in a third grade class, and permanent subbing in a fifth grade in the winter/spring of 2017, I accepted a position for my own third grade classroom.

My classroom came together with a nautical theme, shades of blues and calm colors, nautical paintings by my Mom, lots of cleaning and moving by my Dad, sailboat name tags on the door, and our own 3D sailboat in my class library. It soon got around that my room was one to go see!

A closed classroom door papered in shiny blue-green wrap on the top half (representing ocean) and brown on the bottom half (representing sand). Paper sailboats of different colors are taped onto the "ocean;" each has a student's name (not legible). Four yellow flip flops, with more labels, are taped to the "sand." At the top of the door, blue letters on a black paper background say: WELCOME ABOARD.

Door decorations for my first third grade classroom!

Classroom decor: life ring painting, handmade pilings,
fish and life ring pillows, sea creature lights, and 3D sailboat

A corner of a classroom, with shelves, plastic organizer boxes, a small carpet, a nest chair, in nautical theme.

Our Technology Integration Specialist, a NOAA Teacher at Sea Alumnus, visited my room and explained the program to me. The application was due on my birthday, less than a month from when I learned about the opportunity.

– – ⚓ – –

So, I applied in November 2017, 2018, and 2019. One year I just wasn’t selected, one year administrative input was not turned in on time, and other hiccups along the way. Then, my 2019 application was accepted, and I was over the moon in January 2020 to learn that I was a finalist. Of course, we all know what happened that March; and the 2020 and subsequent 2021 sailing seasons were canceled. Slowly, a few teachers were able to sail in the summer of 2022, and I was able to read their blogs from afar with the belief of everything happening for a reason.

My 2023 NOAA Teacher at Sea Assignment!

Now, it’s my turn! I will be sailing off the coast of California for two weeks on NOAA Ship Bell M. Shimada with members of the science team as part of the Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey.

“For three decades, the Teacher at Sea program has helped teachers participate in annual NOAA research surveys conducted by our scientists. Teachers from around the country embark on a two to three week expedition at sea. They gain invaluable on-the-job experience and communicate their journey through a series of blogs and lesson plans.”

NOAA Teacher at Sea Blog: “Looking Back on 30 Years of Teachers at Sea

I am so excited for this opportunity and experience after five and a half years of anticipation. So follow along, wish us fair winds and following seas, and as many schools of Pacific Hake as possible to sample from and research!

– From my king sized bed hotel room, and last night ashore:

Temporarily reassigned teacher, and sailor at heart.

Lisa stands at the door of a streetcar, left hand hanging onto a pole. A San Francisco streetscape extends into the distance to the left side of the photo.

Martha Loizeaux: Salp Confidence, August 24, 2018

NOAA Teacher at Sea

Martha Loizeaux

Aboard NOAA Ship Gordon Gunter

August 22-31, 2018

 

Mission: Summer Ecosystem Monitoring Survey

Geographic Area of Cruise: Northeast Atlantic Ocean

Date: August 24, 2018

 

Weather Data from the Bridge

Latitude: 40.15 N

Longitude: 68.71 W

Wind direction: NE

Wind speed: 14 knots

Water temperature: 23.8 degrees C

Air pressure: 1023 millibars

Air temperature: 24.2 degrees C

Water depth: 165 meters

 

Science and Technology Log

What an exciting first full day out at sea!  I have been so grateful that our science team has allowed me to be completely hands-on and take responsibility for some of the science happening on the ship.  In addition to checking the Imaging Flow Cytobot (IFCB) periodically, I am very much involved in the data collection at each of our stations.

There are specific stations along our course where scientists need to collect data.  The crew announces when we are close to the station.  At that time, along with another volunteer on watch, I don my foul weather gear to head out to the deck.  We get pretty splashed as we are working with the equipment so the gear is a good idea.  We help the crew as they lower “bongo nets” into the water using a cable and pulley system.  Can you guess why they are called bongo nets?  These nets have a very fine mesh that helps collect, you guessed it, PLANKTON!

bongos on deck
bongo nets waiting on the deck to be deployed

bongos in water
The bongo net and the “baby” bongo net being deployed.

We also help raise the bongo nets after several minutes dragging them through the water.  We rinse all of the plankton down to the bottom of the net and then open up the end of the net to allow all of the plankton into a sieve where we will collect it.  I have been surprised by the amount of jelly-like animals that have shown up in the nets!

Then it’s time to use special liquids (ethanol or formalin) and water to wash the plankton into collection jars. These chemicals will preserve the plankton so scientists can study it back in the lab!

It has been so much fun working with this equipment, asking the scientists questions about the plankton, and being a part of it all.

Harvey, our chief scientist, explained to me that many scientists can use the plankton samples for all different studies.  Some of the samples can be used to study larval fish (baby fish) otoliths, the tiny ear bones that can verify the identification of larval hake using genetics.  Knowing this, scientists can do research to determine where the larval fish were born!  What a great example of the beginning of a scientific

Hake larvae
Some examples of larval hake. Photo courtesy of Harvey Walsh

experiment!:

Question – Where are most larval red hake fish born in the Northeast Atlantic Ocean?

Research – Scientists might research currents in the area, wind patterns, and other things that would push plankton from place to place.  They also would research what other scientists have already learned about larval red hake.

Hypothesis – Most larval red hake fish are born in the Southern New England and Georges Bank regions in the northeast US shelf.

Didn’t I tell you plankton were amazing?

At some of the stations, we also lower Niskin bottles and CTD instruments into the water to collect a lot more data!  More on that to come!

Martha and bongos
Here I am getting ready to deploy the bongo nets.

rinsing nets
Jessica and I rinsing the bongo nets.

plankton on sieve
Plankton looks tiny when we filter it into a sieve.

plankton samples
Our plankton samples after being rinsed into the jars.

 

NOAA Corps Corner

Today I spoke with Lola Ajilore, Officer with NOAA Corps, and asked her a few questions about her important work.  A pod of humpback whales off the bow stole the show! Here’s what we got in before the exciting interruption…

Me – Tell me more about your roles on the ship.

Lola – I am the Navigation Officer, Medical Officer, Environmental Officer, Ship Store Officer, and Morale Officer.  As you can see, we all have multiple roles on the ship.  As Navigation Officer, for example, I plot charts, track directions, and coordinate with the Operations Officer and Commanding Officer on track lines and routes that are requested by the scientists.

Me – Where do you do most of your work?

Lola – I am always with NOAA Ship Gordon Gunter.  The ship’s home port is in Pascagoula, Mississippi.  Our missions often take place in the Gulf of Mexico but we also run these Northeast Shelf cruises for Ecosystem Monitoring every year.

Me – What kind of training is needed for your line of work?

Lola – We undergo an application process that includes several interview steps.  We then train at the Coast Guard Academy.  Much of our training parallels that of the Coast Guard, but we also do our own NOAA Corps training as well.

Me – What tool do you use in your work that you could not live without?

Lola – Radar!  [Radar aids navigation by detecting things that are far away such as an island or another ship]

Nav officer
Lola as Navigation Officer.

humpback from afar
Can you see the little black dot in the middle of the picture? It’s a humpback whale! It looked a lot closer in real life.

 

Personal Log

 

sunset view
Sunset on NOAA ship Gordon Gunter

I cannot believe the amazing views that we have on this ship 24 hrs. a day!  The water has been super calm and the sunrise, sunset, breaching whales, and pods of dolphins have taken my breath away.

Yesterday was emergency drill day!  Libby, our Operations Officer, had given us directions on how to respond to emergencies prior to leaving the

Mustering on the deck
Mustering on the deck during the emergency fire drill.

dock.  There are emergency drills for a fire (just like at school!), abandon ship (in the case that we had to immediately leave the ship in an emergency), and man overboard.

We practiced a fire drill and an abandon ship drill.  The Officers on the ship sounded the alarm, using a different number and duration of blast based on the type of emergency.  For a fire, we all “mustered” (got together in one place) in assigned areas.  All of the science team members mustered together.  For abandon ship, we all mustered near the life boats along with our life jackets and immersion suits (suits that can help you survive if you end up in the water).

Martha in immersion suit
Here I am in my immersion suit!

 

The fun part of the abandon ship drill was donning our immersion suits in one minute or less!  This was a great thing to practice so if there ever was a real emergency, we would know how to put on the suit.  I thought I looked pretty cool in my immersion suit.

 

Did You Know?

Salps are barrel-shaped planktonic tunicates.  Our plankton bongo nets always contain some jelly-like salps. Where I live in the Florida Keys, we see mangrove tunicates growing on mangrove roots.  Here in the open ocean, salps stick together in long colonies and drift!  Sometimes there are so many salps in our nets, we have to filter them out with sieves and put them back in the water.

salps from web
An example of a colony of salps. Photo courtesy of NOAA

 

Something to Think About

We have been finding up to 4,000 phytoplankton in 5 mL of water.  A gallon of water is equal to about 3785 mL.  There is about 352,670,000,000,000,000,000 gallons of water in the Atlantic Ocean.  How much plankton is in the Atlantic?  You do the math.

plankton from web
This is what some plankton look like under the microscope. Photo courtesy of NOAA

Christine Webb: August 18, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

 

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/18/2017

Latitude: 48.19 N

Longitude: 125.29 W

Wind Speed: 7.9 knots

Barometric Pressure: 1021.70 mBars

Air Temperature: 55.4 F

Weather Observations: Foggy

 

Science and Technology Log:

I am learning an unbelievable amount about marine biology! Today I will focus on hake because that is the main type of fish we are surveying on this voyage. Pacific hake are found in great abundance out here off the west coast of North America and Canada. Let me tell you a little bit about what we do.

The first thing we have to do before trawling for hake is find a good aggregation of them based on our acoustics. There is always a scientist in the acoustics lab watching the monitor outputs. The monitors show the acoustics from different frequencies: 18, 38, and 120 KHz. They can “see” when there are things between us and the ocean floor (see picture below). Based on the response of the acoustics to the objects in the water, the scientists make an educated guess about when we are over a hake aggregation. I’ve been learning a lot about how to read these monitors and how to see if we’re over rockfish, phytoplankton, or hake. I think it would be pretty cool to see something giant like a whale go underneath us, but that hasn’t happened. That’s probably for the best – I can’t imagine it’s super safe to have a whale under your ship.

IMG_20170816_090024430_BURST000_COVER_TOP
Acoustic data from the acoustics lab.

Once the acoustic scientists decide we’re over hake, they radio up to the bridge to tell them it’s time to go fishing. The fishermen start getting the nets ready, and the scientists (that’s me!) go up for marine mammal watch. We have to make sure there aren’t any whales or dolphins nearby that might get caught in our nets. I really like marine mammal watch. I get super excited to see whales and dolphins, even though I guess that’s kind of bad because we might have to postpone our trawl. Seeing mammals when we’re not fishing is the most exciting. Today we saw two orcas by the side of our boat – now THAT is cool!

IMG_20170817_103950017_HDR
Me on marine mammal watch

Once the net is fully deployed and well below the surface, the marine mammal watch ends. Then they fish through the sign they saw on the acoustics and bring the net up when they believe they caught an adequate sample. Then it’s time to process the trawl! What we want to see is a majority of hake, but that doesn’t always happen. We’ve had trawls with hundreds of hake, and we’ve had trawls with only seventeen. We sometimes catch a bunch of other stuff too, and we do different things with those creatures (I’ll save that for a different post).

Processing the trawl is pretty intensive. First we have to weigh all of them to get the mass of the entire trawl. Then we sex them to sort into male and female baskets. It’s tricky to tell the difference between males and females. We have to dissect them and find the gonads to be able to tell. Near as I can tell, the male gonads look like ramen noodles and the females look like peach jello. I think of it as, “I wonder what my husband is eating while I’m gone? Probably ramen noodles. Okay, ramen noodles means male.”

IMG_20170818_153044071
Getting ready to sort hake!

Once we have them all sorted, we take length measurements and start extracting the parts we need. The scientists are collecting and preserving the otoliths, gonads, stomachs, livers, and fin clips. We have a LOT of tubes of fish guts in our lab. I’m not entirely sure what scientists will be doing with all of this data, but perhaps I’ll interview our chief scientist about this and put it in a future post.

Personal Log:

Everyone I’ve met on this ship has been so friendly! One of my favorite things about it is that these people seem so passionate about whatever they’re doing. You should have seen my friend Hilarie’s face today when we pulled up a trawl full of pyrosomes (that’s what she studies). Tracie showed me some of the phytoplankton she’s studying, and it was like she was a little kid at Christmas. Personally I’ve never been super interested in phytoplankton, but now I am. She makes it sound like it’s the most exciting subject on earth, and looking at her slides makes me believe her.

IMG_20170817_081818382
Tracie studying phytoplankton

It’s not only the scientists who are passionate about their work. The chief steward, Larry, was so excited about his cauliflower soup today that he seemed personally offended when I didn’t take any. “Take some soup!” he said. “Seriously – it’s really good soup. You’re going to like it.” I took some just to be nice, but after one bite I said, “Larry, will this be out at dinner? Can this please be out at dinner? I LOVE IT.” It was seriously good. I need to learn how to make that.

Our chief scientist takes her job as chief very seriously too. She’s like the momma duck who takes care of all of us (thanks, Julia!). Also, she plans fun and goofy games every day where we can win prizes out of her “bag of goodies.” I haven’t won yet, but I hope I will before this is over. Today Hilarie won some awesome coral reef socks. I’m not sure how I’ve gotten this far in life without owning marine biology socks! It’s great to have Julia around because she makes time for all of us even though her own research is very absorbing and important. She’s a rock star.

IMG_20170818_181046070_HDR
Hilarie choosing her prize

Stay tuned for more info from Leg 4 – bye for now!

Caitlin Thompson: Bottom Trawl, August 11, 2011

NOAA Teacher at Sea
Caitlin Thompson
Aboard NOAA Ship Bell M. Shimada
August 1 — 14, 2011

Mission: Pacific Hake Survey
Geographical Area: Pacific Ocean off the Oregon and Washington Coasts
Date: August 12, 2011

Weather Data from the Bridge

Lat. 48 degrees 07.0 N
Long. 125 degrees 13.7 W
Present weather: partly cloudy 6/8
Visibility: 10 n.m.
Wind direction: 335
Speed 10 kts
Sea wave height: 2-3 feet
Swell waves – direction: —
Swell waves – height: —
Sea water temperature: 15.0 degrees C
Sea level pressure: 1017.3 mb
Temperature – dry bulb: 15.8 degrees C
Temperature – wet bulb: 13.2 degrees C

Science and Technology Log

Third Wire FS70
The Third Wire FS70 provides an image of the net, shown as half circle, and the fish around it.

The big news is that we’re headed to port a day early. There was a electrical component failure in the engine system that converts the diesel power to electricity which powers the electrical motors that turn the propeller shaft. This reduced the Shimada to running on about half power. I can’t believe the cruise is ending!

Yesterday we did a bottom trawl, the first bottom trawl ever conducted on the Shimada. Using the sonars, the scientists on the sonar team saw an interesting aggregation of fish. They couldn’t use the usual mid-water net, which is relatively easy to damage, because the fish were very close to the bottom. Besides, the bottom appeared hard and rocky. I was excited when they decided to test the new net. Unlike the mid-water trawls, which usually bring up a mostly “clean” haul of hake, a bottom trawl tends to bring up a wide array of species. I wanted to learn some new names.

ITI
The ITI shows the distance of the bottom of the ocean from the net. Where the pink lines are highest, the net is lowest.

Deploying the bottom net proved educational. The mid-water net is sent down with the FS70 attached, which provides an image of the objects near and in the net. On the screen shot of the FS70 above and to the right, look for the half-circle, which shows the open net, the silver blue line under the net, which is the bottom of the ocean, and some dots inside the net that are most likely fish already caught in the net. The images are sent through a wire. It would be too easy to damage the wire in a bottom trawl, so the scientists use the ITI instead.

Larry was in charge of fishing today and was disatisfied with the image the ITI System produced of the bottom trawl. The ITI does not produce as good an image of the bottom trawl as the FS 70 did on the midwater trawl. This made it more difficult to decide how much was being caught and how long to fish. The scientists began planning how to get a better system for the ship.

The bottom trawl disappointed the scientists because it brought up fewer hake than they had hoped, but I was happy to see so many new kinds of fish, and to learn to identify many so that I could help sort. This is the list of everything we pulled up:

Ratfish
This spotted ratfish has a venomous spine on its dorsel fin!

Aspot prawn, full of eggs
A spot prawn, full of eggs

Rockfish
Larry, Alicia and I sort rockfish. Initially, the fish on the table looked the same to me, but I soon learned to identify ...

Rex sole
Rex sole

Arrowtooth flounder
Brown cat shark egg case
Cloud sponges
Darkblotched rockfish
Dover sole
Greenstriped rockfish
Hermit crab unident.
Lanternfish unident.
Long honred decorator crab
Longnose skate
Pacific hake
Pacific ocean perch
Pom pom anemonome
Redbanded rockfish
Rex sole
Rosethorn rockfish
Sablefish
Sea cucumber unident.
Sea urchins and sand dollars unident.
Sharpchin rockfish
Shortspine thornyhead
Skate egg case ulnident.
Slender sole
Snail unident.
Spot prawn
Spotted ratfish
Wattled eelpout

Personal Log

Last night, some of us went up to the fly bridge in hopes of seeing the Perseid Meteor Shower. The sky was miraculously clear but the nearly full moon and bright lights on the ship blocked out most of the stars. Still, we saw some truly magnificent shooting stars before the clouds rolled in. I had brought my sleeping bag for warmth and fell fast asleep to the soothing voices of my shipmates. When they woke me up, I dropped by the chemistry lab to see how the nighttime zooplankton sampling was going and discovered that a mallard had arrived on deck. Mallards are not sea birds and are not equipped to be so far out to sea, so we were highly surprised to see her some fifty nautical miles off land. We named her Myrtle. We gave Myrtle food and water and hoped she would stay with the ship until we were close to land, but after a long nap, she took off. I hope she makes it to land.

In cribbage news, I won the semi-finals but lost the championship game. I had such a great time playing.

Caitlin Thompson: A Calm Day at Sea, August 9, 2011

NOAA Teacher at Sea
Caitlin Thompson
Aboard NOAA Ship Bell M. Shimada
August 1 — 14, 2011

Mission: Pacific Hake Survey
Geographical Area: Pacific Ocean off the Oregon and Washington Coasts
Date: August 9, 2011

Weather Data from the Bridge

Bringing in the net
Bringing in the net

Lat. 47 degrees 42.4 N
Long. 125 degrees 51.3
Present weather: cloudy
Visibility: 10 n.m.
Wind direction: 322
Speed 18 kts
Sea wave height: 3-4 feet
Swell waves – direction: 320
Swell waves – height: 4-5 feet
Sea water temperature: 16.7 degrees C
Sea level pressure: 1019.7 mb
Temperature – dry bulb: 14.9 degrees C
Temperature – wet bulb: 13.2 degrees C

Science and Technology Log

Mola Mola
A mola mola, like the one I saw from deck.

Today the ocean was crystal clear and the sky partly clear. I saw amazing creatures floating on the still surface of the water — salps, mola mola, and jellies. Mola mola, also called sun fish, are flat and float on the surface of the water, seeming to sun themselves, eating jellyfish. The water was speckled with salps, identifiable by their small, jelly-like bodies and dark center. When Jennifer saw the salps, she groaned, explaining that their presence suggests a relaxation in the winds that drive upwelling. Less upwelling means fewer nutrients for the whole marine system. I spent the whole day trying to wrap my head around the fact that the slight winds I feel every day drive such an enormous system as coastal upwelling, and that one peaceful day could cause so many salps to be floating on the surface.

Black-footed albatross, like the one I saw
Black-footed albatross, like the one I saw

Usually there are enormous black-footed albatross all around the ship. Albatross, one of the biggest birds in the world, spend most of their lives at sea, coming to shore only to breed. The albatross I see may be nesting on remote Pacific islands, traveling many days to gorge themselves on fish off the West Coast before returning to their nests. They come to our waters because of all the fish here due to upwelling. An albatross can be away from the nest as many as seven days, returning to regurgitate fish from its stomach, which the chicks will eat. Like many seabirds, albatross fly extremely efficiently. They rise and sink repeatedly as they fly to use the energy from the wind. They also use the rising air that comes off of waves for more lift. I see them soaring without moving their wings, so close to the water that they disappear from view behind small waves. Before flapping, they seem to tilt upward, and even so, their wings appear to skim the water. A windless day like today is a hard day for an albatross to fly, so they stay on the water. I saw very few, all in grounded groups.

Tufted Puffin
Tufted Puffin

Instead of albatross, I saw many small diving birds, especially when we came close to the beautiful, jagged coast of the Quillayutte River and La Push, Washington. I saw tufted puffins in bright breeding plumage, surfacing on the water for a few minutes before bobbing back under for surprisingly long times. The day before we set sail, Shelby and I visited the Newport Aquarium, where we saw tufted puffins in the arboretum. We saw the puffins swim through the water in the arboretum, wings flapping as if they were flying. We told a volunteer we were headed to sea. She said to look for single puffins close to shore. This time of year, puffins are nesting in pairs, making nests in burrows in cliff faces this time of year. While one puffin stays in the nest, its mate goes to sea, eats its fill of fish, stuffs about another seven fish in its beak, and returns to feed its chicks. The puffins I saw certainly looked like they were hard at work hunting for fish.

Deploying the Tow Fish
Deploying the Tow Fish

Today I helped deploy two sonar devices that I haven’t seen before, a sub-bottom profiler called a tow fish, and an Expendable Bathythermograph (XBT). The tow fish is a sub-bottom profiler, meaning that it sends a signal to map the bottom of the ocean. The scientists on the acoustics team are using it to look for fish. We backtracked over a section where we fished yesterday and dragged the tow fish alongside the ship. The data from the tow fish will be analyzed later, and proofed against the information from the haul and the other sonars. As usual, the goal is to be able to use the data to identify specifies with more and more accuracy.

XBT
Alicia showing me how to launch the XBT

The XBT is a probe that measures the temperature of the water. Falling at a known rate, it sends the temperature back through two small copper wires, which can be graphed as a function of temperature vs. depth in order to find the temperature profile of the water. Because the XBT looks vaguely like a gun, Larry left earplugs and a mask out for me, warning me about the explosion I was about to make. However, Alicia was in charge. She said, “There’s a hazing that happens with the XBT. I’m a bad liar. You don’t need this stuff.” So I went out on deck in just a life jacket and hardhat, which are required when doing any operation on deck. Once the technology tech radioed that the XBT had fallen to the necessary depth, I broke the copper wires. They were so thin I could cut them by rubbing them between my fingers.

Shelby
Shelby taking algae samples

Shelby, my roommate and a student Western Washington University, showed me her work measuring harmful algal blooms (HAB). While algae and other phytoplankton are essential to marine ecosystem because as primary producers, some algae produce domoic acid. Domoic acid is toxic to marine life and humans. Using surface water collected outside the boat and pumped into a hose in the chemistry lab, Shelby filters the water and saves the filter paper for further analysis of domoic acid and chlorophyll. A NOAA scientist will compile her data in an effort to map HAB along the West Coast. Shelby is a volunteer, one of four college students who each collect the data for one leg of the journey.

Personal Log

Fish Prints
Rebecca teaching me to make fish prints from the yellow-tails we had caught

Life aboard the Shimada seems to suit me very well. Every time I ask a question, which is often, I learn something new, and every time I look outside, I see something I never saw before. Yesterday, I ran into Rebecca in a hallway. Excited, she said, “There’s a P3 about to launch a sonobuoy!” I asked her to repeat. She said, “There’s a P3 about to launch a sonobuoy!” I stared at her. She said, “A plane is dropping stuff. Go outside and watch.” We both had to laugh about that one. Outside, I quickly learned that a marine ship had called the bridge to ask if we would help with a mission to drop a sonobuoy. A sonobuoy is a  listening device. With a parachute attached, it drifts into the ocean, where it floats, using passive sonar to report the location of objects like submarines. The day was shockingly beautiful, so a number of us stood on the very top deck of the ship, called the fly bridge or, jokingly, the beach. We watched the airplane circling us and watched the drifting clouds and diving birds. Several people declared it the flattest water they had ever seen in these parts.

I am happy to say that, with beginner’s luck, I won the first match of cribbage, placing me in semi-finals, and have started staying up in the evenings playing cards with other people on board.

Caitlin Thompson: Zooplankton, Ocean Currents, and Wave Gliders, August 7, 2011

NOAA Teacher at Sea
Caitlin Thompson
Aboard NOAA Ship Bell M. Shimada
August 1 — 14, 2011

Mission: Pacific Hake Survey
Geographical Area: Pacific Ocean off the Oregon and Washington Coasts
Date: August 7, 2011

Weather Data from the Bridge
Lat. 47 degrees, 00.8N
Long. 124 degrees, 29.8W
Present weather: Cldy 8/8
Visibility: 10 n.m.
Wind direction: 323
Wind speed: 08 kts
Sea wave height: 1 feet
Swell waves – direction: —
Swell waves – height: —
Sea water temperature: 13.7 degrees C
Sea level pressure: 1018.8 mb
Temperature – dry bulb: 15.8 degrees C
Temperature – wet bulb:  14.7 degrees C

Science and Technology Log

On the fish deck in my work clothes
On the fish deck in my work clothes

The Shimada conducts research around the clock, with crew members working twelve-hour shifts. So far, I have worked with the acoustics team studying hake during the day, when the hake school together and are easy to fish. Last night I branched out, staying up with Steve Pierce, the oceanographer studying ocean currents, Jennifer Fisher, a faculty assistant at Oregon State University (OSU) who is studying zooplankton, and her intern, Angie Johnson, a graduate student at OSU. All the different research on this trip complements each other, and I learned more about the acoustic team’s work from the night people.

Gray's Harbor Transects
Gray's Harbor Transects

The map at right shows the transects we follow and the stations that the night team takes samples, which Steve chooses. Just like the acoustics team, he only chooses sites on the east-west transects. The night team usually works one transect ahead of the day team, and must have the ship back where they started by sun-up. Steve is mapping small currents because, he says, surprisingly little is known about ocean currents, even though they have a tremendous impact on ocean life.

He is especially interested in the polar undercurrent that brings nutrient-rich water from the south up along the west coast. A small current, it is nonetheless important because of the nutrients it carries, which come to the surface through upwelling. He uses an acoustic device, the Acoustic Doppler Current Profile (ADCP), to find the velocity of the water at various depths. The data from the ADCP is skewed by many factors, especially the velocity of the ship. Later, Steve will use trigonometry to calculate the true velocity. He also uses the Conductivity, Temperature, Depth (CTD) meter, lowered into the water at every station during the night. The CTD gives much more information than its name would suggest, including salinity, density, and oxygen. It is deployed with a high-speed camera and holds bottles to capture water samples. I was impressed by the amount of work – and math! – that Steve does in between cruises. When he has down time on this cruise, he told me, he is calculating work from two years ago.

Jennifer divides a sample in the Folsom plankton splitter
Jennifer divides a sample in the Folsom plankton splitter

Jennifer and Angie are studying plankton, the organisms at the very bottom of the food web. Immediately, I recognized euphausiids, or krill, from the contents of hake stomachs. Actually I recognized their small black eyes, which always reminded me of poppy seeds when I saw them in hake stomachs. Jennifer is conducting this work through her group Northwest Fisheries Science Center, which, as she describes it, gives her a wonderful freedom to research different projects related to ocean conditions, especially salmon returns. In this project, they measuring phytoplankton, tiny, photosynthetic organisms, by measuring chlorophyll and nutrients. They are also looking at zooplankton, like euphausiids, salps, and crab larvae, which we examined other the microscope. To help the acoustics team refine their ability to use sonar to identify zooplankton, Jennifer and Angie record certain species. The acoustics team will match up the acoustics data that is continuously generated on this ship with the samples.

Angie
Angie takes water samples from the CTD.

Today, the second catch of the day was aborted because of whales too close to the ship. However, the NOAA’s Pacific Marine Environmental Laboratory (PMEL), had asked the Shimada to investigate its waveglider. A waveglider is type of robot called an autonomous underwater vehicle (AUV). Programmed to travel and record data, it does not need an operator. The PMEL folks were concerned, however, that its AUV might have a problem.The bridge set the course for the AUV, described as a yellow surfboard, and I headed up to the flying deck, the highest deck and an ideal spot for observation, to watch for it. Immediately we saw a humpback whale, just starboard of the ship, spout and roll through the water, its tail raised in the air. Soon the AUV appeared. We saw nothing wrong with it but communicated our observations, photographs, and video tape of it to PMEL. The PMEL’s system of wavegliders monitor carbon dioxide levels and use the kinetic energy of ocean waves to recharge the batteries. The acoustics team hopes to get their own waveglider next year to collect acoustic data in between transects. As I was peering  over the edge of the boat, examining the surfboard-like robot below, I heard a loud splash. A bout ten  Dall’s porpoises were playing around the bow of our boat, rippling in and out of the water. Dall’s porpoises are tremendously playful creatures, and will often play around ships. But our ship was barely moving, and the porpoises soon lost interest and swam away.

Wave Glider
Wave Glider, seen from above

Personal Log

I’m getting a little of everything on this cruise. I would have stayed up two nights ago for the deploymentof the CTD and zooplankton samples, but the propeller developed a loud enough whamming sound to suspend all operations indefinitely. I woke up at 4:00 AM yesterday because the boat was swaying back and forth violently. (Violently by my standards, that is; more experienced mariners insist the swell is nothing.) Since our bunks go port to starboard, I could feel my weight sliding from hip to head to hip to head as I was rocked back and forth in bed. Meanwhile a discarded lightbulb in a metal shelf was rolling back and forth steadily – rattle-rattle-WACK! rattle-rattle-WACK! – until Shelby Herber, a student at Western University and my roommate, got up, found the culprit, and wrapped it in a shirt. When I woke again, it was eleven hours after the discovery of the problem with the prop and well past breakfast, and I started to get up until Shelby told me we were off transect, headed to shore because of the propeller.

Wave Glider
Wave Glider from beneath the water, taken from PMEL's website

So we took our time getting up. But when I finally arrived in the acoustics lab, Rebecca was running up the hall, saying, “Caitlin, I was looking for you! There’s a great big shark outside, and we’re pulling up the ROV!” The ROV is the remotely controlled vehicle, a robot like the AUV, but one that requires an operator to make it move. Unfortunately, out on the fish deck, the ROV was being put away and the shark gone off on his fishy business. To console me, John had the videotaped footage from the ROV and the dorsal fin of the shark, and showed me both. The ROV revealed no damage and I was invited down to the winch room, where the bang-bang-bang coming from the propeller was unnerving.

ROV
Puzzled birds approach the ROV

Everyone was in an uproar trying to decide what to do, an uproar made all the more dramatic by the steady lurching and swaying of the ship, which throughout the day has sent most of the scientists to their room for at least a few hours and most of the deck hands to tell stories of unhappy tourists who couldn’t find their sea legs. Finally, the engine guys decided the warped propeller would not prevent us from getting to Port Angeles, and Rebecca decided it would not interfere with the acoustics, and we got back on transect.

ROV
ROV

I’m getting a little bit of everything on this cruise. I’ve seen sharks and marines mammals, calm seas and rockier seas, an impressively well-functioning ship and a number of technological problems. I’ve interviewed scientists, NOAA Corps officers who command the ship, and crew members who recount endless adventures at sea. I’m even signed up for the cribbage tournament, which I’m not entirely thrilled about since I don’t know how to play bridge. I’ve been impressed by how much time and information everyone seems to have for me. I am constantly thinking how I can bring this experience back to my students. Some ideas are to have a science and math career day, collect weather data like the data the bridge collects, dissect hake, and examine zooplankton under a microscope. Various people on board have volunteered to help with all my ideas.