Kelly Dilliard: Individual Right Whale Identification, May 19, 2105

NOAA Teacher at Sea
Kelly Dilliard
Onboard NOAA Ship 
Gordon Gunter
May 15 – June 5, 2015

Mission: Right Whale Survey
Geographical area of cruise: Northeast Atlantic Ocean
Date: May 19, 2015

Weather Data from the Bridge:

Air pressure: 1010.60 mb
Air Temperature: 11.3 degrees C
Relative Humidity: 96%
Wind Speed: 16 knots
Wind Direction: 182 degrees

Science and Technology Log:

Today will look at how to identify individual right whales.  Right whales, as many other whale species, have several physical characteristics that are specific to unique individuals.  Scientists use photo-identification to distinguish individuals, taking photographs of the unique characteristics and then comparing them to past photographs in a catalog.  This allows the scientist to know if the individual has been seen before and the where and when of those sightings.  Scientists can then monitor populations of whales through time and space.

Right whales are identified by their distinct pattern of callosities on the upper part of their heads.  Callosities consist of rough, calcified patches of skin, are grey in color, but often contain colonies of whale lice, barnacles, and parasitic worms that all give the callosities a white color.  Callosities form a unique pattern along the top of the rostrum, behind the blow holes, on the lips, along the jawline and above the eyes of every right whale making this pattern extremely useful to scientists trying to photo-identify specific whales.  Even newborn calves contain a unique callosity pattern.  Another interesting fact is that male right whales have a higher density than females.

Right whale callosities (image from WHOI).

How does this work?  Scientists out on a research ship or on aerial surveys take high-resolution photographs with large telescopic lenses.  These photographs are time stamped and the location is noted.  They then making drawings of the callosities pattern and determines a series of codes that describes the callosity pattern and other identifying marks.  They then try to match the pattern to known individuals within a computer database (The North Atlantic Right Whale Catalog – rwcatalog.neaq.org).

Right whales taken from an aerial survey. (Image from NE Aquarium).

Callosity patterns typically occur on the top of the head and can be characterized as “continuous” or “broken”.  A continuous pattern means that the callosities exist between the blowhole all the way to the tip of the head.  Broken callosities look patchy.  According to the New England Aquarium website on Right Whale Callosity Pattern Identification, 60 percent of right whales have a broken pattern.  Callosities can also occur around the lip, around the eye, and behind the blowhole.

Right whale callosities pattern, looks continuous with 2 symmetrical peninsulas. (photo of right whale in Florida from Flagerlive.com)

Categories of callosity patterns have been established and they are given codes, such as B6 – broken, two islands with the left island forward.  These categories describe the spatial relationships of the callosities, specifically the number of “islands” and their relationship to each other in whales with a “broken” pattern and the number and relative position of “peninsulas” or bulges on a “continuous” pattern.  Unfortunately, whale lice, or cyamid, can move around giving the appearance of callosity in places it does not exist and making these animals difficult to individually identify.

Sketch of callosities pattern
Sketch of callosities patterns from continuous with peninsulas to broken with islands.
Callosities pattern on a right whale with a composite code of C11 which indicates that there are four asymmetrical peninsulas.  (Image from NE Aquarium website, photo taken under NOAA permit 775-1600)

Other identifying marks are also used.  These can include: ridges along the lower lip, white patches on the belly and chin, a dip in the head seen in profile, erosion of the callosity at the front of the head or bonnet known as “tooth decay”, white blow holes, white fluke tips, and gray lines behind blow holes.  Other important identifying marks are scars.  These scars come from anthropogenic causes (entanglements in fishing gear, being hit by ships, etc…) and from other animals (bite marks from cookiecutter sharks or lamprey which leave behind a circular scar to attacks by killer whales).

Right whale fluke and if you look closely you can see a round mark made by a cookiecutter shark.
Right whale fluke and if you look closely you can see a round, light-colored mark made by a cookiecutter shark.

The New England Aquarium has a wonderful website about right whale photo-identification as well as pages on identification codes (see link NE Aquarium).  They also have a right whale photo-identification game (see link NE Aquarium Online Games).

Yesterday (Monday, May 18th) was the first day that we saw right whales up close and were able to photograph them from the ship.  Corey Accardo was behind the camera and captured many good photographs.  Four individual right whales were seen.

Corey taking photographs for photo-identification of right whales.
Corey taking photographs for photo-identification of right whales.
Corey taking more photographs and Hansen taking notes and helping her see.
Corey taking more photographs and Hansen taking notes and helping her see.

Personal Log:

I was surprised with how easy it was to acclimate to life on the ship.  Of course the main reason it was pain free was that everyone, crew and scientists, are so friendly.  It has been wonderful getting to know the scientists and some of the crew that I have met so far.  I am intrigued with how everyone came to be on this ship, the Gordon Gunter.

I was a bit nervous about sea-sickness since I am prone to getting car sick.  Luckily I have fared pretty well.  I have taken to heart the suggestions for combating sea-sickness by drinking plenty of fluids and munching on dry foods.  I have occasionally taken BONiNE for motion sickness and they seem to help when I look through the binoculars.  The boat does rock and roll a bit and sometimes in bed you are being rocked side-to-side or back to forward.  It can be occasionally soothing, like a being a baby rocked to sleep.

One thing that will never happen on this ship is starving.  The food is amazing.  We have at least four or five entry choices at both lunch and dinner as well a full salad bar.  We have had lasagna, pizza, all sorts of fish, chicken parmigiana, Brazilian steak, chicken cordon bleu, vegetable curry, and vegetable lo mein to name a few.  As well as made to order hamburgers, gyros, and Philly cheese steaks.  There are always two different desserts from cookies, to pies, to banana fritters, to homemade custard.  I did not even mention the assorted condiments, including jellies from the Philippines.  There is a very large selection of hot teas, cereals, and breads.  I think I am going to gain weight.  Margaret, the head steward, is a wonder.

A portion of the mess.  you can see all of the selections of cereals in the background.
A portion of the mess. you can see all of the selections of cereals in the background.

2 Replies to “Kelly Dilliard: Individual Right Whale Identification, May 19, 2105”

  1. Love following your blog! I am reliving my Teacher at Sea experience through you!!! Keep up the great work and enjoy every minute of your time with the Northern Right Whales! Angela Greene TAS 2013

    1. Angela,
      Thanks for following. It is a really great experience and I can completely understand why you would want to relive it.
      Kelly

Leave a Reply

Discover more from NOAA Teacher at Sea Blog

Subscribe now to keep reading and get access to the full archive.

Continue reading