Kelly Dilliard: Individual Right Whale Identification, May 19, 2105

NOAA Teacher at Sea
Kelly Dilliard
Onboard NOAA Ship 
Gordon Gunter
May 15 – June 5, 2015

Mission: Right Whale Survey
Geographical area of cruise: Northeast Atlantic Ocean
Date: May 19, 2015

Weather Data from the Bridge:

Air pressure: 1010.60 mb
Air Temperature: 11.3 degrees C
Relative Humidity: 96%
Wind Speed: 16 knots
Wind Direction: 182 degrees

Science and Technology Log:

Today will look at how to identify individual right whales.  Right whales, as many other whale species, have several physical characteristics that are specific to unique individuals.  Scientists use photo-identification to distinguish individuals, taking photographs of the unique characteristics and then comparing them to past photographs in a catalog.  This allows the scientist to know if the individual has been seen before and the where and when of those sightings.  Scientists can then monitor populations of whales through time and space.

Right whales are identified by their distinct pattern of callosities on the upper part of their heads.  Callosities consist of rough, calcified patches of skin, are grey in color, but often contain colonies of whale lice, barnacles, and parasitic worms that all give the callosities a white color.  Callosities form a unique pattern along the top of the rostrum, behind the blow holes, on the lips, along the jawline and above the eyes of every right whale making this pattern extremely useful to scientists trying to photo-identify specific whales.  Even newborn calves contain a unique callosity pattern.  Another interesting fact is that male right whales have a higher density than females.

Right whale callosities (image from WHOI).

How does this work?  Scientists out on a research ship or on aerial surveys take high-resolution photographs with large telescopic lenses.  These photographs are time stamped and the location is noted.  They then making drawings of the callosities pattern and determines a series of codes that describes the callosity pattern and other identifying marks.  They then try to match the pattern to known individuals within a computer database (The North Atlantic Right Whale Catalog – rwcatalog.neaq.org).

Right whales taken from an aerial survey. (Image from NE Aquarium).

Callosity patterns typically occur on the top of the head and can be characterized as “continuous” or “broken”.  A continuous pattern means that the callosities exist between the blowhole all the way to the tip of the head.  Broken callosities look patchy.  According to the New England Aquarium website on Right Whale Callosity Pattern Identification, 60 percent of right whales have a broken pattern.  Callosities can also occur around the lip, around the eye, and behind the blowhole.

Right whale callosities pattern, looks continuous with 2 symmetrical peninsulas. (photo of right whale in Florida from Flagerlive.com)

Categories of callosity patterns have been established and they are given codes, such as B6 – broken, two islands with the left island forward.  These categories describe the spatial relationships of the callosities, specifically the number of “islands” and their relationship to each other in whales with a “broken” pattern and the number and relative position of “peninsulas” or bulges on a “continuous” pattern.  Unfortunately, whale lice, or cyamid, can move around giving the appearance of callosity in places it does not exist and making these animals difficult to individually identify.

Sketch of callosities pattern
Sketch of callosities patterns from continuous with peninsulas to broken with islands.
Callosities pattern on a right whale with a composite code of C11 which indicates that there are four asymmetrical peninsulas.  (Image from NE Aquarium website, photo taken under NOAA permit 775-1600)

Other identifying marks are also used.  These can include: ridges along the lower lip, white patches on the belly and chin, a dip in the head seen in profile, erosion of the callosity at the front of the head or bonnet known as “tooth decay”, white blow holes, white fluke tips, and gray lines behind blow holes.  Other important identifying marks are scars.  These scars come from anthropogenic causes (entanglements in fishing gear, being hit by ships, etc…) and from other animals (bite marks from cookiecutter sharks or lamprey which leave behind a circular scar to attacks by killer whales).

Right whale fluke and if you look closely you can see a round mark made by a cookiecutter shark.
Right whale fluke and if you look closely you can see a round, light-colored mark made by a cookiecutter shark.

The New England Aquarium has a wonderful website about right whale photo-identification as well as pages on identification codes (see link NE Aquarium).  They also have a right whale photo-identification game (see link NE Aquarium Online Games).

Yesterday (Monday, May 18th) was the first day that we saw right whales up close and were able to photograph them from the ship.  Corey Accardo was behind the camera and captured many good photographs.  Four individual right whales were seen.

Corey taking photographs for photo-identification of right whales.
Corey taking photographs for photo-identification of right whales.
Corey taking more photographs and Hansen taking notes and helping her see.
Corey taking more photographs and Hansen taking notes and helping her see.

Personal Log:

I was surprised with how easy it was to acclimate to life on the ship.  Of course the main reason it was pain free was that everyone, crew and scientists, are so friendly.  It has been wonderful getting to know the scientists and some of the crew that I have met so far.  I am intrigued with how everyone came to be on this ship, the Gordon Gunter.

I was a bit nervous about sea-sickness since I am prone to getting car sick.  Luckily I have fared pretty well.  I have taken to heart the suggestions for combating sea-sickness by drinking plenty of fluids and munching on dry foods.  I have occasionally taken BONiNE for motion sickness and they seem to help when I look through the binoculars.  The boat does rock and roll a bit and sometimes in bed you are being rocked side-to-side or back to forward.  It can be occasionally soothing, like a being a baby rocked to sleep.

One thing that will never happen on this ship is starving.  The food is amazing.  We have at least four or five entry choices at both lunch and dinner as well a full salad bar.  We have had lasagna, pizza, all sorts of fish, chicken parmigiana, Brazilian steak, chicken cordon bleu, vegetable curry, and vegetable lo mein to name a few.  As well as made to order hamburgers, gyros, and Philly cheese steaks.  There are always two different desserts from cookies, to pies, to banana fritters, to homemade custard.  I did not even mention the assorted condiments, including jellies from the Philippines.  There is a very large selection of hot teas, cereals, and breads.  I think I am going to gain weight.  Margaret, the head steward, is a wonder.

A portion of the mess.  you can see all of the selections of cereals in the background.
A portion of the mess. you can see all of the selections of cereals in the background.

Alexandra Keenan: Right Whales Everywhere! June 25, 2012

NOAA Teacher at Sea
Alexandra Keenan
Onboard NOAA Ship Henry B. Bigelow
June 18 – 29, 2012

Mission: Cetacean Biology
Geographical area of the cruise: Gulf of Maine
Date: June 25, 2012

Science and Technology Log:

Greetings from Canadian waters!

Bigelow flying Canadian flag
Ships must fly the flag of the nation whose territorial water they are sailing in.

Thanks to a tip from an aerial survey, we are on Georges Basin– the northern edge of Georges Bank. Incredibly, we saw around 30 right whales yesterday! The science crew quickly got to work photo-identifying every right whale we could safely approach.

Photo-identification is the process of distinguishing individuals of a species from one another using markings and other cues in photographs of an individual. It is possible to identify individual right whales by markings called callosities on their heads, scars on their bodies, and notches in their flukes.

Photographing right whales
I use a telephoto lens to photograph right whale callosities to use in identifying individuals.
taking good notes
Research analyst Genevieve Davis takes good notes on each whale that is photographed, including frame numbers and identifying characteristics. These are essential when going through the photographs later.
the chief
Chief Scientist Allison Henry knows right whales. I was amazed by her ability to recognize individuals by name or number.

Callosities are patches of rough skin on right whales’ heads that appear white because of small organisms called cyamids that inhabit these areas (a sort of “whale lice”). Like human fingerprints, each right whale has a unique callosity pattern. In order to photo-ID a whale, photographs of the animal’s head and body are taken with a telephoto lens when the animal surfaces. These photographs can later be compared to a catalog of right whale individuals to determine who has been spotted (some whales have names, some have numbers).

Scientists use unique markings on the head called callosities to identify individual whales. (graphic/photo: New England Aquarium)

The team also has “cheat sheets,” or laminated cards containing information on certain whales that are of interest or need to be biopsied. These references can help scientists quickly identify whales in the field that need to be studied further.

cheat sheets
These sheets contain photographs and drawings of individual whales’ markings and callosities.

As one of the most endangered whale species, there are only about 450 individual right whales left. We were privileged to see a little less than 10% of the entire right whale population in one day. This is amazing, but also quite disturbing.  Even though right whaling has been illegal since 1937 , right whales still face entanglement from commercial fishing gear and getting hit by vessels. They are particularly vulnerable because they seasonally migrate through world shipping lanes, are relatively slow swimmers, and closely approach vessels.

One right whale we encountered, named Ruffian, had huge scars all over his back. I asked Allison the Chief Scientist what happened to him.

Below are two videos: the first a shot of the numerous spouts (note the characteristic v-pattern of the spouts) that gives an idea of how surrounded we were by right whales, the other is a short video of a right whale surfacing near our bow.

Alexandra Keenan: A Whale of an Adventure Begins! June 16, 2012

NOAA Teacher at Sea
Alexandra Keenan
(Almost) Onboard NOAA Ship Henry B. Bigelow
June 18 – June 29

Mission: Cetacean biology
Geographical Area of Cruise: Gulf of Maine
Date: June 16, 2012

Personal Log

Saludos! My name is Alexandra Keenan, and I teach Astronomy and Physics at Rio Grande City High School. Rio Grande City is a rural town located at the arid edge of the Rio Grande Valley. Because of our unique position on the Texas-Mexico border, our community is characterized by a rich melding of language and culture. Life in a border town is not always easy, but my talented and dedicated colleagues at RGC High School passionately advocate for our students, and our outstanding students gracefully rise to and surmount the many challenges presented to them.

Che's
Me in downtown Rio Grande City. Our historic buildings are evocative of the old “Wild West.”
Rio Grande City
Taquerias dot the highway running through our town– evidence of the binational character of the community.

I applied to the NOAA Teacher at Sea program because making careers in science seem real and attainable to students is a priority in my classroom.  NOAA, the National Oceanic and Atmospheric Administration, provides a wonderful opportunity for teachers to have an interdisciplinary research experience aboard one of their research or survey ships. I believe that through this extraordinary opportunity,  I can make our units in scientific inquiry and sound come alive while increasing students’  interest in and enthusiasm for protecting our ocean planet. I will also be able to provide my students firsthand knowledge on careers at NOAA. I hope to show my students that there is a big, beautiful world out there worth protecting and that they too can have an adventure.

The adventure begins on June 18th when the NOAA ship Henry B. Bigelow departs from Newport, RI. I’ll be on the vessel as a member of the scientific research party. We will be monitoring populations of the school-bus-sized North Atlantic right whale by:

  • using photo-identification techniques
  • obtaining biopsies from live whales (wow!)
  • catching zooplankton
  • recovering specials buoys that have been monitoring the whales’ acoustic behavior (the sounds they make)
Aerial view of North Atlantic right whale swimming with calf. (photo: NOAA)

Why would we do all of this? Because North Atlantic Right Whales are among the most endangered whales in the world. Historically, they were heavily hunted during the whaling era. Now, they are endangered by shipping vessels and commercial fishing equipment. The data we gather and analyze will help governing bodies make management decisions to protect these majestic animals.

NOAA ship Henry B. Bigelow (photo: NOAA)

The next time you hear from me, it’ll be from the waters of the Gulf of Maine!

Fair winds!

Methea Sapp-Cassanego, August 1, 2007

NOAA Teacher at Sea
Methea Sapp-Cassanego
Onboard NOAA Ship Delaware II
July 19 – August 8, 2007

Mission: Marine Mammal Survey
Geographical Area: New England
Date: August 1, 2007

Weather Data from Bridge 
Visibility: 7nm lowering to less then 1 in fog
Wind Direction: Southerly
Wind Speed: 3-8 knt increasing to 8-13
Swell height: 3-5 feet

The flexible Jacob’s ladder rolled up for easy storage.
The flexible Jacob’s ladder rolled up for easy storage.

Science and Technology Log 

Fog has kept our sightings to a minimum over the past two days. In fact we’ve had only two sighting since my last log on July 27th. Yet despite today’s weather forecast, the fog horn has been silenced and everyone is outside enjoying the sunshine and stretching their eyes.  It is a wonder to see color other then a shade of grey!  The change in weather has also brought new sightings including 3 humpback whales, a pod of harbor porpoises, 4 right whales, a minke whale and a dozen or so pilot whales (spotted by your’s truly).  These sightings kept the observers busy as well as those involved in the launching of the zodiac (aka little grey boat) and the Tucker trawl. The morning sighting of the right whales prompted a Tucker trawl sampling in order to examine the copepod densities in the surrounding areas.

Dr. Richard Pace assists with deployment of the zodiac.
Dr. Richard Pace assists with deployment of the zodiac.

The trawl did yield a higher density of copepods then all of our previous trawls which where carried out in the absence of right whale sightings, however compared to their prior experiences most of the researchers thought that the copepod densities were still on the sparse side. The sighting of pilot whales brought the first launching of the zodiac boat.  The goal for this expedition is two fold:  1. To attain tissue samples from some of the pods larger whales so that genetic analysis and subsequent pedigrees may be chronicled and;  2. Acquire photographic images of individual dorsal fins in an effort to establish a method of identifying individuals based on their unique dorsal fin features. Such features may include nicks, scratches, unusual scars and or color patterns. Deployment of the zodiac requires numerous experienced hands and a wherewithal for safety. First the boat is loaded with all the supplies (photography equipment, biopsy tips and crossbows, and tissue specimen jars) that will be needed for the sampling and documentation of the pilot whales.  Then the crane on the back deck is used to hoist the zodiac up and over the side of the DELAWARE II.  Chief scientist, Dr. Richard Pace then climbs on board the zodiac while the crane slowly lowers the boat into the water.   Dr. Pace keeps the zodiac in position while a special flexible hanging ladder called a Jacob’s ladder is unrolled down the side of the DELAWARE II.  All other persons enter the zodiac from the DELAWARE’s back deck via the Jacob’s ladder. 

Once deployed, the researchers make final adjustments before pursuing the pilot whales.
Once deployed, the researchers make final adjustments before pursuing the pilot whales.

After the little grey boat is loaded it sets off in the direction of the whales as indicated by the observers on the fly bridge, who have all the while been communicating the whales’ position to the captain of the DELAWARE who then makes sure that the ship stays relatively close to the pod.   As one can imagine three-way communication between the fly bridge, the wheel house and the zodiac is critical for not only tracking the swiftly moving whales but also for the safety of all involved. Today was my day to be on the fly bridge as all of this was going on but if the weather holds and we keep seeing pilot whales then I too may get to ride on the zodiac.

Kimberly Pratt, July 22, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Humpback breaching
Humpback breaching

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 22, 2005

Weather Data from Bridge

Latitude:  3614.084N
Longitude: 12213.868W
Visibility: <1 mile
Wind Direction: 340 Wind Speed:  22 knots
Sea Wave Height: 5-6 feet
Sea Level Pressure: 1014.6
Cloud Cover: Foggy, Drizzle
Temperature:  14.8

Scientific Log 

Again we are seeing up to 80 marine mammals per day, and are doing well on our track lines.  The wind picked up, making it more difficult to do observations, but we are moving right along to get finished by Sunday. Some of the regulars are humpbacks, blue whales, Dall’s porpoise, fin whales, pacific-white sided dolphins, Risso’s dolphins and pinnipeds. I’ve attached photos of breaching humpbacks that we’ve seen. Hopefully through my logs and interviews you’ve learned about marine mammals, sea birds and ship operations.  To learn more about this mission go to the NOAA Fisheries Southwest Science Center website.  Look under “What’s new in the sanctuary.”

Completing the dive
Completing the dive

Personal Log

Upon reflecting on my adventure, I’ve found that the trip fully exceeded my expectations.  I expected to feel intimidated by the scientists and science, and to my relief was accepted and welcomed by all the scientists on board and they were most eager to teach me what  I needed to know. I’ve learned that to be a good scientist you must have good observational skills, computer skills, and be knowledgeable about data and statistics.  I’ve also learned that science takes time, is very exact, and requires you to be detail orientated.   Additionally, I’ve learned that to get along with others on a ship, you need to have a good sense of humor and be flexible. As the cruise comes to an end I’m really looking forward to getting home, doing further reflection on my experience and translating it into rich and meaningful curriculum for my students. Again, thanks to Karin, all the scientists, and the crew on board the McARTHUR II, this has been a wonderful experience.

As of this post, we have now finished all of our tracklines.   Tomorrow – Saturday we’ll be spending the day in Monterey Bay doing grab samples and additional small boat operations.  We will then head into port in San Francisco on Sunday as scheduled.

Kimberly Pratt, July 18, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

MAC433-AR1, OO
Photo credit: Cornelia Oedekoven

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 18, 2005

Weather Data from Bridge

Latitude:  3614.084N
Longitude: 12213.868W
Visibility: <1 mile
Wind Direction: 340 Wind Speed:  22 knots
Sea Wave Height: 5-6 feet
Sea Level Pressure: 1014.6
Cloud Cover: Foggy, Drizzle
Temperature:  14.8

MAC433-AR1, OO
Photo credit: Cornelia Oedekoven

Scientific Log 

Our days have been mostly foggy with the sun peaking through rarely. After not seeing the sun for days, we were all delighted when the bridge announced that there was sun and many of us ran outside right away!  Right now we’re outside of Pt. Reyes, continuing on transect lines. The animals we’ve observed lately are: a pod of Killer Whales feeding, several Humpback Whales, schools of Pacific White-sided Dolphins, Risso’s dolphins and Northern Right Whale dolphins.

The Zodiac was launched and tissue samples and photo ID was taken of the Killer Whales. (photos attached) This evening two Humpbacks gave us quite a show.  They rolled next to the ship, breached, and slapped their flippers. Many times we could see their bellies as they lazily made their way by the ship rolling and diving, quite peacefully.  Video and photo was taken of these amazing animals.

MAC433-AR1, OO
Photo credit: Cornelia Oedekoven

The bird observers have been especially busy. In the past few days they’ve identified Black-footed Albatross, Common Murre, lots of Sooty Shearwaters, Pink footed Shearwaters, Ashy Storm Petrels that breed on the Farallons, and Cassini’s Auklets. Also seen are South Polar Skua’s, and Red Neck Phalaropes who are Artic breeders.  We’ve also seen Mola Mola fish, and a Mako shark with a pointy snout.  We’re continuing Bongo Net Tows and continue to collect plankton, larvae and small jellyfish.

Personal Log

Thanks to Rich Pagen being back on board, I am now focusing more on taking video, completing interviews, doing logs and e-mail correspondence. My interviews have gone well; the crew has been responsive and also forgiving when I’ve made mistakes.  For the remainder of the trip, I’ll be focusing on interviewing more of the scientists, developing curriculum and completing logs.  It’s been great meeting all the crew and finding out more about them. With less than a week to go, I’m treasuring every moment. This has been a great trip!

MAC433-AR1, OO
Photo credit: Cornelia Oedekoven

 

Until later…
Kim

Thanks to Cornelia Oedekoven for the Orca photos.

Kimberly Pratt, July 16, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 16, 2005

Humpback Fluke – white and black
Humpback Fluke – white and black

Weather Data from Bridge

Latitude: 3650.918 N
Longitude: 12159.753 W
Visibility: < 1
Wind Direction: 280
Wind Speed: 3 knots
Sea Wave Height :< 1
Swell Wave Height: 3-4 feet
Sea Level Pressure: 1011.6
Cloud Cover: Foggy/light drizzle
Temperature: 16.7 c

Scientific Log 

Our days lately have been mostly foggy and drizzly, making marine mammal observations very difficult. During the times that observations were made, we’ve seen Humpback Whales, Fin Whales, Harbor Porpoise, a Blue Whale, Pacific White-sided Dolphins, Grampus Dolphins, and Sea Lions.  I’ve attached pictures that show Humpback Whale flukes.  The scientists are using the pictures to ID them.  Yesterday, Fin Whales surfaced approx. 200 meters off our bow and swam with the ship for a little while.

Humpback Fluke – all black
Humpback Fluke – all black

We observed Harbor Porpoise as we entered Monterey Bay. They are a small porpoise and are identified by their small pointy dorsal fin.  Observation of Harbor Porpoise is difficult and you can only get a fleeting glance at their dorsal fins before they are gone.

At first you might mistake Grampus dolphins for Killer Whales by looking at their dorsal, but upon closer inspection you’ll find they have a light body marked by scratches or lines. Two nights ago, we did a Bongo Net drop and were able to collect 7 jars full of krill, plankton and myctophids (small Lantern fish).  This showed that the area was very healthy and full of abundance. As far as birds go, we observed part of the Monterey Bay flock of Sooty Shearwaters numbered at approximately 250,000. Today we picked up Scientist Rich Pagen in Santa Cruz, joining us after being ill and we hope to continue observations as we head back out to sea from Monterey Bay.

Humpback Fluke – barnacle marking
Humpback Fluke – barnacle marking

Personal log

We’ve had quite a bit of down time enabling me to answer e-mail, do logs, and interviews. When we are “on effort” I am on the Flying Bridge helping with data entry, observations and trying to video our sightings. At night I help the Oceanographers, Mindy Kelley and Liz Zele doing the Bongo Net Tows and we are often out until 10:30 or 11:00 pm.  Today, we were close to shore, so we had cell service to call friends and loved ones.   I’m still having a really good time, the whales and dolphins are breathtaking. I envy your hot weather!

Sea Lions
Sea Lions

Kimberly Pratt, July 14, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Humpback fluke
Humpback fluke. Photo by Cornelia Oedekoven.

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 14, 2005

Weather Data from Bridge

Latitude:  3544.108 N
Longitude: 12151.852 W
Visibility: <1 mile
Wind Direction: 330
Wind Speed:  5 knots
Sea Wave Height: 1-2 feet
Sea Level Pressure: 1013.2
Cloud Cover: Foggy, Drizzle
Temperature:  15.0

Blow hole
Blow hole. Photo by Cornelia Oedekoven.

Scientific Log

Again, it’s been very foggy or windy, limiting our time out observing mammals and birds. We are however, seeing many Humpback Whales. During two of the sightings Humpbacks came up to the boat – 300 meters away.  Humpbacks are named because their dorsal fin is on a hump.  Also Humpbacks surface and blow for a couple of minutes, allowing the scientists to get a good look at them.  After surfacing and blowing, they then dive, showing off their impressive flukes. Scientist ID Humpbacks by their flukes, dorsal and bumps or knobs on their rostrum (or beak).  An interesting fact is that the underside of a humpback’s fluke is different for each animal, (like their fingerprint) so getting good photo ID is imperative. Along with the Humpbacks, we’ve seen Pacific Whiteside Dolphins who ride the bow of the Humpbacks.  As far as birds go, we’ve seen a migration, 15-20 Red necked Phalaropes, South Polar Skuas who breed in the Antarctica, Pink-footed Shearwaters, Albatrosses, Gulls, and many Sooty Shearwaters.

Personal Log

It’s quite impressive to actually hear the whale’s breath. In fact being on the “fantail” rear of the boat, we located them by their breathing.  Being so close to the Humpbacks was really a great experience. I was able to get video, so I look forward to sharing it with you all.  The cruise is still going well, when we’re slow, I’ve been e-mailing, reading and doing interviews.

Yesterday the swells were as high as 10-12 ft. with 5-6 foot wind waves, so unfortunately, my sea sickness flared up again.  After speaking with the Medical Officer and resting, I feel much better.  I didn’t know that your body has to acclimate to different sea states so my sea legs are still growing.  Maybe after the cruise I’ll be taller!  Hope all is well. Thanks for all of the e-mails.

Thanks to Cornelia Oedekoven for the photos.

Kimberly Pratt, July 12, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 12, 2005

Fluke that helps in photo identification
Fluke that helps in photo identification

Weather Data from Bridge

Latitude:  3614.084N
Longitude: 12213.868W
Visibility: <1 mile
Wind Direction: 340 Wind Speed:  22 knots
Sea Wave Height: 5-6 feet
Sea Level Pressure: 1014.6
Cloud Cover: Foggy, Drizzle
Temperature:  14.8

Scientific Log 

For the past few days, it’s been either foggy or too windy to do observations.  The last big sighting was on July 10th where we spotted about 30 Sperm Whales.  It was easy to identify the Sperm Whales as their blow is at a 45 degree angle.  Also Sperm Whales like to float at the top of the water so tracking and finding them is relatively easy.  Juan Carlos Salinas and Tim O’Toole, was able to obtain 10 different biopsy samples and Holly Fearnbach and Cornelia Oedekoven obtained photo id. Sperm whales are identified by their flukes, noting scratches, tears or missing pieces.  The scientists will try to identify specific whales.  In the attached pictures, you will see heads of Sperm Whales, note the blow hole on the side of one, also try and look for scratches or cuts on the flukes.

Blow hole
Blow hole

Personal Log

Because of the weather, observations have been slow.  Yesterday, I did observe a Humpback Whale breaching in the distance. Today I’ve been doing interviews, reading and doing e-mail correspondence.  Hopefully the weather will clear and we can go back to regular observations to see more wildlife.  Right now we’re off of Pt. Sir, near Big Sur and will continue to track right outside our own coastline.  Hope all is well.