Angela Hung: A Day in the Land Life, A Day at Sea, June 26, 2018


NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 27-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 26, 2018

 

Weather Data from Biloxi, MS

Conditions at 1356

Latitude: 30.42° N

Longitude: 88.92° W

Temperature: 34° C

Wind Speed: S 10mph

 

Science and Technology Log

Ship repairs are ongoing so I’m reporting from Biloxi, MS. Last week, I got the chance to visit the NOAA Southeast Fisheries Science Center, Pascagoula lab onshore to learn about what the scientists do when they are not at sea.

NOAA Lab in Pascagoula, MS

NOAA Lab in Pascagoula, MS. Image credit: https://www.sefsc.noaa.gov/labs/mississippi/

I got to see the variety of projects described on their website (https://www.sefsc.noaa.gov/labs/mississippi/surveys/index.htm) , from video reef fish surveys (https://www.sefsc.noaa.gov/labs/mississippi/surveys/reeffish.htm#video) to seafood inspection, sharks, and the effects the Gulf oil spill from Deepwater Horizon on plankton in addition to groundfish survey. Chrissy Stepongzi, another fisheries biologist, was willing to take me on an impromptu tour of the warehouses at the pier and then brought me over to the labs.

The Labs

This slideshow requires JavaScript.

Andre and Taniya with the Southern Stingray

Andre and Taniya holding the stingray.

Because we spent so much time at the pier (below) Andre Debose took over the tour. We got a sneak peek at the seafood inspection lab. You need a pretty high clearance to get in, but we ran into a researcher (I didn’t get his name) who was kind enough to take a few minutes to explain what they do:

The U.S. imports a lot of seafood from overseas as well. All ready-to-eat seafood that comes in is inspected by NOAA. A sample from every batch is tested for contaminants and pollutants to ensure it is safe for consumption. We happened to be at the lab that inspects menhaden, a fish typically ground into “fish meal” which is commonly used in pet foods. The lab also checks fish oil, a dietary supplement. Down the hall are labs that inspect Gulf seafood for petroleum oil.  After speaking with him, I felt much more confident in my seafood dinners and my cats’ food.

We went down to the reef unit which Andre has worked on and was introduced to Kevin Rademacher who studies reef fish and was watching video data from their camera array. He showed me a few videos recorded from their past surveys. Today, they use an array of five video cameras to create a single, 360˚ field of view for accurate fish counts. Fisheries use these data to determine the health of a fishery, as in the population and sizes of commercially important fish. This information guides the quotas of how many fish people are allowed to take while maintaining resources for the future.

Up to a few years ago, they used four separate cameras—four different fields of view that had to be watched individually to count fish. The new setup also features two levels to create stereoscopic or 3-D images so scientists can digitally measure the lengths of the fish, which was not possible before. However, species identification is still done using good old-fashioned human eyeballs in an experienced scientist.

Down the hall is Kristin Hannan’s office, my day shift manager aboard Oregon II. She studies sharks, which are caught using longlines (https://www.sefsc.noaa.gov/labs/mississippi/surveys/longline.htm), and she let me examine her collection!

We stopped by the plankton lab. Plankton is a collective term for very small marine organisms—algae and animals that form the foundation of marine food chains. The very small animals are usually the larvae of larger animals, but I didn’t realize how many were vertebrates, i.e. baby fish. I had imagined that plankton were primarily invertebrates such as sea sponge, coral, crustacean and squid larvae.

A sample of fish larva that make up plankton.

A sample of fish larva that make up plankton. Photo credit: https://www.sefsc.noaa.gov/labs/mississippi/surveys/plankton.htm

Finally, Andre showed me his otolith samples. Otoliths are small bony disks in the ears of fish that allow them to sense gravity and speed, which maintains their balance. (Yes, fish have ears and earbones like humans.) A layer of calcium is added every year of a fish’s life so these give us data about the ages of fish.

Overall at NOAA’s Pascagoula labs, researchers are hard at work studying marine life in the Gulf of Mexico to learn where they are and when to find them, at every stage of life, from larval plankton, to juveniles, adults and to food for others such as sharks and dolphins. While “economic” species are the focus of fisheries industries, “ecological” species are deservedly monitored here as well. In such a vast ecosystem, every organism has hundreds or likely thousands of ecological ties to those around it, as predator, prey, competitors or symbiotic partners. Humans aren’t the only ones who enjoy crab legs and fish sticks for dinner. As biologist Alonzo Hamilton puts it, “fish are a product of the environment”, referring to the collective forces that create an ecosystem.

To top off the lab visit, I was presented with a fabulous goody bag! I have some great materials to use in class, and I’m particularly grateful for the coffee mug so I can stop using paper cups in the ship’s galley.

Goody bag from Pascagoula Lab

Goody bag from Pascagoula Lab

The Warehouse

So where does all this equipment for these different projects come from? Sadly, there isn’t a “science store” for weird and wonderful devices that seamlessly combine into “cutting edge technology”. I mentioned in the last post that scientists often have to build what they need.  In fact, part of NOAA’s mission to support sustainable fishery practices is inventing the tools to fish sustainably! They may not have a store to go shopping in, but they have something much better: Captain James Barbour, master welder extraordinaire! (His actual title is something like Engineering Tech/Gear & Equipment Specialist.)

Chrissy took me to visit him in the warehouses and that was a fun place! We walked into his current project—a stainless steel work table for a scientist, but custom built to include clipboard hangers, blood sample holder, holes for hand sanitizer bottles…like a home renovation show but for research vessels.

The camera arrays for reef survey are his handiwork. He’s built traps with camera housing to record what’s going on under water. He has also modified smaller boats to create platforms for scientists to safely wrangle fish, and apparatuses to operate nets and other equipment. He is steeped in the design of TEDs-turtle excluder devices, and bycatch reducers. Bycatch are animal species that are caught with commercial ones, especially by nets. Often, these are not returned alive to the ocean. TEDs are metal, circular grids about three feet across that are attached to the end of fishing nets, forming a cone. When a turtle is caught, it hits the excluder and slides out of an escape chute. Fish pass through the excluder and into the blind end of the net.

If you have ever heard or worried about sea turtles or wasted bycatch getting trapped in nets, rest assured that U.S. fisheries are using these devices to reduce their environmental impact. And chances are Capt. Barbour welded them!

This is just a small sample of what he’s accomplished in his long career at NOAA. He continues his research with other scientists to collect data and improve the design, for example, to screen out smaller turtles without sacrificing the fish catch.

As a scientist observing the decline in science literacy and confidence from the general public, I often come across the Strawman fallacy that “science has no place in politics”. This doesn’t make sense considering the various U.S. agencies that employ scientists to make discoveries about our world and outside of it, because objective knowledge is where sound policies should originate. Science has always has an important role in American politics. Another classic are the cries for “less government regulation and interference” but I’m certain those people have no idea what that means. In U.S. seafood industries, regulations require TEDs and bycatch reducers because ecological species support the health of economic ones. In U.S. markets, regulations require safety testing of seafood imports. In Gulf fisheries, regulations limit how many red snapper one can take and when shrimpers can open season because this ensures consumers can enjoy seafood next year and every year after. They ensure that fisherman have employment next year and every year after. Government, as well as university, scientists are third party to all companies and have no personal financial incentives besides their regular salaries. Scientists are public servants who work for everyone.

Captain Barbour is a modest man, but it’s clear that he takes pride in the devices he builds because he accepts the responsibility of humans to be stewards of this planet and the other creatures we share it with. Thus, he genuinely cares about the well-being of dolphins and turtles. He takes personal action for what he believes by coming to work everyday and engages with optimizing the design of scientific equipment by communicating with collaborators, analyzing data, and building with his own hands. While most of us don’t get to be so directly involved with our contributions to society there are two things to think about:

  1. The NOAA is recruiting (quite a few retirements are coming up). College students can try out through an internship: https://coastalscience.noaa.gov/about/internship/
  2. All of us together through our own strengths can make many small actions great: refuse those single use plastics, recycle always, VOTE (or don’t complain), and practice lifelong learning.

 

Personal Log

At about 1500 on the first day of the survey, I find out that I’m assigned to the day shift that runs from 1200 to 2400. Roommates are assigned with opposite shifts so that each person can have the stateroom while the other works. Typically, you have a backpack to carry anything you might need to avoid entering the room and disturbing a sleeping roommate. The operations of the vessel are 24 hours and other members of the crew work different shifts around the clock: engineers might be scheduled six hours on, six hours off, officers four hours on/off, etc.

“Someone is sleeping all the time on every deck.” –LT Ryan Belcher

So, on day one, my roommate tries to get some sleep and I’m out of the room. For the rest of the day, I experience something called “down time” with nothing really to do. I don’t know when the last time this happened was. Everyone is busy at work or sleeping before their shift and I find myself curiously alone. I find my way back to a higher deck that Chrissy had shown me earlier where a deck chair (no pun intended) has been stashed. The indoor lounge features a large collection of movies on loan from the Navy, including recent releases. After I come in from spending some time relaxing outside, I reenter the lounge to find some of the scientists starting Justice League. When that finishes, we put in Winchester which is inspired by the true story, whatever that means, of the famous haunted house built by Sarah Winchester of the family that developed rifles. Not too bad if you are a fan of ghost stories.

Justice League and Winchester

Justice League. Image from: https://www.warnerbros.com/justice-league; Winchester: The House that Ghosts Built. Image from: http://www.impawards.com/2018/winchester_the_house_that_ghosts_built_ver6.html

 

It’s a long day and I finally get to go to bed.

Did You Know?

From the last blog we learned that NOAA is a Department of Commerce (DOC) agency that collects scientific data for economic purposes. On this cruise, and those of the past 40 years, Texas shrimp fisheries use NOAA data collected by Oregon II to determine when to open shrimping grounds every year to ensure a sustainable supply. NOAA Ship Oregon II also trawls during the summer for red snapper for fisheries around the entire Gulf to determine when fishing can begin.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s